
Two-invariant modular implicit plasticity solver framework for
geomechanical simulators

Erick Slis Raggio Santos∗, Eduardo Alberto de Souza Neto†

September 4, 2022

Abstract

A modular, computationally efficient integration framework for two-invariant-based elastoplastic constitutive models
is proposed. It is designed to allow a range of constitutive models to be incorporated with minimal programming
effort. The development is intended for efficient numerical schemes in large-scale geomechanical simulations. The
modular format consists of four components: isotropic elastic relation; isotropic yield criterion; two-invariant smooth
flow potential plastic flow rule; and isotropic hardening law. Linear and nonlinear bulk elasticity are considered. For
the nonlinear case, a numerical assessment of the accuracy of bulk elasticity integration schemes is presented, where
pure Euler and semi-analytical integrators are compared. The deviatoric component of the elastic law considers both
the constant shear modulus and constant Poisson’s ratio models. The combination of the classic Terzaghi compaction
law with different bulk elasticity models may lead to a physical inconsistency, which is removed by a straightforward
modification of the hardening law. When used in conjunction with the proposed bulk elasticity models, it results in
a family of compaction laws that significantly reshape the normal compaction line – a fact that seems to have been
overlooked in the literature. The main contributions concerning the plasticity integrator are: a novel integration scheme
that considers the variation of specific volume within each step; and a condensed system comprising two scalar return-
mapping equations. A Modified Cam-Clay model is used in the assessments. A comparison with an existing, well-known
algorithm is also provided and, in spite of its modularity/generality, the proposed scheme is shown to yield significant
computational gains.
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1 Introduction
Geomechanical simulation is a invaluable tool in the Oil and Gas industry. It allows the incorporation of pore volume
variations in a consistent manner in reservoir flow simulations as well as the assessment of various potential hazards
associated with rock compaction [1, 2]. Reservoir rock compaction is predominantly irreversible (plastic) [3]. It is the
main driver of strain accommodation throughout the overburden rocks and may lead to geomechanical risks and hazards
associated to hydrocarbon production [4, 5, 6], such as loss of containment and seepage due to fault activation or loss of
cap rock integrity; subsidence and risks to ground or seabed facilities; damage to the wellbore integrity and permeability
impairment due to compaction. In this context, the ability to predict rock compaction with reasonable accuracy is crucial to
the industry since, normally, no effective measures are available to remedy such consequences. Geomechanical assessments
can also help improve the quality of the fluid flow simulations by history-matching the compaction and subsidence data
from 3D/4D reservoir monitoring programs [7].

Irreversible straining is typically modelled by means of the mathematical theory of plasticity [8, 9, 10, 11, 12]. The
modelling of plastic compaction is achieved by using plastic yield envelopes bounded in the compressive direction of
the hydrostatic axis in its stress-space representation. Models such as the Modified Cam-Clay [13, 14, 15], Lade-Kim
[16, 17, 18, 19], Matsuoka and Nakai [20], Mortara [21] and SR3 [22] provide a natural compaction bound with a single
yield function and plastic potential. The SR4 model [23], described by two smoothly-intersecting yield surfaces, can also
be represented as a single-surface model. Such models tend to be preferred in geomechanical simulations due to the
relative simplicity stemming from their single-surface representation. Hydrostatically bounded plasticity models based on
the Mohr-Coulomb, Hoek-Brown [24], Dimaggio-Sandler [25, 26], Drucker-Prager [27] and chalk model [28] envelopes, on
the other hand, have a multi-surface representation which typically leads to greater complexity of implementation.
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Geomechanical assessment usually involves a very significant computational effort. Typical problems simulating the
reservoir and side-, under- and overburden strata often require spatial discretisations amounting to hundreds of millions
of degrees of freedom, analysed over tens of time (or pseudo-time) steps. Also, multiple model scenarios often need to
be considered to account for critical inherent uncertainties in the geological characterisation of the domain. Hence, every
computational efficiency gain is highly desirable to ensure reliable simulation results can be obtained within reasonable
time to support strategic decision-making. In this context, plastic integrators should be made as efficient as possible and
any unnecessary complexities in the constitutive models should be avoided.

In addition, flexibility of the elastoplastic integrator framework is highly desirable to allow the implementation of a
wider range of models, so that each material of the geological strata can be adequately described. While sands, friable
sandstones and shales fall within the series of critical state materials like the Modified Cam-Clay, carbonate rocks may
be better represented by yield envelopes composed of almost-perfect shear plasticity and hardening compaction. Stiff
and fault rocks may otherwise present irrelevant irreversible compaction and hence be described by open envelopes in the
hydrostatic compression direction. Depending on experimental data and the stress ranges of interest, elastic relations may
be modelled as either linear or nonlinear.

This work proposes the formulation of a computationally-efficient, yet flexible, two-invariant first-order-implicit elasto-
plasticity solver framework for large-scale geomechanical simulations. The framework is designed in a modular format to
allow a range of models to be incorporated with minimal programming effort. This feature is of particular relevance to the
industry which, very often, relies on specialist software developed in-house, and complexities in the program structure will
have a detrimental impact on development costs. The framework incorporates isotropic elasticity, isotropic hardening, ar-
bitrary isotropic single-function yield criteria and smooth two-invariant-based flow potential – all leading to a radial return
mapping format in the deviatoric space. Three alternative combinations of isotropic elastic relations are proposed based
on linear and nonlinear bulk and deviatoric responses. A numerical assessment of the accuracy of nonlinear bulk elasticity
integration schemes is presented, where purely-numerical and semi-analytical integrators are tested and compared. The
integration scheme yielding the most favourable balance between computational cost and numerical accuracy is suggested.
The deviatoric component of the elastic law – where both the constant shear modulus and constant Poisson’s ratio models
are considered – is treated in a standard fashion. Isotropic hardening is described having the plastic volumetric strain as
the hardening variable – a common simple approach for geomaterials. A hardening model yielding the classical Terzaghi
compaction law is used in the assessments presented in the paper, but the framework supports any isotropic law.

The effect of the combination of the classic Terzaghi compaction model with linear bulk elasticity is also discussed.
It is shown that this combination may lead to a physical inconsistency. This possible inconsistency is removed by a
straightforward modification of the hardening law. The modified hardening law in conjunction with the proposed bulk
elasticity models results in a family of compaction laws with significant variations in shape of the normal compaction line
– a fact that is fundamental to the correct experimental identification of the hardening parameter but seems to have been
overlooked in the literature.

In the numerical integration of the elastic relation and hardening evolution laws, the specific volume is taken as a
constant within the pseudo-time increment. However, in contrast with the common practice of using its value at the
beginning of the increment, the proposed algorithm can take the specific volume at an arbitrary pseudo-time within the
increment. This is a novel approach leading to a plastic integrator with mixed time schemes, including a fully implicit
algorithm.

The paper is organised as follows. Section 2 reviews some fundamental relations of elastoplasticity and introduces
crucial notation used in the paper. The elasticity models incorporated into the proposed scheme are described in section 3
together with the algorithms used in the integration of their corresponding rate equations. Section 4 discusses the hardening
laws together with the associated numerical integration scheme. A potential inconsistency is identified in combining a
generalised bulk elasticity model and the classical Terzaghi compaction law, and a simple modification of the compaction
model is proposed to address the issue. Properties of the normal compaction lines associated with different combinations
of hardening law and elasticity models are discussed in detail. The treatment of the overall plasticity model is addressed
in section 5. A two-equation return mapping scheme, radial in the deviatoric plane, is proposed and the general explicit
expressions for the associated consistent tangent constitutive operator are presented. The accuracy and performance of
the scheme are assessed in section 6, where a Modified Cam-Clay model (a particular member of the family of models
that can be incorporated in the proposed framework) is used as the underlying model. The assessment shows that some
significant gains are achieved in comparison of a widely used scheme. Some concluding remarks are presented in section
7. The paper closes with the Appendix A, which details the algorithms for the solution of the elastoplastic constitutive
problem in the proposed framework.
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2 Preliminaries
The plasticity theory in two-invariant space – also known as S-space [12] or triaxial space – constitutes the basis of the
proposed plastic integrator framework. In what follows, all stress quantities are poromechanics effective stresses of Biot
[29, 30] and the same effective stress is used in the formulation of the elastic and plastic constitutive laws. In addition,
the Biot-Willis coefficient is assumed to be a given constant and, therefore, does not appear explicitly in the formulation.
It should be noted that strong evidence suggests that the plastic distortion under shear stress with resulting significant
rock fissure evolution is best modelled by an effective stress law closer to that of Terzaghi [30]. However, under progressive
compaction – the regime of interest for reservoir compaction simulation and the focus of the present paper – the effective
stress of Biot is a better descriptor.

