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Abstract

Hyperfields are structures that generalise the notion of a field by way of allowing the

addition operation to be multivalued. The aim of this thesis is to examine generalisations

of classical theory from algebraic geometry and its combinatorial shadow, tropical

geometry. We present a thorough description of the hyperfield landscape, where the

key concepts are introduced. Kapranov’s theorem is a cornerstone result from tropical

geometry, relating the tropicalisation function and solutions sets of polynomials. We

generalise Kapranov’s Theorem for a class of relatively algebraically closed hyperfield

homomorphisms. Tropical ideals are reviewed and we propose the property of matroidal

equivalence as a method of associating the geometric objects defined by tropical ideals.

The definitions of conic and convex sets are appropriately adjusted allowing for convex

geometry over ordered hyperfields to be studied.
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Chapter 1

Introduction

Algebraic Geometry is the area of mathematics that explores the solution sets of poly-

nomials and polynomial ideals. It studies the geometric properties of these solution sets

using techniques from abstract and commutative algebra. The approach to algebraic

geometry in this thesis is based on the work presented in [CLO13], [Har13] and [EH06].

Tropical geometry is the combinatorial shadow of algebraic geometry. It is used as

a tool to take geometric problems and rephrase them as problems in combinatorics.

Tropical geometry was brought to the attention of the wider mathematical community

through being utilised in progressive work on enumerative geometry by Mikhalkin

[Mik05], where there are calculations of the Gromov-Witten invariants of projective two

space. In the main, research in tropical geometry has the objective to assess tropical

analogues of classical theorems from algebraic geometry.

The re-framing of geometric problems in terms of combinatoics has enabled tropical

geometry to be applied in several far reaching areas of mathematics. These include:

game theory, machine learning and neural networks [ZNL18], mathematical biology

and optimisation and linear programming [ABGJ21]. Although, a more publicly known

application is to auction theory in [BK13], where the work by Klemperer in [Kle10]

on product-mix auctions was understood by utilising tropical geometry. The work in

[Kle10] was proposed to the Bank of England in the 2007 financial crash, but later in

[BK13] it was demonstrated that the optimisation problem could be reformulated as a

tropical problem and it was shown to have a solution.
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20 CHAPTER 1. INTRODUCTION

More recently, tropical geometry has been connected with the area of hyperfields,

structures where the addition is allowed to take on a multivalued output. The utility

of this connection was proposed by Viro in both [Vir10] and [Vir11]. The tropical

hyperfield is an analogue of the tropical semiring, for which this link provides motivation

to attempt to understand theorems from tropical geometry over the multivalued setting

of hyperfields.

Hyperfields will be introduced in detail in Chapter 2, but briefly, they were first

employed by Krasner in [Kra83] for number theoretic problems and have more recently

been used to unify the theory of matroids in [BB18]. They are a class of structures

which generalises fields as the addition can be a mutlivalued operation.

The aim of the work presented in this thesis is to inspect generalisations of theory

from algebraic and tropical geometry to the multivalued setting of hyperfields. Specific

goals include; understanding and characterising roots and varieties of polynomials

under hyperfields homomorphisms, connecting the combinatorial properties of tropical

ideals to the geometric properties of the corresponding ideals and the studying convex

geometry over hyperfields.

1.1 Tropical Geometry

In this section the tropical semiring will be introduced. This is one example of an

idempotent semiring and the central example when working in the domain of tropical

geometry. Denote the tropical semiring by R, which as a set is R :“ RY t8u. Endowing

R with the operations,

‘ :“ min, d :“ `,

has the structure of an idempotent semiring. These operations are called tropical

addition and multiplication respectively. The additive neutral element is 8, as 𝑥‘ 8 “

8 ‘ 𝑥 “ mint𝑥,8u “ 𝑥. The multiplicative neutral element is 0, as 𝑥 d 0 “ 0 d 𝑥 “
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𝑥 ` 0 “ 𝑥. Using the tropical arithmetic, polynomials over R are defined as,

𝑓 “
à

uPZ𝑛
𝑐u d 𝑋u

P Rr𝑋1, . . . , 𝑋𝑛s.

Due to the altered arithmetic, the notion of a solution, or root, to a polynomial over

R is redefined. An element x P R
𝑛 is a root of 𝑓 P Rr𝑋1, . . . , 𝑋𝑛s, if 𝑓 pxq achieves its

minimum with at least two of its monomials or is equal to 8.

The collection of roots of a tropical polynomial is called its tropical variety or tropical

hypersurface. It is shown in [MS15, Theorem 3.3.6] that tropical varieties are balanced

rational polyhedral complexes. This polyhedral complex property makes tropical

varieties easier to work with than their classical counterparts.

Example 1.1.1. Take the polynomial 𝑓 p𝑋0, 𝑋1q “ 𝑎 d 𝑋0 ‘ 𝑏 d 𝑋1 ‘ 𝑐 P Rr𝑋0, 𝑋1s.

Then, 𝑓 p𝑋0, 𝑋1q “ minp𝑎 ` 𝑋0, 𝑏 ` 𝑋1, 𝑐q, and 𝑓 p1, 2q “ minp𝑎 ` 1, 𝑏 ` 2, 𝑐q. Setting

𝑎 “ 𝑏 “ 𝑐 “ 0, gives 𝑓 p𝑋0, 𝑋1q “ 𝑋0 ‘ 𝑋1 ‘ 0, which has the geometric description of

it’s variety shown in Figure 1.1. Each top dimensional cell of 𝑉p𝑋0 ‘ 𝑋1 ‘ 0q is given a

(0, 0)

X0 = X1 ≤ 0

X0 = 0 ≤ X1

X1 = 0 ≤ X0

Figure 1.1: The variety of 𝑓 p𝑋0, 𝑋1q “ 𝑋0 ‘ 𝑋1 ‘ 0

weight equal to one along with a direction vector corresponding to the primitive integer

lattice point away from the co-dimension 1 point at (0,0). The variety is balanced as

the sum of the weights directions is equal to zero.

1 ¨ p1, 0q ` 1 ¨ p0, 1q ` 1 ¨ p´1,´1q “ 0
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(0, 1)

(1, 0)

(−1,−1)

1

1

1

Figure 1.2: Balancing for 𝑉p𝑋0 ‘ 𝑋1 ‘ 0q.

The description of the balancing condition in Example 1.1.1 has been streamlined in

order to reduce the amount of detailed theory being presented at this introductory stage.

The tropical semiring can arise naturally under a valuation map from a valued field. A

valuation on a field 𝐾 is defined as a map, val : 𝐾 Ñ R, such that;

• valp𝑎q “ 8 ô 𝑎 “ 0,

• valp𝑎𝑏q “ valp𝑎q ` valp𝑏q,

• valp𝑎 ` 𝑏q ě mintvalp𝑎q, valp𝑏qu.

The process of taking the coordinate-wise image under valuation maps in R𝑛 is referred

to as tropicalisation, and denoted normally as trop : 𝐾𝑛 Ñ R
𝑛, where 𝐾 is a field with

valuation.

The tropicalisation map can be extended from elements of a valued field 𝐾, to polyno-

mials, thus resulting in tropical polynomials. Let 𝑓 “
ř

uPZ𝑛 𝑎u ¨ 𝑋u P 𝐾r𝑋s, then

tropp 𝑓 q :“
à

uPZ𝑛
tropp𝑎uq d 𝑋u

P Rr𝑋1, . . . , 𝑋𝑛s.

A cornerstone of tropical geometry is the Fundamental Theorem [MS15, Theorem 3.2.5],

which builds on Kapranov’s Theorem for tropical geometry ([MS15, Theorem 3.1.3],

and recalled in Theorem 3.2.1). Let 𝐾r𝑋˘
1 , . . . 𝑋

˘
𝑛 s be the ring of Laurent polynomials

with coefficients in 𝐾, an algebraically closed field with surjective valuation val : 𝐾 Ñ R.
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The variety of 𝐼 is the intersection of varieties of polynomials in 𝐼,

𝑉p𝐼q “
č

𝑝P𝐼

𝑉p𝑝q.

This can be pushed forward through the tropicalisation map, or in other words coordinate

wise,

tropp𝑉p𝐼qq “ ttroppaq : a P 𝑉p𝐼qu.

The image of the ideal 𝐼 under the tropicalisation map, or coefficient-wise valuation is,

tropp𝐼q “ ttropp𝑝q : 𝑝 P 𝐼u.

In an analogous way to the definition of 𝑉p𝐼q, the variety of tropp𝐼q is defined as the

intersection of varieties of tropp𝑝q, explicitly,

𝑉ptropp𝐼qq “
č

𝑝P𝐼

𝑉ptropp𝑝qq.

These notions are then combined to form the Fundamental Theorem of tropical geometry

Theorem 1.1.2. [MS15, Theorem 3.2.5] Let 𝐼 be an ideal over 𝐾r𝑋˘
1 , . . . 𝑋

˘
𝑛 s, where

𝐾 is algebraicially closed with surjective valuation val : 𝐾 Ñ R, which extends to the a

coordinate and coefficient wise tropicalisation map, then

𝑉ptropp𝐼qq “ tropp𝑉p𝐼qq.

One recent development in tropical geometry has been the study of tropical ideals,

chiefly in [MR18] and [MR20], then elsewhere in [FGG ], [AR22], [GG16] and [Zaj18].

Tropical ideals are polynomial ideals over Rr𝑋s that satisfy an underlying combinatorial

property known as the monomial elimination axiom. This is based on the polynomial

ideal being connected to valuated matroids on the support sets. These objects will be

precisely defined and explored in Chapter 5.

1.2 Structure

There will now be a brief overview of the structure of the work and an outline of the

main contributions from each section.
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To begin, in Chapter 2 the definitions of hyper-structures, denoted H, are presented,

along with a thorough collection of detailed examples. Several properties of hyperfields

are defined, including stringent and doubly distributive. The quotient construction of

hypefields will be discussed. The main focus of this section is Table 2.1, where the

properties of the examples are documented, as well as the structure of the hyperfields

as a quotient.

Next, in Chapter 3 a property titled Relatively Algebraically Closed (RAC) is introduced

for hyperfield homomorphisms. Intuitively, the RAC property states that when a

univariate polynomial is pushed forward through a hyperfield homomorphism, the roots

of the polynomial can be lifted back to roots of the original polynomial. The existence

of a hyperfield homomorphism which has this property is demonstrated by the map

𝜂 “ logp| ¨ |q : TCÑ T, in Theorem 3.1.12, where TC is the tropical complex hyperfield

and T :“ RY t´8u is the tropical hyperfield. Furthermore, another class of examples

of RAC hyperfield homomorphisms are those from algebraically closed fields to the

Krasner hypefield. There is then an attempt to understand what conditions are needed

for a hyperfield homomorphism to be RAC in Section 3.3. In addition, the multiplicities

of roots over the hyperfield of signs and the signed tropical hyperfield are explored.

Then to conclude, it is shown that the doubly distributive property for hyperfields

implies a bound on the sum of multiplicities of roots for polynomials up to degree three.

This is motivated by the goal to classify RAC maps, as this bound on the sum of root

multiplicities is closely connected to the RAC property.

Chapter 4 discusses a range of quotient maps from the complex numbers. Firstly,

the n-th roots of unity are taken as a subgroup and several properties are explored.

Explicitly, it is shown that the map C Ñ C{𝑈𝑛 is not a RAC map. This is then

applied to Hahn series and the corresponding maps. In addition to this, varieties for

univariate polynomials over the triangle hyperfield are surveyed. To conclude, there

is a presentation of several results from the literature regarding amoebas and coamoebas.
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In Chapter 5 there is a focus on objects over the tropical semiring rather than hy-

perfields. There is a description of tropical ideals, which satisfy a precise underlying

combinatoric property, and examples are given. The notion of Matroidal Equivalence is

introduced and is proposed as a method of controlling the behaviour of tropical ideals.

It is suggested that this could be a method to view the geometric objects defined by two

tropical ideals as equivalent. Several examples of tropical ideals that are matroidally

equivalent are given and a collection of properties are stated. This chapter attempts

to build a foundational theory over R first and then in the future utilise this in a

more general way for hyperfields. This is due to the fact that polynomial ideals over

hyperfields are more challenging to work with. Whereas, a stronger understanding of

ideals over R, specifically tropical ideals, has been developed in [MR18] and [MR20].

For Chapter 6 the motivation is due to [LV19], where a theory for convexity over the

signed tropical semiring is developed. There is an attempt to extend this to a notion of

convexity over hyperfields. Classical definitions are adjusted for the multivalued setting,

and orderings over hyperfields are discussed. Halfspaces and varieties are explored over

quotient and stringent hyperfields, in particular understanding the impact of pushing

these objects forward through a hyperfield homomorphism. Then, building on the work

presented in [BS20], there is a precise classification of ordered stringent hyperfields.

Both the definitions of conic and convex sets over hyperfields are introduced and the

properties of these types of sets are investigated. The section is concluded by stating

versions of Radon’s, Helly’s and Caratheodory’s Theorems for hyperfields admitting a

order preserving homomorphism from an ordered field.

The final chapter outlines the open questions from all the topics and chapters in this

work. These are questions which could be addressed in future research.
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Chapter 2

Hyperfield Handbook

This chapter is an introduction to algebraic structures with multivalued addition, called

hyper-structures. We discuss the history and background of hyper-structures with a

description of the underlying motivation to why they are important and relevant. This

will be done by presenting the foundational theory and laying out the landscape to

demonstrate an understanding of the literature. The connection between the tropical

semiring and the tropical hyperfield will be made, demonstrating why the aim is to

understand generalisations of results from tropical geometry over the multivalued setting

of hyperfields. There is a culmination of the relevant recent work in the area and new

examples in order to produce a reference guide in Table 2.1 for future research.

2.1 Preliminaries

An algebraic structure with one multivalued operation is called a hyper-structure, where

the multivalued operation is called a hyperoperation, but usually called hyper addition.

Analogously to classical algebra, the hyper addition can be endowed with structured

axioms allowing for the notions of a hypergroup, hyperring and hyperfield to be intro-

duced. A hyperfield (resp. hypergroup and hyperring) is a generalisation of a field (resp.

group and ring), where the addition operation is allowed to be a multivalued operation.

Hyper-structures, in particular hypergroups, were initially introduced by Marty in the

mid 1930’s in [Mar34], with the development of hyperrings attributed to Krasner in 1956

in [Kra83]. Connes and Consani highlighted a relationship between hyper-structures

27
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and Number theory, based on Connes’ adele classes [CC11], which progressed the theory.

Hyperfields are just one class of generalisations, others include Tracts, Fuzzy rings

and Blueprints. There is a discussion of these algebraic structures in [BL18b], and a

description of Blueprints can be found in [Lor12]. The connection between fuzzy rings

and hyperrings is described in [GJL17], where a fully faithful functor from hyperfields

to fuzzy rings with weak morphisms is shown to exist. One particular motivation for

working with hyperfields is that the tropical semiring, where a foundational theory

has been thoroughly developed, has an analogue in the multivalued setting called

the tropical hyperfield. This connection and natural compatibility between tropical

geometry and hyper-structures is explored in [Vir10]. Thus, indicating a link between

the two areas, and hence motivates the aim to expand ideas from tropical geometry to

the theory of hyperfields.

There has been substantial progress made in recent years in the development of

the algebraic theory of hyperfields. Baker and Bowler developed a theory of matroids

over hyperfields in [BB18], and there has been work done by Bowler and Lorscheid on

roots and multiplicities, especially characterising multiplicities for the Krasner, sign and

tropical hyperfields, in [BL18a]. The work completed by Jun, in [Jun18] and [Jun17],

is a more recent study of algebraic geometry over hyperfields. In [Jun17], algebraic

sets over hyperfields are introduced and connected to tropical varieties, along with a

scheme-theoretic point of view. Leading to a demonstration that hyperrings without

zero divisors can be realised as the hyperring of global regular functions in [Jun17,

Theorem D]. One consequence of the multivalued addition is a necessary extension of the

notion of a root. Over hyperfields roots are defined as elements at which the polynomial

outputs a set which includes zero, rather than exactly equals zero. Topological aspects of

hyperfields, in particular the Grassmannian, have been explored by Anderson and Davis

in [AD19]. This section begins by outlining the necessary theory for hyper-structures,

making the descriptive nature of these introductory paragraphs explicit.
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Given a non-empty set H, then a map ‘ : HˆHÑ 𝑃pHq˚ will denote the hyperoperation

of H, where 𝑃pHq˚ is the power set of H. Explicitly, 𝑃pHq˚ is the set of all nonempty

subsets of H. Then, for subsets 𝐴, 𝐵 Ď H,

𝐴 ‘ 𝐵 :“
ď

𝑎P𝐴 , 𝑏P𝐵

𝑎 ‘ 𝑏.

This definition can be extended for a string of elements. Let 𝑥1, ... , 𝑥𝑘 P H then we

define this as follows;

𝑥1 ‘ 𝑥2 ‘ ... ‘ 𝑥𝑘 “
ď

𝑥1P𝑥2‘...‘𝑥𝑘

𝑥1 ‘ 𝑥1.

The hyperoperation ‘ is called commutative and associative if it satisfies

𝑥 ‘ 𝑦 “ 𝑦 ‘ 𝑥 (2.1.1)

and

p𝑥 ‘ 𝑦q ‘ 𝑧 “ 𝑥 ‘ p𝑦 ‘ 𝑧q (2.1.2)

respectively.

Analogously to classical algebra, a hyperoperation can be used to define structures on

the set H. In a standard way, the following definitions will generalise those of groups,

rings and fields, using ‘ as the underlying operation.

Definition 2.1.3. A canonical hypergroup is a tuple pH,‘, 𝟘q, where ‘ is a commutative

and associative hyper-operation (so (2.1.1) and (2.1.2) hold) on H such that:

(H0) 𝟘 ‘ 𝑥 “ t𝑥u, @ 𝑥 P H.

(H1) For every 𝑥 P H there is a unique element of H, denoted ´𝑥, such that 𝟘 P 𝑥‘ ´𝑥.

(H2) 𝑥 P 𝑦 ‘ 𝑧 iff 𝑧 P 𝑥 ‘ p´𝑦q. This is normally referred to as reversibility.

The reversibility condition is not required for non-canonical hypergroups, but throughout

this work only canonical hypergroups will be used so the label canonical is dropped.

Definition 2.1.4. A hyperring is a tuple pH,d,‘, 𝟙, 0q such that:
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• pH,d, 𝟙q is a commutative monoid.

• pH,‘, 𝟘q is a commutative hypergroup.

• (Absorption rule) 𝟘 d 𝑥 “ 𝑥 d 𝟘 “ 𝟘, for all 𝑥 P H.

• (Distributive law) 𝑎 d p𝑥 ‘ 𝑦q “ p𝑎 d 𝑥q ‘ p𝑎 d 𝑦q, for all 𝑎, 𝑥, 𝑦 P H.

Definition 2.1.5. A hyperring H is called a hyperfield if 𝟘 ‰ 𝟙 and every non-zero

element of H has a multiplicative inverse.

Remark 2.1.6. The precise meaning of the neutral elements 𝟘 and 𝟙 will be made explicit

in each specific example.

Remark 2.1.7. From this point onward, to clarify context, when discussing results over a

field 𝐾 the following notation will be used; `,ˆpor ¨q and
ř

. Whereas, when discussing

results over a hyperfield H the following notation will be used; ‘ , d and ‘. This will

enable the multivalued context to be easily identified.

There are a range of properties that hyper-structures can posses. The following

definitions will outline the main properties that will be utilised in this work.

Definition 2.1.8. A hypergroup is called stringent if the addition for 𝑥, 𝑦 P H, 𝑥 ‘ 𝑦

is a singleton whenever 𝑥 ‰ ´𝑦. A hyperring is called stringent if the underlying

hypergroup is stringent.

Definition 2.1.9. A hyperring is said to be doubly distributive if for any 𝑥, 𝑦, 𝑧, 𝑤 P H,

it holds that

p𝑥 ‘ 𝑦qp𝑧 ‘ 𝑤q “ 𝑥𝑧 ‘ 𝑥𝑤 ‘ 𝑦𝑧 ‘ 𝑦𝑤.

Note that in [Vir10] Theorem 4.B. demonstrates that the inclusion, p𝑥 ‘ 𝑦qp𝑧 ‘ 𝑤q Ă

𝑥𝑧 ‘ 𝑥𝑤 ‘ 𝑦𝑧 ‘ 𝑦𝑤, holds over all hyperrings.

Remark 2.1.10. The doubly distributive definition is extended to the following, in

[BB18].
´

‘
𝑖P𝐼

𝑥𝑖

¯´

‘
𝑗P𝐽

𝑦 𝑗

¯

“ ‘
𝑖P𝐼, 𝑗P𝐽

𝑥𝑖𝑦 𝑗
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There is a thorough classification of doubly distributive hyperfields in [BS20], where

in addition a relationship between the doubly distributive property and the stringent

property is presented.

Lemma 2.1.11. [BS20, Proposition 1.3] Given a hyperfield H that is doubly distributive,

then this implies that H is stringent.

The maps between hyperfields are called hyperfield homomorphisms. In accordance with

the multivalued nature of hyperoperations the definition of hyperfield homomorphisms

encompass an inclusion rather than an equality.

Definition 2.1.12. Given hypergroups H1 and H2, with respective hyper-operations ‘1

and ‘2. Then a hypergroup homomorphism is a map 𝑓 : H1 Ñ H2, such that 𝑓 p𝟘q “ 𝟘

and 𝑓 p𝑥 ‘1 𝑦q Ď 𝑓 p𝑥q ‘2 𝑓 p𝑦q for all 𝑥, 𝑦 P H1.

This notion can immediatley be extended to hyperrings.

Definition 2.1.13. Given hyperrings H1 and H2, with respective hyper-operations

‘1 and ‘2 and multiplication d1 and d2. Then a homomorphism of hyperrings

𝑓 : H1 Ñ H2 is defined by

1. 𝑓 p𝑥 ‘1 𝑦q Ď 𝑓 p𝑥q ‘2 𝑓 p𝑦q and 𝑓 p𝟘q “ 𝟘

2. 𝑓 p𝑥 d1 𝑦q “ 𝑓 p𝑥q d2 𝑓 p𝑦q and 𝑓 p𝟙q “ 𝟙

Essentially, this is a homomorphism of additive hypergroups and a homomorphism of

multiplicative monoids.

Definition 2.1.14. A hyperfield homomorphism is defined as a homomorphism of

underling hyperrings.

Definition 2.1.15. A hyperfield homomorphism 𝑓 : H1 Ñ H2 is called strict if,

𝑓 p𝑥 ‘1 𝑦q “ 𝑓 p𝑥q ‘2 𝑓 p𝑦q,

for all 𝑥, 𝑦 P H1.
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Definition 2.1.16 ([BS20]). A hypergroup (resp. hyperring and hyperfield) isomor-

phism is a bijection 𝑓 : H1 Ñ H2, which is a hypergroup (resp. hyperring and hyperfield)

homomorphism and whose inverse is a hypergroup (resp. hyperring and hyperfield)

homomorphism.

2.2 Quotient Hyperfields

At first hyperfields may appear unfamiliar, due to the multivalued operations, but

actually they can arise in a natural construction involving fields. This construction is

called a quotient hyperfield. The quotient construction was developed in [CC11], aiming

to build on the early hyperring theory established in [Kra83] and [Mas85]. This section

will outline how quotient hyperfields are constructed. It will be shown that several of

the most common hyperfields can be represented in the quotient form in Section 2.4.

Although, not every hyperfield can be constructed from the quotient of a field, as will

be seen in Example 2.2.4, first presented by [Mas85].

Given a field 𝐾, the set of units, denoted 𝐾ˆ, is defined as 𝐾ˆ “ t𝑥 P 𝐾 | D 𝑦 P

𝐾 s.t 𝑥𝑦 “ 1u. Take a multiplicative subgroup 𝑈 Ď 𝐾ˆ, and take the quotient of 𝐾

by this subgroup 𝑈. The resulting object is;

𝐾{𝑈 “ t𝑥𝑈| 𝑥 P 𝐾u

where elements of 𝐾{𝑈 are co-sets in the form,

r𝑥s “ 𝑥𝑈 “ t 𝑥𝑢𝑖 | 𝑢𝑖 P 𝑈, 𝑥 P 𝐾u. (2.2.1)

The set 𝐾{𝑈 can be viewed as a hyperfield. The addition and multiplication for this

quotient construction are defined in the following way:

r𝑥s d r𝑦s “ r𝑥𝑦s “ t p𝑥𝑦q𝑢𝑖 | 𝑢𝑖 P 𝑈, 𝑥 P 𝐾u (2.2.2)

r𝑥s ‘ r𝑦s “ t r𝑧s | 𝑧 “ 𝑥𝑢𝑖 ` 𝑦𝑢 𝑗 s.t 𝑢𝑖, 𝑢 𝑗 P 𝑈u. (2.2.3)

Or, in alternative notational convention but with equivalent meaning,

𝑥 ` 𝑦 “ p𝑥𝑈 ` 𝑦𝑈q{𝑈.
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From this point forward 𝐾{𝑈 will be taken in the hyperfield sense, with the notation

from above. This method of building hyperfields was formally updated into the language

of hyperfields by Connes and Consani in [CC11], where a explicit proof that this quotient

construction satisfies the hyperfield axioms can be see in the proof of the Theorem on

page 310 in [CC11].

Quotient hyperfields are an interesting class of hyperfields to study, but in general not

all hyperfields can be described in the quotient form. It has been shown by Massouros

in [Mas85] that not all hyperfields are in this quotient form. The quotient construction

allows us to build hyperfields, but does not encompass all of them.

Example 2.2.4. [Mas85, page 727] An almost-group is a semi-group which is the

union of a group with a bilaterally absorbing neutral element. Consider a commutative

multiplicative almost-group p𝐻, ¨q, which the hyperaddition can be defined as follows:

𝑥 ‘ 𝑦 “

$

’

&

’

%

t𝑥, 𝑦u, if 𝑥 ‰ 𝑦 and 𝑥, 𝑦 ‰ 0
𝐻zt0u, if 𝑥 “ 𝑦 and 𝑥 ‰ 0
𝑥, if 𝑦 “ 0

(2.2.5)

Then the triple p𝐻,‘, ¨q is a hyperfield. It is shown in the proof that follows this

example in [Mas85], that the class of hyperfields contains elements that are not in the

quotient class of hyperfields. Thus, showing that not all hyperfields are in the quotient

form.

Examples of hyperfields are defined in Section 2.4, along with a classification of their

properties. To conclude this section there will be a discussion on how the quotient

construction can be generalised by starting with a hyperfield rather a field.

Let pH,‘,dq be a hyperfield and take 𝑈 Ď Hˆ a multiplicative subgroup of the

non-zero elements of the hyperfield. Then, the quotient is defined as H{𝑈 :“ Hˆ{𝑈Yt0u,

which has a hyperfield structure due to the following operations. Elements of H{𝑈

are cosets, defined as r𝑥s :“ t𝑥 d 𝑢 : 𝑢 P 𝑈u. The multiplication is inherited from the
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hyperfield H, r𝑥s d r𝑦s “ r𝑥 d 𝑦s, and the multivalued addition is defined as;

r𝑥s ‘ r𝑦s :“ tr𝑧s : r𝑧s P r𝑥s ‘ r𝑦su “ tr𝑧s : 𝑧 P 𝑥 d 𝑢 ‘ 𝑦 d 𝑣 , 𝑢, 𝑣 P 𝑈u.

It can be seen that this is a generalisation of the field case, as fields can trivially be

viewed as hyperfields. There will now be a clarification of when elements in the quotient

construction can be considered equal.

Proposition 2.2.6. Given a hyperfield H and a multiplicative subgroup 𝑈 Ď Hˆ, then

for an element 𝑦 P H, 𝑦 d𝑈 “ 𝑈 iff 𝑦 P 𝑈.

Proof. Firstly, 𝑦 P 𝑈 ñ 𝑦´1 P 𝑈 ñ 𝑢d 𝑦´1 P 𝑈, @𝑢 P 𝑈. Thus, 𝑢 “ 𝑦d 𝑦´1 d𝑢 P 𝑦d𝑈.

Which gives that 𝑈 Ď 𝑦 d𝑈 and as 𝑈 is a multiplicative subgroup 𝑦 d 𝑢 P 𝑈, @𝑢 P 𝑈,

implying 𝑦 d𝑈 Ď 𝑈. Which together shows that 𝑦 d𝑈 “ 𝑈.

Secondly, if 𝑦 d 𝑈 “ 𝑈 then every 𝑦 d 𝑢 P 𝑈, hence 𝑦 P 𝑈. This shows the other

direction. □

Proposition 2.2.7. Let H be a hyperfield, then for 𝑎, 𝑏 P H, r𝑎s “ r𝑏s over H{𝑈 if and

only if there exists and element 𝑢 P 𝑈 such that 𝑎 “ 𝑏 d 𝑢.

Proof. By Proposition 2.2.6, as 𝑢 P 𝑈, this implies that r𝑏d𝑢s “ 𝑏d𝑢d𝑈 “ 𝑏d𝑈 “ r𝑏s,

and by definition 𝑎 “ 𝑏 d 𝑢, so r𝑎s “ r𝑏 d 𝑢s, hence r𝑎s “ r𝑏s. Conversely, r𝑎s “ r𝑏s

implies that every element of r𝑎s has a corresponding element of r𝑏s. As 𝟙 P 𝑈, then

𝑎 “ 𝑎 d 𝟙 P r𝑎s has a corresponding element of r𝑏s of the form 𝑏 d 𝑢, which is as

required. □

2.3 Polynomials Over Hyperfields

This section will outline how polynomials and their roots are defined over hyperfields.

These notions will be used throughout the following work. In particular, Chapter 3

explores the interaction between polynomials and their roots under hyperfield homo-

morphisms, and Chapter 6 uses linear polynomials to investigate convex geometry over

hyper-structures.



2.3. POLYNOMIALS OVER HYPERFIELDS 35

Definition 2.3.1. The set of polynomials in 𝑛-variables over a hyperfield H will be

denoted Hr𝑋1 , . . . , 𝑋𝑛s, where elements of this set are defined as,

𝑝p𝑋1 , . . . , 𝑋𝑛q :“
ÿ

𝐼

𝑐𝐼𝑋
𝑖1
1 ¨ ¨ ¨ 𝑋 𝑖𝑛𝑛 “

ÿ

𝐼

𝑐𝐼𝑋
𝐼 , (2.3.2)

where the multi-index notation is used and 𝐼 “ p𝑖1 , . . . , 𝑖𝑛q Ă Z𝑛 and 𝑐𝐼 P H. Then,

when the polynomial is evaluated at an element 𝑎 “ p𝑎1 , . . . , 𝑎𝑛q P H𝑛, the hyper

addition and multiplication of the hyperfield H is used.

𝑝p𝑎1 , . . . , 𝑎𝑛q :“ ‘
𝐼

𝑐𝐼𝑎
𝑖1
1 ¨ ¨ ¨ 𝑎𝑖𝑛𝑛 “ ‘

𝐼

𝑐𝐼𝑎
𝐼

Ď H (2.3.3)

The addition and product of the polynomials in (2.3.2) are both multivalued operations.

The following example will demonstrate how to take the sum and product of univariate

polynomials over a hyperfield.

Example 2.3.4. Let 𝑝p𝑋q “
ř𝑛
𝑖“0 𝑐𝑖𝑋

𝑖 and 𝑞p𝑋q “
ř𝑚

𝑗“0 𝑑 𝑗𝑋
𝑗 be polynomials with

coefficients in a hyperfield H, where 𝑛 ď 𝑚.The addition is induced from the hyperfield

H;

𝑝p𝑋q ‘ 𝑞p𝑋q “

𝑛
ÿ

𝑖“0
p𝑐𝑖 ‘ 𝑑𝑖q𝑋

𝑖
`

𝑚
ÿ

𝑖“𝑛`1
𝑑𝑖𝑋

𝑖 . (2.3.5)

Furthermore, the multiplication is as follows;

𝑝p𝑋q d 𝑞p𝑋q “

𝑛`𝑚
ÿ

𝑖“0

´

‘
𝑗`𝑘“𝑖

𝑐 𝑗 d 𝑑𝑘

¯

𝑋 𝑖 . (2.3.6)

Remark 2.3.7. Note that the notation Hr𝑋1 , . . . , 𝑋𝑛s is used only to denote the set of

polynomials over H. In general, there is no ring or hyperring structure on Hr𝑋1 , . . . , 𝑋𝑛s,

unlike the specialised case where H is a field. Although, it can be given additional

algebraic structure as a H-module. It can be illustrated in the univariate case that

this object is not in general a hyperring; the multivalued nature of the addition in H

combined with the distributivity leads to products of polynomials also being multivalued.

For example, p𝑎𝑋 ‘ 𝑏qp𝑐𝑋 ‘ 𝑑q Ď 𝑎𝑐𝑋2 ‘ p𝑎𝑑 ‘ 𝑏𝑐q𝑋 ‘ 𝑏𝑑. The coefficient p𝑎𝑑 ‘ 𝑏𝑐q

is not necessarily single valued, which shows that multiplication of polynomials is

multivalued, hence Hr𝑋1 , . . . , 𝑋𝑛s is not a hyperring. See Remark 4.4 and Example

4.13 in [Jun18] for an explicit example where the behaviour of Hr𝑋1 , . . . , 𝑋𝑛s is more

controllable.
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Due to the output of a polynomial evaluated at an element producing a set of

elements, as seen in (2.3.3), this leads to the following generalised definition of a root.

Definition 2.3.8. Let 𝑝p𝑋1 , . . . , 𝑋𝑛q “ ‘𝐼 𝑐𝐼𝑋
𝐼 be a polynomial defined over a

hyperfield H, then an element 𝑎𝑎𝑎 “ p𝑎1 , . . . , 𝑎𝑛q is a root of the polynomial if 𝟘 P 𝑝p𝑎𝑎𝑎q “

‘𝐼 𝑐𝐼𝑎𝑎𝑎
𝐼 .

Definition 2.3.9. This allows for a natural definition of the variety of 𝑝p𝑋1 , . . . , 𝑋𝑛q

as,

𝑉p𝑝q :“ t𝑎𝑎𝑎 “ p𝑎1 , . . . , 𝑎𝑛q P H𝑛 | 𝟘 P 𝑝p𝑎𝑎𝑎qu.

The next definition recalls the notion of the multiplicity of a root for univariate

polynomials defined over hyperfields.

Definition 2.3.10 ([BL18a], Def. 1.5). Let 𝑝p𝑋q P Hr𝑋s, the multiplicity of an element

𝑎 P H is denoted mult𝑎p𝑝q and defined as follows. If 𝑎 is not a root of 𝑝 set mult𝑎p𝑝q “ 0.

If 𝑎 is a root of 𝑝 define

mult𝑎p𝑝q “ 1 ` maxtmult𝑎p𝑞q : 𝑝 P p𝑋 ‘ ´𝑎q d 𝑞p𝑋qu. (2.3.11)

The multivalued nature of the multiplication of polynomials with coefficients in a

hyperfield implies that the polynomial 𝑞p𝑋q in (2.3.11) is not necessarily unique. This

is the motivation behind the recursive definition of the multiplicity. See [BL18a] for

details of the original definition and examples of the non-uniqueness.

Remark 2.3.12. There is a complete description of roots and corresponding multiplicities

for univariate polynomials over K, S and T in [BL18a], where the results are used

to demonstrate proofs of Descartes’ Rule of Signs and Newton’s Polygon Rule. This

work has been built on in [Gun19] where the multiplicities for roots over TR have been

presented. The hyperfields K, S,T and TR are defined in the next section.

2.4 Hyperfield Zoo

This section focuses on describing a range of hyperfields and cataloguing their proper-

ties. The aim is to create a reference guide for hyperfields, in which the properties are
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documented collectively. The main product of this section is Table 2.1, which consists

of a concise overview of the hyperfields and their properties. This will be followed by a

description of each example hyperfield and a demonstration of the resources used to

present the properties, along with calculations to highlight key points. The motivation to

present the examples of hyperfields at this point is to allow all of the definitions to be first

introduced, thus allowing for a more thorough discussion of each hyperfield to take place.

Table 2.1 has the purpose of acting as a reference guide for the hyperfield literature,

when for future research information regarding these hypefields is required. The in-

formation in the table is a amalgamation of results from the literature, which will be

explicitly cited in the detailed breakdown of each hyperfield, and some informative

examples developed for this work. The overall aim is to create a database, or ‘Zoo’,

of information on the commonly used hyperfields, bringing together work from the

relevant areas of literature and presenting it collectively here.

The format for the description of each hyperfield will follow a similar pattern; define the

operations, give the hyperfield as a quotient construction and then state and/or show

what properties the hyperfield exhibits. Firstly, there will be additional definitions to

clarify terms used in Table 2.1.

Definition 2.4.1. A hyperfield is called algebraically closed if for every univariate

polynomial defined over the hyperfield there exists a root which belongs to this hyperfield.

Definition 2.4.2. A hyperfield is said to satisfy the multiplicity bound if for all

univariate polynomials, 𝑝p𝑋q P Hr𝑋s,

ÿ

𝑎PH

mult𝑎p𝑝q ď degp𝑝q.

Furthermore, a hyperfield is said to satisfy multiplicity equality if the above inequality

is an equality for all univariate polynomials.
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Hyperfield Quotient Form Doubly
Distributive

Stringent Algebraically
Closed

Multiplicity
Bound

Field - ✓ ✓ 𝐾 ✓

K 𝐾{𝐾ˆ ✓ ✓ ✓ ✓(equality)

S R{Rą0 ✓ ✓ ✗ ✓

T 𝐾{𝑣´1p0q ✓ ✓ ✓ ✓(equality)

P C{Rą0 ✗ ✗ ✓ ✗

△ C{𝑆1 ✗ ✗ ✓ ✗

Φ TC{Rą0 ✗ ✗ ✓ ✗

W F𝑝{pFˆ
𝑝 q2 ✗ ✗ ✗ ✗

𝑝 ą 7, 𝑝 ”

3pmod4q

TR Rrr𝑡Rss{𝑣´1
R p0q ✓ ✓ ✗ ✓

𝑂TR 𝑂Rrr𝑡Rss{𝑣´1
R p0q ✓ ✓ ✗ ✓

TC ? ✗ ✗ ✓ ✗

Table 2.1: A Hyperfield Reference Guide.

2.4.1 Fields

A field 𝐾 can be viewed as a hyperfield in a trivial manner, where the hyperaddition is

defined as 𝑥 ‘ 𝑦 “ t𝑥 ` 𝑦u. The quotient construction is also trivial as, 𝐾 “ 𝐾{1. It

can be immediately seen that all fields are doubly distributive and stringent. Not all

fields are algebraically closed, but there exists a unique, up to isomorphism, algebraic

closure of any field which is not algebraically closed, normally denoted as 𝐾. (Note

that R will not denote the algebraic closure of R in this work. It will be denoting the

tropical semiring which is defined and used predominantly in Chapter 5.) Fields satisfy

the multiplicity bound, and algebraically closed fields satisfy multiplicity equality due

to the Fundamental Theorem of Algebra.



2.4. HYPERFIELD ZOO 39

2.4.2 Krasner Hyperfield ( K)

The Krasner hyperfield has the underlying set t0, 1u, and denoted K. It is defined with

standard multiplication and hyperaddition is defined as;

0 ‘ 𝑥 “ 𝑥 ‘ 0 “ t𝑥u, for 𝑥 “ 0, 1,

1 ‘ 1 “ t0, 1u.

Where 𝟘 “ 0 and 𝟙 “ 1. The Krasner hyperfield can be constructed as the quotient

of a field 𝐾, by the set of invertible elements 𝐾ˆ. Explicitly, K – 𝐾{𝐾ˆ. It is stated

in [BS20, Example 2.9] that K is doubly distributive, then by Lemma 2.1.11 K is also

stringent. From [BL18a, Remark 1.11] it can be seen that the sum of multiplicities

for any polynomial over K equals the degree of the polynomial. This gives that the

multiplicity equality holds over K. A direct consequence of this is that K is algebraically

closed.

2.4.3 Hyperfield of Signs ( S)

The hyperfield of signs has the underlying set t´1, 0, 1u, and denoted by S. The

multiplication is defined in the standard way and the hyperaddition defined as;

0 ‘ 0 “ 0, 0 ‘ 1 “ 1, 0 ‘ ´1 “ ´1,

1 ‘ 1 “ 1, ´1 ‘ ´1 “ ´1,

1 ‘ ´1 “ t0, 1,´1u.

Where 𝟘 “ 0 and 𝟙 “ 1. The quotient construction for S – R{Rą0, is outlined in

[BL18a]. It is stated in [BS20, Example 2.9] that S is doubly distributive, which

again by Lemma 2.1.11 implies that S is stringent. Similarly to K, a characterisation

of the multiplicities for polynomials over S is explained in [BL18a]. It can be seen

in [BL18a, Remark 1.12], that S satisfies the multiplicity bound, and in fact is it a

bound rather than equality. The hyperfield of signs is not algebraically closed, as

𝑉p𝑝p𝑋qq “ 𝑉p𝑋2 ‘ 1q “ H, over S.
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2.4.4 Tropical Hyperfield ( T)

The tropical hyperfield has the underlying set R Y t´8u and is denoted as T. The

multiplication on T is an extension of the addition on R:

𝑥 d 𝑦 :“ 𝑥 ` 𝑦.

𝑥 d ´8 “ ´8 d 𝑥 “ ´8 ` 𝑥 “ 𝑥 ` ´8 “ ´8,

𝑥 d 0 “ 0 d 𝑥 “ 𝑥 ` 0 “ 0.

The hyperaddition is defined as the following multivalued operation:

𝑥 ‘ 𝑦 “

#

tmaxp𝑥, 𝑦qu, if 𝑥 ‰ 𝑦

t𝑧 | 𝑧 ď 𝑥u Y t´8u, if 𝑥 “ 𝑦
(2.4.3)

𝑥 ‘ ´8 “ ´8 ‘ 𝑥 “ maxp𝑥,´8q “ 𝑥.

Where 𝟘 “ ´8 and 𝟙 “ 0. The tropical hyperfield is a hyperfield analogue of the tropi-

cal semi-ring described in Section 1.1 and [MS15]. The tropical hyperfield can also be

defined using min instead of max, and t8u instead of t´8u, which yields an isomorphic

structure. For further discussions of the tropical hyperfield and demonstrations of its

usefulness, see both [Vir10] and [Vir11].

The tropical hyperfield is constructed in a quotient form by taking an algebraically

closed field 𝐾 with a surjective valuation 𝑣 : 𝐾ˆ
Ñ R. Then, T is isomorphic to the

quotient 𝐾{𝑣´1p0q, as mentioned in [BL18a, Remark 1.1]. In exactly the same way as K

and S, the mulitplicities of roots have been characterised for T in [BL18a]. It is shown

in [BL18a, Remark 1.17], that multiplicity equality holds for all polynomials over T,

which in turn implies that T is algebraically closed.

Remark 2.4.4. These first three hyperfields are the most commonly used in the literature,

and have been explored more thoroughly than the hyperfields that follow. The above

properties are well known in the hyperfield research area. Below are some less extensively

studied hyperfields. Some of the information presented below derives from the literature
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and has been cited appropriately. Although, some properties of the following hyperfields

that are demonstrated explicitly below were not collated from the current literature.

Thus far, the algebraic closure of K and T has been implied from the multiplicity

equality. The following result will be used to demonstrate algebraic closure in the

absence of multiplicity equality.

Lemma 2.4.5. Let 𝐾 “ 𝐾, then the surjective quotient hyperfield homomorphism

𝑓 : 𝐾 Ñ 𝐾{𝑈 implies that 𝐾{𝑈 is algebraically closed.

Proof. The proof for Lemma 2.4.5 will be consequence of Lemma 3.2.2, which is a more

general statement regarding roots of polynomials pushing forward through hyperfield

homomorphisms. Though explicitly, the algebraic closure of 𝐾 implies that every

univariate polynomial has a root. Lemma 3.2.2 implies that these roots push-forward

to roots over the quotient 𝐾{𝑈, and as the map is surjective every polynomial over

𝐾{𝑈 has a polynomial over 𝐾 which maps to it and hence a root that can be pushed

forward. □

Remark 2.4.6. Lemma 3.2.2 is stated at a later stage rather than here as it is a more

general result that encompasses one of the inclusions required for the equality in the

hyperfield version of Kapranov’s Theorem 3.2.5.

The next hyperfield will be used as the nominee to replace the valued field in a

version of Kapranov’s Theorem for tropical geometry for hyperfields in Chapter 3.

2.4.5 Tropical Complex Hyperfield ( TC)

The tropical complex hyperfield is denoted TC and has the complex numbers C as its

underlying set. The standard complex multiplication is given to TC. The hyper-addition

is defined in the following way for all 𝑧, 𝑤 P C.

𝑧 ‘ 𝑤 “

$

’

’

’

&

’

’

’

%

t𝑐 P C : |𝑐| ď 𝑧u, if 𝑤 “ ´𝑧.

𝑧, if |𝑧| ą |𝑤|.

𝑤, if |𝑤| ą |𝑧|.

Shortest arc connecting 𝑧 and 𝑤, with radius |𝑧|, if |𝑧| “ |𝑤|, 𝑧 ‰ ˘𝑤.
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Figure 2.1: Hyper-addition over TC - Where the first row is two points in TC and the
bottom row represents the outcome of the addition in red.

