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Abstract 

The behavioural ecology of flight has largely considered how birds respond to mean flow 

conditions, but it is the gusty or extreme airflows that are likely to be particularly challenging. 

This thesis addresses this, examining the strategies birds use to negotiate turbulence over 

land, and exceedingly strong winds at sea. I first develop a method for sensing turbulence at 

fine scales using data collected onboard the animals themselves, taking homing pigeons 

(Columba livia) as model flapping fliers. Fine scale variation in the flight altitude and body 

displacement emerged as effective proxies of turbulence. I then assess the impact of 

freestream turbulence on flapping fliers and find that pigeons adapted their wingbeat 

kinematics (frequency and amplitude) to increase their flight stability in response to 

turbulence, but did so without a clear increase in flight effort. In my final two chapters I 

examine the responses of two seabird species to strong winds, first at sea, and then on land. 

Specifically, I investigate how streaked shearwaters (Calonectris leucomelas) respond to 

tropical cyclones, and how common guillemots (Uria aalge) select their breeding cliffs in 

relation to airflow conditions. I find that shearwaters fly towards the eye of the storm. This 

tendency increases with cyclone intensity and may enable birds to avoid strong onshore winds 

and reduce the associated risks of forced landings and/ or injury. Finally, computational fluid 

dynamics models reveal that guillemots select breeding cliffs that are sheltered from wind and 

storm conditions, rather than from the mean wind alone, or heat stress. This model of habitat 

selection could also predict habitat use across islands. Overall, this highlights the varied and 

sometimes surprising capacities of birds to cope with extreme and variable airflows and 

operate in areas that are, as yet, inaccessible to aircraft. 
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Chapter 1: General introduction 

In February 2022, storm Eunice hit the UK, generating gusts of 92 miles per hour in Swansea 

and up to 122 miles per hour in England (provisionally the highest ever recorded). Over 20 

million people were advised to stay indoors, as the storm was forecast to cause a danger to 

human life. As the winds increased to storm strength it was clear that birds follow different 

rules: gulls, corvids, and pigeons were all still flying, and what is more, many of them, even 

pigeons, were soaring above the trees and houses. It is not just their responses to extreme 

winds that highlights the remarkable flight performance of birds; some operate in strong 

turbulence, with great frigate birds (Fregata minor) soaring hundreds of metres within 

cumulus clouds (Weimerskirch et al., 2016), in which birds can encounter highly turbulent 

conditions. But perhaps most challenging of all is the negotiation of strong and/ or turbulent 

airflows when birds are flying close to ground. Here, there is little room for error, as collision 

with the land is often fatal. And yet while large numbers of birds collide with buildings 

(Nichols et al., 2018), apparently oblivious to surfaces that are reflective in the day and dazed 

by lights at night (Elmore et al., 2021), there are only a few records of birds injuring 

themselves during landing or take-off in the natural environment (Shepard et al., 2019). 

Equally, while vagrants do appear either ahead of or following storms, they tend to be few in 

number (e.g. Van Bemmelen and Wielstra, 2008). Birds must therefore possess strategies that 

enable them to respond to extreme and variable flight conditions safely. While these 

strategies may ultimately have important consequences for fitness, we know intriguingly little 

about them.  

Responses to wind: moving beyond the mean 

Birds show a wide range of behaviours in response to changes in mean wind speed. This is 

primarily because wind can have a profound impact on the ability of birds to make progress 

in a desired direction, and hence the cost of covering a unit distance i.e. the costs of transport 

(Hedenström, 1993). As a result, birds show well-documented changes in airspeed in relation 

to the wind conditions to reduce their flight costs, which can be predicted using a framework 

adopted from aeronautical engineering (Hedenström, 1993). A range of studies (e.g. Liechti et 

al., 1994, Pennycuick et al., 2013) have shown that birds tend to follow these predictions, 

with birds increasing their airspeed in headwinds and reducing it with wind assistance. 

Although, this simple relationship is further complicated by factors such as whether birds are 

flying in flocks, and their movement objective (Hedenström and Åkesson, 2016).  
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Birds also adapt their flight path in relation to wind. Wind speed and direction change 

vertically and many birds adjust their flight altitude to exploit tail winds or minimise the 

headwind component. This has been observed in birds undertaking relatively short foraging 

trips (e.g. Krüger and Garthe, 2001), as well as long migrations(e.g. Dokter et al., 2011) 

Large-scale patterns of wind circulation also influence migration routes (Kranstauber et al., 

2015), with birds sometimes deviating from the shortest route in order to benefit from tail-

wind assistance. The length of migration flight legs and stopovers can also be adjusted 

according to the availability of favourable winds (Liechti, 2006). Even when birds are not 

adapting their course to take advantage of tailwinds, they must still respond to the wind 

vector in order to compensate for wind drift to reach their goal. Compensation for wind drift 

is a complex task requiring adjustment of heading and speed (McLaren et al., 2014) and it can 

be seen not only during migration but also during the daily commute back to a central place 

(i.e. colony) (Goto et al., 2017). Yet the appearance of vagrants after storms suggests that in 

extreme winds, birds cannot always achieve it.  

While the effects of the mean wind condition on flight are relatively well documented, 

we know far less about how birds are impacted by the flow variability around the mean i.e. 

the turbulence (Shepard et al., 2016). More specifically, turbulence is a measure of the 

chaotic variability in the flow’s pressure and wind speed/ direction. Turbulence is common in 

nature (Zhiyin, 2015), and laboratory studies suggest that turbulence can have a substantial 

impact on flight energetics and control (Ravi et al., 2015). It is possible that birds also vary 

their flight path in relation to turbulence. In the aviation industry, aircraft are often forced to 

increase flight altitude or to make detours to avoid clear air turbulence (Storer et al., 2019). 

For volant animals that mainly occupy lower altitudes than commercial airlines, the relevant 

forms of turbulence are mainly a result of surface heating (thermal updraughts) and/or the 

interaction of wind with the land surface and the topography causing mechanical turbulence. 

Where there is an upward component to turbulence e.g. the rising air in thermal updrafts, 

birds can use this to gain altitude or stay aloft without flapping, as exemplified by large 

soaring animals (Williams et al., 2020). But mechanically-driven turbulence is less likely to 

be associated with energetic benefits, in fact, birds are predicted to increase their wingbeat 

frequency to reduce the impact of gustiness on their flight. Recent studies using numerical 

simulations or wind tunnel experiments have shown a variety of responses of wing kinematics 

and body adjustments (Ortega-Jimenez et al., 2014, Ravi et al., 2015, Sapir et al., 2011) 

suggesting that the effects of turbulent eddies on flight performance likely vary with body 

size, speed, flight style and the severity and scale of turbulence (Shepard et al., 2016).  
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Nonetheless, whether and how birds adjust their flight kinematics and flight route in relation 

to turbulence in the wild has yet to be examined.  

Overall, despite the fundamental importance of wind and turbulence to animal flight, 

the majority of ecological studies have focused on the effects of mean flows and sustained 

conditions. Our understanding of responses to extreme winds is hampered by the rarity of 

these events. In contrast, the challenges of studying responses to turbulence in nature relate to 

the lack of environmental information at fine scales. Animal movement can now be tracked 

with ultra-high frequency and resolution (e.g. Brighton et al., 2017, Gunner et al., 2021): 

Accelerometers enable us to track fine scale changes in wing kinematics with sub-second 

resolution (e.g. Elliott et al., 2014, O'Mara et al., 2019, Williams et al., 2020) and GPS 

observations are now recorded at frequencies as high as 1 to 5 Hz, documenting animal tracks 

during daily activities such as foraging, in detail (Brighton et al., 2017). Clearly movement 

needs to be tracked with a sampling rate of hours to days to resolve behaviours over the 

annual cycle (Egevang et al., 2010), but questions such as how birds respond to rapid changes 

in wind strength and direction, and how they negotiate highly unstable flows, need high 

resolution data on both the movement of the animals themselves and the environment they are 

moving through. There is therefore a clear need for fine-scale data on the aerial environment 

that more closely matches the scale at which animals experience it.  

Tools to quantify the dynamic aerial environment 

The tools available to the biological community for quantifying the aerial environment vary 

in scale, cost, and complexity and their application depends on the available resources, 

expertise, and the particular scientific questions that need to be addressed. In recent decades, 

advances in global reanalyses and computational fluid dynamics (CFD) have provided us 

with an exciting toolset, and the former are now widely used by behavioural ecologists. 

Global reanalyses 

Global reanalyses first appeared in the 1990’s and since then a number of products have been 

freely available (i.e. ERA5, ERA-Interim, and the Japanese 55-year Reanalysis (JRA55)). 

Global reanalyses are produced by combining real observations and a global circulation 

forecast model with an assimilation scheme, in order to estimate an extensive set of 

environmental variables (Fujiwara et al., 2017). Specifically, for every time step a short-range 

weather forecast model is used to predict the state of the Earth system. The initial conditions 

for this model are provided by the forecast model of the previous time step and the produced 

estimates are constrained by the real observations that are available for the current time step. 
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These observations come from many different sources, for example weather stations, 

satellites, ships, buoys, radiosondes and aircrafts, and in different forms including digitised 

old paper historical records. The process of combining the previous short-range forecast with 

the latest real observations to set-up and run the short-range forecast of the current time step 

is called analysis and when this process is repeated for an extended period back in time the 

complete product is called a reanalysis or a “map without gaps" of essential climate variables 

of the Earth system (Hersbach et al., 2020).  

Of particular interest to avian ecologists are the wind speed and direction, gustiness, 

temperature, air density, and heat fluxes close to the surface or at multiple levels in the 

atmosphere. As different parts of the Earth system coexist, an environmental variable of one 

system (i.e. land or ocean) can influence one or more variables of another system (i.e. the 

atmosphere). To ensure that this is taken into account, reanalyses use coupled assimilation 

where variables from one system are allowed to interact with variables from other systems 

(Hersbach et al., 2020).  As their name suggests, global reanalysis models provide global 

spatial coverage, with different reanalyses being produced at different spatial and temporal 

resolutions. Reanalyses also cover different time periods extending back several decades, 

with ERA5, for example, providing historical data as far back as the 1950s, with a temporal 

resolution of one hour and a spatial resolution of 30 km (Hersbach et al., 2018, Hersbach et 

al., 2020). The available information can be divided into different levels of the atmosphere 

with ERA5 offering data for a smaller set of parameters (i.e. wind strength) at 37 pressure 

levels. Consequently, the aerial environment above different ecosystems, whether they are 

terrestrial or aquatic, can be represented at kilometre scales that are relevant for many 

questions relating to animal flight. 

Computational Fluid Dynamics 

Computational fluid dynamics can be broadly defined as a branch of fluid mechanics that 

employs numerical equations and computer algorithms to simulate the motion of a fluid, in 

this case the air’s motion, and its interaction with a surface, such as a part of a landscape or a 

mixture of land and water. The main numerical equations used to describe the air’s motion 

are usually taken to be the Navier–Stokes equations because air is a viscous fluid. In general, 

the spatial domain of the model has to be discretised into a regular or irregular mesh, with the 

latter being more suitable for the complex air motion over a landscape (Pope, 2004) and 

appropriate algorithms must be set to solve the governing numerical equations. To perform a 

simulation, initial conditions that describe the state of the simulation at the beginning must be 
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defined, as well as the boundary conditions, which describe how air behaves at the boundaries 

of the model’s domain. Finally, simulations are completed either after a given number of time 

steps (transient solver) or when convergence is reached (steady-state solver).  While it is 

possible to solve the Navier–Stokes equations analytically, for example for laminar flow and 

when all the length scales of the fluid’s motion can be resolved in the model’s grid (direct 

numerical simulations), in most cases the extent of the model’s domain and the flow’s 

complexity require the use of a turbulence model (Lesieur and Metais, 1996).  

Main computational fluid dynamics approaches (RANS/LES) 

CFD models are split into two main approaches for modelling turbulence: Reynolds-

Averaged Navier-Stokes (RANS) models and the Large-eddy simulations (LES) models. LES 

is particularly useful in modelling a wide range of length and time scales of turbulent eddies 

as these cascade from large to small in the atmosphere, down to the smallest significant scale, 

the Kolmogorov scale (Frisch and Kolmogorov, 1995). In LES, while the larger turbulent 

eddies that contain most of the energy of the air’s motion are resolved, the effects of the 

smaller turbulent eddies are parametrised and modelled using a sub-grid scale to represent the 

small scale motion (Lesieur and Metais, 1996, Pope, 2004). In contrast, RANS models 

average out the small-scale phenomena below a certain threshold. In general, the RANS 

models also produce less accurate results, especially when the airflow is dominated by large 

scale unsteady motions, which are the most responsible for turbulent mixing  (Pope, 2004, 

Zhiyin, 2015). However, RANS models can be computationally cheaper, and depending on 

the study, can be implemented on a personal computer.  

Comparison of different tools 

The global coverage of reanalyses datasets, the large range of environmental variables they 

offer, and the simplicity in acquisition makes them very attractive tools for investigating the 

impact of the physical environment on animal flight when (i) the fine scales offered by CFD 

are not necessary, (ii) a CFD model would be too complex to run, or (iii) the extent of the 

movement, in space or time, is large for CFD. Global reanalyses can also provide us with 

reconstructed historical data. Therefore, it is not surprising that global reanalyses have been 

used most frequently by the biological community. However, reanalyses also incorporate 

uncertainties, both from the observational inputs and the circulation models themselves. For 

example, the performance of all modern reanalyses in describing surface winds lack accuracy 

compared to ERA5 when comparisons are made with in situ measurements (Ramon et al., 

2019), but ERA5 is also known to under represent wind strength in extreme conditions 
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(Malakar et al., 2020). Nonetheless, both approaches have their strengths, and can even be 

used in combination, with reanalyses providing the initial and boundary conditions for CFD 

models.  

When higher resolution and more accurate representation of the real world are 

required, CFD models represent the most appropriate choice. CFD models are flexible and 

can be used to run either (i) a real case scenario where a high-resolution model layer(s) is 

nested within a regional coarse resolution model(s) in two or more layers, or (ii) an idealised 

scenario, where for example the terrain is considered level and nesting is not necessary. 

However, choosing between RANS and LES can be difficult. The greatest advantage of 

RANS is the lower computational cost to simulate complex turbulent flow. This currently 

makes them the most widespread  application in engineering (Thé and Yu, 2017). While 

RANS typically run faster than LES and provide a sufficient level of accuracy, LES models 

are essential for resolving highly complex flows. In recent decades, the exponential increase 

in computer power means that the necessary demands of LES, and CFD in general, are less 

prohibitive for modelling highly complex flow over large realistic landscapes (Pope, 2004). 

Ultimately, the most appropriate method depends on the cost and the desired level of 

accuracy, which in turn depends on the level to which small spatiotemporal phenomena need 

to be resolved (Kochkov et al., 2021). 

Ecological applications of Global reanalyses and CFD 

Global reanalyses have been used extensively in ecological studies. For example, to map the 

use of soaring flight in relation to updraught availability at a European scale (Scacco et al., 

2019), to link in-flight energy savings to convection (Shamoun-Baranes et al., 2016), and to 

show that migrating birds spend more time searching for updraughts when these are scarcer 

(Vansteelant et al., 2017). Other studies that have utilised global reanalyses to estimate 

airspeed and to associate it with wind support, were able to show that the fastest airspeeds in 

dynamic soaring flight occur with cross-winds (Richardson et al., 2018), and that the power 

costs of flapping flight increase with headwinds (O'Mara et al., 2019).  

There have been far fewer applications of CFD in avian ecology, but the examples are 

diverse, demonstrating the large potential of this toolset. For example, RANS have been used 

at fine scales e.g. modelling the interaction of wind with the flapping wing of a Canada goose 

(Branta canadensis) and estimating the energy savings of flight in a v-formation (Maeng et 

al., 2013), as well as landscape scales e.g. modelling the nocturnal passerine migration over 

complex topography, which demonstrated the strong selection of favourable winds (Aurbach 



25 

 

et al., 2018), and modelling airflows around entire islands (Goddard et al., 2022), to estimate 

how this affects the ability of birds to land at their nests (Shepard et al., 2019). Unfortunately 

despite the great potentials of LES in ecology (Nathan et al., 2005), I am only aware of one 

study that has made use of LES in association with bird movement (see below) (Shannon et 

al., 2002). 

CFD has also been used to assess flow selection in fish, enabling researchers to 

estimate flow characteristics over large scales and in inaccessible locations (e.g. due to 

current velocity). For instance, CFD models have been applied in natural and engineered river 

systems to evaluate the influence of turbulence, flow velocity and rate, and the interaction 

between flow regimes and river morphology, on fish habitat and passage suitability 

(Daneshvar et al., 2017). Booker (2003) identified suitable fish refugia in two urban river 

systems that offered protection from extreme velocities at high flows and showed that natural 

habitat offers better refugia than modified systems. Kolden et al. (2016) also modelled the 

flow conditions in natural and modified pools and found significant differences in turbulence 

kinetic energy (TKE) and current velocity between natural and white-water park systems, 

suggesting that the former offer better refugia. Haro et al. (2015) assessed the flow velocity in 

rivers with low and high flow rates to simulate the impact of dam removal on connectivity 

and found that the size and number of challenging passage zones increased from low to high 

flow, and from larger to smaller fish. In a similar way CFD should be able to inform us how 

airflow conditions affect habitat selection in birds, particularly for areas of high use, such as 

territories and breeding sites.  

A new tool for quantifying the aerial environment: bird-borne sensors 

In the last few decades, ecologists have also started using data from animal-borne sensors to 

quantify changes in the physical environment with high resolution, including in locations that 

anthropogenic platforms cannot reach (Jetz et al., 2022, Wilmers et al., 2015). A key 

advantage to this approach is the potential to acquire high-resolution information on time-

varying flows at the scale of the animal motion. This is likely to be particularly useful for the 

aerial environment, which is extremely variable across spatial and temporal scales (Shepard et 

al., 2016). To date, this approach has also been used more widely in aquatic environments 

(e.g. Charrassin et al., 2008, Roquet et al., 2014), but the use of animal-borne sensors has 

been validated for both the estimation of the wind vector and thermal updraught intensity and 

distribution (Bohrer et al., 2012, Goto et al., 2017, Weinzierl et al., 2016). For instance, 

thermal updraught intensity measured from the climb rate of soaring American white pelicans 
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(Pelecanus erythrorhynchos) showed good agreement with results from LES simulations 

(Shannon et al., 2002). Satellite estimates of ocean surface winds were also correlated with 

those derived from fine-scale changes in groundspeed in three species of dynamic soaring 

birds (Yonehara et al., 2016). This demonstrates the potential of bird-borne platforms as a 

complimentary tool to sense the aerial environment, although a key limitation is that it can 

only be applied where animals move, requiring other techniques to assess the conditions in 

other areas, including those they may actively avoid. 

Objectives and chapter summary 

The aim of my thesis is to investigate how birds respond to challenging airflows, specifically, 

chaotic variations in wind speed and direction and exceedingly strong winds. The first two 

data chapters focus on turbulence; how it can be measured and how birds respond. The final 

two data chapters investigate how seabirds respond to strong winds, first at sea, where I 

examine movements in relation to cyclones, and then on land, where I assess whether 

airflows can predict breeding habitat selection. 

 The thesis starts by recognising the limited utilisation of animal-borne sensors as a 

tool for quantifying the aerial environment (Bohrer et al., 2012, Goto et al., 2017, Weinzierl 

et al., 2016). Yet anyone who has flown can recognise when an aircraft hits a particularly 

turbulent patch, simply from the bumpiness of the ride. In chapter 2, I use metrics derived 

from the solo-flight of homing pigeons (Columba livia) and from the flight of an ultralight, to 

assess whether body displacement can be used as a proxy for turbulence intensity over 

complex terrain. Specifically, I derive metrics of displacement from acceleration and 

barometric pressure sensors attached to pigeons and an ultralight following some distance 

behind the birds. The ultralight was also equipped with a tri-axial anemometer to provide 

independent estimates of turbulence along the flight path, allowing me to compare the 

performance of different turbulence proxies. In order to examine whether the best proxy can 

provide general insight into turbulence levels, irrespective of how turbulence is generated, I 

then compare the best proxy to estimates of convective and mechanically driven turbulence 

(using reanalysis data). Finally, I use the best proxy to predict turbulence strength across the 

pigeon flight paths to identify fine scale hot- and cold-spots of turbulence across the study 

area under different wind conditions.  

Very few studies have addressed how flapping fliers are affected by, and respond to, 

turbulence. Most studies have used hummingbirds (Ortega-Jimenez et al., 2014, Ravi et al., 

2015), which are excellent models as they will hover in front of a feeder, allowing their 
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wingbeat kinematics (i.e. frequency and amplitude) to be quantified in different conditions. 

However, the “freestream turbulence” in the natural environment is fundamentally different 

to turbulence generated in laboratory conditions, as for example freestream turbulence also 

has an upward component. Furthermore, laboratory studies are limited in what they can tell us 

about how animals respond in terms of adjusting their flight speed and flight path. In chapter 

3, I use the estimates of turbulence from bird-borne sensors to assess how turbulence affects 

the flight effort (wingbeat frequency and amplitude), speed and route choice of homing 

pigeons, using an expanded tracking dataset from chapter 2. If turbulence does represent a 

cost to flapping fliers, as expected, this should be reflected in an increase in wingbeat 

frequency for a given flight speed and an increase in the variability of wingbeat frequency 

and amplitude, which, together represent strategies to improve flight stability (Ortega-

Jimenez et al., 2014, Ravi et al., 2015). I then consider how turbulence affects track 

properties, from fine-scale tortuosity (which is also associated with increased cost, relative to 

straight line travel) to overall route choice. Pigeons are a model species for chapters 2 and 3 

as they will return to their loft in a range of conditions. I therefore released birds in two 

different seasons and at different times of day to maximise the range of turbulence levels that 

they encountered.  

Turbulence is not the only aspect of the aerial environment that presents challenges 

for flying animals. Strong winds can also levy costs, which vary with flight morphology, style 

and flight type. For most flapping fliers, flight costs increase with the headwind component 

(Hedenström, 1993, O'Mara et al., 2019), whereas costs decrease with wind speed for 

dynamic soaring birds (Furness and Bryant, 1996, Richardson, 2011). However, there is little 

information on how birds using either flight strategy respond to extreme winds (though see 

Hass et al., 2012, Weimerskirch and Prudor, 2019). Flying animals are only able to operate 

independently of the wind i.e. fly against headwinds and minimise drift, when their airspeed 

exceeds the wind speed (Liechti, 2006). Winds that are similar in strength to maximum flight 

speeds are therefore risky in terms of a bird’s ability to control its trajectory and prevent 

collisions with the substrate. Chapter 4 addresses how a dynamic-soaring seabird routes its 

flight path in relation to cyclones, using data from streaked shearwaters (Calonectris 

leucomelas) foraging in the Sea of Japan over an 11 year period. I focus on the responses to 

the 5 strongest storms that differ in magnitude, path, and duration and use environmental data 

from storm tracks and the latest global reanalysis (ERA5) to examine how birds move in 

relation to the eye of the storm. This allow me to identify whether these dynamic-soaring 

birds avoid storms, are attracted to them or ignore them. Finally, I examine how birds 
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modulate their distance to land, which represents a potential danger to these seabirds during 

storms due to the specific risks of collision, stranding and predation (Yoda et al., 2021, Yoda 

et al., 2017). This is particularly pertinent for these streaked shearwaters, as the Sea of Japan 

is enclosed, offering limited options for circumnavigation of large typhoons.  

Clearly seabirds have to operate close to land when they leave and approach their 

nests, and the wind field surrounding these areas can have important consequences for flight 

control. In fact, strong winds have recently been shown to reduce the ability of auks to land at 

their breeding cliffs (Shepard et al., 2019). Wind speed at the nesting site is also pertinent for 

other reasons, including heat loss (of adults and chicks). Despite this, wind is rarely 

incorporated into studies of habitat selection, even for seabirds, which nest in exposed areas. 

In chapter 5, I use CFD to estimate a wide range of airflow variables around the cliffs of 

Skomer Island, UK and investigate how these vary between breeding and non-breeding sites. 

I then extend my analysis to assess habitat quality and assess whether airflows can predict the 

distribution of the largest and densest colonies, rather than just the presence/ absence of 

breeding birds. Finally, I demonstrate the application of CFD in species distribution 

modelling, by taking the best-fitting model of habitat selection and seeing how well it predicts 

the distribution of breeding birds on the neighbouring island of Skokholm. I focus on the 

habitat selection of the common guillemot (Uria aalge), as there is a known relationship 

between landing ability and wind speed (Shepard et al., 2019). Overall, this allowed to me 

assess (i) the role of CFD in providing insight into the breeding distributions of seabirds, in 

comparison to a simpler model based on orientation, and (ii) whether breeding habitat 

selection in guillemots is driven by landing performance, thermal considerations and/ or 

exposure to storm conditions.  

