
Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

A formal framework for security testing of automotive

over-the-air update systems

Rhys Kirk a,∗, Hoang Nga Nguyen b,∗, Jeremy Bryans a,∗, Siraj Ahmed Shaikh b,
Charles Wartnaby c

a Centre for Future Transport and Cities, Coventry University, UK
b Systems Security Group, Department of Computer Science, Swansea University, UK
c Applus IDIADA, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 March 2022
Received in revised form 19 August 2022
Accepted 14 September 2022
Available online 19 September 2022

Keywords:
Automotive cybersecurity
Security testing
Automotive OTA
Uptane
CSP

Modern vehicles are comparable to desktop computers due to the increase in connectivity.
This fact also extends to potential cyber-attacks. A solution for preventing and mitigating
cyber attacks is Over-The-Air (OTA) updates. This solution has also been used for both
desktops and mobile phones. The current de facto OTA security system for vehicles is
Uptane, which is developed to solve the unique issues vehicles face. The Uptane system
needs to have a secure method of updating; otherwise, attackers will exploit it. To this
end, we have developed a comprehensive and model-based security testing approach by
translating Uptane and our attack model into formal models in Communicating Sequential
Processes (CSP). These are combined and verified to generate an exhaustive list of test
cases to see to which attacks Uptane may be susceptible. Security testing is then conducted
based on these generated test cases, on a test-bed running an implementation of Uptane.
The security testing result enables us to validate the security design of Uptane and some
vulnerabilities to which it is subject.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Modern vehicles have become part of the Internet of Things (IoT), connecting them to their users, manufacturers and
the rest of the world. Consequently, vehicle connectivity introduces the threat of cyberattacks. Many attacks have been
discovered for connected vehicles. Examples include attacks on tyre pressure monitoring systems (TPMS) [1–3], ECUs, CAN
bus [1,2,4–6], entertainment systems (disks, USBs, etc) [1,2,4] and many others [7]. Notoriously, the Jeep Cherokee was
vulnerable to having the users’ control being entirely overridden by a remote attacker [4]. This led to the largest recall of
1.4 million vehicles.

OTA updates have been considered as a promising solution for remotely patching security vulnerabilities and avoiding
the use of expensive and insufficient recalls. Traditional update methods can be secured as both parties have the power
and resources. However, automotive OTA update faces a main challenge where vehicles do not have such required power
and resources. They have many Electronic Control Units (ECUs) that each need to be updated but aren’t able to handle the
necessary encryption. Because of this, alternative software update solutions need to be developed to solve this problem.
Many car makers have planned to implement OTA update systems since 2018 [8]. However, an OTA update needs to be

* Corresponding authors.
E-mail addresses: Kirkr@uni.coventry.ac.uk (R. Kirk), h.n.nguyen@swansea.ac.uk (H.N. Nguyen), ac1126@coventry.ac.uk (J. Bryans).
https://doi.org/10.1016/j.jlamp.2022.100812
2352-2208/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jlamp.2022.100812
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2022.100812&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:Kirkr@uni.coventry.ac.uk
mailto:h.n.nguyen@swansea.ac.uk
mailto:ac1126@coventry.ac.uk
https://doi.org/10.1016/j.jlamp.2022.100812
http://creativecommons.org/licenses/by/4.0/

R. Kirk, H.N. Nguyen, J. Bryans et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
resilient and not become an attack vector. Otherwise, it would introduce new vulnerabilities into the vehicle. For example,
attackers could compromise firmware and software updates with malicious packages and ransomware. This will compromise
vehicle control, functionality and user privacy by tracking and tracing vehicle user activities. Therefore, it is vital to ensure
the resilience of automotive OTA. Uptane [9] has been proposed as a secure and standard design for automotive OTA. It aims
to withstand known attacks whilst delivering OTA software to vehicle ECUs. Nevertheless, there has been a limited research
effort in the literature on security assessment methods and techniques for automotive OTA, and on Uptane in particular. To
the best of our knowledge, the most relevant work is from [10] where Mahmood et al. define a semi-formal model-based
framework to evaluate the security properties of the Uptane reference implementation. They provide an informal model of
Uptane while the attacker is modelled formally by attack trees. By using attack trees, Mahmood et al. generated test cases,
however, attack trees can only capture known threats and cannot deal with zero-day attacks. Furthermore, how to construct
attack trees for an OTA update system is still an open question.

In this paper, we present a model-based approach by modelling Uptane and an attack model inspired by Dolev-Yao [11]
in Communicating Sequential Processes (CSP). A Dolev-Yao attacker is assumed to have full control over communication, and
hence, has the capabilities to violate security properties, such as confidentiality, authenticity, and integrity. CSP is a formal
modelling language for describing concurrent systems. Via refinement checking on these models, we verify if there are any
attacks as traces of system events which lead to a security violation. We consider each trace as a security test case that
we translate into a real attack. To this end, we can identify (even zero-day) attacks within the system. Similar methods of
model-based security testing have been applied to automotive security and have yielded promising results [12–14]. In [12],
they modelled the vehicle network CAN bus in CSP. The model allows for the generation of how a vehicle network would
behave against cyber attacks. Similarly, the ECU application code can be translated into a formal model in CSP [13]. Such
a model enables security analysts to identify if any potential vulnerabilities are present in the original code exhaustively
and effectively. Formal models and attack trees were also employed in [14] for proposing a systematic security evaluation
approach. This approach suggests using attack trees to model attackers’ behaviour. These attack trees are then formalised
in CSP for test case generation. This shows how such an approach can be applied to the case of automotive Bluetooth
interfaces [15]. However, its limitations include: (i) all attacks captured in an attack tree are known and (ii) there are no
vehicle models to drive the test case generation process.

1.1. Contributions

Our contributions in this paper are (i) a model-based method for evaluating Uptane; (ii) a formal model of Uptane in CSP;
(iii) a mutation of the Uptane model; (iv) a formal model of our attacks inspired by Dolev-Yao; (v) a method to exhaustively
generate security test cases and (vi) a rigorous security evaluation of the Uptane reference implementation. Although this
approach was first introduced in [16], it was limited in several aspects including: (i) The Uptane model was limited and
did not include the secondary ECU. By including the secondary ECU, the model now has a full verification and a partial
verification, as well as an internal network that the attacker doesn’t have control over. This provides more points of attack
to discover and makes the model more accurate to the specification. (ii) The attack model only included three attacks. To
address this, we added two more attacks, the spoof and the freeze. Spoofing can send malicious images to the vehicle and
the freeze attack allows the attacker to prevent updates. This is mentioned as defend against in the specification, but will
test the model as well as allowing for model mutation. (iii) The lack of an automatic mechanism to generate test cases
through refinement checks that led to the generation of only 3 test cases. To address this, a Python script was created to
search for more points of attack by the same attacker within the model, allowing for better discovery of attacks across the
model. (iv) In addition to this, we added a mutated version of the Uptane model. This mutated model removes the defences
of the freeze attack. This lets us see if the real world Uptane implementation has followed the specification: if not, it may
be vulnerable to this attack.

