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ABSTRACT

3D Medical Image Lossless Compressor Using Deep Learning Approaches
Omniah Hussain Jameel Nagoor

The ever-increasing importance of accelerated information processing, communica-
tion, and storing are major requirements within the big-data era revolution. With the
extensive rise in data availability, handy information acquisition, and growing data
rate, a critical challenge emerges in e�cient handling. Even with advanced technical
hardware developments and multiple Graphics Processing Units (GPUs) availability,
this demand is still highly promoted to utilise these technologies e�ectively. Health-
care systems are one of the domains yielding explosive data growth. Especially when
considering their modern scanners abilities, which annually produce higher-resolution
and more densely sampled medical images, with increasing requirements for massive
storage capacity. The bottleneck in data transmission and storage would essentially be
handled with an e�ective compression method. Since medical information is critical
and imposes an influential role in diagnosis accuracy, it is strongly encouraged to
guarantee exact reconstruction with no loss in quality, which is the main objective of
any lossless compression algorithm. Given the revolutionary impact of Deep Learning
(DL) methods in solving many tasks while achieving the state of the art results, includ-
ing data compression, this opens tremendous opportunities for contributions. While
considerable e�orts have been made to address lossy performance using learning-based
approaches, less attention was paid to address lossless compression. This PhD thesis
investigates and proposes novel learning-based approaches for compressing 3D medical
images losslessly.

Firstly, we formulate the lossless compression task as a supervised sequential
prediction problem, whereby a model learns a projection function to predict a target
voxel given sequence of samples from its spatially surrounding voxels. Using such 3D
local sampling information e�ciently exploits spatial similarities and redundancies in
a volumetric medical context by utilising such a prediction paradigm. The proposed
NN-based data predictor is trained to minimise the di�erences with the original data
values while the residual errors are encoded using arithmetic coding to allow lossless
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reconstruction.

Following this, we explore the e�ectiveness of Recurrent Neural Networks (RNNs)
as a 3D predictor for learning the mapping function from the spatial medical domain
(16 bit-depths). We analyse Long Short-Term Memory (LSTM) models’ generalisabil-
ity and robustness in capturing the 3D spatial dependencies of a voxel’s neighbourhood
while utilising samples taken from various scanning settings. We evaluate our proposed
MedZip models in compressing unseen Computerized Tomography (CT) and Magnetic
Resonance Imaging (MRI) modalities losslessly, compared to other state-of-the-art
lossless compression standards.

This work investigates input configurations and sampling schemes for a many-to-
one sequence prediction model, specifically for compressing 3D medical images (16
bit-depths) losslessly. The main objective is to determine the optimal practice for
enabling the proposed LSTM model to achieve a high compression ratio and fast
encoding-decoding performance. A solution for a non-deterministic environments
problem was also proposed, allowing models to run in parallel form without much
compression performance drop. Compared to well-known lossless codecs, experimental
evaluations were carried out on datasets acquired by di�erent hospitals, representing
di�erent body segments, and have distinct scanning modalities (i.e. CT and MRI).

To conclude, we present a novel data-driven sampling scheme utilising weighted
gradient scores for training LSTM prediction-based models. The objective is to
determine whether some training samples are significantly more informative than
others, specifically in medical domains where samples are available on a scale of
billions. The e�ectiveness of models trained on the presented importance sampling
scheme was evaluated compared to alternative strategies such as uniform, Gaussian,
and sliced-based sampling.
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Introduction

“The key to artificial intelligence has always been

the representation.”
—Je� Hawkins

1.1 Motivations

One of the biggest challenges in the big data and machine intelligence era is handling,
understanding, storing and transmitting information e�ciently. Such challenges led
to vast fields of sciences to study and potentially expand on di�erent levels. The
increasing amount of data production can be e�ectively reduced by employing a coder
algorithm. Reproducing information into more compact representations by utilising
some knowledge or underlying structures known as data compression. This field of
science is essential in many domain applications, including medical imaging. Given the
large-scale of generated volumes, high scanning quality, and explosive annual growth
of hospital data, the demand for developing e�cient and robust algorithms rises. As
these data are digitally available and archived, this creates numerous opportunities
and requirements for designing intelligent algorithms not only for transmitting and
storing but also for other tasks such as analysing, segmenting, classifying, or object
detecting [19].

When examining the growing pace of medical scan acquisitions within the last
decade, it is noticeable that the scanning productions are on the scale of millions in
the UK alone for each year, as illustrated in Fig. 1.1. According to the Diagnostic
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Figure 1.1: A summary overview demonstrates the growing pace of medical scans
acquisition for the last decade (from 2013 to 2021) in the UK alone, according to
the Diagnostic Imaging Dataset Statistical Release reports published by NHS. These
statistical reports contain records across all types of medical imaging with various
modalities, including Computed Tomography (CT), Magnetic Resonance Imaging
(MRI), Plain Radiography (X-Ray), and Ultrasound.

Imaging Dataset Statistical Release published by NHS, these statistical reports contain
annual records across all types of imaging with various modalities, including Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), Plain Radiography (X-Ray),
and Ultrasound [20–28]. Such precise high-resolution medical images are vital for
patient evaluation, diagnosis, and clinical applications. 3D advanced imaging has
further been used to diagnose injuries, dysfunction or pathology, prognostic, and
therapeutic decision-making for the medical and biomedical professions, including
preoperative planning [29]. However, these images pose a substantial technical chal-
lenge from their ample storage requirements. Furthermore, due to data reliability
and accuracy, it is not recommended to use lossy compression procedures for these
domain-specific tasks, especially for clinical purposes. Since any loss in the original
data may introduce artifacts, a�ect diagnoses performance, leading to misleading
diagnoses, or unfavourable treatment [30,31].

Most of the current state-of-the-art classical lossless codecs rely on hand-crafted
or linear transformations, which have limited capacity in representing non-linear data
distributions and correlations. On the other hand, deep learning techniques accomplish
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remarkable gains in representing non-linearity and likelihood data estimation in many
domain applications, including compression. Over the last decade, the use of machine
learning methods has been widespread, given its impressive ability to learn and solve
tasks within numerous areas. Examples of non-linear learned mapping functions
include discovering underlying geometric structures, localised correlated features,
complicated patterns, and inferencing implicit information. Leveraging the strength
of learning-based approaches in lossless data reduction opens numerous opportunities
in solving domain-specific applications but is not restricted to volumetric medical
images, satellite images, and high-resolution videos [32–34].

The research development on compression utilising learning-based methods forms
a promising research direction, especially when considering the growing volume of
large-scale digitised images. Given its models’ ability to map non-linearity, estimate
higher-dimensional data distributions, learn di�erentiable mapping functions, learning
capacity, and generalisability, designing novel methods in this current trend forms
great research potential. While a considerable e�ort has been made to address lossy
performance using neural networks, less attention was paid to performing lossless
compression. However, this area is gaining more popularity and contributions in the
recent deep learning literature. Thus, the overarching motivation for this thesis aims
to continue the current trend in exploring the production of novel learning-based
methods, specifically for the domain of 3D medical imaging lossless reduction.

A large-scale model with deeply stacked layers is commonly utilised within the deep-
learning domain, specifically in image analysis and features recognition breakthroughs
tasks (e.g. image classifications or object detection). For instance, most state-of-the-
art models (e.g. AlexNet [35], VGG16 [36], or ResNet101 [37]) are relatively large
in models’ size (i.e. over 100MB). While these SOTA models produce consistently
well-performing results, optimising all weight parameters during training would take
time to tune, even with high-capability GPUs. Likewise, similar challenges arise when
examining learning-based models utilised for data compression regardless of the sought
compression quality (i.e. lossy or lossless). Such a process may take days or up to
weeks to be completed, depending on how deep and large the model’s architecture
is. Thus, smaller network architectures are often more desirable when considering
the bottleneck of disk and bandwidth limitations. Therefore, we aim to propose
learning-based solutions that are relatively small, making training faster to complete
while still retaining a better compression performance by utilising localised structures
and patterns within context.

One of the contributions that we seek in this thesis is selecting a representative
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training subset by developing a new sampling methodology. The primary intent is to
select a lower quantity of points while maintaining information for e�ciently training a
learning-based model. More than a billion candidate samples are available for training
when formulating the compression task as a sequence prediction problem at a voxel
scale. Subsampling to reduce training space forms a challenging yet highly demanded
active area of research within the deep learning literature. Such development aims
to optimise the training time by reducing computation cost and error rate while
increasing convergence rate and training stability. Contributions to this research
field can notably assist further numerous domains such as multi-agent systems [38],
human-annotated labelling [39], and e�cient subsampling of other domain-specific
distributions [38,40–42]. Thus, we aim to introduce a novel methodology for an o�ine
data-driven subsampling scheme that increases the learned content and evaluation
performance while reducing the training space.

1.2 Thesis Statement

“Deep Learning Can Make The Lossless Compression of 3D Medical Image

Practically E�cient and E�ective.”
The research questions that are answered to validate the thesis statement and

achieve the objectives are:

1. Does involving learning-based strategies for coding medical volumes losslessly
lead to higher bit-reduction?
Addressed in Chapter 4, Publication Outcome: [43].

2. Would the use of a compact learning-based sequence prediction model practically
lead to better generalisability and higher compression performance?
Addressed in Chapter 5, Publication Outcome: [44].

3. To what extent can the learning-based sequence prediction codec be practically
enhanced through the use of distinct local sampling grid options?
Addressed in Chapter 6, Publication Outcome: [45].

4. Is there a sampling selection scheme that draws critical training samples, and
empirically causes a better learning-based codec performance?
Addressed in Chapter 7.
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1.3 Objectives and Contributions

The current common process of reducing large-scale volumetric datasets is done by
applying one of the state-of-the-art classical methods (e.g. JPEG-LS), which relies
on handcrafted transformations with limited capacity in representing non-linearity
and are generally practically ine�cient. Compared to these limitations, facilitating
learning-based approaches is more promising, given its remarkable breakthroughs
in solving many domain problems. When leveraging a pre-trained learning model,
generalisability is often gained across unseen datasets, forming one of its outstanding
features.

To this end, this work’s overall objective is to develop novel learning-based com-
pression frameworks that e�ciently and practically reduce the storage requirements of
volumetric medical images losslessly within healthcare systems. Such an encoding-
decoding strategy would e�ectively represent the digitised volumes at lower bit rates
without losing any essential information, allowing the hospital’s archiving system to
gain more savings in storage. More benefits are related to bandwidth and communica-
tion services, allowing practical and rapid data transmission. The proposed mechanism
exploits not only redundant information but also guarantees exact reconstruction
without a�ecting the quality of the original volumes while preserving scans’ precision.
In clinical applications, recovering the ground truth images from the compact repres-
entations would allow radiologists to examine scans precisely without influencing the
overall diagnosis performance as no artifacts or noise would be introduced.

We seek to o�er deep learning models that understand and exploit voxels’ spatial
features and correlations in reducing the bit rate of those large-scale scans. We also
comprehensively study the outcomes of aggregating various causal neighbouring local-
isation options (i.e. over di�erent dimensions and coverages) on the model’s learned
mapping function performance (i.e. compression ratio and time). The architectures of
the learning-based proposed solutions are chosen to be relatively small in scale, optim-
ising not only the bottleneck of disk and bandwidth limitations but also the model’s
training time. Many enhancements to the framework’s procedure were gradually
introduced to grant a rapid encoding-decoding mechanism while practically leveraging
parallelisation. A further objective is a novel important sampling strategy, whereby
downsizing sampling space is performed by utilising training samples’ quality while
reducing quantity, resulting in fast convergence and retaining evaluation performance.

Furthermore, the proposed methods can possibly be applied to a wide range of
other domain applications, including high-resolution data distributions such as im-
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ages or videos. The usages can further extend to code other potential information
sources that require preserving precision, such as forensic context [46], security and
biometric authentication records [47,48], remote sensing applications as monitoring
forest fire [49], infrared thermal images [50], and high-resolution satellite images and
videos [51].

The key contributions of this thesis folds in the following streams:

• Utilising deep learning techniques to introduce a compression framework spe-
cifically for the reduction of volumetric medical images (16 bit-depths).

• Introducing novel learning-based solutions, balancing architecture’s compactness
and training time while still delivering favorable compression achievements.

• Demonstrating a thorough investigation on the use of various spatially loc-
alised features and correlations while highlighting impacts and influences on
compression performance (i.e. compression time and compression ratio).

• Examine the generalisability of the prediction-based model when training on
neighbourhood sampling sequences across multiple volumes with diverse scanning
qualities, modalities and settings.

• Optimising encoding-decoding performance by presenting novel neighbouring in-
put sequences and exploiting voxel spatial correlations while e�ciently leveraging
parallel implementation.

• An o�ine data-driven sampling scheme that utilises voxel gradient magnitude
as a scoring metric is presented. The aim is to decrease the vast training space
into a representative minimised set while still gaining a high compression ratio.

• Evaluating the compression performance of our proposed voxel-wise prediction
models against state-of-the-art lossless compression methods across various
information sources, scanner’s modalities, and patients’ bodies.
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Outcomes from this thesis have also contributed to several publications as outlined
in the List of Publications Appendix A. The key contributions of each paper related
to the main body of work can be summarized as follows:

1. O. H. Nagoor, R. Borgo, and M. W. Jones, “Data Painter: A Tool for Colormap
Interaction”, Submitted to Computer Graphics & Visual Computing, 2017, Awar-
ded The Best Full Paper Award, [52].

We propose “Data Painter”: a novel colour mapping tool that allows interactive
customization of nested colourmaps with a user-friendly interface specifically for
high dynamic range datasets (e.g. thermal images). The primary intentions are
to create more visually distinguishable representations and reveal hidden features
while maximizing user perceptual reach and understanding of the underlying
data. Our tool allows interactive placement and transformations of colourmaps
in the data range with real-time visual feedback on the rendering window.
Such procedure guides finding influential and representative colourmaps in
less time while still highlighting more features and structural details. A new
objective measurement was proposed to evaluate the generated dense colourmaps’
e�ectiveness compared to alternative standard colourmaps.

2. O. H. Nagoor, J. Whittle, J. Deng, B. Mora, M. W. Jones, “Lossless Compres-
sion for Volumetric Medical Images Using Deep Neural Network With Local
Sampling”, Submitted to The IEEE International Conference on Image Pro-
cessing, 2020, Awarded ICIP 2020 Top Viewed Q&A Paper Award (2nd
place), [43].

We introduce a novel learning-based codec that utilises the MLP model as a 3D
predictor for the particular needs of reducing volumetric medical images (16-bits)
losslessly. We train the NN-based model with two sequence types extracted from
3D local neighbourhood voxels (i.e. cubic-shaped and pyramid-shaped) while
solving the supervised sequence prediction problem. Two models are trained to
predict the next target voxel given several surrounding intensity values from its
immediate local gride while adjusting models’ parameters. Such local sampling
representations assist in learning context information and reducing spatial re-
dundancies while minimising the di�erences with ground truth voxels. The
resulted coding redundancies over the prediction errors will then be decreased
using an arithmetic coder. We evaluate the compression performance of our
proposed models to standard state-of-the-art lossless compression methods over
two volumetric CT medical datasets.
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3. O. H. Nagoor, J. Whittle, J. Deng, B. Mora and M. W. Jones, “MedZip: 3D
Medical Images Lossless Compressor Using Recurrent Neural Network (LSTM),”
Submitted to The 25th International Conference on Pattern Recognition, 2021,
[44].

We present another learning-based lossless codec (MedZip) that utilises the LSTM
neural network to decorrelate 3D spatial information at the voxel level. The
intention for choosing the LSTM cells is its ability to capture long dependencies
within the 3D regions by using the gating mechanisms. Such gates allow LSTM
to implicitly control data flow while flexibly memorising spatial features of 3D
neighbouring voxels within the given sequences. We examine the selection of
sequences across medical volumes with various scanning settings to assist the
model’s generalisability while learning the input-output di�erentiable mapping
functions. The generated residual errors are compressed to lower bit using an
arithmetic coder. Comparison to state-of-the-art lossless compression standards,
including well-known image and video codecs, was proposed to compress 3D
volumetric medical images (16-bits). Empirical results reveal that MedZip
demonstrates higher bit reduction and generalisability while evaluating across
unseen modalities (i.e. CT and MRI).