Finally, in chapter 6, I revisit my findings in light of the questions they raise about 

how birds respond to challenging airflows. This is a broad topic, and responses are likely to 

vary with morphology as well as the biological and geographical context. Nonetheless, I hope 

that the examples in this thesis may ultimately help researchers develop a framework to 

predict when extreme or variable flows are likely to be problematic for flying birds. 
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Chapter 2: Estimating fine-scale changes in turbulence using the 

movements of a flapping flier. 
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Abstract 

Most animals using the aerosphere flap with wing-like structures and need to respond to 

aerial turbulence. Yet little is known about how flying animals do this because quantifying 

turbulence at fine scales is exceedingly difficult. Recently, data from animal-borne sensors 

have been used to quantify wind and updraft strength, providing a new prospect for sensing 

the environment at scales that animals experience it. We tested whether fine-scale changes in 

altitude and body acceleration measured onboard solo-flying pigeons (as model flapping 

fliers) can be used as proxies for turbulence. A range of pressure and acceleration proxies 

performed well when tested against independent turbulence measurements from a tri-axial 

anemometer mounted onboard an ultralight flying the same route, with stronger turbulence 

causing increasing vertical displacement. The best proxy for turbulence also varied with 

reanalysis estimates of both convective velocity and wind shear. The near linear relationship 

between proxies and turbulence levels suggests this approach should be widely applicable, 

providing insight into how turbulence changes in space and time. Furthermore, pigeons were 

able to fly in conditions of strong turbulence that were unsafe for the ultralight.  
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Introduction 

The impact of atmospheric turbulence on flying animals represents an important frontier 

(Bomphrey and Godoy-Diana, 2018, Laurent et al., 2021, Quinn et al., 2017), as the effects 

on flight energetics and route selection are far less studied than those of wind (Hedenström 

and Alerstam, 1995, Liechti, 2006). Turbulence is broadly defined as a measure of rapid 

changes in wind velocity at small scales and is driven by mechanical forcing or surface 

heating. Within the boundary layer, and at the usual altitudes at which animals fly, turbulence 

is influenced by both processes, depending on the strength of the wind and heat fluxes 

(instability), the altitude above ground, land cover, and topography. Thermal-driven 

turbulence has a strong upward component, which a range of birds exploit to their reduce 

flight costs through thermal soaring (Sapir et al., 2011, Williams et al., 2020), particularly in 

species adapted to soaring flight, where the distribution of thermal updrafts can influence 

movement paths from local to regional scales (Bohrer et al., 2012, Treep et al., 2016).  

Much less is known about the impact of gustiness, which is associated with both 

thermal- and mechanically driven turbulence. Nonetheless, this can impact flight control 

(Cheney et al., 2020, Ravi et al., 2015) and flight costs (Bowlin and Wikelski, 2008, Mallon 

et al., 2016, Tucker, 1972). As such, gustiness should be relevant for birds irrespective of 

their flight style and body mass. In fact, it should be most relevant for animals flying close to 

the ground, where an inability to respond to fine-scale changes in the wind could ultimately 

result in a collision. Indeed, it has been suggested that these risks explain why gulls soaring 

above buildings increased their distance to the buildings with increasing wind strength 

(Shepard et al., 2016).  

Despite the potential importance of turbulence in animal movement, quantifying 

spatially and temporally explicit changes in gustiness over fine scales remains challenging 

(Lieber et al., 2021). Most weather stations do not report turbulence strength or vertical wind 

velocity, and when in situ measurements are made, conditions at a single location near the 

surface are often not representative of those at higher altitudes or along an entire flight track. 

Reanalyses models provide estimates of vertical velocity and turbulence strength with 

excellent spatial coverage however, the temporal and spatial resolutions tend to be relatively 

coarse, at best hourly and in the order of tens of kilometres respectively. Reanalyses models 

therefore cannot resolve changes in fine-scale gustiness that birds would experience along 

their flight path (Treep et al., 2016). 
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Large eddy simulation models (LES) can also be used to realistically assess the 

conditions associated with flight (i.e. for modelling convective velocity w*, Shannon et al. 

(2002)) over a wide range of terrains and conditions. LES can produce fine-scale predictions 

by nesting a high resolution model within a lower resolution regional model(s). However, the 

computational costs tend to constrain their application according to the combination of the 

study area size, desired temporal/ spatial resolution, complexity and available computational 

resources (Nathan et al., 2005, Stoll et al., 2020). 

Remote sensing solutions, namely LiDAR, are also capable of measuring near-surface 

changes in turbulence over seconds and tens of meters, by scanning at different angles to infer 

to the three velocity components. In most cases, turbulence is quantified by the vertical 

velocity of a vertically pointed LiDAR. The critical limitation of LiDAR for ecologists is the 

availability and expense of such sensing equipment, which mean that measurements tend to 

be made in specific locations in association with meteorological research programmes and 

often do not have wide spatial coverage depending on the instrument and scanning pattern 

(Newman et al., 2016). LiDAR also incorporates errors depending on atmospheric stability 

and scanning method, and often assumes that the 3-D flow is horizontally homogeneous (an 

assumption usually not valid, i.e. over complex terrain). 

Recently, researchers have shown that the movements of the birds themselves can be 

used to quantify wind and thermal strength (Goto et al., 2017, Shannon et al., 2002). Indeed, 

large tracking datasets mean that these Lagrangian approaches can be used to quantify 

conditions over substantial areas (Scacco et al., 2019). It is clear from flying in aircraft that 

turbulence causes changes in altitude and body motion, suggesting that high-frequency data 

from animal-attached loggers could also be used to provide insight into the level of 

turbulence experienced by animals in flight. Indeed, Laurent et al. (2021) showed that the 

vertical displacements of the body accelerations of a single 5 kg golden eagle (Aquila 

chrysaetos) were similar to those of the motions of the turbulent air.  

Our aim was to establish whether fine-scale movements recorded using animal-

attached data loggers can be used as proxies for turbulence in flapping fliers. As this is the 

predominant type of flight used by birds, the ability to extract information on turbulence from 

onboard loggers would represent a powerful technique allowing researchers to monitor the 

aerial environment. On the one hand flapping fliers tend to be smaller than those that rely on 

gliding flight, potentially making their movements more sensitive to the movements of the 

air. But against this, the motion of the wings could compensate for much of the turbulence 
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spectrum, resulting in little displacement of the body. In order to investigate this, we flew an 

ultralight at the same time and in the same area as homing pigeons (Columba livia Linnaeus). 

The birds and the ultralight were equipped with high-frequency data-loggers recording 

altitude and body acceleration, and the ultralight was also instrumented with a tri-axial 

anemometer to provide independent estimates of turbulence. We used the resulting data to 

assess (1) the performance of a range of flight metrics based on changes in pressure (altitude) 

and body acceleration as turbulence proxies, and (2) whether the predictive power of the 

proxies varied according to whether data were collected onboard the fixed wing aircraft or 

flapping fliers.  

Materials and methods 

Data collection 

Data were collected near Radolfzell in Germany (47°44'42.76"N,   8°57'59.39"E) within an 

area of 36.6 km-2 characterised by a narrow valley between two forested hills (Fig. 1C,D).  

Flight data were collected over six days in July 2018, eight days in April 2019 and nine days 

in July 2019. This ensured that we sampled a wide range of convective conditions, as well as 

wind strengths and directions. Data were also collected during morning and afternoon 

sessions, as turbulence and wind strength tended to be higher in the afternoons. Wind speed 

was logged at the pigeon release site every five seconds using a  Kestrel 5500 anemometer 

(Kestrel instruments, USA) stationed 5 m above ground.  

Pigeons were brought from the loft to the release site by car; a straight-line distance of 

5.7 km (see Garde et al. (2021) for details). Both the pigeons and the ultralight were equipped 

with a “Daily Diary” logger (Wildbyte Technologies, Swansea University, UK), recording tri-

axial acceleration and barometric pressure (using Bosch pressure sensor BMP280 with a 

relative accuracy of ±0.12 hPa, equivalent to ±1 m), and a GiPSy-5 GPS logger 

(Technosmart, Rome, Italy). The two tags were connected to the same battery and integrated 

in a single 3D printed housing (Garde et al., 2021). The Daily Diary tag was programmed to 

take the time from the GPS logger in order to time-synchronise the two datasets. The 

combined system was attached to the back of ten pigeons using a Velcro patch attached to the 

down feathers with cyanoacrylate glue (Fig. 1A) (Biro et al., 2002). The total unit had an 

approximate mass of 18 g, accounting for < 4.5% of the mean pigeon body mass (455 g). One 

logger was also attached to the front of the ultralight frame (Fig. 1B). The 

ultralight had a mass of 173 kg, including the pilot and petrol, and a wingspan of 12 m. Tags 

were programmed to record barometric pressure at 20 Hz and acceleration at 200 Hz, with the 
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exception of flights in 2018 where measurements were taken at 4 Hz and 40 Hz, respectively. 

The GPS sampled locations at 1 Hz except for the flights in April 2019, where sampling 

frequency was 5 Hz. For consistency, these flights were subsampled to 1 Hz. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  The logging platforms used in this study and corresponding flight tracks. A) The 

combined logger unit used on the pigeon’s back, B) the ultralight, C) pigeon tracks and D) 

ultralight flight legs. Black and white triangles indicate the location of the release site and the 

loft, respectively.  The parts of the tracks where pigeons performed orientation circles near 

the release site or loft, and the ultralight flight legs that did not form a straight line, were 

removed from the analysis, producing pigeon and ultralight flights with mean durations of  

~293 and ~155 seconds respectively.  

Prior to our trials pigeons had been flown with dummy loggers from the release site > 

30 times to remove changes associated with route learning. We released six pigeons on a 

given day from the same release site, with 11-13 minutes between each release. Pigeons were 

released to fly solo so that any turbulence they encountered was the result of environmental 

conditions and not other birds (Usherwood et al., 2011). Birds were released when the 

ultralight reached the release site, to ensure that both the bird and the ultralight were flying in 

the same conditions. Once the bird was released, the ultralight flew a straight track from 

North to South (Fig. 1D), which largely coincided with the main pigeon flight route (Fig. 1C), 

with the Ultralight remaining behind the focal bird at all times. The ultralight maintained a 
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fixed altitude and speed during the flight, before returning to the release site for the next 

release. 

While every attempt was made to maintain the same Ultralight path, on three days in 

July 2019, the pilot flew a triangular path close to the release site and before the valley 

because of mechanical difficulties and/ or unsafe wind conditions. This triangular path was 

split into two or three sections to extract flight legs that formed a relatively straight line. This 

reduced the effect of the ultralight’s motion on the ultrasonic anemometer measurements (see 

below). The result of this process was 42 shorter flight legs (~ 40-60 seconds long) included 

in a total of 88 flights where a Daily Diary logger was attached on the ultralight. Forty two 

more flights were included in the analysis of turbulence (see below) where only ultrasonic 

anemometer data were available. These additional flights were only included in the 

comparison between the estimated turbulence and the pilot’s rating of turbulence (see below). 

Data were collected with approval from the Animal Welfare Ethical Review Body of 

Swansea University (approval number: IP-1718-23) and the Regierungspräsidium Freiburg 

(reference number:G-17/92). 

Turbulence estimation 

A triaxial ultrasonic anemometer (uSonic-3 CLASS A,  Supplementary information Fig. S1) 

was mounted on the front of the ultralight and programmed to record at 20 Hz. The three 

wind components were used to estimate the overall turbulence strength for each flight leg, 

and this, in turn, was used to examine the performance of fine-scale turbulence proxies (see 

data analysis). Turbulence intensity can be defined as the wind speed fluctuations relative to 

the mean wind speed. However, measurements made by the ultrasonic anemometer also 

included a contribution from the motion of the ultralight itself. Full estimation and subtraction 

of the ultralight’s contribution requires high resolution measurements of the orientation and 

acceleration of the platform, however this is a complex process requiring very accurate 

measurements synchronised with the wind speed data (Canut et al., 2016, Prytherch et al., 

2015, Schulz et al., 2005). This approach is required for calculating turbulent fluxes. Since 

our aim was to provide a qualitative measure of changes in turbulence levels, we developed a 

simpler approach using the anemometer measurements alone.  

Our assumption was that the motion of the ultralight was largely confined to particular 

frequencies, which we identified using the turbulence power spectrum. The log power 

spectrum density of the root mean square of the three velocity components is predicted to 

follow a -5/3 slope for homogeneous, isotropic turbulence.  This holds over a wide range of 
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frequencies (the whole inertial subrange) as energy cascades from low to high frequencies 

(larger to smaller scale eddies) until it is dissipated through viscosity (Stull, 1988). Our 

spectra were heavily contaminated by the ultralight’s motion, especially at lower and higher 

frequencies. Nonetheless, it should be possible to identify a range of frequencies where 

contamination from the ultralight motion is small and this slope can be fitted.  

Visual inspection of the log power plots revealed that frequencies between ~ 10-2.3 and 

100 (~0.05 to 1 seconds) were typically the least contaminated in the inertial subrange, and 

the most appropriate for fitting the ideal -5/3 power law (Supplementary information Fig. S2). 

Our method automatically fitted the -5/3 line within this range of frequencies and objectively 

selected the subrange with the best fit for each ultralight leg (that with the lowest root mean 

square error), subject to the subrange spanning at least half a decade.   

The constant of proportionality of this fit is directly related to the eddy dissipation 

rate, which is equal to the rate of turbulence production at large scales (assuming the 

turbulence is statistically stationary), and hence provides a measure of turbulence. This 

follows because energy in the inertial subrange is not generated or lost, but rather cascades 

from larger to smaller scales. Indeed, this proportionality is often used in meteorology to 

estimate the dissipation rate from ultrasonic anemometers (e.g. Oncley et al., 1996), and 

similar approaches have been used to measure clear air turbulence using the eddy dissipation 

rate from aircraft (Huang et al., 2019, Kim et al., 2020). We therefore took the proportionality 

of the fit for the power law relationship (between the power and the frequency(-5/3) as a 

measure of the turbulent energy.  

We also compared turbulence estimates from the ultralight anemometer with a 

qualitative assessment of turbulence made by the pilot on a scale of 0 – 5 (0: no turbulence 

and 5 highest turbulence). This is analogous to the turbulence observations that are routinely 

provided verbally by pilots in the form of pilot reports (PIREPs). Here, the turbulence level is 

determined by a pilot’s subjective experience of the aircraft response to turbulence (Kim et 

al., 2020). Computations of our qualitative measure of turbulence strength were conducted in 

Python version 2.7.15 (Van Rossum, 2007) (see supplementary material for the code). 

Data analysis 

Estimates of turbulence from the anemometer on the ultralight were used to assess the 

performance of potential turbulence proxies based on pressure and acceleration measurements 

on both flying bodies. We predicted that turbulence would cause vertical displacements in 

flying bodies that should be evident in the barometric pressure data. To assess this we 
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smoothed the pressure values over two seconds and calculated the mean pressure difference 

per second. We also calculated the pressure fluctuations by subtracting pressure smoothed 

over 30 s (after testing different windows) from the raw values.  

We also tested the performance of acceleration-based proxies, which could have 

advantages over pressure-based metrics because they can capture lateral, as well as vertical, 

displacements. For this we used the vectorial static body acceleration (VeSBA), calculated as 

the root mean square of the three smoothed acceleration channels, smoothed over two 

seconds (Wilson et al., 2013). Smoothing is a simple, but commonly used, way of removing 

much of the high frequency “dynamic” component of the acceleration and isolating the 

“static” or gravitational component. VeSBA should equal 1.0 g for a body flying straight and 

level and maintaining a constant velocity. Departures from 1 g can occur when the flying 

body is acted on by an external force, such as turbulence, which can cause (primarily) vertical 

and lateral displacements. We therefore predicted that increasing turbulence would result in 

greater displacements from a straight and level flight path, producing a positive correlation 

between VeSBA and turbulence intensity. We calculated the fluctuations in VeSBA by 

subtracting 1.0 g from VeSBA values. 

In order to account for the difference in resolution between turbulence (one estimate 

per flight leg), VeSBA and pressure (measured with sub-second resolution and then 

smoothed), we calculated four metrics for each quantity per flight leg: the interquartile range 

(IQR), median, variance and the sum of all absolute values normalised by the flight’s leg 

sample size (SUM), as a measure of the area under the curve (AOC). The SUM and the 

median were used to identify the magnitude of each measured quantity, and the interquartile 

range and the variance indicated the level of variability per flight. This process resulted in a 

set of 18 metrics including statistics from the fluctuations, the smoothed and non-smoothed 

VeSBA and pressure.  

The statistical modelling tested 18 models based on pigeon flight and 18 models based 

on ultralight flight using a single flight metric of VeSBA or pressure as the single predictor, 

and the ground truth estimate of turbulence from the ultrasonic anemometer as the response 

variable. The same set of 18 metrics was tested for each flying body to assess the 

performance of each metric to act as proxy of turbulence and to compare the performance of 

proxies between the two flying bodies.  

The performance of all metrics in predicting turbulence strength were evaluated with 

generalised additive effect models with gaussian errors (GAM, package “mgcv” version: 
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1.8.31, Wood (2017)). This allowed us to test for linear and non-linear relationships across 

the large set of models. Each ultralight flight leg (n=88) was associated with the turbulence 

measured within it, while each pigeon flight (n=66) was assigned the turbulence estimate of 

the closest ultralight flight in time (range: 0.2 – 107 minutes, with closest ultralight flight for 

two pigeon flights being greater than one hour). One model was run for each single metric 

and models were ranked by their predictive ability in terms of Akaike's Information Criterion 

(AIC). We assessed if different loggers had an effect on the models by having a trend to 

register higher or lower pressure or VeSBA variabilities and whether some pigeons tended to 

fly more or less stable by running the same models as generalised additive mixed effect 

models (GAMMs) with the addition of tag ID or pigeon ID (in the case of the pigeon models) 

as a random effect (intercept). All models included the date and the mean coordinates of each 

flight, using the corARMA and corSpatial functions (nlme package version: 3.1.148, Pinheiro 

et al. (2007)) to account for temporal and spatial autocorrelation respectively. The final 

models were evaluated for outliers, uniformity, over/ under-dispersion and spatial/ temporal 

autocorrelation using the DHARMa package version: 0.3.3.0 (Hartig and Hartig, 2017). All 

statistical analysis was conducted in RStudio version: 1.2.5 (RStudio Team, 2015) and the R 

programming language version: 3.6 (R Core Team, 2020). 

As an additional ground-truthing step we assessed whether our best turbulence proxies 

were correlated with estimates of the convective velocity (w*) and the shear velocity (u*), 

using data from the global reanalysis ERA5 (Hersbach et al., 2018) (see Supplementary 

information for the estimation of convective and shear velocities). 

Results 

In several cases birds did not return to the loft immediately, but waited until other 

flockmate(s) were released, before flying back together. These flights, as well as others with 

incomplete or errroneous data were excluded. A total of 66 pigeon flights were used to 

estimate turbulence proxies after excluding the non-solo flights and pigeon flights for which 

the ultralight pilot did not fly either because of mechanical problems or because the 

conditions in the valley were not safe and hence turbulence was not measured. A total of 88 

ultralight flights were used for analysis after excluding flights for which the ultrasonic 

anemometer did not record any data or did not measure data for all the flights of a given day 

because of low battery.  

Our method of fitting the -5/3 power law line to the turbulence spectrum from the 

anemometer gave linear fitting errors > 0.2 (root mean square) for 24% of the ultralight 
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flights. This suggests that (i) the mean flow and/ or strength of the turbulence changed over 

the length of the flight leg, and/ or (ii) the part of the power spectra selected for analysis still 

contained some contamination from the motion of the ultralight. Nonetheless, there was a 

positive relationship between the anemometer estimates of turbulence and the pilots 

turbulence score on a given day (Pearson correlation coefficient = 0.73, t = 12.111, df = 128, 

p-value < 2.2e-16) (Linear fit: adj. R2 = 0.53, n = 130 (Supplementary information Fig. S3).  

Performance of turbulence proxies (i) pigeon flight data 

A positive linear/ near-linear relationship was identified between the anemometer estimates of 

turbulence and the pigeon -based proxies in almost all of the top models in terms of AIC 

(Table 1, Supplementary information Fig. S4), which included both pressure- and VeSBA-

based proxies. The top two models were proxies of pressure fluctuations, while three models 

of mean pressure difference per second (SUM, IQR and variance) followed in the top 10 

models. Pressure proxies ranked higher than VeSBA proxies and had the highest R2, with 

only three proxies based on VeSBA included in the top 10 models. Overall, AIC scores 

differed between models and the Adj. R2 values ranged between 0.21-0.41). Neither tag ID 

nor pigeon ID was significant.  

Table 1. Top 10 pigeon proxy models ranked by AIC. “IQR”, “VAR”, “MED”, “SUM” are 

used to indicate that the model is the interquartile range, variance, median and area under the 

curve of each property. The estimated degrees of freedom (EDF) indicate the extent to which 

relationships are linear, with values closer to 1 describing a linear fit and closer to 2 

curvilinear.  

 

 

Model P-value EDF Adj. R2 Dev.Expl. AIC ΔAIC 

Raw pressure fluctuations_ IQR  <0.001 1.57 0.41 0.43 176.59 - 

Raw pressure fluctuations_SUM <0.001 1.13 0.40 0.41 177.33 0.74 

Raw pressure  fluctuations_ MED <0.001 1.20 0.38 0.39 179.58 2.99 

Raw pressure  fluctuations_VAR <0.001 1.71 0.34 0.36 184.81 8.21 

Mean pressure difference per s_SUM <0.001 1.70 0.30 0.32 188.26 11.67 

Mean pressure difference per s_IQR <0.001 1.80 0.29 0.31 189.01 12.42 

Mean pressure difference per s_VAR <0.001 1.80 0.27 0.29 191.31 14.72 

VeSBA fluctuations_VAR <0.001 1.75 0.27 0.29 191.31 14.72 

VeSBA_VAR  <0.001 1.40 0.22 0.24 195.28 18.69 

VeSBA fluctuations_SUM <0.001 1.00 0.21 0.22 195.65 19.06 
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Performance of turbulence proxies (ii) ultralight flight data 

Proxies from metrics recorded on the ultralight performed less well than metrics from pigeon 

movements, with the R2 from the top model being 0.33 (Supplementary information Table 

S1), compared to a maximum of 0.41 in the pigeon flight models. Nonetheless, similar to the 

pigeon proxies, models of pressure ranked higher than models of VeSBA. As with the pigeon 

models, all pressure summary statistics were included in the top 10 models. However, models 

of mean pressure difference per second ranked higher than models of pressure fluctuations, 

with the model that ranked 1st in the pigeon models, ranking 7th place in the ultralight models. 

Tag ID was significant, which was unsurprising as the same tag was used for all flight legs of 

the same day, and a small number of tags were used on the ultralight compared to the 

pigeons.  

Positive near linear relationships were identified in the top 2 of the 10 best models for 

pigeon- and ultralight- based proxies (Fig. 2). While the majority of pigeon-based proxies had 

an approximately linear relationship with turbulence this varied between the pigeon and 

ultralight proxies, with more non-linear relationships predicted for the ultralight, although 

many of these non-linear relationships were strongly influenced by very high/ low proxy 

values where there were few data points (Fig S4, S5).  
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Figure 2. Turbulence predicted from (A, B) pigeon movement metrics and from (C, D) 

ultralight movement metrics, per flight. The top two models based on each aerial body are 

presented, with black solid curve indicating the predicted fit (dashed curves 95% confidence 

intervals) and grey points the raw observations. 

Comparing pigeon flight turbulence proxies with thermal and mechanical turbulence  

The best pigeon proxy in terms of both R2 and AIC (raw pressure fluctuations IQR) was 

positively correlated with both the hourly convective velocity (w*) and shear velocity (u*) 

(Spearman correlation coefficients: 0.58, S= 2104.96, p-value= 2.68513674e-07 and 0.59, S= 

20534.33, p-value= 1.46388147e-07, for w* and u* respectively). The latter, in turn, 

increased with the ERA5 wind speed (Fig. 3). 
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Figure 3. Comparison of the best pigeon turbulence proxy (the inter-quartile range of the raw 

pressure fluctuations) with (A) thermal uplift and (B) shear velocity (n=66 flights).  