1.2. Structure

The structure of the paper is as follows. Section 2 outlines CSP and the attack model that provide the foundation for the
proposed approach. In addition, it recalls the structure and the logic of Uptane. Section 3 introduces the methodology and
its application to the Uptane system. Section 4 describes how we modelled Uptane in CSP. Section 5 introduces the attack
model, the mutated model of Uptane and how FDR is used to generate an exhaustive list of test cases. Section 6 presents
the experiment, its setup and how we translate the test cases into real attacks. Finally, Section 7 gives a conclusion of the
paper and highlights areas of improvement.

2. Background

In this section, we review CSP and Failures-Divergences Refinement (FDR) for use in our modelling and test case genera-
tion. Furthermore, we also discuss the use of the attack model.
2

R. Kirk, H.N. Nguyen, J. Bryans et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
Fig. 1. The Uptane System. Sent messages are: 1© and 2© Image; 3© Signed token & time; 4© Metadata & image; 5© Vehicle Manifesto; 6© Metadata, images
and manifesto.

2.1. CSP and FDR

We give here a brief overview of the subset of CSP that we use in this paper. A more complete introduction may be
found in [17]. Given a set of events �, the CSP processes used in the following are defined by the following syntax:

P ::= Stop | RUN | e!x?y → P | P1 � P2 | if b then P else Q |
�ai : A@P (ai) | P1 ‖

A
P2 | P1 A‖B P2 | P (X)

where A, B ⊆ � and ai ∈ A. For convenience, the set of CSP processes defined via the above syntax is denoted by CSP. The
term e!x?y indicates that in the communication of e x is communicated to the environment and that the variable y is
instantiated by the environment. The process Stop is the most basic one. It does not engage in any event and represents
deadlock. RUN(A) =?x : A → RUN(A) is the process which, for a set of events A ⊆ �, can always communicate any member
of A desired by the environment. The prefix e → P specifies a process that is only willing to engage in the event e, then
behaves as P . The external choice P1 � P2 behaves either as P1 or as P2. The generalised external choice � ai : A@P (ai)

offers the environment any action from the set A, then behaves as P (ai). The conditional if b then P else Q behaves as P
if b is true, Q otherwise. The generalised parallel operator P1 ‖

A
P2 requires P1 and P2 to synchronise on events in A ∪ {�},

where � is a special event used to mark the termination of a process. All other events are executed independently. The
alphabetised parallel P1 A‖B P2 must synchronise on any event in A ∩ B . Both processes can engage in events outside this
intersection. P (X) indicates recursion. There are different semantics models for CSP processes [17]. For the purpose of this
paper, we recall the finite trace semantics. A trace is a possibly empty sequence of events from �� = � ∪ {�}. In general,
the trace semantics of a process P is a subset traces(P) of (��)∗ consisting of all traces which the process may exhibit.
Further details and a full definition of the traces can be found in [17]. A process P is said to trace-refine a process Q
(written Q
T P) if traces(P) ⊆ traces(Q). Failures-Divergences Refinement4 (FDR4) is a refinement checker for CSP. FDR4
can be used to troubleshoot and debug CSP scripts as well as to generate test cases from CSP models.

2.2. Attack model

The attack model employed in this paper is inspired by that of Dolev-Yao [11]. Dolev-Yao’s attack model is considered to
be one of the most powerful attack models [18]. It has been used widely to provide formal proofs of security protocols [19–
21] and to guide security testing of system implementations [22]. In the Dolev-Yao attack model, the attacker controls the
network, allowing the attacker to manipulate all packets that are sent through the network if not properly defended.

Our attack model comprises of five attacks: edit, block, listen, spoof, and freeze. The editing attack can manipulate
packets sent on the network. The blocking attack blocks packets on a network. Eventually, this can cause a complete denial
of service. The listening, i.e., eavesdropping, attack monitors what is being sent on the network. A spoofing attack imitates
a legitimate source, so the victim thinks it is interacting with the intended recipient. The freeze attack prevents the victim
from being able to update by sending it the currently installed update. This causes the victim to remain on its current
update. The separation in our attack model aims at providing the nature of each generated test case. This avoids the
explosion of the formal models’ state space, thus facilitating the refinement checks in FDR4 and reducing time for generating
test cases.

2.3. The uptane system

The structure of the Uptane [9] System is depicted in Fig. 1. The server-side comprises the director server, the image
repository server, and the time server. The director checks the metadata of the system and holds the manifest. The image
repository is a simplified version of the director. When the image repository receives a role request, it gets the role metadata
3

R. Kirk, H.N. Nguyen, J. Bryans et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
Fig. 2. Security testing methodology for Uptane: 1© Formalising Uptane; 2© Mutate the Uptane model; 3© Model the attacks; 4© Combining models; 5©
Generating symbolic test cases; 6© Translating symbolic test cases; 7© Executing test cases; 8© Reporting the test result.

from storage and then sends it to the primary ECU. The time server holds the current time to update any ECU that does not
have a clock. Inside a vehicle, i.e., the client-side, the Uptane system consists of one primary ECU and multiple secondary
ECUs. The primary ECU is responsible for communicating with the server to receive the time, firmware, and metadata. The
server will process the manifest sent by the primary and respond if there is a new update. Commonly, secondary ECUs
have limited computing power since they are designed for specific tasks. Therefore, they have no direct communication
with the server in the Uptane system. A secondary ECU communicates with the primary ECU to receive new updates. In
order to verify the updates, the system utilises metadata. Metadata is given as one of four roles: root, timestamp, snapshot,
and targets. All roles follow the same structure, containing role-nonspecific data (version and expiration time), a unique
payload and a signature. Root’s payload contains public keys for each role. Timestamp’s payload contains snapshot filename
and snapshot version. Snapshot’s payload contains target filenames and target versions. Targets’ payload contains image
names and ECU IDs. Roles are tested to verify their integrity and legitimacy. The verification method takes 7 steps. If any
of the steps fail, the verification system will stop and the update will not be installed. The 7 steps are: 1© Load the current
metadata from the storage; 2© Send a request to the server (director or image repository) for role metadata; 3© Decrypt the
signature in the received metadata using the private key; 4© Verify the payloads legitimacy from the decrypted signature;
5© Ensure that the new metadata version is higher than the old metadata version; 6© Check that the current time is lower

than the expiration time of the new metadata; and 7© Install the new firmware once the verification of the metadata has
been confirmed.

3. Methodology

In this section, we present our methodology employed for Uptane’s security evaluation. First, formal models of the auto-
motive OTA system and the attacks are created. We will then combine these models to generate test cases via refinement
checks. This is a combination of formal modelling and penetration testing, creating a rigorous and more cost-effective way
to identify potential vulnerabilities within a system. The methodology consists of 7 steps, seen in Fig. 2. Steps 1© and 3©
can be done concurrently, where all other steps must be done sequentially.
1©Formalising Uptane: We construct a model of the Uptane system. Typically, a bottom-up approach is employed where we

first model the components of the Uptane system. We combine the components to capture the behaviours of the overall
system.
2©Mutate the Uptane model: The Uptane model is altered by removing some of the security features. For example removing

the time check that prevents freeze attacks as detailed in Section 5.2. These removals allow us to generate test cases that
can check for the corresponding security features in an implementation of Uptane.
3©Model attacks: Then we construct the attacks in CSP. We model the behaviour of the attacks: block, eavesdrop, freeze,

spoof and edit.
4©Combining models: In this step we combine the Uptane and attack models to represent a compromised system.1 Typically,

this is done by replacing the network model with the attack model. This reflects that the network is compromised, and the
attack has full control of the network.
5©Generating symbolic test cases: In this step trace refinements are used to generate test cases. However we first capture the

secure behaviours where there are no attacks. We check if they are refined by Uptane’s compromised models in FDR4. If it
is not the case, a counterexample is generated and used as the symbolic test case.