With this hyper-addition TC is a hyperfield, where 𝟘 “ 0 and 𝟙 “ 1. This hyperfield is

discussed in Example 9 in [AD12] and was introduced in [Vir10, Section 6] where it is

described as the dequantization of the field of complex numbers. For further insight into

the behaviour of the addition over TC see Figure 1 in Section 6 of [Vir10] and Figure 2.1.

It can be seen from the definition of the hyperoperation that TC is not stringent, and

therefore by Lemma 2.1.11 not doubly distributive. The algebraic closure property

will be discussed in Section 3, as a corollary to the main result of the section. The

tropical complex hyperfield exceeds the multiplicity bound, which is outlined in the

next example.

Example 2.4.7. Given the polynomial 𝑝p𝑋q “ 𝑋2 ‘ 𝑋 ‘ 1 P TCr𝑋s, then

𝑝p´1q “ p´1q
2 ‘ ´1 ‘ 1

“ 1 ‘ ´1 ‘ 1

“

´

t𝑎 P C : |𝑎| ď 1u

¯

‘ 1

Q ´1 ‘ 1 Q 0

𝑝p𝑖q “ ´1 ‘ 𝑖 ‘ 1
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“

´

tshortest closed arc between ´ 1 and 𝑖u
¯

‘ 1

Q ´1 ‘ 1 Q 0

𝑝p´𝑖q “ ´1 ‘ ´𝑖 ‘ 1

“

´

tshortest closed arc between ´ 1 and ´ 𝑖u

¯

‘ 1

Q ´1 ‘ 1 Q 0

These three calculations over TC imply that t´1, 𝑖,´𝑖u Ă 𝑉p𝑝q Ă TC. This shows that

a degree 2 polynomial can have three distinct root over TC, thus the multiplicity bound

does not hold.

The one question mark in Table 2.1 is the quotient form of TC. Currently this can be

summarised in the following open question.

Question 2.4.8. Can TC be explicitly stated in the quotient form?

2.4.6 Phase Hyperfield ( P)

There are several different paradigms in which the arithmetic over the phase hyperfield

can be viewed. The notation will stay consistent denoting the phase hyperfield by

P. The following two definitions are equivalent, but different ways of describing the

hyperoperation of P. It has the underlying set, 𝑆1 Y t0u, where 𝑆1 “ t𝑒𝑖𝜃 P C |0 ď

𝜃 ă 2𝜋 u, which is the complex unit circle union with zero. In both instances the

multiplication is inherited from C.

The first is seen in [BL18a]. The hyperaddition is defined by the rule, where

𝑆1 “ t𝑒𝑖𝜃 P C |0 ď 𝜃 ă 2𝜋 u.

𝜃1 “ 𝜃2 ` 𝜋 then 𝑒𝑖𝜃1 ‘ 𝑒𝑖𝜃2 “ t0, 𝑒𝑖𝜃1 , 𝑒𝑖𝜃2u

𝜃1 ă 𝜃2 ă 𝜃1 ` 𝜋 then 𝑒𝑖𝜃1 ‘ 𝑒𝑖𝜃2 “ t𝑒𝑖𝜃 | 𝜃1 ă 𝜃 ă 𝜃2u

a)
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The second is seen in [BB18] and [BS20]. The hyperaddition is defined as,

0 ‘ t𝑥u “ t𝑥u, 𝑥 ‘ ´𝑥 “ t0, 𝑥,´𝑥u,

𝑥 ‘ 𝑦 “ t
𝑎𝑥 ` 𝑏𝑦

|𝑎𝑥 ` 𝑏𝑦|
: 𝑎, 𝑏 P Rą0u for 𝑥, 𝑦 P 𝑆1 such that 𝑥 ‰ ´𝑦.

b)

Where 𝟘 “ 0 and 𝟙 “ 1. The quotient form of P is given in [BL18a] as C{Rą0. The

hyperaddition gives an arc around the unit circle which by definition shows the phase

hyperfield is not stringent, and hence not doubly distributive by Lemma 2.1.11. The

phase hyperfield is algebraically closed by Lemma 2.4.5, as there is a surjective hyperfield

homomorphism, php¨q : CÑ P, from the algebraically closed complex numbers. Drawing

again from the work in [BL18a], P does not satisfy the multiplicity bound. This is

demonstrated in the next example

Example 2.4.9. [BL18a, Remark 1.10] The polynomial 𝑝p𝑋q “ 𝑋2‘𝑋‘1 has infinitely

many roots over P, where 𝑎 P 𝑉p𝑋2 ‘𝑋‘1q are described by 𝑎 “ 𝑒𝑖𝜃 , for all 𝜋2 ă 𝜃 ă 3𝜋
2 .

2.4.7 Triangle Hyperfield (△)

The triangle hyperfield, denoted by △, has the underlying set Rě0. The multiplication

is defined in the standard way, and then the hyperaddition is defined as;

𝑥 ‘ 𝑦 “ t𝑧 : |𝑥 ´ 𝑦| ď 𝑧 ď 𝑥 ` 𝑦u.

Where 𝟘 “ 0 and 𝟙 “ 1. It is stated in [BS20] that △ is not doubly distributive and

the triangle hyperfield is seen to be not stringent from the definition of the hyper-

operation. The quotient construction of the triangle hyperfield is given by taking the

quotient of the complex numbers by the unit circle in the complex plane. Explicitly,

C{𝑆1, which comes as a result of [AD19, Proposition 2.1]. Similarly to P, the triangle

hyperfield is algebraically closed, due to Lemma 2.4.5, as there is a surjective hyperfield

homomorphism, | ¨ | : CÑ △, from the algebraically closed complex numbers. It will

be shown in the following example that the triangle hyperfield exceeds the multiplicity

bound.
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Example 2.4.10. Take the polynomial 𝑝p𝑋q “ 𝑋2 ‘ 𝑋 ‘ 1 over the triangle hyperfield.

0 P 𝑎 ‘ 𝑎 “ t𝑐 P Rě0 | |𝑎 ´ 𝑎| ď 𝑐 ď 𝑎 ` 𝑎u

“ r0, 2𝑎s Ă Rě0

By the reversibility property for hyperaddition,

0 P 𝑋2 ‘ 𝑋 ‘ 1 ðñ ´1 “ 1 P 𝑋2 ‘ 𝑋.

By the definition of the hyperaddition over △,

𝑋2 ‘ 𝑋 “ t𝑐 P Rě0 | |𝑋2
´ 𝑋| ď 𝑐 ď 𝑋2

` 𝑋u.

Therefore,

1 P 𝑋2 ‘ 𝑋 ðñ |𝑋2
´ 𝑋| ď 1 ď 𝑋2

` 𝑋.

Then, splitting this statement into two separate inequalities and solving individually,

they can be recombined to produce,

1
2p

?
5 ´ 1q ď 𝑋 ď

1
2p1 `

?
5q,

which defines an interval of roots to the polynomial 𝑝p𝑋q “ 𝑋2 ‘ 𝑋 ‘ 1 over △,

𝑉p𝑝p𝑋qq “

”

1
2p

?
5 ´ 1q, 1

2p1 `
?

5q

ı

. This demonstrates that the triangle hyperfield

exceeds the multiplicity bound.

2.4.8 Tropical Phase Hyperfield ( Φ)

The tropical phase hyperfield, as indicated by the name, is a close relation to both the

phase hyperfield and the tropical hyperfield. It is denoted by Φ with the ground set as

𝑆1 Y t0u, where the multiplication is defined as standard for the complex plane. The

hyper-addition is defined as;

𝑥 ‘ 𝑥 “ 𝑥, 𝑥 ‘ ´𝑥 “ 𝑆1
Y t0u

Then, given 𝑥 ‰ ˘𝑦,

𝑥 ‘ 𝑦 “ tShortest closed arc between the points 𝑥 and 𝑦 on the unit circleu.
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The quotient form of the tropical phase hyperfield is another result of [AD19, Proposi-

tion 2.1], it is given as TC{Rą0. In an analogous way to P it can seen immediately from

the definition of the hyper-addition that Φ is no stringent. It can also be seen from the

following example how the tropical phase hyperfield fails to be doubly distributive.

Example 2.4.11. Take the following four elements of Φ: 𝑎 “ ´

?
2

2 `

?
2

2 𝑖, 𝑏 “

?
3

2 ´ 1
2𝑖,

𝑐 “ 1 and 𝑑 “ 𝑖. Then 0 R p𝑎‘𝑏q and 0 R p𝑐‘𝑑q, giving 0 R p𝑎‘𝑏qp𝑐‘𝑑q. Furthermore,

𝑏 P p𝑎 ‘ 𝑏q “ 𝑐p𝑎 ‘ 𝑏q and ´𝑏 P 𝑖p𝑎 ‘ 𝑏q “ 𝑑p𝑎 ‘ 𝑏q. This leads to

𝑎𝑐 ‘ 𝑏𝑐 ‘ 𝑎𝑑 ‘ 𝑏𝑑 “ 𝑐p𝑎 ‘ 𝑏q ‘ 𝑑p𝑎 ‘ 𝑏q

Q 𝑏 ‘ ´𝑏

Q 0

In conclusion,

0 P 𝑎𝑐 ‘ 𝑏𝑐 ‘ 𝑎𝑑 ‘ 𝑏𝑑 ‰ p𝑎 ‘ 𝑏qp𝑐 ‘ 𝑑q S 0.

The map P Ñ Φ is a surjective hyperfield homomorphism, which implies that the

tropical phase hyperfield is algebraically closed due to the phase hyperfield being al-

gebraically closed by Lemma 2.4.5. This map also demonstrates that Φ exceeds the

multiplicity bound. In a similar manner to the proof of Lemma 2.4.5, the fact that the

existence of this maps demonstrates that Φ does not satisfy the multiplicity bound will

be expanded on in Section 3.2.

2.4.9 Weak Hyperfield of Signs ( W)

The weak hyperfield of signs denotedW, is similar to S, as it has the same underlying set

t´1, 0, 1u. The multiplication is defined in the standard way, then the hyper-addition

operation is defined as;

1 ‘ 1 “ ´1 ‘ ´1 “ t1,´1u,

1 ‘ ´1 “ t0,´1, 1u.
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Where 𝟘 “ 0 and 𝟙 “ 1. It can be seen from the definition of the hyper-operation that

W is not stringent. It can also be seen explicitly that W is not doubly distributive in

the following way:

´1 ‘ ´1 ‘ ´1 ‘ ´1 “W ‰ t´1, 1u “ p1 ‘ 1qp´1 ‘ ´1q.

The weak hyperfield of signs is not algebraically closed, as in an analogous way to

S, 𝑉p𝑝p𝑋qq “ 𝑉p𝑋2 ‘ 1q “ H. Furthermore, it can be demonstrated that W does

not satisfy the multiplicity bound either. In [BL18a, Remark 1.9], it is shown that

𝑝p𝑋q “ 𝑋2 ‘ 𝑋 ‘ 1 has two double roots at 1 and ´1 over W.

Remark 2.4.12. The above discussion puts W in an unusual position in the category of

hyperfields. As it is not algebraically closed, this exhibits a suggestion that there are

some ‘roots’ missing from the hyperfield, but the fact that it exceeds the multiplicity

bound suggests that there are too many ‘roots’ in one sense. Taken together these

points would form a contradiction in the classic setting. There is clearly more to be

understood regarding roots, algebraic closure and the multiplicity bound in the category

of hyperfields.

2.4.10 Signed Tropical Hyperfield ( TR) and (𝑂TR)

Here the signed tropical hyperfield, denoted TR, and a sub-hyperring denoted 𝑂TR are

presented. The signed tropical hyperfield has the underlying set of pt˘1u ˆ Rq Y t8u,

with the underlying set of 𝑂TR as the restriction to positive real numbers in the second

component: pt˘1u ˆ Rě0q Y t8u. Take p𝑎1, 𝑏1q, p𝑎2, 𝑏2q P TR, then the multiplication

is defined as:

p𝑎1, 𝑏1q d p𝑎2, 𝑏2q “ p𝑎1 ¨ 𝑎2, 𝑏1 ` 𝑏2q.

The hyper-addition is defined as:

p𝑎1, 𝑏1q ‘ p𝑎2, 𝑏2q “

$

’

’

’

&

’

’

’

%

p𝑎1, 𝑏1q, if 𝑏1 ă 𝑏2,

p𝑎2, 𝑏2q, if 𝑏2 ă 𝑏1,

p𝑎1, 𝑏1q, if 𝑎1 “ 𝑎2, and 𝑏1 “ 𝑏2

tp˘1, 𝑐q : 𝑐 ě 𝑎1u Y t8u, if 𝑏1 “ 𝑏2, and 𝑎1 “ ´𝑎2.
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The sub-hyperring 𝑂TR has the above operations but restricted to the subset pt˘1u ˆ

Rě0q Y t8u. Where 𝟘 “ t8u and 𝟙 “ p1, 0q. It is stated in [BS20, Example 2.9] that

TR is doubly distributive. This implies that 𝑂TR is also doubly distributive and that

both objects are stringent, by Lemma 2.1.11. The quotient construction of both of these

objects uses Hahn series, which will now be defined formally. A detailed description of

these can be found in [Gun19], including the Hahn series quotient construction.

Definition 2.4.13. Let 𝐾 be a real or algebraically closed field and let Ω Ă R be an

ordered subgroup. Then a Hahn series is defined as an element of

𝐾rr𝑡Ωss “

!

ÿ

𝑛P𝑁

𝑐𝑛𝑡
𝑛 : 𝑐𝑛 P 𝐾, 𝑁 Ă Ω is well ordered.

)

Fix Ω “ R, then there is a valuation on Rrr𝑡Rss and Crr𝑡Rss defined as

valR : Rrr𝑡Rss Ñ TR, valR
´

ÿ

𝑛P𝑁

𝑐𝑛𝑡
𝑛
¯

“ psgnp𝑐𝑛0q, 𝑛0q

valC : Crr𝑡Rss Ñ T, valC
´

ÿ

𝑛P𝑁

𝑐𝑛𝑡
𝑛
¯

“ 𝑛0.

Where 𝑛0 “ Minp𝑁q. The signed tropical hyperfield is isomorphic to the quotient

Rrr𝑡Rss{val´1
R p0q, and 𝑂TR is isomorphic to 𝑂Rrr𝑡Rss{val´1

R p0q. Both of these objects

are not algebraically closed as the polynomial 𝑝p𝑋q “ 𝑋2 ‘ 1 has no roots over TR.

This is a consequence of the definitions of the multiplicities of roots over TR, which are

characterised in [Gun19]. A corollary of the results in [Gun19] is that TR satisfies the

multiplicity bound for all polynomials. The multiplicities are given as the sign changes

along the edges of the Newton polytope defined by the push-forward polynomial over

T, see Section 4.1.4 for a detailed description. For all elements 𝑋 P pt˘1u ˆ Rq Y t8u,

𝑋2 “ p1, 𝑐q for some 𝑐 P R will have a positive first component. This can be used to see

that there will be no sign changes on the corresponding Newton polytope, and hence

has an empty variety.

Remark 2.4.14. The tropical hyperfield T can be constructed explicitly as a quotient of

a Hahn series in the following way.

T – Crr𝑡Rss{val´1
C

p0q.
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2.5 Hyperfield Homomorphisms

This subsection will present a range of examples of hyperfields homomorphisms between

the hyperfields defined in Section 2.4. For a detailed representation of the majority

of the examples refer to Diagram 1 in [AD19]. This presents them visually, enabling

connections between the maps and hyperfields to be solidified. Many of these morphisms

can be viewed as quotient maps, if this is the case, both forms will be given to be as

comprehensive as possible.

Example 2.5.1. Given a hyperfield H, then the trivial map to K, sending every non-zero

element to 1 is a hyperfield homomorphism.

𝑓 : HÑ K, 𝑓 p𝑥q “

#

1, if 𝑥 ‰ 0.
0, if 𝑥 “ 0.

This can be expressed as a quotient map but utilising the property that K – H{Hˆ.

Thus,

𝑓 : HÑ H{Hˆ
– K.

Example 2.5.2. Given the real numbers, then there exists a hyperfield homomorpshim

to the hyperfields of signs, which takes each real number to its sign.

sgn : RÑ S, sgnp𝑥q “

$

’

&

’

%

1, if 𝑥 P Rą0.

´1, if 𝑥 P Ră0.

0, if 𝑥 “ 0.

This can be expressed as a quotient map as follows,

RÑ R{Rą0 – S.

Example 2.5.3. There exists a hyperfield homomorphism from the signed tropical

hyperfield to the hyperfield of signs. This maps elements of TR to their first component.

Sgn : TRÑ S, Sgnpp𝑎, 𝑏qq “

$

’

&

’

%

1, if 𝑎 “ 1.
´1, if 𝑎 “ ´1.
0, if 𝑥 “ 8.

The next several examples will be connecting the complex numbers to hyperfields by

way of quotient maps.
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Example 2.5.4. Given the complex numbers, C, then there exists a map to the phase

hyperfield, P, which maps each complex number to its argument.

ph : CÑ P, php𝑥q “

#

𝑥
|𝑥|
, if 𝑥 P Czt0u.

0, if 𝑥 “ 0.

Similarly to the sgn map defined above, the ph map can be expressed as a quotient

map, with Rą0 as the quotient subgroup.

ph : CÑ C{Rą0 – P.

Example 2.5.5. Given the complex numbers, C, then there exists a map to the triangle

hyperfield, △, which maps each complex number to its absolute value.

| ¨ | : CÑ △, |𝑧| “ |𝑥 ` 𝑖𝑦| “ p𝑥2
` 𝑦2

q
1
2 .

This map can be presented as a quotient map, with the unit circle 𝑆1 as the quotient

subgroup.

| ¨ | : CÑ C{𝑆1
– △.

Example 2.5.6. Given the real numbers, R, then there exists a map to the real tropical

hyperfield, TR, which sends each real number to the pair representing the sign and the

original number.

Example 2.5.7. Given the phase hyperfield, P, then there is the identity map which

sends elements in to the tropical phase hyperfield Φ.

Example 2.5.8. The standard tropicalisation map, from a valued field to the tropical

semiring, trop : 𝐾 Ñ R is semi-field homomorphism. The tropical hyperfield T is a

hyperfield analogue of the idempotent semiring structure that has been studied in

[MS15] and [Vir11]. It is mentioned in the definition of the tropical hyperfield that it

can be defined using the min convention. When taking this view, R and T have the

same underlying set. As one is a hyperfield and one is a semi-field they can be connected

by the set-theoretic identity map. Given a valued field 𝐾 then the map trop : 𝐾 Ñ T,

is a hyperfield homomorphism. This can be presented naturally as a quotient map, in

the form

trop : 𝐾 Ñ 𝐾{trop´1
p0q – T



2.5. HYPERFIELD HOMOMORPHISMS 51

Example 2.5.9. Given the tropical complex hyperfield, then there exists a hyperfield

homomorphism to the tropical phase hyperfield. This acts in an analogous way to the

map ph : CÑ P as it sends the underlying complex numbers to their arguments, but

preserves the hyperfield structure in the way a homomorphsim is defined.

ph : TCÑ Φ, php𝑥q “

#

𝑥
|𝑥|
, if 𝑥 P Czt0u.

0, if 𝑥 “ 0.

Example 2.5.10. There exists a hyperfield homomorphism between the tropical

complex hyperfield and the tropical hyperfield. The map is denoted 𝜂 : TCÑ T, and is

defined as:

𝜂p𝑧q :“ logp|𝑧|q.

There are more details of how this map is constructed outlined in [AD19, Figure 1],

and consequent discussion in part 9 of the hyperfield exmaples of [AD19] where the

map is discussed in two parts.

Remark 2.5.11. The map 𝜂 : TCÑ T will be explored in detail in Section 3. There will

be a demonstration that 𝜂 satisfies a relative algebraic closure property in Theorem

3.1.12, where relative algebraic closure is defined in Definition 3.1.3. This property

will be the base to proving a generalised version of Kapranov’s theorem for tropical

geometry over hyperfields in Theorem 3.2.5.
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Chapter 3

Generalising Kapranov’s Theorem

Kapranov’s theorem is a foundational result in tropical geometry [MS15, Theorem 3.1.3].

It states that the set of tropicalisations of points on a hypersurface coincides precisely

with the tropical variety of the tropicalisation of the defining polynomial. The aim

of this section is to generalise Kapranov’s theorem, replacing the role of a valuation,

trop : 𝐾 Ñ R, with a more general class of hyperfield homomorphisms, HÑ T, which

satisfy a relatively algebraically closed (RAC) condition.

The RAC property is precisely stated in Definition 3.1.3, but intuitively the RAC prop-

erty states that when a univariate polynomial is pushed forward through a hyperfield

homomorphism, the roots of the polynomial can be lifted back to roots of the original

polynomial. The existence of a hyperfield homomorphism which has this property

is demonstrated by the map 𝜂 “ logp| ¨ |q : TC Ñ T, in Theorem 3.1.12. The main

result of this section is a hyperfield version of Kapranov’s theorem for RAC hyperfield

homomorphism which map to T.

A natural question regarding the RAC property of hyperfield homomorphisms is: can

we give tractable sufficient conditions to guarantee that a map between hyperfields is

RAC? This question is explored in Section 3.3 and partially answered, stating sufficient

conditions for a specific class of hyperfield homomorphisms to be RAC.

The following results are presented in the author’s recent paper [Max21].

53
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3.1 Relative Algebraic Closure

The first step is to formalise how to combine the structure of polynomials defined over

hyperfields with hyperfield homomorphisms. Below is the description of the induced

map of polynomials over hyperfields.

Definition 3.1.1. Let 𝑓 : H1 Ñ H2 be a hyperfield homomorphism. This induces

a map from polynomials with coefficients in H1 to polynomials with coefficients in

H2. This map is denoted 𝑓˚ : H1r𝑋1 , . . . , 𝑋𝑛s Ñ H2r𝑋1 , . . . , 𝑋𝑛s, and is defined for

𝑝p𝑋1 , . . . , 𝑋𝑛q “ ‘𝐼 𝑐𝐼𝑋
𝐼 P H1r𝑋1 , . . . , 𝑋𝑛s as;

𝑓˚p𝑝q “ ‘
𝐼

𝑓 p𝑐𝐼q𝑋
𝐼

P H2r𝑋1 , . . . , 𝑋𝑛s.

(Note: the hyper-operations are now the operations over H2, and 𝑓˚p𝑝q will be called

the push-forward of 𝑝.)

Example 3.1.2. Take the polynomial 𝑝p𝑋q “ 4𝑋2 ´ 5𝑋 ` 1 P Rr𝑋s, the hyperfield

homomorphism sgn : R Ñ S induces the map sgn˚ : Rr𝑋s Ñ Sr𝑋s, which gives

sgn˚p𝑝qp𝑋q “ 𝑋2 ‘ ´𝑋 ‘ 1 P Sr𝑋s.

Note that roots of 𝑝 P H1r𝑋s push-forward to roots of 𝑓˚p𝑝q P H2r𝑋s. This is precisely

described in Lemma 3.2.2. Next the definition of a relatively algebraically closed

hyperfield homomorphism is introduced. This property identifies whether a root of

polynomial can be pulled back through hyperfield homomorphism. This notion is

presented for univariate polynomials below.

Definition 3.1.3. Let 𝑓 : H1 Ñ H2 be a hyperfield homomorphism, with induced

map 𝑓˚ : H1r𝑋s Ñ H2r𝑋s. We say that 𝑓 is relatively algebraically closed (RAC) if

for all univariate polynomials 𝑓˚p𝑝q P H2r𝑋s and every root 𝑏 P 𝑉p 𝑓˚p𝑝qq, there exists

𝑎 P 𝑓´1p𝑏q such that 𝑎 P 𝑉p𝑝q.

The map 𝑓 : H1 Ñ H2 being RAC has the immediate consequence that 𝑉p 𝑓˚p𝑝qq Ď

𝑓 p𝑉p𝑝qq for all 𝑝p𝑋q P H1r𝑋s. Then combining with Lemma 3.2.2, 𝑉p 𝑓˚p𝑝qq “ 𝑓 p𝑉p𝑝qq.

The following example describes a RAC map which is the main motivating example for
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this chapter. It is the map that is studied in tropical geometry, and is the basis for the

generalisation to hyperfield homomorpshisms.

Example 3.1.4. Let 𝐾 be an algebraically closed field with surjective valuation,

trop : 𝐾 Ñ T, then this is a RAC hyperfield homomorphism. This is the underlying

structure investigated when discussing valuations and tropicalisation maps in relation

to tropical geometry. See Section 2.1 and Theorem 3.1.3 in [MS15] for a more detailed

description.

The next collection of examples demonstrate that hyperfield homomorphisms are in

general not RAC.

Example 3.1.5. Take the quotient map sgn : R Ñ S, and the polynomial 𝑝p𝑋q “

𝑋2 ´ 𝑋 ` 1 P Rr𝑋s. Then, sgn˚p𝑝q “ 𝑋2 ‘ ´𝑋 ‘ 1 P Sr𝑋s. The polynomial 𝑝p𝑋q

has an empty variety, whereas sgn˚p𝑝qp1q “ 1 ‘ ´1 ‘ 1 “ S, so 1 P 𝑉psgn˚p𝑝qq. This

demonstrates that the map RÑ S is not a RAC map.

Example 3.1.6. Take the map ph : CÑ P, and the polynomial 𝑝p𝑋q “ 𝑋2 ` 𝑋 ` 1 P

Cr𝑋s. It is shown in [BL18a, Remark 1.10], that ph˚p𝑝qp𝑋q has a root at each 𝑎 “ 𝑒𝑖𝜃

for all 𝜋{2 ă 𝜃 ă 3𝜋{2. Not every element of this set can be lifted to roots of 𝑝p𝑋q as

the variety of 𝑝p𝑋q is the set t
´1`𝑖

?
3

2 ,
´1´𝑖

?
3

2 u, for instance there is not lift of ´1 P P.

Hence, ph : CÑ P is not a RAC map.

Example 3.1.7. Take the quotient map | ¨ | : CÑ △, and again the polynomial 𝑝p𝑋q “

𝑋2`𝑋`1 P Cr𝑋s, then the push-forward is |𝑝|˚ “ 𝑋2‘𝑋‘1 P △r𝑋s. The variety of 𝑝p𝑋q

is again the set t
´1`𝑖

?
3

2 ,
´1´𝑖

?
3

2 u, whereas the variety of |𝑝| is the interval r

?
5´1
2 ,

1`
?

5
2 s,

as shown in Example 2.4.10. Thus, 𝑥 P r

?
5´1
2 ,

1`
?

5
2 s

I

t
ˇ

ˇ

´1`𝑖
?

3
2

ˇ

ˇ ,
ˇ

ˇ

´1´𝑖
?

3
2

ˇ

ˇu has no lift

to a root of the original polynomial 𝑝p𝑋q. Note there will be an exploration into a

precise description of how 𝑉p|𝑝|˚q is calculated in Section 4.2.

Proposition 3.1.8. The composition of two RAC hyperfields homomorphism is RAC.

Proof. Let 𝑓 : H1 Ñ H2 and 𝑔 : H2 Ñ H3 be RAC maps, then ℎp𝑥q “ p 𝑓 ˝ 𝑔qp𝑥q “

𝑓 p𝑔p𝑥qq : H1 Ñ H3. Let 𝑝p𝑋q P H1r𝑋s, with the image under the induced polynomial
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composition map as ℎ˚p𝑝q “ 𝑓˚p𝑔˚p𝑝qq P H3r𝑋s. As 𝑓 : H1 Ñ H2 is RAC, this implies

that 𝑓 p𝑉p𝑝qq “ 𝑉p 𝑓˚p𝑝qq, and similarly with 𝑔 : H2 Ñ H3 being RAC this imples

𝑔p𝑉p𝑝qq “ 𝑉p𝑔˚p𝑝qq. Combining these two facts gives,

ℎp𝑉p𝑝qq “ 𝑓 p𝑔p𝑉p𝑝qqq

“ 𝑓 p𝑉p𝑔˚p𝑝qqq

“ 𝑉p 𝑓˚p𝑔˚p𝑝qqq

“ 𝑉pℎ˚p𝑝qq.

This is precisely equivalent to the map ℎ : H1 Ñ H3 being RAC. □

The remainder of the section will be focussed on demonstrating that the map 𝜂 : TCÑ T

satisfies the RAC property.

Proposition 3.1.9. Let 𝑝p𝑋q “ ‘𝑛
𝑖“0 𝑐𝑖 d 𝑋 𝑖 P TCr𝑋s. An element 𝑎 P TC is a root

of 𝑝p𝑋q if there exists 𝑗1 , . . . , 𝑗𝑚 P t1 , . . . , 𝑛u such that

|𝑐 𝑗1𝑎
𝑗1 | “ ¨ ¨ ¨ “ |𝑐 𝑗𝑚𝑎

𝑗𝑚 | ą |𝑐𝑖𝑎
𝑖
| @𝑖 R t 𝑗1 , . . . , 𝑗𝑚u and ´ 𝑐0 P

𝑚

‘
𝑘“1

𝑐 𝑗𝑘 d 𝑎 𝑗𝑘 .

Proof. By the definition of the hyperaddition over TC the monomial terms with the

largest absolute value contribute to the hypersum when the polynomial 𝑝 is evaluated

at 𝑎. Thus, by the hypothesis,

𝑝p𝑎q “

𝑛

‘
𝑖“0

𝑐𝑖 d 𝑎𝑖

“

𝑚

‘
𝑘“1

𝑐 𝑗𝑘 d 𝑎 𝑗𝑘 ‘ 𝑐0,

so, 𝟘 P 𝑝p𝑎q if and only if ´𝑐0 P ‘𝑚
𝑘“1 𝑐 𝑗𝑘 d 𝑎 𝑗𝑘 . □

Proposition 3.1.10. Given 𝑝p𝑋q P Tr𝑋s, an element 𝑎 P T is a root of 𝑝 if the

maximum of 𝑝p𝑎q is achieved more than once.

This is an analogue of the characterisation of roots over the tropical semi-ring. Focusing

on the hyperfield homomorphism 𝜂 : TCÑ T, it can be seen that using the following

lemma, 𝜂 is a RAC map.
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Lemma 3.1.11. Given 𝑎, 𝑏 P T, if 𝑎 ą 𝑏, then for all 𝛼 P 𝜂´1p𝑎q and 𝛽 P 𝜂´1p𝑏q, it

holds that |𝛼| ą |𝛽|.

Proof. Taking 𝑎, 𝑏 P T such that 𝑎 ą 𝑏, if 𝛼 P 𝜂´1p𝑎q, and 𝛽 P 𝜂´1p𝑏q then logp|𝛼|q “

𝑎 ą 𝑏 “ logp|𝛽|q. As both the logarithm and exponential functions preserve order,

logp|𝛼|q ą logp|𝛽|q ñ |𝛼| ą |𝛽|, as required. □

Theorem 3.1.12. The hyperfield homomorphism 𝜂 : TCÑ T is RAC.

Proof. A polynomial 𝑝 “ ‘𝑛
𝑖“0 𝑐𝑖 d 𝑋 𝑖 P TCr𝑋s has push-forward 𝑞 “ 𝜂˚p𝑝q “

‘𝑛
𝑖“0 𝜂p𝑐𝑖q d 𝑋 𝑖 P Tr𝑋s. By Proposition 3.1.10, 𝑎 P 𝑉p𝑞q if and only if there are two or

more monomials terms that are equal and great than or equal than the other monomial

terms in 𝑞p𝑎q. For this to occur there must exist 𝑘1 , . . . , 𝑘𝑚 P t1 , . . . , 𝑛u such that,

𝜂p𝑐𝑘1q d 𝑎𝑘1 “ . . . “ 𝜂p𝑐𝑘𝑚q d 𝑎𝑘𝑚 ą 𝜂p𝑐𝑖q d 𝑎𝑖 for all 𝑖 P t1 , . . . , 𝑛uzt𝑘1 , . . . , 𝑘𝑚u.

Explicitly, the maximum is achieved more than once in the terms 𝜂p𝑐1qd𝑎1 , . . . , 𝜂p𝑐𝑛qd

𝑎𝑛, and this maximum is greater than or equal to 𝜂p𝑐0q.

As 𝑚 ě 2, this allows for 𝑡, 𝑡1 P t𝑘1 , . . . , 𝑘𝑚u to be chosen to construct a lift of 𝑎 as

follows:

r𝑎 “

´

´𝑐𝑡1

𝑐𝑡

¯
1

𝑡´𝑡1

.

To confirm that 𝑎 is a lift of 𝑎, apply the map 𝜂 to 𝑎 to give

𝜂p𝑎q “

´

𝜂p´𝑐𝑡1q d p𝜂p𝑐𝑡qq
´1
¯

1
𝑡´𝑡1

.

Furthermore, observe that 𝜂p𝑐𝑡q d 𝑎𝑡 “ 𝜂p𝑐𝑡1q d 𝑎𝑡
1 . Then,

𝜂p𝑐𝑡q d 𝑎𝑡 “ 𝜂p𝑐𝑡1q d 𝑎𝑡
1

ñ 𝑎𝑡´𝑡
1

“ 𝜂p𝑐𝑡1q d p𝜂p𝑐𝑡qq
´1

ñ 𝑎 “

´

𝜂p𝑐𝑡1q d p𝜂p𝑐𝑡qq
´1
¯

1
𝑡´𝑡1

.

As 𝜂p𝑥q “ logp|𝑥|q “ logp| ´ 𝑥|q “ 𝜂p´𝑥q, this shows that 𝑎 “ 𝜂p𝑎q as required.

It remains to shown that r𝑎 is a root of the original polynomial 𝑝. Note that due to

Lemma 3.1.11,

|𝑐𝑘1r𝑎
𝑘1 | “ . . . “ |𝑐𝑘𝑚r𝑎

𝑘𝑚 | ą |𝑐𝑖r𝑎
𝑖
|, for all 𝑖 R t𝑘1 , . . . , 𝑘𝑚u. (3.1.13)
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Furthermore, observe the relationship between the monomial terms with 𝑡, 𝑡1 exponents,

𝑐𝑡r𝑎
𝑡 ‘ 𝑐𝑡1r𝑎

𝑡1
“ 𝑐𝑡

´´

´𝑐𝑡1

𝑐𝑡

¯
1

𝑡´𝑡1
¯𝑡

‘ 𝑐𝑡1

´´

´𝑐𝑡1

𝑐𝑡

¯
1

𝑡´𝑡1
¯𝑡1

“ p´1q
𝑡

𝑡´𝑡1 p𝑐𝑡q
´𝑡1

𝑡´𝑡1 p𝑐𝑡1q
𝑡

𝑡´𝑡1 ‘ p´1q
𝑡1

𝑡´𝑡1 p𝑐𝑡q
´𝑡1

𝑡´𝑡1 p𝑐𝑡1q
𝑡

𝑡´𝑡1

“ p´1qp´1q
𝑡1

𝑡´𝑡1 p𝑐𝑡q
´𝑡1

𝑡´𝑡1 p𝑐𝑡1q
𝑡

𝑡´𝑡1 ‘ p´1q
𝑡1

𝑡´𝑡1 p𝑐𝑡q
´𝑡1

𝑡´𝑡1 p𝑐𝑡1q
𝑡

𝑡´𝑡1

“ t𝑧 P C : |𝑧| ď 𝑅u, where 𝑅 “ |𝑐𝑡r𝑎
𝑡
| ě |𝑐0|.

Then, ‘𝑚
𝑗“1 𝑐𝑘 𝑗 d r𝑎𝑘 𝑗 Q ´𝑐0, which combined with (3.1.13) and Proposition 3.1.9 gives

that 𝑎 P 𝑉p𝑝q. □

Corollary 3.1.14. The tropical complex hyperfield TC is algebraically closed. (Recalling

that here for a hyperfield, algebraically closed is explicitly defined as the hyperfield having

a root for every univariate polynomial.)

Proof. As a consequence of the results on roots and multiplicities in [BL18a], T is

algebraically closed. As the map 𝜂 : TCÑ T is RAC and surjective, every polynomial

𝑝p𝑋q P TCr𝑋s has a corresponding polynomial 𝜂˚p𝑝qp𝑋q P Tr𝑋s, which has a root and

can be lifted back to a root of 𝑝p𝑋q. Hence, every polynomial in TCr𝑋s has a root. □

Example 3.1.15. Take the polynomial 𝑝p𝑋q “ 𝑖𝑋2 ‘

´

´1`𝑖
?

3
2

¯

𝑋 ‘ ´1 P TCr𝑋s,

then the push-froward is 𝜂˚p𝑝qp𝑋q “ 0 d 𝑋2 ‘ 0 d 𝑋 ‘ 0 P Tr𝑋s. It can be seen that

0 P 𝑉p𝜂˚p𝑝qq. In accordance to the proof of Theorem 3.1.12, take 𝑡 “ 2 and 𝑡1 “ 1. This

gives,

𝑐𝑡 “ 𝑐2 “ 𝑖, ´𝑐𝑡1 “ 𝑐1 “

´1 ´ 𝑖
?

3
2

¯

, 1{p𝑡 ´ 𝑡1q “ 1

Taking the template for the lift,

r𝑎 “

´

´𝑐𝑡1

𝑐𝑡

¯
1

𝑡´𝑡1

“

´1 ´ 𝑖
?

3
2𝑖

¯

.

Now to confirm that this is a pull back of 0 and is a root of 𝑝p𝑋q.
ˇ

ˇ

ˇ

´1 ´ 𝑖
?

3
2𝑖

¯ˇ

ˇ

ˇ
“

1
2 |1 ´ 𝑖

?
3| “ 1 ñ 𝑓

´1 ´ 𝑖
?

3
2𝑖

¯

“ 0.

Finally,

𝑝pr𝑎q “ 𝑝

´1 ´ 𝑖
?

3
2𝑖

¯

“ 𝑖

´1 ´ 𝑖
?

3
2𝑖

¯2
‘

´

´1 ` 𝑖
?

3
2

¯´1 ´ 𝑖
?

3
2𝑖

¯

‘ ´1
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“

´

𝑖 ´
?

3
2

¯

‘

´1 ` 𝑖
?

3
2𝑖

¯

‘ ´1

“

´

𝑖 ´
?

3
2

¯

‘ ´

´

𝑖 ´
?

3
2

¯

‘ ´1

“ t𝑧 P C : |𝑧| ď 1u ‘ ´1 Q 𝟘.

This shows that r𝑎 is a lifted root, which demonstrates the application of the structure

of the proof of Theorem 3.1.12.

3.2 Kapranov’s Theorem for Hyperfields

This section will outline a specific generalisation of Kapranov’s Theorem over hyperfields.

The original theorem by Kapranov (see Theorem 3.1.3 in [MS15]) is a key result in

tropical geometry, which leads to the Fundamental Theorem of tropical geometry in

[MS15]. A summary version of the original theorem in tropical geometry is stated here.

Theorem 3.2.1. Given an algebraically closed field 𝐾 with surjective valuation, trop :

𝐾 Ñ R, then for a Laurent polynomial 𝑝p𝑋q “
ř

𝐼PZ𝑛 𝑐𝐼𝑋
𝐼 P 𝐾r𝑋˘1

1 , . . . , 𝑋˘1
𝑛 s,

𝑉ptropp𝑝qq “ tropp𝑉p𝑝qq.

(For further details, see [MS15, Theorem 3.1.3]).

An essential point to recognise is that by replacing the valuation with an arbitrary

hyperfield homomorphism, one containment holds automatically.

Lemma 3.2.2. Let 𝑓 : H1 Ñ H2 be a hyperfield homomorphism. For 𝑝p𝑋1 , . . . , 𝑋𝑛q “

‘𝐼 𝑐𝐼 d 𝑋 𝐼 P H1r𝑋1 , . . . , 𝑋𝑛s,

𝑓 p𝑉p𝑝qq Ď 𝑉p 𝑓˚p𝑝qq.

Proof. By definition 𝑓˚p𝑝qp𝑋1 , . . . , 𝑋𝑛q “ ‘𝐼 𝑓 p𝑐𝐼q d 𝑋 𝐼 P H2r𝑋1 , . . . , 𝑋𝑛s. Let 𝑎𝑎𝑎 “

p𝑎1 , . . . , 𝑎𝑛q P H𝑛1 be a root of 𝑝p𝑋1 , . . . , 𝑋𝑛q, meaning 𝑎𝑎𝑎 P 𝑉p𝑝q and

𝟘 P 𝑝p𝑎𝑎𝑎q “ 𝑝p𝑎1 , . . . , 𝑎𝑛q “ ‘
𝐼

𝑐𝐼 d 𝑎𝑎𝑎𝐼 . (3.2.3)
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The aim is to demonstrate that 𝑓 p𝑎𝑎𝑎q P 𝑉p 𝑓˚p𝑝qq holds. Firstly,

𝑓˚p𝑝qp 𝑓 p𝑎𝑎𝑎qq “ ‘
𝐼

𝑓 p𝑐𝐼q d 𝑓 p𝑎𝑎𝑎q
𝐼

“ ‘
𝐼

𝑓 p𝑐𝐼 d 𝑎𝑎𝑎𝐼q

Ě 𝑓

´

‘
𝐼

𝑐𝐼 d 𝑎𝑎𝑎𝐼
¯

Q 𝑓 p𝟘q “ 𝟘

The above steps use the properties of a hyperfield homomorphism to give that 𝟘 P

𝑓 p𝑝qp 𝑓 p𝑎𝑎𝑎qq, yielding 𝑓 p𝑎𝑎𝑎q P 𝑉p 𝑓˚p𝑝qq. Hence, proving that 𝑓 p𝑉p𝑝qq Ď 𝑉p 𝑓˚p𝑝qq. □

For a field 𝐾 and the classical notion of an ideal 𝐼 Ď 𝐾r𝑋1 , . . . , 𝑋𝑛s, Lemma 3.2.2 can

be extended. To be explicit, before stating the next result, see the following definitions

𝑓˚p𝐼q :“ t 𝑓˚p𝑝q : 𝑝 P 𝐼u,

𝑉p 𝑓˚p𝐼qq :“
č

𝑝P 𝑓˚p𝐼q

𝑉p𝑝q.

Lemma 3.2.4. Given a polynomial ideal 𝐼 Ď 𝐾r𝑋1 , . . . , 𝑋𝑛s, where 𝐾 is field and H

is a hyperfield such that 𝑓 : 𝐾 Ñ H, is a hyperfield homomorphism. Then, under the

induced polynomial map, 𝑓˚ : 𝐾r𝑋1 , . . . , 𝑋𝑛s Ñ Hr𝑋1 , . . . , 𝑋𝑛s.

𝑓 p𝑉p𝐼qq Ď 𝑉p 𝑓˚p𝐼qq.

Proof. Take 𝑦 P 𝑉p𝐼q, which is equivalent to 𝑦 P 𝑉p𝑝q for all 𝑝 P 𝐼. For every 𝑝 P 𝐼 Ď

𝐾r𝑋1 , . . . , 𝑋𝑛s, Lemma 3.2.2 implies that 𝑓 p𝑉p𝑝qq Ď 𝑉p 𝑓˚p𝑝qq, hence 𝑓 p𝑦q P 𝑉p 𝑓˚p𝑝qq

for all 𝑝 P 𝐼. This is exactly stating that 𝑓 p𝑦q P 𝑉p 𝑓˚p𝐼qq, due to the definition, as

required. □

The main purpose of this chapter is to specifically generalise Kapranov’s Theorem to

hyperfield homomorphisms 𝑓 : HÑ T, which satisfy the RAC property. The following

theorem demonstrates that the RAC property for a hyperfield homomorphism HÑ T

can be used to deduce the existence of a pull-back of roots for polynomials in 𝑛-variables.
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Theorem 3.2.5 (Generalised Kapranov’s Theorem). Given a polynomial 𝑝 P Hr𝑋1 , . . . , 𝑋𝑛s,

then for a RAC hyperfield homomorphism 𝑓 : HÑ T,

𝑉p 𝑓˚p𝑝qq “ 𝑓 p𝑉p𝑝qq.

Proof. The inclusion 𝑓 p𝑉p𝑝qq Ď 𝑉p 𝑓˚p𝑝qq is a direct consequence of Lemma 3.2.2.

The inclusion in the reverse direction, 𝑉p 𝑓˚p𝑝qq Ď 𝑓 p𝑉p𝑝qq, is more interesting and

requires an argument. Take a point 𝑎 P 𝑉p 𝑓˚p𝑝qq, so 𝟘 P 𝑓˚p𝑝qp𝑎q. The aim is to

demonstrate that there exists an element in 𝑉p𝑝q that pushes forward to 𝑎. This will

be done by restricting to univariate polynomials and using the property that 𝑓 : HÑ T

is a RAC map, to find an appropriate lift of 𝑎.