 

Mapping the turbulence using the same proxy summarised over 15 second sections of 

the flight path, revealed spatial patterns in turbulence (Fig. 4) that also varied with wind 

direction. Predicted turbulence was particularly high in the inlet and the outlet of the valley in 

Easterly winds (Fig. 4 A and B), whether or not overall turbulence was high. This pattern was 

also seen in the measured turbulence and corroborated by the pilot’s experience. Nonetheless, 

the valley inlet and outlet were not particularly turbulent in Northerly or Southerly winds 

(Fig. 4 D) when turbulence conditions were weak. Furthermore, birds appeared to avoid the 

southerly end of the valley in Northerly/ Southerly winds when the mean turbulence was high 

(Fig. 4C). 
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Figure 4. Spatial variation in turbulence as predicted from the fluctuations in pressure 

recorded onboard pigeons (specifically the interquartile range). Predictions were made for A) 

highly turbulent conditions (mean ≥ 3.0 per flight, mean wind speed = 2.9 m s-1, n = 7 flights) 

and B) low turbulence (mean ≤ 1.5 per flight, mean wind speed = 1.3 m s-1, n = 5 flights), 

both in Easterly winds and C) high turbulence (mean wind speed = 2.7 m s-1, n = 3 flights) 

and D) low turbulence (mean wind speed = 1.7 m s-1, n = 12 flights), in Northerly or 

Southerly winds. 

Discussion 

Previous studies have demonstrated that animal movement can be used to quantify the 

strength of thermal updrafts (Shannon et al., 2002, Treep et al., 2016, Weinzierl et al., 2016) 
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and determine the wind vector (Goto et al., 2017), at scales and in locations that are not 

possible using traditional meteorological approaches. Here we demonstrate that the fine-scale 

displacements of a flapping flier can also predict turbulence at the scale of a few hundred 

metres. Our primary estimates of turbulence were derived from an ultrasonic anemometer 

onboard an ultralight, which will have their own measurement error (e.g. from contamination 

of the three velocity components by the aircraft’s motion). Nonetheless, the good agreement 

between turbulence estimates from the anemometer measurements, the pilot’s scores, 

reanalysis data and proxy values, gives confidence in our overall approach and demonstrates 

that simple proxies can be employed to assess turbulence strength at fine scales.  Our proxies 

are similar in concept to those developed for aviation (Kim et al., 2020), demonstrating the 

widespread utility of measurements derived from onboard accelerometers and pressure 

sensors. 

The fact that turbulence generally followed an  approximately- linear relationship with 

the proxies (particularly for birds but also in some cases for the ultralight proxies), means that 

relative changes in turbulence should be straightforward to approximate. The simple 

relationship is also in line with previous work that identified a linear correlation between the 

turbulence spectrum and the spectral composition of acceleration recorded onboard a golden 

eagle in gliding flight (Laurent et al., 2021).  

Pressure proxies performed better than VeSBA proxies for both the pigeon and 

ultralight data, despite the fact that  the variability in both proxies was positively correlated. 

In fact, the seven best pigeon proxies in terms of AIC were models of pressure, suggesting 

that turbulence caused more pronounced vertical than lateral  displacements in these birds (as 

VeSBA will be sensitive to both, whereas pressure-based proxies relate to changes in the 

vertical axis alone).  

Turbulence appeared to cause greater displacements for pigeons in flight than for the 

ultralight, as proxies derived from the ultralight flight did not perform quite as well. This will 

primarily be due to the substantial differences in mass and wing loading between the two 

systems, with a given eddy accelerating the larger ultralight to a lesser extent. Mean airspeeds 

of the ultralight and pigeon were similar (21.5 and 19.9 m s-1 respectively), but the objectives 

are likely to have differed as the pilot aimed to maintain a constant airspeed and straight and 

level flight, therefore compensating for turbulence along the flight path. Nonetheless it is 

likely that the pilot’s ability to achieve this varied with the scale of the eddies, which may 

also have affected the performance of pressure and VeSBA proxies recorded on the ultralight. 



51 

 

Although the pilot aimed to maintain constant speed and altitude, the ability to do this might 

have varied with conditions and indeed he reported that he was able to respond to the large 

scale turbulence better, which might have led to a bias in the ultralight proxies that it is hard 

to quantify. 

While we have not tested how pigeons respond to turbulence in terms of their 

kinematics and speed selection, it is clear that turbulence causes substantial variability in their 

vertical movements over fine scales, and that this increases with turbulence intensity.  The 

motion of the pigeons’ wings therefore did not dampen out all the turbulence that the birds 

encountered. (Combes and Dudley, 2009, Ortega-Jimenez et al., 2014, Ravi et al., 2015b). 

Variability in the pigeon trajectories has previously been interpreted as protean behaviour, 

with it conferring potential benefits as a predator avoidance strategy for solo-flying birds 

(Garde et al., 2021). These explanations are not necessarily mutually exclusive. The study by 

Garde et al. (2021) used a subset of our data (29 of 66 flights) that were performed under 

relatively weak turbulence intensities, with mean and maximum values of 0.9 and 2.5, 

compared to 1.6 and 4.7 in the current study. They also reported a lower variance in climb 

rate (mean and maximum 0.9 and 2.0 m s-1 per flight, compared to 1.6 and 6.7 reported here). 

Therefore, while some of the variability in pigeon flight behaviour reported by Garde et al. 

(2021) may be due to turbulence, it is likely there  is still a baseline level of variability in 

birds flying solo and in low turbulence that could represent an anti-predator response. In both 

cases, what remains unknown is the power costs associated with variation in the flight 

trajectory.  

The behaviour of the birds themselves, including the route selection, can provide 

insight into the likely costs or benefits of turbulence. Mapping changes in our pigeon-based 

proxies (estimated over 15 seconds) along the flight paths revealed patterns in turbulence that 

varied in both space and time. The high levels of turbulence intensity at the inlet and the 

outlet of the valley in strong Easterly winds are likely the result of wind shear, with the valley 

itself being more sheltered by the forested hill to the East. While predicted turbulence was 

lower overall in weaker winds, the strong turbulent features at the inlet and the outlet of the 

valley generally persisted, which might help explain why birds tended to fly the valley route. 

High turbulence was also predicted over the forested hill when wind direction changed to 

Northerly. This is consistent with wind travelling over an extended level terrain before the 

mouth of the valley where it is accelerated by the hill with high turbulence over the hill itself 

(although sample size is small in these conditions). These results also agree with the spatial 
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variability in turbulence strength experienced by the pilot. Overall, this demonstrates the 

capacity of our proxies to estimate fine scale turbulence over a complex terrain. 

Widespread use of tracking technology means that pressure and acceleration data are 

increasingly available from animals instrumented with data loggers and that these can provide 

meteorological insight that is logistically difficult and costly to acquire from traditional 

platforms such as aircraft. Uncrewed aerial vehicles (UAVs) should provide also tractable 

platforms for the estimation of turbulence (Shannon et al., 2002), particularly in regions 

where birds do not fly. Nonetheless, planes and UAVs have their own limitations: In our 

study there were two days when the turbulence and wind made it unsafe for the pilot to fly the 

whole route. It is therefore notable that pigeons flew under these conditions, demonstrating 

that birds can reach areas that are inaccessible to light aircraft (the limitations are likely to be 

even more acute for UAVs). In some ways this is analogous to the case where seal-borne 

sensors are used to measure temperature and salinity below the ice, providing invaluable 

information on oceanographic processes in locations where ship-based studies are infeasible 

and satellite access is restricted (Charrassin et al., 2008, Roquet et al., 2014).  However, our 

specific case raises intriguing questions about the behavioural, biomechanical (Cheney et al., 

2020) and navigational capacities of birds, and other flying animals, that enable them to 

negotiate an aspect of the flight environment that remains dangerous for aircraft.  
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Chapter 2: Supplementary Information  

 

 

 

 

 

 

 

Figure S1. Triaxial ultrasonic anemometer attached to the front part of the ultralight. 

.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Two examples of the linear fit of the -5/3 slope on the ultrasonic anemometer log 

power spectrum. The log power spectrum (“fs(f)”) is given over the time series frequencies 

(“f”). Error (“err”) indicates the goodness of the linear fit.  
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Convective and shear velocity estimation 

We examined the relationship between our best turbulence proxy (see below) and the 

convective velocity (w*) and the shear velocity (u*), using data from the global reanalysis 

ERA5 (Hersbach et al., 2018). While shear velocity was directly retrieved from ERA5, w* can 

be estimated to a good approximation using the following equations:  

𝑤∗ = (
𝑔(𝑤′𝜃′𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

0ℎ

𝜃𝑣
)

1

3
               (1) 

where h is the depth of the boundary layer from ERA5 (m) and g is the gravitational 

acceleration (9.81 m s-1). In addition, 

          (𝑤′𝜃′𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
0 =

𝑆𝐻𝐹

𝜌𝐶𝑝
+ 0.61𝜃𝑣

𝐿𝐻𝐹

𝐿
,     (2) 

where SHF and LHF are the instantaneous surface sensible heat flux and surface latent heat 

flux from ERA5 (watts m-2), ρ is the air density, Cp is the specific heat capacity = 1004 J kg-1, 

and L is the latent heat of vaporisation of water = 2,260,000 J kg-1. 

Virtual temperature θv in equations 1 and 2 can be replaced with the potential temperature θ 

given by: 

          𝜃 = 𝑇 (
𝑝

𝑝0
)
−𝑅𝑑/𝐶𝑝

      (3) 

where p0 = 1000 hPa, p is the surface pressure in hPa, -Rd/Cp = -2/7 (to a good 

approximation), and T is the  surface temperature at 2 m above ground from ERA5. All 

temperatures are in Kelvin. 
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Figure S3. The turbulence measured by the ultrasonic anemometer per flight was positively 

correlated with the pilot’s rating of turbulence per day (adj. R2 = 0.53,  n = 130). Solid line 

indicates the linear fit (with dashed lines: ± 1 standard error).  
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Figure S4. Pigeon-based proxies ranked from 3rd to 18th. The 16 models ranked below second 

place are presented in rank order. Black solid curves indicate the predicted fit (dashed curves 

95% confidence intervals) and grey points the raw observations. 
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Table S1. Top 10 ultralight proxy models ranked by AIC. “IQR”, “VAR”, “MED”, “SUM” 

are used to indicate that the model is the interquartile range, variance, median and area under 

the curve of each property. The estimated degrees of freedom (EDF) indicate the extent to 

which relationships are linear, with values closer to 1 describing a linear fit and closer to 2 

curvilinear. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Model P-value EDF Adj. R2 Dev.Expl. AIC ΔAIC 

Mean pressure difference per s_VAR <0.001 1.86 0.33 0.35 207.28 - 

Mean pressure difference per s_IQR <0.001 1.00 0.31 0.32 209.68 2.40 

Mean pressure difference per s_SUM <0.001 1.95 0.31 0.33 210.24 2.97 

Raw pressure fluctuations_ SUM <0.001 1.95 0.31 0.33 210.29 3.01 

Raw pressure fluctuations_ MED <0.001 1.87 0.3 0.32 211.43 4.15 

VeSBA_IQR <0.001 1.00 0.25 0.26 216.32 9.04 

Raw pressure fluctuations_ IQR <0.001 1.94 0.26 0.28 216.39 9.11 

VeSBA fluctuations_MED <0.001 1.92 0.21 0.23 221.83 14.55 

VeSBA_VAR <0.001 1.67 0.16 0.17 228.02 20.74 

VeSBA fluctuations_SUM <0.001 1.85 0.16 0.17 228.14 20.86 
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Figure S5. Ultralight-based proxies ranked from 3rd to 18th. The 16 models ranked below the 

second place are presented in rank order. Black solid curve indicates the predicted fit (dashed 

curves 95% confidence intervals) and grey points the raw observations.  
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 Python scripts for estimating turbulence 

##################### Script 1 ######################## 
 

import numpy as np 

import scipy.signal as sig 

import matplotlib.pyplot as plt 

import matplotlib.lines as mlines 

import re 

import glob 

import os 

import csv 

from powerspec import powerspec 

dirs = sorted(glob.glob('Data/*')) 

# Frequency of measurements 

freq = 10 

# Data cleaning filter window 

win=7 

# Data cleaning filter threshold 

th=200 

def readSonicCSV(file): 

    uvw = np.loadtxt(file,usecols=(0,1,2),skiprows=1,delimiter=',') 

    u = uvw[:,0] 

    v = uvw[:,1] 

    w = uvw[:,2] 

    return u,v,w 

def cleanSeries(x,w,th): 

    xmed = sig.medfilt(x,w) 

    ii = np.abs(xmed-x) > th 

    x2 = np.copy(x) 

    x2[ii] = xmed[ii] 

    #x2[ii] = 0.0 

    return x2 

def calcPow(freq,S): 

    y = np.log10(freq*S) 

    x = np.log10(freq) 

    i1 = np.min(np.nonzero(freq>0.05)) 

    i2 = np.max(np.nonzero(freq<1.0)) 

    istart = 0 

    iend = 0 

    c = 0 

    cerr = 1e6 

    for ist in np.arange(i1,i2-3): 

        for ie in np.arange(ist+4,i2): 

            ci = y[ist:ie+1]+2.0/3.0*x[ist:ie+1] 

            ctmp = np.mean(ci) 

            cerrtmp = np.sqrt(np.mean((ci-ctmp)**2)) 

            if (cerrtmp < cerr): 

                cerr = cerrtmp 

                c = ctmp 

                istart = ist 

                iend = ie 

    se = cerr/np.sqrt(iend-istart) 

    return c,istart,iend,cerr,se 

tp = [] 

ts = [] 

tse1 = [] 

tse2 = [] 

tid = [] 
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tke = [] 

col = [] 

mark = [] 

alpha = [] 

ids = [] 

lab = [] 

m = ['x','+','*','o'] 

for d in np.arange(len(dirs)): 

    files = glob.glob('{}/*.csv'.format(dirs[d])) 

    dirname = dirs[d] 

    

lab.append('{}/{}/{}'.format(dirname[9:11],dirname[7:9],dirname[5:7])) 

    with open ('{}/turb.dat'.format(dirs[d])) as tfile: 

        tmp = tfile.readlines() 

    turb = float(tmp[0]) 

    for f in np.arange(len(files)): 

        fname = files[f] 

        flightid = os.path.basename(os.path.splitext(fname)[0]) 

        ids.append(flightid) 

        u, v, w = readSonicCSV(fname) 

        n = len(u) 

        up = u - np.mean(u) 

        vp = v - np.mean(v) 

        wp = w - np.mean(w) 

     

        Uptmp = np.sqrt(up*up+vp*vp+wp*wp) 

        Up = cleanSeries(Uptmp,win,th) 

        TKE = 0.5*np.mean(Up**2) 

        [S,f] = powerspec(Up,freq,True,8) 

        c,istart,iend,cerr,se = calcPow(f,S) 

        # Standard error x 1.96 gives a 95% confidence interval 

        ci = 1.96*se 

        plt.loglog(f,f*S,'g') 

        plt.loglog([f[istart],f[iend]],np.power(10,-

2.0/3.0*np.log10([f[istart],f[iend]])+c),'k') 

        plt.loglog([f[istart],f[iend]],np.power(10,-

2.0/3.0*np.log10([f[istart],f[iend]])+c-ci),'k:') 

        plt.loglog([f[istart],f[iend]],np.power(10,-

2.0/3.0*np.log10([f[istart],f[iend]])+c+ci),'k:') 

        plt.xlabel('f / s$^{-1}$') 

        plt.ylabel('fS(f) / m$^2$ s$^{-1}$') 

        plt.text(0.2,5000,'power = {:<5.3f}'.format(10**c)) 

        plt.text(0.2,3500,'95% CI = {:<5.3f} - {:<5.3f}'.format(10**(c-

ci),10**(c+ci))) 

        plt.axis([10**-3,10**1,10**1.5,10**4]) 

        plt.savefig('spectra_{}.png'.format(flightid)) 

        plt.close() 

        tp.append(turb) 

        ts.append(10**c) 

        # Calculate error bars - / + confidence interval. 

        tse1.append(10**c*(1.0-10**(-ci))) 

        tse2.append(10**c*(10**ci-1)) 

        tid.append(d) 

        tke.append(TKE) 

        col.append('C{}'.format(d%9)) 

        mark.append(m[d//9]) 

        if (cerr < 0.2): 

            alpha.append(1.0) 

        else: 

            alpha.append(0.5) 
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marks = [] 

for d in np.arange(len(dirs)): 

    mm = 

mlines.Line2D([0],[0],c='C{}'.format(d%9),marker=m[d//9],label=lab[d]) 

    marks.append(mm) 

for i in np.arange(len(tp)): 

    

plt.errorbar(tp[i],ts[i],yerr=np.reshape([tse1[i],tse2[i]],(2,1)),c=col

[i],marker=mark[i],alpha=alpha[i]) 

plt.xlabel('Pilot turbulence rating') 

plt.ylabel('Turbulence strength from sonic') 

plt.legend(handles = marks,ncol=2,fontsize=6) 

plt.savefig('turbulence.png') 

plt.close() 

for i in np.arange(len(tp)): 

    plt.scatter(tp[i],tke[i],c=col[i],marker=mark[i],alpha=alpha[i]) 

plt.xlabel('Pilot turbulence rating') 

plt.ylabel('TKE from sonic') 

plt.legend(handles = marks,ncol=2,fontsize=6) 

plt.savefig('tke.png') 

plt.close() 

for i in np.arange(len(tp)): 

    

plt.errorbar(ts[i],tke[i],xerr=np.reshape([tse1[i],tse2[i]],(2,1)),c=co

l[i],marker=mark[i],alpha=alpha[i]) 

plt.xlabel('Turbulence strength from sonic') 

plt.ylabel('TKE from sonic') 

plt.legend(handles = marks,ncol=2,fontsize=6) 

plt.savefig('turbulence_tke.png') 

plt.close() 

with open('turbulence.csv', 'w') as csvfile: 

    fieldnames = ['flight','pilot','sonic','err1','err2','tke'] 

    writer = csv.DictWriter(csvfile,fieldnames=fieldnames) 

    writer.writeheader() 

    for i in np.arange(len(ids)): 

        writer.writerow({'flight': ids[i], 'pilot': tp[i], 'sonic': 

ts[i], 'err1': tse1[i], 'err2': tse2[i], 'tke': tke[i]}) 
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##################### Script 2 ######################## 

 

# [S,f]=powerspec(x,sf,bin,Nbins) 

# 

# calculates the power spectral density (S) of x, defined such that 

# the integral of S over frequency is the variance of x 

#  sum(S)*df = variance, where df is the frequency interval 

#         df = sf/N, where sf is sample freq, N length of series 

# S has units of x^2 hz^-1 

# 

# INPUT 

#  x   - vector of data values 

#  sf  - sample frequency (hz) 

#  bin - string, if ='bin' the power spectrum is smoothed by simple 

averaging 

#              into equal Nbins/decade log-width frequency bins (first 

few points 

#        are unaveraged, since df > bin width) 

#  Nbins - number of bins per decade to use, defaults = 8 

# 

# OUTPUT 

#  S   - power spectral density (units of x^2 hz^-1 = x^2 s) 

#  f   - frequency series 

import numpy as np 

def powerspec(x,sf,bin = False,Nbins = 8): 

    L = len(x) 

    if L%2 == 1: 

        # if length of x is odd, pad end with repeated value 

        padded = True 

        x=np.append(x, x[-1]) 

        nfft = L+1        # force even number of points in fft 

    else: 

        nfft = L          # force even number of points in fft 

    df = float(sf)/nfft               # frequency interval 

    f = np.arange(1,nfft/2)*df        # frequency series 

    # get Fourier series 

    Rxx = np.fft.fft(x,nfft) 

    Sxx = Rxx*np.conj(Rxx) 

    Sxx = Sxx/(nfft*sf)  # scale power spectra by timeseries length & 

sample freq 

    S = 2*Sxx[1 : nfft/2]  # fold over spectrum, don't include DC 

component 

    if bin: 

        # define 1/8 decade logarithmically equal width frequency bin 

limits, ff 

        

logff=np.arange(np.floor(np.log10(np.min(f))),np.ceil(np.log10(np.max(f

))),1/float(Nbins)) 

        ff=np.power(10,logff) 

        # find the first bin which can contain at least 2 spectral 

points 

        minbin=np.min(np.where(df<(np.diff(ff)/2))) 

        # find the last bin for which there is any data (to avoid 

possibility of single 

        # point average, ensure at least N points - say N=10) 

        maxbin=np.max(np.where(ff<f[len(f)-10])) 

        # first few points are not averaged 

        i=f<=ff[minbin] 
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        binS=S[i] 

        binf=f[i] 

        # remaining points are averaged within frequency bins 

        for n in np.arange(minbin,maxbin+1): 

            i=np.logical_and(f>ff[n],f<=ff[n+1]) 

            binS=np.append(binS,np.mean(S[i])) 

            # binf set to centre of bin 

            binf=np.append(binf,np.mean(ff[n:n+2])) 

        S=binS 

        f=binf 

    return[np.real(S),f] 
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Chapter 3: Turbulence affects the flight kinematics of an obligate 

flapping flier.  
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Abstract 

Turbulence is nearly ubiquitous in the natural environment, yet very little is known about how 

this impacts flapping fliers. I used a new proxy of freestream turbulence, based on small-scale 

fluctuations in altitude (pressure) measured onboard homing pigeons, to investigate how 

turbulence impacts their flight kinematics, flight effort and route choice. Similar to laboratory 

studies, birds increased the variability in their wingbeat frequency and amplitude in relation 

to turbulence; responses that are thought to increase flight stability. The effects of turbulence 

can also be reduced by increasing the mean wingbeat frequency. It was therefore surprising 

that pigeons in this study decreased their mean wingbeat frequency with increasing 

turbulence, but increased their wingbeat amplitude. The consequences for flight effort are 

unclear, as power varies as a cubic function of both variables. Overall, this provides the first 

evidence that freestream turbulence affects a range of flight kinematic variables in an obligate 

flapping flier in nature, and indicates that active responses to increase flight control might 

come without a significant energetic cost.          
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Introduction 

The impact of atmospheric turbulence on the aviation industry is well known (Gultepe et al., 

2019, Storer et al., 2019). Turbulence increases drag (Anderson, 2016), which can reduce lift 

production, leading to instability and abrupt changes in altitude. Pilots are therefore advised 

to adjust their flight route and/ or altitude to avoid turbulent regions in the atmosphere, 

aircraft damage and fuel waste (Kauffmann, 2002). However, detouring and flying at sub-

optimal altitudes also comes at a significant cost (Kauffmann, 2002). Turbulence is also likely 

to have a significant impact on animal flight, forcing animals to adapt their kinematics to 

improve their flight stability and control, which in turn is likely to increase flight costs. Yet 

little is known about how animals adjust their kinematics to turbulence, and the consequences 

for power use and route choice.  

In laboratory environments (e.g. Ortega et al 2013) and small natural habitat patches 

(Combes et al 2009, Crall et al 2016) insects have been shown to adjust their flight kinematics 

in relation to simulated turbulence. For instance, higher rolling instabilities have been 

reported for hawkmoths (Manduca sexta) flying in von Kármán vortex streets (Ortega-

Jimenez et al., 2013). Wild orchid bees (Euglossa imperialis) extended their legs to enhance 

flight control in turbulent conditions, which increased the power output by up to 30% 

(Combes and Dudley, 2009). Turbulence also impacted flight costs in bumblebees (Bombus 

impatiens), which increased both their wingbeat frequency and amplitude (Crall et al., 2017). 

Some similarities have been found in bird responses to turbulence. Ruby-throated 

hummingbirds (Archilochus colubris) flying in simulated turbulence in a wind tunnel made 

fine-scale adjustments of their body and tail, and increased stroke amplitude, in order to 

maintain a relatively stable position, at the expense of higher drag (Ravi et al., 2015). Anna’s 

hummingbirds (Calypte anna) flying in von Kármán vortex streets also increased the variance 

in their wingbeat frequency and amplitude, and experienced an increase in metabolic costs of 

up to 25% as turbulence scale increased (Ortega-Jimenez et al., 2014). 

Nevertheless, there are substantial differences between the laboratory and field in terms of 

the nature of the turbulence that animals encounter, and their ability to respond. Laboratory 

studies simulate turbulence by introducing structures such as cylinders into the flow, which 

generate discrete alternating vortices that are shed at predictable intervals. These von Kármán 

vortex streets are rare in nature compared to free-stream turbulence, which is characterized by 

rapid, complex and unpredictable disturbances in the flow across a wide range of spatial and 

temporal scales (Ravi et al., 2015). Hummingbirds altered their kinematics in relation to both 
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forms of turbulence in order to increase their flight stability, but their precise kinematic 

responses differed according to whether the turbulence was generated by a grid (intended to 

be closer to turbulence commonly found in nature) or a cylinder (Ravi et al., 2015).  

Another important distinction between simulated and free-stream turbulence in natural 

environments is that the latter often includes strong upward components driven by thermal 

convection and the interaction between the wind and obstacles on the ground. Some animals, 

particularly soaring birds, have evolved strategies to exploit this rising air, detouring from a 

straight line path in order to gain altitude in, and glide between, successive updrafts (e.g. 