The two-invariant stress quantities are the hydrostatic (or mean) stress, p, and the von Mises or generalised shear
stress, q:

p =
1

3
tr(σ); q =

√
3

2
‖s‖, (1)

where σ is the stress tensor and
s = σ − pI (2)

is the deviatoric stress (or shear) tensor, with I denoting the identity tensor. The classical continuum mechanics convention
of tensile-positive stresses (and strains) [10, 11] is adopted here. Similarly, two infinitesimal strain invariants are defined
as power-conjugates of the stress invariants: the volumetric strain,

εv = tr(ε), (3)

where ε is the strain tensor; and the distortional strain,

εd =

√
2

3
‖ε‖, (4)

where
ε = ε− 1

3
εvI (5)

is the strain deviator. For convenience, the stress and strain invariants are grouped using the following notation:

~σ ≡
[
p
q

]
; ~ε ≡

[
εv
εd

]
. (6)

2.1 The elastoplastic constitutive model
The classical theory of plasticity [11] is commonly used in the formulation of geomechanical constitutive models. In this
context, a rather general family of useful models can be defined relying on the following postulates:

• Additive decomposition of the strain tensor into an elastic and a plastic part:

ε ≡ εe + εp; (7)

• An isotropic elastic constitutive equation written in terms of stress and strain rates:

σ̇ = ṗI + ṡ, (8)

where the superimposed dot denotes time/pseudo-time rate. In this equation, the rates of hydrostatic and deviatoric
stresses are given by

ṗ = K(p, v) ε̇ev, ṡ = 2G(p, v) ε̇e, (9)
with K and G denoting the instantaneous bulk and shear elastic moduli which, in general, dependent on p and the
specific volume, v, defined as

v ≡ VT
VS

, (10)

where VT and VS denote, respectively the bulk volume and the volume of solids. Here we shall assume absence of
occluded porosity in the rock matrix. Under this assumption [30], variations of solid volume can be neglected and
the rate form of (10), which together with (8, 9) will complete the definition of the rate-form elasticity constitutive
law, can be written as

v̇ = vε̇v. (11)
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• A general isotropic yield function, Φ, depending on the stress state1, σ, and a scalar hardening thermodynamical
force, A, that defines the size of the elastic domain:

Φ ≡ Φ(σ, A). (12)

For a given A, the elastic domain is the region

EA = {σ |Φ(σ, A) < 0}, (13)

of the stress space within which no plastic flow is possible.

• A plastic flow rule

ε̇p ≡ γ̇N , (14)

where the flow vector
N ≡ ∂Ψ

∂σ
, (15)

is the gradient of a smooth, convex flow potential

Ψ ≡ Ψ(~σ,A), (16)

expressed in terms of the two stress invariants ~σ. The flow is associative when Φ ≡ Ψ.

For the class of models considered here, the flow rule can be conveniently re-written for the purpose of implementation
by splitting the flow vector as

N =
1

3
NvI +Nε, (17)

with Nv and Nε denoting its spherical and deviatoric components:

Nv =
∂Ψ

∂p
, Nε =

√
3

2
Nd

s

‖s‖
, (18)

where

Nd =
∂Ψ

∂q
. (19)

With the above, the flow rule can be equivalently stated as

ε̇pv = γ̇Nv, ε̇p = γ̇Nε. (20)

The invariants-only form of the above equation reads

~̇ε p ≡
[
ε̇pv
ε̇pd

]
= γ̇ ~N, ~N ≡

[
Nv
Nd

]
. (21)

• An isotropic hardening law defining the evolution of the scalar hardening thermodynamical force A,

Ȧ ≡ H(A, v) α̇, (22)

where H is the generalised hardening modulus and α is a scalar hardening internal variable. In geomechanical
constitutive models, A and α are typically taken, respectively, as the hydrostatic preconsolidation pressure, pc, and
the plastic volumetric strain, εpv, so that the hardening law reads

ṗc ≡ H(pv, ε
p
v) ε̇

p
v. (23)

• Loading/unloading conditions governing the evolution of the plastic flow in (14), (20) or (21):

Φ ≤ 0, γ̇ ≥ 0, Φγ̇ = 0.
1It will be presented further that the extra constraint Φ ≡ Φ(~σ,A) applies when adopting a nonlinear shear elasticity model.
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3 Elasticity. Models and numerical treatment
Geological materials generally present nonlinear elastic behaviour, as they tend to stiffen with progressive compression.
Under certain circumstances, the elastic response may be well approximated by a linear constitutive law. Hence, it is
desirable that a geomechanical solver be able to handle linear and non-linear models. In this context, three isotropic
elastic models are incorporated in the framework proposed here: the linear model; a non-linear bulk elasticity model with
constant shear modulus, and; a non-linear bulk elasticity model with constant Poisson’s ratio. For the non-linear models,
a stiffness-shifted variant of the Roscoe-Burland model [13] is proposed to regularise the model behaviour and allow its
use under conditions of (limited) tension and low compression. We note that, without regularisation, the applicability of
such models in realistic oil and gas geomechanical simulations would be severely restricted.

This section describes these non-linear models and discusses in detail the algorithms used in the integration of their
corresponding rate equations. Particular attention is focussed on the accuracy of the integration algorithms, and a semi-
analytical scheme is found to be an optimal choice in that, in addition to achieving higher accuracy, it avoids potential
volumetric locking (unreasonably high bulk stiffness at certain states) experienced when plain Euler-based schemes are
used.

3.1 Nonlinear bulk elasticity
One of the most commonly used bulk elasticity models for geomaterials was proposed by Roscoe and Burland [13]. It
describes a nonlinear recoverable volumetric elastic response, represented by the swelling line [13, 14, 15, 12]

v = v0 − κ ln(p/p0), (24)

where κ is the swelling index (the gradient of the swelling line) and p0 and v0 are the values of p and v at a known reference
state. The resulting relationship between p and v in this case is a straight line in a log-linear plot. Relation (24) implies
a variable instantaneous bulk modulus in the rate form (9):

K(p, v) = −vp
κ
. (25)

The elasticity model defined by (25) is applicable only under strictly negative (compressive) mean stress, p. While oil
and gas geomechanical simulations involve the analysis of geomaterials under predominantly compressive states, there is a
need to model geomaterials under tensile mean stresses, for example, when analysing potential cap rock integrity loss – a
significant threat to efficient reservoir management. In addition, it is almost inevitable that some regions of the analysed
domain in regular simulations, particularly within strata near ground level/seabed, will fall under (at least small) mean
tensile stresses. The stress state in such regions is typically of no relevance to the compaction simulation but robust
simulators must be able to cope with such conditions so that the model/scheme will not fail under little compression or
under tensile mean stresses. To address this issue, Sheng et al. [31] proposed a regularisation of (25) featuring a minimum
mean pressure below which the Bulk modulus is kept constant. Sanei et al. [32] suggested a pressure-shifted variant where
the mean stress in (25) is replaced with the Cam-Clay effective mean pressure shifted by the tensile strength pt:

pcc ≡ p− pt. (26)

With greater physical appeal, Crook et al. [22] proposed a bulk elasticity equation where the bulk modulus is given by

KSR(p, pc, v) = K0 − (1−A)
pc
κ
−Av p

κ
(27)

in their SR3 plasticity model, where 0 ≤ A ≤ 1 is a given constant weighting the contributions of the irrecoverable and
recoverable compression to the bulk stiffness. The above elastic law is also used in the SR4 model proposed by Prats et
al. [23].

In the framework proposed, we shall adopt a particular instance of (26), with A = 1:

K(p, v) ≡ K0 −
v p

κ
. (28)

We note that by substituting (28) into (9)1 and rearranging the terms, the evolution equation for p can be equivalently
written as the following ordinary differential equation:

dp

dεev
+
v

κ
p = K0. (29)

It is this equation that will be used later in the computational implementation of the model in the present framework.
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Remark 3.1 Equation (28) disregards the specific contribution of plastic compaction to the elastic bulk stiffening of the
rock. Its adoption, however, is justified as follows. Note that, under progressive compaction, p and pc are intrinsically
related, and (28) will be able to produce similar results to those of (27) for practical purposes. In addition, the experimental
identification of κ in (28) can be carried out in a relatively straightforward manner without the need to keep track of the
evolution of pc. The measurement of pc, required if (27) is used with A 6= 1 instead, would add significant complexity to
the experimental procedure.

3.2 Integration of the mean stress equation
Here, we discuss the integration of the mean stress evolution equation (9)1, which forms a fundamental part of the overall
stress integration scheme.

Elastoplastic increments

The numerical integration of (9)1 with the original non-shifted bulk modulus relation (25) of Roscoe and Burland [13] is a
usual practice [33, 12], and the resulting scheme is known to be heavily sensitive to the non-linearity of the Bulk modulus.
Borja [34] proposed a semi-analytical integration scheme for these equations where v is held constant at the beginning
of the increment. Considering the integration between (pseudo-) time stations tn and tn+1 for an elastoplastic step, this
approximation leads to

pn+1(∆εev) ' pne−
vn
κ ∆εev , (30)

where
∆(·) ≡ (·)n+1 − (·)n. (31)

For notational convenience, unless absolutely necessary, subscript n + 1 will be suppressed in what follows to denote
quantities at time station tn+1. Generalised midpoint or trapezoidal-based versions of the above integration scheme can
be defined as

pn+1 ' pn+1(∆εev,∆εv) = pne
− v̄κ∆εev . (32)

Analytical integration of (11) between pseudo-times tn and tn+θ, with θ ∈ [0, 1], gives:

vn+θ = vn+θ(∆εv) = vne
θ∆εv . (33)

The specific volume v̄ in (32) is then defined as

v̄ ≡

{
vn+θ (generalised midpoint case)

(1− θ)vn + θvn+1 (generalised trapezoidal case).
(34)

In the framework proposed here, we shall apply the same methodology to (29) – the regularised model (9)1 with the
shifted bulk modulus (28). This gives the following general mean stress update formula:

p (∆εev,∆εv) '
κ

v̄
K0 −

(κ
v̄
K0 − pn

)
e−

v̄
k∆εev . (35)

Purely elastic increments

Analytical or semi-analytical solutions can be obtained for the Roscoe-Burland and the stiffness-shifted mean stress
constitutive models for purely elastic steps, i.e. when ∆εpv = 0 and ∆εev = ∆εv. These are useful for validation purposes
and will be explored later to assess the accuracy of the proposed numerical integration scheme.