1 The model discussed is available at https://github .com /ssgrepos /LCA22.
4

https://github.com/ssgrepos/LCA22

R. Kirk, H.N. Nguyen, J. Bryans et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
Fig. 3. Uptane model showing the connectivity between the server, network and vehicle.

Fig. 4. Role metadata contents: firmware version, expiration time of metadata, the unique payload of the metadata and the signature.

6©Translating symbolic test cases: We then translate the generated symbolic test cases into executable ones employing Ettercap
[23].
7©Executing test cases: The translated attacks are then tested on the Uptane implementation.
8©Reporting test cases: We take the results of the attacks and formulate a test report.

4. Modelling uptane

This section describes how we use CSP to create a model of the Uptane system. Due to the complexity of the Uptane
specification, the scope of the model has been limited to the: director, image repository, primary ECU, secondary ECU, the
verification process of the metadata and sending the firmware and manifest. The Uptane model is broken down into three
processes: a server, a wireless network, and a vehicle as seen in Fig. 3. In the following we discuss data types that form
the basis of the model, the models of communication network, the vehicle including primary and secondary ECUs and the
server including roles, manifest and verification systems.

In our approach, we limit the Uptane model to one update cycle. The rationale behind this is to manage the complexity
of the model. Without this limitation, the running time required to generate the test cases, by adding multiple update
cycles to the model, increases exponentially. The full Dolev-Yao model would allow all attacks to happen simultaneously,
requiring more than one update cycle. Therefore, splitting the attack model inspired by Dolev-Yao into separate attacks
fits the one-update-cycle limitation of the Uptane model. However this prevents us from catering to complex attacks that
combine multiple simple attacks. We leave this for the future work.

4.1. Data types

We define the following data types for events and processes in the model: Roles (values root, timestamp, snapshot and
targets); Public and private keys (labelled as Pkey and Skey, respectively); ECU ID (one primary and one secondary); File
names (used for role metadata); Image names (current image, new image, and bad image for attacks, see Section 5.1);
Filename Metadata Pair of a filename and a version number to capture the structure of the storage for vehicle ECUs; Com-
ponents (image repository, director, primary, secondary and an attacker); Message (metadata request, a response containing
the metadata).

4.2. Role metadata

The role metadata structure comprises its version, expiration time, payload and signature, this can be seen in Fig. 4.
Version and expiration time ranges from 1 to 3 to represent past, present and future. The role metadata unique payloads
are modelled by sequences to hold multiple sets of metadata. The timestamp is the exception to this and holds a single set
of metadata. Root’s attributes are role and Pkey. Timestamp contains the snapshot file name, version and hash. Snapshot
contains the targets filename and version, targets attributes and image name, ECU ID and hash. The payloads can only be a
set of functional payloads, this reduces the model outputs significantly. Payloads can also be ‘Junk’. If a payload is junk, the
update is cancelled. The payload signatures are computed using the SKey and the payload of the role.
5

R. Kirk, H.N. Nguyen, J. Bryans et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
Fig. 5. The vehicle hierarchy in the Uptane model, showing storage and functions of both the primary and secondary ECU.

4.3. Modelling the communication network

The network contains three main portions: sending metadata, sending manifests and sending the update status. Each of
these has a channel to send and a channel to receive, defined as: ‘channel Send:Component. Component.Message’
‘channel Recv:Component.Component.Message’. Component one of the send channel is the sender, the second is
the destination. The first component of the Recv channel is the recipient, the second is the sender. The network is modelled
as “Net work(X) = � a1 : X, a2 : X@Send.a1.a2?m → Recv.a2.a1.m”, taking the send message and converting it to the receive
message, as well as swapping the location parameters of the send and receive components.

4.4. Modelling the vehicle

This section describes the models of the primary ECU, the secondary ECU and their relevant functionalities. Fig. 5 shows
the hierarchy of the Uptane model on the vehicle side. On the left branch, the figure shows the processes modelling the
components and functions of the primary ECU. We present more modelling details in Section 4.4.1. On the right branch, the
figure shows the processes modelling components of the secondary ECU with further details in Section 4.4.2.

4.4.1. Primary ECU
The primary ECU is modelled by a recursive process. Fig. 6 shows the CSP code used for the primary ECU. First the

process creates a vehicle manifest based on the secondary ECU’s manifest and its own, lines 2 and 3. This is sent to the
director, line 4. The director’s response informs the primary if the vehicle needs to update, lines 5 to 6. This begins the role
verification process described in Section 4.4.3, requesting and verifying the metadata from all roles, from both the director
and image repository. Once this is done, the vehicle will update.

4.4.2. Secondary ECU
The secondary ECU is modelled by first getting its manifest from the secondary storage and then sending it to the

primary. This can be seen in lines 2 and 3 of Fig. 7. The primary will respond by telling the secondary whether to update
or not, lines 4 and 5. If the secondary needs to update, it will request the targets metadata and do a partial verification. The
partial verification only checks the target’s metadata and then will accept the update if successful, lines 8 to 11.

4.4.3. Role verification
Each verification process starts by requesting the role metadata. This is encoded by CSP codes on lines 3 and 4 of Fig. 8.

After receiving the metadata, the verification process will check that the public key matches the private key, as encoded by
6

R. Kirk, H.N. Nguyen, J. Bryans et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
1 Primary_EC U _Loop(current_time) =
2 EC U _Recv.PrimaryEC U .SecondaryEC U ?EC U _mani →
3 get_mani f esto_ f rom_Primary_storage?mani →
4 Send.PrimaryEC U .Director.Mani f estoHeader.F M P H .〈...〉 →
5 Recv.PrimaryEC U .Director?status →
6 if status = F ine then
7 EC U _Send.PrimaryEC U .SecondaryEC U .F ine →
8 inf orm.Spoof Attack →
9 ST O P

10 else
11 Download_and_check_Metadata_F ull(current_time);
12 get_metadata_ f rom_storage.T argetsF ilename1?version →
13 if version = 1 then
14 ST O P
15 else
16 Primary_EC U _Loop(current_time)

Fig. 6. CSP model of the primary ECU function.