Murgatroyd et al., 2018, Pennycuick, 1972). Circling to gain altitude in thermal updrafts is 

not cost-effective for flapping fliers (Hedenström, 1993). Nonetheless, high resolution 

numerical simulations have revealed that European bee-eaters (Merops apiaster) switch from 

flapping to soaring/gliding flight when turbulence strength reaches a certain threshold, and in 

fact this decision is so crucial that they completely ignore wind support (Sapir et al., 2011). 

Anecdotal observations of other flapping fliers, such as pigeons, soaring over buildings in 

strong wind conditions also suggests that they are able to capitalize on the upward 

components of turbulence in some conditions. Therefore, turbulence may not always 

represent a cost for flapping fliers operating in the natural environment. 

The demonstration in chapter 2 that fine-scale vertical displacements of flying pigeons 

can be used as a proxy for turbulence means that it is now possible to examine how birds 

respond to turbulence at fine-scales when flying in the natural environment. In this study we 

equipped solo-flying homing pigeons (Columba livia Linnaeus) with high-frequency data-

loggers and released them in varying degrees of free-stream turbulence to establish how 

turbulence impacts their kinematics and behaviour. Homing pigeons are a model species in 

which to investigate the effects of turbulence on powered flight as they will return to their loft 

in a range of conditions, typically following a consistent route once they are familiar with the 

release location and terrain (Biro et al., 2004, Meade et al., 2005). However, in this study it 

became clear that pigeons took one of two distinct routes back to the loft, raising the 

possibility that route choice may also be influenced by changing aerial conditions. I therefore 

assessed responses to turbulence from the level of wingbeat kinematics, through to horizontal 

and vertical route choice. My specific objectives were to: 1) Quantify the extent to which 

pigeons varied their wingbeat kinematics (wingbeat frequency and amplitude) to increase 

their flight stability, (2) assess the consequences for power output, in terms of the mean 

wingbeat frequency and amplitude required to fly at a given airspeed, (3) evaluate how 

turbulence impacted the flight trajectory in terms of track tortuosity and route choice, with the 
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expectation that pigeons would fly at lower altitudes to reduce the level of turbulence they 

were exposed to. Taken together this should provide insight into the impact of turbulence on 

flapping fliers and the importance of this for kinematic and behavioural responses relative to 

other, well-studied aspects of the flight environment, namely wind. 

Materials and methods 

Data collection 

Ten homing pigeons (Columba livia Linnaeus, with body mass 442 - 476 g) were equipped 

with a “Daily Diary” unit (DD, Wildbyte Technologies, Swansea University, UK) and a GPS 

logger (GiPSy 5, Technosmart Europe, Guidonia-Montecelio, Italy) integrated in a single 3D 

printed housing (Garde et al., 2021). Birds were released in an agricultural area near 

Radolfzell, Germany (see chapter 2) to fly solo back to their loft. Each bird was released >30 

times prior to data collection in order to control for the effect of route familiarity on flight 

trajectories and kinematics (Taylor et al., 2017). During field trials, six birds were randomly 

selected for release on a given day, for a total of 23 days and 81 releases in two summers 

(July 2018, 2019, 48 flights) and one spring (April 2019, 33 flights). Each bird was released 

with an approximate gap of ten minutes from the previous bird to facilitate solo flight (see 

chapter 2), and releases took place in different hours across days to cover a wide range of 

turbulence levels (induced by thermal heating and/or wind strength/direction).  

The DD units logged triaxial acceleration (at either 40 or 200 Hz, but all files recorded 

at 200 Hz were sub-sampled to 40 Hz for consistency) and barometric pressure (sampled at 

either 4 or 20 Hz depending on the acceleration frequency, but a final frequency of 4 Hz was 

used for all files). The GPS logger sampled at 1 Hz for all flights except for the flights in 

April 2019 (5 Hz), which were subsampled to 1 Hz. Wind speed and direction were recorded 

every 10 s using a Kestrel 5500 anemometer (Kestrel instruments, USA) positioned at a 

height of 5 m at the release site.  

Data processing (i) the impact of turbulence on flight trajectory and route choice 

The best turbulence proxy from chapter 2 was used to estimate variation in turbulence 

strength. This provided a qualitative estimate of turbulence, derived from the interquartile 

range of pressure fluctuations measured onboard pigeons within each 15-second segment of a 

pigeon’s flight track. The 15-second window was selected based on trials and was considered 

large enough to capture the scale of large eddies at the mean flight altitude above ground 

birds flew (~ 80 m), also taking into account the mean flight ground speed of ~ 20 m s-1 and 

the total distance covered per segment. 
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The impact of turbulence on track properties was investigated at a number of levels 

including horizontal route choice, flight height (vertical route choice) and fine-scale track 

tortuosity. In addition, it became clear that pigeons performed multiple circles immediately 

after release as part of an orientation phase before either taking a route through the valley or 

over the hill (see chapter 2). I hypothesized that the circling phase may also serve to enable 

birds to sample the flight conditions, namely the turbulence and wind vector, which could in 

turn influence route choice. In order to investigate this, I removed the circling phase of each 

flight and quantified the number of circles and time spent circling using the GPS data. Flights 

were categorised according to their route, and I considered a flight to cross the hill when the 

total distance flown over the hill was at least 15% of the total distance covered. The final 

approach to the loft was also removed from all flight tracks, as this was often characterised by 

a short but highly tortuous section. 

GPS data were used to estimate turning angle, which was taken as the difference in 

flight heading between consecutive GPS points. Turning angle was used as a measure of 

horizontal segment tortuosity instead of the straightness index (SI), as the relatively short 

segment length (mean = 280 m) restricted the inter-segment variation in SI. All three 

attributes were estimated using the move package version 4.0.0 (Kranstauber et al., 2020). 

Flight height was estimated using the barometric pressure sensor data, which provided 

higher frequency measurements with smaller error compared to GPS derived altitude (Péron 

et al., 2020). Altitude above sea level (ASL) was estimated by smoothing the barometric 

pressure data over two seconds and using the pressure at sea level during each flight 

(estimated from the barometric pressure measured by the weather station at the release site), 

following Williams et al. (2015). Altitude ASL was used to estimate the vertical velocity (Vz, 

m s-1), taken as the difference in altitude ASL (smoothed over two seconds) each second. 

Altitude ASL was also converted to altitude above ground (AGL), using the elevation of the 

terrain obtained from a 30 m digital surface model (DSM) (source: 

https://opendem.info/index.html). 

Data processing (ii) the impact of turbulence on flight effort 

Airspeed is a key determinant of flight costs. Airspeed, headwind component (HWC), and 

crosswind component (CRW) were estimated using the angle between the GPS heading/ 

ground speed vector and the wind speed vector (Garde, 2022), using the GPS and the wind 

data from the anemometer (Pennycuick, 2008). Wind measurements made by the anemometer 

were compared with those estimated using the ERA5 global reanalysis (hourly) (Copernicus 

https://opendem.info/index.html
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Climate Change Service) (Hersbach et al., 2018, Hersbach et al., 2020), to check that the 

weather station captured the prevailing wind conditions, rather than highly localised 

conditions e.g. due to the topography.  

Wingbeat frequency and amplitude are thought to be the main kinematic variables that 

birds use to vary their mechanical power output in flight, and both were estimated using the 

triaxial acceleration data. Wingbeat frequency was estimated by counting the peaks in the 

dynamic heave signal within each second. The dynamic component was taken as difference 

between the raw and smoothed vertical acceleration values, where the smoothed values were 

derived using a 2 second window (Shepard et al., 2008). Wingbeat amplitude was estimated 

as the difference between the first peak and the lowest value of vertical acceleration within a 

wingbeat cycle (taken as the period between two consecutive peaks) (Krishnan et al., 2022 

submitted to Royal Society Interface). Both wingbeat frequency and amplitude were averaged 

over two seconds to reduce the noise in the signal before further analysis.  

Statistical analysis  

I used generalised additive mixed effect models (GAMM) (GAM, package “mgcv” version: 

1.8.31, Wood (2017)) to evaluate which flight characteristics were affected by changes in 

turbulence, in combination with other variables. First, I removed erroneous or incomplete 

data. This included all the segments of non-solo flights, all the segments of two flights for 

which wind data from the anemometer at the release site was missing, and finally segments 

with missing elevation data. I also  excluded outliers in the distribution of turbulence to focus 

on the large proportion of the distribution, and the main effects, while avoiding fitting the 

model using the very small proportion of extreme values that was separated far from the 

overall distribution resulting in large uncertainty within the gap that was being created. This 

was accomplished by splitting the distribution of turbulence into five equal sized bins. I 

removed segments from the first or the last bin if that bin contained less than five segments, 

or in the case of the model of route choice, where each data point represented an entire flight, 

three flights. This process was repeated until all bins contained more than five segments or 

three flights (route choice model). Models that included outliers were also tested to assess 

whether this process changed the results substantially.  

Prior to modelling, I assessed the distribution of each variable and square-root 

transformed the following variables, which had highly skewed distributions: the mean flight 

altitude, mean wingbeat frequency and amplitude, turbulence and the standard deviations of 

GPS turning angle, wingbeat frequency and amplitude, and airspeed.   
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The first model predicting the binomial response of route choice (valley/hill) included 

turbulence strength and headwind component of the first 15-second segment in the main bird 

track and the total circling duration of each orientation phase. The model predicting mean 

flight altitude per segment included turbulence strength and the headwind component. I 

anticipated that pigeons would fly lower to avoid high turbulence, similar to the response to 

headwinds (Liechti, 2006). The third model predicting the standard deviation of the turning 

angle included the same predictors. The fourth model, predicting mean airspeed also included 

the same predictors, with the addition of Vz (climb rate) and the mean flight altitude, to 

account for the influence of rapid ascents/ descents and changes in altitude on airspeed. The 

model of the standard deviation of airspeed included the same predictors.  

I also used four models to assess the influence of turbulence on flight effort, taking the 

mean wingbeat frequency, the mean wingbeat amplitude and the standard deviations of 

wingbeat frequency and amplitude as the response variables and using the same predictors as 

the airspeed models.  

In all models, basis dimension “k” was optimised using the option “select=TRUE” 

and flight ID was added as a random intercept except for the model of route choice where I 

used season ID. To account for temporal and spatial autocorrelation I used the time and the 

longitude and latitude of the mid-point of each 15-second segment nested in pigeon ID (flight 

ID for the model of standard deviation of airspeed) using the corARMA and corSpatial 

functions, nlme package version: 3.1.148, (Pinheiro et al., 2007). Model residuals were 

evaluated in two stages: i) outliers, uniformity, over/ under-dispersion and spatial/ temporal 

autocorrelation were assessed using the DHARMa package version: 0.4.4.0 (Hartig and 

Hartig, 2017), ii) residual plots were visually inspected in gam.check (with 100 simulations 

for each model). Models that failed the DHARMa test of uniformity (all but airspeed models) 

but displayed satisfactory plots for normality and homoscedasticity were selected for analysis, 

as the one-sample Kolmogorov-Smirnov test performed by DHARMa is highly sensitive to 

large sample sizes such as the one used in this study (n=1303), which might have resulted in 

smaller p-values (Uhm and Yi, 2021). All statistical analysis was conducted in RStudio 

version: 1.2.5 (RStudio Team, 2015) and the R programming language version: 3.6 (R Core 

Team, 2020). 



78 

 

 

Results 

After excluding incomplete or erroneous data and filtering for outliers in the distribution of 

turbulence, 67 flights were used for the analysis of route choice, and 73 flights and 1303 

segments were used to model the effect of turbulence on flight altitude, tortuosity, airspeed 

and effort. The exclusion of eight segments as extreme turbulence outliers (out of 1311) did 

not have any substantial effect on the results either on adj. R2 and deviance explained or on 

the shape of the predicted relationships of any of the modelled predictors. 

The decision of whether to fly over the hill or through the valley was not influenced 

by the headwind component or turbulence (Supplementary information Table S1). However, 

the probability of a bird flying over the hill increased with the time spent circling after the 

release (GAMM model of route choice, n= 67, adj. R2 =  0.31, deviance explained = 36.5%, 

Supplementary information Table S1, Fig. S1).  

Overall, turbulence had a significant impact on almost all the flight variables in the 

segment based models. These included the mean flight altitude above ground level, the 

tortuosity defined as the standard deviation of GPS turning angles, the mean wingbeat 

frequency and mean wingbeat amplitude estimated using the acceleration signal, their 

variability defined as the standard deviation, and finally the airspeed (bird’s flight speed in 

relation to the wind vector) and its variability (standard deviation). Turbulence had the largest 

effect in the models of segment tortuosity and variation in airspeed, but the effect was less 

than that of flight altitude (above ground) and climb rate (the vertical displacement per 

second) in predicting wingbeat amplitude and wingbeat frequency (here turbulence was more 

significant than wind support) (Table. 1). Each of the model outputs is discussed in more 

detail below. 

One multivariate model predicting mean flight altitude and tortuosity as the response 

variables and one multivariate model predicting mean wingbeat frequency, amplitude, 

airspeed and their standard deviations as the response variables were tested against the 

univariate models presented in table 1. The two multivariate models produced almost 

identical results as the univariate models. The significance level of the predictors (see 

supplementary information) and the shape of the predicted relationships were very similar in 

both approaches, but as processing and visualising the results of the univariate approach is 

simpler, the residuals tests of the univariate models performed better (i.e. QQ plots) and as 
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thorough model evaluation with Dharma is not supported with the multivariate model  family, 

the univariate approach was selected for analysis.  

Table 1. Summary of GAMM models and effects. The size and shape of its effect is 

standardised to represent the real modelled effect for comparison with other models and 

terms. The largest effect in each model is indicated in yellow. 

Flight altitude and path tortuosity 

Flight height above ground did not vary with turbulence but it was affected by the headwind 

component, with birds flying lower with headwinds and at higher altitudes with tailwinds (n= 

1303, adj. R2 =  0.59, deviance explained = 61.3%, Supplementary information Table S2, Fig. 

S2). Turbulence did impact the horizontal path tortuosity, having the largest effect in the 

model, with segments becoming more tortuous with increasing turbulence strength and 

headwind component (n= 1303, adj. R2 =  0.33, deviance explained = 36.3%, Supplementary 

information Table S3, Fig. S3).  

Airspeed 

Birds increased their airspeed with both headwind and turbulence level (Fig. 1A,B), although 

the effect size for turbulence was small (Table. 1, Supplementary information Table S4, n= 

1303, adj. R2 =  0.71, deviance explained = 72.3%). The most important determinant of 

airspeed was the climb rate with airspeed decreasing as birds climbed (Fig. 1C).  

In contrast, turbulence was the most important determinant of airspeed variability (n= 1303, 

adj. R2 =  0.37, deviance explained = 40%, Supplementary information Table S5) with the 

variability increasing with turbulence strength and with flight closer to the ground 

(Supplementary information Fig. S4).   
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Figure 1. Model of mean airspeed per 15-second segment in relation to (A) turbulence, (B) 

headwind component, (C) vertical velocity and (D) mean flight altitude. Green shaded areas 

indicate the 95% confidence intervals. 

Flight effort 

Wingbeat frequency was highly variable overall (1.6 – 7.3 Hz) but tended to be lower in 

flights that continued through the valley compared to those that went over the hill (Fig. 2B), 

while wingbeat amplitude followed the opposite trend (Fig. 2C). In both cases, wingbeat 

frequency and amplitude appeared to be linked to the higher absolute flight height of tracks, 

with frequency being higher and amplitude being lower where pigeons climbed in 

anticipation of, and then over, the hill (Fig. 2A). There was no evidence that kinematics 

varied over time in the study period (Supplementary information Fig. S5). 
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 Figure 2. Flight tracks coloured according to (A) flight height (m ASL), (B) wingbeat 

frequency (Hz) and (C) amplitude (g). Birds flying over the hill (the wooded area to the right) 

increased their altitude ahead of the hill, and had a higher wingbeat frequency and lower 

amplitude. Aside from this tendency, wingbeat frequency and amplitude were variable along 

individual flight paths. Points represent the estimates in each second as measured by the Daily 

Diary. The white box in panel B highlights an area of high circling and low wingbeat 

frequency and amplitude. 

Mean wingbeat frequency and amplitude followed the opposite trends with regard to 

turbulence (Fig. 3A,B). High turbulence was associated with lower wingbeat frequency and 

higher wingbeat amplitude. The same trend was also observed for the effect of climb rate, 

with higher wingbeat frequencies and lower amplitudes occurring as birds climbed (Fig. 

3C,D). Wingbeat frequency and amplitude both tended to be higher at lower altitudes, with 

amplitude showing a steady reduction as height increased (Fig. 3E,F).  

The standard deviation of wingbeat frequency and amplitude both increased with 

turbulence, more so for amplitude than for frequency (Supplementary information Fig. S6A, 

S7A). Both parameters decreased with flight height, which was the most important predictor 

(Supplementary information Table S7, S9 and Fig. S6B, S7C). 
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Figure 3. The most significant terms in the GAMM models of mean wingbeat frequency and 

amplitude. Turbulence had a negative effect on frequency (A) but a positive effect on 

amplitude (B), climb rate had a positive effect on frequency (C) and a negative on amplitude 

(D) whereas frequency decreased with altitude up to a certain level above which it increased 

(E) and amplitude decreased(E) (note the number of observations on the lowest and highest 

altitudes was small). Green shaded areas indicate the 95% confidence intervals. 

Discussion 

Information on the effects of freestream turbulence on flapping fliers is extremely limited (but 

see (Sapir et al., 2011). In this study I show that turbulence has a substantial impact on a wide 

range of flight parameters for an obligate flapping flier operating in the wild. Indeed, 

turbulence had a significant effect on all tested flight metrics, bar flight altitude. Nonetheless, 
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my results will likely underestimate the actual effect sizes of turbulence on flight kinematics 

because while I examined responses to free-stream turbulence at extremely fine-scales, 

compared to what has been possible to date (Bohrer et al., 2012, Sapir et al., 2011), I was still 

restricted to assessing the average response over flight segments of ~ 280 m (15 second 

intervals). This will have averaged out some of the variation in the kinematic response, as 

turbulent features may not have persisted across the entire length of  each 15 second flight 

section.  

I expected pigeons would make adjustments to their flight kinematics in order to maintain 

flight stability and that this would result in increased flight costs. One way that birds are 

thought to compensate for aerial perturbations is by varying their kinematics from one stroke 

to the next (Ravi et al., 2015), a strategy referred to as active flight control. My finding that 

wingbeat frequency and amplitude became more variable with increasing turbulence is 

therefore consistent with the idea that pigeons show instantaneous compensation for 

turbulence. Similar results were found in hummingbirds, which had more variable kinematics 

when flying both in freestream turbulence and in von Kármán vortex streets (Ortega-Jimenez 

et al., 2014, Ravi et al., 2015). 

Flapping fliers can also reduce the effect of turbulence and increase passive stability by 

increasing their mean wingbeat frequency (Fisher et al., 2016, Hedrick et al., 2009, Ravi et 

al., 2015). It was therefore surprising that, in contrast to hummingbirds, pigeons in this study 

reduced their mean wingbeat frequency with increasing turbulence. The effect of turbulence 

on mean wingbeat frequency was lower than the effect of climb rate and flight height, as both 

the latter predicted a change in wingbeat frequency of ~0.75 Hz. Nonetheless, the predicted 

reduction of ~0.2 Hz in high turbulence is significant, and close to what is seen in the 

transition from cluster flocking to solo flight in other homing studies (Sankey and Portugal, 

2019). Therefore, while pigeons did show kinematic compensation for turbulence through 

more variable wingbeat frequency and amplitude, they did not take additional steps to reduce 

the effect of turbulence by increasing their mean wingbeat frequency. In fact, pigeons only 

increased their wingbeat frequency during climbing flight and periods when headwinds 

necessitated an increase in airspeed (and also lower flight altitudes).  

Much of our knowledge of how the physical environment affects flight effort has come 

from estimates of airspeed under changing conditions (Hedenström, 1993, Hedenström and 

Alerstam, 1995). There are well-established frameworks that predict how flying animals 

should modify their speed in relation to both climb rate and headwind component, and these 
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were the main parameters that influenced airspeed in my trials, in line with theoretical 

predictions (Hedenström et al., 2002, Hedenström, 2003, Berg and Biewener, 2008).  In 

contrast, there is no quantitative framework predicting how flapping fliers should vary their 

speed in relation to turbulence. Broadly speaking, an increase in speed might be expected if 

turbulence represented an energetic cost, with the reverse being true if birds were extracting 

some energetic advantage from turbulence, akin to the behaviour of soaring birds 

(Hedenström, 1993). Previous work on insect flight performance has shown a significant 

decrease in airspeed with increasing turbulence scale (Ortega-Jimenez et al., 2013). Here I 

found a small increase in airspeed in relation to turbulence, but the response was too small to 

allow firm conclusions about potential benefits or cost from this alone. Turbulence was, 

however, the main driver of the variation in airspeed, and variable speeds are typically more 

costly than constant speeds due to the need for repeated accelerations (Pennycuick, 1968, 

Kramer and McLaughlin, 2001). 

Overall, interpreting how freestream turbulence effects flight costs in these obligate 

flapping fliers is not straightforward. It was extremely surprising that pigeons reduced their 

wingbeat frequency in increasing turbulence, but this was accompanied by an increase in 

wingbeat amplitude, and it is unclear how these two contradictory trends play out in terms of 

the net power output. Nonetheless, two variables suggest that birds may experience lower 

flight costs in turbulent conditions. First, a reduction in wingbeat frequency was observed 

despite the slight increase in absolute airspeed and increased variation in airspeed, which 

would require greater acceleration power and has been linked to increased wingbeat 

frequency and amplitude (Usherwood et al., 2011). Second, the kinematic changes in 

increasing turbulence are most similar to those observed in descending flight. Indeed, the 

magnitude of the frequency and amplitude response for birds flying in high versus low 

turbulence was comparable to that between level flight and a descent rate of 2 m s-1 .  

Is it possible that pigeons could be extracting energy from the turbulence? Exactly how 

this could be achieved is unclear, but possible mechanisms could include a reduction in the 

induced power requirements, if pigeons fly through turbulence with an upwards component, 

or the Katzmayr effect (Katzmayr, 1922), where an overall increase in lift could lead to an 

increase in thrust, although neither have been demonstrated in flapping fliers (Phillips, 1975). 

In some cases, segments included circling (with the duration of a single circle ranging from 

10 to 27 seconds). Turning flight is costly (Usherwood et al., 2011), but there is at least one 

section in the data where birds had low wingbeat frequency and amplitude during turning 
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flight, raising the tantalising prospect that pigeons might have made fine scale adjustments to 

benefit from uplift.  

Interestingly, pigeons in this study flew one of two broad routes back to the loft but 

turbulence did not predict route choice. This could be because turbulence did not differ much 

between the routes, despite the fact that objects on the ground like buildings and trees disturb 

the mean flow and lead to unsteady turbulent regimes (Stull, 1988). Alternatively, turbulence 

was neither too costly or beneficial to determine route choice. Finally, it could simply be 

because pigeons and other flapping fliers do not tend to alter their horizontal route in relation 

to flight conditions (Hedenström, 1993). In contrast, many small birds vary their flight height 

in relation to the head/ tailwind component, as also seen here (Liechti, 2006). Pigeons may 

therefore have been more likely to vary their flight height in relation to turbulence, however 

no relationship was observed. It could be that birds respond differently to the different 

categories of turbulence, as my turbulence proxy was positively correlated with both the 

magnitude of the wind and the thermal convection (Chapter 2). It would therefore be 

interesting to model their responses in relation to these specific terms. 

Overall, this study demonstrates that pigeons increase their active flight stability in 

response to free-stream turbulence, as has been shown for hummingbirds flying in laboratory 

conditions (Ortega-Jimenez et al., 2014, Ravi et al., 2015). However, whilst this led to 

marked increases in metabolic rates for hummingbirds flying in relatively large vortex wakes 

(e.g. by 25% for flight in the wake of the large cylinder (Ortega-Jimenez et al., 2014)), it 

seems unlikely that pigeons in this study increased their flight power in strong turbulence. In 

fact, against the backdrop of the results from trials with hummingbirds, even the possibility 

that turbulence could be cost-neutral raises further questions about how birds achieve this 

whilst simultaneously increasing flight stability. This is likely to be of interest to engineers, as 

well as ecologists and biomechanics, given the challenges that near-ground turbulence 

presents for unmanned aerial vehicles (Abdulrahim et al., 2017, Joyo et al., 2013, Patel and 

Kroo, 2006).  
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Chapter 3: Supplementary Information  

Model of route choice 

Table S1. GAMM model of route choice (n=67). From left to right: model terms, effective 

degrees of freedom, available degrees of freedom and p-value. Turbulence in this model is the 

predicted turbulence of the first 15-second segment in the pigeon tracks. Significance is 

indicated according to p-value: p< 0.001 (***), p< 0.01 (**), p< 0.005 (*).   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. The effect of significant terms in the model of route choice. This included only 

the total time spent circling in seconds. Green shaded areas indicate the 95% confidence 

intervals. 