4. O. H. Nagoor, J. Whittle, J. Deng, B. Mora and M. W. Jones, “Sampling
Strategies for Learning-based 3D Medical Image Compression”, Accepted for
Elsevier Machine Learning with Applications Journal, 2022, [45].

We propose the first comprehensive study on voxel-wise prediction using input
sampling schemes. We examine the impact of utilising numerous input config-
urations and sampling schemes on the many-to-one sequence prediction model,
specifically for lossless medical imagery reduction (16-bit depths). The main ob-
jective is to determine the optimal practice for enabling the learning-based model
to achieve a high compression ratio and fast encoding-decoding performance. By
omitting the left voxels from input sequences, we allow the model to leverage
parallelism while speeds-up decompression up to 37◊. We evaluate our predictive
codecs’ compression performance (i.e. bpp and time in seconds) compared to
many state-of-the-art lossless alternatives, including learning-based and classical
codecs. The experimental measurements were carried out on datasets acquired
by di�erent hospitals, representing di�erent body segments and with distinct
scanning modalities (i.e. CT and MRI).
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1.4 Thesis Structure

1.4.1 Chapter 1
The remainder of chapter 1 summarizes the thesis’s structure with its primary contri-
butions.

1.4.2 Chapter 2
Background [52]: Chapter 2 provides the necessary related work, fundamentals,
and background information, including knowledge about 3D medical imaging, deep
learning models, and data compression algorithms with a detailed overview of some
state-of-the-art classical and learning-based compression approaches. Also, at the
beginning of chapters 5 and 6 additional recent literature reviews pertaining specifically
to each chapter are provided.

1.4.3 Chapter 4
NN Prediction-based Framework [43]: Chapter 4 introduces the initial prediction-
based compression framework utilising a neural network model to learn a di�erentiable
projection function and exploit the volume’s 3D localised features at the voxel level.
This chapter also intended to overview the two unique shapes of the 3D neighbouring
blocks utilised as input sequences fed to the proposed model during training. Exper-
imental evaluation of the proposed system across various 3D datasets is given and
discussed while comparing to alternative competing traditional lossless compressors.

1.4.4 Chapter 5
LSTM Prediction-based Framework (MedZip) [44]: This chapter presents
another prediction-based compression framework that employs LSTM blocks to lever-
age its strength in memorising long dependencies within the given input sequences.
Additionally, two local sampling approaches were empirically aggregated while examin-
ing their e�ectiveness in reflecting the 3D spatial correlations. The impact of using
LSTM as a 3D predictor was estimated based on the learned input-output mapping
function. Experimental results of the proposed codec are provided and compared
to some state-of-the-art classical methods, including well-known image and video
coders. The validation also includes comparing compression ratio and performance to
a competing deep learning method.

1.4.5 Chapter 6
A Comprehensive Study on Sampling Strategies [45]: Chapter 6 introduces
a comprehensive comparison to benchmark voxel-wise prediction models. The main
intention is to determine the optimal practice for enabling the proposed LSTM model
to achieve a high compression ratio and fast encoding-decoding performance. The
study examines numerous causal neighbourhood options of the input sequence while
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highlighting performance e�ects and trade-o�s. Also, a novel sequence configuration
was o�ered to reduce execution time while speeding up the decoder. Experimental
results were carried out on datasets acquired by di�erent hospitals, scanning modalities,
and body segments. Moreover, validations opposed to some state-of-the-art methods
are included.

1.4.6 Chapter 7
Gradient-based Importance Sampling: Given that the choice of training samples
plays a crucial role in updating the model’s parameters and overall learned input-output
mapping function, this chapter proposes a novel gradient-based sampling scheme to
draw less quantity yet more informative training instances. The primary goal is to
find a su�cient subset characterising the prediction-based model’s parameters to
accomplish the best bpp reduction while reducing the computation cost. A variety of
subsampling schemes was experimentally evaluated and discussed over various datasets
to demonstrate e�ciency compared to alternative well-known sampling methods.

1.4.7 Chapter 8
Conclusions and Future Work: A conclusion of the thesis’s chapters summarises
all the proposed methods, remarks, and key findings. In addition, possible extensions
and potential further developments are included.
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2.1 Overview

This chapter will review the literature on 3D Medical Imaging, Deep Learning, and
Data Compression that form the foundation of the topics discussed throughout the
remainder of this thesis.

2.2 3D Medical Imaging

2.2.1 Representation and modalities

!"
#

3D CT Volume
2D CT Scans

Stack

Slice Thickness
A Single 
2D Slice

!
"

Figure 2.1: An overview of the di�erent between 2D scan and a 3D volume (series of
2D cross-sectional images).

A brief overview of the medical image representation, modalities, processing, applica-
tions, and visualization is provided in this section. Medical images are a particular
type of scanned photos that capture a patient’s entire body or region. Di�erent types
of modalities are produced based on the scanning technologies, revealing di�erent
aspects of the body’s internal structures, organs, injuries, functionalities, conditions or
diseases. Essentially, these visual representations are commonly created for purposes
such as diagnosis, treatment and presurgery planning. X-ray, Computed Tomography
(CT), Magnetic Resonance Imaging (MRI), Functional Magnetic Resonance Imaging
(FMRI), Positron Emission Tomography (PET), and Ultrasound (US) are some ex-
amples of the numerous scanning physical technologies. Choosing which modality
to apply is case dependent. The dimensionality of these images varies; for instance,
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X-rays generate 2-Dimensional (2D) images while other modalities generate higher-
dimensional representations 3-Dimensional (3D) images (e.g. CT, MRI, and PET), or
even 4-Dimensional (4D) (e.g. Ultrasound). 3D imaging is considered as stack of 2D
images or a series of 2D cross-sectional images (e.g. 3D CT scans are a stack of 2D
X-rays images as shown in Fig 2.1). The main intention of creating the 3D volumetric
medical images is its high flexibility in exploring, representing, and reformatting the
Region of Interest (ROI) in various reconstruction planes. Generating a 2D image
(projection image) is produced by passing a beam through a patient’s body from a
fixed angle and superimposing all structures in its path onto a detector. In contrast,
creating 3D axial cross-sectional slices, multiple beams are passed through the body,
whereas each beam is from a di�erent angle. In CT scanning, this process is known
as digital geometry processing. An overview of the scanning procedure is illustrated
in Fig. 2.2(b), whereas the X-ray source progressively rotates around the scanned
object (e.g. human body) and projects cross-sectional images to the detectors. Also,
an example of modern CT scanner is presented in the same Fig. 2.2(a). In the rest
of this section, we will first overview the CT 3D volume representation, processing,
and visualization as it is the primary dataset type applied in the thesis’s experiments.
Also, a brief overview of the MRI modality will be given.

(a) CT scanner [53]

Arc of Detectors Array

360º Rotation
Motion

X-ray Source

Object

Fan Beam

(b)

Figure 2.2: An example of a modern CT scanner 2.2(a) with an overview of the
scanning procedure 2.2(b).

CT data is a well-known image modality with a great visualisation of bones,
internal organs and blood vessels. The soft tissues, bones, water, fats, and air are
defined as Hounsfield scales or CT numbers. Typically, this quantitative measure of
radiodensity is described to evaluate CT scans, known as Hounsfield Units (HU) —
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named after Sir Godfrey Newbold Hounsfield [54]. A linear density scale represents
CT intensity values in the HU standardisation, where ≠1000 is air, 0 is water, and
+300 and higher represent bones. Table 2.1 illustrates the ranges of some Hounsfield
units used for some CT intensity values [11,12]. While scanning, the detector receives
the beam signals, which varies based on the intersected tissue’s density. If a high
signal was obtained, this indicates a light tissue density (e.g. lungs) result in a dark
colour, while getting a low level of energy implies a dense tissue (e.g. bones) with a
bright white spot [11].

HU = 1000 ◊ µ ≠ µ
water

µ
water

≠ µ
air

(2.1)

Where µ
water

= 0 is the linear attenuation coe�cients of water while µ
air

= ≠1000 is
the linear attenuation coe�cients of air. Each coe�cient µ is an attenuation value of
the beam for a given voxel, where a linear estimation is applied to compute the HU

density value of the associated material as shown in equation 2.1. Any intensity less
than water will be usually estimated with negative values in contrast to the denser
structures, which will have positive values [12,55]. Modern cross-sectional CT scanners
can compose high-resolution volumes (e.g. commonly 512 ◊ 512) with small pixel
spacing (e.g. .4 ≠ .7mm) and slice thickness (e.g. .625 ≠ 3mm).

Substance Hounsfield Units (HU)
Air -1000
Lung -600 to -700
Fat -90 to -50
Water 0
CSF +15
White Matter +20 to +30
Grey Matter +37 to +45
Kidney +20 to +45
Liver +55 to +75
Blood +55 to +70

Bone +300 (cancellous bones)
to +3000 (dense bones)

Table 2.1: Some Hounsfield numbers for di�erent human substance [11,12].

MRI is another well-known diagnostic imaging modality that uses strong magnetic
fields and radio waves to produce detailed images of patients. These medical images
produced soft-tissue contrast for examining the patient brain and other internal organs,
such as the liver, heart, and blood vessels, without harmful ionizing radiations [12,55].

40



2.2.2 Analysis and Preprocessing
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Figure 2.3: An illustration of the complete pipeline for processing and reconstructing
3D CT data.

A complete pipeline for collecting, processing and reconstructing 3D CT data is
illustrated in Figure 2.3. The workflow begins with a data acquisition process through
scanner detectors, where a progressive scanning of a patient’s body is applied. These
raw data are acquired and proceed to the next step, where several projections of the
2D cross-sectional from various angles are processed. Numerous algorithms could
be applied in the image reconstruction phase to reconstruct the medical images
and enhance their quality through noise and artifact reduction. The Filtered Back
Projection (FBP) and Iterative Reconstruction (IR) algorithms are examples of some
well-known algorithms [56,57]. After reconstructing, a stack of cross-section images
“slices” are produced and stored in a Digital Imaging and Communications in Medicine
(DICOM) format series. These DICOM files can broadly be transmitted, stored, and
processed within clinical purposes for many applications, including diagnosis and
prognosis. Commonly, radiologists would gain insight into these volumes using volume
rendering techniques to further analyse and explore these medical images.

Digital Imaging and Communications in Medicine (DICOM) is a recognised global
standardisation for formatting, processing, managing and transmitting medical images
and their related information for clinical objectives. DICOM file format consists
of a header and the file meta information. The header is represented by the first
128 bytes followed by 4 bytes with the ASCII code characters ‘DICM’, while the
meta-information portion comprises of four hierarchy levels (e.g. “Patient”, “Study”,
“Series”, and “Instance”). Within each hierarchy level, some related attributes are
stored [58,59].
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Each metadata encoded information of a given Attribute, including a Tag, Value
Representation (VR), Value Length (VL), and Value Field (VF). A unique identification
tag consists of two primary parts four-digits defines group number and another four-
digits for the element number, e.g.(gggg,eeee). The value representation is an optional
attribute, storing two characters that specify VF’s datatype. On the other hand, the
Value Length attribute is a mandatory field that defines the Length of VF. Lastly, the
value field is the field where the actual data is stored [58,59].

DICOM format facilitates access to several modality types such as X-ray, CT,
MRI, and ultrasound. More metadata about the patient’s medical information and
scanning parameters is stored, providing compatibility for future potential analysis
and investigation. Within the “Patient” hierarchy level, information such as the
patient’s name, ID, age, sex is saved. Under the “Study” level, information related
to the study ID, date, and time is included. The series number and modality type
are attributes under the “Series” level. Other parameters related to the scanning
details are slice location, pixel spacing, bits stored, slice thickness, scanning rows, and
scanning columns. The pixel spacing attribute is a couple of two numbers that specify
the physical distance in mm calculated between the centre of pixels horizontally and
vertically. Another numerical attribute measured in mm is the slice thickness, which
defines how thick each nominal slice is (i.e. the width of the human body covered by
each slice) [59]. A single scanned image is stored as a stream of bytes in a DICOM
file. Similarly, when aiming to store multiple cross-sectional images, each slice usually
needs to be stored in individual DICOM files.

When retrieving CT image data from the DICOM file format, a preprocessing step is
necessary to convert the data range to the HU scales. Initially, the medical images were
saved into this format to enable e�cient disk storage. A linear transformation is applied
to rescale each raw voxel value back to the Hounsfield Units to guarantee the same
radiodensity scale across all scans. From the DICOM file, two main attributes, namely
RescaleSlope and RescaleIntercept, are required to mathematically reverse the data
range using the linear equation 2.2. The RescaleSlope and RescaleIntercept typically
have values of 1 and -1024 based on the DICOM standard from Siemens [60,61].

HuPixel = RawPixel ◊ RescaleSlope + RescaleIntercept (2.2)
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2.2.3 Visualization

“The greatest value of a picture is when it forces us to notice what we never expected to
see.”

—John Tukey, American Mathematician

!"
3D CT Volume
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Figure 2.4: Illustrations of volume rendering (VR) of 3D CT volume and multiplanar
view of three thin slices in the axial x-y plane (middle bottom), sagittal y-z plane
(middle top), and coronal x-z plane (top right). The visualisation includes an example
of volume element (voxel) and picture element (pixel).

Data visualisation is the science of revealing, exploring, and understanding the
underlying data through visual representations. Gaining insight into the data is
an essential step in analysing massive amounts of information, making data-driven
decisions, discovering implicit knowledge, and amplifying the cognition of the data.
Thus, visualisation applications are limitless, including fields, types of data, and
phenomena. For instance, visualisation methods are necessary for the medical imaging
domain to examine injuries, diagnosis, doctor-patient communications, treatment
planning, and preoperation planning. The intentions of visual designs can further be
utilised to emphasise the regions of interest, highlight the critical structure, and reveal
hidden regions. Exploring high dimensional medical datasets can naively be done
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by exposing slice-based viewing or cross-sectional multiplanar views across the 3D
volume as illustrated in Fig. 2.4. However, such illustrations are limited in interaction
and do not fully utilise the whole dataset as only subsets of the data is presented [1].
More complicated and visually distinguishable approaches include volume rendering,
iso-surface rendering, or multimodel fusion [1, 62,63].

2.2.3.1 Volume Rendering

Image I

Volume Dataset D

P

!"

!#

Figure 2.5: Conceptual principle of volume visualization [1].

Volume rendering or volume graphics is one of the state-of-the-art methods in visual-
ising 3D medical volumes. The main objective of this rendering is to amplify cognition
by interactively exploring the 3D scalar dataset in 3D space. The final image is
computed as composited colour from the selected view angle using the ray casting
technique, whereas a ray will be cast through the volumetric data from each pixel as
illustrated in Fig. 2.5. During rendering, the pixel colour is accumulated along each
viewing ray while moving through the volume (see equation 2.3). The colour range
is assigned based on an optical model known as the Transfer Function (TF), which
defines the optical properties (e.g. colour and opacity values) for each scalar belonging
to the data [1, 63]. Some examples of rendering three di�erent volume datasets are
illustrated in Fig. 2.6.
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Figure 2.6: Examples of volume rendering of three di�erent 3D medical image datasets.
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Figure 2.7: A visual overview demonstrates the di�erence between a volume element
(voxel) and a picture element (pixel). An image comprises a set of discrete pixel
(colour) at each 2D grid location, while volume is formed as a set of the discrete voxel
at each 3D grid position.

As a pixel is defined as the smallest unit (picture element) in image space, in higher
dimensional space (e.g. 3D volume), the smallest unit is known as a voxel (volume
element). A voxel is defined as a grid point located with three axial components in
the volumetric space. Each grid point may contain single or multiple data values
associated with it. A collection of voxels or grid points form a cell. Commonly, in 3D
CT volume, each grid point represents an intensity value (e.g. a colour). Both 3D
volume and 2D image have a discrete value at each grid location; however, if a value
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in an intermediate position is needed, an interpolation operation can be applied to the
data points at a neighbouring area to obtain those particular values. An illustration
of the di�erence between a picture element (pixel) and a volume element (voxel) is
demonstrated in Figure 2.7.