1 Secondary_EC U _Loop(current_time) =
2 get_mani f esto_ f rom_Secondary_storage?EC U _mani →
3 EC U _Send.SecondaryEC U .PrimaryEC U .EC U _mani →
4 EC U _Recv.SecondaryEC U .PrimaryEC U ?status →
5 if status = F ine then
6 ST O P
7 else
8 download_and_P _check_targets_metadata(current_time);
9 get_mani f esto_ f rom_Secondary_storage?EC U _mani →

10 EC U _Send.SecondaryEC U .PrimaryEC U .EC U _mani →
11 ST O P

Fig. 7. CSP model of the secondary ECU function.

1 download_and_check_metadata(current_time, server) =
2 get_metadata_ f rom_storage.F ilename?version →
3 Send.PrimaryEC U .server.RequestMetadata.Role.F ilename.(next_version(version)) →
4 Recv.PrimaryEC U .server.ResponseMetadata?metadata →
5 if roledecrypt(RoleP K ey.Role, get_signature(role_metadata))
=
6 get_payload(role_metadata) →
7 ST O P
8 else
9 if get_version(Role_metadata) ≤ version then

10 ST O P
11 else
12 if get_expiration_time(Role_metadata) ≤ current_time then
13 inf orm.F reeze Attack →
14 ST O P
15 else
16 replace_metadata_ f rom_storage.F ilename.(next_version(version)) →
17 S K I P

Fig. 8. CSP model of the verification of metadata in Uptane.

lines 5 to 7. Next is to verify that the version number in the new metadata is higher than the installed version, as encoded
by lines 9 and 10. The system will then check that the current time is less than the expiration time of the new metadata,
as encoded by lines 12 to 14. After the checks, the role metadata will update to the new version, as encoded by lines 16
and 17. If any of the verification steps fail, the update stops.

4.4.4. Manifesto and manifesto storage
The manifest storage contains one manifest for the primary and one for the secondary. These manifests have two at-

tributes: the ECU ID and the firmware version. The ECU ID identifies what ECU is outdated, and the firmware version will
let the server know if the vehicle is outdated. There is a manifest for each ECU and combination of all the manifests for
the vehicle manifest, constructed by the primary ECU. The director, primary and secondary ECU all have their own manifest
storage.
7

R. Kirk, H.N. Nguyen, J. Bryans et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
Fig. 9. The server hierarchy in the Uptane model, showing the connectivity between the metadata storage, image and director repository, with functionality
on content of each.

4.5. Modelling the server

The server has two components and two storage systems. The time server has been abstracted from the model to simplify
the system. A director and image repository are the two main components within the server. There is also the role metadata
storage and manifesto storage, the latter of which is only used by the director. Fig. 9 shows the hierarchy of the Uptane
model on the server side. In the following, let us explain the Uptane model on the server side in more detail.

4.5.1. Role metadata storage
The role metadata storage is called by the director and the image repository when a request is made for the primary to

update. The role metadata storage is shown as a single entity when in fact it is four separate storage systems, one for each
role. Each consists of the version, expiration time, unique payload and signature.

4.5.2. Manifesto storage
The server manifesto storage is exclusive to the director, as the image repository never needs to call the manifesto

storage. Within the manifesto storage are the up-to-date ECU manifestos from the primary and the secondary. Each ECU
manifesto will contain the ECU ID and the image name. This is identical to the manifesto storage found in the vehicle.

4.5.3. Director and image repository
Fig. 10 shows the CSP code that encodes the director and image repository loops. The director loop is modelled by the

CSP code from lines 1 to 15; image repository loop is from lines 17 to 19. The server starts with the director. Upon receiving
the primary ECU’s manifest, the director compares this to its currently held one, checking if it is up to date. This is encoded
from lines 2 to 6. The director will inform the primary of its update status, up to date or out of date, shown on line 7.
The primary will request metadata and the update from both the director and image repository, sending the data upon the
requests. After meeting all the requests, the update cycle is complete, lines 11 to 16 for the director and lines 18 and 19 for
the image repository.

4.6. Model integration

In order to function, the system needs to be synchronised. To do this, we combine two operations, running them in paral-
lel. With this method, we connect all the components of the server, vehicle, and the network. This gives us our synchronised
Uptane model.

5. Test-case generation

This section discusses the attacks and their implementation within the model in Section 5.1, mutating the model to
generate more test cases in Section 5.2. The generation of an exhaustive list of test cases from these mutations is covered
in Section 5.3 and Section 5.4.
8

R. Kirk, H.N. Nguyen, J. Bryans et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
1 Director_Loop() =
2 Recv.Director.PrimaryEC U ?rmani →
3 get_mani f esto_ f rom_Director_storage?mani →
4 if get_P f irmware_ f rom_mani f esto(rmani) = get_P f irmware_ f rom_mani f esto(mani) then
5 if get_S f irmware_ f rom_mani f esto(rmani) =
6 get_S f irmware_ f rom_mani f esto(mani) then
7 Send.Director.PrimaryEC U .F ine →
8 Director_Loop()

9 else
10 Send.Director.PrimaryEC U .Update →
11 Server_Role_Get_Resposnse(Director);
12 Director_Loop()

13 else
14 Send.Director.PrimaryEC U .Update →
15 Server_Role_Get_Resposnse(Director);
16 Director_Loop()

17 Image_Repo_Loop() =
18 Server_Role_Get_Resposnse(ImageRepo);
19 Image_Repo_Loop()

Fig. 10. Example CSP code of the director and image repository main functions.

1 M I T Mblock(X) =
2 �a1 : X,a2 : X@Send.a1.a2?m → M I T Mblock(X)

3 M I T Meaves(X) =
4 �a1 : X,a2 : X@Send.a1.a2?m → Recv.attacker.a1.m → Recv.a2.a1.m → M I T Meaves(X)

5 M I T M F reeze_Attack(X) =
6 (�a1 : X,a2 : X@Send.a1.a2?Payload?Image?K eys →
7 Recv.a2.a1.Old_Payload.Old_Image → M I T M F reeze_Attack(X))�
8 (�a1 : X,a2 : X@Send.a1.a2?m → Recv.a2.a1.m → M I T M F reeze_Attack(X))

9 M I T M Spoof ing_Attack(X) =
10 (�a1 : X,a2 : X@Send.a1.a2?m → Recv.a2.a1.F ine → M I T M Spoof ing_Attack(X))�
11 (�a1 : X,a2 : X@Send.a1.a2?m → Recv.a2.a1.m → M I T M Spoof ing_Attack(X))

12 M I T Medit withkeys(X) =
13 (�a1 : X,a2 : X@Send.a1.a2?Payload?Image?K eys → Recv.a2.a1.Payload.BadImage.
14 BadK eys → M I T Medit withkeys(X))�
15 (�a1 : X,a2 : X@Send.a1.a2?m → Recv.a2.a1.m → M I T Medit withkeys(X))

Fig. 11. CSP models of attacks for: block, eavesdrop, freeze, spoof and edit with keys.

5.1. Modelling attacks

In this section, we model five attacks, mentioned in Section 2.2, and integrate them into the Uptane model. Each attack
model replaces the network in the Uptane model and carries out attacks on the system from the point of an outside attack
on a compromised network.