 

Predictors Edf Ref.df p-value     

s ( Turbulence ) 1.727950307     9 0.176904 

s (HWC) 6.298728407  9 0.276790  

s (Total circling duration) 0.995698974    9 0.014472 * 

s (Season, bs=”re”) 0.726570025    1 0.067356 

Adjusted R2 0.31 

Deviance explained 36.5% 
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Model of mean flight altitude 

Table S2. GAMM model of mean flight altitude above ground per 15-second segment 

(n=1303). From left to right: model terms, effective degrees of freedom, available degrees of 

freedom and p-value. Significance is indicated according to p-value: p< 0.001 (***), p< 0.01 

(**), p< 0.005 (*).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. The effect of significant terms in the model of mean flight altitude per-second 

segment. This included only the headwind component. Green shaded areas indicate the 95% 

confidence intervals. 

 

 

 

Predictors Edf Ref.d p-value     

s( sqrt( Turbulence ) ) 0.00176595509     9 0.65059 

s (HWC) 3.94200978691       9 1.4903e-09 *** 

s (flight ID, bs=”re”) 68.73147418590      72 < 2.22e-16 *** 

Adjusted R2 0.59 

Deviance explained 61.3% 
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Model of horizontal path tortuosity 

Table S3. GAMM model of the standard deviation of GPS turning angle per 15-second 

segment (n=1303). From left to right: model terms, effective degrees of freedom, available 

degrees of freedom and p-value. Significance is indicated according to p-value: p< 0.001 

(***), p< 0.01 (**), p< 0.005 (*).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. GAMM model of horizontal path tortuosity expressed as the square-root of the 

standard deviation of GPS turning angle, per 15-second segment. The effects of (A) 

turbulence and (B) headwind component indicate higher tortuosity with increasing turbulence 

(square-root) and headwind component (positive values). Green shaded areas indicate the 

95% confidence intervals. 

 

 

Predictors Edf Ref.df p-value     

s( sqrt( Turbulence ) )   2.34386010       9 6.6005e-07 *** 

s (HWC) 1.71242279       9 0.00044722 *** 

s (flight ID, bs=”re”) 62.59131939      72 < 2.22e-16 *** 

Adjusted R2 0.33 

Deviance explained 36.3% 
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Model of mean airspeed 

Table S4. GAMM model mean airspeed per 15-second segment (n=1303). From left to right: 

model terms, effective degrees of freedom, available degrees of freedom and p-value. 

Significance is indicated according to p-value: p< 0.001 (***), p< 0.01 (**), p< 0.005 (*).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predictors Edf Ref.df p-value     

s( sqrt( Turbulence ) )   1.32251661 9 3.1703e-06 *** 

s(HWC) 1.38962412       9 1.2889e-13 *** 

s(Vz) 1.00113746       9 < 2.22e-16 *** 

s( sqrt(flight altitude) ) 2.87999664       9 6.0239e-05 *** 

s(flight ID, bs=”re”) 69.51683728      72 < 2.22e-16 *** 

Adjusted R2 0.71 

Deviance explained 72.3% 
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Model of standard deviation of airspeed 

Table S5. GAMM model of the square-root transformed standard deviation of airspeed per 

15-second segment (n=1303). From left to right: model terms, effective degrees of freedom, 

available degrees of freedom and p-value. Significance is indicated according to p-value: p< 

0.001 (***), p< 0.01 (**), p< 0.005 (*).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. GAMM model of the square-root transformed standard deviation of airspeed, per 

15-second segment. Only (A) turbulence and (B) flight altitude (square-roots) had a 

significant effect, indicating higher standard deviation with increasing turbulence and flight 

closer to the ground. Green shaded areas indicate the 95% confidence intervals. 

 

Predictors Edf Ref.df p-value     

s( sqrt( Turbulence ) )   4.01071821e+00 9 < 2.22e-16 *** 

s(HWC) 1.90906150e-06       9 0.73725     

s(Vz) 1.27862837e-06       9 0.45604     

s( sqrt(flight altitude) ) 3.63748681e+ 9 1.3722e-11 *** 

s(flight ID, bs=”re”) 5.44663743e+01      72 < 2.22e-16 *** 

Adjusted R2 0.37 

Deviance explained 40% 
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Examination of the potential effect of track familiarity on mean wingbeat frequency. 

Mean wingbeat frequency did not appear to vary according to the chronological order of 

flights, in any month of releases, and as birds became more familiar with the route to the loft 

(Fig. S5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Mean wingbeat frequency per 15-second segment across flights grouped by month 

of releases (April 2019, and July 2018 and 2019). Flights are ordered chronologically.  
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Model of mean wingbeat frequency 

Table S6. GAMM model of the square-root transformed mean wingbeat frequency per 15-

second segment (n=1303). From left to right: model terms, effective degrees of freedom, 

available degrees of freedom and p-value. Significance is indicated according to p-value: p< 

0.001 (***), p< 0.01 (**), p< 0.005 (*). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predictors Edf Ref.df p-value     

s( sqrt( Turbulence ) )   0.970158873       9 7.4794e-09 *** 

s(HWC) 1.823807567       9 0.20384     

s(Vz) 1.824607503       9 < 2.22e-16 *** 

s( sqrt(flight altitude) ) 5.456208366       9 8.8801e-15 *** 

s(flight ID, bs=”re”) 70.425959681      72 < 2.22e-16 *** 

Adjusted R2 0.75 

Deviance explained 76.2% 
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Model of standard deviation of wingbeat frequency 

 Table S7. GAMM model of the standard deviation of wingbeat frequency per 15-second 

segment (n=1303). From left to right: model terms, effective degrees of freedom, available 

degrees of freedom and p-value. Significance is indicated according to p-value: p< 0.001 

(***), p< 0.01 (**), p< 0.005 (*). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. GAMM model of the square-root transformed standard deviation of wingbeat 

frequency, per 15-second segment. Only (A) turbulence and (B) flight altitude (square-roots) 

had a significant effect, indicating higher standard deviation with increasing turbulence and 

flight closer to the ground. Green shaded areas indicate the 95% confidence intervals. 

 

Predictors Edf Ref.df p-value     

s( sqrt( Turbulence ) )   2.29202815047 9 8.9081e-06 *** 

s(HWC) 1.06088859390 9 0.099284 

s(Vz) 0.00125129761 9 0.375240 

s( sqrt(flight altitude) ) 4.20571845021 9 < 2.22e-16 *** 

s(flight ID, bs=”re”) 65.66305626969 72 < 2.22e-16 *** 

Adjusted R2 0.43 

Deviance explained 46.5% 
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Model of mean wingbeat amplitude 

Table S8. GAMM model of the square-root transformed mean wingbeat amplitude per 15-

second segment (n=1303). From left to right: model terms, effective degrees of freedom, 

available degrees of freedom and p-value. Significance is indicated according to p-value: p< 

0.001 (***), p< 0.01 (**), p< 0.005 (*). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predictors Edf Ref.df p-value     

s( sqrt( Turbulence ) )   1.45902470       9 1.0157e-06 *** 

s(HWC) 1.01926656       9 0.044442 *   

s(Vz) 2.59999913 9 4.8510e-05 *** 

s( sqrt(flight altitude) ) 2.64663914       9 1.4750e-07 *** 

s(flight ID, bs=”re”) 71.60274520      72 < 2.22e-16 *** 

Adjusted R2 0.92 

Deviance explained 92.3% 
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Model of standard deviation of wingbeat amplitude 

This is the only model for which the “inverse.gaussian” family was used. 

Table S9. GAMM model of the square-root transformed standard deviation of wingbeat 

amplitude per 15-second segment (n=1303). From left to right: model terms, effective degrees 

of freedom, available degrees of freedom and p-value. Significance is indicated according to 

p-value: p< 0.001 (***), p< 0.01 (**), p< 0.005 (*). 

 

 

 

 

 

 

 

 

Predictors Edf Ref.df p-value     

s( sqrt( Turbulence ) )   2.0186854703       9 3.5355e-06 *** 

s(HWC) 1.4871729296       9 0.031627 *   

s(Vz) 0.0015476637       9 0.409552     

s( sqrt(flight altitude) ) 2.3193779632       9 7.2188e-07 *** 

s(flight ID, bs=”re”) 65.6233474596      72 < 2.22e-16 *** 

Adjusted R2 0.37 

Deviance explained 42.5% 



100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7. GAMM model of the square-root transformed standard deviation of wingbeat 

amplitude, per 15-second segment. Only (A) turbulence, (C) flight altitude (square-roots) and 

(B) headwind component had a significant effect, indicating higher standard deviation with 

increasing turbulence and flight closer to the ground. The effect of headwind component was 

relatively small indicating higher standard deviation of wingbeat amplitude with tailwind. 

Green shaded areas indicate the 95% confidence intervals. 
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Chapter 4: Pelagic seabirds reduce risk by flying into the eye of 

the storm.  

 

 

 

 

 

 

 

 

 

 

 

 

The content of this chapter has been submitted in the “Proceedings of the National 

Academy of Sciences of the United States of America” (PNAS) as: 

Lempidakis, E., Shepard, E.L.C , Ross, A.N., Matsumoto, S., Koyama, S., Takeuchi, I., 

and Yoda, K. Pelagic seabirds reduce risk by flying into the eye of the storm. 
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Abstract  

Cyclones can cause mass mortality of seabirds, sometimes wrecking thousands of individuals. 

The few studies to track pelagic seabirds during cyclones show they tend to avoid the 

strongest winds. We tracked adult shearwaters in the Sea of Japan over 11 years and find that 

birds exposed to strong winds flew towards the eye of the storm, flying within ≤ 30 km of the 

eye and tracking it for up to 8 hours. This exposes shearwaters to some of the highest wind 

speeds near the eye wall (≤ 21 m s-1), equivalent to those recorded for the largest albatrosses, 

but enables them to avoid strong onshore winds in the storm’s wake. Extreme winds therefore 

become a threat when an inability to compensate for drift could lead to forced landings and 

collisions. Nonetheless, flying towards the eye could lead shearwaters closer to land in some 

scenarios, and flexibility in the birds’ response, according to the storm identity and bird 

position, shows that adults take account of (i) the wind speed at their location, (ii) the 

trajectory of an approaching storm and (iii) the direction to the nearest landmass. This 

provides additional selective pressure for a map sense and explains why juvenile shearwaters, 

which navigate using a compass heading, are susceptible to being wrecked. Overall, this 

demonstrates that the ability to respond to storms is influenced by both flight and navigational 

capacities. This may become increasingly pertinent due to changes in extreme weather 

patterns.  
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Introduction 

Cyclones can have devastating impacts, causing mass mortality of animals and disruption of 

entire ecosystems (Emanuel, 2005, Fiedler et al., 2013). The intensity of these extreme events 

(also called hurricanes and typhoons depending on their location) is predicted to increase with 

climate change (Seneviratne, 2021), while an increase in the frequency of the most intense 

storms is already being observed in regions prone to tropical cyclones (Kossin et al., 2020). 

Yet little is known about the capacity of organisms to respond to these systems, including the 

extent to which mobile animals can avoid them. Seabirds are particularly exposed to tropical 

cyclones because they develop over the ocean, and indeed, large numbers of seabirds can be 

wrecked after cyclones, numbering tens of thousands of individuals in the most extreme cases 

(Bailey and Davenport, 1972, Morley et al., 2016).  

A handful of studies have managed to track pelagic seabirds in 1-2 tropical cyclones, 

showing that adults circumnavigate the most intense parts of these systems ((Hass et al., 

2012, Weimerskirch and Prudor, 2019) but see (Catry et al., 2004, Thiebot et al., 2020)). This 

can lead to birds being displaced from their foraging area by up to 400 – 600 km 

(Weimerskirch and Prudor, 2019). Nonetheless, it is clear from widespread wrecks and inland 

strandings (Bugoni et al., 2007, Ryan et al., 1989, Hass et al., 2012), that avoidance is not 

always possible. Indeed, one great frigatebird (Fregata minor) that was tracked 250 km from 

a cyclone and encountered winds > 100 km h-1 appeared to have been killed (Weimerskirch 

and Prudor, 2019). It is therefore important to understand the conditions under which birds 

can, and cannot, avoid cyclones. Quantifying bird responses to extreme weather events 

remains challenging, as they are, by definition, infrequent. Cyclones are also variable in terms 

of their intensity, spatial extent, movement speed and trajectory. Understanding the 

behavioural rules that birds employ in an attempt to mitigate storm detriment therefore 

requires animals to be tracked during multiple, rare events.  

We tracked 401 adult streaked shearwaters (Calonectris leucomelas) breeding on 

Awashima Island, Japan over 11-years. This region forms part of the Northwest Pacific 

cyclone belt, which is the world’s most active cyclone basin and subject to large and extreme 

typhoons. Typhoon Hagibis in 2019, for example, was responsible for human fatalities in 

Japan and was estimated to cause $15 billion in terms of damage. Shearwaters breeding in 

this region should therefore represent a model system to understand how pelagic birds 

respond to extreme wind speeds. Furthermore, storm systems enter the Sea of Japan from the 

southeast and can influence the whole region, from Japan in the East, to Russia, North and 
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South Korea, in the North and West (Fig. 1A), restricting the opportunities for 

circumnavigation. We quantified the behavioural responses of shearwaters to 10 tropical 

cyclones and storms (Fig. 1, Table S1), specifically, using a combination of statistical and 

agent-based modelling to assess the flight direction in relation to (i) the eye of the typhoon/ 

storm and (ii) the nearest land. Overall, our aim was to provide novel insight into the capacity 

of seabirds to respond to the direct effects of extreme weather events. 

Materials and Methods 

Data collection 

Streaked shearwaters breeding on Awashima Island (38° 27.102'N, 139° 14.363'E) were 

equipped with GPS loggers from 2008 to 2018, as described in (Koyama et al., 2021, 

Matsumoto et al., 2017, Yoda et al., 2021), providing movement data from 401 individuals. In 

summary, birds were instrumented with Gipsy 2 & 4 GPS loggers in 2010 - 2016 and 

AxyTrek loggers (Technosmart, Rome, Italy) in 2017 - 2018. Loggers were attached to the 

back of each bird with waterproof tape (Tesa, Hamburg, Germany) and cyanoacrylate glue. 

The logger and tape represented <5 % of bird body mass. Ethical permissions for tagging 

were granted by the Animal Experimental Committee of Nagoya University (GSES10–18). 

The experimental procedure was approved by the Ministry of the Environment Government 

of Japan. 

GPS tracks were then selected for analysis according to whether they coincided with 

storm activity in the Sea of Japan. This resulted in 2,319 hours of observations from 75 

individuals over 5 years (2010, 2014, 2015, 2017 and 2018), which were used for initial data 

exploration, where all birds were tracked during at least one storm. Flight was distinguished 

from drifting on the sea surface using a groundspeed threshold of 4.1 m s-1 following (Shiomi 

et al., 2012). We also applied a speed filter to remove positions that gave groundspeeds > 25 

m s-1 to account for GPS location errors. This filtering threshold was identified using the cut-

off point in groundspeed frequencies. Filters were applied to raw data, which were recorded 

at frequencies of 1 Hz to 1 minute depending on the year. This resulted in the removal of < 

0.1 % of GPS locations for the storms Talim, Jebi and Cimaron, and < 5.2 % for the storms 

Kompasu and Goni (the five modelled storms). This did not result in any notable change in 

the distribution of step lengths between filtered and unfiltered data (Fig. S1), suggesting that 

we were not removing meaningful biological responses to high wind speed scenarios. In fact, 

the main determinant of the amount of data that was removed was the generation of GPS 

logger that was used, with older devices (e.g. those used during Kompasu and Goni) 
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apparently giving more frequent erroneous locations. Wind estimates were obtained from 

ERA5 global reanalysis models (Fig. 1A, Copernicus Climate Change Service (C3S) 

(Hersbach et al., 2018, Hersbach et al., 2020),  for all bird locations. Global reanalyses 

combine real observations with forecast general circulation models to provide observation-

constrained grids of the wind field that are capable of representing most tropical storms 

(Hodges et al., 2017). The two horizontal wind vectors (u, v) at 10 m from the surface were 

converted to horizontal wind speed and direction with a temporal resolution of one hour and a 

spatial resolution of 0.1o.  

 

Figure 1. Distribution of streaked shearwaters and storms in the Sea of Japan. (A) The area 

affected during the passage of tropical cyclone Goni (26/08/2015 04:00:00 (UTC)). The black 

star indicates the location of the colony. The right panels show the 70% density contour of 

hourly interpolated GPS locations during the 10 storms (upper panel) and the tracks of storms 

that passed through the Sea of Japan when at least one tagged bird was at sea (lower panel). 

The five modelled typhoons/ storms are given in the first row of the legend. 

Storm tracks were retrieved from the International Best Track Archive for Climate 

Stewardship (IBTrACS, http://ibtracs.unca.edu/index.php (Knapp et al., 2018, Knapp et al., 

2010)), which provided the coordinates of the eyes of all major storms with a temporal 

resolution of six hours. Each storm track was interpolated to one hour temporal resolution to 

http://ibtracs.unca.edu/index.php
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match that of ERA5. Interpolations were run using the move package (version 4.0.0, 

(Kranstauber et al., 2020)) in R (version 4.0.1, (R Core Team, 2020)) and the great circle 

method. Storms were classified according to the maximum wind speed reported in IBTrACS 

for the periods where the storm passed through the Sea of Japan according to the Japan 

meteorological agency (JMA, https://www.jma.go.jp/jma/en/Activities/forecast.html#typh) 

(Table S1).   

Statistical analysis 

We used generalized additive mixed effect models (GAMMs, table S2) to assess how 

shearwaters responded to storms, as these models allow for complex, non-linear responses. 

Severe tropical storms and typhoons were selected for modelling because reanalyses tend to 

under-represent weaker tropical depressions/ storms, in terms of both intensity and spatial 

extent, with uncertainties increasing with decreasing strength (Hodges et al., 2017). This 

resulted in 690 hours of observation from 55 birds flying in five storms. All attributes relating 

to bird movement represent hourly averages of each term estimated using the raw GPS 

locations, in order to match the resolution of the bird movement paths to the ERA5 reanalysis 

data.  

Our first model (model 1) assessed the direction that birds flew with respect to the eye 

of a storm, where the storm was that closest to each GPS location. The response variable was 

the flight direction that a bird flew in relation to the location of the storm eye in each hour of 

observations (IBTrACS interpolated resolution of eye locations) and based on the GPS 

heading. It ranged from 0o to 180o for flight straight towards the eye of the storm or straight 

away, respectively, with flight parallel to the eye indicated by values ~90o. The global model 

included wind speed and wind direction at the birds locations within each hour of ERA5 

(ERA5 temporal resolution) and bird position with respect to the storm eye (with 0o 

indicating a bird was ahead of the storm and 180o directly behind it). The model also included 

interactions between wind speed and direction to test whether the response varied by the 

combination of strong winds from different directions. We also tested the interaction between 

wind speed and bird position with respect to the storm to assess whether the response varied 

when a bird was ahead or behind a storm and simultaneously experienced strong or weak 

winds.. Storm ID was included as a random effect to account for effects associated with 

storms that might have not been described by the modelled predictors/ interactions. We then 

extended this model to test if proximity to land, the minimum distance between a bird’s GPS 

location and the closest point on Honsu Island, improved the model fit. The same interactions 

https://www.jma.go.jp/jma/en/Activities/forecast.html#typh
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were included as for global model 1, with an additional interaction between wind speed and 

distance to land.  

In a final model (model 2), we tested whether the flight direction with respect to land varied 

with wind speed and direction, with the expectation that birds would be less likely to fly 

towards land in strong winds. The response variable of this model was the flight direction that 

a bird flew in relation to its closest point on Honshu Island based on the GPS heading. It 

ranged from 0o to 180o for flight straight towards the closest point on land or straight away, 

respectively, with flight parallel to land indicated by values ~90o.The global model was the 

same as the previous model. 

 The simultaneous bird response to both land and storm was assessed by comparing the 

predicted relationship of a predictor in the storm model with the same predictor in the land 

model. For example, we tested whether wind speed had a negative effect on the flight 

direction in relation to the storm eye, indicating a trend of flight towards, and a positive effect 

on flight direction in relation to land, indicating flight away.    

Model selection was performed using the smoothing shrinkage method (Marra and 

Wood, 2011). First, simple predictors were added using the “s( )” smoothing and the 

penalised thin plate regression spline (“ts”) as smooth basis (but “re” for random effects) to 

form the global model. Each pair of terms was then assessed for concurvity using the mgcv 

package (Wood, 2017). Less significant terms in pairs with “worst” case concurvity > 0.8 

were removed from further analysis. Second, the smoothed effect of each predictor was 

evaluated and terms where the effect shrank to zero were removed. Evaluation and exclusion 

of zero effects was repeated by the addition of the interaction terms using the tensor product 

smoothing “ti ()” with a simultaneous assessment of whether the removal of an interaction 

from the model resulted in significant reduction in AIC (≤ 2). In the refined model that 

included all remaining single predictors and interactions, the smoothing basis was set to thin 

plate regression spline (“tp”) for continuous predictors and cyclic cubic regression spline 

(“cc”) for the circular wind direction. Finally, the base dimension (k) of each term was 

assessed using the gam.check function of mgcv (Wood, 2017) and increased appropriately 

where needed.  

In each model, the number of GPS fixes averaged in each hour was used as a weight, 

normalized by the mean number of fixes in the modelled dataset. To account for temporal and 

spatial autocorrelation all models included the date/  hour and the hourly interpolated 

coordinates for each set of GPS coordinates within each hour, using the corARMA and 
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corSpatial functions from the nlme package, respectively (Pinheiro et al., 2017). The final 

models were evaluated for outliers, uniformity, over/ under-dispersion and spatial/ temporal 

autocorrelation using the DHARMa package (Hartig and Hartig, 2017), with the test of under-

dispersion being significant for all models. 

Agent based modelling 

An agent-based model was developed to resolve (1) whether the response to the wind field 

resulted in birds flying towards the eye of the storm and (2) how often the predictions from 

model 1 resulted in birds being “wrecked” i.e. flying onto land. In both scenarios ten 

simulations of 400 agents were run, with agent starting points distributed randomly within the 

70% kernel density contour of space use at-sea, determined across the five years of study 

(Fig. 1B). We used the output of model 1 (flight direction with respect to storm eye) to drive 

each agent’s heading at any time step (one hour). The output from model 1 was converted 

from the predicted 0 – 180o to 0 – 360o using a binomial GAMM predicting whether the agent 

should fly right or left in relation to the storm. Agent flight speed was fixed as the mean 

hourly groundspeed of the observations collected during each storm (~ 8 - 9 m s-1)  or set to 

9.3 m s-1 (~ 33 km h-1) when the mean ground speed exceeded this threshold. As each cell in 

ERA5 covered an area of ~ 11 km2, each agent was set to make three steps per hour (~11 km 

each to complete a movement of  ~ 33 km), to guarantee that each cell was taken into 

account. Agents started moving when the distance between the storm eye and the agent was ≤ 

500 km in order to capture the response to the storm. Movement was paused whenever this 

threshold was exceeded or the storm eye reached land. An agent was considered to reach the 

eye of a storm when its distance from the eye location was ≤ 30 km (the mean radius of 62 

storm eyes as identified by (Kodama and Yamada, 2005). Results from this agent-based 

model were compared with two null models. A model of random movement and a model 

where agents moved to the exact direction as the direction where wind was blowing towards, 

at their locations. This is equivalent to a condition of full drift with a pure tailwind. We ran 

simulations for the five storms classified as severe tropical storms and typhoons (Table S3, 

movies S3 -S7). 

Results  

Isolating GPS tracks from the 75 shearwaters that were exposed to storms (Fig. 1B, C) 

showed that birds flew in all wind conditions, appearing no less likely to fly as wind speeds 

increased to typhoon strength (Fig. 2A, the maximum estimated wind speed in the Sea of 

Japan was 97 km h-1/ 27 m s-1 (ERA5), Table S1). In all scenarios, birds flew with a strong 
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crosswind component, consistent with their dynamic soaring flight style (Fig. 2B) (Yonehara 

et al., 2016). In order to focus on the responses to the most extreme conditions, we then 

examined the movements of 55 shearwaters in the five strongest storms; three typhoons and 

two severe tropical storms Table S1), hereafter referred to as storms for simplicity.  

 

Figure 2. Bird behavior according to the wind field and land. (A) Hours of flight and non-

flight behavior (n=2,318 h) according to wind strength when birds were at sea during the 10 

storms. (B) Kernel density of hourly mean flight direction in relation to wind direction during 

the five strongest storms (n= 1618 h), highlighting the selection of crosswinds. (C) Flight 

direction in relation to the eye of the five strongest storms, derived from the raw GPS 

estimates, showing birds were more likely to respond to storms that passed closer to them. 