Firstly, choose lifts 𝜆𝑖 P 𝑓´1p𝑎𝑖q, where 𝑎 “ p𝑎1 , . . . , 𝑎𝑛q P 𝑉p 𝑓˚p𝑝qq and 𝜆 “

p𝜆1, . . . , 𝜆𝑛q P H𝑛. The map 𝑓 : H Ñ T can be used to define the coordinate

wise map 𝐹 : H𝑛 Ñ T𝑛 , 𝐹p𝑥1, . . . , 𝑥𝑛q :“ p 𝑓 p𝑥1q , . . . , 𝑓 p𝑥𝑛qq. For any non-zero

𝐷 “ p𝑑1, . . . , 𝑑𝑛q P Z𝑛 the map 𝜑p𝑥q :“ p𝜆1 d 𝑥𝑑1 , . . . , 𝜆𝑛 d 𝑥𝑑𝑛q defines an inclusion

𝜑 : H˚ Ñ pH˚q𝑛, where H˚ denotes H{t𝟘u. Then, if the map 𝜓 : T˚ Ñ pT˚q𝑛 is defined

as

𝜓p𝑥q : “ p 𝑓 p𝜆1q d 𝑥𝑑1 , . . . , 𝑓 p𝜆𝑛q d 𝑥𝑑𝑛q

“ p 𝑓 p𝜆1q ` 𝑑1𝑥 , . . . , 𝑓 p𝜆𝑛q ` 𝑑𝑛𝑥q,

the diagram below is commutative:

H˚ T˚

pH˚q𝑛 pT˚q𝑛

𝑓

𝜑

𝐹

𝜓

Note that 𝜓p0q “ 𝐹p𝜆q “ 𝑎. The polynomial 𝑝 will be pulled back through 𝜑 to a

univariate polynomial, then pushed forward through 𝑓˚ and it will be shown that this
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polynomial has a root at 0. The RAC property will be used to lift this root back. The

pullback of 𝑝, denoted 𝜑˚𝑝, is the univariate polynomial defined by the expression for

𝑝 where 𝑋𝑖 is replaced with 𝜆𝑖 d 𝑋𝑑𝑖 . Explicitly,

𝜑˚𝑝 “ ‘
𝐼

𝑐𝐼 d p𝜆1 d 𝑋𝑑1q
𝑖1 d . . . d p𝜆𝑛 d 𝑋𝑑𝑛q

𝑖𝑛 ,

“ ‘
𝐼

𝑐𝐼 d 𝜆𝐼 d 𝑋𝐷¨𝐼
P Hr𝑋s.

The pullback polynomial 𝜑˚𝑝 is pushed forward to 𝑓˚p𝜑˚𝑝q P Tr𝑋s. The image of

𝑓˚p𝜑˚𝑝q is equal to the image of 𝑓˚p𝑝q when restricted to 𝜓.

𝑓˚p𝑝qp𝜓p𝑋qq “ 𝑓˚p𝑝q

´

𝑓 p𝜆1q d 𝑋𝑑1 , . . . , 𝑓 p𝜆𝑛q d 𝑋𝑑𝑛
¯

“ ‘
𝐼

𝑓 p𝑐𝐼q d 𝑓 p𝜆q
𝐼

d 𝑋𝐷¨𝐼

“ 𝑓˚p𝜑˚𝑝qp𝑋q.

The next step is to show that 𝑓˚p𝜑˚𝑝q has a root at 0 P T. This can be seen as,

𝑓˚p𝜑˚𝑝qp0q “ ‘
𝐼

𝑓 p𝑐𝐼q d 𝑓 p𝜆q
𝐼

d 0𝐷¨𝐼 .

Then, due to the arithmetic over T,

‘
𝐼

𝑓 p𝑐𝐼q d 𝑓 p𝜆q
𝐼

d 0𝐷¨𝐼
“ ‘

𝐼

𝑓 p𝑐𝐼q d 𝑓 p𝜆q
𝐼

“ ‘
𝐼

𝑓 p𝑐𝐼q d 𝑎𝐼

“ 𝑓˚p𝑝qp𝑎q Q 𝟘. (3.2.6)

This shows that 0 P 𝑉p 𝑓˚p𝜑˚𝑝qq. Then, the property that the map 𝑓 : H Ñ T is a

RAC homomorphism gives that there exists an element r𝑎 P H such that 𝑓 pr𝑎q “ 0 and

r𝑎 P 𝑉p𝜑˚𝑝q.

Furthermore, to ensure that 𝑎 can be pushed forward to a root of 𝑝 the tuple 𝐷 P Z𝑛

must be chosen with the following property. Choose 𝐷 P Z𝑛 such that the dot products

of 𝐷 taken with exponent vectors of monomial terms of 𝑝 “ ‘𝐼 𝑐𝐼 d 𝑋 𝐼 , are all distinct.

Explicitly,

𝐷 ¨ 𝐽 “ 𝑑1 ¨ 𝑗1 ` ¨ ¨ ¨ ` 𝑑𝑛 ¨ 𝑗𝑛 ‰ 𝑑1 ¨ 𝑗 11 ` ¨ ¨ ¨ ` 𝑑𝑛 ¨ 𝑗 1𝑛 “ 𝐷 ¨ 𝐽 1,
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for all pairs 𝐽, 𝐽 1 P 𝐼. The condition 𝐷 ¨ 𝐽 ‰ 𝐷 ¨ 𝐽 1 can be interpreted as 𝐷 not lying on

the hyperplane defined by 𝑋 ¨ p𝐽´ 𝐽 1q. Therefore, it is possible to pick such a 𝐷 P Z𝑛, as

the number of possible pairs 𝐽, 𝐽 1 is finite and Z𝑛 can not be covered by a finite union

of hyperplanes.

The pullback 𝜑˚𝑝 utilises the requirement imposed on the tuple 𝐷 “ p𝑑1 , . . . , 𝑑𝑛q. If

the requirement was not imposed, this would allow multiple monomials in the restricted

polynomial to have equal exponents. This would lead to the corresponding coefficient

being a hypersum, thus the potentially detrimental possibility of the restriction be-

coming a set of polynomials rather than a single polynomial, which is what is needed here.

This condition on 𝐷 implies that the element r𝑎 can then be pushed forward through

𝜑 to give an element 𝜑pr𝑎q P 𝑉p𝑝q. As the diagram commutes, this shows that

the 𝐹p𝜑pr𝑎qq “ 𝜓p 𝑓 pr𝑎qq “ 𝜓p0q “ 𝑎, which is sufficient to show that for every el-

ement of 𝑉p 𝑓˚p𝑝qq there is a lift to an element of 𝑉p𝑝q. This demonstrates that

𝑉p 𝑓˚p𝑝qq Ď 𝑓 p𝑉p𝑝qq, giving the desired result.

Hence, it has been shown that both 𝑓 p𝑉p𝑝qq Ď 𝑉p 𝑓˚p𝑝qq and 𝑉p 𝑓˚p𝑝qq Ď 𝑓 p𝑉p𝑝qq hold.

These taken together demonstrate the required equality, 𝑉p 𝑓˚p𝑝qq “ 𝑓 p𝑉p𝑝qq.

(The structure of the proof, restricting to univariate polynomials to use the RAC

property is based on the argument presented in a proof of the original theorem in

tropical geometry, as seen in [Bog15]. Therefore, this adapted proof along with Example

3.1.4 gives a proof which encompasses that of the original Kapranov’s Theorem ). □

In particular, since 𝜂 : TCÑ T is RAC, the above theorem applies to it.

3.3 Characterising RAC Maps.

This section aims to present sufficient conditions for a hyperfield homomorphism to be

a RAC map. This will not include a complete description of the necessary conditions

for a hyperfield homomorphism to be a RAC; this remains an open topic. To begin the
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exploration into RAC hyperfield homomorphisms it is necessary to recall the definition

linking multiplicities of roots to the degree of the polynomial.

Definition 2.4.2 states that a hyperfield is said to satisfy the multiplicity bound if

for all univariate polynomials, 𝑝p𝑋q P Hr𝑋s,
ÿ

𝑎PH

mult𝑎p𝑝q ď degp𝑝q.

Furthermore, a hyperfield is said to satisfy multiplicity equality if the above inequality

is an equality for all univariate polynomials.

Proposition B from [BL18a] describes a relationship between the multiplicities of roots

over a field and the multiplicities of the push-forwards of these roots over a hyperfield.

It is stated below, in notation consistent with this work.

Proposition 3.3.1 ([BL18a], Prop. B). Let 𝐾 be a field and H a hyperfield with

hyperfield homomorphism 𝑓 : 𝐾 Ñ H. Let 𝑝p𝑋q P 𝐾r𝑋s, with push-forward 𝑓˚p𝑝qp𝑋q P

Hr𝑋s.Then,

mult𝑏p 𝑓˚p𝑝qq ě
ÿ

𝑎P 𝑓´1p𝑏q

mult𝑎p𝑝q

for all 𝑏 P H. Moreover, if H satisfies the multiplicity bound for the polynomial 𝑓˚p𝑝q

and 𝑝 P 𝐾r𝑋s splits into linear factors then,

mult𝑏p 𝑓˚p𝑝qq “
ÿ

𝑎P 𝑓´1p𝑏q

mult𝑎p𝑝q.

Lemma 3.3.2. Let 𝑓 : 𝐾 Ñ H be a hyperfield homomorphism, with H satisfying

the multiplicity bound. If the polynomial 𝑝 P 𝐾r𝑋s splits into linear factors, then

𝑉p 𝑓˚p𝑝qq “ 𝑓 p𝑉p𝑝qq.

Proof. Take the polynomial 𝑝 P 𝐾r𝑋s, 𝑓˚p𝑝q P Hr𝑋s. Take 𝑏 P 𝑉p 𝑓˚p𝑝qq, so 𝟘 P 𝑓˚p𝑝qp𝑏q

and hence mult𝑏p 𝑓˚p𝑝qq ą 0. As 𝑝 splits into linear factors over 𝐾 and H satisfies the

multiplicity bound, by Proposition 3.3.1 we have,

0 ă mult𝑏p 𝑓˚p𝑝qq “
ÿ

𝑎P 𝑓´1p𝑏q

mult𝑎p𝑝q.
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Therefore, there exists 𝑎 P 𝑓´1p𝑏q such that mult𝑎p𝑝q ą 0. Thus, 𝑎 is a root of 𝑝 P 𝐾r𝑋s.

This demonstrates that given an element 𝑏 P 𝑉p 𝑓˚p𝑝qq there exists an element 𝑎, such

that 𝑓 p𝑎q “ 𝑏 and 𝑝p𝑎q “ 0. This shows that 𝑉p 𝑓˚p𝑝qq Ď 𝑓 p𝑉p𝑝qq. Then the reverse

inslcusion is demonstrated by Lemma 3.2.2. □

The above lemma provides a sufficient condition for a hyperfield homomorphism from a

field to a hyperfield to be a RAC map. The next stage is to investigate whether this

view can be extended to maps 𝑓 : H1 Ñ H2. Proposition 3.3.1 is the key tool used in

the proof of Lemma 3.3.2. The following discussion aims to explore a generalisation of

this result for maps 𝑓 : H1 Ñ H2. Firstly, it is important to recognise that this is not a

simple generalisation and the property from Prop. B in [BL18a] does not always hold

in this less restrictive setting.

Example 3.3.3. Take the hyperfield homomorphism 𝑓 : P Ñ K. Note that, over

the Krasner hyperfield K, the multiplicity bound achieves equality for all polynomials:
ř

𝑏PKmult𝑏p𝑝q “ degp𝑝q for all 𝑝 P Kr𝑋s, (see Remark 1.11 in [BL18a] for details).

Take the polynomial 𝑝p𝑋q “ 𝑋2 ‘ 𝑋 ‘ 1 P Pr𝑋s, then due to the argument presented

in [BL18a] in Remark 1.10,
ř

𝑎PPmult𝑎p𝑝q “ 8, in particular 𝑎 “ 𝑒𝑖𝜃 is a root of 𝑝 for

all 𝜋
2 ă 𝜃 ă 3𝜋

2 . Now the push-forward coefficients of the polynomial are unchanged,

𝑓˚p𝑝qp𝑋q “ 𝑋2 ‘ 𝑋 ‘ 1, with
ř

𝑏PKmult𝑏p 𝑓 p𝑝qq “ 2. This then leads to,

8 “
ÿ

𝑎PPzt0u

mult𝑎p𝑝q “
ÿ

𝑎P 𝑓´1p1q

mult𝑎p𝑝q ­ď mult1p 𝑓 p𝑝qq “ 2.

This demonstrates that the property does not hold in total generality over all hyperfield

homomorphisms.

There are several key properties of fields that underpin the result in Proposition 3.3.1.

These properties do not automatically hold for hyperfields. The first key property is

that all fields satisfy the multiplicity bound. The second is regarding the factorisation

process of polynomials. Restricting to hyperfields with the multiplicity bound is a

solution to half of the problem, whereas the factorisation property needs to be discussed

in further detail.
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If 𝐾 is a field, then 𝐾r𝑋s is a unique factorisation domain, and if 𝐾 is algebraically

closed then and polynomial 𝑝 factors into a product of linear factors. It is not obvious

that these properties extend to hyperfields. This is due to the non-uniqueness of the

choice of factorisation, even for more well-behaved hyperfields, such as those with

the doubly distributive property (see [BS20] for a description of doubly distributive

hyperfields). It could occur that for two distinct roots, the maximum multiplicity is

achieved with different factorisations. In an attempt to overcome this the next definition

is introduced.

Definition 3.3.4. A polynomial 𝑝 P Hr𝑋s is said to have the inheritance property if

given the list of its roots t𝑎1 . . . 𝑎𝑘u, inclusive of repetitions corresponding to multiplic-

ities, then for a subset t𝑎 𝑗1 . . . 𝑎 𝑗𝑚u Ď t𝑎1 . . . 𝑎𝑘u, such that 𝑚 ď degp𝑝q there exists

𝑞 P Hr𝑋s such that

𝑝 P p𝑋 ´ 𝑎 𝑗1q d p𝑋 ´ 𝑎 𝑗2q d ¨ ¨ ¨ d p𝑋 ´ 𝑎 𝑗𝑚q d 𝑞.

A hyperfield H is said to have the inheritance property if every polynomial 𝑝 P Hr𝑋s

satisfies the inheritance property.

The results in this work do not extend to fully characterising the multiplicity bound

or inheritance properties, but rather opens this area up for exploration. The following

conjectures are based on the current knowledge of doubly distributive hyperfields,

specifically including K, S and T.

Conjecture 3.3.5. All hyperfields with the doubly distributive property satisfies the

multiplicity bound. (This is shown to hold for polynomials of degree up to three in

Section 3.5.)

Conjecture 3.3.6. All hyperfields with the doubly distributive property satisfies the

inheritance property.

There will now be an demonstration of the implications of the multiplicity bound and

the inheritance property.
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Lemma 3.3.7. Given the hyperfield homomorphism 𝑓 : H1 Ñ H2, then for all 𝑝p𝑋q “

‘𝑛
𝑖“0 𝑐𝑖 d 𝑋 𝑖 P H1r𝑋s,

mult𝑏p 𝑓 p𝑝qq ě
ÿ

𝑎P 𝑓´1p𝑏q

mult𝑎p𝑝q (3.3.8)

holds if H1 satisfies the multiplicity bound and inheritance property.

Proof. As H1 satisfies the multiplicity bound the list of roots, inclusive of multiplicities,

t𝑎1 . . . 𝑎𝑘u is a finite set with 𝑘 ď degp𝑝q. Take the subset t𝑎 𝑗1 . . . 𝑎 𝑗𝑚u Ď t𝑎1 . . . 𝑎𝑘u,

such that 𝑓 p𝑎 𝑗1q “ ¨ ¨ ¨ “ 𝑓 p𝑎 𝑗𝑚q “ 𝑏. These are the only elements of H1 that are roots

of 𝑝 and push-forward to 𝑏. By the inheritance property, there exists a 𝑞 P H1r𝑋s, such

that,

𝑝 P p𝑋 ´ 𝑎 𝑗1q d ¨ ¨ ¨ d p𝑋 ´ 𝑎 𝑗𝑚q d 𝑞.

By the hyperfield homomorphism properties it can be seen that under 𝑓˚,

𝑓˚p𝑝q P p𝑋 ´ 𝑓 p𝑎 𝑗1qq d ¨ ¨ ¨ d p𝑋 ´ 𝑓 p𝑎 𝑗𝑚qq d 𝑓˚p𝑞q

P p𝑋 ´ 𝑏q d ¨ ¨ ¨ d p𝑋 ´ 𝑏q d 𝑓˚p𝑞q.

This gives, mult𝑏p 𝑓˚p𝑝qq ě 𝑚, implying that,

mult𝑏p 𝑓˚p𝑝qq ě
ÿ

𝑎P 𝑓´1p𝑏q

mult𝑎p𝑝q.

□

Theorem 3.3.9. Given H1 which statisfies the multiplicity equality and has the inheri-

tance property, and H2 that satisifes the multiplicity bound, then a surjective homomor-

phism 𝑓 : H1 Ñ H2 is a RAC map.

Proof. The hyperfield H1 satisfying the multiplicity equality and the inheritance property

implies by Lemma 3.3.7 that, mult𝑏p 𝑓˚p𝑝qq ě
ř

𝑎P 𝑓´1p𝑏q mult𝑎p𝑝q holds. These together

then imply that mult𝑏p 𝑓˚p𝑝qq “
ř

𝑎P 𝑓´1p𝑏q mult𝑎p𝑝q, by the following logic;

degp𝑝q “
ÿ

𝑎PH1

mult𝑎p𝑝q ď
ÿ

𝑏PH2

mult𝑏p 𝑓 p𝑝qq ď degp 𝑓˚p𝑝qq “ degp𝑝q.

Then finally, mult𝑏p 𝑓˚p𝑝qq “
ř

𝑎P 𝑓´1p𝑏q mult𝑎p𝑝q gives that the map 𝑓 : H1 Ñ H2 is

RAC, using analogous logic to the proof of Lemma 3.3.2. □
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Remark 3.3.10. Theorem 3.3.9 demonstrates that there are sufficient conditions that

can be given to both hyperfields to give the corresponding homomorphism as RAC,

although this does not classify all RAC maps. It does incorporate the motivating

example for the the paper, trop : 𝐾 Ñ R. Although, it can be seen that TC does not

satisfy the multiplicity bound, and hence does not fulfil the conditions of Theorem 3.3.9.

This demonstrates the theoretical complexity in attempting to outline the conditions

for a hyperfield homomorphism to be RAC.

3.4 Multiplicity Bound

When dealing with polynomials over a field, the number of roots, counting multiplicity,

is bounded by the degree of the polynomial. This is not the case when discussing roots

and multiplicities for polynomials defined over a hyperfield. There are two “pathologi-

cal” examples in [BL18a], (see Remarks 1.9 and 1.10), which demonstrate the possibly

unbounded nature of the sum of multiplicities for polynomials over hyperfields. The

purpose of this section is to characterise the sufficient properties of hyperfields for

which the roots and multiplicities are bounded by the degree of the polynomial. This

classification is in part motivated by Theorem 3.3.9. If there is a classification of

hyperfields with the multiplicity bound, then this contributes to the understanding of

RAC hyperfield homomorphisms.

From Definition 2.4.2 it can be recalled that a hyperfield H is said to satisfies the

multiplicity bound if for every polynomial 𝑝 P Hr𝑋s, the following bound on the roots

of the polynomial holds,
ÿ

𝑏PH

mult𝑏p𝑝q ď degp𝑝q.

For this section it will be presumed that the polynomials are monic. This does not

change the variety of the polynomial. Recalling the addition and multiplication of

polynomials over hyperfields in Example 2.3.4, the restriction to monic polynomials

can be made due to the Lemma 2.1 in [Liu19], which states that for every polynomial

𝑝 P Hr𝑋s there exists a monic polynomial 𝑞 P Hr𝑋s such that 𝑝 “ 𝑎d 𝑞p𝑥q where 𝑎 P H.
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The varieties of 𝑝p𝑥q and 𝑞p𝑥q are equal, by the following inclusions:

𝟘 P 𝑝p𝑏q “ 𝑎 d 𝑞p𝑏q

𝟘 P 𝑞p𝑏q ñ 0 P 𝑎 d 𝑞p𝑏q “ 𝑝p𝑏q.

Proposition 3.4.1. A degree one polynomial over H has
ř

𝑏PHmult𝑏p𝑝q “ 1.

Proof. A monic degree one polynomial over H is in the form 𝑥 ‘ 𝑎. By the hyperfield

axioms there exists a unique element ´𝑎 P H such that ´𝑎‘𝑎 Q 𝟘. Thus, the polynomial

has one root and the multiplicity is automatically one due to the recursive nature of

the definition. □

Lemma 3.4.2. Let H be a doubly distributive hyperfield, with polynomials 𝑝1, 𝑝2, 𝑝3 P

Hr𝑋s. If 𝑝1 P 𝑝2 d 𝑝3, then for every element of the hyperfield 𝛼 P H, the following

inclusion occurs,

𝑝1p𝛼q Ď 𝑝2p𝛼q d 𝑝3p𝛼q.

Proof. The multiplication of polynomials over hyperfields is actually multi-valued, so

observing the structure of 𝑝2 d 𝑝3 first is important.

𝑝2p𝑋q d 𝑝3p𝑋q “

´

𝑛

‘
𝑗“0

𝑏 𝑗𝑋
𝑗
¯´

𝑚

‘
𝑘“0

𝑐𝑘𝑋
𝑘
¯

Then due to the doubly distributive property of H,
´

𝑛

‘
𝑗“0

𝑏 𝑗𝑋
𝑗
¯´

𝑚

‘
𝑘“0

𝑐𝑘𝑥
𝑘
¯

“ ‘
𝑖, 𝑗

𝑏 𝑗𝑋
𝑗𝑐𝑘𝑋

𝑘
“ ‘

𝑖, 𝑗

𝑏 𝑗𝑐𝑘𝑋
𝑗`𝑘 .

Define the polynomial as 𝑝p𝑥q “ ‘𝑟
𝑖“0 𝑎𝑖𝑋

𝑖. The statement 𝑝 P 𝑝2 d 𝑝3 is taken to

mean, 𝑎𝑖 P ‘𝑖“ 𝑗`𝑘 𝑏 𝑗𝑐𝑘 . Now take 𝛼 P H and evaluate 𝑝2 d 𝑝3 at 𝛼.

𝑝2p𝛼q ¨ 𝑝3p𝛼q “

´

𝑛

‘
𝑗“0

𝑏 𝑗𝛼
𝑗
¯´

𝑚

‘
𝑘“0

𝑐𝑘𝛼
𝑘
¯

“ ‘
𝑗 ,𝑘

𝑏 𝑗𝛼
𝑗𝑐𝑘𝛼

𝑘

“ ‘
𝑗 ,𝑘

𝑏 𝑗𝑐𝑘𝛼
𝑗𝛼𝑘
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“ ‘
𝑖

´

‘
𝑖“ 𝑗`𝑘

𝑏 𝑗𝑐𝑘

¯

𝛼𝑖

Q ‘
𝑖

𝑎𝑖𝛼
𝑖

“ 𝑝p𝛼q

This demonstrates that 𝑝p𝛼q Ď 𝑝2p𝛼q d 𝑝3p𝛼q. □

The next result is a specific case of Lemma 3.4.2, with an analogous proof but is shown

here as it will be used more frequently than Lemma 3.4.2. The proof also connects with

the definition of roots and multiplicity from [BL18a].

Lemma 3.4.3. Given a polynomial 𝑝p𝑋q P Hr𝑋s, where H is doubly distributive, for

which 𝑝p𝑋q P p𝑋 ‘ ´𝑎q d 𝑞p𝑋q, then

𝑝p𝛼q Ď p𝛼 ‘ ´𝑎q d 𝑞p𝛼q.

Proof. Set 𝑝p𝑋q “ ‘𝑛
𝑖“0 𝑐𝑖𝑋

𝑛, then 𝑞p𝑋q “ ‘𝑛´1
𝑖“0 𝑑𝑖𝑋

𝑖 is defined, as in Lemma A

[BL18a], such that 𝑐0 “ ´𝑎𝑑0, 𝑐𝑖 P p´𝑎𝑑𝑖q ‘ 𝑑𝑖´1 and 𝑐𝑛 “ 𝑑𝑛´1. Then when

p𝑋 ‘ ´𝑎q d 𝑞p𝑋q is evaluated,

p𝛼 ‘ ´𝑎q𝑞p𝛼q “p𝛼 ‘ ´𝑎qp𝑑0 ‘ 𝑑1𝛼 ‘ ... ‘ 𝑑𝑛´1𝛼
𝑛´1

q

“𝛼𝑑0 ‘ 𝛼𝑑1𝛼 ‘ ... ‘ 𝛼𝑑𝑛´1𝛼
𝑛´1

‘ ´𝑎𝑑0 ‘ ´𝑎𝑑1𝛼 ‘ ... ‘ ´𝑎𝑑𝑛´1𝛼
𝑛´1

“ ´ 𝑎𝑑0 ‘ p𝑑0 ‘ ´𝑎𝑑1q𝛼 ‘ p𝑑1 ‘ ´𝑎𝑑2q𝛼2 ‘ ...

‘ p𝑑𝑛´2 ‘ ´𝑎𝑑𝑛´1q𝛼𝑛´1 ‘ 𝑑𝑛´1𝛼
𝑛

Q 𝑐0 ‘ 𝑐1𝛼 ‘ ... ‘ 𝑐𝑛´1𝛼
𝑛´1 ‘ 𝑐𝑛𝛼

𝑛

“ 𝑝p𝛼q.

□

Proposition 3.4.4. Let 𝑝 P Hr𝑋s, with degp𝑝q “ 𝑛. Then, if 𝑏 P H is a root of the

polynomial 𝑝p𝑋q, the multiplicity of 𝑏 is at most 𝑛. Explicitly,

mult𝑏p𝑝q ď 𝑛.
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Proof. The multiplicity of a root is defined in [BL18a] and recalled in Definition 2.3.10

as,

mult𝑏p𝑝q “ 1 ` maxtmult𝑏p𝑞q | 𝑝 P p𝑋 ‘ ´𝑏q d 𝑞p𝑋qu,

if 𝑏 is a root of 𝑝p𝑋q, and zero if 𝑏 is not a root. The degree of the factor 𝑞p𝑋q will

decrease by one from the degree of 𝑝p𝑋q. Giving, degp𝑞q “ degp𝑝q ´ 1. The degree of

the remaining factor will continue to decrease by 1 as p𝑋 ‘ ´𝑏q is continued to being

factored out if possible. Therefore the maximum amount of times a root can continued

to be factor out is the degree of the polynomial. Hence, the multiplicity of a single root

can not exceed the degree of the polynomial. □

Proposition 3.4.5. For a finite hyperfield H, with |H| “ 𝑚, then for all polynomials

𝑝p𝑋q P Hr𝑋s, with degp𝑝q “ 𝑛,
ÿ

𝑏PH

mult𝑏p𝑝q ď 𝑛 ¨ 𝑚.

Proof. From Proposition 3.4.4, each element of the hyperfield can have maximum

multiplicity of 𝑛. This gives that for all 𝑚 elements of the finite H, the bound on the

sum of the multiplicities is 𝑛 ¨ 𝑚. □

Lemma 3.4.6. Let H be a doubly distributive hyperfield, then for every polynomial

𝑝 P Hr𝑋s there are at most 𝑛 distinct roots of 𝑝p𝑋q, where 𝑛 “ degp𝑝q.

Proof. Given a list of 𝑛` 1 distinct elements of H, 𝑎1, . . . , 𝑎𝑛, 𝑏, which will be assumed

to be roots of the polynomial 𝑝p𝑋q, with degp𝑝q “ 𝑛. Then the aim of the proof is to

demonstrate a contradiction to this assumption of 𝑛 ` 1 distinct roots.

Take 𝑎1, by the definition of multiplicity of a root of 𝑝p𝑋q, it can be seen that,

𝑝 P p𝑋 ‘ ´𝑎1q d 𝑞p𝑋q, for some choice of 𝑞p𝑋q. Then using the result from Lemma

3.4.3,

𝑝p𝛼q Ď p𝛼 ‘ ´𝑎1q d 𝑞p𝛼q @𝛼 P H,

for doubly distributive hyperfields. This property can be used, along with the fact

hyperfields do not have zero divisors, to show that the remaining roots 𝑎2, . . . , 𝑎𝑛 are

roots of the factor 𝑞p𝑋q. This gives the following factorisation:

𝑝p𝑋q P p𝑋 ‘ ´𝑎1q d p𝑋 ‘ ´𝑎2q d ¨ ¨ ¨ d p𝑋 ‘ ´𝑎𝑛q.
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Now there is a single distinct root remaining, 𝑏 P H, which means 0 P 𝑝p𝑏q. Compare

this to the factorisation above.

𝟘 P 𝑝p𝑏q Ď p𝑏 ‘ ´𝑎1q d p𝑏 ‘ ´𝑎2q d ¨ ¨ ¨ d p𝑏 ‘ ´𝑎𝑛q

ñ 𝟘 P p𝑏 ‘ ´𝑎1q d p𝑏 ‘ ´𝑎2q d ¨ ¨ ¨ d p𝑏 ‘ ´𝑎𝑛q.

There are no zero divisors over H, so for the above to hold 0 P p𝑏 ‘ ´𝑎𝑖q for some

𝑖 P t1, 2, . . . , 𝑛u, but this only happens when 𝑏 “ 𝑎𝑖, which is contradiction as 𝑏 was

defined to be a distinct root. Therefore, either 𝑏 “ 𝑎𝑖 for some 𝑖, or 𝑏 is not a root

of 𝑝p𝑋q. Both of these scenarios gives that there is a maximum 𝑛 “ degp𝑝q distinct

roots. □

Remark 3.4.7. An immediate consequence of Lemma 3.4.6 is that there is now a slightly

more strict bound on the sum of the multiplicities of polynomials over doubly distributive

hyperfields:
ÿ

𝑏PH

mult𝑏p𝑝q ď 𝑛2.

This updated bound is not overly restrictive, but does mean that all polynomials over

doubly distributive hyperfields with finite degree have a finite sum of multiplicities.

Proposition 3.4.8. If a polynomial 𝑝1 P 𝑝2 d𝑝3, where 𝑝2 d𝑝3 is the set of polynomials

produced by the multiplication over H, and in the same sense, 𝑝3 P 𝑝4 d 𝑝5. Then, if

the hyperfield H is doubly distributive,

𝑝1p𝛼q Ă 𝑝2p𝛼q d 𝑝4p𝛼q d 𝑝5p𝛼q.

Proof. This follows directly from the inclusion property shown in Lemma 3.4.2, applied

twice. Both to 𝑝1 P 𝑝2 d 𝑝3 ñ 𝑝1p𝛼q Ď 𝑝2p𝛼q d 𝑝3p𝛼q, and 𝑝3 P 𝑝4 d 𝑝5 ñ 𝑝3p𝛼q P

𝑝4p𝛼q d 𝑝5p𝛼q. □

3.4.1 Multiplicities over S

The multiplicites of roots for polynomials defined over the hyperfield of signs are

characterised in full in [BL18a, Theorem C]. The results in this section will build on

this characterisation with the goal of understanding the multiplicity bound in general.
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Proposition 3.4.9. Given a polynomial 𝑝p𝑋q “ 𝑎𝑛𝑋
𝑛 ` ... ` 𝑎𝑟𝑋

𝑟 , where 𝑛 ą 𝑟 ě 0.

Then the sign changes of 𝑝p𝑋q along with the sign changes of 𝑝p´𝑋q are bounded by

𝑛´ 𝑟. Explictly, 𝜎p𝑝q `𝜎p𝑝p´𝑋qq ď 𝑛´ 𝑟, where 𝜎p𝑝q, 𝜎p𝑝p´𝑋qq are the sign changes

of 𝑝p𝑋q and 𝑝p´𝑋q, respectively.

Proof. The proof relies on an inductive argument, for which the base case is a degree

one polynomial. It can be seen for any degree one polynomial the sign will only change

in the 𝑋 term, meaning there is at most one sign change in either 𝑝p𝑋q or 𝑝p´𝑋q,

demonstrating the bound.

Now assume that the bound holds for all polynomials of deg “ 𝑛 ´ 1. Let 𝑎𝑑 be

the first coefficient which has a sign change from the leading coefficient 𝑎𝑛. Set

ℎp𝑋q “ 𝑎𝑑𝑋
𝑑 ` ... ` 𝑎𝑟𝑋

𝑟 and 𝑔p𝑋q “ 𝑎𝑛𝑋
𝑛 ` ... ` 𝑎𝑑`1𝑋

𝑑`1. Then,

𝜎p𝑝q ` 𝜎p𝑝p´𝑋qq “ 𝜎pℎp𝑋qq ` 𝜎pℎp´𝑋qq ` 𝜎p𝑔p𝑋qq ` 𝜎p𝑔p´𝑋qq ` 1.

Then p´1q𝑑`1𝑎𝑑`1 and p´1q𝑑𝑎𝑑 have the same signs. There are no sign changes in

𝑔p𝑋q, implying 𝜎p𝑔p𝑋qq “ 0, and 𝜎p𝑔p´𝑋qq ď 𝑛 ´ 𝑑 ´ 1 by induction as 𝑑 ă 𝑛. Also,

𝜎pℎp𝑋qq ` 𝜎pℎp´𝑋qq ď 𝑑 ´ 𝑟

Leading to,

𝜎p𝑝q ` 𝜎p𝑝p´𝑋qq ď 𝑑 ´ 𝑟 ` p𝑛 ´ 𝑑 ´ 1q ` 1

“ 𝑛 ´ 𝑟.

□

Remark 3.4.10. If the lowest power of the polynomial 𝑝p𝑋q is zero, 𝑟 “ 0, then this

means that the signs changes are bound by the degree of the polynomial. Giving that,

𝜎p𝑝q ` 𝜎p𝑝p´𝑋qq ď 𝑑 ´ 𝑟 ` p𝑛 ´ 𝑑 ´ 1q ` 1 “ 𝑛 ´ 𝑟 “ 𝑛 “ degp𝑝q.

The next result is stated as an exercise in [BL18a], but it is outlined in full in this

section to clarify the multiplicity bound on the hyperfield of signs. It also then enables

the multiplicity bound to be extended to the signed tropical hyperfield.
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Lemma 3.4.11 ([BL18a], Remark 1.12). The hyperfield of signs, S, satisfies the

multiplicity bound.

Proof. Given the polynomial 𝑝p𝑋q “ 𝑐𝑛𝑋
𝑛 ‘ ... ‘ 𝑐𝑟𝑋

𝑟 , the multiplicities are defined

as,

mult1p𝑝q “ 𝜎p𝑝q mult´1p𝑝q “ 𝜎p𝑝p´𝑋qq mult0p𝑝q “ 𝑟.

These definitions of the multiplicities give an explicit expression for the sum over all

elements of S.
ÿ

𝑏PS

mult𝑏p𝑝q “ mult1p𝑝q ` mult´1p𝑝q ` mult0p𝑝q

“ 𝜎p𝑝q ` 𝜎p𝑝p´𝑋qq ` 𝑟

ď 𝑛 ´ 𝑟 ` 𝑟

“ 𝑛

This point is emphasised, because the number of sign changes of a polynomial added to

the number of sign changes of the polynomial evaluated at minus 𝑋, is dependant on

the highest and lower power terms. This is a bound rather than equality, which is why

roots over S maybe not always add up to the degree but will never exceed it. This links

to the fact that the hyperfield of signs is not algebraically closed. □

The above result shows that S satisfies the multiplicity bound. In [BL18a] it is

shown that T and K also satisfy the multiplicity bound, and actually have equality

rather than simply bounded. The next section will demonstrate the multiplicity bound

for the signed tropical hyperfield.

3.4.2 Multiplicities over TR

There has been work done in [Gun19] regarding the multiplicities of roots over the

signed tropical hyperfield, TR. The author has shown there is an explicit description of

the multiplicity of a root over TR. The multiplicity of the root is a combination of the

multiplicity description for roots over both the tropical hyperfield and the hyperfield of

signs described above.
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Theorem 3.4.12 ([Gun19] , Theorem A). Given a positive root, 𝑎 “ p1, 𝑟q P TR, then

for a polynomial 𝑝p𝑋q P TRr𝑋s,

mult𝑎p𝑝q “ Δp𝑝𝜎q “ 𝜎p𝑝𝜎q.

Where 𝑝𝜎 is the initial form of 𝑝 corresponding to the edge of the Newton Polygon with

slope ´𝑟. Furthermore, mult0p𝑝q “ 𝑘 if and only if 𝑝 “ 𝑐𝑘𝑋
𝑘 ` ... ` 𝑐𝑛𝑋

𝑛, with 𝑐𝑘 ­“ 𝑜.

Then for a negative root, 𝑎 “ p´1, 𝑚q P TR, mult𝑎p𝑝p𝑋qq “ mult´𝑎p𝑝p𝑋qq.

The descriptions of the multiplicities for roots over the signed tropical hyperfield

can be used to state the multiplicity bound for TR, which is not explicitly stated in

[Gun19].

Theorem 3.4.13. The signed tropical hyperfield, TR, satisfies the multiplicity bound

for all polynomials 𝑝p𝑋q P TRr𝑋s.

Proof. The expression for the multiplicities outlined in (3.4.12) can be substituted into

the formal sum over all elements.
ÿ

𝑎PTR

mult𝑎p𝑝q “
ÿ

𝑎PTR
𝑎ą0

mult𝑎p𝑝q `
ÿ

𝑎PTR
𝑎ă0

mult𝑎p𝑝q ` mult0p𝑝q

“
ÿ

𝑎PTR
𝑎ą0

mult𝑎p𝑝p𝑥qq `
ÿ

𝑏PTR
𝑏ą0

mult𝑏p𝑝p´𝑥qq ` mult0p𝑝q

“
ÿ

𝑎PTR
𝑎ą0

Δp𝑝𝜎q `
ÿ

𝑏PTR
𝑏ą0

Δp𝑝𝜎p´𝑥qq ` mult0p𝑝q

(3.4.14)

As defined in (3.4.12), Δp𝑝𝜎q “ 𝜎p𝑝𝜎q, is the sign changes of the initial form corre-

sponding to the part of the Newton polygon which has slope ´𝑟. The section of the

Newton polygon corresponding to this initial form will have at most the number of sign

changes that there are monomials included in the initial form. This gives implies the

number of sign changes of 𝑝p𝑋q and 𝑝p´𝑋q, when added over all the initial forms for

each different gradient ´𝑟, will be bounded by the number of monomials terms in the

polynomial expression, as it was over the hyperfield of signs. This leads to,
ÿ

𝑎PTR

mult𝑎p𝑝q ď 𝑛 ´ 𝑘 ` 𝑘 “ 𝑛 “ degp𝑝q.
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Which demonstrates the multiplicity bound for TR. □

Both the hyperfield of signs and the signed tropical hyperfield have been shown

to satisfy the multiplicity bound, but unlike T and K they do not satisfy multiplicity

equality in totally generality.

3.5 Double Distributivity and the Multiplicity Bound

The aim of the final section of this chapter is to demonstrate a precise condition under

which a hyperfield satisfies the multiplicity bound. The main result of this section states

that the multiplicity bound holds in doubly distributive hyperfields, up to polynomials

of degree three. There is motivation to extend this to higher degrees and see if the

doubly distributive property is sufficient for polynomials of any degree. Several of the

techniques in the proof are applicable to certain cases for higher degrees, especially

degree four but are not exhaustive. Therefore, there needs to be an improvement,

refinement or extension of the techniques in order to deal with higher degrees.

Theorem 3.5.1. Let H be a doubly distributive hyperfield. Then all polynomials

𝑝p𝑋q P Hr𝑋s, where degp𝑝q ď 3, have the sum of there multiplicities bounded by the

degree of the polynomial.

Proof. Explicitly, the following bound:
ÿ

𝑏PH

mult𝑏p𝑝q ď degp𝑝q (3.5.2)

needs to be shown for polynomials with degree up to three. The proof will be discussed

in three parts, one for each of the degrees from one to three.

1. Let degp𝑝q “ 1, by Proposition 3.4.1 the result holds.

2. Let degp𝑝q “ 2 and assume that
ÿ

𝑏PH

mult𝑏p𝑝q ě 3.

The possible lists of roots and multiplicities correspond to integer partitions of

𝑛 ě 3. This property is used to split up this case even further.
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(a) Say
ř

𝑏PHmult𝑏p𝑝q “ 3, then due to Lemma 3.4.6, there can not be more

than 2 distinct roots for the polynomial 𝑝p𝑋q and by Proposition 3.4.4, there

can not be a single root with multiplicity greater than 2. The only partition

that remains is p2, 1q. Take two distinct roots 𝑎1, 𝑎2 with multiplicities,

mult𝑎1p𝑝q “ 2 mult𝑎2p𝑝q “ 1.

Then to proceed, factor out a linear polynomial corresponding to the root

𝑎1. This gives,

𝑝p𝑋q P p𝑋 ‘ ´𝑎1q d 𝑞p𝑋q.

Choose the polynomial 𝑞p𝑋q such that it maximises the multiplicity of 𝑎1.

The degree of 𝑞p𝑋q is one less than the degree of 𝑝p𝑋q, degp𝑞q “ degp𝑝q´1 “

1. Therefore the choice of 𝑞p𝑋q gives that 𝑎1 must be the only root of 𝑞p𝑋q.

Due to the doubly distributive property, Lemma 3.4.3, it has been shown

that,

𝑝p𝛼q Ď p𝛼 ‘ ´𝑎1q d 𝑞p𝛼q, @𝛼 P H.

As 𝑎2 is a distinct root of 𝑝p𝑋q, zero belongs to the set of elements when

𝑝p𝑋q is evaluated at 𝑎2. This leads to,

𝟘 P 𝑝p𝑎2q Ď p𝑎2 ‘ ´𝑎1q d 𝑞p𝑎2q.

This causes a contradiction as there are no zero divisors in H, and 𝑎1 ‰ 𝑎2,

so 𝟘 R p𝑎2 ‘ ´𝑎1q. Therefore, 𝟘 P 𝑞p𝑎2q has to be the case, but 𝑎1 is the

unique root of 𝑞p𝑋q, so this is a contradiction.

(b) Say
ř

𝑏PHmult𝑏p𝑝q “ 4, then again due to Lemma 3.4.6 and Proposition

3.4.4 the only partition of 4 that remains is p2, 2q. Although, this is an

extension of the p2, 1q partition from the previous part, hence nothing more

to show here.

(c) Say
ř

𝑏PHmult𝑏p𝑝q ě 5, as every partition of an integer 𝑛 ě 5 either includes

a number greater that 2 or has size greater than 2 the results in Lemma

3.4.6 and Proposition 3.4.4 show a contradiction.
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Therefore, by combining this logic the multiplicity bound has been shown for

quadratic polynomials over doubly distributive hyperfields.

3. Let degp𝑝q “ 3 and assume that

ÿ

𝑏PH

mult𝑏p𝑝q ě 4.

The correspondence to integer partitions is utilised once more here.

(a) Say
ř

𝑏PHmult𝑏p𝑝q “ 4, then by Lemma 3.4.6 and Proposition 3.4.4 this

reduces to three possible cases for the sum of the multiplicities. Either

p3, 1q, p2, 2q or p2, 1, 1q, these cases will be dealt with separately.

(i) For p3, 1q the multiplicities are mult𝑎1p𝑝q “ 3 and mult𝑎2p𝑝q “ 1. By

selecting factors which maximise the multiplicity of 𝑎1 this gives

𝑝p𝑋q P p𝑋 ‘ ´𝑎1q d p𝑋 ‘ ´𝑎1q d p𝑋 ‘ ´𝑎1q.

Then by Lemma 3.4.3, as the hyperfield is doubly distributive gives,

𝟘 P 𝑝p𝑎2q Ď p𝑎2 ‘ ´𝑎1q d p𝑎2 ‘ ´𝑎1q d p𝑎2 ‘ ´𝑎1q.

As before in the quadratic case, the fact there are no zero divisors and

𝑎1 and 𝑎2 were defined to be distinct implies,

𝟘 R p𝑎2 ‘ ´𝑎1q d p𝑎2 ‘ ´𝑎1q d p𝑎2 ‘ ´𝑎1q.

This shows a contradiction.

(ii) For p2, 1, 1q the multiplicities are mult𝑎1p𝑝q “ 2, mult𝑎2p𝑝q “ 1 and

mult𝑎3p𝑝q “ 1. Take the factor corresponding to 𝑎1 out, choosing 𝑞p𝑋q

to maximise the multiplicity.

𝑝p𝑋q P p𝑋 ‘ ´𝑎1q d p𝑋 ‘ ´𝑎1q d 𝑡p𝑋q

Then, by Lemma 3.4.3, and 𝟘 P 𝑝p𝑎2q,

𝟘 P 𝑝p𝑎2q Ď p𝑎2 ‘ ´𝑎1q d p𝑎2 ‘ ´𝑎1q d 𝑡p𝑎2q.
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This implies that 𝑡p𝑋q “ 𝑋 ‘ ´𝑎2. The same step can be applied again

with the root 𝑎3.

𝟘 P 𝑝p𝑎3q Ď p𝑎3 ‘ ´𝑎1q d p𝑎3 ‘ ´𝑎1q d p𝑎3 ‘ ´𝑎2q.

Again, the roots are defined to be distinct and there are no zero divisors

in H, which gives,

𝟘 R p𝑎3 ‘ ´𝑎1q d p𝑎3 ‘ ´𝑎1q d p𝑎3 ‘ ´𝑎2q.

This causes a contradiction, either 𝑎3 is not a root or it is equal to

another one of the roots, whereas it was defined to be a distinct root.