5.1.1. Block
The block attack can be seen in Fig. 11 on lines 1 and 2. On line 2 the block attack will receive the messages in-

tended to be sent, but does not send them, as it calls itself and the process starts again. The blocker does not use the
“Recv.a2.a1.m” that the network uses to deliver messages, preventing the model from sending messages.

5.1.2. Eavesdrop
The eavesdropping attack will take every message and deliver it to its intended destination as well as the attacker. This

creates a one-in two-out flow on a compromised network, with the attacker receiving every message sent. The eavesdrop-
ping attack can be seen on lines 3 and 4 in Fig. 11. Line 4 is where the eavesdropper sends all traffic to the attacker before
sending it to the intended recipient.

5.1.3. Freeze
The freeze attack interrupts the update and sends a properly signed - but old - update to the vehicle. This prevents the

vehicle from updating even if newer updates exist. In Fig. 11 the freeze attack is on lines 5 to 8, lines 6 and 7 showing the
attack looking for metadata and the update. Once found, it sends the old update. If the metadata is not being sent, it acts
as the normal network, allowing the messages to be sent untouched, as seen on line 8.

5.1.4. Spoof
When the server informs the vehicle of an update, the spoofing attack will relay back to the vehicle that it is already up

to date, stopping any updates. This attack can be seen on lines 9 to 11 in Fig. 11. On line 10, the attack looks for the vehicle
9

R. Kirk, H.N. Nguyen, J. Bryans et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
to request if it needs an update, and then informs it that it is up to date (using the dedicated message “Fine”). “Fine” is
used to inform a vehicle that it is fully up-to-date regardless of its current update status. Line 11 allows the attack to act as
the normal network in all other instances.

5.1.5. Edit with and without keys
We split the edit into two attacks, one with keys and one without. Both will have similar processes, but with an extra

step for the edit with keys. The editing attack can be seen on lines 12 to 15 in Fig. 11. On line 13, the editing attack checks
if the message matches its criteria, the criteria being: does this message contain an update? If the message isn’t sending an
update, the attack will act as the network, as seen on line 15. If the message contains an update, the attack converts the
message to a receive. It then replaces the update to a bad update with the keys to verify the bad update, noted as bad keys.
The edit attack without keys is the same but without replacing the keys or signature, leaving the signature and keys for the
legitimate update.

5.1.6. Compromised models
Within Section 4.3 we discuss how we connected the individual components. With each of the 5 attacks created in Sec-

tion 5.1, the method to combine them is the same: replace the network with one of our attacks. This makes 6 compromised
Uptane models: eavesdropping Uptane, blocking Uptane, freezing Uptane, spoofing Uptane, editing Uptane with keys and
editing Uptane without keys.

5.2. Mutating the uptane model

The Uptane model created, discussed in Section 4, allows us to test attacks on a live implementation of the Uptane
system. Our model assumes complete compliance by the implementation, complete compliance being that all checks and
verification are implemented. However, if it does not fully adhere to the specification, an implementation may introduce
some vulnerabilities. This means security test cases generated by the Uptane model and the attack model will not detect
this. The reason is that our model encodes all the defences specified by Uptane. If the implementation has missed one, there
is no test case generated to check for these vulnerabilities. In order to test for vulnerabilities that may have been introduced
via straying from the specification, we use mutated models.

To test this, we created mutations of the model that have defences removed. This then generates test cases based on the
mutations, giving us the opportunity to check if the implementation has vulnerabilities associated with each mutation. The
Uptane specification records the attacks it can prevent. Finding the associated attacks in our Uptane model and removing
the defences give us a mutated model. This mutated model is then tested using the same attack model to see if the
mutations have given us more test cases. We then create new attacks based on the new test cases and check them against
the implementation. The check assesses compliance and any vulnerabilities that this may have introduced.

In particular, for the freeze attack, the model of Uptane has been changed so that it no longer checks the current time
in the metadata verification process. This can be seen in Section 4.4.3 and lines 12 to 15 in Fig. 8. The verification process
checks for a freeze attack by checking the time to ensure that the update is indeed the most recent and not outdated. The
mutation considered here removes this check in each one of the verification steps no longer requiring the time check. This
makes the model vulnerable to freezing attacks. All other aspects of the model remain the same. The time check at the
verification of the root, timestamp, snapshot and targets for both director and image repository are the only changes made
to this mutation. Using the mutated model, we will generate test cases to validate if the implementation of Uptane is indeed
vulnerable to freezing attacks.

Other mutations to the model that we find are doing a partial verification instead of a full verification. This means that
they are only updating from the Director repository and doing a partial verification and update, even when the system is
up to date.

5.3. Generating security test cases using refinement checks

To generate test cases from the compromised models we first define what a successful attack is so we can identify when
the system has been breached.

Eavesdropping is successful if the attacker receives any messages, and is demonstrated when a ‘Recv.attacker’ mes-
sage is transmitted. The block attack is successful if no message is received by its recipient. This means no ‘Send’ messages
are translated into ‘Recv’ messages. Freeze and spoof are successful if, in the case of this mode, the version remains the
same. The edit attack is successful if a malicious update is received by the secondary ECU. By adding an if statement that
checks for bad firmware, running the behaviour ‘do_bad_thing’ indicates a successful attack. These definitions make up
our refinement checks: NoEaves, NoBlock, NoFreeze, NoSpoof and NoEdit respectively.

5.3.1. Refinement checks
Refinement checks in FDR4 take a process, in our case what a failed attack should look like. They then compare it to

another process, in our case a compromised model. FDR4 uses this comparison to explore the states of the processes in
order. If a counter example is found, the refinement is stopped and then the trace (or attack) is reported.
10

R. Kirk, H.N. Nguyen, J. Bryans et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
1 NoEaves
T Eaves_Uptane
2 NoBlock
T Block_Uptane
3 NoEdit
T Edit_W _Uptane
4 NoEdit
T Edit_W O _Uptane
5 NoSpoof
T Spoof _Uptane
6 NoF reeze
T F reeze_Uptane

Fig. 12. Attack refinement checks for: eavesdrop, block, edit with keys, edit without keys, spoof and freeze.

The refinement checks (i.e., assertions) allow us to check if the security properties defined in Section 5.3 are met. Re-
finement checks against compromised systems fail if the system is potentially vulnerable to the attacks. In such cases, each
failure is evidenced by a counter example and considered as a test case. We will use refinement checks to generate security
test cases. Each refinement has the following form: “SecurityProperty
T CompromisedSystem” where the SecurityProperty
and CompromisedSystem processes are corresponding to each attack. In particular, we use FDR4 to check the following
refinements, see Fig. 12, to check if the Uptane system is secure against: 1 eavesdropping attack, 2 blocking attack, 3 editing
attack with keys, 4 editing attack without keys, 5 spoofing attack and 6 freezing attack.

For example, in the eavesdropping attack case, the SecurityProperty is “NoEaves” and the CompromisedSystem is
“Eaves_Uptane” to check if the Uptane system is secure against the eavesdropping attack. FDR4 is used to generate test
cases to check for refinements.