The colors indicate the distance between the eye and tracked birds (90% quantile of bird  – 

storm distance) with distance decreasing from blue to red. (D) The normalized kernel density 

of hourly mean flight direction in relation to the closest point on land (n= 1618 h), in the five 

strongest storms, showing birds only flew towards the eye when this took them away from 

land. 
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Wind speed (estimated using ERA5 reanalysis data) was a good predictor of the birds’ 

flight direction with respect to the storm eye, with birds flying away from the storm in speeds 

< 10 m s-1 and being attracted to the eye in strong winds (Table S2, Fig. S2A). This effect was 

larger in the most intense winds (Fig. S2A, Fig. 3). The bird’s position relative to the storm’s 

direction only influenced the response when birds were behind the storm. This was the result 

of individuals “chasing” the eye from behind with, for example, one bird chasing storm Talim 

for > 4 hours and two individuals chasing typhoon Cimaron for > 8 hours (Movies S1 and 

S2).  

Figure 3. Bird responses to tropical cyclone Cimaron. (A) As Cimaron entered the Sea of 

Japan (black track), 32 birds were located within the 70% utilization area. (B) When the eye 

was at its closest to the birds, three birds had already flown towards and chased the eye (dark 

red and green), two more had initiated flight towards it (bright green) and the majority of 

birds located within a layer of weaker winds, remained sheltered near the shore. In the same 

hour another storm can be observed to the west. 

Agent-based models confirmed that the birds’ response to strong winds took them 

towards the eye of the storm. Agents that were programmed with the GAMM output of flight 

direction in relation to the storm eye and placed in a random grid in the core foraging area 

were exposed to the wind field of the five strongest storms. Of the agents that were capable of 

reaching the eye (based on distance, agent speed and simulation time), 30–66% came within 

60 km came within 60 km of the central point of the storm, for all storms except Goni where 

no agents came this close, but few came within 30 km (apart from storm Talim, where this 
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figure reached 34%)  (Table S3). Similar proximities were observed in the GPS data with four 

individuals coming within 30 km of the central point of a storm, and nine additional 

birds within 60 km (Movies S1 and S2).  

Overall, agents showed a clear attraction to storms that came within 60 – 170 km of 

the core foraging area (typhoon Cimaron, storm Talim, typhoon Jebi, mean flight direction ≤ 

70o), but did not respond to storms that were further away (e.g. typhoon Goni, which was 330 

km away at the closest point) (Table S3). This was likely driven by the dependence of flight 

direction on wind speed in the GAMM output.  

When compared with the results from the null models of random movement and 

movement towards the direction that wind was blowing, the agent-based model programmed 

with the GAMM output behaved differently to a large extent especially in the case of 

typhoons Cimaron and Jebi and the severe tropical storm Talim (Table S3). The percentage of 

agents that sustained flight towards the eye was considerably lower in both the random and 

wind direction models, while the percentage of wrecked agents tended to be higher. Although 

a substantial percentage of agents reached within 30 km of the central point of the storm in 

the wind direction model of typhoon Jebi and storm Talim, as indicated by the percentage of 

agents that sustained flight towards the eye of the storm (≤ 70o), these were cases where the 

eye moved to the agents locations rather than the agents moved towards the eye.     

The GAMM also revealed that storm identity had a significant effect on flight 

direction, independent of wind speed (GAMM Table S2). This could be seen in the GPS 

tracks, which revealed that individuals positioned at the outer reaches of the usual foraging 

area when storm Talim entered the Sea of Japan circumnavigated the storm system by flying 

to the South and West (Movie S1). 

Overall, the primary determinant of flight direction was the wind field, as adding 

distance to land to the GAMM of flight direction in relation to the storm did not improve the 

AIC or deviance explained. Nonetheless, the GAMM assessing flight direction with respect to 

land showed a positive and almost linear effect of wind strength on flight direction in relation 

to land, with shearwaters flying away from land as wind speeds increased (Table S2, Fig. 

S2B, Fig. 3). This response was also evident in the tracks of individuals sandwiched between 

storms and Honshu Island of Japan (Movies S1 and S2). While agents programmed without 

any knowledge of, or response to, the location of land rarely moved over land (Table S3), the 

simulated response to storm Komapsu resulted in ~ 86 % of the agents being “stranded” on 

land. 
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Discussion 

We show that shearwaters flew towards the eye of multiple typhoons; a behaviour that was 

more likely as wind speed increased, with birds even moving towards the eye of the strongest 

typhoon in the study period (Fig. 3, Table S1). This strategy exposes birds to some of the 

strongest wind strengths, as speeds increase towards the eye wall and only decrease within the 

eye itself. Given that storm eyes have a diameter of 20-50 km (Kodama and Yamada, 2005), 

it is clear that the four birds that came within 30 km of the eye were operating in or close to 

the eye wall. These results are surprising given that almost all other seabirds tracked in 

relation to storms have avoided the strongest winds, either by remaining on or close to land in 

the case of pelicans, juvenile frigate birds and boobies (Wilkinson et al., 2019, Weimerskirch 

and Prudor, 2019), or by circumnavigating the storm system (Wilkinson et al., 2019, 

Weimerskirch and Prudor, 2019), in agreement with optimal navigation theory (McLaren et 

al., 2014).  

Shearwaters differ from other species tracked in storms to date through their use of 

dynamic soaring flight, which enables them to extract energy from the vertical wind gradient 

(Spivey et al., 2014) and fly at low metabolic costs in strong winds (Davies et al., 2010, 

Furness and Bryant, 1996). But flight style cannot, in itself, explain this response to typhoons, 

because birds only flew towards the eye of the storm when this took them away from land and 

when they were experiencing strong winds (cf. Catry et al. (2004)). The context-dependency 

of this behaviour also means it is unlikely that birds moved towards the eye to exploit 

temporary increases in productivity (Nicoll et al., 2017). Furthermore, water mixing caused 

by storms is thought to reduce feeding opportunities for piscivorous predators (Secor et al., 

2019).  

Instead, our results suggest that birds fly towards the storm, and sometimes track its 

path, in order to avoid the strong onshore winds that occur in the wake of storms as they 

move north through our study area. This demonstrates that typhoon winds in themselves are 

not necessarily a risk for these, and other dynamic soaring seabirds, but they do present a 

danger when they could cause drift in unfavourable directions, such as towards land. Land 

may represent a range of threats for shearwaters, from the direct risk of collision and 

uncontrolled landings in extreme winds, as reported for procellariiformes during a 1984 storm 

in South Africa (Ryan et al., 1989), to the limited capacity to take-off once grounded and their 

susceptibility to predators, including crows and raptors (Yoda et al., 2017, Yoda et al., 2021). 

Indeed, adult shearwaters from our study population have never been tracked over land (Fig 
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S1B in Yoda et al. (2017)), although numerous fledgling mortalities are reported over land 

during migration, when inexperienced birds follow a compass bearing to their migration 

destination (Yoda et al., 2017). 

The instances when shearwaters did circumnavigate a storm demonstrate that they 

have a flexible response to storm systems (cf. Thiebot et al. (2020)). Circumnavigation is 

unlikely to be feasible when birds are in their core foraging area close to Honshu Island, as 

storms approach from the southwest, sandwiching birds between the storm path and the land 

(Fig. 3, 4). Anticlockwise circumnavigation would require birds to sustain groundspeeds 

greater than the storm speed for hundreds of kilometres, as they fly north and west towards 

Russia and Korea, before exiting south of a storm. This seems untenable given that storms in 

our study reached translation speeds > 20 m s-1. Clockwise circumnavigation from the core 

foraging area seems equally unlikely, as it would require birds to fly with strong headwinds 

that could also drift them towards Honshu (Fig. 4). The individuals that did circumnavigate a 

storm were northwest of the storm’s path, where flying towards the eye would have taken 

them closer to land. 
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Figure 4. Theoretical responses to a hypothetical tropical cyclone travelling from south to 

north, for a bird located within the core utilization area near the Awashima colony. (A) 

Anticlockwise circumnavigation with wind support, a framework suggested by optimal 

navigation theory (McLaren et al., 2014) becomes a better option when the bird is positioned 

to the west of the eye (blue shade) when compensation for wind drift and avoiding land is less 

crucial. (B) Clockwise circumnavigation against onshore wind, an option necessitating 

airspeed higher than the strong headwinds to make progress and likely a high degree of 

compensation to avoid land. (C) Flight towards the eye of the storm with crosswind, an option 

that takes birds away from land and avoids the onshore wind region behind the eye. (D) 

Maintain position near shore for shelter, a choice that becomes plausible when winds at the 

bird’s location are relatively weak.  

The flexibility in the shearwater’s strategy reveals that birds must be capable of 

estimating the wind speed at their location, the trajectory of an approaching storm, and the 

direction of the nearest landmass, whether that is Japan to the East, or China, Russia to the 
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West, all of which influence the most appropriate response. This supports earlier studies 

suggesting that adult birds have a map sense (Goto et al., 2017). Furthermore, the need to 

respond to regular typhoons provides an additional selective pressure for the development of 

such navigational capacities, which must incorporate an ability to locate and respond to 

moving weather systems, as well as land. Juveniles should be less well equipped to respond to 

storms, as fledgling shearwaters have been shown to use an innate compass bearing to 

migrate (Yoda et al., 2017). In support of this, young shearwaters (not tracked here) appear to 

be particularly susceptible to being wrecked after storms both within our study area and 

beyond (Kuroda, 1966, Oka and Maruyama, 1986, Syposz et al., 2018), although the exact 

cause of wrecking and/ or mortality is unclear. 

The capacity of adult shearwaters to operate in typhoon winds, is notable for what it 

tells us about flight capacity, as well as navigational capacity. Birds are only able to 

compensate for wind drift (and hence resist being drifted onto land by strong onshore winds) 

when their airspeed exceeds the wind speed (Chapman et al., 2011). Streaked shearwaters are 

relatively small, weighing some 580 g, and typically fly with airspeeds up to ~ 14 m s-1 

(Spear and Ainley, 1997), yet here we find that adults flew in winds up to 21 m s-1. This is 

similar to the maximum predicted airspeed for wandering albatrosses (Richardson et al., 

2018), which are heavier than streaked shearwaters by more than a factor of ten. The actual 

wind speeds experienced by shearwaters may have been even greater, as ERA5 tends to 

underestimate wind 10 m above the surface by 5 - 20 m s-1, depending on the storm intensity 

and its stage of evolution (Malakar et al., 2020). Nonetheless, this will be tempered by the 

tendency to fly close to the water surface, which exposes shearwaters to lower wind speeds 

for most of the dynamic soaring cycle (Goto et al., 2017). For instance, wind speeds at a flight 

height of 5 m are predicted to drop from 21 to 18.5 m s-1 (Pennycuick, 1982). Variation of 

flight height in relation to increasing wind speed may therefore provide a way for 

procellariiformes to modulate their exposure to the strongest winds, while still extracting 

energy from them. 

In general, airspeed and flight style (including flight height and reliance on flapping 

flight) should be key determinants of interspecific responses and vulnerability to typhoons. 

We predict that flying towards the storm eye is only likely to be an option for dynamic 

soaring birds, which do this because they can, with extreme winds only becoming costly or 

risky in particular scenarios, such as when they might be drifted onto land. More generally, 

flight speed, costs and flight height will determine the chances that birds can avoid or outrun 
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storms. The question is the extent to which these responses will be sufficient as typhoon 

intensity, as well as potentially size and duration, increase.  
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Chapter 4: Supplementary Information  

Estimation of flight directions relative to storm and land 

In order to identify whether birds were attracted to or avoided the storms, we estimated the 

flight direction with respect to the eye of the storm using equations 1 and 2:  

 

FDS = FD – SA + 360 {for FD< SA}c  (1) 

FDS = FD – SA  {for FD >= SA}  (2) 

 

where FDS is the flight direction with respect to the eye (0 – 360o) which was converted to 

the range of 0 – 180o, with 0o and 180o indicating flight straight towards and away 

respectively, FD is the GPS derived flight heading (0 – 360o) and SA is the storm angle (0 – 

360o), which is the direction a bird would have to travel to fly straight to the eye of the storm. 

To assess whether shearwaters show a distinct response depending on whether the storm is 

heading towards or away from the bird, we calculated the bird position with respect to the 

storm direction of travel using equations 3 and 4: 

 

BP = SAP – SD + 360  {for SAP < SD} (3) 

BP = SAP – SD  {for SAP >= SD} (4) 

 

where BP is the bird position with respect to the eye (0 – 360°) which was converted to the 

range of 0 – 180° with 0° indicating that the bird was located in-front of a storm and 180° 

exactly behind, SAP is the opposite direction from SA and SD is the direction to which a 

storm is travelling (0 – 360°). 

 

To assess whether shearwaters fly away from land to reduce the risk of being wrecked, we 

estimated the minimum distance to land in ArcMap 10.5.1 (ESRI, Redlands, California) and 

the flight direction with respect to the closest point on land at each bird location, using the 

equations 5 to 8: 
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FDL = | FD – LD |    {for LD ≤ 180 and for FD ≤ 180} (5) 

FDL =  FD + 360 –  LD    {for LD > 180 and for FD ≤ 180} (6) 

FDL =  LD + 360 –  FD    {for LD ≤ 180 and for FD > 180} (7) 

FDL = |  (360 –  FD) – (360-LD) |  {for LD > 180 and for FD > 180} (8) 

where FDL is the flight direction with respect to the closest location on land (0 – 360°) which 

was converted to the range of 0 – 180°, with 0° and 180° indicating flight straight towards 

land and away respectively and LD is the direction that a bird would have to fly to travel 

straight to that location (0 – 360°). 
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Figure S1. Frequency of time gaps between successive GPS locations in log 10 (A, B) and in 

seconds (C, D). Frequencies are given for the GPS dataset filtered by using a 25 m s-1 ground 

speed filter (A, C) and for the un-filtered dataset (B, D). 
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Figure S2. Partial effect (contribution) of wind speed to the overall predictions of GAMM 

models of flight direction in relation to (A) storm and (B) land. Negative values indicate 

attraction and positive values avoidance 
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Table S1. Tropical storms were categorized using the maximum wind speed within the Sea of 

Japan, provided by IBTrACS, and using the Japan Meteorological Agency (JMA) 

international classification. Maximum wind speed estimates within the Sea of Japan are given 

for both IBTrACS and ERA5, for the period that a storm travelled within the study area. 

 

 

 

 

 

 

 

 

 

 

Storm Period Max hourly wind 

speed  

(IBTrACS, m s-1) 

Max hourly wind 

speed (ERA5, m s-1) 

Classification (JMA)  

Kompasu  02-03/09/2010 25.7 16.0 Severe tropical storm 

Malou  07-08/09/2010 18.0 17.2 Tropical storm 

Meranti  12/09/2010 14.9 21.6 Tropical depression 

Fung-Wong  24-25/09/2014 15.9 13.4 Tropical depression 

Goni  25-26/08/2015 33.4 24.4 Typhoon 

Etau  09-11/09/2015 19.5 20.7 Tropical storm 

Talim  17-18/09/2017 26.7 22.5 Severe tropical storm 

Cimaron  23-24/08/2018 32.9 27.1 Typhoon 

Soulik  24-25/08/2018 23.1 21.0 Tropical storm 

Jebi  04/09/2018 41.1 24.5 Typhoon 
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Table S2. Generalized additive models predicting flight direction relative to the storm track 

(model 1) and distance to land (model 2). From left to right: model terms indicating the base 

dimension (k) when this differed from the default value, effective degrees of freedom (edf) 

and p-values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Term Edf P-value 

Model 1: Flight 

direction 

relative to storm 

Link: gaussian 

LogLik: -

3727.715  

(df= 42.99) 

ti(Bird position, k=37)   16.0 < 0.001 *** 

ti(wind speed)                       1.0 < 0.01 ** 

ti(wind direction, wind speed)         7.5 < 0.001 *** 

ti(Bird position, wind speed) 8.1 < 0.001 *** 

s(Storm ID) 2.5 < 0.001 *** 

Model 2: Flight 

direction 

relative to land 

Link: gaussian 

LogLik: -

3759.483  

(df= 24.28) 

ti (bird- land distance)    1.7 n.s 

ti(wind speed)                       2.5 < 0.005 * 

ti(wind direction) 1.7 < 0.005 * 

ti(wind direction, wind speed)         5.9 < 0.001 *** 

ti(Bird position, wind speed) 2.9  < 0.005 * 

ti(bird – land distance, wind speed)          3.4  <0.05 *   

s(Storm ID) 2.9   < 0.001 *** 

 AIC Adj. R2 Dev. explained 

Model 1 7541.4 0.22 26.6 % 

Model 2 7568.7 0.18 21.4 % 
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Table S3. Results of ten agent-based simulations operating in five major storms. From left to 

right: storm name, mean wind speed at agent locations, percentage of agents flown, 

percentage and number of agents wrecked from the number of agents flown, percentage and 

number of agents flown with mean flight direction in relation to a storm ≤ 70o, percentage and 

number of agents reaching ≤ 30 and ≤ 60 km of the eye, from the agents capable of reaching 

the eye that were not wrecked. Overall, agents showed an attraction to storms that came 

within 60 – 170 km of the core foraging area but did not respond to storms that were further 

away. Results are also given for a null model of random movement and a null model where 

agents moved at the exact same direction as wind was blowing towards. 

 

 

 

 

Storm 

 

Mean wind 

speed (m s-

1) 

Flown % 

 

Wrecked % 

(agents) 

Towards 

storm % 

(agents) 

Reached eye    

≤ 30 km %  

(agents) 

Reached eye

≤ 60 km %  

(agents) 

Kompasu 6.8 100   91.4 (3654)  0.1 (5)  17.5 (60) 55.2(158) 

Wind dir. 7.7 - 47.5 (1902) 3.5 (141) 0 (0) 7.9 (166) 

random 9.0 - 34.8 (1393) 5.4 (217) 0.9 (11) 1.9 (41) 

Goni 13.3 81.2   0.3 (9) 0 (0) 0.0 (0) 0 (0) 

Wind dir. 15.5 - 0 (0) 6.0 (200) 29.2 (787) 29.2 (787) 

Random 12.7 - 1.5 (47) 9.1 (285) 0 (0) 0 (0) 

Talim  14.4 100   18.2 (727)  55.9 (2235)  33.9 (1093) 57.8 (1231) 

Wind dir. 14.5 - 30.9 (1239) 7.7 (309) 0 (0) 2.5 (35) 

Random 13.2 - 25.3 (1015) 9.5 (383) 37.2 (1088) 71.6 (1328) 

Cimaron  11.5 100   3.3 (135)  39.7 (1586)  2.7 (62) 27.6 (866) 

Wind dir. 9.8 - 0.05 (2) 8.1 (325) 9.0 (347) 14.7 (541) 

Random 9.8 - 29.3 (1175) 6.9 (275) 2.5 (37) 5.7 (120) 

Jebi  15.1 100   1.2 (48)  61.9 (2475)  0.2 (1) 43.6 (397) 

Wind dir. 14.9 - 0.1 (5) 21.9 (876) 44.8 (133) 51.9 (330) 

Random 15.0 - 10.3 (413) 21.3 (851) 0 (0) 13.2 (65) 
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Movie legends 

Movie S1. 

GPS tracks of streaked shearwaters during the passage of severe tropical storm Talim (black 

track) in 2017, animated over the wind field estimated by ERA5 reanalysis, wind speed (m s-

1). 

Movie S2. 

GPS tracks of streaked shearwaters during the passage of typhoon Cimaron, tropical storm 

Soulik and typhoon Jebi (black tracks in order of appearance) in 2018, animated over the 

wind field estimated by ERA5 reanalysis, wind speed (m s-1). 

Movie S3. 

The tracks of 100 agents, programmed with the output of GAMM model 1, moving in the 

wind field in the Sea of Japan during the passage of severe tropical storm Kompasu (black 

track) in 2010. 

Movie S4. 

The tracks of 100 agents, programmed with the output of GAMM model 1, moving in the 

wind field in the Sea of Japan during the passage of typhoon Goni (black track) in 2015.  

Movie S5. 

The tracks of 100 agents, programmed with the output of GAMM model 1, moving in the 

wind field in the Sea of Japan during the passage of severe tropical storm Talim (black track) 

in 2017.  

Movie S6. 

The tracks of 100 agents, programmed with the output of GAMM model 1, moving in the 

wind field in the Sea of Japan during the passage of typhoon Cimaron (black track) in 2018.  

Movie S7. 

The tracks of 100 agents, programmed with the output of GAMM model 1, moving in the 

wind field in the Sea of Japan during the passage of typhoon Jebi (black track) in 2018.  
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Chapter 5: Airflow modelling predicts seabird breeding habitat 

across islands.  

 

 

 

 

 

 

 

 

 

 

 

 

The content of this chapter has been published in the journal “Ecography” as: 

Lempidakis, E., Ross, A.N., Börger, L. and Shepard, E.L., 2022. Airflow modelling 

predicts seabird breeding habitat across islands. Ecography, 2022(1). 
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Abstract 

Wind is fundamentally related to shelter and flight performance: two factors that are critical 

for birds at their nest sites. Despite this, airflows have never been fully integrated into models 

of breeding habitat selection, even for well-studied seabirds. Here we use computational fluid 

dynamics to provide the first assessment of whether flow characteristics (including wind 

speed and turbulence) predict the distribution of seabird colonies, taking common guillemots 

(Uria aalge) breeding on Skomer island as our study system. This demonstrates that 

occupancy is driven by the need to shelter from both wind and rain/ wave action, rather than 

airflow characteristics alone. Models of airflows and cliff orientation both performed well in 

predicting high quality habitat in our study site, identifying 80% of colonies and 93% of 

avoided sites, as well as 73% of the largest colonies on a neighbouring island. This suggests 

generality in the mechanisms driving breeding distributions, and provides an approach for 

identifying habitat for seabird reintroductions considering current and projected wind speeds 

and directions. 
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Introduction 

Reproductive success is closely linked to the physical characteristics of breeding sites in 

many taxa (Birkhead et al., 1985, Harris et al., 1997). In colonial animals, breeding sites can 

represent the nexus of reproductive activity for tens of thousands of individuals (Buckley and 

Buckley, 1980). There is therefore a clear need to establish what drives colony location in 

order to identify the availability of breeding habitat, and predict how areas differ in quality, 

now and in the future (Frid and Dill, 2002, Parmesan and Yohe, 2003, Jetz et al., 2007, Sorte 

and III, 2007, Dunlop, 2009, Chambers et al., 2011, Rushing et al., 2020).  

Over 95% of seabirds are colonial breeders (Rolland et al., 1998). Seabirds are also 

more at risk than other comparable groups of birds, with widespread decline in populations 

due to commercial fisheries, pollution, habitat change and the introduction of invasive 

predators (Croxall et al., 2012). In some cases this has led to entire breeding colonies being 

lost (Jones et al., 2008, Brooke et al., 2018). Thus, conservation practitioners need to know 

where to focus restoration efforts e.g. by decoy deployment and acoustic attraction to re-seed 

breeding activity (Jones and Kress, 2012). This is crucial given that there will always be a 

fitness cost associated with breeding in sub-optimal habitat (Brown, 1969). However, while a 

wide range of studies have analysed breeding site characteristics in seabirds (Buckley and 

Buckley, 1980, Birkhead et al., 1985, Harris et al., 1997, Keslinka et al., 2019) and compared 

them with available habitat (Clark et al., 1983), we are unaware of any that have successfully 

applied predictions from one site to another (cf. Aarts et al., 2008). Achieving such generality 

and transferability is paramount for conservation success, as well as being of fundamental 

ecological interest. 

The tendency of seabirds to breed on offshore islands and/ or coastal cliffs has been 

attributed to the need to reduce exposure to terrestrial predators and be close to feeding areas 

(Buckley and Buckley, 1980, Cody, 1969). Nonetheless, for cliff nesting species, it is clear 

that not all cliffs are equal, as colonies tend to be clumped, with great swathes of cliff habitat 

left empty (Harris et al., 1997). Indeed, cliffs should vary in their accessibility to terrestrial 

predators (primarily through variation in slope angle), as well as the availability of suitable 

breeding ledges, with species varying in their need for different ledge characteristics 

according to their body size and nest building habit (Birkhead et al., 1985, Squibb and Hunt 

Jr, 1983).  