By combining (33), (25) and (9)1, integration over [tn, tn+1] gives the following analytical formula for the updated
mean stress for the Roscoe-Burland model:

p(∆εv) = pne
vn
κ (1−e∆εv ). (36)

For the stiffness-shifted model, in turn, only a semi-analytical integration of (29) is possible. The final expression is
obtained by using the explicit Euler time-discrete form,

∆v ' vn∆εv, (37)

of (11), together with (29), and then performing the analytical integration of the resulting equation. This gives

p(∆εv) '
pn +K0

√
π
2
κ
vn
e−

1
2
vn
κ

{
erfi
[√

1
2
vn
κ (1 + ∆εv)

]
− erfi

[√
1
2
vn
κ

]}
e

1
2
vn
κ ∆εv(2+∆εv)

, (38)

where erfi(·) is the non-elementary imaginary error function.
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Accuracy of integration of bulk elastic response
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Figure 1: Numerical integration schemes for the Roscoe-Burland mean stress constitutive equation in the elastic regime.
Accuracy assessment. (a) Mean stress, p, versus volumetric strain, ∆εev; (b) Swelling line; (c) Relative error of mean stress
integration (semi-log graph), and; (d) Relative error of mean stress integration (log-log graph).

A numerical assessment of the accuracy of the integration schemes discussed above is presented here in the elastic range.
The above-suggested schemes, for both the Roscoe-Burland and the stiffness-shifted models, are tested and compared with
alternative schemes based on standard first and second-order purely Euler-based methods. As will be seen, the assessment
gives a clear view of the advantages of the semi-analytical schemes and provides a justification for their adoption in the
geomechanical simulation framework proposed in this paper.

For each model/algorithm combination, starting from a reference state (p, v) = (−1MPa, 1.4286), numerical solutions
for p are obtained in single steps ∆εev ∈ [−10−5,−10−2], i.e. for compaction strain steps of 0.001% to 1%. The chosen
reference state of v corresponds to a porosity of 30%. The numerical results are then plotted against the analytical
solutions discussed above.

Figure 1 shows the results obtained for the Roscoe-Burland model. The corresponding purely Euler-based schemes
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used for comparison are summarised below:

p =



pn − vnpn
κ ∆εev (explicit case)

pn
κ

κ+vne
∆εev∆εev

(implicit case)

pn
κ−vne

∆εev
2

∆εev
2

κ+vne
∆εev

2
∆εev

2

(midpoint case with θ = 1
2 )

1
2pn

(
1− vn

κ ∆εev + κ
κ+vne

∆εev∆εev

)
(trapezoidal case with θ = 1

2 ).

(39)

The graph of Figure 1(a) plots the numerically integrated p against the compaction strain increment. The analytical
solution is depicted in the black solid line. The corresponding relative error is defined as

∆prel error ≡
|∆pnum −∆p∗|

∆p∗
, (40)

where ∆p∗ denotes the analytical mean stress increment, is plotted in Figure 1(c). It is clear that the semi-analytical
forms (other solid lines) perform significantly better than the purely Euler-based schemes, with a maximum relative error
of the order of 1% for a (very large) compaction strain increment of 1% in the worst cases – the semi-analytical implicit,
with θ = 1 in (32), and semi-analytical explicit scheme, with θ = 0. The integration error is plotted in Figure 1(d) in a
log-log scale. It can be seen that the explicit-based semi-analytical scheme (30) of Borja [34] (the blue solid line) displays
errors of the order of the other semi-analytical schemes. Also noteworthy is the fact that purely Euler-based implicit
schemes display a potential ‘volumetric locking’ with greatly over-predicted mean stresses for volumetric strain increments
beyond a certain size. This behaviour is the result of the form of the stress updating equations (39)2-4 where a possible
zero denominator can be obtained depending on the size of ∆εev. Note, however, that for sufficiently small compaction
strain increments (below about 0.2% in this example) these algorithms produce very reasonable solutions.

Figure 2 presents analogous plots for the stiffness-shifted bulk elasticity model. Model parameters have been defined
to provide a significant initial stiffness K0 = 1GPa but with the mean stress in the same range as in the above Roscoe-
Burland model assessment. The semi-analytical integrations follow expression (35) and the purely Euler-based schemes
applied to this model are summarised below:

p =



pn − vnpn
κ ∆εev +K0∆εev (explicit case)

pn+K0∆εev
κ+vne

∆εev∆εev
κ (implicit case)

K0κ∆εev+pn

(
κ−vne

∆εev
2

∆εev
2

)
κ+vne

∆εev
2

∆εev
2

(midpoint case with θ = 1
2 )

pn+K0∆εev
2

(
1 + κ

κ+vne
∆εev∆εev

)
− 1

2
vnpn
κ ∆εev (trapezoidal case with θ = 1

2 ).

(41)

The graph of Figure 2(a) shows results obtained for the mean stress versus the volumetric strain increment. The ana-
lytical solution is plotted in the solid black line. The purely-Euler numerical integrations present the largest deviations,
especially for the explicit and implicit schemes for |∆εev| greater than about 0.003. In this case, no ‘volumetric locking’
is observed within the tested range of ∆εev. However, the mean stress update formulas (41)2-4 present similar potentially
zero denominators in the implicit, midpoint and trapezoidal cases, depending on the size of ∆εev. The expression of the
semi-analytical integration schemes of (35), on the other hand, do not present any singularities. Figure 2(b) shows that
the stiffness-shifted model produces a curved swelling line in the semi-log representation. This is at variance with the
Roscoe-Burland model, whose semi-log representation of the swelling line is straight. This difference can be understood
by noting that the specific volume expression, given by (24) for the Roscoe-Burland model, takes the form

v = v0 − κeff ln(p/p0), (42)

for the stiffness-shifted bulk modulus defined by (28), where

κeff(p, v) ≡ 1
1
κ −

K0

v p

(43)
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Figure 2: Numerical integration schemes for the stiffness-shifted mean stress constitutive equation in the elastic regime.
Accuracy assessment. (a) Mean stress, p, versus volumetric strain, ∆εev; (b) Swelling line; (c) Relative error of mean stress
integration (semi-log graph), and; (d) Relative error of mean stress integration (log-log graph).

is an effective swelling index. The non-linearity of the swelling line in the semi-log graph stems from the second term
in the denominator of the above expression – with a greater nonlinearity for low values of compressive mean stress,
which decreases with increasingly compressive p.2 We note that the nonlinearity of the swelling line for this model has
experimental implications. The identification of the bulk elastic parameters – κ and K0 in this case – can be more
conveniently carried out using the K vs. vp linear plot associated with (28).

Figure 1(c) plots the relative errors of the integration schemes. Again, semi-analytical forms perform much better than
the purely Euler-based schemes. In the log-log graph of 1(d) the relative integration errors become more evident. Similarly
to the Roscoe-Burland model, the stiffness-shifted elastic constitutive model is best integrated using the semi-analytical
schemes. In summary, all first and second-order semi-analytical integrators appear to present sufficient accuracy to be
incorporated into the proposed elastoplastic framework. We note, however, that due to their simplicity, only the first-order
schemes will be adopted in the present development.

2Note that while the stiffness-shifted model allows for tensile mean stresses, the swelling line does not have a representation under tension.
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3.3 Adopted elasticity models
Classical isotropic linear elasticity implies the following relation between the Poisson’s ratio, ν, the shear modulus, G, and
the bulk modulus, K,

G =
3

2
K

1− 2ν

1 + ν
, (44)

where ν, K and G are constants. In the modelling of geomaterials, the elastic constitutive behaviour is normally described
by the rate form (9) where the bulk modulus can be a variable, such as in the bulk elasticity models discussed in the
previous section. In such cases, it is common to still enforce (44) – now with variable K – and then choose to either keep
constant the shear modulus (G-constant) or the Poisson’s ratio (ν-constant).

In this context, it is convenient to re-write the rate form (9) in an equivalent incremental form:

∆p = K̄∆εev, ∆s = 2Ḡ∆εe, (45)

where Ḡ and K̄ are secant shear and bulk moduli, respectively. For the ν-constant variant, the following relation holds
between the secant moduli [34]:

Ḡ = rK̄, (46)

where
r ≡ 3

2

1− 2ν

1 + ν
, (47)

and K̄ depends on the adopted bulk elasticity model. For the stiffness-shifted bulk elasticity model, the secant bulk
modulus is found to be given by3

K̄ (∆εev,∆εv) =
κ

v̄

K (pn, v̄)−K (pn+1, v̄)

∆εev
. (48)

For the linear elastic case, K̄ = K and Ḡ = G.

Remark 3.2 The formulation of the elastic laws in terms of secant moduli is very attractive in the present context and will
be adopted in the proposed elastoplastic scheme. It allows the different elastic models used in geomechanical simulations
to be easily implemented within a single computational framework.

In tensorial form, the incremental isotropic elasticity law reads

∆σ = ∆pI + ∆s. (49)

For convenience, a summary of the elasticity models incorporated in the proposed elastoplastic framework is listed in
Table 1.

model acronym elastic moduli
K̄ Ḡ

linear ILE constant K constant G

nonlinear bulk, G-constant INE κ
v̄
K(pn,v̄)−K(pn+1,v̄)

∆εev
constant G

nonlinear, ν-constant INhE κ
v̄
K(pn,v̄)−K(pn+1,v̄)

∆εev
Ḡ = rK̄

Table 1: Implemented elastic model alternatives

3We note that the secant modulus formula (48) retrieves the tangent modulus K for vanishingly small ∆εev , i.e. lim∆εev→0 K̄ = K(pn, vn).