When examining medical images, the visual coordinate system utilised by radi-
ologists and doctors is known as an anatomical coordinate system, defined along
the standard anatomical axes of anterior-posterior (i.e. front-back), left-right, and
inferior-superior. This coordinate system, also known as the patient coordinate sys-
tem, consists of three planes (i.e. axial, sagittal, and coronal planes). However, the
voxel-based coordinate system is formed di�erently as a grid (i.e. array of points) in
3D, whereas the origin is defined in the upper left corner point (i.e. first voxel (0, 0,
0)). Moreover, each axis increases in a di�erent direction (i.e. the x-axis increases to
the right, the y-axis to the bottom, and the z-axis backwards) [59, 64, 65]. This thesis
will visually illustrate all the medical scans from a machine learning perspective (i.e.
in the coordinate system of voxel space) as the data is analysed and processed, and
not in the patient coordinate system (i.e. anatomical coordinate).

2.2.3.2 Transfer Function

(a) 1D Transfer Function (b) 1D Transfer Function (c) 2D Transfer Function

Figure 2.8: A demonstration of rendering the same dataset using di�erent transfer
functions, whereas each mapping visually classifies di�erent features of interest.

A transfer function is a core to a visually distinguishable appearance, where a mapping
from the scalar field values to the optical properties (e.g. RGBA values) is applied. The
optical properties consist of colour components (i.e. RGB) and visibility component
(i.e. A), representing the opacity [1]. Di�erent mappings would visually classify
features of interest, reveal diverse materials, and focus on various aspects of the
underlying data as demonstrated in figure 2.8. Such numerous options cause selecting
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(a) (b)

Figure 2.9: The main interface of DataPainter 2.9(a), showing the image derived from
the colourmap, the histogram of the thermal image (640 ◊ 480), and the current user
colourmap option. Another example of rendering a thermal image dataset (i.e. hot
cup) is illustrated in 2.9(b), whereas the nested colourmap emphasises the extensive
dynamic range of the underlying data [52].

a representative transfer function quite challenging and require manual e�orts by
specialists. Consequently, a considerable amount of e�orts have been made to semi-
automate and improve transfer function design, including computing high-dimensional
TF [66], involving deep learning techniques to assist the designing of TF [67]. The
mapping function’s dimensionality can compose one or more dimensions combining
intensity values with more data-driven data features (intensity-gradient) such as
the first derivative (as shown in Fig. 2.8(c)) and the second derivative [66]. Other
complicated classifications utilising 3D filtering to highlight local structures (e.g. edge,
line, and blob) involve gradient vector, and the Hessian matrix with isotropic Gaussian
blurring [68].

The use of a transfer function is not reluctant to render medical domain imageries
only; it can extend to cover a broad range of data domains. The colour mapping or
colour lookup table is an essential part of the optical priorities utilized by the transfer
function. Based on the colourmap selection, the resulting image can highlight certain
information about absolute or relative data values. A novel and interactive tool for
detecting features of interest using nested colourmaps was proposed by Nagoor et
al. [52]. Such a technique can be applied as a diagnostic tool for building issues, namely,
detecting faulty cables (hot), water leaks (cool), problems with air permeability or

47



other insulation issues. Data Painter is a tool that provides a framework for e�ectively
defining customized colourmaps, which maximize the user understanding of the
underlying data. The user can sweep colourmaps across the image in order to reveal
hidden features and expose essential details, as shown in the examples in Figure 2.9.
Work on “Data Painter: A Tool for Colormap Interaction” was originally published
in the Computer Graphics & Visual Computing (CGVC) [52] in 2017, by the thesis
author alongside Dr Rita Borgo and Prof. Mark Jones. This paper awarded The Best
Full Paper Award.
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2.2.4 Challenges and Observations

• There has been a knowledge gap between domain-specific experts (e.g. radiolo-
gists and medical experts who have working experience with hospital scanners
and scanning settings) and the developer or technology provider (e.g. computer
scientists and programmers who understand and apply deep learning knowledge).
This gap is due to the lack of communication, which generally a�ects knowledge
transfer and overall understanding, causing the development of AI strategies to
be time-consuming and less accurate. Collaboration and iterative communica-
tions can potentially address this gap by leveraging the information, improving
overall quality, accomplishing the assigned tasks better, and helping AI methods
be integrated into the clinical workflow [69–71].

• Nonuniform data productions are due to variations in scanning qualities or
settings (e.g. di�erent data may be generated depending on how modern a
scanner is or when changing some scanning settings). As the scanner’s beam
settings highly influence the HU’s ranges, any variations in beams’ energy would
impact attenuation values, making this one of the technical challenges related
to the HU. Such a problem would cause generating relative ranges rather than
absolute, causing overlap between HU (CT) ranges of di�erent organisms [55,72].

• Other challenges related to volumetric imaging is noise and artifacts occurrence.
Noise, intensity inhomogeneities, patient motion artifacts and partial volume
e�ects are examples of artifact problems that may appear within multiple medical
imaging domains and generally influence the accuracy of the computational
methods. Particularly, partial volume e�ects result in blurring intensities at tissue
boundaries due to multiple materials contributing to a single voxel. Such scanning
artifacts cause averaging values of these tissues to the same voxel, leading to
obscure details or nonuniformity of a single material across di�erent parts of an
image. Moreover, these limited resolutions could lead to misdiagnosis or limit
algorithms’ accuracy due to di�culty in characterizing individual tissues when
solving various tasks (e.g. segmentation, visualization, or coding tasks) [73–75].

• The trade-o� between scanning quality and emission doses on the patient’s body
(i.e. radiation dose that would be risky a�ecting the patient body). Such a critical
issue could be managed by developing optimisation methods and guidelines that
tend to maximise image quality at minimal radiation dose [55,76–78].
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2.3 Data Compression

The ever-increasing importance of accelerated information processing, communication,
and storing are major requirements within the big-data era revolution. With the
explosive development in storage devices, Graphics Processing Units (GPUs), and
bandwidth capacity, the data growth rate also rises, demanding more practically
accelerated yet e�cient algorithms. Data compression is one of the most vital fields of
computer science, providing methodologies for compressing information into a more
compact form. Data compression applications are numerous, including numerous
digital devices (e.g. smartphones, or TV), media and data representations (e.g. videos,
audios, or images), and various data communications and streaming domains (e.g.
Internet and Network communications) [79].

2.3.1 Compression Basics

Input Data Encode Bit Stream Decode Output Data

Sender Receiver

Figure 2.10: A general block diagram of a data compression framework.

The term compression is naturally referring to the process of reducing data size or
bit rate by utilising some statistical or structural pattern in the given raw format.
A general block diagram of a data compression framework is presented in Fig. 2.10.
The scheme at which compression is applied can be classified as either a lossless or
lossy type. Briefly, a lossless scheme guarantees exact reconstruction of the original
data, while a lossy scheme would generally allow a higher compression ratio but non-
identical reconstruction of the original data. A comparison between the two di�erent
strategies is illustrated in table 2.2. Selecting which compression scheme to apply
generally depends on the application requirements. A general classification of the data
compression techniques is illustrated in Fig 2.11, where examples of coding categories
and their compression techniques are presented. Some compressing algorithms combine
di�erent coders’ functionality joined together (hybrid) to further reduce the given
data size [80,81].
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Other

Vector Quantization (VQ)

Fractal 
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Quality

Coding 
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Example 
Techniques

Figure 2.11: A general classification of data compression techniques.

Most compressing schemes utilise some structural, mathematical, and statistical
information in the actual data when shrinking the file size. A compressor gains
reduction by discovering, processing, and reducing the data redundancy within the
raw format. The main intention is to exploit any patterns, repetitions, or correlations
in the input data or transform it into a format that reveals such patterns to produce
a more compressed form of the original version. The redundancies in any data can
be classified into spatial, temporal, perceptual/psycho-visual, and coding redundancy.
While each repetition has di�erent characteristics and can be associated with di�erent
types and fractions of data, the size of the output representation decreases by encoding
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Lossy Lossless
Compression Ratio Lower bit-rates Higher bit-rates
Compression Time Usually fast Usually slow
Quality of The Data The reconstructed data has

less accuracy since it in-
volves irretrievably loss of
the original information

Completely reconstruct the
original image

Compression Artifacts May su�er from compression
artifacts such as blocky and
blurry appearance due to the
loss of original information
while compressing

No compression artifacts

Assessment Metric Needs assessment metrics to
measure the perceptual qual-
ity of the reconstructed im-
age, i.e. Structural Simil-
arity Index Metric (SSIM),
and Peak Signal-to-Noise
Ratio (PSNR) [82,83]

No assessment metric
needed since the reconstruc-
ted image is identical to the
ground truth (GT)

Application Examples Image, audios, or videos Text, programs, images, or
sounds

Algorithm Examples Transform coding, DCT,
and DWT [84,85]

Lempel-Ziv Algorithm,
LZW [86–88], Arithmetic
coder [89, 90], Hu�man
coding [91], and Run-length
coding [92]

Table 2.2: A general comparison between Lossy and Lossless compressing schemes.

the redundancies.
The spatial type represents the statistical correlations or repetition in signal or

block of values within a domain or structure, for example, similar pixel values repeated
in many blocks (e.g. neighbouring pixels) within a Two-Dimensional image. Such
redundancy is sometimes referred to as interpixel correlation, which naturally has
similarity and dependency between neighbouring pixels. A coder that exploits spatial
redundancy usually applies a prediction scheme in which the current pixel’s residual
(i.e. prediction error) is encoded given a block of its neighbouring pixels. When
pixels are highly correlated, they naturally produce recurring patterns within the same
image, allowing the coder to infer current value from its associated surrounding values.
The term residual often indicates the di�erence between the original data value and a
compressor’s prediction value. Removing spatial redundancy creates a more e�cient
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format widely employed in many well-known image and video compressors.
The temporal redundancy is similar to the spatial repetition but extends to

exploit statistical correlation within 3D data or frames in a video sequence; thus,
it may also be known as interframe redundancy. In this type, compressors apply a
prediction scheme to decorrelate pixels between successive frames leading to e�cient
video compressions.

The perceptual/psycho-visual redundancies are related to a particular type of
multimedia data such as images and audio. Such types take advantage of a Human
Visual System (HVS) or hearing sensitivity level while compressing the given data.
Within such type, visually indistinguishable colours or indiscernible sounds values
are removed to reduce file size while essential parts are preserved. Since certain
information is psychovisually less relative and would not significantly a�ect the overall
perceived quality of an image thus, it can be safely excluded. The same principle
is applied to sound compression, where inaudible frequency bands are reduced to
produce a more compressed and e�cient version.

A codying redundancy is a type in which the repetition is revealed on a bit level
(the information representation) by a coder. An Entropy coder can be operating as
a fixed-length or variable-length coding scheme while estimating the likelihood of
the repeated bit sequences. In variable-length coding, the high-frequent values are
assigned shorter code while less frequent values are assigned longer code. Hu�man
coding and arithmetic codes are examples of some standard Entropy codes (covered
in detail in section 2.3.2.4).

2.3.1.1 Lossy Data Compression

Although some part of the original data is irretrievably getting lost within lossy
compression, the most critical parts are usually preserved. For instance, compressing
an image with a lossy compressor (e.g. perceptual coding) may lead to losing some
visually indistinguishable colours while the essential parts and structures will still be
saved [93]. A similar reduction principle is applied in some lossy audio compression
methods, where inaudible frequency bands are compressed by exploiting the properties
of human hearing on indiscernible sounds [94,95].

2.3.1.2 Lossless Data Compression

Regardless of the compression category or quality, the central objective is to reduce the
storage space or the transmitting time required for handling the raw data format. In
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a lossless scheme, the compressed representation has reduced the number of bits while
the algorithm ensures recovering the original form of data when decompressing as
losing any details cannot be accepted. Such a restriction is demanded in some domain
areas where the content is significantly important and cannot a�ord to miss any
fraction of it because any modifications could a�ect information-preserving, integrity,
and reliability. For instance, the lossless strategy is more appropriate in the medical
image domain since it recovers the original data without losing quality. As within the
medical field, any variation between the original and reconstructed data usually cannot
be tolerated since it a�ects the data fidelity and quality (e.g. misleading diagnosis).
Text compression is another application that demands identical decompression of
the original information as any loss in quality would a�ect the data integrity [96].
Further applications that require losslessly encoding and decoding information includes
satellite imaging, program, and sound compression [51,79].

2.3.2 Compression Algorithms

2.3.2.1 Shannon Entropy

Information theory quantifies the amount of information present in random variables
and distributions. Although this theory has initially been used to measure information
in message communication, nowadays, it forms the core of many language analysis and
deep learning algorithms. Data compression is a field of information theory interested
in techniques for reducing the size of a data stream to overcome the bottleneck of data
storage, transmission and processing. In the context of data compression, information
theory is applied to find the optimal codec that achieves the best compression and the
lowest entropy. Entropy estimates the minimum number of bits required on average to
represent symbols of a stream. Based on information theory, a symbol with a higher
probability is assigned the shortest code (less informative), and the less probable
symbols are assigned longer codes (more informative). As a result, a lower entropy is
gained from nonuniform distribution since higher frequency symbols or events have
shorter coding lengths. The more deterministic the data distribution is, the lower
entropy the coder gains [97–99]. The measure of the uncertainty of a probability
distribution P is known as Shannon entropy H, which is defined as:

H(x) = ≠E
x≥P

[log P (x)] (2.4)

Lossless compression is known as reversible compression, which aims to send a
stream of data m with a codelength bounded to the entropy L(m) Ø H(m). Given a
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message m œ M = {m1, m2, ..., m
N

} with probability distribution P
data

(m), a sender

will encode the data m into a sequence of bits with a codelength L̂(m). The encoder
uses a probabilistic model P̂ (m) to define the codelength ≠ log P̂ (m) for each symbol
m

i

in the stream. If the codelength l(m
i

) is equal to ≠ log P
data

(m
i

) for all symbols in
the message, the encoder achieves the maximum compression (entropy):

H(m) = ≠
ÿ

m

i

œM

P̂ (m
i

) log P (m
i

) (2.5)

When the receiver gets the compressed bitstream, a decoding or reverse operation is
applied and the original data m is fully reconstructed without any loss of information.

2.3.2.2 Prediction-Based Coding

2.3.2.2.1 Prediction by Partial Matching Coder A Prediction by Partial
Matching (PPM) is one of the statistical-based (entropy) and context-based models,
where the previous sequences in the context are utilized before the following symbol’s
probability is predicted [100,101]. The PPM coder is a dynamic method that exploits
the dependencies in a stream by assuming the probability of unseen symbols based on
the probabilities of the symbols that have been seen. A Markov model is employed to
conditionally predict the probability of the next element in a sequence (also known as
a context) based on the immediately preceding symbols. In this algorithm, n specifies
the largest number of previous symbols to be seen before a prediction is performed,
also known as the model’s order, denoted as PPM(n). The PPM algorithm employs
a counter to encode the number of times a symbol was detected. This counter can
remember some of the contexts as it adaptively calculates the number of times a
symbol occurs at each step based on the given order-n. The symbols’ counter values
are stored in a table, where each row represents a symbol from the stream with its
counter value. When coming across a symbol observed before then, the coder encodes
its counter and updates the table. To estimate the probability of a specific element,
its counter’s value will be divided by the summation of contexts’ values along with the
value of a particular character known as an escape. The escape ‘ symbol is a unique
character used to denote the probability of a never-seen symbol. When the ‘ symbol
is generated, the encoder will try a smaller context (e.g. n ≠ 1). If no match was
found after reducing the context, then repeatedly reduce the context until a context
of order ≠1 will eventually be produced, indicating an unseen or new symbol. The
resulted data distribution estimations with their tables would then need an entropy
coding method to reduce their coding redundancies. Several variations of the PPM
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coder have been produced, whereas each version may di�er in the methodology for
computing the counter value and the ‘ symbol codeword value. A popular version is
the PPMd [102], which is one of the compressors used within the 7-Zip archiver [103].