There are also compelling reasons why airflows should affect breeding habitat 

preferences, particularly for groups such as seabirds, which are exposed to strong flows. 
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Wind can affect the risk of eggs/ birds being displaced from the nest (Hamer et al., 2001), as 

well as influencing exposure to rain (particularly in cliff nesting species) and heat stress 

(through evaporative heat loss, (Oswald and Arnold, 2012)), both of which can cause 

mortality (Hamer et al., 2001). Wind also has a strong influence on flight capacity. In 

common guillemots (Uria aalge) and razorbills (Alca torda), 60% of attempts to land at their 

cliff nests were found to fail in a strong breeze, which may have consequences for the ability 

to provision chicks as well as adult energy budgets (Shepard et al., 2019). This raises the 

possibility that site selection might be influenced by the ability to land. Indeed, frigatebirds 

(Fregata magnificens) nest in relatively wind-still areas, despite the potential benefits of wind 

in aiding heat loss for this tropical species. This most likely reflects the difficulties that 

frigatebirds experience in flying close to the nest in high winds (Diamond, 2002). While a 

reduction in wind speed would be beneficial for their flight capacity, other factors may also 

influence landing ability, including turbulence, as this requires compensatory manoeuvring 

(cf. Cheney et al., 2020, Ravi et al., 2015). Up- or downdrafts may also be relevant, for 

instance, downdrafts could even facilitate landing in fast-flying birds such as guillemots, by 

reducing their groundspeed as they ascend to their cliff nesting sites.  

Despite the potential importance of wind, there is a notable lack of information on the 

precise wind flow characteristics associated with colony presence and absence (though see 

(Burger and Lesser, 1978), which reflects the difficulties of making measurements over 

complex, often steep terrain. Here we use an opensource model based on computational fluid 

dynamics (CFD) to estimate a range of airflow characteristics that relate to shelter (including 

the magnitude of the wind and the horizontal component), and variables that could 

specifically impact landing ability (the vertical wind component, wind gusts (short peaks in 

wind speed) and turbulence (rapid unsteadiness in wind speed and direction) (Shepard et al., 

2019). We then assess whether wind components can predict the presence and absence of 

common guillemots (Uria aalge) breeding on Skomer island, UK. Our specific objectives 

were to: (i) assess whether airflows associated with the prevailing wind direction predict site 

selection (patterns of presence and absence), and habitat quality (colony density), and then, 

(ii) test our model of habitat selection by predicting colony presence and absence on a 

neighbouring island. This test is considerably stronger than standard cross-validation, but 

rarely performed (Aarts et al., 2008). Finally, (iii) we run airflow simulations to quantify the 

wind conditions that breeding guillemots are exposed to with changes in wind direction. 

Overall, our approach should provide insight into the conditions birds select and avoid in the 

prevailing wind, and why, and the “penalty” they suffer in terms of the adverse conditions 
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they are exposed to if the wind direction changes, either over the short-term, or as part of 

larger scale climatic shifts (Young et al., 2011, Young and Ribal, 2019).  

Materials and Methods 

The first step in our study was to predict the distribution of guillemot colonies on Skomer 

Island (51° 44.271'N,  5° 17.668'W), and apply this model to predict colony occurrence on the 

neighbouring island of Skokholm. The distribution of guillemots on Skomer was taken from 

the 2015 guillemot breeding bird survey (Stubbings et al., 2015).  This provides counts of 

breeding birds within 71 adjoining horizontal sections, with individual survey sections being 

delineated by topographical features. In order to assign slope angles and wind parameters to 

each section, the survey was digitized in ArcMap 10.5.1 (ESRI, Redlands, California), and 

horizontal section boundaries were mapped onto a digital elevation model (DEM) (50 cm 

resolution retrieved from Lle Geo-Portal http://lle.gov.wales).  

Each section was then defined vertically with a minimum height of 10 m ASL to 

account for variation in tide height (maximum tide height ~ 5 m on the day the DEM was 

produced), maximum wave height (taken to be 3 m), and the minimum distance above water 

that birds tend to nest, taken as 2 metres (Harris et al., 1997). The maximum height of each 

section was taken as 15 m from the top of the cliff, which was the mean upper limit of nests 

for three major colonies (Cole et al., 2019).  

A similar approach was taken to digitize the distribution of guillemots breeding on 

Skokholm Island using the 2018 breeding bird survey (Brown and Eagle, 2018) (Supporting 

information Fig. S2A). However, because the elevation of Skokholm’s cliffs is much lower, 

the minimum distance from the top of the cliffs, was set at 7 m (this was arrived at in 

consultation with the island wardens). The small proportion of occupied cliffs that did not 

satisfy this threshold was not mapped (~ 9% of the coastline at 7 m height). In cases where 

estimated bird numbers were given in relation to a single point on the map, we used a 

minimum section length of 30 m of coastline, unless ascribing this width to adjacent colonies 

would have resulted in unoccupied sections of < 30 m, in which case we assigned a section of 

30-50 m in length. This approach resulted in 91 sections, with 35 being colonised (Supporting 

information Fig. S2B).   

 Modelling of wind conditions 

Wind conditions were modelled using the computational fluid dynamics (CFD) package 

OpenFOAM (openfoam.org version 5.x). OpenFOAM is widely used for modelling 

http://lle.gov.wales/
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atmospheric boundary layer flows (e.g. in the wind energy industry) and has been extensively 

validated over a similarly steep island (Bechmann et al., 2011).  

The initial coarse model domain was 5300 x 5000 x 1000 m, with a horizontal 

resolution of 20 m and a vertical resolution of 10 m. The bottom boundary represented the 

surface of the island which was taken from a DEM of Skomer with 2 m resolution (Lle Geo-

Portal http://lle.gov.wales).  After establishing the initial mesh, the tool snappyHexMesh in 

OpenFOAM was used to incorporate the DEM, refining initial mesh cells close to the surface 

up to 3 times and performing standard mesh quality tests and corrections 

(https://cfd.direct/openfoam/user-guide/v6-snappyhexmesh/). This resulted in a finer 

resolution close to surface of 2.5 m in the horizontal and 1.25 m in the vertical. Simulations 

were completed when convergence was achieved using a steady-state incompressible solver 

with a k-ε turbulence closure scheme (using standard settings).   

Simulations of the wind over Skomer and Skokholm were run for the prevailing SW 

direction (see Supporting information Fig. S3, Table S1 for summary wind data) assuming 

that birds would be most likely to select breeding habitat in relation to these conditions. Wind 

simulations were also run for NW, NE and SE winds around Skomer in order to assess the 

penalty that birds face when the wind direction changes. The initial wind speed was set to 10 

m s-1 at 20 m height. The following airflow characteristics were extracted from the model 

output at 2 m normal to the ground surface (this height was selected to estimate the airflow 

conditions that birds would be exposed to close to their breeding cliffs): The two horizontal 

and vertical wind components (U_0, U_1 and U_2 respectively), mean wind speed (MeanU), 

turbulent kinetic energy (TKE, a measure of the absolute wind unsteadiness), dynamic 

pressure (P, given relative to the background hydrostatic pressure set in the simulations), 

kinematic viscosity (Nut) of the air medium and turbulence dissipation rate (ε). These outputs 

were further used to estimate horizontal wind speed; wind gusts and turbulence intensity (TI, 

the ratio of turbulence to wind speed, indicating the importance of wind variability with 

respect to the mean flow strength).  

Each of the four OpenFOAM simulations (i.e. for NW, NE, SE and SW wind 

directions) resulted in 76,908 data points across all cliff sections. Each airflow variable was 

then reduced to the following summary statistics within each 3d section area; median, 

interquartile range (IQR) and skewness. Median statistics were used to identify the strength of 

each wind parameter within a section. The IQR values identify the variability or gradient of 
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each wind parameter within a section. High skewness statistics for horizontal wind speed 

(skewed right) correspond to shelter. 

Statistical analysis 

The complete set of 27 airflow variables was tested for collinearity by producing a correlation 

hierarchy table for each initial wind condition. Highly correlated terms (Pearson correlation 

coefficient ≥ 0.7) were removed from the analysis, making sure that statistics from at least 

one airflow parameter representing either exposure, wind strength or turbulence were 

maintained, leading to the inclusion of 15 wind parameters. The mean slope angle per section 

was added to the total set, together with the logarithmic area of each section (as an offset) and 

parameters were standardized using the MuMin package (Barton and Barton, 2015) version 

1.43.17.   

We considered that it would be stretching the data to model the density or number of 

breeding birds as a continuous variable, particularly as the extent of each section did not 

correspond with the beginning or end of occupied/ unoccupied areas. We therefore ran 

separate models, with colony presence defined as (i) the presence of any breeding birds, (ii) 

the 10 largest (n ≥ 592 individuals) or (iii) the 11 densest colonies (density ≥ 0.835 m-1) 

(thresholds were selected by visually identifying clear breakpoints; however, we also 

conducted a sensitivity analysis to evaluate the robustness of our results to the choice of 

‘largest colonies”). For the latter two categories, areas with breeding birds that did not fall 

into either the largest or densest categories were excluded from the modelling. This allowed 

us to test what distinguishes the highest quality habitat from the lowest quality habitat 

(assuming these correspond to the largest/ densest areas, and areas with a complete lack of 

breeding birds, respectively). The excluded areas represented 23.5% and 27.7% of all 

breeding birds for the largest and densest classifications and resulted in trained datasets of 43 

and 44 sections for the largest and densest datasets.  

A two-step approach was used to build the global model and identify the final, best-

fitting models. First, to reduce the large number of covariates (as compared to the number of 

data points), a random forest classifier was fitted, using the package randomForest (Liaw and 

Wiener, 2002) version 4.6.14. The 10 most important terms were then included to build the 

global logistic regression model. This variable set was further simplified using the dredge 

function (MuMin package (Barton and Barton, 2015), to perform stepwise Bayesian 

information criterion (BIC) selection, penalising for model size to highlight the terms with the 

strongest effects. In the case of the models for largest and densest colonies in a NW wind, the 
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number of terms in dredge had to be gradually reduced to eight and seven respectively, to 

prevent fitting models with probabilities of zero and one. The simplest model among the top 

models with a difference in BIC ≤ 2 was selected as the best final model. This was compared 

to a  model of mean slope and orientation, where sections were defined as either windward or 

leeward with respect to the prevailing SW wind. The same method of model selection was 

used to identify the top simplest model across the combinations of these two parameters. In 

order to interpret the output of the orientation model we also estimated the total mean solar 

radiation (W h m2) during the breeding season in 2015 using ArcMap 10.7 (assuming 

generally clear sky).   

The final models were assessed for spatial autocorrelation using the DHARMa 

package (Hartig 2020) version 0.3.3 and for goodness of fit using the McFadden (McFadden, 

1973) pseudo R2. Values between 0.2 – 0.4 were considered as very satisfactory (Naugle et al. 

1999). Model performance was also evaluated in terms of overall accuracy (OA); true skill 

statistic (TSS), sensitivity and specificity (Allouche et al., 2006, Börger and Nudds, 2014). 

The effect size of each predictor included in the final model was determined by computing 

the odds ratio. 

The previous steps were repeated for all four initial wind directions, with three logistic 

regression models of colony presence/absence implemented per direction, in order to identify 

links between wind and slope that were robust to different colony definitions. 

Finally, to predict the distribution of the largest colonies on Skokholm (eleven 

colonies with n≥ 146 individuals), we applied the model of the 10 largest colonies on Skomer, 

using conditions experienced in the prevailing SW wind, and converting the predicted odds 

into presence/absence by selecting the cut-off value which maximises the true skill statistic 

(Allouche et al., 2006, Börger and Nudds, 2014).  

All statistical analyses were conducted in in R (Team, 2020) version 3.6.3 and 

RStudio (Team, 2015) version 1.1.463. 

Results 

Predicting colony distribution on Skomer island 

Wilcoxon rank sum tests for all colony classifications revealed statistically different slope 

angles between colonies and non-colonies on Skomer Island (taking presence as any positive 

count, W = 611724994, p  < 2.2e-16;as the largest colonies, W = 199340779, p  < 2.2e-16; or 

the densest, W = 71820756, p  < 2.2e-16). Unoccupied sections were generally less steep than 
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occupied sections (median slope angles 45o and 51o respectively) and the densest and largest 

colonies were associated with the steepest cliffs (median= 68.5o, Supporting information Fig. 

S4B). Slope angle varied with cliff orientation, with mean slope angle being lowest for cliffs 

with S and SE orientations. Cliffs facing SW have relatively high mean slope angles 

(Supporting information Fig. S4A). Despite this, most occupied sections were orientated 

away from the prevailing SW wind (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

Figure 1. The guillemot survey sections on the cliffs of Skomer and the distribution of 

breeding guillemots. Areas classified as both densest and largest are indicated in red (n = 7 

sections). Areas that were identified as either among the largest (n = 3) or densest (n = 4) are 

indicated in orange respectively. Residual occupied areas are indicated in yellow. 

Colony presence and absence on Skomer was predicted well by wind variables and 

slope angle, with the simplest top model correctly identifying 80% of the colonies and 93% of 

avoided sites for the prevailing SW wind, where presence was taken as the 10 largest colonies 

(see Table 1 for the full list of model outputs). While mean slope angle was included in two 

of three models for SW, NW and NE wind directions, airflow parameters always had a higher 

effect size (Supporting information Table S2). A sensitivity analysis confirmed the variables 

in the final models were largely consistent, irrespective of whether colony presence was taken 

as the 11, 12, 13, 14 or 15 largest colonies (Supporting information Tables S3 – S5). 
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A narrow set of airflow parameters was identified as significant in predicting colony 

presence across wind directions and there was broad agreement between the airflow 

characteristics identified for any wind direction, irrespective of the way colonies were 

classified (Table 1). Pressure statistics were included in all SW models, with colonies having 

a lower median pressure and pressure gradient (Table 1). These variables are both linked to 

lower exposure (Fig. 2, Supporting information Fig. S5), a relationship that was confirmed by 

a simple model predicting presence according to whether sections had a windward or leeward 

orientation in relation to the prevailing SW wind and slope angle. This model of orientation 

and slope angle performed similarly to the model with pressure and slope for the largest 

colonies (Supporting information Table S6). Given the importance of exposure in 

determining colony presence, it was surprising that no wind speed parameters were included 

in the simplest top models for SW winds.  
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Figure 2. The OpenFoam model output of A) wind speed and B) pressure, over a windward 

cliff (“Skomer head”) with SW wind (denoted with a black arrow). In the lower parts of the 

cliffs, the wind is blocked, resulting in high pressure regions where flow is decelerated. 

Closer to the top (55 - 60 m ASL), the flow is accelerated, generating areas of low pressure. 

This results in highly variable pressure values on windward cliffs. On leeward cliffs, flow 

separation occurs, viscous forces take over, and areas of consistently low pressure are 

generated that are not associated with high wind speeds. 

Colonies were associated with higher turbulence compared to unoccupied sites, 

particularly in NW and NE winds (Table 1). In NE winds, colonies experienced both higher 

wind speeds (Fig. 3) (positive horizontal median, for any bird presence and negative 

horizontal skewness for the largest/ densest colonies) and higher turbulence (here TKE 
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estimates in the largest/ densest colonies). In fact, airflow models of colony location 

performed well across all modelled wind directions except for SE winds, indicating that 

colonies are characterised by particular sets of flow characteristics in most scenarios. For SE 

winds only one colony classification yielded a reasonable model fit (McFadden41 R2 ≥ 0.2, 

table 1) and here colony presence was predicted by slope angle alone (Table 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Modelled horizontal wind speeds on the cliffs of Skomer. Modelled wind speeds 

under A) a SW and B) a NE wind direction. Mean wind speeds were reduced on leeward 

cliffs, increased on windward cliffs and reached their highest estimates at the crests, as 

expected. Winds were modelled 2 m normal to the surface and the mapped area was 

constrained by the 4 m and 40 m elevation contours. 
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Across the different colony classifications, the pseudo R2 was lowest in models of any 

occupancy (SW 0.28; NW 0.24, SE 0.12, NE 0.38) compared to those predicting the 10 

largest colonies (SW 0.59; NW 0.58, SE 0.32, NE 0.74) or the 11 densest (SW 0.17; NW 

0.40, SE 0.15, NE 0.67) (Table 1, Table S6). The overall accuracy and true skill statistics 

followed the same general trend, being highest for the 10 largest colonies (Table 1, Table S6). 

The sensitivity tended to be somewhat lower than specificity for any presence (sensitivity: 

SW 0.63; NW 1.00, SE 0.21, NE 0.60 and specificity: SW 0.69; NW 0.21, SE 0.96, NE 0.84), 

but increased for the largest and densest colonies indicating a better ability to predict true 

presence compared to true absence in these cases. 

 

Table 1. The outputs of logistic regression models predicting colony presence for four 

different initial wind directions. Three summary statistics were modelled for each section and 

wind property: “skewness” (Skew); “median” (Med) and “interquartile range” (IQR).  In 

addition, three colony classifications were tested, where colony presence was taken as i) any 

positive count, ii) the 10 largest colonies and iii) the 11 densest colonies. Shelter from higher 

wind speeds is associated with low pressure (PMed) and reduced pressure range (PIQR). 

Exposure to higher wind speeds is highlighted by negative and decreased skewness in 

horizontal wind speed. Higher turbulence is indicated by increased TKE median and low 

TKE skewness. TI terms follow the same pattern. Significance is indicated according to p-

value: p< 0.001 (***), p< 0.01 (**), p< 0.005 (*), and model predictors are listed in order of 

descending effect size (Supporting information Table S2). 
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 SW NW SE NE 

Colony 

definition 

Term P-value / 

Significance 

Est. Term P-value / 

Significance  

Est. Term P-value / 

Significance 

Est. Term P-value / 

Significance 

Est. 

Any count PMedian 

TISkew 

MeanSlope 

 

< 0.001 

< 0.05 

< 0.05 

 

*** 

* 

* 

 

-2.27 

-1.54 

+1.49 

 

TISkew 

TKESkew 

< 0.01 

< 0.01 

 

** 

** 

-1.94 

-2.27 

TKEIQR 

MeanSlope 

 

< 0.05 

< 0.01 

 

* 

** 

-1.36 

+1.88 

TKESkew 

MeanSlope 

HorizontalMedian 

 

< 0.001 

< 0.001 

< 0.01 

 

***

*** 

** 

 

-4.39 

+2.80 

+2.12 

 

10 Largest PIQR 

HorizontalIQR 

MeanSlope 

 

< 0.05 

< 0.01 

< 0.001 

 

* 

** 

*** 

 

-6.23 

+5.65 

+4.08 

 

TKESkew 

MeanSlope 

 

< 0.01 

< 0.01 

** 

** 

-5.96 

+2.56 

 

MeanSlope < 0.001 

 

*** +3.59 TKEIQR 

HorizontalSkew 

MeanSlope 

< 0.01 

< 0.05 

< 0.01 

** 

* 

** 

 

+7.75 

-7.26 

+4.53 

 

11 Densest PMedian < 0.05 * -2.50 TKESkew 

MeanSlope 

 

< 0.05 

< 0.05 

* 

* 

-4.10 

+1.92 

MeanSlope < 0.05 * +1.95 TKEMedian 

U_2Median 

HorizontalSkew 

 

< 0.01 

< 0.01 

< 0.05 

 

** 

** 

* 

 

+8.27 

-4.23 

-3.34 

 

                                                                                                                McFadden pseudo R2 – OA/ TSS/ Sensitivity/ Specificity 

Any count 0.28 – 0.66/ 0.32/ 0.63/ 0.69 0.24 – 0.63/ 0.21/ 1.00/ 0.21 0.12 – 0.56/ 0.18/ 0.21/ 0.96 0.38 – 0.71/ 0.45/ 0.60/ 0.84 

10 Largest 0.59 – 0.90/ 0.73/ 0.80/ 0.93 0.58 – 0.86/ 0.81/ 1.00/ 0.81 0.32 – 0.86/ 0.60/ 0.70/ 0.90 0.74 – 0.97/ 0.90/ 0.90/ 1.00 

11 Densest 0.17 – 0.65/ 0.48/ 0.90/ 0.57 0.40 –  0.84/ 0.78/ 1.00/ 0.78  0.15 – 0.72/ 0.51/ 0.81/ 0.69 0.67 – 0.88/ 0.84/ 1.00/ 0.84 
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Predicting colony distribution on Skokholm 

The model predicting the largest colonies on Skomer for SW winds also performed well when 

applied to the island of Skokholm (Fig. 4), correctly predicting the distribution of ~ 73% of the 

largest colonies (eight out of eleven), and ~ 63% of unoccupied cliff sections (35 out of 56), 

which corresponds to ~ 80% of the total unoccupied area (60,863 m2 of 76,259 m2). Model 

performance, although lower than the models on Skomer, was satisfactory with an overall 

accuracy of 0.64 and TSS of 0.35. The model predicting the largest guillemot colonies on 

Skomer according to orientation and slope performed better than the airflow model when applied 

to Skokholm, correctly predicting all the largest colonies, and ~ 71% (40 of the 56)  unoccupied 

sections, with an overall accuracy of 0.76 and TSS of 0.71. 
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Figure 4. Predicted distribution of guillemot colonies on Skokholm. A) distribution predicted 

using the model of the largest colonies on Skomer and the wind field on Skokholm as predicted 

under the prevailing SW wind and B) distribution predicted using the mean cliff slope and 

orientation in relation to the SW wind. 
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Discussion  

Wind regimes are changing, in terms of the mean strength, and the frequency of extreme weather 

events (Young et al., 2011, Young and Ribal, 2019). Yet most research on how wind affects 

seabirds has focused on their at-sea behaviour (though see (Weimerskirch et al., 2012, Schrimpf 

and Lynch, 2020). We modelled the airflows around our study site to test the role of different 

wind characteristics in breeding habitat selection, and showed that a simple model of airflows 

and slope angle performed very well for common guillemots, even when applied to the separate 

island of Skokholm. Both this approach and a model of cliff orientation showed that birds select 

sheltered, leeward sites. Indeed, a model of orientation and slope performed better in predicting 

the distribution of breeding birds on Skokholm. Nonetheless, the orientation model cannot tell us 

what birds are sheltering from. We demonstrate how airflow modelling can provide mechanistic 

insight into the factors driving habitat selection, as well as quantify the airflow conditions that 

birds are exposed to in different wind directions.   

While colony presence on Skomer was predicted by low exposure to the prevailing SW 

wind, surprisingly, it was not predicted by low wind speed. Instead, areas of low pressure and 

low pressure variability were powerful predictors of cliff occupancy, both of which are 

characteristic of sheltered areas. Birds are less likely to be responding to the pressure values 

directly, than the exposure that they are correlated with, because the absolute difference in 

pressure values between occupied and unoccupied sites is equivalent to the changes experienced 

over the diurnal cycle.  

The absence of wind speed from models of guillemot distributions can be explained by 

“orographic blocking”, a process whereby windward cliffs can block the oncoming flow, with 

the blocking effect increasing with cliff height and slope. This produces low wind speeds over 

large parts of windward cliffs, bar the top where flow is accelerated (Fig 2, Supporting 

information Fig. S5). Low wind speeds therefore occur in both leeward and windward sites. The 

fact that birds avoid the latter, even though they tend to occur on suitably steep slopes, suggests 

that shelter from rain (Cheney et al., 2020), and/ or wave action during storms, is at least as 

important as low wind speed in determining site use (the former is much more frequent in the 

breeding season, (Newell et al., 2015)). Therefore, while the ability to fly, and specifically to 

land, at the nesting site may affect habitat selection, it is also influenced by the need to shelter 

young from rain, as well as storm surges. Nevertheless, flight capacity may be most important 

for species such as large albatrosses, which require relatively high winds to take-off and 



146 

 

therefore may be constrained to nest in exposed areas, despite the intuitive benefits of shelter for 

chicks across species in temperate or cold climates. 

Heat stress is an important determinant of chick survival in some systems (Oswald et al., 

2008), but it seems unlikely to be the primary driver of habitat selection here, as while occupied 

cliffs tend to experience lower solar radiation than unoccupied sites, three of the largest and four 

of the densest colonies on Skomer still experience high degrees of insolation (Supporting 

information Fig. S6).  

The fact that our models performed better in correctly predicting the largest/ densest 

colonies, compared to the presence of any breeding birds, suggests that they work best in 

predicting high quality habitat. Previous studies have shown that breeding success increases with 

the density of breeding pairs (Birkhead, 1977, Harris et al., 1997). Areas that can support larger 

numbers are therefore of higher quality. Such areas have previously been described in terms of 

the number of walls, slope and width of the ledge where the egg was incubated, and distance 

from the top of the cliff (Birkhead et al., 1985, Harris et al., 1997). The ability to predict high 

quality breeding habitat without such fine-scale topographical information is advantageous, as it 

allows habitat quality to be predicted in remote and inaccessible sites. Our models perform 

extremely well even with limited topographical information, but the addition of ledge width and 

length could potentially improve them further. However, acquisition of such information would 

require extensive surveys of entire islands, occupied and unoccupied areas (DSMs do not allow 

the identification of ledges with confidence). Our models confirm the value of steep slopes to 

guillemots, which offer the possibility of breeding in high densities with better protection from 

predators (Birkhead et al., 2018), as well as easier access to the sea when chicks jump from their 

nests (Berger, 2008, Gilchrist and Gaston, 1997). Nonetheless, steep cliffs with a south-westerly 

orientation are avoided, even though they are widely available. 