10



Two-invariant representation and linearisation

The representation of the adopted elastic laws in terms of stress and strain invariants will be crucial to simplify the
elastoplastic integration algorithm discussed later. In the ILE model, ∆σ is a function of the elastic strain exclusively and
therefore can be represented as ∆σ ≡ ∆σ(∆εe). In the INE and INhE models, however, ∆σ also depends on the specific
volume v̄, as can be seen in Table 1. By recalling the definition (33, 34), v̄ is a function of the total volumetric strain,
∆εv, in the semi-analytical elastic mean stress integration schemes with θ 6= 0. Thus, the discrete stress increment, ∆σ,
can be generally expressed as ∆σ(∆εe,∆εv) for all elastic models. The linearisation of these models will be needed in
order to compute the constitutive tangent operators consistent with the adopted elastoplastic algorithms described later.
Using the definition of stress and strain invariants (6), the adopted elasticity constitutive models can be linearised as

d~σ = C̃e d~ε e + C̃t d~ε, (50)

with coefficient matrices (tangent operators)

C̃e ≡
[
∂~σ

∂~ε e

]
, C̃t ≡

[
∂~σ

∂~ε

]
=
∂~σ

∂v̄
⊗ ∂v̄

∂~ε
. (51)

It is convenient for the modularity of the proposed elastoplastic framework to present the expressions for C̃e and C̃t for
the considered elastic constitutive models. In the ILE elasticity model these operators are constant:

C̃e =

[
K 0
0 3G

]
; C̃t = 0̃, (52)

where 0̃ is the 2× 2 zero matrix.
In the context of the nonlinear elasticity models adopted here, it suffices to present expressions for C̃t for θ = 0 and

θ = 1. For the INE model, we have

C̃e =

[
Kn+1 0

0 3G

]
; C̃t =


0̃ for θ = 0

v̄ ∂K̄∂v̄

[
∆εev 0

0 0

]
for θ = 1.

(53)

For the INhE model,

C̃e =

[
Kn+1 0
∂q
∂K̄

∂K̄
∂∆εev

3rK̄

]
; C̃t =


0̃ for θ = 0

v̄ ∂K̄∂v̄

[
∆εev 0

3r∆εed 0

]
for θ = 1,

(54)

recalling that K̄ ≡ K̄(∆εev,∆εv). The derivatives of K̄ in the above are

∂K̄

∂∆εev
=

{
Kn+1−K̄

∆εev

− 1
2
v̄
κKn

∆εev > 0

∆εev ≈ 0
(55)

and

∂K̄

∂v̄
=

{
1
v̄

[(
Kn + k

v̄
K0

∆εev

)
e−

v̄
κ∆εev − k

v̄
K0

∆εev

]
−pnκ

for ∆εev > 0

for ∆εev ≈ 0.
(56)

In the above expressions, Kn ≡ K(pn, vn) and Kn+1 ≡ K(pn+1, v̄). For the INhE model in (54), the expression for ∂q/∂K̄
in the elastic regime can be obtained as a special case of the more elaborate elastoplastic case, which will be defined later
in the text.

4 Hardening law
The main purpose of the proposed elastoplastic framework is the accurate modelling of the rock compression behaviour.
A reference work in the compaction of geomaterials is the virgin or normal compression line (NCL) proposed by Terzaghi
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Figure 3: Terzaghi’s normal compaction line

[13, 15]. It relates the specific volume, v, of the geomaterial to the normal compaction (or preconsolidation) mean stress,
pc, in a hydrostatic compression experiment under virgin compaction condition. As expressed by (11), the evolution of v is
intrinsically related to the total volumetric strain in rate form, ε̇v. Hence, in the compaction model of Terzaghi alone there
is no distinction between the elastic and plastic compression behaviours, which is necessary in an elastoplastic framework.
As it will be discussed further below, when used in conjunction with the Roscoe-Burland bulk elasticity model – a usual
practice – the Terzaghi model yields an isotropic hardening evolution law of the type

ṗc ≡ H(pc, v)ε̇pv, (57)

where pc and the volumetric plastic strain, εpv, become the variables associated to hardening. In this context, pc has
the role of a thermodynamic force, εpv becomes the associated internal variable and H is the experimentally-determined
hardening modulus – itself a function of pc and v.

Remark 4.1 Given the importance of the Terzaghi compaction model and the generality provided by (57), the hardening
models proposed in the present elastoplastic framework will adopt generalised rate-form evolutions of the type (57).

In what follows, it will be shown that the Terzaghi compaction model used in conjunction with the bulk elasticity
models discussed in section 3 is prone to inconsistencies under tensile mean stress regimes. The authors propose the used of
an alternative expression for the hardening modulus that, when used in conjunction with different bulk elasticity laws, yield
a wider family of modified Terzaghi compaction models. The original Terzaghi compaction model with Roscoe-Burland
bulk elasticity is a particular member of this family.

Remark 4.2 This alternative hardening model used in conjunction with linear elasticity is not a novelty itself, but the
assessment of its impact on the shape of the NCL in the v vs. log(−pc) representation seems to have been neglected in the
literature. The resulting compaction curves for this hardening model used together with the proposed bulk elasticity laws
will be discussed below.

The Terzaghi compaction model. Elastoplastic description
The original Terzaghi compaction model is described by means of the NCL, which relates the normal compaction pressure,
pc, to the specific volume, vc, as observed during a virgin compression experiment, by

vc = N − λ ln(−pc), (58)

where the constant λ is the compression index or gradient of the compression line and N (also a constant) the specific
volume intercept at pc = −1. The NCL is represented as a straight line in a v vs. log(−p) graph, as seen in Figure 3.
When cast within an elastoplasticity framework in conjunction with the classical Roscoe-Burland bulk elasticity model,
the Terzaghi compaction model yields a hardening law for the evolution of pc – the hardening thermodynamic force in the
elastoplastic context – that can be written in rate form as [15, pp 93-97]

ṗc
pc

= − v

λ− κ
ε̇pv, (59)

where the rate of pc is explicitly expressed as a function of the volumetric plastic strain rate. If the bulk elasticity models
discussed in section 3 were to be used instead, the evolution of pc would still be expressed in the same format as (59) but
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with κ replaced with the (variable) effective swelling index κeff, i.e.

ṗc
pc

= − v

λ− κeff
ε̇pv, (60)

with each bulk elasticity model having an appropriate definition of κeff. In this case, the linear bulk elasticity model has

κeff = κeff(p, v) ≡ K

v p
, (61)

and the stiffness-shifted nonlinear elasticity law uses definition (43).

A class of modified Terzaghi models
The elastoplastic framework proposed in this paper can incorporate any hardening model that can be expressed in the
format (57). For example, the classical Terzaghi compaction model combined with the Roscoe-Burland bulk elasticity law
(59) can be cast as (57) with

H(pc, v) = − v

λ− κ
pc. (62)

The models (60), on the other hand, cannot be expressed in this format. We also note that the denominator of the
hardening evolution rule (60) becomes zero or negative for κeff ≥ λ, which is clearly physically inconsistent. In the
assessment of the present framework we will adopt a class of models, based on a modified Terzaghi compaction law, that
can be expressed in the format (57) and, at the same time, avoids this potential inconsistency.

In this context, a class of modified Terzaghi models will be postulated by assuming a hardening law expressed as

ṗc
pc

= − v
χ
ε̇pv, (63)

where χ – assumed constant regardless of the adopted bulk elasticity model – has the physical meaning of a hardening
index, together with any of the bulk elasticity models discussed in section 3. The above is equivalent to (57) with a
hardening modulus

H(pc, v) = − v
χ
pc. (64)

For this class of models, it is convenient to define the effective compression index,

λeff ≡ χ+ κeff. (65)

Note that, since χ is a constant and κeff can be variable, the effective compression index is generally variable. This results
in a modified version of the original Terzaghi compaction law, (58) expressed as

vc = N − λeff ln(−pc), (66)

whose normal compaction line is generally non-linear in its semi-log graph representation. This will be further discussed
below. It should also be noted that λeff is dependent on the adopted elasticity model due to its dependance on κeff. This
is at variance with the original Terzaghi compaction model.

Shape of the NCL for different elastic models
First, let us recall that the NCL describes the compaction behaviour of the material under monotonic hydrostatic com-
pression. In this case, p = pc throughout the entire history of loading. Let us also recall that, for any given initial specific
volume v0, vc in the normal compaction line depends only on the history of the total volumetric strain which, in turn, is
the sum of the volumetric elastic and plastic strains.

For the linear elasticity model, the bulk elasticity response in rate form is defined by (9)1 with constant K. The
total volumetric strain in rate form, ε̇v, is the sum of the elastic and plastic components, ε̇ev and ε̇pv, from (9)1 and (63),
respectively. Then, in the elastoplastic case we have

ε̇v = ṗc

[
1

K
− χ

v pc

]
. (67)
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Figure 4: Shape of NCL and hydrostatic elastic (swelling) lines for the proposed hardening model in conjunction with the
linear bulk elasticity model. (a) p vs. ∆εv graph, and; (b) v vs. log(p/p0) graph.

For the stiffness-shifted bulk elasticity model, the volumetric elastic strain rate can be obtained from (29). By adding
it to the volumetric plastic strain of the proposed hardening model (63), the rate form of the total volumetric strain for
the stiffness-shifted bulk elasticity law can be expressed as

ε̇v = ṗc

[
κ

κK0 − v pc
− χ

v pc

]
. (68)

Remark 4.3 Note that, if the elasticity stiffness-shift parameter K0 is set to zero, expression (68) recovers the original
Terzaghi hardening law with the Roscoe-Burland bulk elasticity model presented in (60).

For each combination of elasticity bulk model with the proposed hardening law, example representations of NCLs and
swelling lines are presented in Figures 4 and 5. The results for swelling lines and the NCLs for the hardening model
combined with linear bulk elasticity plotted in Figure 4 were obtained with numerical integration of expressions (9)1 and
(67), respectively. For the combination of the hardening model with the stiffness-shifted bulk elasticity model, the swelling
lines and the NCLs plotted in Figure 5 were computed by the numerical integration of (29) and (68), respectively. In all
cases, the specific volume is simultaneously numerically integrated using (11). In what follows, the numerical computation
of the NCLs started from the reference state (p, v) = (−1MPa, 1.4286) (equivalent to a porosity of 30%). The main
material parameters are presented in the figures. The swelling lines were obtained by elastic unloading from states at the
NCL with preconsolidation pressures pc = 5, 10 and 20 MPa.