2.3.2.3 Dictionary-Based Coding

2.3.2.3.1 Run-Length Coding A Run-Length Encoding (RLE) is considered one
of the lossless dictionary coding algorithms, where the repeated sequences are encoded
as pairs of string lengths (called a run) with their symbols [92]. The principle applied
in RLE is replacing long iterated chains with more compact representations that
encode both the number of repetitions and the symbol. Although RLE is considered
one of the simplistic encoding algorithms, its methodology may cause the compressed
file’s size to be relatively more significant than the original size in a worst-case scenario.
The RLE is commonly used to reduce spatial redundancies in data representations
such as text, string and image.

2.3.2.3.2 Lempel-Ziv Algorithm Lempel-Ziv algorithms are a group of well-
known lossless compression algorithms extended for decades, where the original
versions (LZ77 and LZ78) were initially introduced in 1977 and 1978 by Jacob Ziv,
and Abraham Lempel [86, 87]. Most popular lossless dictionary compressing methods
such as LZW [88], LZMA, and LZSS [104] are variances of these two original
versions in which slight modifications to the bu�er searching procedure and the way
of outputting the token are utilised. The main mechanism is building a compressed
dictionary (i.e. data structure) that is adaptive to the input stream.

The LZ77 dictionary-based compressors rely on a sliding window principle,
splitting an input stream into search-bu�er (SB) and look-ahead (LA), where the
search-bu�er contains symbols that have been encoded while the look-ahead bu�er
has elements that have not been observed yet [86]. An overview of the LZ77 lossless
compression algorithm, is presented in Fig. 2.12. The sliding portion principle is
an adoption scheme that reduces any symbol’s redundancy by pointing to its first
appearance. While processing a stream, the compressor reads a symbol from the LA
bu�er and searches for a match in the SB bu�er. When a match is found, the encoder
will read another symbol from the LA bu�er while searching backwards for a more
significant match in the SB until it finds the longest match. If the longest correspond
is located, the encoder will output a token containing three main components [o�set,
length, and next token in the stream]. A token is practically a pointer to the earliest
occurrence of the matched element. If no match is found (a new element), the
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Figure 2.12: Overview of LZ77 lossless compression algorithm [2].

output token will be a “no token” or “null-pointer” (e.g. [0,0, the token itself]). The
compressed version of the data will be a list of these output tokens.

In the LZ78 dictionary-based compressors, the output codeword consist of a
pair of only two components, including an index to the longest matching and next
unmatched symbol [87]. The fundamental methodology of LZ78 methods is building
a dictionary by storing the list of the output tokens. Similarly to the LZ77, when no
match is found, the output token will be a “no token” (e.g. [0, the token itself]). The
main advantage of the LZ78 is its fast encoding time compared to the LZ77 method,
but in terms of decoding time, the opposite is true. The main limitation of the LZ78
method is the failure to limit the dictionary size.

Terry Welch invented a variation of LZ78, which is Lempel-Ziv-Welch LZW

in 1984 [88]. The LZW maintains a running variable-length dictionary of symbols,
which adapted a dynamic codeword table for each file while continuously optimising
for the longest possible match. Similarly to the LZSS algorithm, LZW excludes the
next non-matched symbol from the generated token and only stores a pair of [the
o�set, and length]. The main weakness of LZW is the limited ability in handling
table overflow.

The Lempel–Ziv–Markov chain algorithm LZMA is a well-known dictionary
algorithm that compresses various data representations losslessly. LZMA is the
backbone behind the popular 7-Zip archiver or 7z format developed by Igor Pavlov
around 1998 [103]. The LZMA belongs to the family of the LZ77 algorithm, which uses
the Sliding window mechanism to maintain a dynamic size dictionary compression.
Similarly to the other LZ77 algorithms, an encoding of [0,0, the new symbol] will
be used when no identical bytes are found. Moreover, the LZMA is considered a
variation of the Deflate algorithm combined with the Markov chain, where the Delta
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and Range encoders are employed. Although the LZMA compressor outperforms other
compressors in terms of compression ratio, its main disadvantages are that it requires
substantial memory consumption, and the implementation might be relatively slow
depending on the input data. An enhanced and parallelized version of LZMA known
as LZMA2 is widely used in many domain applications and included in the 7-Zip
archiver [103].

2.3.2.4 Statistical-Based Coding

2.3.2.4.1 Hu�man coding Hu�man coding is one of the most popular lossless
compression algorithms widely applied for text compression and was initially invented
by David Hu�man in 1952 [91]. Hu�man coder relies mainly on the variable-length
coding concept on which a binary tree is built to uniquely define an optimal binary
code for each symbol belonging to the string based on the likelihood of its occurrence.
The Hu�man tree is constructed in a bottom-up manner, whereas words with the
highest probabilities are assigned shorter bits (usually located at a high level of the
tree), while words with less probabilities will have longer codewords (usually placed at
the bottom of the tree). Each symbol will be assigned a uniquely distinguishable binary
codeword with a distinctive prefix-code, making the data more compressible while
avoiding ambiguity in the decoding process. Many variations of the original Hu�man
algorithm were presented, for instance, the Adaptive Hu�man coding. An example of
constructing a Hu�man Tree for the symbols list S = {a, b, c, e} is presented in Figure
2.13.

Creating a Hu�man tree starts with a list of symbols along with the frequencies of
their occurrence. The process started by sorting the list’s elements based on their like-
lihood from the highest to the least. Then, select two of the lowest weighted elements
as leaves and add a new parent node weighted by the summation of probabilities from
these two child nodes. Next, remove the two processed symbols from the list and
repeat the same process until no symbols are left in the list. After constructing the
Hu�man tree, each branch will be assigned a binary code, whereas left branches are
assigned zeros while the right branches are assigned one. Finally, to gain the codeword
of any symbol, traverse the tree directly from the root to the symbol’s node while
connecting the bit code of branches to create the unique code.
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Figure 2.13: An example of constructing a Hu�man Tree for the symbols list S =
{a, b, c, e}.
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2.3.2.4.2 Arithmetic Coder An arithmetic coder supports assigning intervals of
floating values for each possible input symbol. This statistical-based compressor was
initially developed in the early 1960s by Peter Elias [105] and has been significantly
enhanced since then [89,90]. The arithmetic coder overcomes the limitation of others
VLCs for defining a codeword per input symbol by specifying a single floating value
to be the code for a range of input symbols instead [106]. Such a mechanism allows
reducing the coding space to the range of 0.0 to 1.0 values, where each symbol will
be assigned a unique subsection based on its frequencies at each step. During the
encoding process, the active symbol’s section will be subdivided into new smaller
subsections based on the statistical probabilities. Accordingly, the starting and ending
limits for the new interval will be bounded to the currently selected section scales.
The algorithm will recursively continue partitioning based on the input probability
distributions until no symbol is left in the stream. Usually, the more probability a
symbol is, the less digit its code becomes, making the compression stream close to
entropy. By subdividing intervals into more spaces and flexibly adding new floating
ranges for any symbol in a stream, this coder can be adapted to di�erent data types.
Moreover, given that the interval’s of each input symbol is uniquely defined, such data
transformation functionality is one of the main advantages of the arithmetic coder.

An example of using Arithmetic Coding to encode a message sequence M = ”bca” is
illustrated in Fig. 2.14(a), where A = {a, b, c} is the set of alphabets, p = (0.3, 0.5, 0.2)
is the probability distribution for each symbol, and [.6, .63) is the resulted sequence
interval. The decoding follows the exact subdividing mechanism; however, the process
starts from the symbols’ interval when decoding. Given an interval value of (e.g. .66),
an arithmetic decoder will continuously divide the section where the decimal value
is located while revealing the message alphabets. An example of using Arithmetic
Coding to decode the message sequence: ”bcc” is illustrated in Fig 2.14(b). The
decoding process starts from a unit interval value of .66, and by considering three-
letter alphabets A = {a, b, c} with the probability distribution for each symbol given
by p = (0.3, 0.5, 0.2), the output message ”bcc” will be revealed.
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Figure 2.14: Example of using Arithmetic Coding encoding and decoding process,
where consider a three-letter alphabet A = {a, b, c}, and the probability distribution
for each symbol is p = (0.3, 0.5, 0.2). The encoded message sequence is M = ”bca”
while the decoding process started from the unit interval value of .66, and the resulted
message sequence is M = ”bcc”.
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2.3.2.5 Transform-Based Coding
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Figure 2.15: A general block diagram of a transform-based coding framework.

A transform-based coding is a mechanism that transforms data with nontrivial com-
putation into another representation, which can be more compressible. When the
transformation is reversible, this enables a lossless compression, while non-reversible
modifications will produce a lossy compression as it losses proportions of the original
data. The reformed format is sometimes referred to as transform coe�cients, which are
then quantised and coded. Most transform-based coders begin by subdividing the in-
put data (e.g. an image) into smaller blocks to reduce computational complexity when
applying the transformation. The applied transform-based method may adaptively
di�er for each subregion based on the local information and underlying variance, which
tend to reduce each into a more compact form. Another option is the non-adaptive
transform, which contains all the subregions to have the same compressing transforma-
tion. When the compression quality is lossless, a decoder will typically follow reversible
operations corresponding precisely to the encoded block. Overall, the compression
stages when employing a transform-based coder can generally be summarised to the
following operations: subregion, decomposition, transformation, quantisation, and
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coding. A general block diagram of a transform-based coding framework is shown in
Fig. 2.15. The Discrete Wavelet Transform (DWT), the Discrete Fourier Transform
(DFT), and the Discrete Cosine Transform (DCT) are some famous transform-based
codings used in many domain applications, including image and signal compression.

Other usages are within image analysis, classification, filtering, and reconstruc-
tion scopes. More complex domain-specific applications can be image segmentation,
matching, registration, object detection, and motion analysis. Numerous influen-
tial contributions utilising Fourier Transform while analysing the characteristics and
structural patterns within images have been proposed, wherein decompositions, trans-
formation estimations, and analysis of the waves and frequencies are applied [107,108].
Briefly, an image’s signal can be computationally described as alternative combined
waves of various magnitudes, frequencies, and phases by transforming from the ori-
ginal spatial domain to the Fourier or frequency domain. In such representation,
low-frequency components are generally located within the centre of the Fourier space
while high-frequency elements (e.g. edges in the image) are at the boundaries of outer
regions. Patterns and features can be detected and extracted through complex mask-
ing/cropping operations, spectrum filtering, or spectrum feature models/descriptors
within such domain. More complicated yet enhanced detectors and advanced appear-
ance models may involve subband filtering, multiscale wavelet appearance pyramid, or
multiscale decompositions for better textures and features capturing. Considerably
e�ective utilisation of these concepts is applied in medical image analysis, visualisa-
tion [68], and classification and segmentation tasks [109–113] to assist clinical and
pathological studies.

2.3.2.5.1 Discrete Fourier Transform (DFT) A Fourier Transform measures a
periodic function that can be decomposed in terms of infinite sine and cosine functions
of various frequencies (may know as a set of Sinusoids) [114]. Generally, a Fourier
transform calculates a correlation between functions or precisely a signal and an
analytical function. The main intention is to calculate the coe�cients corresponding
to each frequency. The overall equation is composed of multiplication between a
signal and an analysing function (Sinusoids). The resulting coe�cients’ values will be
significant when the functions are correlated. However, if the multiplication result were
negligible coe�cients, the two functions would be dissimilar. In a Continuous Fourier
Transform, the sine and cosine correlation coe�cients are computed as two separate
integrals for each function. On the other hand, for the Discrete Fourier Transform
(DFT), the frequency coe�cients are computed as a weighted summation over a finite
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set of samples within the domain range as shown in equation 2.6. The output of DFT
is a vector of estimated frequency components (Fourier coe�cients) for each data
point. A computationally e�cient variation of DFT is the Fast Fourier Transform
(FFT), which is gaining significant popularity in several compression applications,
including various images and audios compressions [84].

X
k

= q
N≠1
n=0 x

n

⇧ e
≠i2fikn

N

X
k

= q
N≠1
n=0 x

n

[cos (2fikn

N

) ≠ i ⇧ sin (2fikn

N

)]
(2.6)

Where N represents the number of samples, the k is current frequency within the
range k œ [0, N ≠ 1], and n is the current sample. The X

k

is the DFT frequency
coe�cients that includes information of both amplitude and phase.

2.3.2.5.2 Discrete Wavelet Transform (DWT) also known as multiresolution
analysis, where signals are processed in numerous frequencies and resolutions levels.
Compared to the other transform-based methods, DWT o�ers less computational
complexity and is suited to compress time-limited data representations (e.g. images
and audios). Generally, a Wavelet Transform interprets the input as a sum of
wavelet functions on di�erent resolution scales by which details coe�cients represent
high frequencies signal components while fewer coe�cients represent low frequencies
components. A wavelet is a tiny wave (base function) that performs a windowing
mechanism to maintain input signals through scaling. When scaling a signal, both the
signal’s width and central frequencies are transformed, allowing expanded waves to
resolve low frequencies while shrunk waves in case of high frequencies. In the Discrete
Wavelet Transform, a multilevel decomposition is computed in which input signals
are iteratively passed through low-pass and high-pass filters. Each level comprises
approximated coe�cients and dilated coe�cients components. Such a mechanism
allows rejecting high signals while proceeding signals at low levels. It also supports
dilating and stretching signals while going across them. As a result, the DWT would
lastly generate a set of both approximated and dilated coe�cients. When compressing
an image, the DWT maintained a better quality and more accurate results than
its alternatives as it will not generate computationally significant data but rather
e�ciently extract multiscale and hierarchical structures [84].

2.3.2.5.3 Discrete Cosine Transform (DCT) the Discrete Cosine Transform
belong to the unitary transform class, whereas it decomposes signals as a series of only
cosine functions with oscillated at di�erent frequencies [85]. Similarly to the DFT, a
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DCT converts input signals from the spatial domain to the frequency domain resulting
in a weighted sum of basis functions (or basis images). However, a DCT is only
applied for Real numbers and approximates fewer frequency coe�cients than DFT.
Thus, DCT performs better in data compression, commonly in image compression
domains. The applications of DCT is not reluctant to images only; it extends to
include various data dimensionalities such as 1D, 2D, and 3D spaces. The process
starts by subdividing an image into blocks on which each region may be decomposed
with a separate basis matrix with di�erent variations. After computing frequency
coe�cients, a quantisation process reduces coding redundancies and earns reduction.
When a lossy compression is performed, only significant coe�cients are preserved as
they contain essential spatial frequencies (e.g. perceptually distinguishable features),
while less critical information can be safely reduced. Such a mechanism forms the
central core of the JPEG compressor. The same principle is applied when compressing
audio information with a lossy compression quality, where inaudible frequency bands
are reduced while more important frequencies are retained.

2.3.2.6 Quantisation

Quantisation is a mathematical procedure for decreasing the bit required by lowering
input precision, wherein the continuous infinite values are mapped to fewer discrete
finite values. A quantisation is generally applied to help regulate the bitrate within
a bitstream to more compressible representations. The principle is that rounding
the stream’s range to the nearest discrete or quantum levels can result in a more
compact format. However, as the approach involve losing some precisions, the com-
pression quality is lossy given that it is a non-reversible operation. When involving
quantisation, it can be immediately applied to data or within the encoding process
of other compressors. For instance, quantisation is commonly utilised within other
transform-based compressors such as DCT and DWT to obtain more significant com-
pression. The process started by defining quantisation level L, which uniformly or
non-uniformly subdivides the quantum into equal or non-equal regions, respectively,
based on the quantisation type. In a stream, each value x will be quantised to the
nearest member of the discrete measure belonging to a set of L. The range of any
quantiser is limited by a x

min

and x
max

values. In a uniform quantisation, the steps
have equal amplitudes, wherein a quantiser discards signal information lying between
those levels. An example for computing equal regions can be defined using equation
2.7. A more mathematically complicated and more popular methodology is known as
adaptive quantisation. Generally, the di�erence between the original analogue signal
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and the quantised signal or the original input value and its quantised value is known
as the quantised error or noise.