Our model may be more accurate than the frequency of false positives suggests, as cliffs 

that are currently unoccupied may still offer suitable habitat that only becomes used when 

existing sites reach full capacity. Indeed, photographs of the breeding cliffs on Skomer from the 

1930s provide evidence that numbers were much higher historically (Harris, 1991), and whole 

island counts undertaken since 1963 demonstrate that numbers have been increasing since then 

(Meade et al., 2013). Sites identified as “false positives”, therefore represent potentially high 

quality habitat that could be suitable for re-establishing breeding colonies in systems where 

breeding activity occurs in a fraction of the former range. Similarly, our method could be used to 
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model the specific wind strengths that areas are exposed to in storm conditions in systems where 

that can affect breeding success (Newell et al., 2015). Finally, in cases where populations are 

increasing, our approach could be extended to see whether airflow characteristics can predict 

colony growth rates, or areas most likely to be expanded into.  

While guillemots preferentially breed in areas that are not exposed to the prevailing 

wind, they cannot shelter from all wind directions. Winds diametrically opposed to the 

prevailing direction (here NE winds) will be problematic for any species seeking sheltered sites. 

The penalty of exposure to NE winds for the 10 largest colonies on Skomer was a ~10% increase 

in mean wind speed compared to the same at-sea wind speeds from the SW. How this might 

impact birds will vary with the magnitude of the wind when it comes from a different direction. 

Nonetheless, our results highlight that colonies experience increased exposure from changes in 

wind direction, independent of wind speed. Increases in wind speed, as already observed in the 

North Atlantic and other areas (Young et al., 2011, Young and Ribal, 2019), should therefore be 

most detrimental at the nest when accompanied by a change in wind direction (Weimerskirch et 

al., 2012).  

Most studies on the potential effects of climate change on wind have mainly focused on 

changes in storm frequency and intensity and in mean wind strength (Young et al., 2011, Young 

and Ribal, 2019), while changes in wind direction have received far less attention (but see 

Beniston et al., 2007, Moemken et al., 2018). As the distribution of breeding colonies in this 

study depends on the wind direction with the highest storm frequency changes in wind direction 

(Beniston et al., 2007, Blennow and Olofsson, 2008), whether these result to a new most 

frequent storm direction or to a more evenly spread directional distribution, could consequently 

increase the vulnerability of colonies to storms surges. This could potentially lead to a need for 

distributional shifts, as the suitability of cliffs that are now selected or avoided could change, 

with unknown pressure on interspecies competition However, in this study it is hard to assess 

whether the most frequent wind direction or the prevailing wind direction is more important as 

these coincide on Skomer and Skokholm. 

A further challenge potentially facing birds on Skomer in NE and NW winds is increased 

turbulence. The absolute levels of turbulence that birds experience in SW winds are low because 

the wind speeds themselves are low. However, in NE winds of the same magnitude, birds 

experience both stronger winds and increased turbulence. Disturbed wind fields are known to 

have a critical impact on the safety of aircraft landings, but almost nothing is known about how 
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turbulence affects landing in birds (cf. Chang et al., 2016). Nonetheless, it seems likely that this 

will only make landing more difficult, resulting in more aborted attempts and higher associated 

costs, particularly in species such as guillemots with low manoeuvrability (Shepard et al., 2019). 

Overall therefore, our results show that CFD can be used to predict occupancy directly, 

or combined with other approaches, such as the use of orientation, or wind fetch (Schrimpf and 

Lynch, 2020), to provide insight into the mechanisms underpinning habitat selection. The 

approach we have developed in this study is therefore likely to be applicable to a range of 

seabirds, in terms of assessing drivers of habitat selection and the trade-offs that some animals 

face. Indeed, CFD is particularly well-suited to modelling habitat selection in seabirds, as marine 

and coastal environments experience some of the most extreme wind conditions (Wiley and 

Wunderle, 1993), and wind fields also tend to be more uniform ahead of islands. Although CFD 

models tend to be computationally expensive, they are widely used, with many open access 

platforms available and can be run on personal computers (depending on the area size and 

resolution). Our approach can therefore easily be replicated with even basic knowledge of GIS 

and remote sensing, in combination with broadly available survey data. A key future challenge 

will be to test this approach over larger areas. Combining airflow modelling with data on 

breeding success in a range of conditions (cf. Cleeland et al., 2020), will also provide new 

mechanistic insight into the basis for habitat selection and how global change may impact birds 

at their nesting sites.  
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Chapter 5: Supplementary Information  

 

 

Figure S1. The guillemot survey map reproduced from the 2015 Guillemot survey data on 

Skomer. The 45 sections presented, were sub- divided into a total of 71 sections, with the blue 

shades indicating the horizontal areas that the birds are located. 
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Figure S2. A) The guillemot survey map reproduced from the 2018 Guillemot survey data on 

Skokholm and B) the resulting digitised sections with blue indicating unoccupied and red 

occupied cliffs. 
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Figure S3. Wind speeds and directions during auk breeding seasons for 2007 to 2017. A) 

Overall frequency of wind directions on Skomer (2007-2017) , B) The frequency of average 

wind speed, given per 100 observations across the four different wind directions that were 

modelled: SW with solid black, NW with dashed black, SE with solid grey and NE with dashed 

grey, lines. 
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Figure S4. Slope angles selected by breeding birds in relation to those available on Skomer. A) 

Mean slope angle (o) according to cliff orientation (number of points per orientation bin; 2911- 

8718). B) Slope angle for (A) unoccupied sections (n=33, median= ~45.1o), (B) occupied but not 

classified as either largest or densest sections (n=31, median= ~47.5o) and (C) sections classified 

as both largest and densest (n=7, median= 68.5o). 
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Figure  S5.  Wind speed and pressure over A) a windward cliff and B) a leeward cliff on 

Skomer, in a SW wind. In each case the cliff face is the section to the right, which is represented 

in 3 dimensions and coloured according to the gauge pressure (that is, relative to the initial 

condition set in OpenFoam) distribution 2 m normal to the surface. The associated 2-

dimensional vertical profile of mean wind speed is indicated in colour to the left of the cliff. 

Arrows indicate the mean flow vectors.  Together, these illustrate how the flow onto a windward 

cliff result in high pressure, and low pressure develops in sheltered leeward sites. 
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Figure  S6. Total mean solar radiation during the breeding season in 2015 (Watt hours sq. m) on 

Skomer, according to whether cliff sections were home to the A) largest colonies, B) densest 

colonies or unoccupied. Grid circles represent number of cliffs/ colonies, with radiation intensity 

indicated by the colour scale.  
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Table S1. Wind data for the months of March to August 2007-2017, representing the guillemot breeding season. Data are from the weather station 

at Wooltack point on the mainland (51° 42.581'N 5° 3.786'W), ~1 km from Skomer Island. 

 

 

 

 

 

 

 

 

 

 

 

Direction  Count Wind speeds 

<15 m s-1 

Wind speeds  

≥15 m s-1 

% near gale  

winds within 

each group 

% near gale 

winds from 

total obs 

% near gale 

winds from 

total storms 

Group direction 

% from total 

wind obs 

SW 46096 44356 1740 3.77 0.77 20.36 20.52 

W 37800 36365 1435 3.8 0.64 16.79 16.83 

NW 32052 30308 1744 5.44 0.78 20.4 14.27 

S 30223 29210 1013 3.35 0.45 11.85 13.46 

N 24877 23490 1387 5.58 0.62 16.23 11.08 

SE 21253 20538 715 3.36 0.32 8.37 9.46 

NE 18573 18105 468 2.52 0.21 5.48 8.27 

E 13746 13701 45 0.33 0.02 0.53 6.12 
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Table S2. Effect sizes for the Skomer habitat selection model, expressed as odds ratios. Odds ratios > 1 were estimated for predictors with a 

positive coefficient, odds ratios <1 were estimated for predictors with a negative coefficient, and odds ratios close to 1 were the result of 

predictors with a relatively small effect on the probability of a section being classified as a colony. Model predictors are listed in order of 

descending effect size.

 SW NW SE NE 

Colony 

definition 

Term Odds ratio Term Odds ratio Term Odds ratio Term Odds ratio 

Any  

count 

PMedian 

TISkew 

MeanSlope 

1.0e-01  

2.1e-01 

4.5e+00  

TISkew 

TKESkew 

1.4e-01  

1.0e-01 

TKEIQR 

MeanSlope 

 

2.5e-01 

6.6e+00  

 

TKESkew MeanSlope 

HorizontalMedian 

1.2e-02 

1.7e+01 

8.3e+00 

Largest PIQR 

HorizontalIQR 

MeanSlope 

2.0e-03 

2.9e+02  

5.9e+01 

TKESkew 

MeanSlope 

 

2.6e-03 

1.3e+01  

 

MeanSlope 3.6e+01 TKEIQR 

HorizontalSkew 

MeanSlope 

2.3e+03 

7.0e-04 

9.3e+01  

Densest PMedian 8.1e-02 

 

TKESkew 

MeanSlope 

1.6e-02 

6.9e+00  

MeanSlope 7.1e+00 TKEMedian 

U_2Median 

HorizontalSkew 

 

3.9e+03  

1.4e-02 

3.5e-02  

 



161 

 

Sensitivity analysis 

Table S3. The sensitivity analysis of the top simplest model terms for different thresholds of number of birds and number of largest colonies, 

with the prevailing SW wind.  Significance is indicated with p-values: p< 0.001 (***), p< 0.01 (**), p< 0.005 (*). 

 

Largest colonies  / Number of 

birds threshold 

Top simplest model - terms McFadden pseudo R2 – OA/ TSS/ 

Sensitivity/ Specificity 

10/592 PIQR (*), HorizontalIQR (**), MeanSlope (***) 0.59 – 0.90/ 0.73/ 0.80/ 0.93 

11/518 PIQR (*), HorizontalIQR (**), MeanSlope (***) 0.57 – 0.81/ 0.75/ 1.00/ 0.75 

12/504 PIQR (*), HorizontalIQR (*), MeanSlope (***) 0.54 – 0.80/ 0.72/ 1.00/ 0.72 

13/421 PIQR (n.s.), MeanSlope (*), PMedian (**), U_2IQR (**) 0.55 – 0.84/ 0.74/ 0.92/ 0.81 

14/316 PIQR (*), MeanSlope (*), PMedian (**), U_2IQR (**) 0.52 – 0.82/ 0.67/ 0.85/ 0.81 

15/314 PIQR (*), HorizontalIQR (n.s.), MeanSlope (**), PMedian (**),  

U_2IQR (**), U_2Skew (*) 

0.64 – 0.93/ 0.87/ 0.93/ 0.93 
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Table S4. The sensitivity analysis of the top simplest model terms for different thresholds of number of birds and number of largest colonies, 

with NW wind.  Significance is indicated with p-values: p< 0.001 (***), p< 0.01 (**), p< 0.005 (*). 

 

Largest colonies  / Number of 

birds threshold 

Top simplest model - terms McFadden pseudo R2 – OA/ TSS/ 

Sensitivity/ Specificity 

10/592 TKESkew (**), MeanSlope (**) 0.58 – 0.86/ 0.81/ 1.00/ 0.81 

11/518 TKESkew (**), MeanSlope (**) 0.59 – 0.86/ 0.81/ 1.00/ 0.81 

12/504 TKESkew (**), MeanSlope (**) 0.55 – 0.84/ 0.78/ 1.00/ 0.78 

13/421 TKESkew (***), MeanSlope (*) 0.55 – 0.82/ 0.75/ 1.00/ 0.75 

14/316 TKESkew (***), MeanSlope (**) 0.50 – 0.80/ 0.68/ 0.92/ 0.75 

15/314 TKESkew (***), MeanSlope (**) 0.50 – 0.77/ 0.66/ 1.00/ 0.66 
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Table S5. The sensitivity analysis of the top simplest model terms for different thresholds of number of birds and number of largest colonies, 

with NE wind.  Significance is indicated according to p-value: p< 0.001 (***), p< 0.01 (**), p< 0.005 (*). 

 

Largest colonies  / Number of 

birds threshold 

Top simplest model - terms McFadden pseudo R2 – OA/ TSS/ 

Sensitivity/ Specificity 

10/592 TKEIQR (**), HorizontalSkew (*), MeanSlope (**) 0.74 – 0.97/ 0.90/ 0.90/ 1.00 

11/518 TKEIQR (**), HorizontalSkew (*), MeanSlope (**) 0.76 – 0.97/ 0.90/ 0.90/ 1.00 

12/504 TKEIQR (**), HorizontalSkew (*), MeanSlope (**) 0.74 – 0.95/ 0.88/ 0.91/ 0.96 

13/421 HorizontalSkew (*), TKEMedian (***), U_2Median (***) 0.67 – 0.80/ 0.72/ 1.00/ 0.72 

14/316 HorizontalMedian (**), TKESkew (**), MeanSlope (***) 0.57 – 0.80/ 0.68/ 0.92/ 0.75 

15/314 HorizontalMedian (**), TKESkew (**), MeanSlope (***) 0.59 – 0.89/ 0.70/ 0.73/ 0.96 
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Model of cliff orientation and slope angle 

For the implementation of the mean cliff orientation and slope angle models, the same model 

selection was performed as for the airflow models, as described in the main text.  

 

Table S6. Logistic regression models of leeward/ windward cliff orientation with respect to the 

prevailing SW wind on Skomer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Colony definition Orientation model: 

McFadden pseudo R2 – OA/ TSS/ Sensitivity/ 

Specificity 

Any count Aspect + MeanSlope 

0.17 – 0.63/ 0.30/ 0.42/ 0.87 

10 largest Aspect + MeanSlope 

0.55 – 0.88/ 0.71/ 0.80/ 0.90 

11 densest Aspect 

0.20 – 0.68/ 0.51/ 0.90/ 0.60 
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Chapter 6: Synopsis  

The study of animal movement requires information on a diverse set of variables to characterise 

choices and behaviours in relation to a varying physical and biological environment. This in 

itself is a complex task. One of the things that has become inescapably clear during the course 

of this thesis is the particular challenge of characterising the aerial environment, which requires 

an understanding of disciplines beyond biology. In this PhD I had the privilege to work under 

the supervision of an interdisciplinary team, specialising in animal movement and meteorology. 

I also drew on my own background in computer science and physical geography. This all 

underpinned the use of a range of meteorological tools to estimate the movements of the air, 

namely reanalysis models in chapters 2 and 4, and CFD in chapter 5, which allowed me to 

visualise the invisible air-scape. These models are  freely available, but meteorological 

expertise is required for the model set-up and the interpretation of the outputs. Chapter 2 is 

similarly interdisciplinary, particularly in the estimation of turbulence from the anemometer 

mounted onboard the ultralight. And while the general tendency is to borrow tools from other 

disciplines to advance biological questions, the development of new turbulence proxies from 

bird-borne sensors could ultimately provide insight that is relevant for meteorologists. Overall, 

the interdisciplinary approach allowed me to examine bird responses to the aerial environment 

across a range of scales, from hourly (used in relation to tropical cyclones), to seconds (which 

is necessary to understand the influence of chaotic elements of the air). The interdisciplinary 

aspect has therefore been integral to this PhD, shaping the way it was conceived and has 

developed, the insights I have gained, and my view of the natural world.  

In this synthesis I will consider how the previous chapters sit within the broader field by 

touching on some of the questions that have arisen from the preceding chapters, analyses it 

would have been interesting to include had there been more time, and practical applications 

arising from chapter 5.   

Chapters 2 and 3 examined fine-scale variation in turbulence and how this impacted 

pigeons, as a model flapping flier. Whilst it was exciting to find a marked effect of turbulence 

on a range of flight parameters, it was rather frustrating not to be able to draw definitive 

conclusions about how it affects flight effort. Nonetheless, ongoing trials may provide insight 

here, as pigeons equipped with the same data-loggers are being flown in a wind tunnel, with the 

aim of deriving biomechanical power from acceleration metrics. It will therefore be interesting 
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to see whether those results can provide fresh insight into the effects of turbulence on flight 

power, potentially working in collaboration with aerodynamicists.  

Another aspect that it would be fascinating to explore would be how the metabolic costs 

of flight vary in relation to extreme winds. Many of the GPS units deployed on streaked 

shearwaters also included accelerometers. Acceleration data from birds flying in storms should 

allow us to examine the proportion of time spent flapping in relation to the wind vector (Spivey 

et al., 2014). Whilst flight costs decrease with wind speed for dynamic soaring birds (e.g. 

Furness and Bryant, 1996), this relationship has only been examined in typical wind conditions. 

Published data from 7 shearwaters showed that these birds flapped for 1 - 70% of time during 

foraging (Sato et al., 2009), and a large part of this variability is likely to be due to changes in 

wind speed. It would be interesting to see whether there is a threshold wind speed, above 

which, flight effort increases due to the need for increased flight control or speed, when 

operating in extreme conditions. Such relationships may provide insight into the maximum 

wind speeds in which these birds are able to operate, and therefore, the wind speeds they need 

to avoid.  

The main focus of this thesis is behavioural responses to airflows, whether they be 

through adjustments to the flight path, flight speed or kinematics. In order to respond to 

airflows, birds must be able to detect them, but there are surprisingly few studies on the cues 

birds and other flying animals use to achieve this, beyond the use of social information 

(Williams et al., 2018). Turbulence and updraughts are both influenced by surface features (i.e. 

topography, forest canopy and land cover) (De Visscher, 2013, Stull, 1988). Therefore birds 

may use information about landscape features to predict the likely distribution of turbulence, 

irrespective of whether that has a positive or negative impact on flight costs. Sound could also 

be used to detect turbulence, as pigeons have been shown to respond to local pressure 

oscillations, or the “wind noise” sometimes called pseudo-sound (Pye and Langbauer, 1998), 

which is linked to turbulence (Kreithen, 1978, Kreithen and Keeton, 1974). Similarly, 

infrasound has been proposed as a signal that, together with other environmental cues such as 

wind strength and direction, may be detected by seabirds to forecast the arrival of tropical 

cyclones even when these are located hundreds of kilometres away (Weimerskirch and Prudor, 

2019).  

The results in chapter 4 imply that birds have information on a cyclone’s trajectory, as 

shearwaters adapted their movements according to their position with respect to the cyclone, as 



167 
 

well as the cyclone strength. It would therefore be interesting to examine the fine-scale 

movements of shearwaters in the Sea of Japan more closely in relation to approaching cyclones 

(Chacko, 2019, Chen et al., 2020). Previous studies of the impact of tropical cyclones on 

seabird behavioural states have identified significant changes in activity levels associated with 

environmental conditions (Wilkinson et al., 2019). Hidden Markov Models could therefore be 

used to distinguish switches between behaviours (Conners et al., 2021) or identify shifts in their 

intensity (i.e. more/ less intense searching or foraging) in the shearwater dataset, and assess this 

in relation to wind speed and direction, pressure, or the possible propagation of infrasound, to 

provide insight into the particular cues that birds might be using.  

 Chapter 5 is something of an outlier, in that it deals with the distribution of breeding 

birds, rather than individual movement trajectories. However, the core theme remains the same, 

which is how birds deal with strong and/ or unsteady flows. The initial justification for this 

study was the finding that strong winds impede the ability of auks to land at their nesting sites 

(Shepard et al., 2019). While this may well be a factor that influences nest site selection, it was 

not possible to say whether this was more or less important than the need for shelter from storm 

conditions, which potentially include rain and strong swell.  

The wind may play an even more important role in influencing take-off or landing 

performance for larger seabirds, which often nest in exposed areas that could help them achieve 

high flight speeds at take-off, and improve control during landing (e.g. by using updrafts). 

During my PhD I started to investigate some of these links in Northern gannets (Morus 

bassanus) on Ailsa Craig, Scotland, (55°15'10.60"N, 5° 6'57.83"W) where there are location 

data for nesting birds. Unusually, there are also a relatively high number of records of injured 

birds found beneath the breeding cliffs that had sustained fractures to their neck or wings, 

consistent with birds crashing during landing or take-off (Wanless, 1979). Crashes may well 

occur on other islands, but as breeding colonies tend to terminate in the water, as opposed to 

the talus slopes seen on Ailsa, they are less likely to be fatal. Nonetheless, the carcasses are an 

important indication that landing and/ or take-off can be risky, and that gannets may adapt their 

breeding site selection accordingly.  

Gannets on Ailsa breed on the West and South cliffs, which are exposed to the 

prevailing winds, and likely associated with updrafts. In contrast, the East-facing slopes are 

avoided, and these would typically be in the “down-curl” i.e. experience downdrafts in 

prevailing winds. Preliminary analysis of the number of gannet carcasses below the breeding 
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cliffs pointed to an increase in carcass number under certain wind speeds and directions. I 

started modelling the airflows around this island (Fig.1B and it seems that the mortality rate is 

negatively correlated with the wind speed at the breeding cliffs (Fig. 1A). This provides further 

evidence that not only does the wind directly impact take-off and/ or landing capacity, but 

critically, this can have fitness consequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Colony distribution and airflows on Ailsa Craig. A) the distribution of colonies at the 

West side of Ailsa Craig taken from Wanless (1979), B) the OpenFoam model output of mean 

wind speed (m s-1) over Ailsa Craig under south-westerly winds. In the lower parts of the cliffs 

the flow is blocked (similar to Skomer), leading to lower wind speeds compared to the higher 

parts of the island and the summit where flow is accelerating. 

This highlights the importance of understanding the relationship between the aerial 

environment and habitat quality for nesting birds. This is particularly pertinent for seabirds due 

to (i) their exposure to strong winds, (ii) their conservation status and (iii) their vulnerability to 
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expanding human activities such as marine renewable energy devices (Matthiopoulos et al., 

2022). Indeed, the ability to predict habitat suitability could be important in identifying 

locations for species re-introductions or re-establishment. For instance, in the 1700s northern 

gannets are believed to have bred on the Calf of Man (54° 3'4.64"N,   4°48'50.73"W), a small 

island off the south coast of the Isle of Man. Here, I am planning to perform CFD simulations 

to inform the suitability of locations for re-establishing a gannet colony in collaboration with 

the wardens of the Isle of Man.  

In this thesis I have investigated the effects of extreme and variable flows on birds 

across a range of temporal and spatial scales. Such a range of scales is often necessary if we are 

to track the impact of the environment from its immediate effects on the locomotion costs and/ 

or capacities, through to macro-ecological patterns. For example, terrestrial soaring birds 

distributions and pathways are known to be influenced by the availability of thermals updrafts, 

and the effects of this form of turbulence on flight costs and long range movement is well 

described in the literature (e.g. Scacco et al., 2019). But in chapter 2, I found that freestream 

turbulence also affects a range of path and kinematic variables for a flapping flier, in agreement 

with previous wind tunnel experiments (Ortega-Jimenez et al., 2014, Ravi et al., 2015) although 

interestingly there was no suggestion that birds adapted their space-use in response. In the 5th 

chapter I identified that the distribution of a colonial seabird is affected by a need to shelter 

from storms/ waves. However this can also be relevant at larger regional scales. As the 

frequency and intensity of severe storms increases with climate change, the distribution of 

storms is also affected, and a poleward expansion is already projected (Studholme et al., 2022). 

This can have implications for seabirds not only in the suitability of breading habitat, but also 

on their response in-flight. In chapter 4, I identified a surprising strategy from a dynamic 

soaring bird, but if climate change leads to shifts in the distribution of breeding birds it is not 

known whether it can add a selective pressure by exposing more species to extreme weather 

events or species that are less capable in responding to them than for example adult streaked 

shearwaters (there are no reports of adult streaked shearwater wrecks). Therefore, this thesis 

suggests that the effects of extreme and variable wind must be examined across scales, in order 

to form an adequate understanding of different biological processes as these range from fine 

scale responses to turbulence and storms, to larger scales regional distributions and long range 

movement. 

Overall, one of the main messages I retain from this PhD is how much more there is for 

us to understand about the aerial environment and its effects on birds. The famous phrase from 
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Sir Isaac Newton: “what we know is a drop, what we do not is the ocean”, appears to be very 

true when examining the direct response of flying animals to challenging conditions. For 

example, chapter 4 revealed a surprising response of shearwaters to cyclones, with birds 

seemingly flying towards the eye to control the part of the cyclone they were exposed to. But 

understanding how their behavioural response influences the strength and nature of the systems 

they can, and cannot, respond to, remains a complex task. The same can be said for 

understanding responses to turbulence. Nonetheless, I feel fortunate and excited to have been 

part of this collective journey and I hope that my contribution here will add another “drop” to 

the understanding of how the aerial world beyond “normal” can affect animal movement and 

space-use. 
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