5.4. Exhaustive test cases

Each attack may have multiple points where it successfully penetrates the system. To discover the further attack points
within the model, we developed a Python script to allow FDR4 to test beyond the first successful attack. To use FDR4
with Python we needed to use Python 2.7 [24], as this integration isn’t available for Python 3. First, we create a script
in Python that starts a session in FDR4, this session is given the compromised Uptane model. Once FDR4 has finished,
it will output the trace if the attack is successful. If the attack fails, no trace is sent, and no more attacks are possible.
With successful attacks, the Python script will create a file to store the trace, and this trace is then appended to conform
to CSP. This is done by adding “TCn = ‘’ at the start, the “n” being a number that increases with every new trace. We
also add the prefix “→” to the end of each process and the “→ RU N(E vents)” process at the end to create this confor-
mity. This CSP trace is our counter example that is then added to the assertion that Python is using. This stops the same
attack from being flagged again, therefore allowing further attacks to be discovered. Looking at the process Python uses,
“assert Security Property � T C X
T CompromisedS ystem”, we can see that the attack being used is shown as “Securi-
tyProperty”. This is a representation of what should happen if there is no attack or if an attack fails. The counter examples
that are generated are imported to the assertion shown by “TCX”, and for every counter example found there will be a new
“TCX”. We then tested this on an attacked model represented by “CompromisedSystem”.

Using this, we generated 23 test cases from the normal Uptane model: 18 for eavesdrop, 1 for block, 0 for freeze, 2 for
spoof, 2 for edit with keys and 0 for edit without keys. The 23 generated test cases show that the Uptane system suffers
from this attack. On the mutated model, there were 25 test cases. 23 of these were from the original and 2 were from the
freeze attack.

6. Experiment

In this section, we perform a security evaluation of the Uptane reference implementation based on the test cases gen-
erated in the previous section. These test cases are manually translated into real world attacks to be tested on the demo
implementation of Uptane on a physical test-bed. The tests (a.k.a. attacks) start by using Ettercap to perform Address Res-
olution Protocol (ARP) poisoning on the network. This directs all packets through the tester machine (a.k.a. attacker). Then,
Ettercap is used to manipulate these packets by defining suitable Ettercap filters.

6.1. Test-bed

The Uptane reference implementation is realised in a physical test-bed consisting of: Two Raspberry Pi 4s running
Raspbian, acting as the primary and secondary ECUs, a laptop running Ubuntu as the server, and another laptop with Kali
Linux acting as the tester machine. All of the components are connected via Ethernet to a router acting as our network that
allows them to communicate. To monitor the system and the attacks, the server and the attacker are running Wireshark, a
packet sniffing tool that shows all of the traffic passing through a given network.

6.2. Test cases 1 to 18 - eavesdropping attack

Fig. 13 shows the trace of a eavesdrop test case. Line 3 shows that the hacker has received the message sent over the
network. This attack is successful and we can use this trace to translate this into a real world attack. These test cases
11

R. Kirk, H.N. Nguyen, J. Bryans et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
1 get_mani f esto_ f romS econdary_storage...
2 ...

3 Send.PrimaryEC U .Director.Mani f estoHeader.F M P H .〈...〉
4 Recv.Hacker.PrimaryEC U .Mani f estoHeader.F M P H .〈...〉

Fig. 13. The counter example trace generated by the eavesdrop attack.

1 Send.PrimaryEC U .Director.Mani f estoHeader.F M P H .〈...〉
2 Recv.Director.PrimaryEC U .Mani f estoHeader.F M P H .〈...〉

Fig. 14. Example trace provided by the block test case.

1 get_mani f esto_ f rom_Secondary_storage...
2 get_mani f esto_ f rom_Primary_storage.Mani f estoHeader.F M P H .〈M P C H .I D_Primary.

3 F irmware_current, M P C H .I D_Secondary.F irmware_current〉
4 Send.PrimaryEC U .Director.Mani f estoHeader.F M P H .〈M P C H .I D_Primary.

5 F irmware_current, M P C H .I D_Secondary.F irmware_current〉
6 Recv.Director.PrimaryEC U .Mani f estoHeader.F M P H .〈M P C H .I D_Primary.

7 F irmware_current, M P C H .I D_Secondary.F irmware_current〉
8 get_mani f esto_ f rom_Director_storage.Mani f estoHeader.F M P H .〈M P C H .I D_Primary.

9 F irmware_new, M P C H .I D_Secondary.F irmware_new〉
10 Send.Director.PrimaryEC U .Update
11 Recv.PrimaryEC U .Director.F ine

Fig. 15. Example trace provided by the spoof test case.

are translated into an executable test case consisting of two steps: (i) setting up with a listener using Ettercap, to see all
messages sent; (ii) requesting an update from the secondary ECU. In carrying out both of these steps, Ettercap can see
the packets being passed between the two, including the firmware update. The packets that Ettercap intercept correctly
correspond to the packets collected from Wireshark on the host machine. Therefore, the attack is successful.

6.3. Test case 19 - blocking attack

Fig. 14 identifies line 2 as a variation from the block Uptane model. This shows that this message was not received. Using
this trace, we can translate the attack into a real world attack. Test case 19 consists of two steps: (i) setting up a block
filter in Ettercap; (ii) requesting an update. Ettercap’s filters have a lot of applications and work much the same as most
scripting languages [25]. The filter calls two commands “kill();drop()”. The kill command ends the connection and
stops the packet from reaching its destination. Carrying out these two steps causes the ECUs to appear to be unresponsive
and eventually send the connection timed out error. Wireshark on the host machine also confirms that the packets are
being stopped: although TCP reset packets are still being sent, trying to re-establish a connection. Therefore, the attack is
successful.

6.4. Test cases 20 and 21 - spoofing attack

Fig. 15 shows the trace of test case 20. Line 10 shows that the director sends an “Update” message, but on line 11 the
received message it shows “Fine”. This prevents the vehicle from updating. Using this trace, we can translate this attack into
a real world attack for our test bed. The spoof attack contains the steps (i) recording the response of the server when the
vehicle is up to date, (ii) creating a filter to send this response instead of a legitimate one, and (iii) requesting an update.
However, this shares many aspects with the freeze attack, seen in Section 6.6. The attack is unsuccessful, and we have
discovered that the implementation we are working with differs from the specification.

6.5. Test cases 22 and 23 - editing attack with keys

In Fig. 17, lines 3 to 6 show the Director sending the Primary the update payload with “Image_new”, but on the receiving
side, lines 7 to 10, the image has been replaced with “Bad_Image”. Using this trace, we can translate the model theoretical
attack into a real world attack. Test cases 22 and 23 have three steps: (i) create a binary file of the bad target’s metadata
image repository and Director; (ii) apply an Ettercap filter to the network to change the firmware image in transit, see
Fig. 16; (iii) request an update. First, the filter checks the packets for strings present at the start of the Director and Image
repositories’ encrypted target payloads (lines 1 and 3). Next, we drop the information from the packet (1st statement on
lines 2 and 4), and then inject the malicious payload (2nd statement on lines 2 and 4). Line 5 replaces the good update
12

R. Kirk, H.N. Nguyen, J. Bryans et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
1 if (search(D AT A.data, “Director T argets String”)){
2 drop(); inject(“Directory/Director_attack.bin”); }
3 if (search(D AT A.data, “Image T argets String”)){
4 drop(); inject(“Directory/Image_attack.bin”); }
5 replace(“F resh f irmware image”, “BadX X f irmware image”)

Fig. 16. Ettercap filter to realise the Editing attack with keys.