� = x
max

≠ x
min

L
(2.7)
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2.3.3 Image Compression

Image compression is an essential and standard domain of science belonging to the data
compression, signal processing, and computer vision fields. An image comprises several
pixels, wherein colour and brightness values are stored at each pixel location. Thus,
the image size is influenced by the number of pixels it contains and the bit size defined
to store the pixel colour. Typically, a size of 8-bits per pixel is usually used to store 256
colours; however, more storage can be utilised up to 24-bits per pixel. Examples of file
formats in which a digital image could be saved vary, including JPEGs, TIFFs, GIFs,
and PNGs. Each format o�ers various usages while internally supporting di�erent
compression qualities. Thus, selecting which format to use usually depends on the
application requirements’ demand [115]. Regardless of the compression quality, given
that image has a specific format, any compressor would generally gain a reduction in
bit rate by utilising some knowledge and underlying structures. As an image naturally
contains many types of redundancies (e.g. spatial, visual, and coding), by exploiting
such repetitions, a coder gain reductions. Generally, given the structural similarity
between images and videos, the applications of image codecs can further extend to
be applied for video compressions. In the case of a lossy compressor, algorithms
usually balance between maximising the achievement in reduction while minimums the
impact on data fidelity. For instance, preserving the essential visual information while
reducing the least important visual redundancies to allowable information loss. On the
other hand, lossless compression gains an acceptable compression ratio with no loss
of fidelity or quality, retrieving the original data. When comparing only the bit-rate
amount, it is noticeable that the lossy methods produce a more significant reduction
than a lossless method. However, such a feature comes with payback, causing higher
chances for non-retrievable information loss.

2.3.4 Compression Performance Metrics

An essential step for any compression algorithm is to e�ectively measure the compres-
sion performance, especially when comparing outcomes to alternative state-of-the-art
techniques. Within the compression literature, numerous standard metrics and meas-
urements are commonly used. For instance, in the image compression domain, a
measurement known as bits-per-pixel (bpp) is typically computed to measure the
number of bits required to be stored per pixel as shown in equation 3.3.1. A similar
metric concept applied in the text compression domain known as bits-per-character
(bpc) that estimate the number of bits required to be stored per character. Other
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data domains use a similar metric to evaluate the reduction performance known
as Compression Ratio (CR), which is the proportion of the uncompressed to the
compressed data size presented in equation 2.8.

CR = Uncompressed Data Size (Bits)
Compressed Data Size (Bits) (2.8)

When the aim is to compare methods’ compression speed, measurement of encoding
and decoding time can be utilised. Encoding time is the entire time required to compress
data, while decoding time is the total time needed to decompress data. To relatively
measuring the space-saving between compressed and uncompressed data equation 2.9
can be used.

Space Saving = 1 ≠ Compressed Data Size (Bits)
Uncompressed Data Size (Bits) (2.9)

Within deep learning literature, the comparison between codecs may consider
the model’s size, as the model’s architecture can be massively large, consisting of
numerous layers stacked in depth.

2.3.4.1 Medical Image Compression

Unlike digital photos, medical images are acquired and stored di�erently (see section
2.2 for more details). Medical images usually maintain a single channel representing
intensity value per pixel/voxel. The stored intensity values may express a high feature
space and data ranges based on the scanning setting and quality. Each scanning
modality illustrates distinct body aspects or reflects specific functionality. Numerous
image-based codecs are also employed in compressing medical images.
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2.4 Deep Learning

Machine Learning (ML) is a branch of Artificial Intelligence (AI), which is one of the
Computer Science sub-fields gaining significant attention and research contributions in
the last decade. The scope of this sub-field includes designing and training algorithms
to perform the mapping of data distributions and data estimations implicitly. The
fundamental motivation is to simulate human intelligence in processing information
and reasoning behaviour. Within the machine learning field, overlaps between various
scientific areas are employed, including probability theory, statistics, approximation
theory, convex analysis, and algorithm complexity theory. The applications of ML are
thriving, including several domains, problem-solving tasks, and data types [116–119].
Example of fields where machine learning is utilised includes Computer Vision, Natural
Language Processing (NLP), Bioinformatics, and Medical Diagnosis. Other examples
of the state-of-the-art tasks are image classification, image segmentation, natural
language processing, data compression, generative models that synthesise images, text,
or audio data.

Deep Learning (DL) can practically be classified as a specialised subset of machine
learning. DL generally designs artificial Neural Network (NN) that implicitly learn
patterns, features, or distributions from given data and improve accuracy over time.
These networks are composed of layers with some hidden variables adjusted during
training. A model containing a few layers is known as shallow network architecture,
while models with deeper (i.e. layers are stacked in-depth) and wider layers (i.e.
the number of nodes per layer) are called Deep Neural Network (DNN) architecture.
Generally, as the number of layers and the number of hidden variables increase, this
improves the representation and learning capacity of the network. The network’s
capacity is essential as the amount of data grows; the models are usually expected to
learn knowledge of the data, make predictions, or help in decision making based on
the given problem while processing information e�ciently. Such ability appears in
many applications nowadays, like recommender systems, language translation, voice
recognition, and real-time object detection [116,120]. The DL involves not only the
development of these architectures but also optimising them during training to solve
both supervised and unsupervised learning processes.
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2.4.1 Neural Networks
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Figure 2.16: An example of a basic Multi-Layer Perceptron that composes of three
layers types: input, hidden, and output, respectively. The first layer a[0]

i

= x has five
input features that form the raw data inputs, while the hidden layer a[1]

i

contains four
densely connected nodes, and the output layer a[2]

i

has only one node. Each hidden
connection is weighted by W [l]

ij

, each node (perceptron) is associated with bias scalar,
and an activation function f(.) that are applied in equation 2.10.

Neural Network, also known as Artificial Neural Network (ANN), is formed by joined
algorithms that simulate the human brain’s neuron system. Most networks would
contain three types of layers, specifically input, hidden, and output layer as shown in
Fig. 2.16. When a network only consists of these three layers, it will be recognised
as a shallow neural network, while complex and deeper architecture is distinguished
as Deep Neural Network (DNN) architecture. A Multi-Layer Perceptron (MLP) is a
class of feed-forward artificial neural networks, where each perceptron is computed
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by equation 2.10 at the basic form. Exceptionally, the input layer is the only layer
denoted as a[0] = x, where a[0] is the input layer and x forms the raw input data or
features. Each perceptron belonging to a hidden or output layer (e.g. a[1]

0 ) is uniquely
computed by the weighted sum of the perceptrons’ outputs from the previous layer (e.g.
[a[0]

0 , a[0]
1 , a[0]

2 , a[0]
3 , a[0]

4 ]) in addition to a bias term (e.g. b[1]
0 ). A nonlinear activation

function f(.) is then generally applied (e.g. f(z[1]
0 )) to the resulted output (e.g. z[1]

0 ),
which further allows producing complex representations. An overview illustration of a
single perceptron, which composes the weighted sum and an activation function, is
shown in Fig. 2.16.

z[l+1]
j

= b[l+1]
j

+
N

[l]ÿ

i=1
a[l]

i

W [l]
ij

, a[l+1]
j

= f
1
z[l+1]

j

2
(2.10)

Each [.] in a superscript explicitly indicates the layer number while a subscript i or j

identifies the node number within the layer, and N [l] is the number of nodes per layer.
z[l+1]

j

is the weighted sum of feeding the input features a[l]
i

from the previous layer
scaled by the weights W [l]

ij

while b[l+1]
j

forms a bias scalar associated with the current
node. Lastly, a[l+1]

j

forms the output of the current perceptron.

2.4.1.1 Vectorisation

Z [l+1] = B[l+1] + W [l]A[l], A[l+1] = f
1
Z [l+1]

2
(2.11)

The computation in equation 2.10 can be modified to leverage parallelisation and
utilise GPU capabilities by vectorising the process throughout the training samples,
as shown in equation 2.11. In this equation, matrix to vector multiplication is applied,
where W is a matrix of size (N [l+1], N [l]) while B, Z and A are vectors with following
sizes: (N [l+1], 1),(N [l+1], 1), and (N [l], 1), respectively. Each row in W corresponds
to a set of training samples for one node, while each column represents nodes per
layer (i.e. hidden unit). The term “hidden” indicates that these nodes’ values are
not observed or known during training. Practically, each hidden node is computed
during training based on the provided input features, while the dense connectivities
and the nonlinearity of its mapping function result in complex relations to other
nodes. Consequently, such sophisticated relations and mapping functions form the
core mechanism of NN ability in learning and modelling complex data distributions.
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2.4.1.2 Layers

A layer is an essential topological sub-structure of a neural network, where some
nodes are aligned. The mathematical computations would vary based on the layer
type, while the primary mechanism is formed by receiving inputs from the previous
layer and passing outputs to the next. Additionally, a layer can be stacked in-depth
to establish a deeper network structure. Some well-known neural network’s layers,
including dense layer, pooling layer, convolutional layer, deconvolutional layer, and
recurrent layer, are displayed in Figure 2.17. The intention of providing these various
options is to enhance the model’s nonlinearity mapping ability, improve detecting
high and low-level features and increase robustness against training problems (e.g.
overfitting).

Input	
Layer Hidden

Layer

(a) Fully Connected Layer

Input	

Output

(b) Pooling Layer

Input	
Layer

Recurrent
Units

(c) Recurrent Layer

=

Input	

Kernel
(filter)

Output∗

(d) Convolution Layer

∗ =

Output	

Kernel
(filter)

Input

(e) Deconvolution Layer

Figure 2.17: An illustration of some well-known neural network layers’ types, including
dense layer, pooling layer, recurrent layer, convolutional layer, and deconvolutional
layer.

A dense layer is also known as a fully connected layer, where each node is topolo-
gically connected to all nodes in the preceding layer as illustrated in Fig. 2.17(a). On
the other hand, a convolutional layer (ConvLayer) employs a mathematical operation
called convolution, where a kernel (filter) is applied repeatedly over the input data,
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as shown in Fig. 2.17(d). The convolutional layer has gained significant attention in
numerous DL domains due to its ability to capture local patterns and extract structural
redundancy within N-Dimensional signals, such as images and videos [35, 36]. The
learned patterns typically started from simple low-level features like edges, surfaces,
and curves up to more complicated structural shapes learned within deeper ConvLay-
ers. The region covered by the kernel is known as the receptive field (i.e. determined
by the kernel size), whereas element-wise multiplications are computed and summed.
The output of the convolution layer is called “activation map” or “features map”.
Usually, as the number of filters applied to the input information increases, the depth
of the features maps grows, further expanding the knowledge about the input. While
convolving the filter over the input data, two main parameters need to be assigned
(i.e. stride and padding size). Practically, the stride controls the amount of shifting
a kernel employs while sliding over data. In contrast, the padding defines the size
for padding input’s border (e.g. padding input border with zero value). Therefore,
padding is commonly applied to maintain the same dimensionality between the input
and the resulting feature maps known as “Same Padding”. The dimensions (width
and height) of the output activation map (O

h

, O
w

) are computed using the equation
2.12, where (I

h

, I
w

) are the input dimensions, P is the padding size, (F
h

, F
w

) are the
filter sizes, and S is the stride amount.

O
h

=
7

I
h

◊ 2P ≠ F
h

S
+ 1

8
, O

w

=
7

I
w

◊ 2P ≠ F
w

S
+ 1

8
(2.12)

A deconvolution layer performs a revised mathematical operation of the convolution
layer as shown in Fig. 2.17(e). Starting from the feature map output, a deconvolution
operation would utilise filtering to retrieve the original input data. The dimensions of
the resulted features (O

h

, O
w

) are calculated by Equation. 2.13.

O
h

= S ú (I
h

≠ 1) + F
h

≠ 2P, O
w

= S ú (I
w

≠ 1) + F
w

≠ 2P (2.13)

A ConvLayer is usually followed by a pooling layer (downsampling layer) to reduce
the data dimensionality and simplify the computation complexity by providing abstract
representations as illustrated in Figure 2.17(b). A pooling layer mainly decreases the
computational power required to process the feature maps while e�ectively maintaining
model training by retaining the most dominant features. Such extraction is performed
by selecting a sub-sampling discretisation, namely average or maximum pooling (max
pooling) options. While an average pooling summarises feature maps (compute the
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average value for each patch), a max-pooling selects the most activated values within
the input features (select the maximum value for each patch). Usually, the max-pooling
performs better than the average one due to its ability in reducing noise by discarding
noisy activations. The pooling layer follows the same principle as a convolution layer
regarding a window-based application by assigning padding and stride parameters.

A recurrent layer is a type of NN layer that facilitates “looping” capability by
processing not only input information but also output from previous layer calculations
as illustrated in Fig. 2.17(c). Such ability allows remembering some knowledge of
the data for a period of time. Most recurrent layer maintains internal memory or
internal state to facilitate information during learning e�ectively, while some types
facilitate a gating mechanism to control the amount of data to read, write, and store.
By retaining the state information across successive inputs, recurrent layers obtain
state-of-the-art results in many tasks that employ sequential data such as natural
language and time series [120,121]. The recurrent cell can be classified into three main
types: standard recurrent cell [122], Long Short-Term Memory (LSTM) unit [123],
and Gated Recurrent Unit (GRU) [124]. Each of these types are covered in detail in
sub-section 2.4.2.

2.4.1.3 Activation Functions

An activation function f(.) is a core in adding di�erentiable nonlinear mapping
that allows encoding complex input patterns and controls how well a model learns
during the training process. Several well-known nonlinear activation functions can be
applied, including Sigmoid (‡), Hyperbolic Tangent (Tanh), Rectified Linear Units
(ReLU) [125], Leaky-Rectified Linear Unit (LeakyReLU) [126], and Exponential Linear
Unit (Elu). A selection of some activation functions commonly applied in neural
networks is presented in table 2.3. As each function has various features, the activation
choice results in a diverse capacity for the data modelling. While an individual layer
holds the same activation function, various activations may be involved within di�erent
parts of the same model. For instance, the hidden layers may have the same activations,
while a di�erent activation can be applied to the output layer to control the output
type or the prediction type based on the task requirements.

A sigmoid activation function f
‡

(z) is a well-known logistic function that returns
a value range of [0, 1]. The sigmoid function generates a nonlinear result with S-shape
curve plot, which can be computed using equation 2.14. When the input z is a
considerable positive value, the result of applying Sigmoid is close to 1, while a large
negative input would result in an output close to 0. Such output range would be
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Name Plot Equation Range
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Table 2.3: A selection of activation functions commonly applied in neural networks.

problematic when multiple hidden layers have Sigmoid activations, causing the training
to be slow due to gradients’ vanishing. When the input value z is small or big, the
gradient is zero, the curve of this function is barely changing, which cause the learning
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process to be negligible and ine�cient. However, a sigmoid activation is commonly
applied in an output layer for binary classification problems.

f
‡

(z) = 1.0
1.0 + e≠z

(2.14)

The Hyperbolic Tangent (Tanh) activation function f
T anh

(z) (equation 2.15) has
similar S-shape curve function as f

‡

(.) while the range expanded to be in the range
[≠1, 1]. When the input z is a large positive value, the result of applying Tanh is
close to 1, while a large negative input would result in an output close to ≠1 (a zero
centralised function). Although this function allows output features to carry negative
values to the next layer, it is also susceptible to vanishing gradient problems, but it is
still preferred over Sigmoid activation.

f
tanh

(z) = ez ≠ e≠z

ez + e≠z

(2.15)

The Rectified Linear Units (ReLU) function f
ReLU

(.) is perhaps the most common
nonlinear function used for hidden layers due to its e�ectiveness and less susceptibility
to gradients vanishing [125]. The ReLU function as presented in (equation 2.16), gives
a linear output of z when the input z is positive; otherwise, the output will be 0
(value range: [0, Œ)). Compared to other activation functions, namely Sigmoid and
Tanh, ReLU is computationally less expensive, requiring uncomplicated mathematical
operations. However, one disadvantage of the ReLU function is that it would result in
some “dead” units or neurons when the activation is negative, causing some gradients
to be zero during training, which restricts the model from fully utilising its capacity.

f
ReLU

(z) = max(0, z), f
ReLU

(z) =

Y
_]

_[

z z > 0.