(iii) For p2, 2q the multiplicities are mult𝑎1p𝑝q “ 2 and mult𝑎2p𝑝q “ 2. This

requires a different approach than the previous combinations. Choosing

the factor 𝑞p𝑋q which maximises the multiplicity individually, for both

of these roots when factoring, then using the Lemma 3.4.3 leads to,

𝑝p𝑋q P p𝑋 ‘ ´𝑎1q d p𝑋 ‘ ´𝑎1q d p𝑋 ‘ ´𝑎2q

𝑝p𝑋q P p𝑋 ‘ ´𝑎2q d p𝑋 ‘ ´𝑎2q d p𝑋 ‘ ´𝑎1q.

There must be a non-empty intersection of the sets produced from both

polynomial multiplications. By looking at the constant term for both

multiplications, it can be seen that for a non-empty intersection,

𝑎2
1𝑎2 “ 𝑎2

2𝑎1.

This then implies by cancellation that 𝑎1 “ 𝑎2, which is a contradiction

to original assumption, where they were defined as distinct elements.

(b) Say 5 ď
ř

𝑏PHmult𝑏p𝑝q ď 6, then p3, 3q, p3, 2, 1q, p2, 2, 2q, p3, 2q, p3, 1, 1q and

p2, 2, 1q are the remaining partitions after invoking the results from Lemma

3.4.6 and Proposition 3.4.4. The partitions p3, 3q, p3, 2, 1q, p3, 2q and p3, 1, 1q

are an extension of the partition p3, 1q of 4. Furthermore, both p2, 2, 2q and

p2, 2, 1q are extensions of the partition p2, 2q of 4. These are all accounted

for by the previous case.
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(c) Say 7 ď
ř

𝑏PHmult𝑏p𝑝q ď 9, then the only partitions not eliminated by

Lemma 3.4.6 and Proposition 3.4.4 are p3, 3, 3q, p3, 3, 2q and p3, 3, 1q but

these are extensions of the partition p3, 3q of 6. Hence, they are covered by

the previous arguments.

(d) Say
ř

𝑏PHmult𝑏p𝑝q ě 10, as every partition of an integer 𝑛 ě 10 either

includes a number greater that 3 or has size greater than 3 the results in

Lemma 3.4.6 and Proposition 3.4.4 show a contradiction.

Thus, the multiplicity bound has been shown for cubic polynomials over doubly

distributive hyperfields.

This demonstrates that all polynomials of degree three over doubly distributive hyper-

fields have the sum of the multiplicities bounded by the degree of the polynomial, which

concludes the proof. □

The construction of the proof is very clearly difficult to generalise to higher degree

polynomials. It is shown by checking case by case, which is not the most efficient way

to look for a proof to hold for general degrees. This is a suggestion that there might be

more to be understood, which leads to the following questions:

Question 3.5.3. Is there a proof that demonstrates that all doubly distributive hyperfields

satisfy the multiplicity bound?

Question 3.5.4. Can a counter example by constructed to demonstrate that in fact

this does not hold in general?

Question 3.5.5. If the multiplicity bound does not hold for arbitrary degree, then is

there a power (possibly higher than 3) such that this is the highest power the multiplicity

bound holds for?

These questions lend themselves naturally to a possible computer search for a counter

example. Although, another potential option is to use the characterisation of stringent

hyperfields in [BS20] and the results for the signed tropical hyperfield in [Gun19] to

explore the multiplicity bound and inheritance property for stringent hyperfields.
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There is clearly a link here to the way polynomials can be factored and hence the

inheritance property in Definition 3.3.4. This would be an interesting area to explore

and hopefully understand if doubly distributivity controls the sum of the multiplicities.
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Chapter 4

Polynomials Over Quotient
Hyperfields

This chapter explores the details of polynomials and varieties over quotient hyperfields,

and the corresponding quotient homomorphisms. In Chapter 6 the behaviour of varieties

under quotient homomorphisms will be investigated in its most general form. Here

quotients of C are specifically explored, in particular looking at the case of C{𝑈𝑛, where

𝑈𝑛 is the group of n-th roots of unity, where both properties of the hyperfields and

the corresponding maps between them are discussed. These ideas are then developed

for the more familiar triangle hyperfield, which can be described as △ – C{𝑆1, which

connects to the quotients by 𝑈𝑛.

It can be seen by the results in Chapter 3 that quotient maps are not RAC maps in

general. For instance, this can be viewed in Example 3.1.6. Over the triangle and

phase hyperfield this occurs because polynomials over these hyperfields can exceed the

multiplicity bound. One possible method of encoding the information of the variety

more precisely would be to look at the principal ideal generated by a polynomial,

rather than just the polynomial individually. This idea is best understood by utilising

amoebas and coamoebas for the triangle and phase hyperfields respectively. The existing

literature is surveyed, with the addition of several more detailed results.

83
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4.1 Quotients by Roots of Unity

When describing hyperfields in terms of the quotient of a field, there is key information

which is encoded in the multiplicative subgroup of the original field. Properties of the

hyperfield can be characterised by properties of the subgroup. The most prominent link

between a subgroup 𝑈 Ď 𝐾ˆ and the hyperfield 𝐾{𝑈, is the ability to determine when

the hyperfield is a stringent hyperfield. This relationship is shown in [BS20], where it is

proved that all stringent hyperfields are in the quotient form with a specific type of

subgroup. Before the result is stated here, a property of multiplicative subgroups is

introduced.

Definition 4.1.1. A subgroup 𝑈 Ă 𝐾 is called Hüllenbildend if for 𝑥, 𝑦 P 𝐾,

𝑥 ` 𝑦 ´ 𝑥𝑦 P 𝑈 ùñ 𝑥 P 𝑈 or 𝑦 P 𝑈

Remark 4.1.2. The word Hüllenbildend means hull producing, which is based in the

work on convexity completed by [DG73] using these subgroups.

Theorem 4.1.3. [BS20, Thm. 7.4 and Cor 7.5] Every stringent skew hyperfield is

the quotient of a skew field and hence every doubly distributive skew hyperfield is the

quotient of a skew field.

Remark 4.1.4. The subgroups forming the quotients in Theorem 4.1.3 are shown to be

Hüllenbildend in [BS20].

These results lead to a precise property of the subgroup which can be checked to

demonstrate whether the resulting quotient hyperfield is stringent. Theorem 4.1.3 along

with Remark 4.1.4 states that every stringent hyperfield is the quotient of a field by

a Hüllenbildend subgroup. Therefore, if a quotient hyperfield is not the quotient of a

field by a Hüllenbildend subgroup then this implies that the hyperfield is not stringent.

This section explores several hyperfields constructed in the quotient form and describes

the classification of the stringent property for these quotients. There will now be a

collection of examples outlining the Hüllenbildend property for several of the hyperfields

discussed in Table 2.1.
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Example 4.1.5. Given P – C{Rą0, this example will show that the subgroup Rą0 Ď C

is not Hüllenbildend.

Take, 𝑥 “ 𝑎 ` 𝑖𝑏 and 𝑦 “ 𝑐 ` 𝑖𝑑, with 𝑏, 𝑑 ‰ 0, then

𝑥 ` 𝑦 ´ 𝑥𝑦 “ 𝑎 ` 𝑖𝑏 ` 𝑐 ` 𝑖𝑑 ´ p𝑎 ` 𝑖𝑏qp𝑐 ` 𝑖𝑑q

“ p𝑎 ` 𝑐q ` p𝑏 ` 𝑑q𝑖 ´ p𝑎𝑐 ` 𝑖𝑏𝑐 ` 𝑖𝑎𝑑 ´ 𝑏𝑑q

“ p𝑎 ` 𝑐q ` p𝑏 ` 𝑑q𝑖 ´ 𝑎𝑐 ´ p𝑏𝑐 ` 𝑎𝑑q𝑖 ` 𝑏𝑑

“ p𝑎 ` 𝑐 ´ 𝑎𝑐 ` 𝑏𝑑q ` 𝑖p𝑏 ` 𝑑 ´ 𝑏𝑐 ´ 𝑎𝑑q

Thus, the requirement for 𝑥 ` 𝑦 ´ 𝑥𝑦 P 𝑈 would be,

𝑎 ` 𝑐 ´ 𝑎𝑐 ` 𝑏𝑑 ą 0 ðñ 𝑎 ` 𝑐 ` 𝑏𝑑 ą 𝑎𝑐

𝑏 ` 𝑑 ´ 𝑏𝑐 ´ 𝑎𝑑 “ 0 ðñ 𝑏 ` 𝑑 “ 𝑏𝑐 ` 𝑎𝑑

This could occur when 𝑐 “ 𝑎 “ 1, then the first line would be 1 ` 1 ` 𝑏𝑑 ą 1, or

2 ` 𝑏𝑑 ą 1, or as long as 𝑏𝑑 ą ´1. Thus, for exmaple take 𝑎 “ 𝑐 “ 1 , 𝑏 “ 2 , 𝑑 “ 2,

giving 𝑥 “ 1 ` 2𝑖 , 𝑦 “ 1 ` 2𝑖.

𝑥 ` 𝑦 ´ 𝑥𝑦 “ 1 ` 2𝑖 ` 1 ` 2𝑖 ´ p1 ` 2𝑖qp1 ` 2𝑖q

“ 2 ` 4𝑖 ´ p1 ` 2𝑖qp1 ` 2𝑖q

“ 2 ` 4𝑖 ´ p1 ` 2𝑖 ` 2𝑖 ´ 4q

“ 2 ` 4𝑖 ´ 1 ´ 4𝑖 ` 4

“ 5 P Rą0

Therefore, this gives a contradiction as 𝑥 “ 𝑦 “ 1 ` 2𝑖 R Rą0. This shows that for the

field 𝐾 “ C, the subgroup 𝑈 “ Rą0 is not Hüllenbildend.

Note that the ambient group the subgroup belongs to is key in the context of Hüllenbildend

subgroups. The same set, treated as a subgroup of two different ambient groups can be

seen as both Hüllenbildend and not Hüllenbildend depending on the setting.

Example 4.1.6. It is seen in Table 2.1 that S – R{Rą0. This example will show that

𝑈 “ Rą0 is Hüllenbildend when it is a subgroup of R.
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Firstly, it is proposed that the Hüllenbildend property does not hold. Then there

must exist 𝑥, 𝑦 P RzRą0, such that 𝑥 ` 𝑦 ´ 𝑥𝑦 P 𝑈 “ Rą0. RzRą0 “ Rď0, so there are

negative numbers or zero such that 𝑥 ` 𝑦 ´ 𝑥𝑦 P 𝑈. This gives three possibilities;

1. 𝑥 “ 𝑦 “ 0 ùñ 0 ` 0 ´ 0 “ 0 R 𝑈

2. Wlog 𝑥 “ 0 , 𝑦 P Ră0.

ùñ 𝑥 ` 𝑦 ´ 𝑥𝑦 “ 0 ` 𝑦 ´ 0 “ 𝑦 ă 0 R 𝑈

3. 𝑥, 𝑦 P Ră0 ùñ 𝑥𝑦 P Rą0 ùñ ´𝑥𝑦 P Ră0.

𝑥 ` 𝑦 ´ 𝑥𝑦 R 𝑈, as all three parts are negative.

Hence, there are not possible choices of 𝑥 and 𝑦 not belonging to the subgroup, where

𝑥 ` 𝑦 ´ 𝑥𝑦 does belong to it. Thus, giving a contradiction, showing that here the

subgroup 𝑈 “ Rą0 is Hüllenbildend.

The previous two examples show the subtlety in the relationship between the ambient

group or field and a subgroup being Hüllenbildend or not. In both examples the

subgroup is Rą0, but in the first, as a subgroup of the complex numbers, it is not

Hüllenbildend and in the second, as a subgroup of the real numbers, it is.

4.1.1 Properties of C{𝑈𝑛

There will now be a focus on a class on quotient hyperfields defined by taking the

quotient of the complex numbers by the roots of unity.

Definition 4.1.7. For a positive integer 𝑛, the 𝑛-th roots of unity are defined as the

complex numbers which when raised to the 𝑛-th power equal 1. They are denoted 𝑈𝑛.

𝑈𝑛 :“ t𝑧 P C | 𝑧𝑛 “ 1u.

Lemma 4.1.8. Take 𝑈𝑛 as a multiplicative subgroup over C. Then 𝑈𝑛 is not a

Hüllenbildend subgroup over C, for any 𝑛 ą 1.

Proof. The argument will be designed to construct 𝑥, 𝑦 P Cz𝑈𝑛, such that 𝑥`𝑦´𝑥𝑦 P 𝑈𝑛,

causing a contradiction. Firstly, let 𝑦 P Rą0zt1u Ć 𝑈𝑛, then fix 𝑢 “ 𝑎 ` 𝑖𝑏 P 𝑈, such
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that 𝑢 ‰ 1. Define,

𝑥 “
𝑎 ` 𝑖𝑏 ´ 𝑦

1 ´ 𝑦
,

then with some algebraic manipulation it can be seen that 𝑥` 𝑦´ 𝑥𝑦 “ 𝑎` 𝑖𝑏 “ 𝑢 P 𝑈𝑛.

The aim for the rest of the proof is to demonstrate that 𝑥 R 𝑈𝑛. (Note that as 𝑦 R 𝑈𝑛,

this means that 𝑦 ‰ 1, which removes the unfavourable possibility in the denominator).

To do this observe the absolute value of 𝑥 constructed as above.

|𝑥| “

ˇ

ˇ

ˇ

𝑎 ` 𝑖𝑏 ´ 𝑦

1 ´ 𝑦

ˇ

ˇ

ˇ
“

|𝑎 ` 𝑖𝑏 ´ 𝑦|

|1 ´ 𝑦|
.

Where,

|𝑎 ` 𝑖𝑏 ´ 𝑦| “ |𝑎 ´ 𝑦 ` 𝑖𝑏| “ p𝑎2
` 𝑦2

´ 2𝑎𝑦 ` 𝑏2
q

1
2 ,

and |1 ´ 𝑦| “ 1 ´ 𝑦, both due to the fact 𝑦 P Rą0. This leads to an expression for |𝑥|.

|𝑥| “
1

1 ´ 𝑦
p𝑎2

` 𝑦2
´ 2𝑎𝑦 ` 𝑏2

q
1
2 “

´

𝑎2 ` 𝑦2 ´ 2𝑎𝑦 ` 𝑏2

𝑦2 ´ 2𝑦 ` 1

¯
1
2
.

All roots of unity have an absolute value equal to one. To show 𝑥 R 𝑈𝑛, it is sufficient

to show that |𝑥| ‰ 1. If |𝑥| “ 1, then

𝑎2
` 𝑦2

´ 2𝑎𝑦 ` 𝑏2
“ 𝑦2

´ 2𝑦 ` 1

ðñ 𝑎2
´ 2𝑎𝑦 ` 𝑏2

“ ´2𝑦 ` 1

ðñ 𝑎2
´ 2𝑦p𝑎 ´ 1q ` 𝑏2

“ 1

As 𝑢 “ 𝑎 ` 𝑖𝑏 P 𝑈𝑛, then |𝑢| “ 1, which is equivalent to 𝑎2 ` 𝑏2 “ 1, which gives

2𝑦p𝑎 ´ 1q “ 0. This then implies that 𝑎 “ 1, as 𝑦 P Rą0zt1u and therefore 𝑏 “ 0,

yielding 𝑢 “ 𝑎 ` 𝑖𝑏 “ 1. This is a contradiction as the construction fixed 𝑢 ‰ 1. This

implies that |𝑥| ‰ 1, so 𝑥 R 𝑈𝑛. In conclusion, this demonstrates a construction of 𝑥

and 𝑦 such that neither are elements of 𝑈𝑛, but 𝑥 ` 𝑦 ´ 𝑥𝑦 “ 𝑢 P 𝑈. This shows that

𝑈𝑛 does not satisfy the Hüllenbildend definition. □

Example 4.1.9. Take 𝑈2 “ t˘1u, then as in Lemma (4.1.8), take 𝑢 “ ´1 ‰ 1.Then,

𝑥 “
𝑢 ´ 𝑦

1 ´ 𝑦
“

´1 ´ 𝑦

1 ´ 𝑦
.

Choose 𝑦 “ 7, giving 𝑥 “
´1´7
1´7 “ 4

3 . Thus,7, 4
3 R 𝑆1 ñ 7, 4

3 R 𝑈𝑛. Although,

𝑥 ` 𝑦 ´ 𝑥𝑦 “
4
3 ` 7 ´

4
3 ¨ 7 “

4
3 ` 7 ´

28
3 “

25 ´ 28
3 “ ´1 P 𝑈2.
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Remark 4.1.10. Example 4.1.9 can be used as an explicit example for all 𝑈𝑛 where 𝑛 is

even. Setting 𝑥 “ 4
3 and 𝑦 “ 7, then 𝑥, 𝑦 R 𝑆1 ñ 𝑥, 𝑦 R 𝑈𝑛, actually for all 𝑛. It can be

seen that ´1 P 𝑈𝑛 when 𝑛 is even, or equivalently 𝑛 “ 2𝑚. Then,

𝑥 ` 𝑦 ´ 𝑥𝑦 P 𝑈𝑛 ðñ p𝑥 ` 𝑦 ´ 𝑥𝑦q
𝑛

“ 1

ðñ p𝑥 ` 𝑦 ´ 𝑥𝑦q
2𝑚

“ 1

ðñ

´

p𝑥 ` 𝑦 ´ 𝑥𝑦q
2
¯𝑚

“ 1

It has been shown in Example (4.1.9) that when 𝑥 “ 4
3 and 𝑦 “ 7, 𝑥 ` 𝑦 ´ 𝑥𝑦 “ ´1 ñ

p𝑥 ` 𝑦 ´ 𝑥𝑦q2 “ 1. This then gives the required construction for all 𝑛 “ 2𝑚.

Example 4.1.11. Take 𝑈3 “ t1, ´1`𝑖
?

3
2 ,

´1´𝑖
?

3
2 u, and in an analogous way to Example

(4.1.9) set 𝑢 “
´1`𝑖

?
3

2 ‰ 1. Then a choice of 𝑦 “ 2 which gives 𝑥 “
5´𝑖

?
3

2 , so 𝑥, 𝑦 R 𝑈3,

and

𝑥 ` 𝑦 ´ 𝑥𝑦 “
5 ´ 𝑖

?
3

2 ` 2 ´
5 ´ 𝑖

?
3

2 ¨ 2 “
5 ´ 𝑖

?
3 ` 4 ´ 10 ` 2𝑖

?
3

2 “
´1 ` 𝑖

?
3

2 P 𝑈3.

Theorem 4.1.12. The hyperfield C{𝑈𝑛 is not a stringent hyperfield, for any 𝑛 ą 1

Proof. Section 7 of [BS20] is designed to outlining that all stringent hyperfields are

in the quotient form, with the subgroup having the Hüllenbildend property, as stated

here in Theorem 4.1.3. As shown in Lemma 4.1.8 the 𝑛-th roots of unity are not

Hüllenbildend subgroups of the complex number for all 𝑛 ą 1. Hence, the hyperfields

C{𝑈𝑛 are not stringent. □

Corollary 4.1.13. The hyperfield C{𝑈𝑛 is not a doubly distributive hyperfield, for any

𝑛 ą 1.

Proof. By Lemma (2.1.11), all doubly distributive hyperfields are stringent hyperfields.

As it is shown in the previous Theorem that the hyperfields C{𝑈𝑛 are not stringent for

all 𝑛 ą 1, they therefore can not be doubly distributive either. □

4.1.2 Relating 𝑈𝑛 to Hahn Series

The aim of this section is to use the properties and ideas developed for 𝑈𝑛 in the

previous section and apply them to subgroups of Hahn series, in turn demonstrating
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that certain subgroups of Crr𝑡Rss are not Hüllenbildend. Refer to Definition 2.4.13 for

the definition of Hahn series, 𝐾rr𝑡Ωss.

Define a subgroup 𝑉𝑛 of the Hahn series Crr𝑡Rss as:

𝑉𝑛 :“ t
ÿ

𝛾P𝐼

𝑎𝛾𝑡
𝛾

| minp𝐼q “ 0 , 𝑎0 P 𝑈𝑛u.

This gives that 𝑉𝑛 Ă 𝑣´1
C

p0q. The valuation map is defined as

𝑣C : Crr𝑡Rss Ñ RY t8u,

𝑣C

´

ÿ

𝛾P𝐼

𝑎𝛾𝑡
𝛾
¯

“ 𝛾0,

where 𝛾0 “ minp𝐼q and 𝐼 Ď R is a well ordered group. One way to view 𝑣´1
C

p0q as a

subset of Crr𝑡Rss, is the set of Hahn series for which the lowest power if zero, so the

leading term is a constant term. The set 𝑉𝑛 Ă 𝑣´1
C

p0q imposes the extra condition that

this constant term has to belong to 𝑈𝑛. The properties of 𝑉𝑛 will be explored where 𝑉𝑛
is viewed as a subgroup of 𝑣´1

C
p0q, which can be extended to discuss 𝑉𝑛 as a subgroup

of Crr𝑡Rss.

Lemma 4.1.14. The subgroup 𝑉𝑛 is not a Hüllenbildend subgroup of 𝑣´1
C

p0q.

Proof. Let 𝑥 and 𝑦 be Hahn series such that 𝑥, 𝑦 P 𝑣´1
C

p0qz𝑉𝑛, so

𝑣Cp𝑥q “ 0 𝑣Cp𝑦q “ 0.

Explicitly,

𝑥 “
ÿ

𝛾P𝐼

𝑎𝛾𝑡
𝛾 , minp𝐼q “ 0 , 𝑎0 R 𝑈𝑛.

𝑦 “
ÿ

𝛼P𝐽

𝑏𝛼𝑡
𝛼 , minp𝐽q “ 0 , 𝑏0 R 𝑈𝑛.

Then, observing the form of the multiplication of these two Hahn series,

𝑥𝑦 “

´

ÿ

𝛾P𝐼

𝑎𝛾𝑡
𝛾
¯´

ÿ

𝛼P𝐽

𝑏𝛼𝑡
𝛼
¯

, 𝑣Cp𝑥𝑦q “ 0.



90 CHAPTER 4. POLYNOMIALS OVER QUOTIENT HYPERFIELDS

The valuation of the multiplication is zero due to the subgroup properties of 𝑣´1
C

p0q.

Furthermore, this gives that the constant term of 𝑥𝑦 is equal to 𝑎0 ¨ 𝑏0. As these are

the only possible coefficients from 𝑥 and 𝑦 respectively that when multiplied together

give a constant term. To continue the behaviour of 𝑥 ` 𝑦 ´ 𝑥𝑦 is explored. All three

terms 𝑥, 𝑦 and 𝑥𝑦 have valuation zero. Due to the definition of addition of Hahn series

this gives 𝑣Cp𝑥 ` 𝑦 ´ 𝑥𝑦q “ 0. The constant term of 𝑥 ` 𝑦 ´ 𝑥𝑦 is exactly the term

𝑎0 ` 𝑏0 ´ 𝑎0 ¨ 𝑏0 P C. This reduces the question of whether 𝑉𝑛 is a Hüllenbildend

subgroup of 𝑣´1
C

p0q, to whether 𝑈𝑛 is a Hüllenbildend subgroup of C. Explicitly, does

there exist 𝑎0, 𝑏0 P Cz𝑈𝑛, such that 𝑎0 ` 𝑏0 ´ 𝑎0 ¨ 𝑏0 P 𝑈𝑛. It has been shown in Lemma

4.1.8 that the answer to this question is that 𝑈𝑛 is not a U-hüll subgroup of C for any

𝑛 ą 1. Therefore, 𝑉𝑛 is not a Hüllenbildend subgroup of 𝑣´1
C

p0q. Lemma 4.1.8 shows

that it is possible to find 𝑎0, 𝑏0 P Cz𝑈𝑛, which can be used to define 𝑥, 𝑦 P 𝑣´1
C

p0qz𝑉𝑛

such that 𝑥 ` 𝑦 ´ 𝑥𝑦 P 𝑉𝑛. □

Corollary 4.1.15. The subgroup 𝑉𝑛 is not a Hüllenbildend subgroup of Crr𝑡Rss. Thus,

the hyperfield built as the quotient Crr𝑡Rss{𝑉𝑛 is neither stringent or doubly distributive.

Remark 4.1.16. The result in Lemma 4.1.8 allows for an observation to be made about

the properties of subgroups of a Hüllenbildend subgroup. Given a Hüllenbildend

subgroup, then not all subgroups of this given subgroup are themselves Hüllenbildend.

Example 4.1.17. Take 𝑈4 “ t˘1 , ˘𝑖u Ă C, then define the Hahn series,

𝑥 “
ÿ

𝛾P𝐼

𝑎𝛾𝑡
𝛾

“ 𝑎0 ` . . . , minp𝐼q “ 0,

𝑦 “
ÿ

𝛼P𝐽

𝑏𝛼𝑡
𝛼

“ 𝑏0 ` . . . , minp𝐽q “ 0.

Define 𝑎0 “ 7 and 𝑏0 “ 4
3 , which together with above gives, 𝑣Cp𝑥q “ 𝑣Cp𝑦q “ 0, and

𝑥, 𝑦 P 𝑣´1
C

p0qz𝑉4. Then,

𝑥 ` 𝑦 ´ 𝑥𝑦 “ p𝑎0 ` 𝑏0 ´ 𝑎0 ¨ 𝑏0q ` . . .

and it has been shown in Example (4.1.9) and Remark (4.1.10) that,

𝑎0 ` 𝑏0 ´ 𝑎0 ¨ 𝑏0 “
4
3 ` 7 ´

4
3 ¨ 7 P 𝑈4.

This implies that 𝑥 ` 𝑦 ´ 𝑥𝑦 P 𝑉4.
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4.1.3 Applications to RAC Maps

The aim of this section is explore the properties of hyperfield homomorphisms between

C and the quotient hyperfields C{𝑈𝑛 discussed in the previous sections. The main

aim is to explore whether the maps CÑ C{𝑈𝑛 are RAC. The properties of roots and

multiplicities of these roots over C{𝑈𝑛 will come to play an important role, due to the

next result.

Proposition 4.1.18. The hyperfield homomorphism 𝐾 Ñ 𝐾{𝑈 is not RAC if 𝐾{𝑈

exceeds the multiplicity bound, by way of having too many distinct roots.

Proof. If 𝐾{𝑈 does not satisfy the multiplicity bound because it has too many distinct

roots for a particular polynomial, then not all of these roots can be lifted back because

the polynomials in the pre-image will have at most 𝑛 distinct roots over the field 𝐾. As

not all the roots can be lifted back, the map is not RAC. □

Example 4.1.19. Take the polynomial 𝑝p𝑋q “ 𝑋2 ` 𝑋 ` 1 P Cr𝑋s, and 𝑓˚p𝑝p𝑋qq “

𝑋2 ‘ 𝑋 ‘ 1 P C{𝑈2r𝑋s. The variety of the push-forward polynomial is

𝑉p 𝑓˚p𝑝p𝑋qqq “

!”

´1 ´
?

5
2

ı

,

”

?
5 ´ 1
2

ı

,

”

´1 ` 𝑖
?

3
2

ı

,

”

´1 ´ 𝑖
?
𝑖

2

ı)

.

The map C Ñ C{𝑈2 is a surjective map, and the pre-images of distinct elements are

distinct. Therefore, to lift back all the elements of 𝑉p 𝑓˚p𝑝p𝑋qqq, this would require 4

distinct lifts and all these needs to be roots of 𝑝p𝑋q “ 𝑋2 ` 𝑋 ` 1 P Cr𝑋s for the map

to be RAC. This can not happen as degree two polynomials in Cr𝑋s can not have four

distinct roots. Thus, this map is not RAC, by means of the push-forward polynomial

having too many distinct roots.

This example motivates the remainder of the section. The goal is to generalise this

argument for all maps CÑ C{𝑈𝑛. This would then demonstrate that they are all not

RAC maps. The argument above can not be generalised in a striaght-forward way, as

when 𝑛 increases, 𝑈𝑛 causes more elements to be equal in the quotient. The focus will

though remain on the polynomial 𝑝p𝑋q “ 𝑋2 ‘ 𝑋 ‘ 1.
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Proposition 4.1.20. The polynomial 𝑝p𝑋q “ 𝑋2 ‘ 𝑋 ‘ 1 P C{𝑈𝑛r𝑋s has a root at 𝑋

when r´1s P 𝑋2 ‘ 𝑋.

Proof.

𝟘 P 𝑝p𝑋q ðñ 𝟘 P 𝑋2 ‘ 𝑋 ‘ 1

ðñ ´r1s P 𝑋2 ‘ 𝑋

ðñ r´1s P 𝑋2 ‘ 𝑋

□

The behaviour of 𝑋2 ‘ 𝑋 is characterised by the structure of the hyper-addition defined

for hyperfields built from a quotient (See 2.2.3). By definition

𝑋2 ‘ 𝑋 “ tr𝑐s | 𝑐 “ 𝑥2𝑢 ` 𝑥𝑣 , 𝑢, 𝑣 P 𝑈𝑛u,

where 𝑋 “ r𝑥s “ t𝑥𝑈u P C{𝑈𝑛. For 𝑋 to be a root there is requirement that r𝑐s “ r´1s.

This occurs when 𝑐 “ ´1 ¨ 𝑤, where 𝑤 P 𝑈𝑛. Inside the hyper-sum there can be some

rearrangement,

𝑐 “ 𝑥2𝑢 ` 𝑥𝑣 ðñ 0 “ 𝑥2𝑢 ` 𝑥𝑣 ´ 𝑐.

Then if it is fixed that 𝑢 “ 1, as 1 P 𝑈𝑛, then this gives a set of monic quadratics,

0 “ 𝑥2 ` 𝑥𝑣 ´ 𝑐, where 𝑣 P 𝑈𝑛 and 𝑐 P t´𝑢 | 𝑢 P 𝑈𝑛u. The aim is to find values for 𝑥 P C

such that the equations above give zero when 𝑐 P r´1s. These values of 𝑥 will then give

roots, r𝑥s, of the polynomial 𝑝p𝑋q “ 𝑋2 ‘ 𝑋 ‘ 1. Another way of viewing this would be

a solution to 0 “ 𝑥2 ` 𝑥𝑣 ´ 𝑐 where 𝑐 P r´1s, gives a solution to 𝑐 “ 𝑥2 ` 𝑥𝑣, and thus

the elements 𝑋 “ r𝑥s will gives r´1s P 𝑋2 ‘ 𝑋. Which is the exact condition required

for there to be a root of 𝑝p𝑋q “ 𝑋2 ‘ 𝑋 ‘ 1. If there can be a sufficient amount of

distinct elements 𝑥 found for these equations then this will be able to show that there

are a certain amount of distinct roots for 𝑝p𝑋q “ 𝑋2 ‘ 𝑋 ‘ 1 over C{𝑈𝑛.

Proposition 4.1.21. Let t𝑎1, . . . , 𝑎𝑚u, be distinct elements of a field 𝐾. Then over

𝐾{𝑈,
ˇ

ˇ

ˇ

!

r𝑎1s, . . . , r𝑎𝑚s

)
ˇ

ˇ

ˇ
ě

Q

𝑚

𝑛

U
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where 𝑛 “ |𝑈|. Concretely, the minimum amount of distinct elements in the quotient

coming from 𝑚 distinct elements in 𝐾 is given by the ceiling function of 𝑚
𝑛

.

Proposition 4.1.22. Given a field 𝐾, the minimum number of distinct elements over

𝐾 needed to produce at least 𝑡 distinct elements over 𝐾{𝑈 is 𝑛p𝑡 ´ 1q ` 1 “ 𝑛𝑡 ´ 𝑡 ` 1,

where 𝑛 “ |𝑈|.

Proposition 4.1.23. The equations 0 “ 𝑥2 ` 𝑥 ´ 𝑐 each have two distinct roots for

every choice of 𝑐 P r´1s.

Proof. By the quadratic formula, the discriminant determines whether there are repeat-

ing roots, and here

𝑏2
´ 4𝑎𝑐 “ 1 ` 4𝑐 “ 0 ñ ´4𝑐 “ 1 ñ 𝑐 “ ´

1
4 R r´1s “ t´𝑈𝑛u.

Which is a contradiction to the assumption that 𝑐 P r´1s. Thus, 𝑏2 ´ 4𝑎𝑐 ‰ 0, and this

implies no double roots. □

Given the choice 𝑣 “ 1, then this restricts to the equations 0 “ 𝑥2 ` 𝑥 ´ 𝑐. For each

of these 𝑛 equations, there are no double/repeating roots for individual equations.

Proposition 4.1.24. The equations 0 “ 𝑥2 ` 𝑥 ´ 𝑐 share no common roots for every

choice of 𝑐 P r´1s.

Proof. Say, 𝑓1 “ 𝑥2 ` 𝑥´ 𝑐1 and 𝑓2 “ 𝑥2 ` 𝑥´ 𝑐2, with 𝑐1, 𝑐2 P r´1s and 𝑐1 ‰ 𝑐2. Then

as these polynomials are defined over C,

𝑓1 “ p𝑥 ´ 𝑎1qp𝑥 ´ 𝑏1q and 𝑓2 “ p𝑥 ´ 𝑎2qp𝑥 ´ 𝑏2q

ñ 𝑎1 ¨ 𝑏1 “ ´𝑐1, 𝑎2 ¨ 𝑏2 “ ´𝑐2,

and

´𝑎1 ` ´𝑏1 “ 1, ´𝑎2 ` ´𝑏2 “ .

If 𝑓1 and 𝑓2 had a common root then t𝑎,𝑏1u X t𝑎2, 𝑏2u ‰ H. Any of the four choices

available to give a non-empty intersection, along with the observation that,

´𝑎1 ` ´𝑏1 “ 1 “ ´𝑎2 ` ´𝑏2,
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gives then the other pair have to be equal. Which gives t𝑎,𝑏1u “ t𝑎2, 𝑏2u, implying in

turn that,

´𝑐1 “ 𝑎1 ¨ 𝑏1 “ 𝑎2 ¨ 𝑏2 “ ´𝑐2.

This is a contradiction, hence all choices of 𝑐 P r´1s give distinct varieties for 𝑥2 ` 𝑥 ´

𝑐. □

Proposition 4.1.25. For the equations 0 “ 𝑥2 `𝑥´𝑐, where 𝑐 P r´1s,
Ť

𝑐 𝑉p𝑥2 `𝑥´𝑐q,

contains 2𝑛 distinct elements.

Proof. This is a direct consequence of Propositions 4.1.23 and 4.1.24. □

Proposition 4.1.26. Take the equation 0 “ 𝑥2𝑢 ` 𝑥 ´ 𝑐, for some 𝑢 P 𝑈𝑛 and 𝑢 ‰ 1.

Then, this equation has at least one root which is distinct from the collection of roots

for all the equations 0 “ 𝑥2 ` 𝑥 ´ 𝑐𝑖, where 𝑐𝑖 varies over all non-zero elements of C.

Proof. The equation 0 “ 𝑥2𝑢 ` 𝑥 ´ 𝑐 has the same roots as 0 “ 𝑥2 ` 𝑥𝑢´1 ´ 𝑐𝑢´1. For

convenience set 𝑐𝑢´1 “ 𝑐. Then, 0 “ 𝑥2 ` 𝑥𝑢´1 ´ 𝑐 “ p𝑥 ´ 𝑑1qp𝑥 ´ 𝑑2q, which gives

𝑑1 ¨𝑑2 “ 𝑐, and ´𝑑1 `´𝑑2 “ 𝑢´1 ‰ 1. For an equation 𝑓𝑖 “ 𝑥2 `𝑥`𝑐𝑖 “ p𝑥´𝑎𝑖qp𝑥´𝑏𝑖q,

𝑎𝑖 ¨ 𝑏𝑖 “ ´𝑐𝑖 and ´𝑎𝑖 ` ´𝑏𝑖 “ 1 in a similar manner as before. Presume that

t𝑎𝑖, 𝑏𝑖u “ t𝑑1, 𝑑2u, then 𝑢´1 “ ´𝑑1 ` ´𝑑2 “ ´𝑎𝑖 ` ´𝑏𝑖 “ 1. This is a contradiction as

𝑢 ‰ 1 hence 𝑢´1 ‰ 1. Therefore, at least one of 𝑑1 and 𝑑2 is not equal to either 𝑎𝑖 and

𝑏𝑖, giving the desired result. □

This then leads to the following result regarding the multiplicity bound for C{𝑈𝑛.

Lemma 4.1.27. The hyperfield C{𝑈𝑛 exceeds the multiplicity bound, by way of having

too many distinct roots.

Proof. Take the polynomial 𝑝p𝑋q “ 𝑋2 ‘ 𝑋‘ 1 over C{𝑈𝑛, then by Proposition (4.1.20),

𝟘 P 𝑝p𝑋q ðñ r´1s P 𝑋2‘𝑋. The behaviour of 𝑋2‘𝑋 is characterised by the structure

of the hyper-addition defined for hyperfields built from a quotient. By definition

𝑋2 ‘ 𝑋 “ tr𝑐s | 𝑐 “ 𝑥2𝑢 ` 𝑥𝑣 , 𝑢, 𝑣 P 𝑈𝑛u,
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where 𝑋 “ r𝑥s “ t𝑥𝑈u P C{𝑈𝑛. For 𝑋 to be a root there is requirement that r𝑐s “ r´1s.

This occurs when 𝑐 “ ´1 ¨ 𝑤, where 𝑤 P 𝑈𝑛. Inside the hyper-sum there can be some

rearrangement,

𝑐 “ 𝑥2𝑢 ` 𝑥𝑣 ðñ 0 “ 𝑥2𝑢 ` 𝑥𝑣 ´ 𝑐.

Then,
´

ď

𝑐Pr´1s

𝑉p𝑥2
` 𝑥 ´ 𝑐q

¯

Y𝑉p𝑥2𝑢 ` 𝑥 ´ 𝑐q Ď
ď

𝑉p𝑥2𝑢 ` 𝑥𝑣 ´ 𝑐q,

where 𝑢 P 𝑈𝑛 is a fixed. By Propositions (4.1.25) and (4.1.26), the set on the left has

at least 2𝑛 ` 1 elements, therefore the set on the right has at least 2𝑛 ` 1. Then by

Proposition (4.1.22), this gives at least 3 elements r𝑥s “ 𝑋 over C{𝑈𝑛, which are by

construction roots of 𝑝p𝑋q “ 𝑋2 ‘ 𝑋 ‘ 1. Hence, 𝑝p𝑋q has at least three distinct roots

over C{𝑈𝑛, which implies that C{𝑈𝑛 exceeds the multiplicity bound by way of having

too many distinct roots. □

Corollary 4.1.28. The map CÑ C{𝑈𝑛 is not a RAC map.

Proof. By Lemma 4.1.27, C{𝑈𝑛 exceeds the multiplicity bound, by way of having too

many distinct roots, then by Proposition 4.1.18, the map C Ñ C{𝑈𝑛 is not a RAC

map. □

4.1.4 The Signed Tropical Hyperfield

As outlined in Definition 2.4.13 the signed tropical hyperfield can be constructed as

a quotient of the Hahn series, Rrr𝑡Rss{𝑣´1
R p0q. It will now be shown that when this

construction is viewed as a quotient map 𝑣R : Rrr𝑡Rss Ñ TR this is not a RAC hyperfield

homomorphism.

In [Gun19], there is an explicit description of multiplicities for roots over TR. This can

also been seen in Theorem 3.4.12, but to recall they are characterised by sign changes

on edges of the Newton polytope. The Newton Polytope for polynomials over TR is

defined as Newtp𝑝q “ Newtp|𝑝|q, where |𝑝| is the image of the polynomial under the

induced map | ¨ | : TRÑ T defined by restricting to the second component. The Newton
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polytope over T for a polynomial 𝑞p𝑋q “
ř𝑛
𝑖“0 𝑐𝑖𝑋

𝑖 is defined as,

Newtp𝑞q :“ Convhulltp𝑖, 𝑐𝑖q : 𝑖 “ 1, . . . , 𝑛u.

Using these ideas the next example will demonstrate that the map 𝑣R : Rrr𝑡Rss Ñ TR

is not RAC, by taking a polynomial with coefficients in Rrr𝑡Rss but roots in Crr𝑡Rss,

and showing these roots push-forward to roots over T and then correspond, due to the

sign changes, to roots over TR. Hence showing there exists a polynomial over TR with

non-empty variety with no lifts of these roots back to roots of the original polynomial

over Rrr𝑡Rss.

Example 4.1.29. Let 𝑝p𝑋q “ 𝑋2 ´ 2𝑋 ` p1 ` 𝑡2q P Rrr𝑡Rss, this has a precise and

complete factorisation over the field extension Crr𝑡Rss,

𝑝p𝑋q “ p𝑋 ´ p1 ´ 𝑖𝑡qqp𝑋 ´ p1 ` 𝑖𝑡qq “ 𝑋2
´ p1 ´ 𝑖𝑡 ` 1 ` 𝑖𝑡q𝑋 ` p1 ´ 𝑖𝑡qp1 ` 𝑖𝑡q.

Taking the image under the maps 𝑣R and 𝑣C gives,

𝑣Rp𝑝q “ p1, 0q𝑋2 ‘ p´1, 0q𝑋 ‘ p1, 0q P TRr𝑋s,

𝑣Cp𝑝q “ 0𝑋2 ‘ 0𝑋 ‘ 0 P Tr𝑋s.

The resulting Newton polytope of 𝑣Rp𝑝q is equal to the Newton polytope of 𝑣Cp𝑝q with

inherited signs.

Newtp𝑣Rp𝑝qq “ Newtp|𝑣Rp𝑝q|q “ Newtp𝑣Cp𝑝qq

Newtp𝑣Rp𝑝qq is a horizontal line of length 2, with two sign changes, as seen in Figure 4.1.

Hence, it is an edge of slope zero with two sign changes. This implies that there exists a

root of multiplicity two for 𝑣Rp𝑝q of multiplicity two over TR which does not have a lift

to the any of the roots of the original polynomial 𝑝p𝑋q “ 𝑋2 ´ 2𝑋 ` p1 ` 𝑡2q P Rrr𝑡Rss,

as this was constructed with roots from Crr𝑡Rss. Explicitly, this root is p1, 0q, and lifts

of this root must have a Hahn series starting with a constant term. By construction the

roots of the original polynomial 𝑝p𝑋q do have Hahn series starting with constant terms

but the other terms contain complex components. This implies that there does not exist

any lift for the root p1, 0q, and thus demonstrating that the map 𝑣R : Rrr𝑡Rss Ñ TR is

not RAC.
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+ - +

Figure 4.1: The Newton polytope for 𝑣Rp𝑝q “ p1, 0q𝑋2 ‘ p´1, 0q𝑋 ‘ p1, 0q P TRr𝑋s.

Remark 4.1.30. This demonstrates that there are instances where roots over T can be

lifted to roots over TR, which would suggest that the map | ¨ | : TRÑ T is RAC, but

to clarify, this is not the case. The tropical hyperfield is algebraically closed and the

tropical signed hyperfield is not algebraically closed, as seen in Table 2.1. Therefore,

the polynomial 𝑋2 ‘ 1 has an empty variety over TR but there exists roots over T.

4.2 Polynomials over the Triangle Hyperfield

Quotients of the the complex numbers by roots of unity have been explored in Section

4.1, the attention is focused on a more general quotient which has broader applications.

This section will explore the properties of the triangle hyperfield. As stated in Table

2.4 the triangle hyperfield is isomorphic to the quotient of the complex numbers by the

unit circle 𝑆1. The quotient map from the complex numbers to the triangle hyperfield

links closely to amoebas from classical algebra.

This section will investigate varieties over the triangle hyperfield and other related areas.

In particular, there is a presentation of a result regarding the variety of push-forward

ideals over △.

4.2.1 Varieties over △

The aim of this section is to study the properties of varieties specifically over the

triangle hyperfield. This will include results characterising the structure of varieties and

examples to complement these descriptions. The first result demonstrates that varieties

of univariate polynomials over the triangle hyperfield are closed intervals and gives a

bound with respect to the degree of the polynomial, on the number of intervals.

Theorem 4.2.1. Let 𝑝 P △r𝑋s, with degp𝑝q “ 𝑑, then 𝑉p𝑝q Ď △ is the union of at

most 𝑑-distinct closed intervals.
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Proof. From Corollary 6.3.4, 𝑉p𝑝q Ď △ is equal to the union of push-forward roots of

all the polynomials in the pre-image of 𝑝 under the quotient map from the complex

numbers. Every polynomial in the pre-image of 𝑝 has degree equal to degp𝑝q “ 𝑑,

and as C is algebraically closed, has at most 𝑑-distinct roots. Each polynomial in the

pre-image of 𝑝 can be related to every other polynomial by a continuous change in

coefficients by multiplication of scalars from 𝑆1. The roots of the pre-image polynomials

can be viewed as a continuous map from the coefficients of the polynomial. Thus, as the

coefficient continuously change by scalar multiplication from 𝑆1, the roots continuously

change in the complex plane. This gives 𝑑 paths in the complex plane, one for each

root, when viewing all the roots of all the pre-image polynomials. When these are

mapped back through the quotient map to the triangle hyperfield this is will give at

most 𝑑-intervals. □

It will be shown later in this section that this bound is sharp for quadratic and cubic

polynomials.