In the graph of Figure 4(a), the linear nature of the bulk elasticity model used is reflected on the straight shape of
the swelling lines. In the usual v vs. log(p/p0) plot of Figure 4(b) both the NCL and the swelling lines are nonlinear, with
increasing nonlinearity with increasing compression. This result was already expected, given the expression (61) of the
effective swelling index, keff.

On the other hand, the graphs of Figure 5 show the NCL and the swelling lines to be nonlinear in all representations.
Figure 5(b), however, shows a slight linear trend of both the NCL and the swelling lines under high compression. From
the definitions (43) of κeff of this bulk elasticity model and (65) of λeff, indeed, it is clear that limp→±∞ keff = κ and also
limp→±∞ λeff = λ.

Remark 4.4 The proposed stiffness-shifted bulk elasticity model and hardening law retrieves the original Roscoe-Burland
bulk elasticity and Terzaghi hardening models, respectively, for high compression. Thus, this combination can be truly
regarded as a regularisation of the original models under tension or small compression.

Integration of the compaction model and linearisation
The numerical computations presented earlier in this section focused on obtaining the NCL, which shows the mean pressure
against the total volumetric strain. However, the general elastoplastic framework requires the integration of the hardening
law in terms of the plastic volumetric strain. Analogously to the semi-analytical integration of the bulk elastic law seen
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Figure 5: Shape of NCL and hydrostatic elastic (swelling) lines for the proposed hardening model in conjunction with the
stiffness-shifted bulk elasticity model. (a) p vs. ∆εv plot, and; (b) v vs. log(p/p0) plot.

in section 3, the integration of the hardening law (63), of the class of modified Terzaghi models considered in the present
framework, between pseudo-times tn and tn+1 can be approximated by holding the specific volume v constant equal to v̄
during the step. This gives

pc ' pc(∆εpv,∆εv) = pcne
− v̄χ∆εpv , (69)

where the dependence of pc on ∆εv comes from the numerical integration rule (33, 34). Note that when θ = 0 there is no
such dependence.

Remark 4.5 The semi-analytical integration scheme with θ = 0 is widely adopted in the integration of the Terzaghi
compaction law [12, 34]. This semi-analytical integration approach has been applied more often in the hardening law than
in the bulk elastic modulus. This points to a curious asymmetry in the implementations of many authors, like Anadarajah
[12], where the hardening law is integrated as above but the bulk elasticity law is integrated by a pure Euler scheme.

Expression (69) has the same format as the integration of the Roscoe-Burland bulk elasticity constitutive model (32).
Thus, the same benefits identified in the accuracy assessment results of section 3.2 apply here.

Remark 4.6 In the present work, the semi-analytical approach is adopted for both the hardening and bulk elasticity laws,
with θ = 0 and θ = 1 alternatives. The latter is adopted in the novel fully-implicit Euler integration proposed in this paper.

Within the present framework, the linearisation of (69) will be required to assemble the constitutive tangent operator
consistent with the adopted integration scheme. Its linearised version reads:

dpc = hp dεpv + ht dεv, (70)

with hp ≡ ∂pc/∂εpv and ht ≡ ∂pc/∂εv the hardening moduli due to plastic and total volumetric strain. For the compaction
hardening model presented in this section,

hp(∆εpv,∆εv) = − v̄
χ
pc(∆ε

p
v,∆εv) (71)

and

ht(∆εpv,∆εv) ≡
dpc
dv̄

dv̄

d∆εv
=

{
0 for θ = 0

∆εpv h
p(∆εpv,∆εv) for θ = 1.

(72)

It is particularly convenient for the solution of the return mapping equations in the present context that we expand
the scalar relation above in terms of the strain invariants (6):

dpc = ~Ht · d∆~ε+ ~Hp · d∆~ε p; (73)
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where ~Hp and ~Hp are coefficient vectors representing the gradients of pc with respect to the plastic and total strain
invariants:

~Hp =

[
hp(∆εpv,∆εv)

0

]
; ~Ht =

[
ht(∆εpv,∆εv)

0

]
. (74)

5 The elastoplastic constitutive problem
The generalised elastoplastic constitutive problem considers a given discrete strain increment ∆ε∗ imposed over a pseudo-
time step [tn, tn+1]. The internal state variables – taken here as the plastic strain, εp, and the hardening variable, α –
are known at tn. In the proposed elastoplastic framework, the hardening variable is the plastic volumetric strain itself,
εpv. With (7), (14) and (20)1, the discretised backward Euler version of the elastoplastic constitutive initial value problem
consists in finding the unknowns εe and εpv at tn+1 and ∆γ such that{

εen+1 = εen + ∆ε∗ −∆γNn+1

εpvn+1 = εpvn + ∆γNvn+1

, (75)

where Nn+1 ≡ N(~σn+1, pcn+1) and Nvn+1 ≡ tr(Nn+1). The time stage subscripts at tn+1 are shown in this section for
clarity. The system of equations (75) is subject to the complementarity conditions enforced at tn+1:

Φ(σn+1, pcn+1) ≤ 0, ∆γ ≥ 0 ∆γ Φ(σn+1, pcn+1) = 0, (76)

with σ and pc obtained by numerical integration as described in sections 3 and 4.
The above set of equations lead to a classical elastic predictor/plastic corrector algorithm [9, 11, 12] consisting of:

• An elastic predictor or elastic trial stage, where the strain increment is supposed to be purely elastic. Hence, ∆γ ≡ 0
and only (76)1 remains unchecked. The trial state at tn+1 (indicated with subscript tr) obtained from (75), is defined
by

εetr ≡ εen + ∆ε∗, εpvtr ≡ ε
p
vn, (77)

and the corresponding integrated σtr and pctr = pcn. If Φ(σtr, pctr) ≤ 0, the elastic trial state is consistent with
the discrete complementarity rule and is accepted as the integrated solution:

εen+1 := εetr; εpvn+1 := εpvtr; σen+1 := σetr; pcn+1 := pctr. (78)

If Φ(σtr, pctr) > 0, then the trial state violates the complementarity rule and the plastic corrector is executed;

• A plastic corrector or return mapping algorithm, where (75) is solved together with the plastic consistency condition

Φ(σn+1, pcn+1) = 0, (79)

with ∆γ > 0.

5.1 The return mapping in the two-invariant space
The return mapping can be expressed in the two-invariant space under the conditions to be presented below. This
produces a return mapping that is radial in the deviatoric space, which is a fundamental part of the proposed elastoplastic
framework. In this sense, it is convenient to write the deviatoric tensor component of (75)1 using the discretized version
of (20)2:

∆εe = ∆ε−∆γNεn+1. (80)

Applying the secant shear elastic relation (45)2 to the deviatoric strain increment above and recalling sn+1 = sn + ∆s
together with (18)2, the deviatoric stress update becomes

sn+1 = str −
√

6Ḡ∆γ

[
∂Ψ

∂q

]
n+1

sn+1

‖sn+1‖
. (81)

where Ḡ is the appropriate shear modulus and str the trial deviatoric stress, defined by

str ≡ sn + 2Ḡ∆ε. (82)
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In expression (81), sn+1 and str are found to be collinear, with

n̂ ≡ sn+1

‖sn+1‖
=

str
‖str‖

. (83)

Remark 5.1 Note that the collinearity of sn+1 and str is intrinsically related to the choice of a backward Euler as the
integration scheme in (80).

This collinearity allows expression (81) to be reduced to a scalar shear stress update equation with (1)2:

qn+1 = qtr − 3Ḡ∆εpd, (84)

with qtr the trial von Mises stress,

qtr ≡
√

3

2
‖sn + 2Ḡ∆ε‖. (85)

Expressions (84, 85) in conjunction with Table 1 completely define the stress update equation of the present elastoplastic
framework in the two-invariant space. Further, let us recall the plastic flow vector ~N = ~N(~σ, pc) and its invariant
components (17) and (18)1 to build the system of equations of the return mapping:

Φn+1 = 0

~ε en+1 = ~ε en + ∆~ε−∆γ ~Nn+1

εpvn+1 = εpvn + ∆γNvn+1

, (86)

with ~ε e the elastic strain invariants (6)2 with two independent scalar components and Φn+1 ≡ Φ(σn+1, pcn+1). The
system has a total of four scalar unknowns in ~ε e, εpv and ∆γ.

Remark 5.2 The return mapping in the two-invariant space imposes an additional constraint on elastoplastic models
paired with the INhE elasticity law in the proposed elastoplastic framework. In these particular cases, the yield function
must not depend on the third invariant, i.e. we must have

∂Φ/∂Θ = 0. (87)

where Θ is the Lode angle. Recall that, at the outset, we have assumed ∂Ψ/∂Θ = 0 in (16). Hence, equations (86) of the
return mapping become independent of the third invariant and the procedure can be executed in the two-invariant space.
For the ILE and INE elasticity models, however, the two-invariant format remains valid even when the yield criterion
depends on the third invariant because, in such cases, ∂Θ/∂~ε e = ~0 and ∂Θ/∂εpv = ∂Θ/∂∆γ = 0.

Note that str in (82) and qtr in (85) are computed from sn, ∆ε and Ḡ. In the return mapping, sn and ∆ε are given.
For the ILE and INE elasticity models proposed in section 3, Ḡ ≡ G is also a given constant and so are str, qtr and n̂ in
their respective elastoplastic models. In the INhE elasticity model, however, (47, 48) give Ḡ ≡ Ḡ(∆εev,∆εv). In this case,
recalling that ∆εv = ∆ε∗v is given in the return mapping, the shear trial stresses str and qtr are computed based on ∆εev,
which is a function of the unknown εpv of the system of equations (86)2 stemming from the flow rule and the hardening
law. Hence, the elastoplasticity models that rely on the INhE elasticity law yield a shear trial state (str, qtr) and n̂ that
vary during the return mapping iterations, when solved by a numerical iterative solution scheme.