1 get_mani f esto_ f rom_Secondary_storage...
2 ...

3 Send.Director.PrimaryEC U .ResponseT argetsMetadata.T M.3.3.T argetsPayloadHeader
4 .〈T argetsContent Header.Image_new.I D_Primary.Hashing F irmware.F irmware_new,

5 T argetsContent Header.Image_new.I D_Secondary.Hashing F irmware.F irmware_new〉.
6 EncT .RoleS K ey.T argets.T argetsPayloadHeader.〈...〉
7 Recv.PrimaryEC U .Director.ResponseT argetsMetadata.T M.3.3.T argetsPayloadHeader
8 .〈T argetsContent Header.Bad_Image.I D_Primary.Hashing F irmware.F irmware_new,

9 T argetsContent Header.Bad_Image.I D_Secondary.Hashing F irmware.F irmware_new〉.
10 EncT .RoleS K ey.T argets.T argetsPayloadHeader.〈...〉
11 replace_metadata_ f rom_storage.T argetsF ilename1.2
12 Do_bad_thing

Fig. 17. This is the relevent trace from FDR for the edit with keys.

with the bad. Both the Primary and Secondary show no signs of attack; the Secondary files show “BadXX firmware image”
as the current update. Therefore, the attack is successful in both areas recognised by the test case.

6.6. Mutated test cases 24 and 25 - freeze attack

Turning test case 24 and test case 25 into executable attacks requires 5 steps: (i) listen and record the metadata and
update from the server to vehicle using Ettercap; (ii) create a filter that injects this update into the new update and
metadata replacing the intended messages; (iii) ARP poison the system before its next update; (iv) activate the filter; (v)
perform an update. This attack is similar to the one found in Fig. 16, but it injects the old recorded metadata and update
instead of the malicious one. However, when this attack is carried out, it fails and relays back to the vehicle that the update
is out of date and it may be a potential attack. The test cases are generated by the mutated model and the freeze attack
model. This testing result shows that the implementation of Uptane is indeed secure against freeze attacks.

7. Conclusion & future work

In this paper, we have expanded on our proposed model-based approach for systematically evaluating automotive OTA
updates [16]. The approach employs CSP, FDR4, a simplified Dolev-Yao attacker and mutation modelling to enumerate po-
tential attacks. By combining the CSP models of Uptane and the attacks, we have tested Uptane’s resilience to the theoretical
attacks. With this method, we have tested five attacks on the Uptane system, generating 25 test cases to identify vulnera-
bilities. We have shown a promising approach to testing OTA systems in a methodical manner, allowing for a bombardment
of security tests on a live implementation. Within the scope of the model and the attacks, we can conclude that Uptane
is vulnerable to some of these attacks. Being vulnerable to the attacks listed can prevent vehicles from updating, reverse
engineering the updates sent and even installing malicious firmware to allow for devastating attacks.

To help prevent the 3 successful attacks - edit with keys, blocker and eavesdropper - Uptane can take the following steps.
(i) Edit with keys: To prevent this kind of attack, we can employ better key management, prevent the exposure of keys and
instigate regular updates. (ii) Blocker: This attack cannot be prevented in this context. To better prepare against a potential
blocking attack, the vehicle could make regular contact with the server. By contacting the server once a day, for example,
the vehicle can determine how long it has been without contact. Using this, the manufacturer can determine how much
time may pass without contact before the vehicle sends the user a message informing them that there is no contact to the
server. This can then tell the user to go to a garage to check the vehicle’s integrity. (iii) Eavesdrop: This attack cannot be
stopped, but can be rendered next to useless. By employing a strong encryption only between the server and the Primary
ECU, the attacker cannot see what is being transmitted and gains little information from the attack. Although this requires
better hardware for the Primary ECU, the manufacturer can retain the same hardware for other Secondary ECUs. The Uptane
system has shown itself to be resilient to some attacks, but it has also shown various vulnerabilities. The implementation
has also included some changes that provide improvements on the specification, preventing the original simplistic spoofing
attack from taking place.

Further work will expand the model by adding more attacks and variations of the same attacks. We also plan to create
more model mutations by removing and including various aspects of the original model. This will generate more test cases
and lead to a more comprehensive security assessment for this automotive OTA system. In addition to adding more to the
13

R. Kirk, H.N. Nguyen, J. Bryans et al. Journal of Logical and Algebraic Methods in Programming 130 (2023) 100812
model to allow for more test cases, we intend on testing defences to the Uptane model. By adding suggested defences to
the model, we can test if the same attacks are still successful on the model, allowing the model to be used to test suggested
defences.

Uptane is designed to enable the automotive industry to comply with a compelling need emerging from standards
such as ISO/DIS 24089 on software update engineering for road vehicles and regulations such as UNECE WP29 R155 and
R156 cybersecurity and software update management for automotive systems, which ultimately mandates a secure OTA
software update system for vehicles. Our contribution provides for a framework, whereby implementations of Uptane (which
may vary at a lower level across vehicles) could be assured for using effective test case generation. As such, while the
formal model suffices to represent the logical architecture of the updating system, the test cases generated would ultimately
test the implementations; increasing model mutations will ensure test cases work towards an increasingly comprehensive
assessment.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno, Comprehensive experimental
analyses of automotive attack surfaces, in: Proceedings of the 20th USENIX Security Symposium, 2011, pp. 77–92.

[2] V.H. Le, J. den Hartog, N. Zannone, Security and privacy for innovative automotive applications: a survey, Comput. Commun. 132 (2018) 17–41, https://
doi .org /10 .1016 /j .comcom .2018 .09 .010.

[3] I. Rouf, R. Miller, H. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser, W. Trappe, I. Seskar, Security and privacy vulnerabilities of in-car wireless networks:
a tire pressure monitoring system case study, 2010, pp. 323–338.

[4] C. Miller, C. Valasek, Remote exploitation of an unaltered passenger vehicle, Defcon 23 (2015) (2015) 1–91.
[5] S. Nie, L. Liu, Y. Du, Free-fall: hacking tesla from wireless to can bus, Defcon (2017) 1–16.
[6] S. Parkinson, P. Ward, K. Wilson, J. Miller, Cyber threats facing autonomous and connected vehicles: future challenges, IEEE Trans. Intell. Transp. Syst.

18 (11) (2017) 2898–2915, https://doi .org /10 .1109 /TITS .2017.2665968.
[7] T. van Roermund, In-vehicle networks and security, Automot. Syst. Softw. Eng. (2019) 265–282.
[8] Synopsys, SAE International, Securing the modern vehicle: a study of automotive industry cybersecurity practices, https://www.synopsys .com /content /

dam /synopsys /sig -assets /reports /securing -the -modern -vehicle .pdf, 2018.
[9] Uptane: securing software updates for automobiles, https://uptane .github .io/.