In general, Corollary 6.3.4 demonstrates that 𝑉p 𝑓˚p𝑝qq ‰ 𝑓 p𝑉p𝑝qq for quotient hyper-

fields. This phenomenon occurs as 𝑉p 𝑓˚p𝑝qq may be larger than 𝑓 p𝑉p𝑝qq. By replacing

𝑝 with the principal ideal x𝑝y, 𝑓 p𝑉px𝑝yqq “ 𝑓 p𝑉p𝑝qq is unchanged, but 𝑉p 𝑓˚px𝑝yqq can

only reduce in size as;

𝑉p 𝑓˚px𝑝yqq “
č

𝑞Px𝑝y

𝑉p 𝑓˚p𝑞qq.

This leads to the natural question of is there equality between 𝑓 p𝑉px𝑝yqq and 𝑉p 𝑓˚px𝑝yqq

in general? The next result demonstrates that for a specific class of polynomials, using

the principal ideal x𝑝y gives the desired equality.

Theorem 4.2.2. Let 𝑝 P Cr𝑋s, where each root has rational argument the same absolute

value. Then,

𝑉p 𝑓˚x𝑝yq “ 𝑓 p𝑉p𝑝qq

Proof. From the statement of the theorem it can be seen that 𝑉p𝑝q “ t𝑎1, . . . , 𝑎𝑚u,

where 𝑚 ď degp𝑝q, and |𝑎1| “ ¨ ¨ ¨ “ |𝑎𝑚| “ 𝑟. This gives that 𝑓 p𝑉p𝑝qq “ t𝑟u. For each
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𝑎𝑖 P 𝑉p𝑝q a point 𝑎𝑖 P 𝑆1 can be identified by, 𝑎𝑖 “
𝑎𝑖

|𝑎𝑖|
. Due to the property that each

𝑎𝑖 has rational argument, there exists an 𝑛𝑖 P N for each 𝑎𝑖 such that 𝑎𝑖𝑛𝑖 “ 1. Hence,

as 𝑎𝑖 “ 𝑟 ¨ 𝑎𝑖, then 𝑎
𝑛𝑖
𝑖

“ p𝑟 ¨ 𝑎𝑖q
𝑛𝑖 “ 𝑟𝑛𝑖 . Denote 𝑅 “ 𝑛1 ¨ 𝑛2 ¨ ¨ ¨ ¨ ¨ 𝑛𝑚, and define a

polynomial 𝑞p𝑋q :“ 𝑋𝑅 ´ 𝑟𝑅. Then,

𝑞p𝑎𝑖q “ p𝑎𝑖q
𝑅

´ 𝑟𝑅

“ p𝑎
𝑛𝑖
𝑖

q
𝑛1¨...¨𝑛𝑖¨...¨𝑛𝑚 ´ 𝑟𝑅

“ 𝑟𝑅 ´ 𝑟𝑅 “ 0

Thus, this implies that 𝑉p𝑝q Ď 𝑉p𝑞q. The polynomial 𝑞 has 𝑅 roots equally dis-

tributed around the circle of radius 𝑟 in the complex plane. Explicitly, 𝑉p𝑞q “

t𝑟, 𝑟𝜔, 𝑟𝜔2, ..., 𝑟𝜔𝑅´1u, where 𝜔, 𝜔2, ..., 𝜔𝑅´1 are the 𝑅th roots of unity.

The next step is to show that 𝑞p𝑋q P x𝑝y. This is a consequence of the properties of

the variety of 𝑞p𝑋q. Define a polynomial,

𝑡p𝑋q “
ź

𝑠Pt𝑟,...,𝑟𝜔𝑅´1uzt𝑎1 ,..., 𝑎𝑚u

p𝑋 ´ 𝑠q.

Then, 𝑞p𝑋q “ 𝑡p𝑋q ¨ 𝑝p𝑋q, and hence 𝑞p𝑋q P x𝑝y. Furthermore, 𝑓˚p𝑞q “ 𝑋𝑅 ` 𝑟𝑅 P

𝑓˚px𝑝yq, with 𝑉p 𝑓˚p𝑞qq “ t𝑟u. When computing 𝑉p 𝑓˚px𝑝yqq this gives,

t𝑟u “ 𝑓 p𝑉p𝑝qq Ď 𝑉p 𝑓˚px𝑝yqq

“
č

𝑝Px𝑝y

𝑉p 𝑓˚p𝑝qq

Ď 𝑉p 𝑓˚p𝑞qq “ t𝑟u

Which allows the conclusion of 𝑉p 𝑓˚px𝑝yqq “ 𝑓 p𝑉p𝑝qq to be made. □

Example 4.2.3. Let 𝑝p𝑋q “ 𝑋2 ` 𝑋 ` 1 P Cr𝑋s, then the push-forward though

the map | ¨ | : C Ñ △ is |𝑝p𝑋q| “ 𝑋2 ‘ 𝑋 ‘ 1 P △r𝑋s. It is shown in Example

3.1.7 that the variety of |𝑝| is the interval r

?
5´1
2 ,

1`
?

5
2 s. Take 𝑋 ´ 1 P Cr𝑋s, then

p𝑋 ´ 1q𝑝p𝑋q “ 𝑋3 ´ 1 P x𝑝y Ă Cr𝑋s, the principal ideal generated by 𝑝p𝑋q. The

push-forward is 𝑋3 ‘ 1 P |x𝑝y| Ă △r𝑋s, which has a single root, 𝑉p𝑋3 ‘ 1q “ t1u Ă △.

Moreover, this gives 𝑉p|x𝑝y|q “
Ş

𝑞Px𝑝y𝑉p|𝑞|q “ t1u, which is equal to |𝑉p𝑝q| “ t1u as
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the roots of 𝑝p𝑋q are t
´1`𝑖

?
3

2 ,
´1´𝑖

?
3

2 u Ă 𝑈3, where 𝑈𝑛 are the n-th roots of unity and

thus have absolute value equal to one.

The results that have been outlined over the triangle hyperfield raise some questions

about how precisely varieties can be calculated. When can the number of intervals be

precisely stated? What are the end points of the intervals? Can the end points be

calculated in terms of the coefficients? Given an interval, can there be a polynomial

constructed such that this interval is the polynomials variety? These questions will be

answered for quadratics polynomials over the triangle hyperfield next.

Define a general quadratic polynomial over △r𝑋s as, 𝑝p𝑋q “ 𝑋2 ‘ 𝑎𝑋 ‘ 𝑏, where

𝑎, 𝑏 P Rě0. Then, the variety is

𝑉p𝑝q “ t𝑦 P △ : 𝟘 P 𝑝p𝑦qu.

Noting that the reversibility axiom allows this to be stated as 𝑏 “ ´𝑏 P 𝑦2 ‘ 𝑎𝑦. Then,

using the definition of the hyper-addition over △ it can be seen that this is characterised

our by two inequalities,

𝑉p𝑝q “ t𝑦 P △ : |𝑦2
´ 𝑎𝑦| ď 𝑐 ď 𝑦2

` 𝑎𝑦u. (4.2.4)

These two inequalities can be viewed graphically, which allows for the intervals to be

read off the graph. This can be seen in the next example.

Example 4.2.5. Let 𝑝p𝑋q “ 𝑋2 ‘ 8𝑋 ‘ 15 P △r𝑋s, then the variety can be calculated

graphically by looking at the intersection of the following three lines:

𝑦 “ |𝑋2
´ 8𝑋|, 𝑦 “ 𝑋2

` 8𝑋, 𝑦 “ 15.

This is shown in Figure 4.2, where the intersection points gives the intervals r1.568, 3s Y

r5, 9.568s as the variety of 𝑝p𝑋q to three decimal places.

This viewpoint can be developed further and used to set up formulas for the endpoints

of the intervals in terms of the coefficients 𝑎, 𝑏 P △. The critical points, or equality, of
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Figure 4.2: Representation of the graphs of the equations in Example 4.2.5, this was
created using the online tool https://www.desmos.com/calculator

the two sided inequality will characterise the boundary of the variety. The following

discussion will construct this method explicitly and demonstrate that the intervals

of the variety can be calculated by purely using the coefficients. This process closely

mirrors the use of the quadratic formula for polynomials over R and C.

Firstly, set up the equations for which equality is achieved in (4.2.4),

|𝑦2
´ 𝑎𝑦| “ 𝑏 and 𝑦2

` 𝑎𝑦 “ 𝑏.

The first equation can have two variants due to the absolute value. Taking this into

consideration three quadratic equations can be constructed.

𝑦2
´ 𝑎𝑦 ´ 𝑏 “ 0, 𝑦2

´ 𝑎𝑦 ` 𝑏 “ 0 and 𝑦2
` 𝑎𝑦 ´ 𝑏 “ 0. (4.2.6)

The solutions to these three equations will give the intersection points of the lines

𝑓 p𝑦q “ |𝑦2 ´ 𝑎𝑦|, 𝑓 p𝑦q “ 𝑦2 ` 𝑎𝑦 and 𝑓 p𝑦q “ 𝑏, which in turn define the candidates for

the end points of the intervals of the variety of 𝑝p𝑋q “ 𝑋2 ‘ 𝑎𝑋 ‘ 𝑏. It will be shown
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the order in which these points lie and confirmed that these are indeed the endpoints

that are required. The negative solutions to (4.2.6) can be immediately removed, as the

triangle hyperfield only deals with the positive real numbers. Applying the quadratic

formula, along with the consideration about negative solutions, it can be seen that the

solutions that are of interest are;

𝑦2
´ 𝑎𝑦 ´ 𝑏 “ 0 Ñ

𝑎 `
?
𝑎2 ` 4𝑏
2 ,

𝑦2
´ 𝑎𝑦 ` 𝑏 “ 0 Ñ

𝑎 ˘
?
𝑎2 ´ 4𝑏
2 ,

𝑦2
` 𝑎𝑦 ´ 𝑏 “ 0 Ñ

´𝑎 `
?
𝑎2 ` 4𝑏

2 .

From these solutions it can be seen that the second equation does not always achieve

solutions over the positive real numbers, due to the possibility that 𝑎2 ´ 4𝑏 can be

negative value and hence over Rě0, it has no solutions. Once the ordering of the

solutions above has been given, it will be stated that this condition on the discriminant

determines when the variety to a quadratic is one or two intervals.

Proposition 4.2.7. Let 𝑝p𝑋q “ 𝑋2 ‘ 𝑎𝑋 ‘ 𝑏 P △r𝑋s, then 𝑉p𝑝q is a single closed

interval when 𝑏 ą 𝑎2

4 , and 𝑉p𝑝q is the union of two closed intervals when 𝑏 ď 𝑎2

4 .

Proof. It has been shown that 𝑎`
?
𝑎2`4𝑏
2 , 𝑎˘

?
𝑎2´4𝑏
2 and ´𝑎`

?
𝑎2`4𝑏

2 are the end points

of the intervals and thus when 𝑏 ą 𝑎2

4 there are no solutions to 𝑎˘
?
𝑎2´4𝑏
2 . This shows

there is only one interval. Furthermore, when 𝑏 ď 𝑎2

4 there exists two solutions to
𝑎˘

?
𝑎2´4𝑏
2 and hence gives two distinct closed intervals as the variety of 𝑝p𝑋q. □

Proposition 4.2.8. Let 𝑝p𝑋q “ 𝑋2 ‘ 𝑎𝑋 ‘ 𝑏 P △r𝑋s, then the cumulative length of

𝑉p𝑝q is bounded by 𝑎.

Proof. If the variety is one interval then the endpoints are ´𝑎`
?
𝑎2`4𝑏

2 and 𝑎`
?
𝑎2`4𝑏
2 .

This gives the length of the interval as;

𝑎 `
?
𝑎2 ` 4𝑏
2 ´

´𝑎 `
?
𝑎2 ` 4𝑏

2 “ 𝑎.
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Alternatively, if the variety is the union of two closed varieties, the intervals are
”

´𝑎`
?
𝑎2`4𝑏

2 , 𝑎´
?
𝑎2´4𝑏
2

ı

and
”

𝑎`
?
𝑎2´4𝑏
2 , 𝑎`

?
𝑎2`4𝑏
2

ı

. This gives the combined length as,

´

𝑎 ´
?
𝑎2 ´ 4𝑏
2 ´

´𝑎 `
?
𝑎2 ` 4𝑏

2

¯

`

´

𝑎 `
?
𝑎2 ` 4𝑏
2 ´

𝑎 `
?
𝑎2 ´ 4𝑏
2

¯

“ 𝑎´
a

𝑎2 ´ 4𝑏 ă 𝑎.

Hence, for either one or two intervals the cumulative length is bound by 𝑎. □

4.2.2 Amoebas over Hyperfields

When observing the variety of a univariate polynomial over the triangle hyperfield,

it can be seen that the number of roots is generally much larger that expected in

classical algebraic geometry, as can be demonstrated in Theorem 6.3.1. This gives an

indication that a single polynomial doesn’t encode the precise information about the

roots of a specific lift. In terms of Theorem 6.3.1, it contains the information about

the push-forward of the roots of every polynomial lift. This gives rise to a question

regarding how the information of the roots over the triangle hyperfield can be more

precise. One object to consider as a candidate for encoding more precise information

is the principal ideal generated by the original polynomial over the complex numbers.

Instead of only taking the starting polynomial over C, and pushing this forward to look

at the roots. Use the starting polynomials to generate an ideal and push this forward

and look at the roots of this object over the triangle hyperfield.

Classically a complex amoeba is the image of the zero locus or variety of a polynomial or

collection of polynomials under the map coordinate wise map log| ¨ | : CÑ R. They were

introduced in [GKZD94] and are closely connected to tropical geometry, as taking the

limit of the logarithmic base to infinity gives that amoebas converge to tropical varieties.

Here the term amoebas refers to the image of the variety of a complex polynomial or

ideal under the maps | ¨ | : CÑ △ and ph : CÑ P.

The next Theorem from [Pur08] outlines a relationship between the amoeba of an ideal

and the roots of the push-forward of the ideal. In the paper the author discusses the

result, although not in the hyperfield language that has been used throughout this work.
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Therefore, the results terminology has been adjusted to align with the notation used

thus far in this work. The result is stronger than the principal ideal univariate case,

which initially motivated this section.

Theorem 4.2.9. [Pur08, Thm.2] Given an ideal, 𝐼 Ď Cr𝑋1 , . . . , 𝑋𝑛s and the quotient

map | ¨ | : CÑ △, then

𝑉p|p𝐼q|˚q “ |p𝑉p𝐼qq|.

Where | ¨ |˚ is the induced map of polynomials, 𝑉p𝐼q “
Ş

𝑔P𝐼 𝑉p𝑔q, and 𝑉p|p𝐼q|˚q “

Ş

𝑔P𝐼 𝑉p|p𝑔q|˚q.

Remark 4.2.10. In the univariate case, where the ideal is a principle ideal, so generated

by a single polynomial, the result becomes more explicit in demonstrating that individual

push forward polynomials do not posses the precise information regarding the original

variety. Given 𝑝p𝑋q P Cr𝑋s, then Theorem 4.2.9 states that,

|p𝑉p𝑝qq| “ |ppx𝑝yqq| “ 𝑉p|px𝑝yq|q.

there is clearly a requirement to use the full ideal generated by the polynomial to

achieve the required restriction on the varieties over the triangle hyperfield.

Remark 4.2.11. Theorem 4.2.9 is a strong broad result and generalises Theorem 4.2.2.

An important point to draw to attention is that the techniques in the proofs of the

two results are independent. Theorem 4.2.2 views the construction differently to the

proof outlined in [Pur08]. There is evidently more to the picture to be explored when

phrasing the results in the hyperfield setting.

A similar result has been shown for the coameoba case in [For15], it is stated below in

the hyperfield language.

Theorem 4.2.12. [For15] Given the principal ideal x𝑝y Ď Cr𝑋s then under the phase

hyperfield homomorphism, ph : CÑ P,

𝑉pph˚px𝑝yqq “ php𝑉p𝑝qq.
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It would be interesting to explore the underlying structure of Theorem 4.2.9 and Theorem

4.2.12, with a hope to using specific hyperfield techniques to unify the arguments

There will now be several examples to demonstrate the results regarding taking the

variety of a push-forward ideal rather than just the polynomial. The first example will

specifically be a case of Theorem 4.2.2, but as stated in Remark 4.2.11 this is one case

of the general result presented in Theorem 4.2.9.

Example 4.2.13. The polynomial, 𝑝p𝑋q “ 𝑋2 `𝑋`1 P Cr𝑋s, and the principal ideal it

generates have been discussed in Example 4.2.3, where it is shown that 𝑉p|x𝑝y|q “ |𝑉p𝑝q|.

This is also an example demonstrating the result and method from Theorem 4.2.9.

Theorem 4.2.9, precisely gives a fundamental theorem for the quotient map | ¨ | : CÑ

C{𝑆1, although as already explored, this is not the only quotient map from the complex

numbers which results in a hyperfield. There is a class of quotient hyperfields constructed

with the roots of unity, 𝑈𝑛, as discussed in Section 4.1. This opens up a question:

does the fundamental theorem, stated in Theorem 4.2.9, hold for these other quotient

maps? This question and related notions will be discussed in the remainder of the section.

The hyperfields C{𝑈𝑛, along with C and C{𝑆1, form a commutative diagram as presented

in Figure 4.3. The hyperfields homomorphisms are defined as;

r¨s𝑛 : CÑ C{𝑈𝑛 , r𝑧s𝑛 “ 𝑧 ¨𝑈𝑛

𝜑 : CÑ C{𝑆1 , 𝜑p𝑤q “ 𝑤 ¨ 𝑆1

These maps are compatible in the sense of quotients, as every 𝑈𝑛 Ă 𝑆1. With relation

to Figure 4.3, Theorem 4.2.9 demonstrates a fundamental theorem for ideals along the

vertical map, | ¨ |. The next result will use this fact to explore the relation along the

diagonal map 𝜑.

Theorem 4.2.14. Let 𝐼 Ă Cr𝑋1 . . . 𝑋𝑛s be an ideal then,

𝜑pr𝑉p𝐼qqs𝑛q “ 𝑉p𝜑pr𝐼s𝑛˚qq.

Where, to clarify notation, both 𝜑˚ and r¨s𝑛˚ are the induced polynomial maps.
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C C{𝑈𝑛

△ – C{𝑆1

r¨s𝑛

| ¨ |
𝜑

Figure 4.3: Commutative maps from C to △ and C{𝑈𝑛.

Proof. The diagram commutes so |𝑉p𝐼q| “ 𝜑pr𝑉p𝐼qs𝑛q. Lemma 3.2.4 implies both

r𝑉p𝐼qs𝑛 Ď 𝑉r𝐼s𝑛 and 𝜑p𝑉pr𝐼s𝑛qq Ď 𝑉p𝜑˚pr𝐼s𝑛˚qq. For which the former then gives

𝜑pr𝑉p𝐼qs𝑛q Ď 𝜑p𝑉r𝐼s𝑛q. Thus, combining these shows,

|𝑉p𝐼q| Ă 𝜑pr𝑉p𝐼qs𝑛q

Ă 𝜑p𝑉pr𝐼s𝑛q

Ă 𝑉p𝜑pr𝐼s𝑛qq

“ 𝑉p|𝐼|q “ |𝑉p𝐼q|

(4.2.15)

Hence, the inclusions become equalities, which yields 𝜑pr𝑉p𝐼qs𝑛q “ 𝑉p𝜑pr𝐼s𝑛˚qq. □

Remark 4.2.16. This Theorem gives a version of the Fundamental Theorem for the

map 𝜑 : C{𝑈𝑛 Ñ △, as the ideal is defined over the complex numbers rather that

the hyperfields C{𝑈𝑛. Although, from the proof of the Theorem it can be seen that

𝜑pr𝑉p𝐼qs𝑛q “ 𝜑p𝑉pr𝐼s𝑛q, or the images of r𝑉p𝐼qs𝑛 and 𝑉pr𝐼s𝑛˚q are equal under the map

𝜑 to △. This is a step towards a Fundamental Theorem for the horizontal map in Figure

4.3, r¨s𝑛 : CÑ C{𝑈𝑛.

4.2.3 Further Questions

There are many questions that would be worth investigating with regards to the content

of this section. They will be outlined here. Firstly, note that this section builds on the
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notion of a RAC map, although it still remains a question to find a way to construct

RAC maps in general.

It is shown that for the maps ph : CÑ P and | ¨ | : CÑ △ satisfy a version of the

fundamental theorem. Is this due to some underlying feature of C or the subgroups in

the quotient construction of these maps? One aim in this area would be to characterise

quotient maps from C which satisfy the fundamental theorem. How does this compare

to quotients of other fields? Can a generic construction CÑ C{𝑈 be given such that it

satisfies the fundamental theorem? For instance, do the maps r¨s𝑛 : CÑ C{𝑈𝑛 satisfy

the fundamental theorem? It is clear that the route forward is to utilise ideals rather

than individual polynomials; as very few maps are RAC but it is seen here that they

can still satisfy the fundamental theorem.
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Chapter 5

Equivalence of Tropical Ideals

In this chapter, tropical ideals will be discussed. Specifically, these are polynomial ideals

over R that satisfy additional combinatorial properties. These combinatorial properties

are based on valuated matroids which will also be introduced here. The matroid prop-

erties of tropical ideals are utilised to define a notion of equivalence between tropical

ideals, called matroidal equivalence. Examples of tropical ideals will be presented and

then connected by the matroidal equivalence. Properties of the matroidal equivalence

are demonstrated, in particular it is seen that matroidal equivalence is preserved under

tropicalisation.

To clarify notation, for this chapter the results are presented over the tropical semiring

R. Therefore, the operations ‘ and d will be denoting tropical operations as follows

for this chapter; 𝑥 ‘ 𝑦 “ mint𝑥, 𝑦u and 𝑥 d 𝑦 “ 𝑥 ` 𝑦.

5.1 Motivation and Background

When observing the zero locus of a tropical polynomial, the set in R𝑛 is a balanced ra-

tional polyhedral complex, see [MS15, Theorem 3.3.6]. This notion of a tropical variety

can be extracted and studied independently. In algebraic geometry the endeavour to

study solutions sets of polynomials extends to varieties of polynomial ideals. Difficulty

arises in the tropical setting when considering the set of all polynomial ideals over R.

There exists polynomial ideals such that the variety is not a polyhedral complex, see

109
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[MR18, Example 5.14].

The proposed solution to this is to restrict to a class of ideals called tropical ideals.

Tropical ideals have been chiefly outlined and investigated by Maclagan and Rincon

in [MR18] and [MR20]. Tropical ideals satisfy extra combinatorial properties, by way

of a monomial elimination axiom. Furthermore, other contributions progressing the

understanding of tropical ideals can be seen in [GG16], [GG18], [DR21], [AR22], [FGG ],

[Zaj18] and [War20].

The class of tropical ideals has been shown to produce varieties that are balanced

polyhedral complexes, [MR18] and [MR20]. They also include the set of tropicalisations

of classical varieties, [GG16]. Although, not all tropical ideals are realisable, [MR18,

Example 2.8], and tropical ideals do not realise all possible tropical varieties, [DR21].

It is shown that when a Hilbert function is defined for a tropical ideal, it is even-

tually polynomial, [MR18, Proposition 3.8]. Tropical ideals with Hilbert polynomial

equal to one have been shown to be realisable in [Zaj18], precisely in for the form

troppx𝑋1 ´ 𝑎1, . . . , 𝑋𝑛 ´ 𝑎𝑛yq. Zero dimensional tropical ideals with Boolean coefficients

are studied in [AR22].

The motivating question for the work presented here is; when should the geometric

objects defined by two tropical ideals be considered equivalent? This is due to the fact

that tropically there are many schemes structures that can be endowed to such tropical

varieties. There is a requirement to make this choice of schemes more precise. Can

the association of the varieties of tropical ideals be captured combinatorially by the

matroidal structure? The aim is to define the notion matroidal equivalence, Definition

5.3.2, to enable an attempt in understanding when the geometric objects should be

considered equivalent.
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5.1.1 Matroids

This section will introduce matroids which combinatorially capture the notion of linear

dependence. Matroids will be key when studying tropical ideals in the following sections,

as they are defined as ideals which extra matroidal structure. They were first introduced

by Whitney in [Whi92]. Matroids can be thought of as analogous to linear subspaces.

They can arise in several different ways, including from matrices and graphs. There is

a large number of equivalent methods to defining them. For a comprehensive overview

of matroid theory see [Oxl03], [Oxl06] and [W`95].

Definition 5.1.1. A matroid M is a pair p𝐸,Iq consisting of the finite ground set

𝐸 and a collection I of subsets of 𝐸 , called independent sets, satisfying the following

axioms:

(I1) H P I.

(I2) If 𝑋 P I and 𝑌 Ď 𝑋, then 𝑌 P I.

(I3) If 𝑋,𝑌 P I, with |𝑋| “ |𝑌 | ` 1, then there exists an element 𝑒 of 𝑋z𝑌 such that

𝑌 Y t𝑒u P I.

A subset 𝑍 is called dependent if 𝑍 R I

The next set of definitions give alternative, but equivalent, methods of defining

matroids in terms of circuits and bases. It will be noted how they are linked to the

notion of independence.

Definition 5.1.2. A matroid M is a pair p𝐸, Cq consisting of the finite ground set 𝐸

and a collection C of subsets of 𝐸 , called circuits, satisfying the following axioms:

(C1) H R C.

(C2) No members of C are proper subsets of each other. This explicitly means, given

𝑋,𝑌 P C, then if 𝑋 Ď 𝑌 , then 𝑋 “ 𝑌 .

(C3) (Circuit Elimination) Given distinct members 𝑋1 and 𝑋2 of C. Then if 𝑒 P 𝑋1X𝑋2,

there is a member 𝑋3 of C such that 𝑋3 Ď p𝑋1 Y 𝑋2qz𝑒.
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With regard to dependence, the circuits of a matroid are the minimal dependent

sets.

Definition 5.1.3. A matroid M is a pair p𝐸,Bq consisting of the finite ground set 𝐸

and a collection B of subsets of 𝐸 , called bases, satisfying the following axioms:

(B1) B is non empty.

(B2) (Basis Exchange) Given 𝐵1, 𝐵2 P B, and 𝑒 P 𝐵1z𝐵2. Then there is an element

𝑔 P 𝐵2z𝐵1 such that, p𝐵1zt𝑒uq Y t𝑔u P B.

With regard to dependence, the bases are the maximal independent sets. The size

of all basis elements is equal and this defines the rank of a matroid. It has been stated

that the set of circuits are the minimal dependent sets of the matroid, but the set of

all dependent sets has not be described yet. In classical matroid theory a cycle is the

union of circuits. This notion will be generalised when discussing valuated matroids.

Example 5.1.4. The uniform matroid, denoted by 𝑈𝑛,𝑟 , is defined over a ground

set 𝐸 , such that |𝐸 | “ 𝑛. The independent subsets of 𝐸 are defined as subsets of

𝐸 with at most 𝑟 elements, I “ t𝐼 Ď 𝐸 : |𝐼| ď 𝑟u. The bases are the subsets

with cardinality 𝑟, or B “ t𝐵 Ď 𝐸 : |𝐵| “ 𝑟u. The circuits are hence defined as

C “ t𝐶 Ď 𝐸 : 𝐶z𝑥 P I , @𝑥 P 𝐶u.

One explicit example of an uniform matroid is 𝑈4,2, with the following defining sets.

B “

!

t1, 2u, t1, 3u, t1, 4u, t2, 3u, t2, 4u, t3, 4u

)

,

C “

!

t1, 2, 3u, t1, 2, 4u, t1, 3, 4u, t2, 3, 4u

)

.

Example 5.1.5. As previously mentioned matroids can arise in many different manners.

Take the graph 𝐺 shown in Figure 5.1, a matroid can be constructed from 𝐺. The

ground set is 𝐸 “ t1, 2, ... , 9u, which is the edge set of 𝐺. The independent sets I of

the graphic matroid 𝐺, are the collections of edges which do not contain a cycle of 𝐺.

A cycle is any simple closed path of 𝐺. Here is the list of the cycles, rather than the

independent sets. The cycles are:

t2u, t1, 3, 4u.t1, 3, 5, 6u, t4, 5, 6u, t8, 9u, t6, 7, 8u, t6, 7, 9u,
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t1, 3, 5, 8, 7u, t1, 3, 5, 9, 7u, t4, 5, 8, 7u, t4, 5, 9, 7u.

There is an explicit method to construct a matrix from a graphic matroid. The columns

𝑎

𝑏

𝑑 𝑐

𝑒

A B

C D

E

3

1 4 5

6

7
9

8

2

Figure 5.1: The graphic matroid G.

of the matrix are indexed by the ground set 𝐸 , which is the edge set of the graphic

matroid. Then the rows are indexed by the vertices of the graphic matroid. The entries

of the columns are either 1 or 0. For every column, place a 1 in every row where this

edge corresponding to the column meets the vertex corresponding to the row. Place a 0

if the edge does not meet that vertex. If the edge is a loop, then place a zero in every

row for that column. The matrix that represents the graphic matroid 𝐺 in Figure 5.1

is stated now.
1 2 3 4 5 6 7 8 9

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

1 0 1 0 0 0 0 0 0 𝑎

0 0 1 1 1 0 0 0 0 𝑏

0 0 0 0 1 1 0 1 1 𝑐

1 0 0 1 0 1 1 0 0 𝑑

0 0 0 0 0 0 1 1 1 𝑒

To reverse this construction, the independent sets correspond to the sets of columns of

the matrix which are linearly independent.
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Definition 5.1.6. A spanning set of a matroid is a set which contains a basis set of

the matroid.

5.1.2 Valuated Matroids

Matroids can be endowed with extra structure, examples include the class of oriented

matroids and the class of valuated matroids. Basis elements of oriented matroids are

assigned signs. A detailed description of oriented matroids can be found in [BLV78]

and [BBLV`99]. For valuated matroids, each element is assigned a value, determined

by a valuation function. A more thorough introduction of valuated matroids can be in

found in [DW92]. The class of valuated matroids is used to define tropical ideals.

Definition 5.1.7. [MR18, Section 2.1] Given a finite ground set 𝐸 , then
`

𝐸
𝑟

˘

, where

𝑟 P N, denotes subsets of the ground set of size 𝑟. A valuated matroid on the ground

set 𝐸 , with values in R, is a pair M “ p𝐸, 𝜌q, where 𝜌 :
`

𝐸
𝑟

˘

Ñ R satisfies the following:

(V1) There exists 𝐵 P
`

𝐸
𝑟

˘

, such that 𝜌p𝐵q ‰ 8.

(V2) (Valuated Basis Exchange Axiom) For every 𝑋,𝑌 P
`

𝐸
𝑟

˘

, and every 𝑥 P 𝑋z𝑌 there

is a 𝑦 P 𝑌z𝑋, such that

𝜌p𝑋q ¨ 𝜌p𝑌q ě 𝜌pp𝑋 Y 𝑦qzt𝑥uq ¨ 𝜌pp𝑌 Y 𝑥qzt𝑦uq

Then, 𝜌 is called the basis valuation function.

Valuated matroids, like standard matroids, have several cryptomorphic axiomatic

descriptions. To align with the literature on tropical ideals, such as [MR18], the

definitions of the set of circuits and the set of vectors for valuated matroids are now

presented. The definitions are based on the descriptions appearing in [MR18, Section

2.1] and formerly in Theorem 3.1 and Theorem 3.4 in [MT01].

Definition 5.1.8. [MT01, Theorem 3.1] A collection of elements is the circuits of a

valuated matroid, denoted CpMq Ď R
𝐸 , if the following properties hold:

(VC0) p8, . . . ,8q R CpMq.
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(VC1) If 𝑋 P CpMq and 𝜆 P R then, 𝜆 d 𝑋 P CpMq.

(VC2) If 𝑋,𝑌 P CpMq with 𝑋 ‰ 𝑌 , then 𝑋 Ę 𝑌 .

(VC3) (Circuit Elimination) For any 𝑋,𝑌 P CpMq and 𝑒, 𝑒1 P 𝐸 such that 𝑋𝑒 “ 𝑌𝑒 ‰ 8

and 𝑋𝑒1 ă 𝑌𝑒1 , then there exists 𝑍 P CpMq satisfying 𝑍𝑒 “ 8, 𝑍𝑒1 “ 𝑋𝑒1 and

𝑍 ě 𝑋 ‘ 𝑌 .

This phrasing of the circuit elimination axiom has been mirror from [MR18], where

𝑋 ě 𝑋 1 if 𝑋𝑒 ě 𝑋 1
𝑒 and p𝑋 ‘ 𝑌q𝑒 “ 𝑋𝑒 ‘ 𝑌𝑒.

The set of circuits in the above definition generates a subsemimodule of R𝐸 , for

which elements are called vectors of the valuated matroid. The set is denoted VpMq

and defined as

VpMq :“ t
à

𝐶PCpMq

𝜆𝐶 d 𝐶 : 𝜆𝐶 P Ru.

In an analogous way to circuits, the set of vectors can be intrinsically defined by

axioms described in the following definition.

Definition 5.1.9. [MT01, Theorem 3.4] A subset V Ď R
𝐸 is the set of vectors of a

valuated matroid if and only if it is a subsemimodule of R𝐸 that satisfies the following

elimination property:

(Vector Elimination) For any 𝑋,𝑌 P V and any 𝑒 P 𝐸 such that 𝑋𝑒 “ 𝑌𝑒 ‰ 8,

there exists 𝑍 P V with 𝑍𝑒 “ 8, 𝑍 ě 𝑋 ‘ 𝑌 , and 𝑍𝑒1 “ 𝑋𝑒1 ‘ 𝑌𝑒1 for all 𝑒1 P 𝐸

such that 𝑋𝑒1 ‰ 𝑌𝑒1 .

Valuated matroids, as above, are just one way of characterising tropical linear spaces.

An alternative method is presented in [Ham15], where they are connected to tropical

convexity theory.

5.2 Tropical Ideals

Denote Mon𝑑 as the monomials of degree equal to 𝑑 in the variables 𝑋0, . . . , 𝑋𝑛. When

studying matroidal equivalence these sets of monomials may need clarification regarding
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the variables. If this is the case Mon𝑑t𝑋0, . . . , 𝑋𝑛u will be used to clarify the variables.

There is an identification of RMon𝑑 with Rr𝑋0, . . . , 𝑋𝑛s𝑑. This gives that elements of a

valuated matroid on the ground set Mon𝑑 can be viwed as homogenous polynomials

with degree equal to 𝑑 in Rr𝑋0, . . . , 𝑋𝑛s. The definition of a tropical ideal, [MR18,

Definition 2.1], is now presented.

Definition 5.2.1. (Tropical Ideals.) A homogeneous tropical ideal is a homogeneous

ideal 𝐼 Ď Rr𝑋0, . . . , 𝑋𝑛s such that for each 𝑑 ě 0, 𝐼𝑑 is the collection of vectors of a

valuated matroid M𝑑p𝐼q on the ground set Mon𝑑.

In [MR18, Definition 1.1] the definition of a tropical ideal is extended to non-

homogeneous ideals over R. The aim is to be able to understand matroidal equivalence

on both homogeneous and non-homogeneous tropical ideals so we recall the next

definition.

Definition 5.2.2. Let 𝐼 Ď Rr𝑋1, . . . , 𝑋𝑛s be a non-homogeneous ideal. 𝐼 is a tropical

ideal if for each 𝑑 ě 0, the set 𝐼ď𝑑 of polynomials in 𝐼 with degree at most 𝑑 is the set

of vectors of a valuated matroid.

More explicitly, 𝐼 satisfies the following monomial elimination axiom: for any

𝑓 , 𝑔 P 𝐼ď𝑑 and any monomial 𝑋u P Rr𝑋1, . . . , 𝑋𝑛sď𝑑 where the coefficient of 𝑓 and 𝑔 are

equal and not 8 at 𝑋u, then there exists a polynomial ℎ P 𝐼ď𝑑 such that the coefficient

of ℎ at 𝑋u is equal to 8 and the coefficient of ℎ at all other monomials is greater than

or equal to the minimum of the corresponding coefficients in 𝑓 and 𝑔.

Homogeneous tropical ideals can be viewed as the “tower” of compatible valuated

matroids, which determine its homogeneous part at each degree. This viewpoint is

discussed in detail in [MR18] in Definition 2.5 and Proposition 2.6.

The Hilbert function of a homogeneous ideal 𝐼 Ď 𝐾r𝑋0, . . . , 𝑋𝑛s, is a function which

enumerates the dimension of the degree 𝑑 piece of 𝐾r𝑋0, . . . , 𝑋𝑛s{𝐼 and encodes several

invariants of the ideal, for a detailed description of Hilbert functions see [EH06] and
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[Har13]. This notion is extended and generalised in [MR18] to tropical ideals in a

combinatorial manner involving the underlying matroid of the ideal.

Definition 5.2.3. (Hilbert Function for Tropical ideals.) Let 𝐼 Ď Rr𝑋0, . . . , 𝑋𝑛s be a

homogeneous tropical ideal. The Hilbert function of 𝐼 is the function 𝐻𝐼 : Zě0 Ñ Zě0

defined by

𝐻𝐼p𝑑q :“ rankpM𝑑p𝐼qq

This notion can be generalised to non-homogeneous tropical ideals. This can be

done by taking the homogenisation of an ideal. Take a tropical polynomial 𝑓 “

À

uPZ𝑛 𝑐u d 𝑋u P Rr𝑋1, . . . , 𝑋𝑛s, then the homogenisation of 𝑓 is defined as

𝑓 ℎ :“
à

𝑋
𝑑´|u|

0 d 𝑐u d 𝑋u
P Rr𝑋0, . . . , 𝑋𝑛s,

where |u| “
ř𝑛
𝑖“1 𝑢𝑖 and 𝑑 “ maxp |u| : 𝑐u ‰ 8q. This leads to the homogenisation of

an ideal 𝐼 to be defined as,

𝐼ℎ :“ x 𝑓 ℎ | 𝑓 P 𝐼y Ă Rr𝑋0, . . . , 𝑋𝑛s.

It is shown in [MR20, Lemma 2.1] that if 𝐼 is a tropical ideal then so is 𝐼ℎ. In the case

that 𝐼 is a non-homogeneous tropical ideal, define its Hilbert function as that of its

homogenisation, i.e.

𝐻𝐼 “ 𝐻𝐼ℎ .

It is demonstrated in [MR18, Prop. 3.8] that the Hilbert function of a tropical ideal

is eventually polynomial, this then leads to the following definition of the Hilbert

polynomial of a homogeneous tropical ideal.

Definition 5.2.4. (Hilbert Polynomial.) Let 𝐼 be a homogeneous tropical ideal. The

Hilbert polynomial of 𝐼 is the polynomial 𝑃𝐼 that agrees with the Hilbert function 𝐻𝐼
for 𝑑 " 0.

In an analogous manner to the classical Hilbert polynomial, several invariants are

encoded in the Hilbert polynomial of a tropical ideal. The dimension of a tropical ideal
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is one example, denoted dimp𝐼q, it is the degree of the associated Hilbert polynomial.

As discussed, tropical ideals have been studied chiefly in [MR18] and [MR20], where

deep properties and results have been presented. The set of tropical ideals is strictly

contained in the set of all polynomial ideals over R. Take the ideal x𝑋 ‘ 𝑌y Ď Rr𝑋,𝑌 s

as an example on a non-tropical ideal from [MR18]. A tropical ideal is non-realisable if

it is not the tropicalisation of any classical ideal over any valued field. An example of a

non-realisable tropical is presented in [MR18, Example 2.8] and recalled in the next

section. Two more non-trivial results are that tropical ideals satisfy the Nullstullensatz,

[MR18, Theorem 5.16], and that the varieties of tropical ideals are balanced polyhedral

complexes, [MR18, Theorem 5.11] and [MR20, Theorem 1.2].

5.2.1 Examples of Tropical Ideals

The following are a selection of examples of tropical ideals from the literature which

will be used throughout this work.

Example 5.2.5. Take 𝐼 Ă 𝐾r𝑋1, . . . , 𝑋𝑛s, then under trop : 𝐾 Ñ R,

tropp𝐼q :“ xtropp 𝑓 q | 𝑓 P 𝐼y.

It is discussed in [MR18] that tropp𝐼q Ă Rr𝑋1, . . . , 𝑋𝑛s is a tropical ideal. Tropical ideals

over R of this form are called realisable over 𝐾.

Example 5.2.6. An example of a construction which gives non-realisable tropical

ideals is presented in [MR18, Ex.2.8], which builds on the result [AB07, Thm.4.1]. It is

recalled here. In [MR18] there are descriptions in terms of the basis valuation function

and geometrically. Here the geometric interpretation will be discussed as this will be

used more prominently in the examples in Section 5.3.3.

Over Rr𝑋0, . . . , 𝑋𝑛s, where 𝑛 ě 2, 𝐼NR will denote the non-realisable, homogeneous

tropical ideal defined in the following way. View Mon𝑑 as the lattice points of a simplex

of side length 𝑑` 1. An independent set I is a collection of 𝑑` 1 or more lattice points,
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2

Figure 5.2: Mon2 of 𝑋0, 𝑋1, 𝑋2 as lattice points and a basis set t𝑋0𝑋2, 𝑋0𝑋1, 𝑋
2
1 u.

such that for any 𝑘 ď 𝑑, I contains at most 𝑑` 1 ´ 𝑘 lattice points of any subsimplex of

size 𝑑` 1 ´ 𝑘 . This condition will be referred at as the density bound from here onward.

See Figure 5.2 for a visual representation. The basis valuation in [MR18, Ex.2.8] gives

a set B as a basis of 𝐼NR, if |B| “ 𝑑 ` 1 and it satisfies the density bound.

The following example will use the notation r 𝑓 s where 𝑓 is a homogeneous tropical

polynomial. This is separate to the co-set notation used when discussing quotient

hyperfields. In particular, r 𝑓 s will refer to the Macaulay tropical ideal constructed in

Example 5.2.7, whereas r𝑥s “ 𝑥 ¨𝑈 refers to a co-set in the quotient construction of

hyperfields and r𝑝s˚ is the push-forward of a polynomial under the quotient map.

Example 5.2.7. In section 4 of [FGG ] there is a description of the method used to

construct tropically principal ideals (see [FGG , Def.3.1.1]), called the Macaulay tropical

ideals. The definition and construction is recalled here.

Take a non-zero homogeneous polynomial 𝑓 P Rr𝑋0, . . . , 𝑋𝑛s, for 𝑑 ě degp 𝑓 q construct

its Macaulay matrix 𝐷𝑑p 𝑓 q in the following way. The rows of 𝐷𝑑p 𝑓 q are indexed by

monomials in the variables t𝑋0, . . . , 𝑋𝑛u with degree equal to 𝑑 ´ degp 𝑓 q. The columns

are indexed by monomials in the variables t𝑋0, . . . , 𝑋𝑛u with degree equal to 𝑑. The

entry p𝑋,𝑌q of 𝐷𝑑p 𝑓 q is the coefficient of 𝑌 in the polynomial 𝑋 𝑓 . Unless otherwise

stated, the monomials are ordered with the lexicographic order in both the rows and

columns. Let r 𝑓 s𝑑 denote the stable sums of the rows of 𝐷𝑑p 𝑓 q, and for 𝑑 ă degp 𝑓 q let
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r 𝑓 s𝑑 :“ 0. Then denote,

r 𝑓 s :“
à

𝑑ě0
r 𝑓 s𝑑 Ă Rr𝑋0, . . . , 𝑋𝑛s.

r 𝑓 s is a graded R-submodule and referred to as the Macaulay tropical ideal. A more

detail description of this construction, along with a formal proof as to why r 𝑓 s is a

tropical ideal can be found in [FGG , Section 4], explicitly Lemma 4.1.2 and Definition

4.1.3.

Example 5.2.8. A matroid M is a paving matroid if all the circuits are of size rankpMq

or rankpMq ` 1. In [AR22] the authors study zero dimensional tropical ideals, whose

underlying matroid is a paving matroid.

5.3 Matroidal Equivalence

In this section the notion of matroidal equivalence is introduced. It will be defined for

(non)homogeneous ideals over both a field 𝐾 and the tropical semiring R separately.

When defined over R it is a property which relies of the underlying combinatorial

structure of tropical ideals. The aim is to use this property to understand when the

geometric objects defined by tropical ideals should be consider as equivalent. A number

of examples of ideals that are matroidally equivalent are presented both over a field

and the tropical semiring.

5.3.1 Matroidal Equivalence Over Fields

Definition 5.3.1. (Matroidal Equivalence) Let 𝐽 Ď 𝐾r𝑋0, . . . , 𝑋𝑚s and 𝐼 Ď 𝐾r𝑋0, . . . , 𝑋𝑛s,

be homogeneous ideals, with 𝑚 ă 𝑛. Then, 𝐽 is called matroidally equivalent to 𝐼 if the

following three conditions hold:

(ME1) The inclusion map, 𝐾r𝑋0, . . . , 𝑋𝑚s ãÑ 𝐾r𝑋0, . . . , 𝑋𝑛s, sends 𝐽 into 𝐼.

(ME2) The set 𝑆𝑑 “ tmonomials of degree 𝑑, not divisble by 𝑋𝑚`1, . . . , 𝑋𝑛u is a spanning

set over M𝑑p𝐼q for all 𝑑 ą 0.
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(ME3) The Hilbert polynomials of 𝐽 and 𝐼 are equal, i.e.