Remark 5.3 For the elastoplastic problem using the INhE elasticity model, the update of the trial Mises stress (qtr) in
each iteration may be simplified with benefits to the computational performance of the return mapping. The INhE elasticity
model in the present framework constraints the yield criterion to be computed on the two-invariant space, as outlined in
the remark 5.2. In this context, str is not required to be computed along the iterative process. Recalling that sn and ∆ε
are given, the expression (85) can be optimised by expanding the tensor norm

qtr =

√
3

2

(
‖sn‖2 + 4Ḡ sn ·∆ε+ 4Ḡ2 ‖∆ε‖2

)
, (88)

where the scalars ‖sn‖2, sn ·∆ε and ‖∆ε‖2 are constant during the return mapping iterations and are computed prior to
the start of the iterative process. The computation of str is only necessary when computing the final stress state at the end
of the return mapping.
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The derivative ∂q/∂K̄ will be required later to compute the tangent operators consistent with the elastoplastic algorithms
for the INhE elasticity model. It is given by

∂q

∂K̄
=

{
3r
[

1
qtr

(
sn ·∆ε+ 2Ḡ‖∆ε‖2

)
−∆εpd

]
for qtr > 0

0, for qtr ≈ 0
(89)

where the scalars sn ·∆ε and ‖∆ε‖2 are computed prior to the start of the iterative process. Also note that expression
(89) may be used in the context of pure elasticity, with ∆εpd = 0 and qtr = q. It produces the derivative ∂q/∂K̄ for the
INhE elasticity model, referred to in section 3.3.

5.2 Compact system of equations
The particular choice of εpv as the hardening variable allows the system of equations in (86) to be reduced. By rewriting
the strain update (86)2 in terms of the two-invariant plastic strain components (21), equation (86)3 becomes redundant
and can be removed from the system. By noticing that ∆εpv, ∆εpd and ∆γ are related by (21), the two-invariant plastic
strain update expressions can be replaced by the enforcement of collinearity between ∆~ε p and ~N . The return mapping
then reduces to the compact system of two equations to be solved only for the scalar unknowns ∆εpv and ∆εpd (or simply
∆~ε p): {

Φ = 0
1

‖
−→
N‖

(∆εpvNd −∆εpdNv) = 0
(90)

with ~N = ~N(~σ, pc) and Φ = Φ(σ, pc) computed at tn+1 (subscript n+ 1 suppressed for convenience). Note that, in
(90)2, the division by ‖ ~N‖ makes the equation dimensionless. If Φ is also made non-dimensional, the system of equations
becomes itself dimensionless, which is particularly important to preserve objective convergence tolerances.

The expression (90) is the fundamental system of equations of the return mapping of the elastoplastic framework
proposed here. Note that for any given ∆~ε p, the corresponding σ and pc can be trivially computed by means of numerical
integration, as described in sections 3 and 4 and – given the radial return mapping in the deviatoric space – with Θ = Θtr.
In the particular case of the presented elasticity laws, σ is given by the expressions of Table 1 together with (84, 85) and,
for the family of modified Terzaghi compaction laws, pc is given by means of expression (69).

Remark 5.4 This system (90) is inherently compact, with only two unknowns. This is in contrast the traditional approach
[33, 34, 35] where the return mapping algorithms typically comprise systems of four equations.

This formulation may be regarded as a return mapping in the strain invariant space alternative to that proposed
by Borja and Tamagnini [36]. These authors presented a compact return mapping with a three-equation system that
could be further reduced to two equations by static condensation. However, they aimed at finite strain and restricted
their formulation to conservative elasticity models. Their formulation also involves an intermediate projection onto the
principal stretch space, which is not needed here. These two aspects make the new proposed formulation more attractive
in terms of supported elasticity models and required computational effort.

The complementarity loading/unloading condition (76)2 still requires the elastoplastic problem solution to observe
∆γ > 0. The value of ∆γ can be obtained through the projection

∆γ =
∆~ε p · ~N
‖ ~N‖2

. (91)

Alternatively, as the complementarity condition imposes restrictions on the sign of ∆γ only, the following simpler check
suffices:

∆~ε p · ~N > 0. (92)

5.3 Residual linearisation
Let us define the return mapping residual vector,

~r(∆~ε p,∆~ε) ≡

[
Φ

1

‖ ~N‖
(∆εpvNd −∆εpdNv)

]
. (93)
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The residual is written in terms of the plastic and total strain increments. The linearisation of ~r is obtained by
recalling the strain split (7), the two-invariant form of the flow rule (21) and the linearised versions of the elasticity (50)
and hardening (73) models:

d~r = L̃ d∆~ε+ J̃ d∆~ε p; (94)

where
L̃ ≡ ∂~r

∂∆~ε
= M̃σ

(
C̃t + C̃e

)
+ ~V ⊗ ~Ht; (95)

J̃ ≡ ∂~r

∂∆~ε p
= M̃εp − M̃σC̃

e + ~V ⊗ ~Hp. (96)

with the linearised matrix and vector operators M̃εp ≡ ∂~r
∂∆~ε p , M̃σ ≡ ∂~r

∂~σ and ~V ≡ ∂~r
∂pc

dependant on the yield function and
on the flow rule through the relations

M̃εp =
1

‖ ~N‖

[
0 0

Nd −Nv

]
; M̃σ =

 [
∂Φ
∂~σ

]T(
~VN

)T
∂ ~N
∂~σ

 ; ~V =

 ∂Φ
∂pc

~VN · ∂
~N

∂pc

 , (97)

with

~VN ≡
∂r2

∂ ~N
=

1

‖ ~N‖

{[ −∆εpd

∆εpv

]
−

~N

‖ ~N‖
r2

}
, (98)

where r2 is the second component of the residual ~r. The system Jacobian is defined in (95) and (96) and is modular, which
allows the construction of linearised systems of equations for any constitutive models compliant with the assumptions of
the present framework.

5.4 Solution and tangent operator
Since the total strain increment ∆~ε ∗ is fixed in the return mapping, L̃ = 0̃ throughout the iterations. The residual
has ∆~ε p as the only unknown and J̃ becomes the Jacobian. The system of equations can be solved by a conventional
Newton-Raphson scheme. At the converged solution, condition (92) must hold.

At the converged return mapping solution, the strain split together with the Taylor expansion of ~r around (∆~ε ∗,∆~ε p),
we obtain

T̃ ≡ d~ε e

d~ε
= Ĩ − J̃−1 L̃. (99)

Given the relation (99) and the linearisation (50) of the elastic stiffness operator, the elastoplastic constitutive tangent
consistent with the algorithm in the two-invariant space, defined as

D̃ep ≡ ∂~σ

∂~ε
=

[
∂p
∂εv

∂p
∂εd

∂q
∂εv

∂q
∂εd

]
, (100)

can be expressed as

D̃ep = C̃e T̃ + C̃t, (101)

noting that all quantities involved in the computation of the tangent operator are values at their converged solution. In
the case of a purely elastic increment, the elastoplastic tangent (101) retrieves the elastic tangent, C̃ = C̃e + C̃t, in the
two-invariant space.

The computation of D̃ep requires the inversion of a 2×2 matrix in (99), which is much less expensive than the inversion
of a 4× 4 system as proposed in general elastoplastic solvers [11].
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5.5 Tensor form
Once the solution (∆εpv, ∆εpd) (or simply ∆~ε p) of the above return mapping is obtained in terms of the two-invariant
representation, the plastic strain tensor is updated trivially by using the spherical-deviatoric decomposition (18, 20) as

εp = εpn +
1

3
∆εpv I +

√
3

2
∆εpd n̂. (102)

Similarly, from (1, 2) and the values of p, q and n̂ at the solution,

σ = p I +

√
2

3
q n̂. (103)

The expression for the fourth-order elastoplastic consistent tangent tensor,

Dep ≡ ∂σ

∂ε
, (104)

follows by taking derivatives of (103), as an extension to the development of Borja et al. [35]:

Dep =

(
D̃11 −

1

3
g

)
I ⊗ I + g Is+

+

[
2

3
D̃22 − g −

√
2

3
T̃12 t (∆ε · n̂)

]
n̂⊗ n̂+

+

√
2

3
D̃12 I ⊗ n̂+ (105)

+

[√
2

3
D̃21 − T̃11 t (∆ε · n̂)

]
n̂⊗ I+

+ T̃11 t∆ε⊗ I+

+

√
2

3
T̃12 t∆ε⊗ n̂,

where Is is the forth-order symmetric identity tensor, I the second-order identity tensor, · denotes the scalar product, ⊗
the tensor product and

g = 2Ḡ
q

qtr
, (106)

and

t = 2
dḠ

dεev

q

qtr
. (107)

The terms with t in (105) need to be computed only if the shear modulus Ḡ is variable (INhE elastic model). If the trial
stress state is hydrostatic, (105) reduces to:

D|qtr=0 =

[
D̃11 −

2

9
D̃22

]
I ⊗ I +

2

3
D̃22 Is. (108)

5.6 Summary
This section presented the formulation of the integration framework for the modular elastoplastic constitutive problem
proposed in the present paper. It also discussed the impacts of each element of the elastoplastic constitutive problem in the
formulation and the compatibility constraints. The algorithms and the implementation details satisfying the conditions
presented here are detailed in the Appendix A.
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Figure 6: The adopted generalised MCC yield surface.
a) p-q plane representation; b) deviatoric plane representation.

6 Accuracy and performance
This section presents an assessment of the performance and finite-step accuracy of the proposed elastoplastic framework
against existing formulations. The flexibility of the framework allows it to be compared against a range of formulations
in the family of isotropic elastoplastic constitutive models. To keep it brief, the assessment will use the most common
elastoplastic constitutive model adopted in the analysis of geomaterials – the Modified Cam-Clay model. For this model
there is a very efficient elastoplastic formulation proposed by Borja [34] that will be used here as a benchmark for the
comparisons. Borja postulated a return-mapping based on a system of four nonlinear equations paired with a closed-form
expansion towards the tensorial stress and strain spaces for the consistent stiffness tensor. His expansion thus dismisses
the typical numerical inversion of a 4x4 matrix to compute the stiffness tensor. The authors believe that, if the novel
formulation is competitive to that of Borja, then it should be competitive to any other formulation in the literature.