[10] S. Mahmood, A. Fouillade, H.N. Nguyen, S.A. Shaikh, A model-based security testing approach for automotive over-the-air updates, in: ICSTW 2020,
IEEE, 2020, pp. 6–13.

[11] D. Dolev, A.C. Yao, On the security of public key protocols, IEEE Trans. Inf. Theory 29 (2) (1983) 198–208.
[12] E. dos Santos, A. Simpson, D. Schoop, A formal model to facilitate security testing in modern automotive systems, Elect. Proc. Theoret. Comput. Sci.

271 (2018) 95–104.
[13] J. Heneghan, S.A. Shaikh, J. Bryans, M. Cheah, P. Wooderson, Enabling security checking of automotive ECUs with formal CSP models, in: Proceedings -

49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop, DSN-W 2019, 2019, pp. 90–97.
[14] M. Cheah, H.N. Nguyen, J.W. Bryans, S.A. Shaikh, Formalising systematic security evaluations using attack trees for automotive applications, in: WISTP

2017, 2017.
[15] M. Cheah, S.A. Shaikh, O.C.L. Haas, A.R. Ruddle, Towards a systematic security evaluation of the automotive bluetooth interface, Veh. Commun. 9 (2017)

8–18, https://doi .org /10 .1016 /j .vehcom .2017.02 .008.
[16] R. Kirk, H. Nguyen, J. Bryans, S. Shaikh, D. Evans, D. Price, Formalising UPTANE in CSP for security testing, in: The 21st IEEE International Conference

on Software Quality, Reliability, and Security, QRS2021, 06–10 December, 2021, 2021.
[17] A.W. Roscoe, The Theory and Practice of Concurrency, Pearson, 2005.
[18] I. Cervesato, The Dolev-Yao intruder is the most powerful attacker, in: 16th Annual Symposium on Logic in Computer Science, in: LICS, vol. 1, 2001.
[19] B. Blanchet, Composition theorems for cryptoverif and application to tls 1.3, in: 2018 IEEE 31st Computer Security Foundations Symposium (CSF), 2018,

pp. 16–30.
[20] F. Tao, W. Shuaishuai, G. Xiang, F. Junli, Formal security evaluation and improvement of industrial ethernet EtherCAT protocol, J. Comput. Res. Dev.

57 (11) (2020) 2312.
[21] M.S. Bauer, R. Chadha, M. Viswanathan, Modelchecking safety properties in randomized security protocols, in: Logic, Language, and Security, Springer,

2020, pp. 167–183.
[22] X. Hu, C. Liu, S. Liu, W. You, Y. Li, Y. Zhao, A systematic analysis method for 5G non-access stratum signalling security, IEEE Access 7 (2019).
[23] Ettercap home page, https://www.ettercap -project .org/.
[24] The FDR API, https://cocotec .io /fdr /manual /api /api .html.
[25] A. Ornaghi, M. Valleri, Ettercap(8) - Linux man page, https://linux .die .net /man /8 /ettercap.
14

http://refhub.elsevier.com/S2352-2208(22)00065-7/bib39B6EA8C25DF9162A9F056F638242DA0s1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib39B6EA8C25DF9162A9F056F638242DA0s1
https://doi.org/10.1016/j.comcom.2018.09.010
https://doi.org/10.1016/j.comcom.2018.09.010
http://refhub.elsevier.com/S2352-2208(22)00065-7/bibE5D506472627237ED894136331103C1Bs1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bibE5D506472627237ED894136331103C1Bs1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib2EC5254815DB9A3CF1F3C9E594B3162Fs1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib8846FB61ADC15F40756405888FF17110s1
https://doi.org/10.1109/TITS.2017.2665968
http://refhub.elsevier.com/S2352-2208(22)00065-7/bibE048B03912F493D4232E070C30389885s1
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/securing-the-modern-vehicle.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/securing-the-modern-vehicle.pdf
https://uptane.github.io/
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib22739F34CE24475E79CC1F8992ED9CEFs1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib22739F34CE24475E79CC1F8992ED9CEFs1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bibAAAF40D95E3064828B5C03DAE9CBEDF6s1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib09B7AAA2CC94A6F0B8DCFBEC81D5608As1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib09B7AAA2CC94A6F0B8DCFBEC81D5608As1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bibB4F5FE5B62BDB5B26B6E0434445977CAs1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bibB4F5FE5B62BDB5B26B6E0434445977CAs1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib905D1560F7E6E347031F48C7E3F2A5B6s1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib905D1560F7E6E347031F48C7E3F2A5B6s1
https://doi.org/10.1016/j.vehcom.2017.02.008
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib3C5E264A8F34D0D74A46EBDE6CA58A0Es1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib3C5E264A8F34D0D74A46EBDE6CA58A0Es1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bibCD0FC626FC33128C67ACA9BCE6402EC4s1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib288DEB4F9CC83D9B8831505A95CA5DDDs1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bibAABBA228A574D1FD31F0B201E3047B1Cs1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bibAABBA228A574D1FD31F0B201E3047B1Cs1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib1F53C7C8CE19E6F503C22CF159928A44s1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib1F53C7C8CE19E6F503C22CF159928A44s1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib84E418ED12631F8448F44E6FFE4D2F29s1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib84E418ED12631F8448F44E6FFE4D2F29s1
http://refhub.elsevier.com/S2352-2208(22)00065-7/bib2A467A2E81770689FD19A3BF807DB104s1
https://www.ettercap-project.org/
https://cocotec.io/fdr/manual/api/api.html
https://linux.die.net/man/8/ettercap

	A formal framework for security testing of automotive over-the-air update systems
	1 Introduction
	1.1 Contributions
	1.2 Structure

	2 Background
	2.1 CSP and FDR
	2.2 Attack model
	2.3 The uptane system

	3 Methodology
	4 Modelling uptane
	4.1 Data types
	4.2 Role metadata
	4.3 Modelling the communication network
	4.4 Modelling the vehicle
	4.4.1 Primary ECU
	4.4.2 Secondary ECU
	4.4.3 Role verification
	4.4.4 Manifesto and manifesto storage

	4.5 Modelling the server
	4.5.1 Role metadata storage
	4.5.2 Manifesto storage
	4.5.3 Director and image repository

	4.6 Model integration

	5 Test-case generation
	5.1 Modelling attacks
	5.1.1 Block
	5.1.2 Eavesdrop
	5.1.3 Freeze
	5.1.4 Spoof
	5.1.5 Edit with and without keys
	5.1.6 Compromised models

	5.2 Mutating the uptane model
	5.3 Generating security test cases using refinement checks
	5.3.1 Refinement checks

	5.4 Exhaustive test cases

	6 Experiment
	6.1 Test-bed
	6.2 Test cases 1 to 18 - eavesdropping attack
	6.3 Test case 19 - blocking attack
	6.4 Test cases 20 and 21 - spoofing attack
	6.5 Test cases 22 and 23 - editing attack with keys
	6.6 Mutated test cases 24 and 25 - freeze attack

	7 Conclusion & future work
	Declaration of competing interest
	References