0 Otherwise.
(2.16)

To overcome the “dead” unit problem, the Leaky-Rectified Linear Unit
(LeakyReLU) activation function f

LReLU

(.) can be applied, where a slight positive
slope in the range [0, 1] is involved [126]. Such negligible slope allows keeping the
gradient updates alive. The equation of the LeakyRelu is a variant of ReLU, instead
of 0 activations when z Æ 0, a small non-zero constant gradient – is scaling the input
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z, as shown in 2.17. Commonly, the constant value of – = 0.01 is assigned.

f
LReLU

(z) = max(–z, z), f
LReLU

(z) =

Y
_]

_[

z z > 0.

–z z <= 0.
(2.17)

A Linear activation function f
linear

(z), as the name suggests, it is a function that
implies linear mapping; it is simply proportional directly to the input as shown in
equation 2.18. This function can be referred to by many names such as “identity” or
“no activation”. The usage of this activation is perhaps reluctant to the output layer
as it allows mapping the output of NN to an unlimited range of values, possibly when
solving linear regression problems.

f
linear

(z) = z (2.18)

2.4.1.4 Loss Functions

The terms loss function, cost function, or error function refer to the same concept,
which is generally an optimization method used to assist the learning process of a NN
model. A cost function’s main objective is to evaluate how well a model performs on the
entire given data, while a loss function evaluates how well a model performs on a single
training example. Estimating the error amount is an essential step in the learning
process as it helps reduce the loss in the following evaluation by updating models’
weights in the right direction. The more precise the selection of the loss function
is, the more e�cient the error estimation becomes. Based on the problem domain
and task requirements, the choice of cost function may vary. Regardless of the type,
the optimization strategies commonly aim is to minimize the cost function. Broadly,
in deep learning, the supervised problem domain can be specified into some types,
such as classification or regression. When solving a regression problem, regression
losses can be involved, unlike classification losses, which should be defined to evaluate
classification problems. A brief description of the di�erences between the two problem
types is: classification output is usually a set of finite categorical values (e.g. classes,
categories and labels), whereas regression deals with predicting continuous values (e.g.
quantities, amount, and sizes) – further details will be covered in sub-section 2.4.3.

As classification tasks typically require predicting the probability of a discrete class
or set of classes for the given raw input values, the defined loss usually measure the
di�erence between probability distribution functions (e.g. the predicted output’s labels
and the ground truth labels). Therefore, when defining the model’s output vector,
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the number of output labels should match each possible class. Then, by applying a
Softmax activation function or Logistic function on the resulting “logits”, a greedy
decision boundary between these features will specify the classification choice that
has the most significant activation (high certainty). All the output values of this
function will sum up to one (a probability value in the range [0, 1]) as presented
in equation 2.19. Examples of classification losses include Hinge loss/Multi-class
SVM loss, Cross-Entropy Loss/Negative Log-Likelihood loss, and Kullback-Leibler
Divergence Loss.

ŷ
i

= ea

i

q
C

j=1 ea

j

(2.19)

On the other hand, within the regression problem domain, a model is trained
to predict a specific value (i.e. real-valued quantity) that is continuous in nature.
Therefore, the defined loss function typically focuses on computing the residual
or the di�erences (distance-based) between the predictions and the original target
values. Broadly, based on the cost function score, the lower the value, the higher
the model’s performance. The objective functions reach the minimum when the
prediction is precisely equal to the actual value (i.e. the residual is zero). Empirically
uncomplicated but robust well-known regression losses are the Mean Squared Error
(MSE) Loss, Mean Absolute Error (MAE) Loss, and Huber Loss.

The Mean Squared Error Loss (MSE), also known as L2 loss, directly computes
the average of the squared di�erence between the ground truth and the predicted
values as presented in equation 2.20. The main drawback of L2 loss is its susceptibility
to outliers as it gives a significant penalty for outliers (due to the quadratic form),
which reduces its robustness. When the model’s error is significant, this a�ects the
stability of the training due to the extremely steep gradient, which may lead to an
“exploding gradient” problem.

L2 =
q

n

i=1(yi

≠ ŷ
i

)2

n
(2.20)

The Mean Absolute Error Loss (MAE), L1 loss, and Laplace loss refer to the
same objective function, which aims to minimize the average sum of all the absolute
residuals as calculated in equation 2.21. Unlike the L2 loss, the MAE loss has less
sensitivity to outliers when the error value is significant, while it practically struggles
with small error values as its derivative is discontinuous. When the error has a slight
variance among observations, the L1 loss results in the same gradient throughout,
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making the gradient significant even for small loss values, which causes instability in
learning and may lead to missing the minima.

L1 =
q
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i

≠ ŷ
i

|
n

(2.21)

The Huber loss also called the Smooth Mean Absolute Error loss, has the favourable
characteristics from both L1 and L2 losses. The Huber loss is robust against outliers
and di�erentiable at the minima (i.e. zero residual). When the error is slight, Huber
loss becomes quadratic similarly to MSE, while significant errors are handled linearly
like MAE. The computation choice is tuned based on a hyperparameter known as ”

(delta) as shown in equation 2.22. The only challenge for this loss is the selection of
the delta, which may require iterative training.
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2.4.1.5 Training by Back–Propagation

Any neural network is trained using a mechanism called Back–Propagation Through
Time (BPTT). Generally, the model’s training is formulated to find network attributes
(e.g. Wú and Bú) at which the cost function C(.) achieves a minimum value (minima).
In the beginning, all the model’s parameters are initialised. The learning has a forward
pass, where the training input patterns (batches) propagate through the network,
outputting some predictions. Then, a loss function is involved in computing the error
by comparing the predictions to the target outputs. Next, the optimiser calculates
the derivatives with respect to the current set of weights and adjusts the network
attributes to minimise the error. Iteratively, applying forward and backwards passes
for a specific number of epochs or training steps while updating the network attributes
and reducing the cost function.

A “batch” forms a subset of the training dataset, where couples input-output
training samples are combined. A single pass through all samples belongs to the
training dataset while updating the network’s weights is commonly called “Epoch”.
Thus, it could be inferred that a single epoch is composed of one or more training
batches. During Back–Propagation, the optimizer computes the gradient of the loss
function with respect to each weight by the chain rule.
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2.4.1.6 Optimizer

The core of the neural network learning process is the optimisation algorithm, also
known as an optimiser, which guides the overall training and improvement of a model
while solving the task at hand. The term optimisation usually refers to mathematically
minimising (or maximising) any expression or function. As the cost function C

measures a model’s error score on a given data, the optimiser plays an essential
role in improving the model by updating the model’s parameters to minimise the
error rate. The learning process combines many hyperparameters to tune and adjust,
including the model’s weights, biases, and learning rate. These hyperparameters are
iteratively tuned during the training by the optimisation algorithm to get an optimal
solution (e.g. global optimum or minima) that potentially best fit the given observed
samples. Numerous optimisation algorithms are available with di�erent properties
and performance specifications such as memory requirements, processing speed, and
numerical precision. Three of the most commonly utilised optimisation algorithms are
Gradient Descent (GD) [127], Stochastic Gradient Descent (SGD) [127], and Adaptive
Moment Estimation (Adam) [128].
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Figure 2.18: An illustration of a gradient-based optimisation algorithm that minimises
an objective function C by moving in the opposite direction (downhill) of weight’s
gradient ˆC

ˆW

.

Computing the derivative of the cost function C with respect to each network
attribute is mandatory to tweak all the weights and biases values for the given input
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and solve the task at hand. Basically, finding the derivative is essential to determine
the direction of the steepest descent (the gradient’s opposite direction). A gradient
is the “slope” of a function at a given point while its direction points directly uphill.
Thus, to minimise the cost function C at each iteration, the current weights and
biases need to be adjusted by their negative gradients as presented in equation 2.23
and 2.24. Where W

ij

and B
ij

denotes the current weight and bias values while ˆC

ˆW

ij

and ˆC

ˆB

ij

forms the partial derivatives of the loss function with respect to the weight
and bias. Each partial derivative indicates the change to be made to optimise a
network’s parameter (e.g. weight and bias). – is the learning rate hyperparameter,
which controls the amount of learning (the learning step) that will be taken at each
iteration. The symbol := denotes an updating process to the current parameter value.
The optimisation algorithm iteratively tunes the network’s parameters at each layer
in the direction by which the objective function C is decreasing. An illustration of
a gradient-based optimisation algorithm, also known as gradient descent algorithm,
which minimises an objective function C by moving in the opposite direction (downhill)
of the weight derivative as presented in Fig. 2.18.

W
ij

:= W
ij

≠ –
ˆC

ˆW
ij

(2.23)

B
ij

:= B
ij

≠ –
ˆC

ˆB
ij

(2.24)

Gradient Descent (GD), also called Batch Gradient Descent, is a standard optimisa-
tion algorithm that minimises an objective function by iteratively taking steps in the
direction of negative gradients until reaching the correct model’s parameters [116,127].
The main drawback of the gradient descent method is that it can readily get stuck in
a local minimum due to its massive reliance on the initialisation of the parameters.
Another drawback is related to the parameters adjustment, as GD allows the model to
update after propagating through the entire dataset in a single iteration, which con-
strains the implementation by the memory capacity, causing the gradient convergence
to be slow and naturally creating a significant gradient value. Such updating mech-
anism would generate massive updating steps that may overshoot the optimal value
without reaching it. Stochastic Gradient Descent (SGD) di�ers from the GD algorithm
as it updates gradient’s immediately after each sample [127]. Such methodology allows
faster convergence than the GD even on a large dataset. However, it may cause noisy
jumps in the training steps as the performance on each training example influences
each gradient update. An enhanced version is the Mini-batch Gradient Descent, where
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mini-batches (training instances) with multiple training samples are fed to the model
with no replacement while updating the gradient after each instance [129]. Such an
optimisation algorithm allows less noisy training steps as it reduces the variance in the
parameters update with faster convergence and higher stability. A reduced smooth
oscillation of learning steps yet accelerated convergence can be achieved by adding
a momentum term, whereas the variation in the model’s parameters intends to be
in the same direction when training samples follow similar patterns. By adding the
momentum term, the optimiser may be known as Stochastic Gradient Descent with
Momentum (SGDM), which changes the parameters update to be the exponentially
weighted average (moving average) of the gradients instead of only the gradients
values. Another popular and complicated optimisation algorithm is the Adaptive
Moment Estimation (Adam), which also utilises the concept of momentum as well
as involving adaptive learning rate [128]. Adam optimiser introduces better training
stability as the future gradients updates are determined linearly by the gradients’
updates from previous iterations using an exponentially decaying mean gradient (first
moment) and variance (second moment). In Adam optimiser, each network parameter
is adjusted using an individual adaptive learning rate, which allows estimating the
gradients’ first and second moments as the training progresses. Such adaptation of
learning rates leads to empirically better convergence without the need to manually
tune hyperparameters.
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2.4.2 Recurrent Neural Networks (RNN)
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Figure 2.19: Demonstration of a standard Recurrent Neural Network (RNN), which
consists of multiple input observations (X

t

), memory/internal states (h
t

), and multiple
output values (O

t

). The illustration (on the right) is an example of an unfolded
recurrent neural network.

Recurrent Neural Network (RNN) is a particular type of neural network architecture,
where recurrence or loop connections are involved within the architecture to feed
the network activations from a previous time step [122]. Moreover, one of its main
features is maintaining a hidden internal state that allows storing and memorising
information through time stamps. Such design allows RNN to learn a mapping from
a prior input sequence of observations to the desired output stream while capturing
contextual dependencies. Demonstration of a standard RNN architecture is shown in
Figure 2.19, while a detailed illustration of operations within the RNN cell is provided
in Figure 2.20(a). Compared to the MLPs, the RNN model can be considered a more
generalised version, maintaining input and output series of arbitrary length. As the
RNN strategy allows looping over the input sequence, it is naturally capable of solving
various tasks, including sequence prediction problems, time-series forecasting problems,
text processing, speech recognition, sequence analysis, and machine translation tasks.
However, similar to a deeply NN architecture, a deep RNN model su�ers from training
instability with a higher chance of facing gradient vanishing or explosion problems.
This issue is because the same weights are used for each time-step, while only the
outputs and the internal states di�er. To avoid such problems, variations of RNNs
were proposed (i.e. Long Short Term Memory Units (LSTMs) and Gated Recurrent
Units (GRUs)) with better training stability than the traditional RNN.
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Where x
t

denotes the input vector, h
t

is the hidden layer vector, y
t

is the output
vector, W U

h

b are weight matrices and vector, and ‡
h

‡
y

represent activation functions.

2.4.2.1 Long–Short Term Memory (LSTM)

Long Short-Term Memory (LSTM) is one of the most widely used classes of RNNs
[120,123,130]. LSTM main strength is its explicitly designed for sequence prediction
problems and its ability to handle gradient problems (e.g. exploding or vanishing
gradients) better than the RNN by utilising the gating mechanism. These features
allow LSTM to learn long time dependency with more stabilised training. For a
sequence prediction model, the input list forms an essential part in learning the
mapping to the objective output. Fundamentally, A sequence is defined as an order
set of observations that passes sequentially through the hidden cells of LSTM. During
training, LSTM adaptively modulates the flow of information using the gates while
capturing dependencies of di�erent time steps.

Within each cell, three main gates (input (2.28), output (2.29), and forget gates
(2.27) equations) are handling the amount of information that is processed, omitted or
stored. Each cell maintains an internal state or a memory unit (2.31) that updates while
aggregating the input sequence through time before making a prediction. Moreover,
Sigmoid and Tanh activation functions are employed within the cell to add some
nonlinearity representation, whereas a zero value stops the data flow, and one allows
it. Each gate handles the flow of information di�erently. To be precise, the input gate
controls whether the memory unit is updated, while the forget gate chooses whether
the memory unit is reset, and finally, the output gate determines whether the state
of the current cell state is made visible. A detailed overview of LSTM cells’ gates is
provided in Figure 2.20(c).
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Where x
t

is the input sequence, h
t

is the current cell output, C
t

is the current cell
memory, C̃

t

is the candidate for cell state at timestamp t, while h
t≠1 is the previous

cell output, C
t≠1 is the previous cell memory, and y

t

is the output vector. W and b

are learnable parameters (weights and biases), ¢ denotes element-wise multiplication,
and ‡ is the Sigmoid activation function.

2.4.2.2 Gated Recurrent Unit (GRU)

A Gated Recurrent Unit (GRU) is another popular variation of RNN, utilising some
gating mechanisms [124]. Although fewer gates are employed in the GRU cell, it
still retains better training stability in handling vanishing gradient problems than
traditional RNNs. Unlike LSTM, GRU contains two gates, and only the hidden state
transfers the information without the cell state. The gates in GRU are composed of a
reset gate and an update gate. Similarly to the LSTM’s forget gate, an update gate
determines whether the information will be streamed or deleted. The other gate is
the reset gate, which controls the amount of past information to forget. Such gating
schemes mitigate short-term memories with adaptive filtering, whereas some sequences’
values may be kept in memory for a certain period while influencing data at future
time stamps. Compared to the LSTM cell, GRU training can be slightly faster due to
the fewer computations. A detailed overview of GRU cells’ gates is provided in Figure
2.20(b).
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Where x
t

is the input sequence, z
t

denotes the update gate at time step t, r
t

denotes
the reset gate, h

t

is the current cell output, h̃
t

is the candidate for cell hidden state at
timestamp t, and h

t≠1 is the previous cell output. W and b are learnable parameters
(weights and biases), ¢ denotes element-wise multiplication, and ‡ is the Sigmoid
activation function.
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Figure 2.20: An illustration of the di�erent RNN cell classes, including traditional
RNN unit 2.20(a), GRU unit 2.20(b), and LSTM unit 2.20(c).
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2.4.3 Supervised Machine Learning

Generally, within the machine learning field, the task to be solved can be categorised
as supervised or unsupervised learning tasks. Briefly, unsupervised learning is defined
when a model is trained on an unlabelled dataset, implying that only input samples
are available without output labels. In such problems, given raw unlabelled data, the
learning-based model usually attempts to find representative forms of the data in
lower dimensionality (e.g. clustering, dimensionality reductions, or data embeddings).
On the other hand, a problem is described as a supervised learning process, when a
matching output label is available for each input data point belonging to the training
dataset (i.e. input-output paired samples).