The Modified Cam-Clay model is retrieved in the present modular framework by using the elasticity model INhE with
zero stiffness-shift, K0 = 0. The model is coupled with associative flow.

6.1 Yield function and flow rule. The Modified Cam-Clay
The Modified Cam-Clay (MCC) elastoplastic constitutive model as proposed by Roscoe and Burland [13] has been a
standard in soil and rock analysis, especially for geomaterials complying with the critical state theory. There are variants
proposed to enhance predictive capability, known as generalised Cam-Clay models. In regards to yield criteria, some
generalisations include asymmetry in the hydrostatic semi-axes of the ellipse in the compaction and dilation zones [31, 11,
32], asymmetry on the deviatoric plane [31, 32] and tensile domain [11, 32].

The present work adopts the yield surface schematically represented in Figure 6 in the p-q and deviatoric projections.
The critical state line (CSL) is presented in Figure 6(a) as a double line. It is the alternative documented by de Souza
Neto et al. [11] with the normalising factor 1/a2 proposed by Sanei et al. [32]:

Φ(~σ, pc) =
1

b2

(
p− pt
a

+ 1

)2

+
( q

Ma

)2

− 1, (109)

with pc always negative and a and b given by

a(pc) =
pt − pc
1 + β

; b =

{
1 p ≥ pt − a
β p < pt − a.

(110)

The model parameters are the tensile strength in the hydrostatic axis, pt, the slope of the critical state line, M , and
the asymmetry shape factor of the envelope in the dilatant and compactant zones, 0 < β ≤ 1. The envelope is a surface of
revolution around the hydrostatic axis (Figure 6b). The tensile strength, pt, not only expands the original MCC domain
towards tension, but also shifts the CSL along the hydrostatic axis, as shown in Figure 6(a). The original MCC is retrieved
when pt = 0 and β = 1.

Within the proposed elastoplastic framework, the derivatives of the above generalised MCC yield function with respect
to the stress invariants and to the hardening parameter pc will be needed:
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∂Φ

∂~σ
=

2

a

[
1
b2

(
p−pt
a + 1

)
q

aM2

]
, (111)

∂Φ

∂pc
=

2

a

1

(1 + β)

[
Φ− 1

b2

(
p− pt
a

+ 1

)
+ 1

]
. (112)

As in the original MCC model, associativity of the plastic flow is adopted here, i.e. ~N ≡ ∂Ψ
∂~σ = ∂Φ

∂~σ and

∂ ~N

∂~σ
=

2

a2

[
1
b2 0
0 1

M2

]
; (113)

∂ ~N

∂pc
=

2

a

1

(1 + β)

{
~N −

[
1
ab2

0

]}
. (114)

6.2 Numerical results
The MCC model in the proposed elastoplastic framework and the formulation of Borja were implemented here using
the C++ programming language with minimum usage of object-orienting abstraction4. It resembles plain C for the
implementation of the formulation of Borja, except for the support of matrices for the linear solver of the system of
equations. On the other hand, the implementation of the present model required more object-oriented features because of
the required matrix operations in the modular construction of the system of equations. It followed the algorithm detailed
in the Appendix A.

Both models were implemented using the Eigen package (v. 3.3.9) for the matrix containers and the linear algebra
support. The matrix containers are dense of fixed size and based on static memory allocation. Eigen relies on expression
template strategies to expand operations and unroll loops on fixed-size matrices at compile-time, therefore reducing
execution point indirections and improving native compiler optimisation of the executable code. Eigen is claimed to
perform as efficiently as the known libraries MKL, GOTO BLAS and ATLAS using dynamic-size matrices of up to
2000× 2000 elements for a variety of matrix and matrix-vector operations [38]. Fixed-size matrices of sizes smaller than
16 – the case of the matrices used here fall in – are reported to perform even better.

The system of equations of the return mappings are different. Borja uses the expressions for p, q, pc and Φ as the
residual vector. The resulting system of four nonlinear equations is solved by a Newton-Raphson solver and the linearised
system of equations are solved via the Eigen implementation of partial pivot LU decomposition, which we found to be the
best performing linear solver for the task. The residual developed here – equation (93) – yields a system of two nonlinear
equations. It is also solved by a regular Newton-Raphson nonlinear solver and the related linearisations are computed by
means of Cramer’s rule.

Remark 6.1 The proposed integrator requires very few indirections ("if" clauses) in the evaluation and none in the
solution of the linearised system of equations. It suits well the SIMD (Single-Instruction, Multiple-Data) strategy of
contemporary high-performance computation – as required in the usage of GPUs, for instance.

The same convergence tolerance applied to these residual vectors may bias the requested solution quality and render
the comparison unfair. To minimize this effect, the tests were proposed with an initial envelope in the range of 1 ∼ 2
MPa in the p and q variables, in magnitude. The tolerance was set to 10−8 in the Euclidean norm of the residual vectors.
Initial guesses for the return mappings of both formulations were set at the trial state, with p0 = ptr, q0 = qtr, pc0 = pctr
and ∆γ0 = ∆εd0 = ∆εv0 = 0. The material parameters are κ = 0.01 and ν = 0.25 for the elastic model and λ = 0.02
and M = 1.2 with initial preconsolidation of pc = −2MPa for the MCC. The extra coefficients of the present formulation
are β = 1, pt = 0, K0 = 0 and θ = 0 (v̄ ≡ vn) to make the formulations equivalent. The initial stress lies on the
hydrostatic axis, with p = −1MPa. The tests were run on an array of strain increments at an arbitrary distortional
direction (∆ε) such that the trial stresses correspond to invariants in the range ptr ∈ [−10,−0.25] and qtr ∈ [0, 10] in
0.25MPa increments. The quality of the numerical solution is measured by the relative error norm δ defined as proposed
by Borja and Tamagnini [36],

δ ≡

√
(p− p∗)2

+ (q − q∗)2
+ (pc − p∗c)

2√
(p∗)

2
+ (q∗)

2
+ (p∗c)

2
, (115)

4Object oriented programming is known to produce executable codes with more instructions and execution point indirections than procedural
programming, with negative impact on run-time performance [37].
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Figure 7: Isoerror map of the return mapping from each trial stress in terms of δ (115).

Figure 8: Return mapping. Newton-Raphson iterations.

where p∗, q∗ and p∗c are the approximations to the exact solution by applying the strain increment in sufficiently small
equally-spaced substeps so as to obtain convergence of the integration algorithm within machine precision (typically around
1000 substeps were more than sufficient to achieve convergence).

Remark 6.2 Anandarajah [12] recommends the use of solutions of explicit plasticity formulations, where available, as
initial guesses in implicit solvers to improve performance. Here, the trial state was chosen instead. The authors believe
that this choice should bring little to no effect on the performance ratios, as a more efficient initial guess should affect the
performance of both models under comparison in the same way.

Figure 7 presents the isoerror map in the p − q plane, which is obviously valid for both formulations. The initial
MCC envelope is presented in the lower-right corner, in bold line. The deviations from the “exact” solution were small in
the ptr > −4MPa and qtr < 1MPa regions, with deviations of up to 2%, typically. The differences were larger in the
ptr = −qtr diagonal, with deviations of up to 4% for large trial stresses. Although these large trial stresses may appear
unreasonable, especially under infinitesimal strains, it reveals the robustness of the algorithms in dealing with large strain
increments.

The contours in Figure 8 indicate the number of Newton-Raphson steps each formulation required to achieve conver-
gence within the desired tolerance. The number of required steps to solve for each trial stress is fairly similar over the
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Figure 9: Ratio of the elastoplastic constitutive problem solution times of the novel formulation to the reference model of
Borja [34] (a) including the computation of the updated stress and plastic strain in tensor form; and (b) also including
the computation of Dep.

(ptr, qtr) domain, but the novel formulation requires noticeably fewer steps in the region closer to the dry side of the MCC
envelope. As noticed earlier, the convergence tolerance affects each model differently given the residual variables, despite
the care taken to choose appropriate testing ranges. Because quadratic convergence is expected in the Newton-Raphson
algorithm near the solution, any unintended biasing in the quality of the solutions is prone to be overcome by no more
than one iteration and in limited regions. The global picture is not expected to be significantly affected by any biasing.

Figure 9(a) illustrates the ratio of the clock time of the current formulation over that of Borja [34]. These tests were
run5 in a single thread over 105 repetitions for each trial stress. The timed execution involves the application of the strain
increment in Voigt representation, the solution of the return mapping and the expansion of the stress and strain solutions
to Voigt notation. In general terms, the presented procedure performs faster over the whole (ptr, qtr) range. It requires
on average 69% of the execution time of the reference procedure. It is about 45% faster. This result is sensitive to the
number of Newton-Raphson steps of each formulation and this signature is present in the gray contours. In the regions
with the same number of iterations, the presented code requires 70.6% of the execution time, i.e. it is about 41% faster
per iteration.

The grayscale map of Figure 9(b) includes the computation of the consistent tangent operator in Voigt notation.
This execution time ratio averages to 68.8%. It indicates the performance gains in the computation of the consistent
elastoplastic tangent in the proposed formulation to be of the same order as the gains observed in the return mapping
solution.