𝑃𝐽 “ 𝑃𝐼 .

To be as complete as possible the appropriate adjustments are made for non-homogeneous

ideals below.

Definition 5.3.2. (Affine Matroidal Equivalence) Let 𝐽 Ď 𝐾r𝑋1, . . . , 𝑋𝑚s and 𝐼 Ď

𝐾r𝑋1, . . . , 𝑋𝑛s be non-homogenous ideals. Then, 𝐽 is called matroidally equivalent to 𝐼

if the following three conditions holds:

(ME1) The inclusion map, 𝐾r𝑋0, . . . , 𝑋𝑚s ãÑ 𝐾r𝑋0, . . . , 𝑋𝑛s, sends 𝐽 into 𝐼.

(ME2) The set 𝑆ď𝑑 “ tmonomials of degree ď 𝑑, not divisble by 𝑋𝑚`1, . . . , 𝑋𝑛u is a

spanning set over Mď𝑑p𝐼q for all 𝑑 ą 0.

(ME3)

dim
´

𝐾r𝑋1, . . . , 𝑋𝑚sď𝑑{𝐽ď𝑑

¯

“ dim
´

𝐾r𝑋1, . . . , 𝑋𝑛sď𝑑{𝐼ď𝑑

¯

.

5.3.2 Matroidal Equivalence Over The Tropical Semiring

The definitions in Definition 5.3.1 and Definition 5.3.2 are stated here in a style suitable

for tropical ideals.

Definition 5.3.3. (Matroidal Equivalence) Let 𝐽 Ď Rr𝑋0, . . . , 𝑋𝑚s and 𝐼 Ď Rr𝑋0, . . . , 𝑋𝑛s,

be homogeneous tropical ideals, with 𝑚 ă 𝑛. Then, 𝐽 is called matroidally equivalent to

𝐼 if the following three conditions hold:

(ME1) The circuits of 𝐽 are included in the vectors of 𝐼 for each degree 𝑑 ą 0,

CpM𝑑p𝐽qq Ď VpM𝑑p𝐼qq.

(ME2) The set 𝑆𝑑 “ tmonomials of degree 𝑑, not divisble by 𝑋𝑚`1, . . . , 𝑋𝑛u is a spanning

set over M𝑑p𝐼q for all 𝑑 ą 0.

(ME3) The Hilbert polynomials of 𝐽 and 𝐼 are equal, i.e.

𝑃𝐽 “ 𝑃𝐼 .
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Equivalently to working over 𝐾, the definition of matroidal equivalence is appropriately

adjusted for non-homogeneous tropical ideals over R below.

Definition 5.3.4. (Affine Matroidal Equivalence) Let 𝐽 Ď Rr𝑋1, . . . , 𝑋𝑚s and 𝐼 Ď

Rr𝑋1, . . . , 𝑋𝑛s be non-homogenous tropical ideals. Then 𝐽 is called matroidally equivalent

to 𝐼 if the following three conditions holds:

(ME1) The circuits of 𝐽 are included in the vectors of 𝐼 for each degree 𝑑 ą 0,

CpMď𝑑p𝐽qq Ď VpMď𝑑p𝐼qq.

(ME2) The set 𝑆ď𝑑 “ tmonomials of degree ď 𝑑, not divisble by 𝑋𝑚`1, . . . , 𝑋𝑛u is a

spanning set over Mď𝑑p𝐼q for all 𝑑 ą 0.

(ME3) rankpMp𝐽qď𝑑q “ rankpMp𝐼qď𝑑q.

Note that, it is most logical to discuss matroidal equivalence between either two

homogeneous or two non-homogeneous tropical ideals, and not between a homogeneous

and non-homogeneous directly. The matroidal equivalence conditions are denoted by

the same notation for both homogeneous and non-homogeneous in Definition 5.3.1 and

Definition 5.3.2 respectively. As the context will be clear when discussing either the

projective or affine case the notation is unaltered.

Remark 5.3.5. The property of matroidal equivalence is slightly misleading in the nature

of its name. The property is not an equivalence relation as the property is in general

not symmetric.

From this point onward when discussing two ideals that are connected directly by the

matroidal equivalance definition this will be called an elementary matroidal equivalence.

Whereas in more generality, two tropical ideals are said to be matroidally equivalent if

there exists a chain of matroidal equivalences connecting them. This is a broader notion

of matroidal equivalence, enabling ideals to be related in more extensive manner. For

instance, if 𝐽1, 𝐽2 Ă Rr𝑋0, . . . , 𝑋𝑚s both satisfy elementary matroidal equivalences with

𝐼 Ă Rr𝑋0, . . . , 𝑋𝑛s, then 𝐽1 is matroidally equivalent to 𝐽2 by the chain 𝐽1 d 𝐼 c 𝐽2.
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5.3.3 Examples of Matroidal Equivalence

There will now be a description of examples of elementary matroidal equivalence between

tropical ideals. The first is an example is over a field 𝐾 for homogeneous ideals so

utilises Definition 5.3.1, then the remaining examples are set over R, hence will use

corresponding defintions for tropical ideals.

Example 5.3.6. Take 𝐽 “ x0y Ď 𝐾r𝑋0, 𝑋1s and 𝐼 “ x𝑋0 ` 𝑋1 ` 𝑋2y Ď 𝐾r𝑋0, 𝑋1, 𝑋2s,

then 𝐽 is matroidally equivalent to 𝐼.

(ME1) CpM𝑑p𝐽qq is the empty set so trivially includes into VpM𝑑p𝐼qq.

(ME2) Set 𝑆𝑑 “ tmonomials of degree 𝑑, not divisble by 𝑋2u. Firstly, |𝑆𝑑| “ 𝑑 ` 1 which

is the rank of Mp𝐼q as 𝑃𝐼 “ 𝑚 ` 1, (see third part for explicit details). So if 𝑆𝑑 is

a spanning set, it is precisely a basis element. Assume that 𝑆𝑑 is an element of 𝐼

and hence a dependent set in M𝑑p𝐼q. As 𝐾 is a field, for 𝑆𝑑 to be an element of 𝐼

is has to be a multiple of 𝑋0 ` 𝑋1 ` 𝑋2, or 𝑆𝑑 “ supptp𝑋0 ` 𝑋1 ` 𝑋2q ¨ 𝑞u. For this

to hold, the polynomial 𝑞 has to have some term 𝑋𝑑´1
0 for 𝑋𝑑0 P 𝑆𝑑. This gives an

element 𝑋𝑑´1
0 𝑋2 P p𝑋0 `𝑋1 `𝑋2q ¨𝑞, although 𝑋𝑑´1

0 𝑋2 R 𝑆𝑑. To rectify this 𝑞 must

have another term which results in a cancellation. This can only happen when

𝑋𝑑´2
0 𝑋2 P suppp𝑞q. This gives 𝑋𝑑´2

0 𝑋2 P p𝑋0 `𝑋1 `𝑋2q¨𝑞 , but again 𝑋𝑑´2
0 𝑋2 R 𝑆𝑑.

This logic can be iterated to give a conclusion that 𝑋𝑑2 P 𝑆𝑑. This is clearly a

contradiction by the definition of 𝑆𝑑. Hence, 𝑆𝑑 ‰ supptp𝑋0 ` 𝑋1 ` 𝑋2q ¨ 𝑞u, for

any 𝑞. Therefore, it is an independent set of size equal to the rank of the matroid

of 𝐼, which implies it is a basis set and furthermore a spanning set.

(ME3) The Hilbert function of 𝐽 is;

𝐻𝐽p𝑑q “ dim𝐾

´

𝐾r𝑋0, 𝑋1s{x0y

¯

𝑑
,

“ dim𝐾p𝐾r𝑋0, 𝑋1sq,

“ dim𝐾pspant𝑋𝑑0 , 𝑋
𝑑´1
0 𝑋1, . . . , 𝑋0𝑋

𝑑´1
1 , 𝑋𝑑1 uq,

“ 𝑑 ` 1.



124 CHAPTER 5. EQUIVALENCE OF TROPICAL IDEALS

The Hilbert function of 𝐼 can be calculated in a similar way;

𝐻𝐼p𝑑q “ dim𝐾

´

𝐾r𝑋0, 𝑋1, 𝑋2s{x𝑋0 ` 𝑋1 ` 𝑋2y

¯

𝑑
,

“ dim𝐾p𝐾r𝑋0, 𝑋1, 𝑋2s𝑑q ´ dim𝐾p𝐾r𝑋0, 𝑋1, 𝑋2s𝑑´1q,

“

ˆ

𝑑 ` 2
2

˙

´

ˆ

𝑑 ` 1
2

˙

,

“ 𝑑 ` 1.

This demonstrates that 𝑃𝐼 “ 𝑑 ` 1 “ 𝑃𝐽 .

Together, these three parts show that all 𝐽 is matroidally equivalent to 𝐼. Matroidal

equivalence over a field 𝐾, as in this example, is given in relation to the varieties of the

ideals in Theorem 5.3.12.

Example 5.3.7. The tropical ideal 𝐽 “ x8y Ď Rr𝑋0, . . . 𝑋𝑛s is matroidally equivalent

to 𝐼 “ r 𝑓 s Ď Rr𝑋0, . . . 𝑋𝑛`1s, where 𝑓 P Rr𝑋0, . . . 𝑋𝑛`1s has full support and degp 𝑓 q “ 1.

(ME1) The set CpM𝑑p𝐽qq is empty so includes trivially into VpM𝑑p𝐼qq.

(ME2) Set 𝑆𝑑 “ tmonomials of degree 𝑑, not divisble by 𝑋𝑛`1u. The Stiefel construction

in [FGG , Section 4.1] is phrased in terms of the dual matroid, whereas thus far

the convention has been aligned with the standard matroid picture, as described

in [MR18] and [MR20]. Therefore, the aim will be to demonstrate that the

monomials divisible by 𝑋𝑛`1 are independent in the [FGG ] convention. This is

equivalent to the monomials divisible by 𝑋𝑛`1 being contained in a basis.

The bases of r 𝑓 s are the sets of columns which have non-zero permanents of

the Macaulay matrix, which is invariant under column and row reordering. The

reverse-lexicographic monomial term ordering is explained in [MR20, Ex.2.4]. Re-

order both the rows and columns with the reverse-lexicographic ordering, starting

with the least most element. This gives that the right most square submatrix,

denoted 𝐴𝑋𝑛`1 , is column indexed by the monomials divisible by 𝑋𝑛`1. The diag-

onal elements of 𝐴𝑋𝑛`1 are of the form p𝑋, 𝑋 1q, where 𝑋 is a monomial of degree
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𝑑 ´ 1 and 𝑋 1 “ 𝑋𝑛`1 ¨ 𝑋. The coefficient of 𝑋 1 in 𝑋 ¨ 𝑓 is then the corresponding

coefficient of 𝑋𝑛`1 in 𝑓 . By the reordering, the entries to the right of the diagonal

entries of 𝐴𝑋𝑛`1 , on all rows are zero. As the maximum power of 𝑋𝑛`1 in 𝑋 ¨ 𝑓 for

any 𝑋 has to come from the monomial multiplied with 𝑋𝑛`1, but by construction

this is the diagonal entry. This gives the description of 𝐴𝑋𝑛`1 as a lower trian-

gular matrix, with diagonal entries as the coefficient of 𝑋𝑛`1 in 𝑓 . As 𝑓 has full

support, the coefficient of 𝑋𝑛`1 in 𝑓 in non-zero. This gives that the permanent

of 𝐴𝑋𝑛`1 is the product of the non-zero diagonal elements and hence, non-zero.

Therefore, the monomials of degree equal to 𝑑, divisible by 𝑋𝑛`1 is a basis over r 𝑓 s.

To make this logic more explicit, take 𝑓 “ 𝑎𝑋0 ` 𝑎𝑋1 ` 𝑐𝑋2 P Rr𝑋0, 𝑋1, 𝑋2s. Then

the corresponding reordered Macaulay matrices up to degree three are,

𝐷1p 𝑓 q “

´

𝑎 𝑏 𝑐

¯

,

𝐷2p 𝑓 q “

𝑋2
0 𝑋0𝑋1 𝑋2

1 𝑋0𝑋2 𝑋1𝑋2 𝑋2
2

¨

˚

˚

˝

˛

‹

‹

‚

𝑋0 𝑎 𝑏 0 𝑐 0 0

𝑋1 0 𝑎 𝑏 0 𝑐 0

𝑋2 0 0 0 𝑎 𝑏 𝑐

𝐷3p 𝑓 q “

𝑋3
0 𝑋2

0𝑋1 𝑋0𝑋
2
1 𝑋3

1 𝑋2
0𝑋2 𝑋0𝑋1𝑋2 𝑋2

1𝑋2 𝑋0𝑋
2
2 𝑋1𝑋

2
2 𝑋3

2
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

𝑋2
0 𝑎 𝑏 0 0 c 0 0 0 0 0

𝑋0𝑋1 0 𝑎 𝑏 0 0 c 0 0 0 0

𝑋2
1 0 0 𝑎 𝑏 0 0 c 0 0 0

𝑋0𝑋2 0 0 0 0 𝑎 𝑏 0 c 0 0

𝑋1𝑋2 0 0 0 0 0 𝑎 𝑏 0 c 0

𝑋2
2 0 0 0 0 0 0 0 𝑎 𝑏 c

(ME3) The Hilbert function of 𝐽 is,

𝐻𝐽p𝑑q “

ˆ

𝑛 ` 𝑑

𝑑

˙

.
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This is counting the number of monomials of degree equal to 𝑑 in the variables

𝑋0, . . . , 𝑋𝑛. The Hilbert function of 𝐼, as described in [FGG , Prop.4.2.2], is,

𝐻𝐼p𝑑q “

ˆ

𝑛 ` 1 ` 𝑑

𝑑

˙

´

ˆ

𝑛 ` 1 ` 𝑑 ´ degp 𝑓 q

𝑑 ´ degp 𝑓 q

˙

,

“

ˆ

𝑛 ` 1 ` 𝑑

𝑑

˙

´

ˆ

𝑛 ` 𝑑

𝑑 ´ 1

˙

.

The first term is counting the number of monomials with degree equal to 𝑑 in the

variables 𝑋0, . . . , 𝑋𝑛`1. The second term is counting the number of monomials

of degree equal to 𝑑 ´ 1 in the variables 𝑋0, . . . , 𝑋𝑛`1, which is equal to the

number of monomials with degree equal to 𝑑 and divisible by 𝑋𝑛`1 in the variables

𝑋0, . . . , 𝑋𝑛`1. Taking the second term from the first results in the counting of

the number of monomials with degree equal to 𝑑, not divisible by 𝑋𝑛`1 in the

variables 𝑋0, . . . , 𝑋𝑛`1. In other words the Hilbert function of 𝐼 counts the number

of monomials with degree equal to 𝑑 in the variables 𝑋0, . . . , 𝑋𝑛. Hence, both

𝐻𝐽p𝑑q and 𝐻𝐼p𝑑q are counting monomials of degree equal to 𝑑 in the variables

𝑋0, . . . , 𝑋𝑛, so are equal. Yielding, 𝑃𝐽 “ 𝑃𝐼 .

Example 5.3.8. The tropical ideal 𝐽 “ x8y Ď Rr𝑋0, 𝑋1s is matroidally equivalent to

𝐼NR Ď Rr𝑋0, . . . , 𝑋𝑛s for 𝑛 ě 2.

(ME1) The set CpM𝑑p𝐽qq is empty so includes trivially into VpM𝑑p𝐼qq.

(ME2) It can be seen that,

𝑆𝑑 “ tmonomials of degree 𝑑, not divisble by 𝑋2, . . . 𝑋𝑛u,

“ tmonomials of degree 𝑑, in the variables 𝑋0, 𝑋1u.

In Mon𝑑, the lattice points corresponding to 𝑆𝑑 will form a one dimensional edge

of the whole simplex of lattice points. By the Hilbert polynomial calculation,

|𝑆𝑑| “ 𝑑 ` 1, so if 𝑆𝑑 is a spanning set it will be a basis. For every 𝑘 ď 𝑑,

a subsimplex of Mon𝑑 of length 𝑑 ´ 𝑘 ` 1, will at most have 𝑆𝑑 as a full one

dimensional edge. Hence, the number of elements of 𝑆𝑑 in the subsimplex is at

most 𝑑 ´ 𝑘 ` 1. Therefore, 𝑆𝑑 is a basis and thus spanning set over the matroid

of 𝐼NR. See Figure 5.3 for visual details.
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Figure 5.3: The lattices Mon1,Mon2 and Mon3 of t𝑋0, 𝑋1, 𝑋2u, with the shaded sets
𝑆1 “ t𝑋0, 𝑋1u, 𝑆2 “ t𝑋2

0 , 𝑋0𝑋1u and 𝑆3 “ t𝑋3
0 , 𝑋

2
0𝑋1, 𝑋0𝑋

2
1 , 𝑋

3
1 u respectively and a

sample of blue subsimplices.

(ME3) The NR construction from [MR18, Ex.2.8] and [AB07] gives a towering set of

matroids of rank 𝑑 ` 1 over Mon𝑑. Hence, 𝑃𝐼NR “ 𝑑 ` 1. Using the calculation of

𝐻𝐽p𝑑q, previously shown in Example 5.3.7, with 𝑛 “ 1 as 𝐽 Ď Rr𝑋0, 𝑋1s,

𝐻𝐽p𝑑q “

ˆ

𝑛 ` 𝑑

𝑑

˙

“

ˆ

1 ` 𝑑

𝑑

˙

“ 𝑑 ` 1.

This gives, 𝑃𝐼NR “ 𝑑 ` 1 “ 𝑃𝐽 .

Example 5.3.9. Furthermore, 𝐽NR Ď Rr𝑋0, . . . , 𝑋𝑛s is matroidally equivalent to 𝐼NR Ď

Rr𝑋0, . . . , 𝑋𝑛`𝑟s, where 𝑟 ą 0.

(ME1) A circuit of 𝐽NR is a set of lattice points in Mon𝑑t𝑋0, . . . , 𝑋𝑛u,which exceeds the

density bound, where the removal of a singular lattice point would result in the

density bound holding globally. Embedding this set of lattice points corresponding

to the circuit, into the simplex of lattice points of Mon𝑑t𝑋0, . . . , 𝑋𝑛`𝑟u, will still

cause the density bound to be exceeded. With the condition that if the correct

point is removed, the density bound is satisfied. This logic demonstrates that

CpM𝑑p𝐽NRqq Ď CpM𝑑p𝐼NRqq, hence CpM𝑑p𝐽NRqq Ď VpM𝑑p𝐼NRqq.

(ME2) It can be seen that,

𝑆𝑑 “ tmonomials of degree 𝑑, not divisble by 𝑋𝑛`1, . . . , 𝑋𝑛`𝑟u,

Ě tmonomials of degree 𝑑, not divisble by 𝑋2, . . . 𝑋𝑛`𝑟u,

“ tmonomials of degree 𝑑, in the variables 𝑋0, 𝑋1u.

Then, by Example 5.3.8, this 𝑆𝑑 contains a basis, and hence spanning set.
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(ME3) The construction, in both cases, gives towering matroids of rank 𝑑 ` 1, as stated

in [MR18, Ex.2.8]. Thus, 𝑃𝐽NR “ 𝑑 ` 1 “ 𝑃𝐼NR .

5.3.4 Properties of Matroidal Equivalence

This section will focus on the properties of matroidal equivalence. In particular, it

will be shown that matroidal equivalence is preserved under tropicalisation and that

there is a close relationship between the varieties of matroidally equivalent ideals over 𝐾.

When discussing the axioms of the matroidal equivalence definition, this implicitly has

an underlying inclusion map of the variables at its heart. For instance over 𝐾

𝑖 : 𝐾r𝑋1, . . . , 𝑋𝑚s ãÑ 𝐾r𝑋1, . . . , 𝑋𝑛s,

where 𝑛 ą 𝑚. In particular, this is the only natural way to interpret the axiom (ME1).

The map here is a monomial homomorphism of ambient algebras and corresponds to a

coordinate projection of the variety over 𝐾𝑛 onto the variety over 𝐾𝑚. This connection

will be made clearer in the next results.

Proposition 5.3.10. Let 𝐿 Ď 𝐾𝐸 be a linear space, where 𝐸 is the ground set of the

associated matroid of 𝐿. For 𝑊 Ă 𝐸, then

𝐾𝑊 Ñ 𝐾𝐸 Ñ 𝐾𝐸{𝐿 (5.3.11)

is surjective if and only if 𝑊 is a spanning set of the matroid of 𝐿

Proof. In the matroid convention of Maclagan and Rincon in both [MR18] and [MR20],

a set 𝑊 Ă 𝐸 is independent in the matroid of 𝐿 if and only if (5.3.11) is injective. In

other words, the basis vectors corresponding to 𝑊 remain linearly independent after

quotienting by 𝐿. As a basis is a maximal independent set, this gives that a basis

𝑊 Ă 𝐸 yields (5.3.11) is an isomorphism. By definition, a spanning set contains a basis,

which is equivalent to (5.3.11) being surjective. □

Theorem 5.3.12. The ideals 𝐽 Ď 𝐾r𝑋1, . . . , 𝑋𝑚s and 𝐼 Ď 𝐾r𝑋1, . . . , 𝑋𝑛s, with 𝑚 ă 𝑛,

are matroidally equivalent if and only if 𝑉p𝐼q maps isomorphically onto 𝑉p𝐽q.
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Proof. Considering the inclusion 𝑖 : 𝐾r𝑋1, . . . , 𝑋𝑚s ãÑ 𝐾r𝑋1, . . . , 𝑋𝑛s, where 𝑚 ă 𝑛. The

condition (ME1) corresponds to the inclusion map 𝑖 mapping 𝐽 into 𝐼. This is equivalent

to the composition

𝐾r𝑋1, . . . , 𝑋𝑚s ãÑ 𝐾r𝑋1, . . . , 𝑋𝑛s Ñ 𝐾r𝑋1, . . . , 𝑋𝑛s{𝐼, (5.3.13)

descending to the quotient by 𝐽. Hence, there exists a map

𝐾r𝑋1, . . . , 𝑋𝑚s{𝐽 Ñ 𝐾r𝑋1, . . . , 𝑋𝑛s{𝐼 . (5.3.14)

For (5.3.14) to be an isomorphism, as required, both sides must have the same dimension.

This is precisely capture by (ME3) which requires the Hilbert polynomials 𝑃𝐽 and 𝑃𝐼

to be equal.

As the dimensions are equal, (5.3.14) is an isomorphism if and only if it is surjective,

which is equivalent to (5.3.13) being surjective. By Proposition 5.3.10 this is equivalent

to stating that

𝑆ď𝑑 “ tmonomials of degree at most 𝑑, not divisble by some 𝑋𝑚`1, . . . , 𝑋𝑛u,

is a spanning set in Mď𝑑p𝐼q for all 𝑑 ą 0 which is exactly (ME2).

Therefore, (5.3.14) is an isomorphism of algebras which corresponds to an isomor-

phism of varieties 𝑉p𝐼q Ñ 𝑉p𝐽q. □

As the definitions of matroidal equivalence differ for non-homogeneous and homogeneous

ideals the next result is stated to thoroughly adjust for those differences.

Theorem 5.3.15. Let 𝐽 Ď 𝐾r𝑋0, . . . , 𝑋𝑚s and 𝐼 Ď 𝐾r𝑋0, . . . , 𝑋𝑛s be homogeneous

ideals, with 𝑚 ă 𝑛. The morphism of ambient space polynomial algebras induces an

isomorphism on the quotients,

𝐾r𝑋0, . . . , 𝑋𝑚s{𝐽, and 𝐾r𝑋0, . . . , 𝑋𝑛s{𝐼,

if and only if 𝐽 is matroidally equivalent to 𝐼 .

Proof. This proof will follow a similar pattern to the proof of Theorem 5.3.12 with the

appropriate adjustments for the homogeneous structure.
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Considering the inclusion 𝑖 : 𝐾r𝑋1, . . . , 𝑋𝑚s ãÑ 𝐾r𝑋1, . . . , 𝑋𝑛s, where 𝑚 ă 𝑛. The

condition (ME1) corresponds to the inclusion map 𝑖 mapping 𝐽 into 𝐼. This is equivalent

to the composition

𝐾r𝑋1, . . . , 𝑋𝑚s ãÑ 𝐾r𝑋1, . . . , 𝑋𝑛s Ñ 𝐾r𝑋1, . . . , 𝑋𝑛s{𝐼, (5.3.16)

descending to the quotient by 𝐽. Hence, there exists a map

𝐾r𝑋1, . . . , 𝑋𝑚s{𝐽 Ñ 𝐾r𝑋1, . . . , 𝑋𝑛s{𝐼 . (5.3.17)

For (5.3.17) to be an isomorphism, as required, both sides must have the same dimension.

this is precisely capture by (ME3) which requires

dim
´

𝐾r𝑋1, . . . , 𝑋𝑚sď𝑑{𝐽ď𝑑

¯

“ dim
´

𝐾r𝑋1, . . . , 𝑋𝑛sď𝑑{𝐼ď𝑑

¯

.

As the dimensions are equal, (5.3.17) is an isomorphism if and only if it is surjective,

which is equivalent to (5.3.16) being surjective. By Proposition 5.3.10 this is equivalent

to stating that

𝑆𝑑 “ tmonomials of degree 𝑑, not divisible by some 𝑋𝑚`1, . . . , 𝑋𝑛u,

is a spanning set in M𝑑p𝐼q for all 𝑑 ą 0 which is exactly (ME2).

Therefore, (5.3.17) is an isomorphism of the algebras 𝐾r𝑋0, . . . , 𝑋𝑚s{𝐽 and 𝐾r𝑋0, . . . , 𝑋𝑛s{𝐼.

□

The result in Theorem 5.3.12 is stated geometrically in terms of the varieties of

𝐽 and 𝐼, whereas the result in Theorem 5.3.15 is stated in terms of algebras and

quotients of the polynomial ring. This is due to the fact that not all morphisms of

projective schemes come from morphisms of algebras. Furthermore, not all morphisms

of algebras induce morphisms of projective schemes. For example, take the morphism

𝐾r𝑋0, 𝑋1s ãÑ 𝐾r𝑋0, 𝑋1, 𝑋2s, then 𝐾P2 Ñ 𝐾P1, is not defined at the point corresponding

to the 𝑋2-axis.

As discussed one key aspect of tropical geometry is the tropicalisation map, trop : 𝐾 Ñ R,

where 𝐾 is a valued field. Matroidal equivalence has been discussed over both 𝐾



5.3. MATROIDAL EQUIVALENCE 131

(Example 5.3.6) and R. As 𝐼 and tropp𝐼q are both tropical ideals the natural question

would be to ask whether tropicalisation preserves matroidal equivalence? The next

result will show that matroidal equivalence is preserved under trop : 𝐾 Ñ R.

Lemma 5.3.18. Let 𝐽 Ď 𝐾r𝑋0, . . . , 𝑋𝑚s and 𝐼 Ď 𝐾r𝑋0, . . . , 𝑋𝑛s with 𝑚 ă 𝑛, be ma-

troidally equivalent. Then, under a tropicalisation map trop : 𝐾 Ñ R, tropp𝐽q is

matroidally equivalent to tropp𝐼q.

Proof.

(ME1) The inclusion, over 𝐾 is equivalent to the linear space defined by 𝐽 being included

in the linear space defined by 𝐼. The tropicalisation map preserves inclusions

of linear spaces. This implies that the tropical linear space defined by tropp𝐽q

includes into the tropical linear space defined by tropp𝐼q, which is equivalent to,

CpM𝑑ptropp𝐽qqq Ď VpM𝑑ptropp𝐼qqq, for all 𝑑.

(ME2) It is shown in [GG16, Thm.7.1.6] that the the Hilbert function is preserved under

tropicalisation, thus the Hilbert polynomial is consequently preserved. Hence, as

𝑃𝐽 “ 𝑃𝐼 , it can be seen that

𝑃tropp𝐽q “ 𝑃𝐽 “ 𝑃𝐼 “ 𝑃tropp𝐼q.

(ME3) The set 𝑆𝑑 “ tmonomials of degree 𝑑, not divisble by 𝑋𝑛`1, . . . , 𝑋𝑚u is a spanning

set over M𝑑p𝐼q for all 𝑑 ą 0. Then, by definition 𝑆𝑑 contains a basis of M𝑑p𝐼q.

The tropicalisation map sends basis to basis, therefore 𝑆𝑑 contains a basis of

M𝑑ptropp𝐼qq, and thus a spanning set.

□

Lemma 5.3.19. Take 𝐽 Ď 𝐾r𝑋0, . . . , 𝑋𝑚s, 𝐼 Ď 𝐾r𝑋0, . . . , 𝑋𝑛s and 𝑊 Ď 𝐾r𝑋0, . . . , 𝑋𝑡s,

where 𝑚 ă 𝑛 ă 𝑡, such that 𝐽 is matroidally equivalent to 𝐼 and 𝐼 is matroidally

equivalent to 𝑊. Then, 𝐽 is matroidally equivalent to 𝑊.

Proof.
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(ME1) Over 𝐾 the vectors of a matroid are the linear combinations of the circuits, and

the set of vectors is closed under linear combinations. Therefore, CpM𝑑p𝐼qq Ď

VpM𝑑p𝑊qq ñ VpM𝑑p𝐼qq Ď VpM𝑑p𝑊qq. This implies, CpM𝑑p𝐽qq Ď VpM𝑑p𝐼qq Ď

VpM𝑑p𝑊qq.

(ME2) By the matroidal equivalences,

𝑃𝐽 “ 𝑃𝐼 “ 𝑃𝑊 .

(ME3) The monomials divisible by 𝑋0, . . . , 𝑋𝑚 are a spanning set in each degree for

𝐼. This implies that each variable 𝑋𝑖 P t𝑋𝑚`1, . . . , 𝑋𝑛u has a polynomial 𝑋𝑖 `

𝑝𝑖p𝑋0, . . . , 𝑋𝑚q P 𝐼, so 𝑋𝑖 „Mod𝐼
´𝑝𝑖p𝑋0, . . . , 𝑋𝑚q, noting that 𝑝𝑖p𝑋0, . . . , 𝑋𝑚q may

not be unique. Similarly, the monomials divisible by 𝑋0, . . . , 𝑋𝑛 are a spanning

set for 𝑊 in each degree. Therefore, each 𝑋𝑤 P t𝑋𝑛`1, . . . , 𝑋𝑡u has a polynomial

𝑋𝑤 ` 𝑄𝑤p𝑋0, . . . , 𝑋𝑛q P 𝑊 . As (ME1) holds between 𝐽 and 𝑊 , the relations

𝑋𝑤 `𝑄𝑤p𝑋0, . . . , 𝑋𝑛q can be converted to 𝑋𝑤 `𝑄𝑤p𝑋0, . . . , 𝑋𝑚q, by the property

that each variable 𝑋𝑖 P t𝑋𝑚`1, . . . , 𝑋𝑛u has a polynomial 𝑋𝑖 ` 𝑝𝑖p𝑋0, . . . , 𝑋𝑚q P 𝐼.

Thus, each 𝑋 P t𝑋𝑚`1, . . . , 𝑋𝑡u can be expressed in terms of just the variables

𝑋0, . . . , 𝑋𝑚. Hence, the monomials not divisible by 𝑋𝑚`1, . . . , 𝑋𝑡 are a spanning

set for 𝑊 .

□

5.4 Questions and Aims

There are many open questions remaining in relation to the property of matroidal

equivalence. For instance, how is matroidal equivalence affected after taking the

(de)homogenisation, saturation and initial form of a tropical ideal? Exploring this would

enable matroidal equivalence to be discuss between non-homogeneous and homogeneous

tropical ideals.

In a deeper sense, it would be prudent to determine the coarseness of matroidal equiva-

lence when comparing with each axiom independently over R. Say for example, does it
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encode more information that simply associating tropical ideals that have equal Hilbert

polynomials.

The motivation for the introduction of matroidal equivalence was to understand when

the geometric objects defined by tropical ideals should be associate with each other.

It has been demonstrated that for ideals over 𝐾 this relation connects to induced iso-

mophisms of varieties. It can be seen that this precise relationship does not hold in the

less restrictive setting of the tropical semi-ring. A substantial goal is to understand how

the geometric objects defined by matroidally equivalent tropical ideals are connected.

Specically, using the techniques of tropical modification, such as in [CM16], [Kal15]

and [Sha15].

More precisely, we conjecture that if there is an elementary matroidal equivalence

between two tropical ideals, then the corresponding varieties are related by a tropical

modification. This is a key question and the next aim of the project is to understand

this. Additionally, we conjecture that the class of tropical ideals whose variety is a

tropical linear space and whose Hilbert polynomial is that of a tropical linear space

are matroidally equivalent. Although, tropical ideals with varieties of different degrees

should not be connected by matroidal equivalence. This is because the Hilbert poly-

nomial encodes the degree of the corresponding variety and (ME2) specifies that the

Hilbert polynomials are equal.

A long term aspiration is to employ the definition of matroidal equivalence to present

a viable notion of a polynomial ideal defined over a hyperfield. It has been seen that

the set Hr𝑋1, . . . , 𝑋𝑛s does not have the structure of a hyperring. This is due to the

additional multivalued nature of the mutliplication. This subtle difference immediately

challenges the classical notion of a polynomial ideal. The recent establishment of a

unifying theory of matroids over hyperfields presented in [BB18] highlights a possible

solution. Can the matroid theory be leveraged, in an analogous way to the defintion of

tropical ideals, as an underlying tool to construct polynomial ideals over hyperfields?
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If this is the case, it would be important to investigate the implications of matroidal

equivalence over hyperfields.



Chapter 6

Convex Geometry over Hyperfields

In convex geometry, the properties of convex sets are explored. The standard setting

for convex geometry is R𝑛 and can be referred to as real convex geometry. Convex

sets are intuitively sets that for any two elements the straight line connecting them is

entirely contained within the set. Examples of classical convex sets are linear halfspaces.

Convex sets occur naturally in many distinct areas of mathematics, including game

theory, probability and functional analysis.

This chapter focuses on generalising the notions of real convex geometry to the multi-

valued setting of hyper-structures. This simultaneously builds on the results developed

on signed tropical convexity in [LV19]. Real convex geometry has applications to

optimisation and linear programming, this connection has been further developed in

[LV19] for the signed tropical setting. This relationship is one motivating factor to the

results presented in this chapter.

One of the areas in which there is scope for applications of convex geometry over

hyperfields is the problem of complexity of linear programming. There is a connection

between linear programming over R and tropical linear programming, and hence to

signed tropical programming. Linear programming in these senses is interconnected

to the respective convex optimisation. Therefore, by understanding how useful the

framework of hyperfields is for studying convex geometry, there is potential for impact

on the questions of complexity in linear programming over R.

135
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This chapter is part of a collaborative endeavour with B.Smith, for which there are

plans to continue the research in the future.

6.1 Background & Motivation

Orderings on hyper-structures are recalled from [AD19], [LS20] and [KLS21]. These

are then used to present several properties of ordered hyperfields. Further work on

real multirings is presented in [Mar06], although this chapter will focus on ordered

hyperfields. The main results of this chapter will be established for ordered stringent

hyperfields. The work outlined in [BS20] presents a classification of stringent hyperfields

as semi-direct products and quotient hyperfields. This is specialised here to demonstrate

a precise classification of ordered stringent hyperfields.

The concepts of orderings and polynomials are connected by presenting definitions of

open and closed halfspaces. The behaviour of open and closed halfspaces, as well as

varieties, under hyperfields homomorphims is examined. It is asserted that a version of

Kapranov’s theorem holds for linear polynomials under quotient maps. There is more

thoroughness needed when investigating open and closed halfspaces, as can be seen in

Example 6.3.14.

The definitions of conic and convex sets are introduced. These are an algebraic

generalisation of the corresponding notions in classic convex geometry. It is explored

how they interact with hyperfield homomorphisms, with particular focus on quotient

homomorphisms. Several classical results from real convex geometry are recalled and

proved for ordered fields in more generality, which are then in turn utilised to develop

Radon’s and Helly’s Theorems for ordered hyperfields that admit a order preserving

homomorphism from an ordered field. Then finally, Caratheodory’s Theorem is discussed

for ordered quotient hyperfields. The chapter is concluded with further questions that

the candidate and B.Smith would be interested in working on in the future. For instance,
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the existence of separation theorems for hyperfields.

6.2 Orderings On Hyper-structures

The main results of this section will be stated for stringent and quotient hyperfields.

They will be recalled here. (Note that in the literature on ordered hyerpfields, such as

[KLS21], the notion of quotient hyperfields is referred to as Factor hyperfields.)

Definition 6.2.1. A hypergroup is called stringent if the addition for 𝑥, 𝑦 P H, 𝑥 ‘ 𝑦

is a singleton whenever 𝑥 ‰ ´𝑦. A hyperring is called stringent if the underlying

hypergroup is stringent.

Example 6.2.2. Let pH,‘,dq be a hyperfield and take 𝑈 Ď Hˆ a subgroup of the

non-zero elements of the hyperfield. Then the quotient is defined as H{𝑈 :“ Hˆ{𝑈Yt0u,

which has a hyperfield structure due to the following operations. Elements of H{𝑈

are cosets, defined as r𝑥s :“ t𝑥 d 𝑢 : 𝑢 P 𝑈u. The multiplication is inherited from the

hyperfield H, r𝑥s d r𝑦s “ r𝑥 d 𝑦s, and the multivalued addition is defined as;

r𝑥s ‘ r𝑦s :“ tr𝑧s : r𝑧s P r𝑥s ‘ r𝑦su “ tr𝑧s : 𝑧 P 𝑥 d 𝑢 ‘ 𝑦 d 𝑣 , 𝑢, 𝑣 P 𝑈u.

The notion of an ordering over a hyperstructure is now introduced.

Definition 6.2.3. [AD19, Def.2.2] An ordering on a hyperfield pH,‘,d, 𝟘, 𝟙q is a subset

H` Ă H satisfying:

• H` ‘ H` Ď H`,

• H` d H` Ď H`,

• H “ H` \ t𝟘u \ H´ where H´ “ ´H` “ t´𝑥 | 𝑥 P H`u.

A hyperfield is called real if its set of orderings is non-empty. (See [Mar06] for further

results on real hyperfields)

There are discussions of equivalent notions of orderings for hyperfields in [LS20] and

[KLS21] and for multirings in [Mar06]. The intuition one should have is that the
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subset H` distinguishes the positive elements of H. The key example of this is the

sign hyperfield S where S` “ t𝟙u is an ordering. In fact, one can check that H` Ă H

is an ordering of H if and only if there exists a hyperfield homomorphism 𝑓 : H Ñ S

such that H` “ 𝑓´1p𝟙Sq, see [AD19] Section 2.3.1 for more details. By the properties

of a hyperring homomorphism and H` “ 𝑓´1p𝟙Sq, it can be seen that 𝟙 P H` for any

ordering. There are no self inverses over ordered hyperfields. Suppose that 𝑥 P H is self

inverse, then 0 P 𝑥 ‘ 𝑥. When taking the image under the morphism to S, this gives,

𝟘 P sgnp𝑥 ‘ 𝑥q Ď sgnp𝑥q ‘ sgnp𝑥q “ sgnp𝑥q S 𝟘.

Demonstrating a contradiction.

Example 6.2.4. Consider the signed tropical hyperfield TR, a viable ordering is

TR`
“ tp1, 𝑥q | 𝑥 P Ru .

With,

TR´
“ tp´1, 𝑥q | 𝑥 P Ru .

Example 6.2.5. For an ordered field 𝐾, one can define a strict total order compatible

with addition given by 𝑥 ă 𝑦 if and only if 𝑦 ´ 𝑥 P 𝐾`. The same does not precisely

hold for hyperfields. Given an ordering H`, define the associated relation ăH` by

𝑥 ăH` 𝑦 ô 𝑦 ‘ ´𝑥 Ď H` .

This is a strict partial order on H. It also has a corresponding non-strict partial order

ď defined by

𝑥 ďH` 𝑦 ô 𝑥 “ 𝑦 or 𝑥 ăH` 𝑦 ,

Unlike the analogous construction over fields, compatibility is particularly troublesome,

as 𝑎‘ 𝑐 and 𝑏‘ 𝑐 may be sets and there is no canonical way to extend ď to sets. There

is a discussion in Section 2 of [LS20] and Section 3 of [KLS21].

There is a study of the number of orderings of quotient hyperfields presented in

[KLS21, Theorem 3.4]. Explicitly, the set of orderings on H is denoted 𝜒pHq and the set
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of orderings on H containing a subset 𝑈 is denoted 𝜒pH | 𝑈q. Then, [KLS21, Theorem

3.4] shows that |𝜒p𝐾{𝑈q| “ |𝜒p𝐾 | 𝑈q|. This relationship is used to demonstrate that

hyperfields can have an uncountable number of orderings.

Example 6.2.6. Take Qr𝑋s, then its field of fractions, denoted Qp𝑋q, is defined as,

Qp𝑋q :“

! 𝑓 p𝑋q

𝑔p𝑋q
| 𝑓 p𝑋q, 𝑔p𝑋q P Qr𝑋s, 𝑔p𝑋q ‰ 0

)

ä 𝑓

𝑔
„
𝑓 1

𝑔1
ðñ 𝑓 1𝑔 “ 𝑓 1𝑔.

For any transcendental 𝛼 P R, one can define an ordering: 𝑓 ă𝛼 𝑔 ðñ 𝑓 p𝛼q ă 𝑔p𝛼q,

with 𝑃𝛼 “ t 𝑓 | 𝑓 p𝛼q ą 0u. Furthermore, 𝑃𝛼 “ 𝑃𝛽 if and only if 𝛼 “ 𝛽. This implies,

|𝜒pQp𝑋qq| ą 8, as t𝑃𝛼 | 𝛼 P R, transcendentalu Ă Qp𝑋q. As Qp𝑋q is a field the

quotient construction can be used to generate non-trivial hyperfields. For 𝑓 P Qp𝑋qˆ,

let x 𝑓 y “ t 𝑓 𝑘 | 𝑘 P Zu be the multiplicative subgroup generated by 𝑓 . If 𝑓 p𝛼q ą 0,

then 𝑓 𝑘p𝛼q ą 0 ñ x 𝑓 y Ă 𝑃𝛼. Then H “ Qp𝑋q{x 𝑓 y is a quotient hyperfield. Generically,

t𝑃𝛼 | 𝛼 P R, transcendental, 𝑓 p𝛼q ą 0u Ă 𝜒pQp𝑋q | x 𝑓 yq is uncountable. Then by

[KLS21, Theorem 3.4], |𝜒pHq| “ |𝜒pQp𝑋q | x 𝑓 yq| ą 8, is uncountable.

Definition 6.2.7. Let H1,H2 be ordered hyperfields. The map 𝑓 : H1 Ñ H2 is a

homomorphism of ordered hyperfields if it is a hyperfield homomorphism, and 𝑓 pH`
1 q Ď

H`
2 . This will be referred to as order preserving. Hyperfield homomorphsisms satifsfy

𝑓 p´𝑥q “ ´ 𝑓 p𝑥q, so this can be defined equivalently as 𝑓 pH´
1 q Ď H´

2 .

Example 6.2.8. The following hyperfield homomorphsims are order preserving; sgn :

RÑ S, Sgn : TRÑ S and valR : Rrr𝑡Rss Ñ TR.

Proposition 6.2.9. Let 𝑓 : H1 Ñ H2 be a surjective homomorphism of ordered

hyperfields, then 𝑓 pH`
1 q “ H`

2 .

Proof. If 𝑥 P H`
2 such that there exists 𝑦 P H´

1 , where 𝑓 p𝑦q “ 𝑥, then 𝑓 pH´
1 q Ę H´

2 ,

which is a contradiction. □

To conclude this section, a compatible total order is introduced that can be defined

on any real hyperfield, and aligns with the total order in Example 6.2.5 over stringent

hyperfields. Given an ordering H`, define H` “ H` Y t𝟘u; this is sometimes called a
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positive cone, see [LS20, Def. 2.14]. It can also be checked that the properties of H`

imply

H` ‘ H` “ H` , H` X ´H` “ t𝟘u ,

H` d H` “ H` , H` Y ´H` “ H .

It can moreover be seen that a homomorphism of ordered hyperfields 𝑓 : H1 Ñ H2

satisfies 𝑓 pH`
1 q Ď H`

2 . Then, define a binary relation ĺ on H given by

𝑥 ĺ 𝑦 ô p𝑦 ‘ ´𝑥q X H` ‰ H .

Proposition 6.2.10. Let H` be an ordering on a stringent H. Then ĺ is a compatible

total order.

Proof.

• (Reflexive) For any 𝑎 P H, it holds that 𝟘 P p𝑎 ‘ ´𝑎q X H`.

• (Antisymmetric) If both 𝑎 ĺ 𝑏 and 𝑏 ĺ 𝑎, then the second by definition gives

p𝑎‘ ´𝑏q XH` ‰ H. This implies p𝑏‘ ´𝑎q “ p´𝑎‘ 𝑏q X ´H` ‰ H. Along with

p𝑏‘ ´𝑎q XH` ‰ H, this results in p𝑏‘ ´𝑎q being a set not a singleton, as it has

both positive and negative elements, or zero belonging to it. Therefore, this gives

𝑎 “ 𝑏.