2.4.3.1 Sequence Prediction Models

(a) one-to-one (b) one-to-many (c) many-to-one

(d) many-to-many (e) many-to-many

Figure 2.21: An illustration of the numerous learning-based sequence prediction models
classified by the input-output sequences’ length.

Sequence prediction problems are a particular type of supervised learning task whereby
a model approximates a di�erentiable mapping function from input space to desirable
output space. Within such a prediction-based problem, the input-output samples
can be defined in arbitrary lengths, representing continuous or discrete ranges. This
prediction-based model learns to capture the nonlinear patterns in the sequential
input data over time while predicting the future values. The predicted output can
represent the next value, class label, or sequence, which generally belong to one of
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these classes: sequence prediction, sequence generation, sequence classification, or
sequence-to-sequence prediction. A sequence is practically defined as an order set of
prior observations that pass sequentially through a sequence prediction model before
yielding target output result [120]. Based on the sequence specifications, models can be
classified into various types. For instance, an one-to-one prediction model f̂(.) yields a
single output ŷ(t) value for each input value X(t) shown in Fig. 2.21(a) (e.g. a model
predicting the next number). An illustration of the numerous learning-based sequence
prediction models classified by the input-output sequences’ length is presented in
Fig. 2.21. Each prediction model has a broad range of domain applications covering
numerous sequential and higher-dimensional data, gaining considerable attention
within the deep learning research communities.

Formally, let X = {x1, x2, x3, . . . , x
n

} be a finite set of input sequences defined
over an input space X , where X µ Rd, and Y = {y1, y2, y3, . . . , y

n

} is the set of output
sequences defined over an output space Y , where Y µ Rd, and d denotes the dimensions.
Let ◊ is called the parameters space, and ◊ú is a specific parameter vector. A sequence
prediction model f̂ is expected to learn a di�rentiable mapping function f̂ : X ≠æ Y
while adjusting the model’s parameters ◊ú through the back-propagation process given
a training dataset D. Generally, the process of finding such an optimal parameter
vector ◊ú is called training. The training dataset D consists of finite input-output
paired of samples defined as D = {x

i

, y
i

}n

i=0, where n is the total number of training
samples. Each x
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represents an input vector x
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denotes the sequence length for all the output vectors, whereby
l
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œ N . During training, a minimization of the loss function L(ŷ
i

, y
i

) is sought to
reduce a specific distance measure between model’s predictions ŷ

i

and ground trough
values y

i

while updating the model’s parameters ◊ú.
An example of a one-to-many prediction problem would be image caption gen-

eration, where, for a single image, multiple words are generated illustration is in
Fig. 2.21(b). Predicting weather forecasting, stock market, or product recommend-
ation are well-known examples of many-to-one sequence prediction problems Fig.
2.21(c), wherein multiple prior sequence values are fed to the model while generating
a single future value. Based on the number of future output values required to be
produced, these problems can also naturally fit into a many-to-many category. DNA
sequence classification and sentiment analysis are other many-to-one models belonging
to sequence classification problems, where an output class is produced given a set
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of input values. Many-to-many prediction models usually solve sequence generation
problems such as text, music, handwriting, or image caption generation as illustrated
in Fig. 2.21(d). A Sequence-to-Sequence (seq2seq) learning is a particular prediction
models that solve problems with arbitrary input-output lengths, for instance, text
summarization and multi-step time series forecasting as presented in figures 2.21(e).

As the input-output sequence can have a variable length over time, the architecture
of a sequence prediction model should provide flexibility to maintain the dependency
within such contextual information. Generally, many well-known sequence prediction
models contain internal state or memory units that allow capturing and storing
temporal dependency for some duration. The functionality and computation of this
internal state vary from neural network architecture to another —(e.g. the di�erence
in computations between LSTM and GRU cells see section 2.4.2 for more details).
However, it is commonly used to retain previous information while influencing future
output results. Examples of some state-of-the-art deep learning sequence prediction
models are Recurrent Neural Network (RNN) [122], Long Short-Term Memory (LSTM)
[123], Gated Recurrent Units (GRU) [124], and Transformers [121,131,132].

2.4.4 Challenges and Observations

• One of the intentions of utilising deep learning methods is to practically solve the
assigned tasks by learning nonlinear representations or functions based on the
available knowledge while lowering explicit feature crafting and manual decision
making. However, such an objective is influenced by many non-trivial challenges
such as selection of model architecture, training hyperparameters, the choice of
loss function and optimiser.
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2.4.5 State-of-the-Art Image Compression Techniques

Lossless Image 
Compression

Learning-based 
Approaches

Prediction-based

Channel-wise Predictor (Rhee et al., 2020)

CNN-HEVC (Schiopu et al., 2020)

NN-based & MedZip (Nagoor et al., 2020)

Hybrid Codec (Schiopu et al., 2020)
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(SR) based

L3C (Mentzer et al., 2019)

SReC (Cao et al., 2020)
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DeepZip (Goyal et al., 2019)
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Figure 2.22: Highlighting some current lossless codecs literature, including classical
(non-learned) and deep learning-based methods.

The level of compression that can be achieved depends on the type of patterns
and assumptions that can be made about the target data, such as spatial, coding
and spectral (psycho-visual) redundancies [133]. This section highlights the current
lossless codecs trends, including classical (non-learned) compression literature and
deep learning-based compression literature. An overall illustration of lossless image
codecs is presented in figure 2.22. According to current compression research trends,
image reduction methodologies can be classified into five main types: prediction-
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based [9, 10, 13, 134–141], transform-based [7, 142], Super-Resolution (SR) based
[4, 32], statistical quantisation/coding-based [3, 143–146], and end-to-end compression
frameworks [147].

An alternative classification would be according to the dimensionality by which
a coder computationally utilises data. A coder is categorised into a 1D codec when
only sequential data (e.g. data from 1D space) is usually involved, which is generally
the scheme of statistical/entropy-based compressors (e.g. Bit-Swap and DeepZip).
On the other hand, if a codec is computed in 2D space (i.e. image), it is classified
as an image encoder such as L3C, SReC, JPEG2000, CALIC, JPEG-LS, and MRP.
Lastly, coders use information from higher dimensional space (e.g. 3D space) are
classified into volumetric encoders such as HEVC, M-CALIC, 3D-CALIC, 3D-MRP,
JP3D, MedZip, and CNN-HEVC.

2.4.5.1 End-to-End Compression Frameworks (Lossy)

Some contributions within the medical image compression domain but for lossy reduc-
tion are briefly specified in this subsection. A neural network model is defined to be an
end-to-end compression framework when it follows a variational auto-encoder model,
which is composed of trainable encoder-decoder architectures, yielding a compact
latent representation. In such a model, the proposed reduced latent representation
e�ectively captures the spatial information. Moreover, the model’s architecture can
flexibly be composed of deep neural network types such as MLP-based, RNN-based,
and CNN-based. An end-to-end lossy compression method using encoder-decoder
RNN-based architecture combined with an entropy coding was presented by Toderici
et al. [148]. Sushmit et al. [149] provide another learnable encoder-decoder based on
convolutional Recurrent Neural Networks (RNN-Conv) specifically for chest X-ray
images. A recent comprehensive study of end-to-end learning-based compression
frameworks was proposed by [147]. As the study only focuses on solving supervised
problems with lossy compression quality, considerable distortion metrics to measure
and identify the perceptual artifacts yielded are involved. Such evaluation metrics
include Peak Signal-to-Noise Ratio (PSNR) and Multi Scale Structural Similarity
(MS-SSIM) [83,150].

2.4.5.2 Entropy-based Compression Methods

A learning-based entropy/coding-based compression method usually combines a
likelihood-based model with an entropy coder. The statistical modelling unit in-
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tends to capture the underlying distribution of the input data through a NN-based
model. On the other hand, the entropy coding unit involves an arithmetic coder or
other Asymmetric Numeral Systems (ANS) that reduces the bit rate losslessly while
ensuring identical reconstruction. Recent examples of learning-based entropy codecs
are Bit-Swap [144], DeepZip [145], LSTM-Compress [146],and DZip [3].

Bit-Swap [144] contains hierarchical latent variable models with a Markov chain
structure for compressing data losslessly while keeping bits-back coding e�ciently
compatible. The hierarchical latent variable forms a robust density estimator while
combining it with ANS coding, compressing high-dimensional datasets e�ciently.
Empirically demonstrate Bit-Swap’s compression performance over well-known image-
datasets such as MNIST, CIFAR-10 and ImageNet.

DeepZip [145] provides a lossless encoder-decoder framework wherein each model
consists of two primary blocks: an RNN-based probability estimator and arithmetic
coding. The probability estimator general architecture comprises RNN block (i.e.
LSTM/GRU-based models), dense layer, and a subsequent softmax layer. The pre-
dictor maintains a many-to-many input-output mapping in which multi-input values
are used while yielding multi-output values. An input sequence is divided into over-
lapping segments of length K + 1 (shifted by one), where K represents the previously
encountered symbols fed to the predictor model. In DeepZip, the value of K was
typically chosen to be 64. The generated output values will be merged before inputting
them to the dense layer. The outcome of the model’s softmax layer is a probability
distribution, which then will be compressed by an arithmetic coder. Based on the
conditional probability of the next element in the distribution, this entropy coder
uniquely determines a range per symbol belonging to a stream. When no significant
improvement is noticed during training, early termination will be applied at a max-
imum of 10 epochs as an optimisation step. It is essential to know that after training,
the model’s weights are stored as part of the compressed representation.

Like DeepZip, LSTM-Compress [146] also utilises LSTM predictors as probability
estimators to adaptively learn the source distribution while condensing the learned
representations into more compact forms with an arithmetic coding unit.

An enhanced and general-purpose lossless compressor uses NN-based modelling
combined with arithmetic coding known as DZip [3]. This learning-based model can
compress not only sequential data but also a variety of real datasets (regardless of
the alphabet size), including text, genomics, executable files, audio data, and double-
precision floating-point datasets. Similar to DeepZip, DZip maintains NN-based
statistical data modelling combined with arithmetic coding. However, during training,
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DZip utilises a hybrid training scheme at which a combination of semi-adaptive and
adaptive training approaches are applied to two models, a bootstrap model and a
supporter model, as illustrated in Fig. 2.23. The bootstrap intends to learn from
the given data, while after training, the model’s weights are stored as part of the
compressed representation. When estimating density, predicting the current symbol
within a sequence is based conditionally on the probability of its past K symbols
(with K = 64 being a default value). The prediction involves contributions from both
bootstrap and supporter models, while only the bootstrap trained weights will be
saved. The resulting predicted probabilities are reduced using the arithmetic coder.

The main limitation of DeepZip and LSTM-compress is that they are exclusive
to compress only particular data types and domain applications (i.e. sequential data
such as textual and genomic data). As those RNN-based predictors follow a super-
vised dataset-driven learning-based mechanism, their models’ architecture is tuned
particularly for specific data types (i.e. pre-trained for each dataset). Moreover, since
the training involves only learning independently from existing data, thus DeepZip
and LSTM-compress models are inapplicable for general-purpose compression. Also,
DeepZip, LSTM-compress, and DZip have a substantial limitation that impractically
influences encoding/decoding speed and computation time. Due to hardware or plat-
form limitations (e.g. Keras [3]), these methods are forced to run their implementations
in a deterministic environment to guarantee identical lossless outcomes. This issue
restricted these codecs from utilising the GPU power, as it is only visible for their
current implementations to run within a deterministic environment by operating on a
single CPU thread.

Figure 2.23: Combined model architecture consisting of bootstrap and supporter
models. Dense layers correspond to fully connected layers with ReLU activation.
Linear layers are also fully connected layers but do not incorporate a non linear
transformation. Concat block denotes concatenation of all the input vectors [3].
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2.4.5.3 Super-Resolution (SR) Compression Methods

Most of the existing contributions utilising the image Super-Resolution (SR) scheme
address lossy compression quality. Within such a task, a model gradually reconstructs
multi-level images from low- to super-resolution while enhancing overall visual appear-
ance. Basically, given a low-resolution image, the SR model is expected to produce
a high-resolution level through the learned representations. Various learning-based
models demonstrate e�ectiveness by utilising such a mechanism while achieving state-
of-the-art results using numerous diverse architectures such as CNN-based [151,152],
generative-based [153, 154], or likelihood-based methods [148]. Cao et al. designed
an e�cient lossless image compression coder with the Super-Resolution based
Compression (SReC) strategy [4]. Their method encodes raw pixels that form the
initial version with a low-resolution level. In contrast, higher levels are iteratively
predicted while conditionally based on the probability of their low-level versions, as
shown in Fig. 2.24. Predictions are produced in parallel as each four output pixels are
grouped independently of the rest outputs at the same level. Each probability is then
individually compressed to a lower bitrate by an entropy coder. Only the probability
of three higher-resolution images is autoregressively predicted while leveraging SR
models. The overall network architecture used in this work is a simple ResNet-like
network design.

Another lossless codec that practically applied a full-resolution image compression
scheme known as L3C was introduced by Mentzer et al. [32]. Similarly to the SReC
codec, L3C is practically a fully parallelisable learning-based lossless codec. However,
L3C is a probabilistic model that follows a hierarchical scheme whereby three forward
passes are applied to predict all pixels. Unlike the well-known lossy autoregressive
discrete probabilistic models (i.e. PixelCNN [155], PixelCNN++ [156], and Multiscale-
PixelCNN [157]), the presented lossless codec jointly learns and produces full image
distribution instead of likelihood over a pixel distribution. Moreover, their proposed
probabilistic model contains feature extractors and predictors trained to model images
and auxiliary features in a hierarchical format. An adaptive arithmetic coder is then
involved in obtaining the compressed bitstream. Formally, given an image x = z(0),
the total number of hierarchical scales utilised by L3C is denoted by S, wherein for
each scale s œ S, a corresponding feature extractor E(s), and a predictor D(s) are
employed to predict distribution p. The feature extractors E(s) produced quantised
hierarchical feature representations indicated as z(1), . . . , z(S) for all levels. Given the
joint distribution of p(z(0), z(1), . . . , z(s)) with the auxiliary feature at a low level, a
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non-autoregressive predictor D(s) will produce a summary feature f (s) for the predictor
D(s+1) in the following larger-scale level.

Figure 2.24: Model Overview. We propose lossless image compression through super
resolution (SR). Our method first encodes a low-resolution image e�ciently, and then
leverages SR models to e�ciently entropy-code the high-resolution images [4].