7 Conclusions
An efficient modular integration framework for two-invariant-based elastoplastic constitutive models was successfully de-
vised, which incorporates a wide family of isotropic elastoplastic models. This development was motivated by the need
in the oil and gas industry for efficient geomechanical solvers and was focussed on the modelling of rock compaction in
geomechanical analyses. The accurate modelling of compaction is a key element to the prediction of hydrocarbon produc-
tion and potential geohazards, crucially important to decision-making in reservoir production planning and management.
The elastoplastic constitutive models the framework proposed to handle are not novelties in themselves. The main contri-
bution here is the modular environment. Within the framework, a fully-implicit scheme is obtained by setting θ = 1 in the
appropriate expressions of the elasticity and hardening models. This class of integrators is a novelty. Existing algorithms,
popular in the literature [12, 31, 32, 33, 34], do not rely on this approach. These can be obtained here by setting θ = 0.
The study has also identified a number of issues in this context that appear to have been neglected in the literature.

The framework was presented with three alternative isotropic elasticity laws comprising linear and nonlinear bulk
5System specs: AMD Ryzen 5 4600H; Ubuntu Linux version 21.04 and gcc compiler version 11.3.
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and shear elasticity models. The nonlinear bulk elasticity model is based on the well-known Roscoe-Burland swelling
line of soils but implements a stiffness-shift to provide a (limited) support in the region of tensile mean stresses, which is
desirable for rock modelling in the present context. This work extended the semi-analytical numerical integration proposed
by Borja [34] to the stiffness-shifted bulk model and it was shown to improve numerical accuracy over the classical, pure
Euler-based numerical integration. In addition, the semi-analytical integration was shown to prevent the critical issue of
artificial ‘volumetric locking’ in the pure Euler-based integrator.

The proposed framework is capable of incorporating isotropic hardening models that take the plastic volumetric strain,
εpv, as the hardening variable and the preconsolidation mean stress, pc, as the corresponding thermodynamical force. The
paper discussed the Terzaghi compaction model and showed that, when used in conjunction with a bulk elasticity model
other than the Roscoe-Burland law, it may lead to physical inconsistencies. The framework adopted a common alternative
hardening law free from elastic terms which successfully prevented such inconsistencies. The coupling of this hardening
law with different elasticity models produced a family of modified Terzaghi compaction models. Crucial insight into
these models was gained by analysing and comparing their corresponding NCLs, which is needed for the determination of
important model parameters from laboratory testing. These two aspects seem to have been overlooked in the literature.

The general integration algorithm was tested and compared against the formulation of Borja [34]. The model adopted
by Borja can be obtained as a particular case of the class of constitutive models that can be handled by the proposed
framework. Despite its modular approach, the proposed framework was found to lead to consistent significant gains in
computational performance (about 45% faster). We note that such a gain in performance may be crucial to analyses in
the context of the oil and gas industry, where very large scale problems are routinely solved. The performance gains can
be attributed to the compact system of two equations of the general return mapping.
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Appendix A Algorithm for the elastoplastic constitutive problem
This Appendix summarizes the algorithm of the integration framework for the modular elastoplastic constitutive problem
proposed in the present paper

The algorithm of box 1 is the entry-point for the solution of the constitutive problem. It details the execution of the
elastic predictor and, if needed, the call to the plastic corrector algorithm. In the sequence, it computes the integrated
state variables and the tangent operator consistent to the elastoplastic constitutive problem. The inputs to the algorithm
are the material parameters, a known material state (v,σ, εp, pc) and the strain increment request, ∆ε∗. For clarity, the
algorithm for the plastic corrector in the two-invariant space is depicted in the algorithm box 2.

One of the crucial elements of the elastoplastic constitutive problem is the elasticity law. As discussed in the paper, the
choice of the elasticity law may imply additional constraints to the formulation and these require individualized execution
steps. The authors chose to present an unified algorithm and to branch the specialized steps where strictly necessary. In
the algorithm, this branching is presented in tabular format, with each column representing an elasticity law. Another
crucial element is the dependence of the yield criterion on the third invariant. In the algorithm, the statement Φ = Φ(~σ, pc)
is true if the yield criterion can be written as a function of the two-invariant space only. If the yield criterion depends
on the third invariant, that statement evaluates to false. These conditions are related to the choice of elasticity model
and yield criterion and are constant for a given elastoplastic constitutive model. Hence, they can be reasoned a-priori to
minimise execution-time overhead. Aside from these conditions, alternative yield criteria, flow rules and hardening laws
supported by the framework have no impact on the implementation stencil and are therefore transparent to the algorithm.

Remark A.1 The computation of the updated stress in the case the yield criterion depends on the third invariant (see
algorithm of box 2) can be singnificantly simplified if the yield criterion is expressed explicitly in terms of the invariants,
Φ = Φ ((~σ,Θtr) , pc). We recall that this case does not support the elasticity model INhE. In what follows, neither str, n̂
nor σ need to be computed – the trial Lode Angle Θtr is computed instead. In this context, Θtr is constant during the
iterative process.

For brevity, the algorithm omits the determination of the tangent operator when the elastic predictor succeeds. The
computation of the tangent operator is straightforward for the ILE and INE models. In the ILE case it is even constant
and it can be computed outside the scope of the elastoplastic constitutive problem for optimised reuse. For the INhE
model, the stiffness matrix may be obtained by applying the expansion of the elastoplastic tangent tensor of subsection
5.5 to the two-invariant form of the elasticity tangent operator, C̃e + C̃t.

We recall that not all combination of elasticity model and yield criterion type is supported in the framework, as
explicitly indicated by the the assertion clause in the algorithm 2. We also note that the algorithms do not include
execution exceptions nor error handling.
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Algorithm 1 Solver of the elastoplastic constitutive problem
1: Elastic predictor (imposed ∆ε∗)

∆ε∗v ← tr(∆ε∗) ∆ε∗ ← ∆ε∗ − 1
3∆ε∗v I

∆εev ← ∆ε∗v
εptr ← εpn pctr ← pcn;

Compute trial stress state according to elasticity model:
ILE INE INhE

K̄ (∆εev,∆ε
∗
v) via (48)

ptr ← pn +K∆ε∗v ptr ← p (∆εev,∆ε
∗
v) via (35) ptr ← pn + K̄∆ε∗v

str ← sn + 2G∆ε∗ str ← sn + 2G∆ε∗ str ← sn + 2rK̄∆ε∗

σtr ← ptr I + str

2: Check elastic admissibility
IF Φ(σtr, pctr) ≤ 0 THEN SET (•)n+1 ← (•)tr; v ← vne

∆εv and EXIT.

3: Return mapping. Solve the system of equations
GOTO Algorithm 2;

4: Update the state variables, v, εp, σ and pc:
v ← vne

∆εv

Retrieve computed {p, q, qtr, pc,∆~ε p} from last iteration of the return mapping solver.
IF qtr ≈ 0 THEN

εp ← εpn + 1
3∆εpv I

σ ← p I
ELSE

Update the trial stress according to elasticity model:
ILE INE INhE

not necessary not necessary str ← sn + 2rK̄∆ε∗

n̂← str
‖str‖

εp ← εpn + 1
3∆εpv I +

√
3
2∆εpd n̂

σ ← p I +
√

2
3q n̂

5: Compute the consistent tangent operator, if requested:
Retrieve computed

{
M̃σ, C̃

e, ~V , J̃
}

from last iteration of the return mapping solver;
Compute:

ILE INE INhE

C̃t from (52)2 C̃t from (53)2 C̃t from (54)2

~Ht from (74)2, using (72) for the case of modified Terzaghi hardening;
L̃, T̃ and D̃ep from (95), (99) and (101), respectively;

Compute the elastoplastic consistent tangent tensor Dep:
IF qtr ≈ 0 THEN use (108)
ELSE use (105, 106, 107)

6: EXIT
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Algorithm 2 Newton-Raphson algorithm for the solution of the return mapping
1: Initialize iteration counter and propose initial guess

i← 0
∆~ε p ← ~0

Prepare the following constants according to the elasticity model:
ILE INE INhE

‖sn‖2, sn ·∆ε and ‖∆ε‖2
qtr by (85) qtr by (85)
C̃e from (52)1

IF not ( Φ = Φ (~σ, pc) ) and qtr 6= 0 THEN compute n̂← str
‖str‖

2: Perform Newton-Raphson iteration
Update the stress state and the two-invariant stiffness according to the elasticity model:

ILE INE INhE

K̄ (∆ε∗v −∆εpv,∆ε
∗
v) via (48)

qtr via (88)
p← pn +K (∆ε∗v −∆εpv) p (∆ε∗v −∆εpv,∆ε

∗
v) via (35) p← pn + K̄ (∆ε∗v −∆εpv)

q ← qtr − 3G∆εpd q ← qtr − 3G∆εpd q ← qtr − 3rK̄∆εpd
C̃e from (53)1 C̃e from (54)1

Update the hardening variables. For the modified Terzaghi, use:
pc(∆ε

p
v,∆ε

∗
v) from (69);

~Hp from (71) and (74)1.
Yield criterion:

IF Φ = Φ(~σ, pc) THEN compute Φ (~σ, pc), ∂Φ
∂~σ and ∂Φ

∂pc
.

ELSE
Assert the elasticity model is not INhE (combination not handled in the framework)
IF qtr ≈ 0 THEN

σ ← p I
ELSE

σ ← p I +
√

2
3q n̂

Compute Φ (σ, pc), ∂Φ
∂~σ and ∂Φ

∂pc
.

Flow rule:
Compute ~N (~σ, pc), ∂

~N
∂~σ and ∂ ~N

∂pc
.

Compute the residual and tangent operator:
~r from (93), M̃εp , M̃σ and ~V from (97, 98) and J̃ from (96).

3: Check convergence and consistency
IF ‖~r ‖ ≤ tol THEN

IF ∆~ε p ·
−→
N > 0 THEN RETURN

ELSE ERROR

4: Solve the linearized system and update ∆~ε p

∆~ε p ← ∆~ε p − J̃−1~r
Update the iteration counter

i← i+ 1
5: GOTO 2:
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