• (Transitivity) Let 𝑎 ĺ 𝑏 and 𝑏 ĺ 𝑐, by definition p𝑏 ‘ ´𝑎q X H` ‰ H and

p𝑐 ‘ ´𝑏q X H` ‰ H. As H is stringent, there are two options for each p𝑏 ‘ ´𝑎q

and p𝑐 ‘ ´𝑏q such that they intersect with H`. They either contain zero or are

a singleton belonging to H`. If both p𝑏 ‘ ´𝑎q and p𝑐 ‘ ´𝑏q contain zero then

𝑎 “ 𝑏 “ 𝑐, yielding 𝟘 P p𝑐‘ ´𝑎q, and hence p𝑐‘ ´𝑎q XH` ‰ H ô 𝑎 ĺ 𝑐. If both

p𝑏 ‘ ´𝑎q and p𝑐 ‘ ´𝑏q are singletons contained in H`, then by the properties of

H` and H being stringent, p𝑐 ‘ ´𝑎q Ď p𝑐 ‘ ´𝑏q ‘ p𝑏 ‘ ´𝑎q “ tsingletonu P H`.

This implies p𝑐 ‘ ´𝑎q P H` ñ p𝑐 ‘ ´𝑎q X H` ‰ H ô 𝑎 ĺ 𝑐. If p𝑏 ‘ ´𝑎q

contains zero and p𝑐 ‘ ´𝑏q is a singleton contained in H`, then 𝑏 “ 𝑎. Thus,

p𝑐 ‘ ´𝑎q “ p𝑐 ‘ ´𝑏q, which is a singleton contained in H`, implying p𝑐 ‘ ´𝑎q P
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H` ñ p𝑐‘ ´𝑎q XH` ‰ H ô 𝑎 ĺ 𝑐. The argument can be mirrored for p𝑐‘ ´𝑏q

contains zero and p𝑏 ‘ ´𝑎q is a singleton contained in H`.

• (Total) If p𝑏 ‘ ´𝑎q X H` “ H then it must be a subset of H´. This implies that

´𝑏 ‘ 𝑎 Ď H` and therefore 𝑏 ĺ 𝑎.

• (Compatible) Let 𝑎 ĺ 𝑏, by definition p𝑏 ‘ ´𝑎q X H` ‰ H. For any 𝑐 P H

𝑏 ‘ ´𝑎 Ď p𝑏 ‘ 𝑐q ‘ p´𝑐 ‘ ´𝑎q ñ pp𝑏 ‘ 𝑐q ‘ ´p𝑐 ‘ 𝑎qq X H` ‰ H ,

implying 𝑎 ‘ 𝑐 ĺ 𝑏 ‘ 𝑐.

□

Proposition 6.2.11. Let 𝑓 : H1 Ñ H2 be an order preserving hyperfield homomorphism.

If 𝑎 ĺ 𝑏 then 𝑓 p𝑎q ĺ 𝑓 p𝑏q.

Proof. By definition 𝑎 ĺ 𝑏 ô p𝑏 ‘ ´𝑎q X H`
1 ‰ H, as 𝑓 is order preserving 𝑓 p𝑏 ‘

´𝑎q X H`
2 ‰ H. By the homomorphism properties of 𝑓 , 𝑓 p𝑏 ‘ ´𝑎q Ď 𝑓 p𝑏q ‘ ´ 𝑓 p𝑎q.

Thus, 𝑓 p𝑏q ‘ ´ 𝑓 p𝑎q X H`
2 ‰ H, which yields 𝑓 p𝑎q ĺ 𝑓 p𝑏q. □

Proposition 6.2.12. Let 𝑓 : H1 Ñ H2 be a hyperfield homomorphism such that

𝑎 ĺ 𝑏 ô 𝑓 p𝑎q ĺ 𝑓 p𝑏q. Then, 𝑓 is order preserving.

Proof. Note that 𝑎 “ 𝑎 ‘ 𝟘1 P H`
1 , iff 𝟘1 ĺ 𝑎. Thus, 𝟘2 “ 𝑓 p𝟘1q ĺ 𝑓 p𝑎q, so

𝑓 p𝑎q ‘ 𝟘2 P H`
2 . This implies that 𝑓 pH`

1 q Ď H`
2 . □

The reverse implication of Proposition 6.2.11 does not hold in general, even for

a surjective homomorphism between stringent hyerfields. Explicitly, if 𝑓 is order

preserving then, 𝑓 p𝑎q ĺ 𝑓 p𝑏q œ 𝑎 ĺ 𝑏.

Example 6.2.13. Take sgn : R Ñ S, then 𝑎 “ 8, 𝑏 “ 4, gives 𝑎 ł 𝑏 as 4 ` ´8 P R´.

Then, the images under sgn result in,

sgnp𝑏q ‘ ´sgnp𝑎q “ 𝟙S ‘ ´𝟙S “ S

This implies that sgnp𝑏q ‘ ´sgnp𝑎q X S` ‰ H, and hence, sgnp𝑎q ĺ sgnp𝑏q. Therefore,

𝑎 ł 𝑏 œ sgnp𝑎q ł sgnp𝑏q, which is equivalent to sgnp𝑎q ĺ sgnp𝑏q œ 𝑎 ĺ 𝑏.
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Lemma 6.2.14. Let H be a stringent hyperfield with some ordering H`. Then ďH`,

from Example 6.2.5, and ĺ are the same total orders.

Proof. Suppose 𝑎 ď 𝑏. If 𝑎 ă 𝑏 then 𝑏 ‘ ´𝑎 Ď H` Ă H` and so clearly 𝑎 ĺ 𝑏.

Otherwise 𝑎 “ 𝑏, then 𝟘 P p𝑏 ‘ p´𝑎qq X H` ‰ H.

Conversely, suppose 𝑎 ĺ 𝑏. As H is stringent, 𝑏‘´𝑎 is either a singleton or contains

𝟘. If the latter, then by uniqueness of inverses 𝑎 “ 𝑏. Otherwise, 𝑏 ‘ ´𝑎 “ t𝑐u Ď H`

is a singleton 𝑐: if 𝑐 contained in H` then 𝑎 ă 𝑏, otherwise 𝑐 “ 𝟘 implying 𝑎 “ 𝑏. □

6.2.1 Classifying Ordered Stringent Hyperfields

Bowler and Su [BS20] classified stringent (skew) hyperfields via the following family of

hyperfields. Their construction for hyperfields is recalled. Let pH,‘H,dH, 𝟘H, 𝟙Hq be a

hyperfield and p𝐺,`, 0q a totally ordered abelian group. Then,define H¸ 𝐺 to be the

hyperfield with ground set pHˆ ˆ 𝐺q Y 𝟘, where 𝟘 is some new element acting as the

additive identity. The multiplication is defined by

p𝑥, 𝑔q d p𝑦, ℎq “ p𝑥 dH 𝑦, 𝑔 ` ℎq , p𝑥, 𝑔q d 𝟘 “ 𝟘 d p𝑥, 𝑔q “ 𝟘 ,

where 𝟙 :“ p𝟙H, 0q is the multiplicative identity. The addition is defined in a more

involved way as follows:

p𝑥, 𝑔q ‘ p𝑦, ℎq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

tp𝑥, 𝑔qu, 𝑔 ą ℎ

tp𝑦, ℎqu, 𝑔 ă ℎ

tp𝑧, 𝑔q | 𝑧 P p𝑥 ‘H 𝑦q X Hˆu, 𝑔 “ ℎ ,

𝟘H R 𝑥 ‘H 𝑦

tp𝑧, 𝑔q | 𝑧 P p𝑥 ‘H 𝑦q X Hˆu 𝑔 “ ℎ ,

Ytp𝑥, 𝑔1q | 𝑥 P Hˆ , 𝑔1 ă 𝑔u Y t𝟘u, 𝟘H P 𝑥 ‘H 𝑦

It follows therefore that H¸ 𝐺 is a hyperfield, and that it is stringent if H is stringent

also. Furthermore, the following classification theorem shows all stringent hyperfields

can be written this way.

Theorem 6.2.15. [BS20, Theorem 4.10] Every stringent hyperfield has the form H¸𝐺,

where H is either the Krasner hyperfield K, the sign hyperfield S or a field 𝐾.
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This classification of stringent hyperfields is used to completely classify ordered

stringent hyperfields.

Proposition 6.2.16. Every ordered stringent hyperfield has the form H¸ 𝐺, where H

is either the sign hyperfield S or an ordered field 𝐾.

Proof. It will be shown that H¸𝐺 has an ordering if and only if H has an ordering. As

the sign hyperfield and ordered fields are the only possibilities for H that are ordered,

this completes the proof.

It is mathematically possible to check that if H` is an ordering of H, then tp𝑥, 𝑔q |

𝑥 P H` , 𝑔 P 𝐺u satisfies the properties of being an ordering on H ¸ 𝐺. Conversely,

suppose H¸𝐺 has an ordering i.e. a hyperfield homomorphism 𝜙 : H¸𝐺 Ñ S. There is

an injective homomorphism 𝑖 : HÑ H¸𝐺 that sends 𝟘H ÞÑ 𝟘 and all nonzero elements

𝑥 ÞÑ p𝑥, 0q. Therefore the composition 𝜙 ˝ 𝑖 is a hyperfield homomorphism from H to S

and so H is also ordered. □

It was also shown in [BS20] that every (skew) stringent hyperfield is the quotient of a

field. Their results are recalled, specialising to ordered stringent hyperfields; note that

removing the skew condition simplifies the construction considerably.

Let 𝐾rr𝑡𝐺ss be the field of Hahn series with value group 𝐺 and coefficients in some

arbitrary field 𝐾. This is the field of formal power series

𝛾 “
ÿ

𝑔P𝐺

𝑐𝑔𝑡
𝑔 , 𝑐𝑔 P 𝐾

whose support suppp𝛾q “ t𝑔 P 𝐺 | 𝑐𝑔 ‰ 0u is well-ordered. The leading coefficient lcp𝛾q

of 𝛾 is the coefficient of the term with smallest exponent,

lcp𝛾q “
␣

𝑐𝑔 | 𝑔 ď 𝑔1
@𝑔1

P suppp𝛾q
(

.

Addition and multiplication are the usual operations on power series:
˜

ÿ

𝑔P𝐺

𝑐𝑔𝑡
𝑔

¸

`

˜

ÿ

𝑔P𝐺

𝑑𝑔𝑡
𝑔

¸

“
ÿ

𝑔P𝐺

p𝑐𝑔 ` 𝑑𝑔q𝑡
𝑔
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˜

ÿ

𝑔P𝐺

𝑐𝑔𝑡
𝑔

¸

¨

˜

ÿ

𝑔P𝐺

𝑑𝑔𝑡
𝑔

¸

“
ÿ

𝑔P𝐺

¨

˚

˚

˝

ÿ

ℎ,ℎ1P𝐺

ℎ`𝐺ℎ
1“𝑔

𝑐ℎ ¨ 𝑑ℎ1

˛

‹

‹

‚

𝑡𝑔

If 𝐾 is an ordered field, then an ordering can be defined on 𝐾rr𝑡𝐺ss given by power

series whose leading coefficient is positive, i.e.

𝐾rr𝑡𝐺ss
` :“ t𝛾 | lcp𝛾q P 𝐾`

u .

Theorem 6.2.17. [BS20, Theorem 7.5] Every ordered stringent hyperfield can be

realised as a quotient of an ordered field. Explicitly,

S¸ 𝐺 » 𝐾rr𝑡𝐺ss{𝑈 𝑈 “
␣

𝛾 | lcp𝛾q “ 𝑐0 P 𝐾`
(

,

𝐾 ¸ 𝐺 » 𝐾rr𝑡𝐺ss{𝑉 𝑉 “ t𝛾 | lcp𝛾q “ 𝑐0 “ 1u .

6.3 Hyperplanes and Halfspaces

Let H be a real hyperfield with some fixed ordering H`. Consider the “vector space” H𝑑

obtained by extending the hyperaddition ‘ to tuples, and multiplication d to scalars

acting on tuples as follows:

‘ : H𝑑 ˆ H𝑑 Ñ 𝑃pH𝑑q
˚ u ‘ v “

ď

𝑤𝑖P𝑢𝑖‘𝑣𝑖

p𝑤1, . . . , 𝑤𝑑q ,

d : Hˆ H𝑑 Ñ H𝑑 𝑎 d v “ p𝑎 d 𝑣1, . . . , 𝑎 d 𝑣𝑑q .

Formally, H𝑑 has the structure of a vector space over a hyperfield, as defined by

[TNSL17]. Also note that for any hyperfield homomorphism 𝑓 , it can be extended to

H𝑑 by applying entrywise.

Let 𝐾 be a field with ordering 𝐾`. Take a polynomial 𝑝p𝑋1 . . . 𝑋𝑛q P 𝐾r𝑋1 . . . 𝑋𝑛s. Then

there are three sets regarding this polynomial and the ordering 𝐾` on 𝐾 that can be

defined;

𝑉p𝑝q :“ tp𝑋1 . . . 𝑋𝑛q P 𝐾𝑛 : 𝑝p𝑋1 . . . 𝑋𝑛q “ 0u
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H`
p𝑝q :“ tp𝑋1 . . . 𝑋𝑛q P 𝐾𝑛 : 𝑝p𝑋1 . . . 𝑋𝑛q P 𝐾`

u

H`p𝑝q :“ tp𝑋1 . . . 𝑋𝑛q P 𝐾𝑛 : 𝑝p𝑋1 . . . 𝑋𝑛q P 𝐾`u.

The first is the variety of the polynomial 𝑝, the second and third are the open and

closed positive halfspaces respectively, defined by 𝑝. These notions can be generalised

to polynomials over hyperfields. This follows from the notions discussed in Section 3.3

of [LV19] and Section 5.2 in [JSY22]. Given H a hyperfield with ordering H`. Take a

polynomial 𝑝p𝑋1 . . . 𝑋𝑛q P Hr𝑋1 . . . 𝑋𝑛s. The addition becomes the hyper-addition when

evaluating at elements of H𝑛.

𝑉p𝑝q :“ tp𝑋1 . . . 𝑋𝑛q P H𝑛 : 𝑝p𝑋1 . . . 𝑋𝑛q Q 0u

H`
p𝑝q :“ tp𝑋1 . . . 𝑋𝑛q P H𝑛 : 𝑝p𝑋1 . . . 𝑋𝑛q Ď H`

u

H`p𝑝q :“ tp𝑋1 . . . 𝑋𝑛q P H𝑛 : 𝑝p𝑋1 . . . 𝑋𝑛q X H` ‰ Hu.

In an analogous manner to working over a field, these objects are called the variety of

𝑝, the positive open halfspace of 𝑝 and the closed positive halfspace of 𝑝 respectively.

Note that the closed halfspace is defined with intersection rather than inclusion as a

subset. This is due to the fact that this generalised notion of a closed halfspace is

attempting to capture both elements of the open halfspace and roots of the polynomial.

When an element is a root of the polynomial this can cause both positive and negative

elements along with 𝟘 to belong to the output set. This can occur even for stringent

hyperfields. Therefore, non-empty is proposed as the most appropriate definition.

6.3.1 Varieties of Polynomials

This section will explore the first structure outlined above, the variety of a polynomial

over a hyperfield.

Theorem 6.3.1. Given a polynomial 𝑝p𝑋1, . . . , 𝑋𝑛q P Hr𝑋1, . . . , 𝑋𝑛s, with r𝑝s˚ P

H{𝑈r𝑋1, . . . , 𝑋𝑛s. Let r𝑎𝑎𝑎s “ pr𝑎1s , ..., r𝑎𝑛sq P 𝑉pr𝑝s˚q Ď
`

H{𝑈
˘𝑛, then for any lift

𝑎𝑎𝑎 such that r𝑎𝑎𝑎s “ r𝑎𝑎𝑎s, there exists 𝑞p𝑋1, . . . , 𝑋𝑛q P Hr𝑋1, . . . , 𝑋𝑛s such that r𝑞s˚ “ r𝑝s˚

and 𝑎𝑎𝑎 P 𝑉p𝑞q.
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Proof. The polynomial 𝑝p𝑋1, . . . , 𝑋𝑛q “
Ð

𝐼 𝑐𝐼𝑋
𝑖1
1 . . . 𝑋

𝑖𝑛
𝑛 , where 𝐼 “ p𝑖1 , . . . , 𝑖𝑛q, then,

r𝑝s˚ “
Ð

𝐼r𝑐𝐼s d 𝑋
𝑖1
1 . . . 𝑋

𝑖𝑛
𝑛 , with appropriately adjusted operations. Take r𝑎𝑎𝑎s “

pr𝑎1s , . . . , r𝑎𝑛sq P 𝑉pr𝑝s˚q, which by definition gives:

𝟘 P r𝑝s˚pr𝑎𝑎𝑎sq ðñ 𝟘 P
ð

𝐼

r𝑐𝐼s d r𝑎1s
𝑖1 d . . . d r𝑎𝑖𝑛𝑛 s

ðñ 𝟘 P
ð

𝐼

r𝑐𝐼 d 𝑎
𝑖1
1 d . . . d 𝑎𝑖𝑛𝑛 s. (6.3.2)

Selecting an arbitrary lift 𝑎𝑎𝑎 of r𝑎𝑎𝑎s, precisely 𝑎𝑎𝑎 “ p𝑎1 , . . . , 𝑎𝑛q such that each r𝑎𝑖s “ r𝑎𝑖s.

This implies the existence of 𝑢𝑖 for each 𝑎𝑖 such that 𝑎𝑖 d 𝑢𝑖 “ 𝑎𝑖.

The way the addition is construction for the quotient hyperfield H{𝑈 gives that when

(6.3.2) holds there is some collection t𝑢𝐼u𝐼 Ă 𝑈 such that,

𝟘 P
ð

𝐼

𝑐𝐼 d 𝑎
𝑖1
1 d . . . d 𝑎𝑖𝑛𝑛 d 𝑢𝐼 ,

over H. Substituting in the expression for each 𝑎𝑖 in terms of 𝑎𝑖 gives,

𝟘 P
ð

𝐼

𝑐𝐼 d p𝑎1 d 𝑢1q
𝑖1 d . . . d p𝑎𝑛 d 𝑢𝑛q

𝑖𝑛 d 𝑢𝐼

ðñ 𝟘 P
ð

𝐼

𝑐𝐼 d p𝑢1q
𝑖1 d . . . d p𝑢𝑛q

𝑖𝑛 d 𝑢𝐼 d p𝑎1q
𝑖1 d . . . d p𝑎𝑛q

𝑖𝑛 . (6.3.3)

Denote p𝑢1q𝑖1 d . . . d p𝑢𝑛q
𝑖𝑛 d 𝑢𝐼 “ 𝑢𝐼 , then due to 𝑈 being a multiplicative subgroup

of Hˆ it can be seen that 𝑢𝐼 P 𝑈. This is sufficient to be able to define the lifted

polynomial. Set,

𝑞p𝑋1, . . . , 𝑋𝑛q “
ð

𝐼

𝑐𝐼 d 𝑢𝐼 d 𝑋
𝑖1
1 . . . 𝑋 𝑖𝑛𝑛 P Hr𝑋1, . . . , 𝑋𝑛s.

It follows from (6.3.3) that 𝑞p𝑎1 , . . . , 𝑎𝑛q Q 𝟘 and r𝑐𝐼s “ r𝑐𝐼 d 𝑢𝐼s hence r𝑞s˚ “ r𝑝s˚.

This then demonstrates that there exists a 𝑞 P Hr𝑋1, . . . , 𝑋𝑛s for any lift of the root r𝑎𝑎𝑎s

such that the 𝑎𝑎𝑎 is a root of 𝑞. As the original root r𝑎𝑎𝑎s was chosen arbitrarily this holds

for all roots and any corresponding lift. □

The result in Theorem 6.3.1 is a strongly applicable result. It shows that for any root

regardless of the lift that is chosen, there will exists a suitable lifted polynomial for

which it is a root.
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Corollary 6.3.4. Given a polynomial 𝑝p𝑋1, . . . , 𝑋𝑛q P Hr𝑋1, . . . , 𝑋𝑛s with 𝑃 “ r𝑝s˚ P

H{𝑈r𝑋1, . . . , 𝑋𝑛s. Then,

𝑉p𝑃q “
ď

𝑞PHr𝑋1 ,..., 𝑋𝑛s

𝑠.𝑡 r𝑞s˚“𝑃

r𝑉p𝑞qs. (6.3.5)

Proof. This is a combination of two intermediate results. Firstly, Lemma 3.2.2 gives

that each r𝑉p𝑞qs Ď 𝑉p𝑃q, as r𝑞s˚ “ 𝑃. Therefore, the union of all push-forward varieties

also belongs to 𝑉p𝑃q, yielding
ď

𝑞PHr𝑋1,...,𝑋𝑛s

𝑠.𝑡 r𝑞s˚“𝑃

r𝑉p𝑞qs Ď 𝑉p𝑃q.

Secondly, Theorem 6.3.1 demonstrates that for every root of 𝑃 there exists a lift such

that this lift is a root of a polynomial 𝑞 P Hr𝑋1, . . . , 𝑋𝑛s, where r𝑞s˚ “ 𝑃. Hence, this

shows the converse inclusion;

𝑉p𝑃q Ď
ď

𝑞PHr𝑋1,...,𝑋𝑛s

𝑠.𝑡 r𝑞s˚“𝑃

r𝑉p𝑞qs.

These opposite inclusions give the desired equality. □

The following example will make the constructive proof of Theorem 6.3.1 explicit when

choosing specific lifts of roots.

Example 6.3.6. Take the quotient map sgn : R Ñ S, the polynomial 𝑝p𝑋q “ 𝑋2 ´

𝑋 ` 1 P Rr𝑋s has push-forward sgn˚p𝑝q “ 𝑋2 ‘ ´𝑋 ‘ 1 P Sr𝑋s. 1 P 𝑉psgn˚p𝑝qq,

but 𝑉p𝑝q “ H. Choosing a lift of 1 P Sr𝑋s as 4 P sgn´1p1q, gives us the following

representation in terms of cosets, r1s “ r4s. Hence, r4s2 ‘ r´4s ‘ r1s Q 𝟘. The first

hyper addition gives the set, tr𝑧s | 𝑧 P 16𝑢 ´ 4𝑣u with the requirement that there exists

some r𝑧s “ r´1s. This is equivalent to 16𝑢 ´ 4𝑣 ă 0 for some choice of 𝑢, 𝑣 P Rą0.

This can be reduced to the inequality 4𝑢 ă 𝑣. Therefore, one choice is 𝑢 “ 1 and

𝑣 “ 8. This leaves the constant of the polynomial to be lifted to 16 as 16 ´ 32 “ ´16

and the whole equation should sum to 0. This finally gives the lifted polynomial as,

𝑞p𝑋q “ 𝑋2 ´ 8𝑋 ` 16 “ p𝑋 ´ 4qp𝑋 ´ 4q P Rr𝑋s, with sgn˚p𝑞q “ sgn˚p𝑝q, with the lifted

root 4 P sgn´1p1q as a root of 𝑞p𝑋q.



148 CHAPTER 6. CONVEX GEOMETRY OVER HYPERFIELDS

The next result will demonstrate a stronger connection between 𝑓 p𝑉p𝑝qq and 𝑉p 𝑓˚p𝑝qq

over quotient hyperfields for the specific case of linear polynomials.

Theorem 6.3.7. Given a linear polynomial 𝑝p𝑋1, . . . , 𝑋𝑛q P Hr𝑋1, . . . , 𝑋𝑛s, then under

the quotient map r¨s : HÑ H{𝑈,

𝑉pr𝑝s˚q “ r𝑉p𝑝qs.

Proof. Given the linear polynomial 𝑝p𝑋1, . . . , 𝑋𝑛q “ 𝑐0 ‘ 𝑐1𝑋1 ‘ . . . ‘ 𝑐𝑛𝑋𝑛, then the

push-forward is r𝑝s˚ “ r𝑐0s‘r𝑐1s𝑋1‘ . . .‘r𝑐𝑛s𝑋𝑛. If r𝑦s “ pr𝑦1s, . . . r𝑦𝑛sq P

´

H{𝑈

¯𝑛

is a

root of r𝑝s˚, then due to the quotient construction, there are collections of t𝑢𝑖u, t𝑣𝑖u Ă 𝑈

such that,

𝑐0𝑢0 ‘ 𝑐1𝑢1𝑦1𝑣1 ‘ . . . 𝑐𝑛𝑢𝑛𝑦𝑛𝑣𝑛 Q 𝟘.

With some rearranging this can be stated as,

𝑐0 ‘ 𝑐1

´

𝑢1𝑣1
𝑢0

¯

𝑦1 ‘ . . . ‘ 𝑐𝑛

´

𝑢𝑛𝑣𝑛

𝑢0

¯

𝑦𝑛 Q 𝟘. (6.3.8)

For each 𝑖 P t1, . . . , 𝑛u,
”´

𝑢𝑖𝑣𝑖
𝑢0

¯

𝑦𝑖

ı

“ r𝑦𝑖s, which gives,
´”´

𝑢1𝑣1
𝑢0

¯

𝑦1

ı

, . . . ,

”´

𝑢𝑛𝑣𝑛

𝑢0

¯

𝑦𝑛

ı¯

“ pr𝑦1s, . . . r𝑦𝑛sq. (6.3.9)

By (6.3.8), the lift defined in (6.3.9) belongs to 𝑉p𝑝q. Hence, for every element in 𝑉pr𝑝s˚q

there exists a lift back to an element of 𝑉p𝑝q, yielding the inclusion, 𝑉pr𝑝s˚q Ď r𝑉p𝑝qs.

The reverse inclusion is an immediate consequence of Lemma 3.2.2. The two inclusions

taken together produce the desired equality 𝑉pr𝑝s˚q “ r𝑉p𝑝qs. □

Example 6.3.10. Let 𝑝p𝑋,𝑌, 𝑍q “ 3𝑋 ´ 𝑌 ` 2𝑍 P Rr𝑋,𝑌, 𝑍s, then under the map

sgn : RÑ S, the push-forward is sgn˚p𝑝q “ 𝑋 ´ 𝑌 ` 𝑍 P Sr𝑋,𝑌, 𝑍s. Then the element

p1, 1, 1q P S3 is a root of sgn˚p𝑝q, as

sgn˚p𝑝qp1, 1, 1q “ 1 ‘ ´1 ‘ 1 “ S Q 𝟘.

Then, p1, 5, 1q P sgn´1p1, 1, 1q, is a lift to a root of 𝑝p𝑋,𝑌, 𝑍q,

𝑝p1, 5, 1q “ 3 ´ 5 ` 2 “ 0.
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This example demonstrates the freedom of choice in the lifts for each component, due

to the linearity of the original polynomial. The variables are not interacting with

each other in the polynomial, hence each component can be lifted separately whilst

maintaining the fact it is a root. This example mirrors the lifting techniques for non-

linear polynomials, but as shown in Theorem 6.3.7, there exists a lift back to a root

of the original polynomial rather than the more broad result in Theorem 6.3.1, which

demonstrates there may only exist a lift to another polynomial in the pre-image, whilst

maintaining the root property.

6.3.2 Halfspaces and Quotient Maps

There will now be a discussion of the properties of halfspaces, in particular under

quotient hyperfield homomorphisms. This is due to a strong connection between orders

on hyperfields and orders on a quotient with a restiction on the multiplicative subgroup.

The next result generalises that of Lemma 3.3 in [KLS21], with analogous proof outlined

here.

Lemma 6.3.11. Given a hyperfield H with ordering H`. Assume a multiplicative

subgroup 𝑈 Ď Hˆ is contained in the ordering H`, thus consider the quotient hyperfield

H{𝑈, then

1. If 𝑥 P H`, then r𝑥s Ď H`.

2. The set H`
𝑈

:“ tr𝑥s : 𝑥 P H`u is an ordering of H{𝑈.

Proof. 1. Take 𝑥 P H`, as𝑈 Ď H` then by H`dH` Ď H`, r𝑥s “ t𝑎𝑢 : 𝑢 P 𝑈u Ď H`.

2. Take r𝑥s, r𝑦s P H`
𝑈

, then by the first part 𝑥, 𝑦 P H` for any representative. As

𝑈 Ď H`, the combination 𝑥𝑢 ‘ 𝑦𝑣 Ď H` for all 𝑢, 𝑣 P 𝑈. Therefore, r𝑥s ‘ r𝑦s “

tr𝑥𝑢‘ 𝑦𝑣s : 𝑢, 𝑣 P 𝑈u Ď H`
𝑈

. This implies H`
𝑈

‘H`
𝑈

Ď H`
𝑈

. Next, for r𝑥s, r𝑦s P H`
𝑈

,

r𝑥sdr𝑦s “ r𝑥d 𝑦s by definition. Then by the first part 𝑥, 𝑦 P H`, hence 𝑥d 𝑦 P H`,

which yields r𝑥 d 𝑦s P H`. This implies H`
𝑈

d H`
𝑈

Ď H`
𝑈

. As H` Y H` “ Hˆ,

H`
𝑈

Y H`
𝑈

Ď Hˆ
𝑈

holds. Finally, assume r𝑥s,´r𝑥s “ r´𝑥s P H`
𝑈

. Then, 𝑥,´𝑥H`,

which implies 0 P 𝑥‘´𝑥 Ď H`, which is contradiction. This implies H`
𝑈

XH`
𝑈

“ H.
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□

The construction in Lemma 6.3.11 can be viewed as a hyperfield homomorphism,

r¨s : H Ñ H{𝑈. This can be extended to polynomials coefficient wise, and denoted

r¨s˚ : Hr𝑋1 . . . 𝑋𝑛s Ñ H{𝑈r𝑋1 . . . 𝑋𝑛s. This section will present results focused on

understanding how the map r¨s interacts with halfspaces. For the next results let H be

a hyperfield with fixed order H`, and multiplicative subgroup of the units such that

𝑈 Ď H`.

Lemma 6.3.12. Given a polynomial 𝑝 P Hr𝑋1 . . . 𝑋𝑛s, then

rH`
p𝑝qs Ď H`pr𝑝s˚q.

Proof. Let p𝑦1, . . . , 𝑦𝑛q P H`p𝑝q, then pr𝑦1s, . . . , r𝑦𝑛sq P pH{𝑈q𝑛. The push-forward

of the polynomial under the induced map is r𝑝s˚ “
Ð

𝐼r𝑐𝐼s𝑋
𝐼 . Evaluating r𝑝s˚ at

pr𝑦1s, . . . , r𝑦𝑛sq yields,

r𝑝s˚pr𝑦1s, . . . , r𝑦𝑛sq “
ð

𝐼

r𝑐𝐼s d r𝑦1s
𝑖1 d ¨ ¨ ¨ d r𝑦𝑛s

𝑖𝑛

“
ð

𝐼

r𝑐𝐼 d 𝑦
𝑖1
1 d ¨ ¨ ¨ d 𝑦𝑛s

𝑖𝑛

Ě
“
ð

𝐼

𝑐𝐼 d 𝑦
𝑖1
1 d ¨ ¨ ¨ d 𝑦𝑖𝑛𝑛

‰

As p𝑦1, . . . , 𝑦𝑛q P H`p𝑝q, this gives
Ð

𝐼 𝑐𝐼 d 𝑦
𝑖1
1 d ¨ ¨ ¨ d 𝑦

𝑖𝑛
𝑛 Ď H`. This implies that

“
Ð

𝐼 𝑐𝐼 d𝑦
𝑖1
1 d¨ ¨ ¨d𝑦

𝑖𝑛
𝑛

‰

Ď H`
𝑈

. Therefore, r𝑝s˚pr𝑦1s, . . . , r𝑦𝑛sqXH`
𝑈

‰ H, demonstrating

rH`p𝑝qs Ď H`pr𝑝s˚q. □

Remark 6.3.13. The inclusion rH`p𝑝qs Ď H`pr𝑝s˚q does not hold in general, as elements

of H`p𝑝q may push-forward to roots of r𝑝s˚ and hence the output set is not contained

in the ordering H`
𝑈

. This can be seen explicitly in the following example.

Example 6.3.14. Let sgn : R Ñ S and take the polynomial 𝑝p𝑋,𝑌q “ 𝑎𝑋 ` 𝑏𝑌 P

Rr𝑋,𝑌 s, where 𝑎, 𝑏 P Rą0. The set H`p𝑝q is a open halfspace above a negatively sloped

line through the origin in R2. The push-forward of 𝑝 is sgn˚p𝑝q “ 𝑋‘𝑌 P Sr𝑋,𝑌 s. This

gives the set H`psgn˚p𝑝qq “ tp0, 1q, p1, 0q, p1, 1qu, which does not include every element

sgnpH`p𝑝qq, such as p´1, 1q. See Figure 6.1 for a visualisation of how this occurrs.



6.3. HYPERPLANES AND HALFSPACES 151

Figure 6.1: H`p𝑋 ` 𝑌q P R2, with sgnpH`p𝑋 ` 𝑌qq Ę H`p𝑋 ‘ 𝑌q P S2.

Proposition 6.3.15. Let 𝑝 be a linear polynomial over H, then H`pr𝑝s˚q Ď rH`p𝑝qs.

Proof. This method will follow and analogous pattern to the first part of Theorem 6.3.7.

Take rxs P H`pr𝑝s˚q, then r𝑝s˚prxsq Ď pH{𝑈q`. This is equivalent to
Ð𝑛

𝑖“0r𝑐𝑖 d 𝑥𝑖s Ď

pH{𝑈q`, which by the definition of ‘ for quotient hyperfields implies that there exists

t𝑢𝑖u𝑖 Ď 𝑈 such that
Ð𝑛

𝑖“0 𝑐𝑖 d 𝑥𝑖 d 𝑢𝑖 Ď H`. Define x̃ “ p𝑥1 d 𝑢1, . . . , 𝑥𝑛 d 𝑢𝑛q, thus

rx̃s “ rxs and 𝑝px̃q Ď H`, which gives the inclusion. □

Lemma 6.3.16. Let H be an ordered stringent hyperfield, then

H`p𝑝q “ H`
p𝑝q \𝑉p𝑝q.

Proof. If x P H`p𝑝q, then 𝑝pxqXH` ‰ H. By Lemma 39 in [BP19], 𝑝pxq is a singleton

unless it contains contains zero. If 𝑝pxq is a singleton then 𝑝pxq P H` and hence an

element of H`p𝑝q. Whereas, if 𝑝pxq contains zero, then x is a root and thus an element

of 𝑉p𝑝q. By this description H`p𝑝q and 𝑉p𝑝q are disjoint sets. □

Remark 6.3.17. It could be the case over non-stringent ordered hyperfields that the

polynomial produces an output set which does not contain zero but has both positive

and negative elements. This would be an element of H`p𝑝q, but would not be an

element of either H`p𝑝q or 𝑉p𝑝q. See the next example for a demonstration of this.

Example 6.3.18. In [Liu20] there is a description of finite hyperfields of order less than

five. The first case of Prop. 2.12 in [Liu20] is an example of a non-stringent ordered

hyperfield in the following way:

H :“ t0, 1, 2,´1,´2u, H` :“ t1, 2u.
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‘ 0 1 2 ´2 ´1

0 t0u t1u t2u t´2u t´1u

1 t1u t1u t1, 2u t1,´2u H

2 t2u t1, 2u t2u H t2,´1u

´2 t´2u t1,´2u H t´2u t´2,´1u

´1 t´1u H t2,´1u t´2,´1u t´1u

(Note that to return to the notation in [Liu20] take 𝑎𝑏 “ ´1, 𝑎 “ 2, 𝑏 “ ´2.) Then,

take 𝑝p𝑋,𝑌q “ 𝑋 ‘ 𝑌 P Hr𝑋,𝑌 s and evaluate at p2,´1q P H2. This gives 𝑝p2,´1q “

2‘´1 “ t2,´1u. This set does not contain zero hence, p2,´1q R 𝑉p𝑝q. The set contains

both positive and negative elements, thus does not belong to H`p𝑝q, but does belong

to H`p𝑝q.

Theorem 6.3.19. Let 𝑝 be a linear polynomial in Hr𝑋1, . . . , 𝑋𝑛s, with the induced map

of polynomials r¨s˚ : Hr𝑋1, . . . , 𝑋𝑛s Ñ H{𝑈r𝑋1, . . . , 𝑋𝑛s. Then,

“

H`p𝑝q
‰

“ H`pr𝑝s˚q.

Proof. For the inclusion
“

H`p𝑝q
‰

Ď H`pr𝑝s˚q, take p𝑦1, . . . , 𝑦𝑛q P H`p𝑝q. Then using

the same logic as the proof to Lemma 3.2.2, it can obtained that,

r𝑝s˚pr𝑦1s, . . . , r𝑦𝑛sq Ě r𝑐1 d 𝑦1 ‘ ¨ ¨ ¨ ‘ 𝑐𝑛 d 𝑦𝑛s.

As p𝑦1, . . . , 𝑦𝑛q P H`p𝑝q, this implies r𝑐1 d 𝑦1 ‘ ¨ ¨ ¨ ‘ 𝑐𝑛 d 𝑦𝑛s X H`
𝑈

‰ H. In turn,

implying that r𝑝s˚pr𝑦1s, . . . , r𝑦𝑛sq X H`
𝑈

‰ H, hence pr𝑦1s, . . . , r𝑦𝑛sq P H`pr𝑝s˚q.

For the second inclusion, H`pr𝑝s˚q Ď
“

H`p𝑝q
‰

, take pr𝑤1s, . . . , r𝑤𝑛sq P H`pr𝑝s˚q, then

r𝑐1sr𝑤1s ‘ ¨ ¨ ¨ ‘ r𝑐𝑛sr𝑤𝑛s X H`
𝑈

‰ H. By the definition of the addition over quotient

hyperfields,

r𝑐1sr𝑤1s ‘ ¨ ¨ ¨ ‘ r𝑐𝑛sr𝑤𝑛s “ r𝑐1𝑤1s ‘ ¨ ¨ ¨ ‘ r𝑐𝑛𝑤𝑛s

“ tr𝜆s : 𝜆 P 𝑐1𝑣1 ‘ ¨ ¨ ¨ ‘ 𝑐𝑛𝑣𝑛, 𝑣𝑖 “ 𝑤𝑖 ¨ 𝑢, 𝑢 P 𝑈u

This implies that there exists a 𝜆 such that r𝜆s P H`
𝑈

. This gives 𝜆 P H`, hence

the corresponding combination of p𝑣1, . . . , 𝑣𝑛q is a lift of the pr𝑤1s, . . . , r𝑤𝑛sq such
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that, 𝜆 P 𝑎1𝑣1 ‘ ¨ ¨ ¨ ‘ 𝑎𝑛𝑣𝑛 X H` ‰ H. Therefore, p𝑣1, . . . , 𝑣𝑛q P H`p𝑝q, giving

pr𝑤1s, . . . , r𝑤𝑛sq P
“

H`p𝑝q
‰

. □

Remark 6.3.20. If the hyperfield H{𝑈 is stringent the inclusion H`pr𝑝s˚q Ď
“

H`p𝑝q
‰

in

Theorem 6.3.19 can be shown with a combination of alternative techniques from previous

results. As H{𝑈 is stringent, Lemma 6.3.16 gives H`pr𝑝s˚q “ H`pr𝑝s˚q \ 𝑉pr𝑝s˚q.

Then, Theorem 6.3.7 implies 𝑉pr𝑝s˚q “ r𝑉p𝑝qs Ď
“

H`p𝑝q
‰

, and Proposition 6.3.15

implies H`pr𝑝s˚q Ď rH`p𝑝qs. Then, as H`p𝑝q Ď H`p𝑝q, rH`p𝑝qs Ď
“

H`p𝑝q
‰

. This

yields H`pr𝑝s˚q Ď
“

H`p𝑝q
‰

. Taking these together demonstrates the inclusion,

H`pr𝑝s˚q “ H`
pr𝑝s˚q \𝑉pr𝑝s˚q Ď

“

H`p𝑝q
‰

Question 6.3.21. Can the result in Theorem 6.3.19 be understood for non-quotient

hyperfield homomorphisms?

Remark 6.3.22. The result in Theorem 6.3.19 could be asked of open halfspaces if the

definition of H`p𝑝q implemented non-empty intersection with H` rather than inclusion

as a subset in H`. Actually, if H is stringent then an open halfspace defined using

non-empty intersection would then be exactly the definition of a closed halfspace.

Theorem 6.3.23. Let 𝑓 : H1 Ñ H2, be an order preserving surjective hyperfield

homomorphism between stringent hyperfields. Then, for a linear polynomial 𝑝 P

H1r𝑋1, . . . , 𝑋𝑛s,

H`
p 𝑓˚p𝑝qq “ 𝑓

´

č

𝑓˚p𝑝q“ 𝑓˚p𝑞q

H`
p𝑞q

¯

.

Proof. To be explicit with notation 𝑝 “
Ð𝑑

𝑖“0 𝑎𝑖 d 𝑋𝑖, a linear polynomial.

1. Take Y P H`p 𝑓˚p𝑝qq, then
Ð𝑑

𝑖“0 𝑓 p𝑎𝑖q d 𝑌𝑖 “ 𝐴 P H`
2 , as H2 is stringent. Then,

for all y P 𝑓´1pYq and 𝑞 P H1r𝑋s such that 𝑓˚p𝑞q “ 𝑓˚p𝑝q,

𝑓 p𝑞pyqq “ 𝑓

´ 𝑑
ð

𝑖“0
𝑞𝑖 d 𝑦𝑖

¯

Ď

𝑑
ð

𝑖“0
𝑓 p𝑞𝑖q d 𝑓 p𝑦𝑖q

“

𝑑
ð

𝑖“0
𝑓 p𝑎𝑖q d 𝑌𝑖

“ 𝐴,
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by order preserving 𝑞pyq P H`
1 . Thus, y P

Ş

𝑓˚p𝑝q“ 𝑓˚p𝑞q H`p𝑞q, implying that

Y P 𝑓

´

Ş

𝑓˚p𝑝q“ 𝑓˚p𝑞q H`p𝑞q

¯

. Demonstrating the inclusion,

H`
p 𝑓˚p𝑝qq Ď 𝑓

´

č

𝑓˚p𝑝q“ 𝑓˚p𝑞q

H`
p𝑞q

¯

.

2. Take Y R H`p 𝑓˚p𝑝qq, then this occurs either by 𝑓˚p𝑝qpYq ă 𝟘2 or 𝑓˚p𝑝qpYq Q 𝟘2.

If 𝑓˚p𝑝qpYq ă 𝟘2, then in an analogous way to part (1), the order preserving

property of 𝑓 implies that 𝑞pyq ă 𝟘1, for any y P 𝑓´1pYq and 𝑞 such that

𝑓˚p𝑞q “ 𝑓˚p𝑝q. Explicitly,

𝑓 p𝑞pyqq Ď 𝑓˚p𝑞qpYq “ 𝑓˚p𝑝qpYq “ 𝐵 P H´
2 .

Therefore, y R

´

Ş

𝑓˚p𝑝q“ 𝑓˚p𝑞q H`p𝑞q

¯

, for all y P 𝑓´1pYq. This gives that

Y R 𝑓

´

Ş

𝑓˚p𝑝q“ 𝑓˚p𝑞q H`p𝑞q

¯

.

Finally, take Y such that 𝑓˚p𝑝qpYq Q 𝟘2. Then, by Theorem 6.3.1, for any lift

y P 𝑓´1pYq, there exists 𝑞, such that 𝟘1 P 𝑞pyq and 𝑓˚p𝑞q “ 𝑓˚p𝑝q. Thus, for

all y P 𝑓´1pYq, y R H`p𝑞q, for some 𝑞. Implying that for all y P 𝑓´1pYq, y R
´

Ş

𝑓˚p𝑝q“ 𝑓˚p𝑞q H`p𝑞q

¯

, which shows that Y R 𝑓

´

Ş

𝑓˚p𝑝q“ 𝑓˚p𝑞q H`p𝑞q

¯

. Demon-

strating the inclusion,

𝑓

´

č

𝑓˚p𝑝q“ 𝑓˚p𝑞q

H`
p𝑞q

¯

Ď H`
p 𝑓˚p𝑝qq.

□

Example 6.3.24. It has been shown in Example 6.3.14 that H`psgn˚p𝑝qq “ tp0, 1q, p1, 0q, p1, 1qu,

where sgn˚p𝑝q “ 𝑋 ‘ 𝑌 . Using the description of open halfspaces given in Theorem

6.3.23, this gives,

H`
p𝑋 ‘ 𝑌q “ sgn

´

č

𝑞P𝑄

H`
p𝑞q

¯

,

where 𝑄 “ t𝑞 “ 𝑎𝑋 ` 𝑏𝑌 : 𝑎, 𝑏 P Rą0u. The visual representation of this is presented

in Figure 6.2.
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Figure 6.2: Demonstrating the intersection of open halfspaces.

6.4 Conic and Convex Sets over Hyperfields

This section will introduce the definitions of conic and convex sets over hyperfields. These

will generalise the classical definitions in an algebraic sense. It will be explored how these

sets interact with hyperfield homomorphisms and it will be discussed whether objects

such as open/closed halfspaces and varieties are conic and convex in the hyperfield

setting. There will be a focus on understanding conic and convex sets over quotient

hyperfields and the corresponding quotient maps. One way that convex geometry over

hyperfields differs from the classical theory is that hyperplanes of linear polynomials

are not in general convex, see Example 6.4.18.

6.4.1 Conic Sets

Definition 6.4.1. A subset 𝑆 Ď H𝑑 is conic if for any two (not necessarily distinct)

elements u,v P 𝑆
!

𝜆 d u ‘ 𝜇 d v
ˇ

ˇ

ˇ
𝜆, 𝜇 P H`

)

Ď 𝑆 ,

where at least one of 𝜆, 𝜇 is non-zero. The conic hull conep𝑆q of a set 𝑆 Ď H𝑑 is the

smallest conic set that contains it.

Proposition 6.4.2. Let 𝑓 : H1 Ñ H2 be a homomorphism of ordered hyperfields, and

𝑆 Ă H𝑑1 a finite set. Then 𝑓 pconep𝑆qq Ď conep 𝑓 p𝑆qq.

Proof. Let 𝑓 pxq P 𝑓 pconep𝑆qq where x P conep𝑆q and so is contained in a conic linear

combination:

x P
ð

sP𝑆

𝜆s d s , 𝜆s P H`
1

ñ 𝑓 pxq P 𝑓 p
ð

sP𝑆

𝜆s d sq
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Ď
ð

𝑓 psqP 𝑓 p𝑆q

𝜆 𝑓 psq d 𝑓 psq , 𝜆 𝑓 psq “ 𝑓 p𝜆sq P H`
2

Ď conep 𝑓 p𝑆qq

□

The inclusion conep 𝑓 p𝑆qq Ď 𝑓 pconep𝑆qq does not hold in general. Even under a surjective

hyperfield homomorphism between stringent hyperfields, as can be seen in Example

6.4.3.

Example 6.4.3. The following calculation will show that conep 𝑓 p𝑆qq ‰ 𝑓 pconep𝑆qq for

the surjective homomorphism Sgn : TRÑ S from the signed tropical hyperfield TR to

the hyperfield of signs S.

Let 𝑆 “ tpp1, 0q, p1, 0qq, pp´1, 0q, p´1, 1qqu Ă TR2. The image of 𝑆 is Sgnp𝑆q “

tp𝟙S, 𝟙Sq, p´𝟙S,´𝟙Squ, the cone of which is conepSgnp𝑆qq “ S2. However, the point

p𝟙S,´𝟙Sq is not contained in the image Sgnpconep𝑆qq. To see this, consider a point

pp1, 𝑥q, p´1, 𝑦qq in the preimage of p´𝟙S, 𝟙Sq. If pp1, 𝑥q, p´1, 𝑦qq P conep𝑆q, there exists

scalars p1, 𝜆q, p1, 𝜇q P TR` such that

pp1, 𝑥q, p´1, 𝑦qq P p1, 𝜆q d pp1, 0q, p1, 0qq ‘ p1, 𝜇q d pp´1, 0q, p´1, 1qq

“ pp1, 𝜆q, p1, 𝜆qq ‘ pp1, 𝜇q, p1, 𝜇 ` 1qq .

Comparing tropical signs, this implies 𝜇 ą 𝜆 and 𝜇 ` 1 ă 𝜆, a contradiction.

Lemma 6.4.4. Take the quotient map, r¨s : HÑ H{𝑈 and 𝑆 Ď H𝑑, then

conepr𝑆sq “
ď

𝑓 p𝑆q“ 𝑓 p𝑇q

rconep𝑇qs.

Proof. By Proposition 6.4.2,
ď

𝑓 p𝑆q“ 𝑓 p𝑇q

rconep𝑇qs Ď conepr𝑆sq.

Then, take rxs “ pr𝑥1s, . . . , r𝑥𝑑sq P conepr𝑆sq. This admits a description as a conic linear

combination,

rxs P
ð

rssPr𝑆s

r𝜆ss d rss “
ð

rssPr𝑆s

r𝜆s d ss, r𝜆ss P

´

H{𝑈

¯`

.
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This gives component wise,

r𝑥 𝑗 s P
ð

rssPr𝑆s

r𝜆s d s 𝑗 s.

Thus, by the definition of the quotient addition, there exists 𝑥 𝑗 P
Ð

𝜆s d s 𝑗 d 𝑢s 𝑗
.

Construct, for each rss P r𝑆s, s̃ “ ps1 d 𝑢s1 , . . . , s𝑑 d 𝑢s𝑑q P H𝑑, giving rs̃s “ rss. This

implies that there exists x̃ “ p𝑥1, . . . , 𝑥𝑑q P H𝑑 such that x̃ P
Ð

𝜆s d s̃, and rx̃s “ rxs.

Then, 𝑇 “ ts̃ | rss P r𝑆su, has x̃ P conep𝑇q. This shows the reverse inclusion, as by

construction r𝑇s “ trs̃s | s̃ P 𝑇u “ trss | s P 𝑆u. □

Remark 6.4.5. Apart the exceptional case of the field F2, the Krasner hyperfield is

isomorphic to a quotient of every hyperfield as K – H{H˚. Therefore, the morphism

H Ñ K can be represented as the quotient morphism H Ñ H{H˚, thus Lemma 6.4.4

holds for all HÑ K.

Lemma 6.4.6. For a linear polynomial 𝑝 P Hr𝑋1, . . . , 𝑋𝑛s, and x “ p𝑥1, . . . , 𝑥𝑛q, y “

p𝑦1, . . . , 𝑦𝑛q P H𝑛, then 𝑝px ‘ yq “ 𝑝pxq ‘ 𝑝pyq.

Proof. Firstly, x ‘ y is defined component wise as x ‘ y “ p𝑥1 ‘ 𝑦1, . . . , 𝑥𝑛 ‘ 𝑦𝑛q. Then,

evaluating at this combined element

𝑝p𝑥1 ‘ 𝑦1, . . . , 𝑥𝑛 ‘ 𝑦𝑛q “

𝑛
ð

𝑖“1
𝑎𝑖p𝑥𝑖 ‘ 𝑦𝑖q

“

𝑛
ð

𝑖“1
p𝑎𝑖𝑥𝑖 ‘ 𝑎𝑖𝑦𝑖q

“ p𝑎1𝑥1 ‘ 𝑎1𝑦1q ‘ ¨ ¨ ¨ ‘ p𝑎𝑛𝑥𝑛 ‘ 𝑎𝑛𝑦𝑛q

“ p𝑎1𝑥1 ‘ ¨ ¨ ¨ ‘ 𝑎𝑛𝑥𝑛q ‘ p𝑎1𝑦1 ‘ ¨ ¨ ¨ ‘ 𝑎𝑛𝑦𝑛q

“ 𝑝pxq ‘ 𝑝pyq

□

Theorem 6.4.7. Let 𝑝 be a linear polynomial over an ordered H, then H`p𝑝q is conic.

Proof. Let x “ p𝑥1, . . . , 𝑥𝑛q,y “ p𝑦1, . . . , 𝑦𝑛q P H`p𝑝q, which is equivalent to 𝑝pxq, 𝑝pyq P

H`. Then with elements 𝜆, 𝜇 P H` construct the vectors,

𝜆x “ 𝜆p𝑥1, . . . , 𝑥𝑛q “ p𝜆𝑥1, . . . , 𝜆𝑥𝑛q,
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𝜇y “ 𝜇p𝑦1, . . . , 𝑦𝑛q “ p𝜇𝑦1, . . . , 𝜇𝑦𝑛q.

By Lemma 6.4.6, 𝑝p𝜆x ‘ 𝜇yq “ 𝑝p𝜆xq ‘ 𝑝p𝜇yq. Now, the positive scalars can be

factorised out of the expression, due to the polynomial being linear. Explicitly,

𝑝p𝜆xq “

𝑛
ð

𝑖“1
𝑎𝑖p𝜆𝑥𝑖q

“

𝑛
ð

𝑖“1
𝑎𝑖𝜆𝑥𝑖

“ 𝜆p

𝑛
ð

𝑖“1
𝑎𝑖𝑥𝑖q

“ 𝜆𝑝pxq

Similarly, 𝑝p𝜇yq “ 𝜇𝑝pyq. Formally this yields,

𝑝p𝜆x ‘ 𝜇yq “ 𝜆𝑝pxq ‘ 𝜇𝑝pyq.

Recalling that 𝜆, 𝜇 P H` and 𝑝pxq, 𝑝pyq Ď H`, by the multiplication closure of the

order H`, 𝜆𝑝pxq, 𝜇𝑝pyq Ď H`. Furthermore, by the additive closure of the order

H`, 𝜆𝑝pxq ‘ 𝜇𝑝pyq Ď H`. This gives 𝑝p𝜆x ‘ 𝜇yq Ď H`, which is equivalent to

𝜆x ‘ 𝜇y P H`p𝑝q. Therefore, H`p𝑝q is conic. □

It can be seen that H`p𝑝q is not conic in general, even for stringent hyperfields. This

is due, more precisely, to varieties over stringent hyperfields not being convex in general.

This can be seen in Example 6.4.18.

6.4.2 Convex Sets

Convex sets require more precision in the definition due to addition constraints requiring

hyperaddition. Over R, convex sets can be defined geometrically. Concretely, any two

points of the set be joined by a straight line segment that completely remains within

the set. This approach will be set aside and the algebraic approach, with regard to

positive scalars, will be used. The reason for this being that for finite hyperfields, such

as S the notion of a line segment is not yet established.

Definition 6.4.8. A subset 𝑆 Ď H𝑑 is convex if for any two elements u,v P 𝑆

!

𝜆 d u ‘ 𝜇 d v
ˇ

ˇ

ˇ
𝜆, 𝜇 P H` , 𝟙 P 𝜆 ‘ 𝜇

)

Ď 𝑆 .
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Given a set 𝑉 Ď H𝑑, the convex hull convp𝑉q of 𝑉 is (unique) minimal convex set

containing 𝑉 .

Remark 6.4.9. Note that unlike the classical definition, it is not demanded that 𝜆‘𝜇 “ 𝟙,

thus making convex sets “larger” than one might expect. However, when the underlying

hyperfield H is stringent, the conditions 𝟙 P 𝜆 ‘ 𝜇 and 𝟙 “ 𝜆 ‘ 𝜇 are equivalent. This

is because 𝜆, 𝜇 P H`, then they cannot be additive inverses of one another, implying

𝜆 ‘ 𝜇 is a singleton.

Let 𝑋 be a finite (multi)set of (not necessarily distinct) points tv1, . . . ,v𝑘u Ď H𝑑.

A convex combination of 𝑋 is an expression of the form

ð

vP𝑋

𝜆v d v Ď H𝑑 , 𝜆v P H` , 𝟙 P
ð

vP𝑋

𝜆v .

This occasionally denotes the set of all convex combinations of 𝑋 as

Δp𝑋q “
ď

𝜆vPH` , 𝟙P
Ð

vP𝑋 𝜆v

˜

ð

vP𝑋

𝜆v d v

¸

.

Note that unlike over fields, repetitions must be allowed in the set of points that a

combination is being taken of, as 𝜆1 d v ‘ 𝜆2 d v “ p𝜆1 ‘ 𝜆2q d v, but 𝜆1 ‘ 𝜆2 may be

a subset of H` rather than an element. If H is stringent, then this is not an issue as

𝜆1 ‘ 𝜆2 is always a singleton.

The following lemma shows a useful way to compute the convex hull of a set.

Lemma 6.4.10. The convex hull of 𝑉 is equal to the set of all finite convex combinations

of elements of 𝑉 , i.e.

convp𝑉q “ tx | x P Δp𝑋q , 𝑋 Ď 𝑉 finite multiset u

Proof. To begin it is shown that convp𝑉q must contain all finite convex combinations

of elements of 𝑉 . Let tv1, . . . ,v𝑘u Ď 𝑉 be a finite set of points in 𝑉 , possibly with

repetition. It is claimed via induction on 𝑘 that
Ð𝑘

𝑗“1 𝜆 𝑗v 𝑗 Ď convp𝑉q, where 𝜆 𝑗 P H`
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and 𝟙 P
Ð𝑘

𝑗“1 𝜆 𝑗 . For the base case 𝑘 “ 2, this holds by the definition of convex sets.

Assume that the claim holds for 𝑘 ´ 1. As

𝟙 P 𝜆1 ‘ ¨ ¨ ¨ ‘ 𝜆𝑘´1 ‘ 𝜆𝑘 “
ď

𝜆P𝜆1‘¨¨¨‘𝜆𝑘´1

𝜆 ‘ 𝜆𝑘 ,

there exists some 𝛾 P 𝜆1 ‘ ¨ ¨ ¨ ‘ 𝜆𝑘´1 such that 𝟙 P 𝛾 ‘ 𝜆𝑘 . Then

𝑘
ð

𝑗“1
𝜆 𝑗v 𝑗 “ 𝛾 d

˜

𝑘´1
ð

𝑗“1
𝜆 𝑗𝛾

´1v 𝑗

¸

‘ 𝜆𝑘v𝑘 . (6.4.11)

As H` is closed under hyperaddition and multiplication, note that 𝛾 P H` and so

𝜆 𝑗𝛾
´1 P H` also for all 𝑗 . Furthermore

𝟙 “ 𝛾 d 𝛾´1
P p

𝑘´1
ð

𝑗“1
𝜆 𝑗q d 𝛾´1

“

𝑘´1
ð

𝑗“1
𝜆 𝑗𝛾

´1 ,

and so by the induction hypothesis, it holds that
Ð𝑘´1

𝑗“1 𝜆 𝑗𝛾
´1v 𝑗 Ď convp𝑉q. By defini-

tion of convex sets, equation (6.4.11) must also be in convp𝑉q.

Conversely, it is shown that the set of finite convex combinations of 𝑉 forms a convex

set. By the minimality of convp𝑉q, this completes the proof. Let x “
Ð

vP𝑋 𝜆v d v and

y “
Ð

vP𝑌 𝛾v d v be finite convex combinations of points in 𝑉 , where 𝑋,𝑌 are finite

subsets of points of 𝑉 . By letting 𝜆v “ 𝟘 for v P 𝑌z𝑋 and 𝛾v “ 𝟘 for v P 𝑋z𝑌 , it can

be assumed that 𝑋 “ 𝑌 . Then for 𝛼, 𝛽 P H` such that 𝟙 P 𝛼 ‘ 𝛽, the following holds;

𝛼x ‘ 𝛽y P 𝛼

˜

ð

vP𝑋

𝜆v d v

¸

‘ 𝛽

˜

ð

vP𝑌

𝛾v d v

¸

“

˜

ð

v
𝛼𝜆v d v

¸

‘

˜

ð

v
𝛽𝛾v d v

¸

“
ð

v
p𝛼𝜆v ‘ 𝛽𝛾vq d v .

Note that as H` is closed under multiplication, each 𝛼𝜆v, 𝛽𝛾v P H`. Furthermore,

𝟙 P 𝛼 ‘ 𝛽 Ď 𝛼
`ð

𝜆v
˘

‘ 𝛽
`ð

𝜆v
˘

“
`
ð

𝛼𝜆v
˘

‘
`
ð

𝛽𝜆v
˘

“
ð

p𝛼𝜆v ‘ 𝛽𝜆vq .



6.4. CONIC AND CONVEX SETS OVER HYPERFIELDS 161

Therefore, the set of finite convex combinations of elements of 𝑉 is itself a convex

set. □

Lemma 6.4.12. Let H “ 𝐾{𝑈 where 𝐾 is an ordered field, and 𝑉 Ď H𝑑. If rxs P

convp𝑉q Ď H𝑑, then there exists x̃ P rxs and 𝑉 Ď 𝑉 ¨𝑈 such that 𝑥 P convp𝑉q Ď 𝐾𝑑.

Proof. As x P convp𝑉q, by Lemma 6.4.10 there exists a finite set of elements trv1s, . . . rv𝑘su Ď

𝑉 such that

rxs P

𝑘
ð

𝑖“1
r𝜆𝑖s d rv𝑖s , 𝟙 P

ð

r𝜆𝑖s .

By the quotient addition construction, this means that there exists 𝜆𝑖 “ 𝜆𝑖 ¨ 𝑟𝑖 P r𝜆𝑖s

for some 𝑟𝑖 P 𝑈 such that
ř𝑘
𝑖“1 𝜆𝑖 “ 1 over 𝐾. In particular, the representative can be

switched to 𝜆𝑖.

Considering the 𝑗-th coordinate of rxs, it can be seen that

r𝑥 𝑗 s P
ð

r𝜆𝑖s d r𝑣𝑖 𝑗 s “
ð

r𝜆𝑖 ¨ 𝑣𝑖 𝑗 s .

Again, by the quotient addition construction there must exist 𝑢𝑖 𝑗 P 𝑈 such that

𝑑
ÿ

𝑖“1
𝜆𝑖 ¨ 𝑣𝑖 𝑗 ¨ 𝑢𝑖 𝑗 “ 𝑥 𝑗 .

Therefore, picking ṽ𝑖 “ p𝑣𝑖1 ¨ 𝑢𝑖1, . . . , 𝑣𝑖𝑑 ¨ 𝑢𝑖𝑑q P rv𝑖s suffices. □

The next result will be an analogous version of Proposition 6.4.2 for convex sets.

The proof will follow a similar pattern but presented here to emphasis the conditions

on the positive scalars.

Proposition 6.4.13. Let 𝑓 : H1 Ñ H2 be a homomorphism of ordered hyperfields, and

𝑆 Ă H𝑑1 a finite set. Then 𝑓 pconvp𝑆qq Ď convp 𝑓 p𝑆qq.

Proof. Let x P convp𝑆q, then by Lemma 6.4.10, x P
Ð

sP𝑆 𝜆s d s, where 𝜆s P H`
1 and

Ð

𝜆s Q 𝟙. Then,

ñ 𝑓 pxq P 𝑓 p
ð

sP𝑆

𝜆s d sq

Ď
ð

𝑓 psqP 𝑓 p𝑆q

𝜆 𝑓 psq d 𝑓 psq , 𝜆 𝑓 psq “ 𝑓 p𝜆sq P H`
2 .
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Figure 6.3: Visual representation of Example 6.4.14 .

This is a convex combination over H2 as,

𝟙 “ 𝑓 p𝟙q P 𝑓
`
ð

sP𝑆

𝜆s
˘

Ď
ð

sP𝑆

𝑓 p𝜆sq “
ð

sP𝑆

𝜆 𝑓 psq.

Therefore, 𝑓 pxq P convp 𝑓 p𝑆qq. □

In a similar manner to conic sets over hyperfields the inclusion convp 𝑓 p𝑆qq Ď

𝑓 pconvp𝑆qq does not hold in general.

Example 6.4.14. Take 𝑆 “ tp8,´2q, p´2, 8qu Ď R2. Then, convp𝑆q is the line

connecting p8,´2q and p´2, 8q passing through the upper right quadrant. This

pushes forward as sgnpconvp𝑆qq “ tp´1, 1q, p0, 1q, p1, 1q, p1, 0q, p1,´1qu. Furthermore,

sgnp𝑆q “ tp1,´1q, p´1, 1qu, giving convpsgnp𝑆qq “ S2 as p1,´1q ‘ p´1, 1q “ S2. This is

depicted in Figure 6.3.

Even though the equality convp 𝑓 p𝑆qq “ 𝑓 pconvp𝑆qq is not true in general, presented

next is a result for convex sets which is analogous to Corollary 6.3.4.

Lemma 6.4.15. Take the quotient map, r¨s : HÑ H{𝑈 and 𝑆 Ď H𝑑, then

convpr𝑆sq “
ď

𝑓 p𝑆q“ 𝑓 p𝑇q

rconvp𝑇qs.

Proof. By Proposition 6.4.13,
ď

𝑓 p𝑆q“ 𝑓 p𝑇q

rconvp𝑇qs Ď convpr𝑆sq.

Then, by Lemma 6.4.12,

convpr𝑆sq Ď
ď

𝑓 p𝑆q“ 𝑓 p𝑇q

rconvp𝑇qs.

□
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Proposition 6.4.16. The intersection of convex sets over H𝑑 is convex.

Proof. Let 𝑆1, . . . , 𝑆𝑛 Ď H𝑑 be convex sets. If
Ş𝑛
𝑖“1 𝑆𝑖 “ H or is a singleton, then

trivially convex. Say,
ˇ

ˇ

Ş𝑛
𝑖“1 𝑆𝑖

ˇ

ˇ ą 1, take x,y P
Ş𝑛
𝑖“1 𝑆𝑖. Then, 𝜆x ‘ 𝜇y Ď 𝑆𝑖, for all

𝜆, 𝜇 ě 𝟘 such that 𝜆 ‘ 𝜇 Q 𝟙. This implies that 𝜆x ‘ 𝜇y Ď
Ş𝑛
𝑖“1 𝑆𝑖, hence convex. □

Proposition 6.4.17. For a linear polynomial 𝑝, H`p𝑝q is convex.

Proof. This is a direct consequence of Theorem 6.4.7. □

Unlike open halfspaces, closed halfspaces are not convex. It is useful to note that the

definitions of conic and convex align over S. As the only possible positive scalar is 1,

and 1 ‘ 1 “ 1.

Example 6.4.18. Let 𝑝 “ ´𝑋 ‘ 𝑌 P Sr𝑋,𝑌 s, the closed halfspace and variety defined

by 𝑝 are;

H`p𝑝q “ tp´1,´1q, p0, 0q, p1, 1q, p´1, 1q, p0, 1q, p´1, 0qu.

𝑉p𝑝q “ tp´1,´1q, p0, 0q, p1, 1qu Ď H`p𝑝q

Then, p1, 1q ‘ p´1,´1q “ S2 Ę 𝑉p𝑝q and hence, p1, 1q ‘ p´1,´1q “ S2 Ę H`p𝑝q.

Demonstrating that neither 𝑉p𝑝q or H`p𝑝q are convex for 𝑝 “ ´𝑋 ‘ 𝑌 , and hence not

in general either.

Remark 6.4.19. In particular, this example demonstrates that in contrast to the classical

setting, linear hyperplanes are not convex. This emphasises the nuances of convex

geometry over hyperfields.

The next step is to use the property that open halfspaces for linear polynomials are

convex to show that open halfspaces for affine polynomials are also convex.

Lemma 6.4.20. Let 𝑝 “ 𝑎0 ‘ 𝑎1 d 𝑥1 ‘ ¨ ¨ ¨ ‘ 𝑎𝑛 d 𝑥𝑛 be a affine polynomial over

stringent H. Then, H`p𝑝q is convex.

Proof. The open halfspace is defined as;

H`
p𝑝q : “ tx P H𝑑 : 𝑎0 ‘ 𝑎1 d 𝑥1 ‘ ¨ ¨ ¨ ‘ 𝑎𝑑 d 𝑥𝑑 ą 𝟘u
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“ tx̃ “ p𝟙,xq P H𝑑`1 :
𝑑
ð

𝑖“0
𝑎𝑖 d 𝑥𝑖 ą 𝟘u

“
␣

y P H𝑑`1 :
𝑑
ð

𝑖“0
𝑎𝑖 d 𝑦𝑖 ą 𝟘

(

č

␣

y : 𝑦1 “ 𝟙
(

The set on the left is a open halfspace for a linear polynomial in H𝑑`1 and by Proposition

6.4.17 this is convex. The set on the right is equal to the variety, 𝑉p𝑦1 ‘ ´𝟙q. In general

in has been shown that varieties are not convex, but it will be shown that 𝑉p𝑦1 ‘ ´𝟙q

is convex. Take s,w P 𝑉p𝑦1 ‘ ´𝟙q, giving 𝑠1 “ 𝑤1 “ 𝟙. As H is stringent the positive

scalars must be equal to 𝟙, explicitly 𝜆 ‘ 𝜇 “ 𝟙. This gives,

𝜆𝑠1 ‘ 𝜇𝑤1 “ p𝜆 ‘ 𝜇q𝟙 “ 𝟙 d 𝟙 “ 𝟙.

Therefore, p𝜆s ‘ 𝜇wq1 “ 𝟙, independent of whether the other coordinates produce sets.

Thus, p𝜆s ‘ 𝜇wq P 𝑉p𝑦1 ‘ ´𝟙q and hence convex. Then, by Proposition 6.4.16, H`p𝑝q

is convex, as it is the intersection is convex sets. □

Proposition 6.4.21. Let 𝑆 Ď H𝑑, where H is stringent, then

convp𝑆q Ď
č

𝑆ĎH`p𝑝q

H`
p𝑝q.

Proof. By Proposition 6.4.17 and Lemma 6.4.20 each H`p𝑝q, whether defined by a

linear or affine polynomial, is a convex set containing 𝑆. By Proposition 6.4.16, the

intersection of these hafspaces is convex. By definition convp𝑆q is the smallest convex

set containing 𝑆, hence giving the inclusion. □

6.5 Radon’s, Helly’s and Carathéodory’s Theorems

This section will investigate generalisations of three theorems of classical convex ge-

ometry: Radon’s, Helly’s and Carathéodory’s. The main technique, as prominent

throughout the work so far, will be to lift back to an ordered field where the manipula-

tion is more concrete, then push-forward back to the hyperfield. Firstly, the theorems

are recalled over ordered field in general and then these are used to relate to hyperfields

admitting a order preserving morphism from the ordered field.
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6.5.1 Theorems over Ordered Fields

Radon’s, Helly’s and Carathéodory’s theorems over ordered fields are recalled (and

proven). Note that the proofs are practically identical over an arbitrary ordered field to

the proofs over R, however this has not been documented to the authors knowledge. Also

note that this is unusual for theorems in convex geometry, as it makes no assumption

on the existence of a metric. The proofs are included for completeness. Throughout

the following, let 𝐾 be an arbitrary ordered field.

Theorem 6.5.1 (Radon’s Theorem). Let 𝐾 be an ordered field and tx1, . . . , x𝑑`2u Ă 𝐾𝑑.

Then there exists a point p P 𝐾𝑑 and a nonempty subset 𝐼 Ď r𝑑 ` 2s such that

p P convpx𝑖 | 𝑖 P 𝐼q X convpx 𝑗 | 𝑗 R 𝐼q .

Proof. Let 𝜆1, . . . , 𝜆𝑑`2 P 𝐾 be a non-zero solution to the following system of 𝑑 ` 1

linear equations in 𝑑 ` 2 unknowns:
𝑑`2
ÿ

𝑖“1
𝜆𝑖 “ 0 ,

𝑑`2
ÿ

𝑖“1
𝜆𝑖x𝑖 𝑗 “ 0 , 1 ď 𝑗 ď 𝑑 .

Let 𝐼 “ t𝑖 | 𝜆𝑖 ą 0u and set

p “
ÿ

𝑖P𝐼

𝜆𝑖

𝛾
x𝑖 “

ÿ

𝑗R𝐼

´𝜆 𝑗

𝛾
x 𝑗 ,

where 𝛾 “
ř

𝑖P𝐼 𝜆𝑖 “ ´
ř

𝑗R𝐼 𝜆 𝑗 . Note that 𝛾 is positive as the sum of positive elements,

and so the coefficients 𝜆𝑖{𝛾 are all positive for 𝑖 P 𝐼 and sum to one. Similarly, 𝜆 𝑗 are all

negative for 𝑗 R 𝐼 and so ´𝜆 𝑗{𝛾 are all positive and sum to one. Therefore, p suffices

as the point in the statement. □

Theorem 6.5.2 (Helly’s Theorem). Let 𝑋1, . . . , 𝑋𝑛 be a finite collection of convex sets

in 𝐾𝑑, with 𝑛 ě 𝑑 ` 1. The intersection of each 𝑑 ` 1 collection of sets is non-empty if

and only if the intersection of all the sets is non-empty.

Proof. Note that as one direction is trivially true, it suffices to show each 𝑑 ` 1

intersection is non-empty implies the whole intersection is non-empty. Proceeding by

induction on 𝑛; note that 𝑛 “ 𝑑 ` 1 is trivially true, so take 𝑛 “ 𝑑 ` 2 as the base case.
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For 1 ď 𝑗 ď 𝑑 ` 2, there exists some x 𝑗 P
Ş

𝑖‰ 𝑗 𝑋𝑖. By Radon’s theorem, an 𝐼 Ă r𝑑 ` 2s

can be found such that

p P convpx𝑖 | 𝑖 P 𝐼q X convpx 𝑗 | 𝑗 R 𝐼q .

If 𝑖 P 𝐼, then 𝑥 𝑗 P 𝑋𝑖 for all 𝑗 R 𝐼, and so convpx 𝑗 | 𝑗 R 𝐼q Ď 𝑋𝑖 by convexity. The

same argument shows if 𝑗 R 𝐼 then convpx𝑖 | 𝑖 P 𝐼q Ď 𝑋 𝑗 . This implies p P 𝑋𝑖 for all

1 ď 𝑖 ď 𝑑 ` 2, and so p P
Ş𝑑`2
𝑖“1 𝑋𝑖.

For the induction step, 𝑋𝑛´1 and 𝑋𝑛 can be replaced with 𝑋𝑛´1 X 𝑋𝑛: this set is

non-empty and convex and so the induction hypothesis completes the proof. □

Remark 6.5.3. Over R, Helly’s theorem can be strengthened to an infinite version,

provided that the convex sets are also compact. Topological concerns are more intricate

over arbitrary ordered fields: in general, a metric cannot be placed on 𝐾 as done

in R, see [Dob00]. Therefore, only the finite version is discussed, which requires no

compactness condition.

Theorem 6.5.4 (Carathéodory’s Theorem). Let 𝑉 Ď 𝐾𝑑. If x P convp𝑉q, then x can

be written as a convex combination of at most 𝑑 ` 1 points in 𝑉 .

Proof. As x P convp𝑉q, it can be written as a finite convex combination. Suppose that

it can expressed as the convex combination x “
ř𝑘

𝑗“1 𝜆 𝑗v 𝑗 where 𝑘 ą 𝑑 ` 1 is minimal,

i.e. 𝜆 𝑗 ą 0 for all 𝑗 . The vectors v2 ´ v1, . . . ,v𝑘 ´ v1 must be linearly independent,

therefore there exist 𝛾2, . . . , 𝛾𝑘 P 𝐾 not all zero such that
𝑘
ÿ

𝑗“2
𝛾 𝑗pv 𝑗 ´ v1q “ 0 .

Setting 𝛾1 “ ´
ř𝑘

𝑗“2 𝛾 𝑗 gives us a linear dependence
ř𝑘
𝑖“1 𝛾𝑖v𝑖 “ 0 such that the sum

of the scalars is zero. As 𝛾𝑖 are not all zero, there exists at least one such that 𝛾𝑖 ą 0.

Define

𝛼 “ min
1ď𝑖ď𝑘

"

𝜆𝑖

𝛾𝑖
| 𝛾𝑖 ą 0

*

“
𝜆ℓ

𝛾ℓ
ą 0 .

Note that

x “

𝑘
ÿ

𝑖“1
𝜆𝑖v𝑖 ´ 𝛼

˜

𝑘
ÿ

𝑖“1
𝛾𝑖v𝑖

¸

“

𝑘
ÿ

𝑖“1
p𝜆𝑖 ´ 𝛼𝛾𝑖qv𝑖 , (6.5.5)
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where the sum of the coefficients 𝜆𝑖 ´ 𝛼𝛾𝑖 is one. Furthermore

𝜆𝑖 ´ 𝛼𝛾𝑖 ě 𝜆𝑖 ´
𝜆𝑖

𝛾𝑖
𝛾𝑖 “ 0 , 1 ď 𝑖 ď 𝑘

with 𝜆ℓ ´ 𝛼𝛾ℓ “ 0. Therefore, the ℓ-th term from (6.5.5) can be removed, giving x as a

convex combination of 𝑘 ´ 1 points, a contradiction. □

6.5.2 Pushing Forward to Ordered Hyperfields

In this section, the previous theorems over ordered fields are used to prove the corre-

sponding results for ordered quotient hyperfields.

Theorem 6.5.6. Let H be an ordered hyperfield, 𝐾 an ordered field and 𝑓 : 𝐾 Ñ H

a surjective order-preseriving homomorphism between them. Let tx1, . . . , x𝑑`2u Ď H𝑑,

then there exists a point p P H𝑑 and a nonempty subset 𝐼 Ď r𝑑 ` 2s such that

p P convpx𝑖 | 𝑖 P 𝐼q X convpx 𝑗 | 𝑗 R 𝐼q .

Proof. For each x𝑖, take some lift x̃𝑖 P 𝑓´1px𝑖q. By Radon’s theorem for ordered fields,

there exists some non-empty 𝐼 Ă r𝑑 ` 2s such that there exists some p̃ that can be

written as two different convex combinations:

p̃ “
ÿ

𝑖P𝐼

𝜆𝑖x̃𝑖 “
ÿ

𝑗R𝐼

𝛾 𝑗 x̃ 𝑗 .

Then,

p̃ P convpx̃𝑖 | 𝑖 P 𝐼qXconvpx̃ 𝑗 | 𝑗 R 𝐼q ñ 𝑓 pp̃q P 𝑓 pconvpx̃𝑖 | 𝑖 P 𝐼qqX 𝑓 pconvpx̃ 𝑗 | 𝑗 R 𝐼qq,

which by Proposition 6.4.13 gives,

p “ 𝑓 pp̃q P convp 𝑓 px̃𝑖q | 𝑖 P 𝐼q X convp 𝑓 px̃ 𝑗q | 𝑗 R 𝐼q

“ convpx𝑖 | 𝑖 P 𝐼q X convpx 𝑗 | 𝑗 R 𝐼q.

□

Lemma 6.5.7. Let 𝑓 : H1 Ñ H2 be an order preserving hyperfield homomorphism.

Take 𝑆 Ď H𝑑2, then 𝑓´1pconvp𝑆qq is convex.
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Proof. Let 𝐶 denote 𝑓´1pconvp𝑆qq, then for x,y P 𝐶,

𝑓 p𝜆x ‘ 𝜇yq Ď 𝑓 p𝜆q d 𝑓 pxq ‘ 𝑓 p𝜇q d 𝑓 pyq.

As 𝑓 p𝜆q ą 𝟘2 and 𝑓 p𝜇q ą 𝟘2 and 𝑓 pxq, 𝑓 pyq P convp𝑆q, along with 𝟙1 P 𝜆 ‘ 𝜇, then

𝟙2 “ 𝑓 p𝟙1q P 𝑓 p𝜆 ‘ 𝜇q Ď 𝑓 p𝜆q ‘ 𝑓 p𝜇q. This implies 𝑓 p𝜆x ‘ 𝜇yq Ď convp𝑆q. Therefore,

𝐶 is convex. □

Theorem 6.5.8. Let H be an ordered hyperfield, 𝐾 an ordered field and 𝑓 : 𝐾 Ñ H a

surjective order-preseriving homomorphism between them. Let 𝑋1, . . . , 𝑋𝑛 be a finite

collection of convex sets in H𝑑, with 𝑛 ě 𝑑` 1. The intersection of each 𝑑` 1 collection

of sets is non-empty if and only if the intersection of all the sets is non-empty.

Proof. The pre-image of a convex set is convex by Lemma 6.5.7, thus 𝑌1, . . . , 𝑌𝑛, where

𝑌𝑖 “ 𝑓´1p𝑋𝑖q, are convex sets over 𝐾𝑑. If the intersection of each 𝑑 ` 1 collection of

𝑋1, . . . , 𝑋𝑛 is non-empty over H𝑑, then this is also the case for 𝑌1, . . . , 𝑌𝑛. Then, by

Theorem 6.5.2, the intersection of the complete collection is non-empty, i.e.

H ‰ 𝐴 “

𝑛
č

𝑖“1
𝑌𝑖 .

Yielding,

H ‰ 𝑓 p𝐴q “

𝑛
č

𝑖“1
𝑓 p𝑌𝑖q “

𝑛
č

𝑖“1
𝑋𝑖 .

□

Remark 6.5.9. The existence of an order preserving hyperfield homomorphism from

an ordered field to a ordered stringent hyperfield can be proven by the classification

in Section 6.2.1. It is stated that every ordered stringent hyperfield is the quotient

of a ordered field, thus a quotient map exists from the ordered field to the stringent

ordered hyperfield. This map is order preserving when multiplicative subgroup 𝑈 is

contained in the order. As [KLS21, Theorem 3.4] shows that |𝜒p𝐾{𝑈q| “ |𝜒p𝐾 | 𝑈q|,

there is an order that contains 𝑈. Hence, by Lemma 6.3.11 this compatible map is

order preserving.



6.5. RADON’S, HELLY’S AND CARATHÉODORY’S THEOREMS 169

Theorem 6.5.10. Let H “ 𝐾{𝑈 be a hyperfield, where 𝐾 is an ordered field. Let

𝑉 Ď H𝑑. If x P convp𝑆q, then x can be written as a convex combination of at most 𝑑` 1

points in 𝑆.

Proof. By Lemma 6.4.12, lift x P convp𝑆q to x̃ P convp𝑆q. By Theorem 6.5.4, x̃ can be

written as,

x̃ “

𝑑`1
ÿ

𝑗“1
𝜆 𝑗 ¨ 𝑠𝑖 𝑗 .

where 𝑠𝑖 𝑗 P 𝑆. This implies,

x “ rx̃s “

”

𝑑`1
ÿ

𝑗“1
𝜆 𝑗 ¨ 𝑠𝑖 𝑗

ı

Ď

𝑑`1
ð

𝑗“1
r𝜆 𝑗 s d r𝑠𝑖 𝑗 s.

Where r𝜆 𝑗 s P 𝑆, and 1 “
ř𝑑`1

𝑗“1 𝜆 𝑗 gives 𝟙 P ‘
𝑑`1
𝑗“1r𝜆 𝑗 s. Thus, x can be written as a

convex combination of at most 𝑑 ` 1 points in 𝑆 □

6.5.3 Applications of Convex Geometry over Hyperfields

Convex geometry over hyperfields in it’s present state has applications as a general

algebraic framework and meaningful future aims as a tool to be applied in linear pro-

gramming.

Firstly, the contributions presented in this chapter can be viewed as a general algebraic

framework which encompasses several recent areas of interest. The tropical semi-ring

has limitations for studying convexity, the lack of subtraction being a key one. There-

fore, recently the study of convexity has required an extended foundation to progress.

This includes tow distinct directions: signed tropical convexity in [LV19] and [LS22],

and higher rank tropical geometry, for example in [JS18]. It can be seen that convex

geometry over hyperfields is a generalisation of both.

More concretely, under the classification of stringent ordered hyperfields in section 6.2.1

both signed and higher rank versions of the tropical setting can be constructed. The

signed tropical hyperfield can be seen as TR “ S¸R and higher rank tropical geometry
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can be seen as K¸R𝑛. Moreover, it also encompasses tropical and classical convexity in

an analogous way. Thus, the progress in this section can be seen to build on, encompass

and generalise these works. This demonstrates where convex geometry can be seen in

action.

Secondly, in long term aspirations there is hope to apply these tools and techniques to

contribute to complexity problems in linear programming and optimisation. This will

require more substantial work and significant effort to fully connect these theories, but

it is hoped that the work will continue to strive forward in this direction.

6.6 Further Questions

To conclude, there is a discussion of the open questions and paths for future research

regarding convex geometry over ordered hyperfields. The work outlined in this chapter

is an ongoing project with B.Smith and the following are the possible suggested areas

for future investigation.

In classical group theory the following theorem classifies linearly ordered groups.

Theorem 6.6.1 (Hahn’s Embedding Theorem). Every linearly ordered abelian group 𝐺

can be embedded as an ordered subgroup of the additive group R𝑘 with the lexicographical

ordering.

Can one give a hypergroup analogue of Hahn’s embedding theorem? This would

build on the classification of ordered hyperfields in Section 6.2.1.

There is now a workable definition of vector spaces over H. Is it possible to develop a

theory of matrices over hyperfields and connect this, as done classically, to the vector

space definition. This is motivated by the link between linear programming and optimi-

sation and then classical matrix theory.
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Furthermore, there are many results for matrices over tropical-like semirings, see

[AGG09] and [AGG14]. Using the correspondence between hyperfields and (T-)semirings,

can one recover these results for hyperfields? There are three distinct notions of rank of

a tropical matrix, see [MS15, Section 5.3]. Do these align over hyperfields?

Finally, the main aim of future research on convex geometry over hyperfields is to study

separation theorems. for example, does it hold that there exists a hyperplane that

separates disjoint convex sets over hyperfields? There are a range of theorems in this

area which are yet to be studied over hyperfields.
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Chapter 7

Open Questions and Future Aims

This section highlights the key open questions from each section of this work and

presents potential areas for future research.

Chapter 2: Hyperfield Zoo

There is a single gap, and hence one open question, in Table 2.1.

Question 7.0.1. Is there a way to express TC as the quotient of a field/hyperfield?

Chapter 3: Generalising Kapranov’s Theorem

To give a more detailed description of RAC maps it would be essential to understand how

to fully characterise them. This could be by further examples, or linking the inheritance

property to a well studied property, such as the doubly distributive property.

Question 7.0.2. Are there any other non-trivial examples of RAC hyperfield homo-

morpshims?

Question 7.0.3. Do doubly distributive hyperfields satisfy the inheritance property?

One way to further progress the knowledge of RAC maps and hyperfields would be

to deconstruct the confusion regarding the classification of hyperfields satisfying the

multiplicity bound.

Question 7.0.4. Does the multiplicity bound hold in general for doubly distributive

hypefields?

173



174 CHAPTER 7. OPEN QUESTIONS AND FUTURE AIMS

Chapter 4: Polynomials Over Quotient Hyperfields

There is a broad area of possible research stemming from this chapter. The work

presented here suggests that instead of computing varieties of single polynomials and

pushing forward through hyperfield homomorphisms, it makes mathematical sense to

use the information stored in the ideal generated by the polynomial to precisely cut out

the corresponding points over the hyperfield. Equally, rather than exploring Kapranov’s

theorem, there should be a view to investigate a generalise fundamental theorem of

tropical geometry.

Question 7.0.5. Can a version of the fundamental theorem of tropical geometry be

stated in general for a class of hyperfield homomorphism?

Chapter 5: Equivalence of Tropical Ideals

The matroidal structure of tropical ideals is preserved after acting on them with certain

actions, as seen in [MR18] and [MR20]. One way to develop the theory introduced here

would be to see how matroidal equivalence is affected by these actions.

Question 7.0.6. How does matroidal equivalence interact with taking the initial form,

homogenisation and saturation of the ideals?

Currently, matroidal equivalence is composed of three axioms. It would be natural to

investigate if they are all necessary, and whether matroidal equivalence is coarser than

relations based on a single axiom.

Question 7.0.7. How does matroidal equivalence compare, as a relation, to each

individual axiom taken independently?

The motivation for introducing matroidal equivalence was to understand where the

geometric objects defined by tropical ideals should be associated with each other. The

natural question is then to understand how the geometric objects are connected to one

another when they are matroidally equivalent. One possible tool that could be utilised

to understand this is the idea of tropical modifications, see [Kal15] and [CM16].

Question 7.0.8. Can matroidal equivalence be connected with tropical modification?
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In more long term aspirations, once this theory has been sufficiently developed for

tropical ideals, can this then be extended to hyperfields. More explicitly, defining ideals

over hyperfields by the matroidal structure and generalising the equivalence to study

them.

Question 7.0.9. Can matroidal equivalence be utilised to study a coherent notion of

polynomial ideals over hyperfields?

Chapter 6: Convex Geometry over Hyperfields

The initial motivation to studying convex geometry over hyperfields came from the pro-

gression of tropical and signed tropical convex geometry, [DS03] and [LV19] respectively.

Along with the applications convex geometry has linear programming and optimisation.

It would be productive to make a concrete link between the theory presented here and

the literature and its applications.

The work done in [LV19] comments on separation for signed tropical convexity. Although,

thus far there has been no presentation of a generalised version of any separation

theorems over hyperfields analogous to the classical or signed tropical theory. This

would be an interesting direction to spend time investigating further.

Question 7.0.10. Can there be a formulation of separation theorems over ordered

stringent hyperfields?

In classical convex geometry there are colourful version of Radon’s, Helly’s and

Caratheodory’s theorems, see [BO95] and [BO96]. As the standard versions have

been generalised to hyperfields in this work it would be natural to explored the colourful

versions.

Question 7.0.11. Do the colourful versions of Radon’s, Helly’s and Caratheodory’s

theorems hold over hyperfields admitting an ordered preserving map from an ordered

field?

In section 6.2.1, there is a classification of ordered stringent hyperfields using results

given in [BS20]. In classical group theory Hahn’s theorem gives a precise description of
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ordered groups in relation to an embedding into R𝑘 , see Theorem 6.6.1 for details. To

further classify ordered hyper-structures it would be of interest to investigate whether a

results analogous to this holds for hypergroups.

Question 7.0.12. Can a hypergroup analogue of Hahn’s embedding theorem be stated?

Classical convexity theory is connected to linear programming and optimisation

problems. These are regularly phrased in terms of matrices. One direction for future

study would be to develop a theory of matrices over hyper-structures.

Question 7.0.13. Can a theory of matrices be developed over hyperfields that unifies

the ideas of classical and tropical matrices?
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[AGG09] Marianne Akian, Stéphane Gaubert, and Alexander Guterman. Linear inde-

pendence over tropical semirings and beyond. Contemporary Mathematics,

495(1):1–38, 2009.
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