2.4.5.4 Transform-based Compression Methods

Figure 2.25: (a) Block diagram of the JPEG 2000 encoder algorithm. (b) Dataflow. [5]

95



Briefly, a transform-based algorithm converts an image/data spatial domain into a
frequency domain, making it more compressible. The principle is to mathematically
transform input spatial data to a more compact set of coe�cients and then apply
reduction steps such as quantisation or arithmetic coding. A well-known transform-
based image coder is Joint Photographic Experts Group 2000 (JPEG2000)
[142, 158], which applies a DWT –(refer to subsection 2.3.2.5.2 for more details). This
standard wavelet-based image compressor was designed to supersede the original
DCT-based JPEG standard as the contributions such as memory e�ciency, lossy to
lossless coding, define a Region of Interest (ROI), and support for continuous-tone to
bi-level images. The applications of this compressor extend to include not only 2D
images but also volumetric imaging and wireless. Generally, JPEG2000 involves many
stages within its compression framework, similar to most transform-based compressors,
including tiling, colour component transform, discrete wavelet transform, quantisation,
and entropy coding. Therefore, it empirically achieves a high compression ratio
but yields more complicated computational complexity than other JPEG standards.
JPEG2000 can o�er both lossy or lossless compression qualities based on the wavelet
transform and the quantisation performed. When examining the block diagram of
JPEG2000 in figure 2.25 [6], an initial classification of reduction types for each block
can be noticed whereby spatial redundancies, visual redundancies, coding redundancies
are reduced, respectively. The image tiling principle was introduced to reduce the
memory requirements while independently applying decoding to each tile. Typically,
each image’s tile dimensionality is to the power of two except for the image edges.
Moreover, multiple levels of quality or resolutions can flexibly be used by employing the
tile concept. An essential element or region of interest would be placed in higher bit-
planes to emphasise the Di�erential Coding (DC) component and assign a considerable
coe�cient value to be transmitted in better quality. A dyadic wavelet transform will
be filtering the image at each subband while repeatedly subtracting the outcome from
the original as illustrated in Fig. 2.26. Eventually, only the resulting di�erence formed
as a single tile will need to be coded.

JP3D is an extension of JPEG2000 (known as Part 10 extension), which explicitly
upgrades numerous of the key features from 2D into 3D space [7]. Such utilities include
applying tiles, precinct code-blocks, resolution scalability, region-of-interest, and the
3D-DWT wavelet transform to the volumetric spatial dimension. Other z-dimension
enhancements contain wavelet decomposition structures hierarchically. An illustration
of Sub-band partitioning into dyadic-sized code-blocks is presented in figure 2.27 [7].
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Figure 2.26: Dyadic decomposition of a single tile [6].

Figure 2.27: Code-block partitioning of a wavelet volume (tile). The dark cube in the
right volume represents a code-block [7].
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2.4.6 Prediction-based Compression Methods

By examining the existing literature on prediction-based codecs, it is noticeable
that there is a lack of extensive studies that explore and review both classical and
learning-based lossless approaches in terms of the utilised spatial context and pre-
dictive patterns. Thus, this subsection aims to intensively cover all related aspects
of lossless prediction-based codec, including classification of utilised spatial context,
overall framework encoding/decoding procedures, and highlighting the current research
trending techniques. The following two subsections will emphasise the state-of-the-art
classical (non-learned) and learning-based compression methods that apply lossless
prediction-based paradigm within the current literature.

A predictive-based coding is a particular compression algorithm that utilises
spatial information from the data context. Such a methodology allows inputting prior
observations to the encoder/decoder in which a prediction paradigm is performed to
output the next value. As image’s pixels/voxels tend to be highly correlated, this
coder gains reduction by removing spatial redundancy between them. When the codec
conducts a mathematically reversible set of compression steps and recovers original
data without any loss, the compression quality is lossless, while irreversible operations
(e.g. quantisation) yield lossy quality. The compression processes in a predictive-
based codec typically consist of the prediction phase, residual errors computation
phase, and coding redundancy removal phase. Some predictive-based models may
involve contextual modelling or error modelling for further bit-reduction. A predictor
decorrelates the spatial information from the previous pixels to yield the next pixels at
the prediction phase. Then, the prediction/residual errors are then calculated as the
di�erence between the actual and predicted values, which usually has a distribution
similar to Gaussian normal distribution. Lastly, the coding redundancies are removed
losslessly by an Entropy coder producing the compact form of the data. Generally, the
more precise a predictor is in exploiting spatial features representations, the closer its
predictions to actual values become, resulting in negligible residual errors (i.e. close to
zero) with a more compressible coding signal. A general block diagram for a lossless
predictive-based compression framework with a detailed overview of the encoder and
the decoder schemes is proposed in figure 2.28.
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Figure 2.28: A general block diagram for a lossless predictive-based compression
framework with a detailed overview of the encoder and the decoder blocks.

Formally, given an image I, let S µ I where S denotes a set of pixels within the
image, consisting of finite paired of (previuos pixel(s), output pixel(s)) defined as
S = {x
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, y
i

}n

i=0, where n is the total number of pixels in I. For each x
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, by exploiting the spatial redundancies using linear or nonlinear mechanism/function
(e.g. hand-crafted computations, or learnable mapping functions). The residual error
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i

to recover the original value y
i

.

99



Spatial Information
Predictive Pattern

Input 
Image/Volume

Different 
Dimensions

Different 
Shapes & Sizes

Utilizing Other
Context Information

!"
#

!

!
#

1D

2D

3D Data-Driven Information 
e.g. Gradient Magnitude 

Target Pixel/Voxel 
to be encoded

Past neighboring 
Pixels/Voxels utilized
in prediction 

Future Pixels/Voxels

Image Color Channels
e.g. RGBA

R
G

B

Figure 2.29: A general illustration of the spatial information and predictive patterns
that a prediction-based compression extracts and manipulates when compressing
image/volume data. A classification of the numerous options utilised in the compression
literature is proposed, including di�erent dimensions, shapes, block sizes, and other
data-driven features or colour channels of the available spatial information. Patterns’
pixels/voxels are colour mapped based on their functionalities when employed by
the predictor. For instance, past neighbouring pixels/voxels (coloured in Orange)
are input and used in the prediction. However, the pixel/voxel coloured in striped
Purple represents the target location currently encoded or decoded. Lastly, White
pixels/voxels are future pixels/voxels.

Based on the existing literature of the prediction-based codec, a broad illustration
of the numerous spatial information and predictive patterns extracted and manipulated
when compressing image/volume data is demonstrated in figure 2.29. These numerous
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options are classified based on the input sequence’s dimensions, shapes, block sizes,
and utilisation of other available spatial information such as data-driven features or
colour channels. As such contextual information influences and assists a predictor
in exploiting spatial redundancies, many of the existing predictive-based methods
employ di�erent variations with di�erent block sizes and sequence lengths, spanning
both classical and learning-based approaches. These causal neighbourhood sequences
are linearly or nonlinearly combined and decorrelated by various prediction-based
approaches while reducing bitrates considerably. Some predictor codecs may also
utilise spectral information for further exploiting the local structures. For all the
examples in the same figure, patterns’ pixels/voxels are colour mapped based on
their functionalities when employed by the predictor. For instance, past neighbouring
pixels/voxels (coloured in Orange) are fed and used in the prediction. However, the
pixel/voxel coloured in striped Purple represents the target location currently encoded
or decoded. Lastly, White pixels/voxels are future pixels/voxels.

2.4.6.1 Classical Prediction-Based Methods

This subsection will present some of the current literature’s prediction-based clas-
sical codecs that perform lossless compression quality. Example of such codecs are
Joint Photographic Experts Group-Lossless (JPEG-LS) [13], Context Based Adaptive
Lossless Image Codec (CALIC) [134], (3D-CALIC) [136], (M-CALIC) [137], High
E�ciency Video Coding (HEVC) [9], Minimum Rate Predictors (MRP) [135], and
3D-MRP [10].

Figure 2.30: Block diagram for the JPEG-LS encoder [8].
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Selection-value Prediction
0 No prediction
1 A
2 B
3 C
4 A + B ≠ C
5 A + (B ≠ C)/2
6 B + (A ≠ C)/2
7 (A + B)/2

Table 2.4: The mode-selection options utilised in the JPEG-LS predictor [13]

The Joint Photographic Experts Group-Lossless (JPEG-LS) is a well-
known predictive compression standard that involves a mode-selection method similar
to the LOw COmplexity LOssless COmpression for Images (LOCO-I) algorithm [13].
Unlike JPEG2000, the JPEG-LS follows a di�erent encoding mechanism that allows
lossless and near-lossless compression qualities to reduce continuous-tone, grayscale
and colour still images. The main intention of designing this algorithm is to provide
compression with low complexity while ensuring lossless reconstruction. JPEG-LS
applies a predictive paradigm that utilises some of the input structures, precisely the
three nearest neighbouring pixels (i.e. A, B, and C), to determine the reduction mode
conditionally based on the context within (see figure 2.30 for more details). Such a
mode-selection scheme allows flexibly encoding each pixel to adaptively vary given
the conditional probabilities from its context while capturing high-order dependencies.
In order to obtain reasonable decorrelation, this algorithm presents eight options for
mode-selections, as shown in table 2.4. For instance, three options maintain a 1D
predictor linear operations, while four other options facilitate 2D operations, such as
a primitive test of vertical or horizontal edges detections. The JPEG-LS prediction
mechanism is built on the Median Edge Detection (MED) or LOCO-I predictor,
detecting simple primitive edges (i.e. horizontal or vertical edges). A direct switch
between options is used by examining the nearest neighbouring pixels, whereby B
represents the vertical edge, A represents a horizontal edge, and the median is selected
if no edge is detected. A formal overview of the JPEG-LS predictor [13] is defined as:

P
JP EG≠LS

(x, y) =

Y
____]

____[

min(A, B), ifC Ø max(A, B),

max(A, B), ifC Æ min(A, B),

A + B ≠ C, otherwise

(2.37)
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Then, context modelling encodes the current prediction residual by exploiting
texture patterns and local activity through the utilisation of local variations in pixel
values (i.e. local gradients) calculated as:

g1 = D ≠ B

g2 = B ≠ C

g3 = C ≠ A

(2.38)

Such local gradients allow JPEG-LS to control the statistical behaviour of prediction
errors reflected by the activity level (i.e. smoothness, and edginess) surrounding the
target sample in that particular context. Lastly, the prediction errors will be losslessly
compressed using the Golomb codec.

C B D

A

(a)

nn nne

nw n ne

ww w

(b)

Figure 2.31: An illustration of utilised local neighbouring causal pixels in JPEG-LS
predictor (a) and CALIC predictor (b).

Another compressor that involves a prediction-based paradigm with two phases of
prediction and residual is the Context-based Adaptive Lossless Image Codec
(CALIC) [134]. Similar to JPEG-LS, within the given context, CALIC utilises a
gradient-based prediction scheme, where adjusted prediction coe�cients are estimated
from the local gradients. Based on the neighbourhood contextual information of the
current pixel and seeking a better reduction, the encoding may adaptively change if the
local structure contains horizontal or vertical edges. Particularly, CALIC computes an
edge descriptor to determine seven edge types, including edge’s direction and strength
as calculated in equations 2.40. Unlike JPEG-LS, CALIC applied a complex context
conditioning based on a Gradient-Adjusted Predictor (GAP) nonlinear predictor,
utilising a causal neighbourhood of six pixels. With the GAP predictor, a set of
predefined heuristic thresholds are used to determine whether the local context is
weak, regular, sharp, horizontal edge, vertical edge, or smooth area.
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Formally, let I(x, y) denote the current pixel position desired to be encoded. Let
denote each of its local neighborhood pixels with: n = I(x, y ≠ 1), w = I(x ≠ 1, y),
nw = I(x ≠ 1, y ≠ 1), ne = I(x + 1, y ≠ 1), ww = I(x ≠ 2, y), nn = I(x, y ≠ 2), and
nne = I(x + 1, y ≠ 2), as labeled in Fig. 2.31(b). An edge descriptor d is estimated
by the local gradients of the current pixel to determine the edge’s strength, where g

h

denote the horizontal edge and g
v

vertical edges, defined as:

d = g
v

≠ g
h

, where

Y
_]

_[

g
h

= |w ≠ ww| + |n ≠ nw| + |n ≠ ne|

g
v

= |w ≠ nw| + |n ≠ nn| + |ne ≠ nne|
(2.39)

The CALIC predictor [134] is defined as:

P
CALIC

(x, y) =

Y
______________________]

______________________[

w, if(g
v

≠ g
h

) > 80 {sharp horizontal edge}

n, elseif(g
v

≠ g
h

) < ≠80 {sharp vertical edge}

else

M̂
p

= (w+n)
2 + (ne≠nw)

4
(M̂

p

+w)
2 , if(g

v

≠ g
h

) > 32, {horizontal edge}
(3M̂

p

+w)
4 , elseif(g

v

≠ g
h

) > 8, {weak horizontal edge}
(M̂

p

+n)
2 , elseif(g

v

≠ g
h

) < ≠32, {vertical edge}
(3M̂

p

+n)
4 , elseif(g

v

≠ g
h

) < ≠8, {weak vertical edge}
(2.40)

The residual error is then encoded using a context-adaptive variable-length entropy
coding method.

3D-CALIC expands the functionality of CALIC to higher-dimensional data
wherein statistical redundancies of inter-band and intra-band are reduced [136]. In
this coder, the non-linear spectral predictor utilises not only the local structure in the
current band but also values from its reference band. Exploiting correlation within
neighbouring pixels in the same band is known as spatial (intra-band) correlations. In
contrast, a correlation between pixels in adjacent bands is known as spectral (inter-
band) correlations. Such methodology allows exploiting both inter-band and intra-band
based on the local neighbourhoods correlations. Mainly, 3D-CALIC adaptively changes
between the inter-band and intra-band predictors based on the value of local correlation
coe�cients between current band X and reference band Y . Then, a context-based
entropy reduces the statistical redundancies by utilising residual correlations and
spatial or spectral context. An improved version that is e�ciently applied as a spectral
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decorrelator is M-CALIC [137], where the prefix “M” stands for the multiband
nature of the spectral prediction. This codec o�ers both lossless and near-lossless
compression qualities while reducing Band-Interleaved-by-Line (BIL) data formats
such as satellite or aircraft images. M-CALIC exploits spectral correlations not only in
multispectral data but also hyperspectral data with (16 bit-depths) utilising modified
spatial predictors and complex spectral predictors with an optimised CALIC-based
compression engine. The novel predictor in this coder involves two previous bands
in the current reference line while optimising model parameters and quantisation
thresholds, gaining better reduction than 3D-CALIC and previous versions.

Figure 2.32: Typical HEVC video encoder (with decoder modeling elements shaded in
light gray) [9]

High E�ciency Video Coding (HEVC) is a well-known standard video coding
that supports high bit-rate reduction while retaining perceptual video quality [9, 159].
This codec proposes many technical features and characteristics for both lossy and
lossless compression qualities. The domain applications of such compression framework
are not restricted to video reduction but extend to include other domains such as
volumetric medical scans, broadcast of high definition (HD) TV signals over satellite,
cable, video content acquisition and editing systems, security applications, and Internet
and mobile network video. The compression process starts by subdividing images into
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non-overlapped block-shaped regions at which a prediction paradigm will be applied,
whereas each block can be encoded di�erently based on the motion information. Like
JPEG2000, HEVC supports the tiling concept for more e�cient computations and
parallel processing. By partitioning images into smaller rectangular regions (tiles),
independently decodable parallel computations can be performed. In HEVC, finding
the best-matched block is determined by the motion information of the frame. As this
codec handles higher dimensional data distributions, the prediction scheme applied
not only utilised pixels in the current frame but also excessive frames. When the
motion signal is determined from the current frame, it is known as (Intra), while the
previously encoded frames are known as (Inter). Similarly to the other predictive-based
compressors, after prediction, the residual error is computed and transformed into
transform blocks, wherein the coding redundancy is reduced using an entropy coder.
A general block diagram of the HEVC video coder is illustrated in figure 2.32.

Figure 2.33: 3D-shaped support used for linear prediction in the proposed 3D-MRP
algorithm. Pixels located at previous frames are indexed by the Z coordinate, with Z
= 0 corresponding to the current frame. [10]

Minimum Rate Predictors (MRP) supports an adaptive block-based prediction
scheme whereby each block can be encoded by a di�erent predictor classified by a set
of coe�cients [135]. Generally, the MRP algorithm will be iteratively optimising three
core functions while minimising a specified cost function. These functionalities include
the determination of minimum rate predictors, estimation of quantisation thresholds,
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and classification of the blocks. The predictor linearly utilises some small causal
neighbourhood pixels (i.e. 5 pixels) previously encoded with Manhattan distance
to encode the current reference pixel. The prediction error will be minimised using
context modelling that infers the Probability Density Function (PDF) of the error
followed by an arithmetic coding. An enhanced version, which extends the MRP
functionality and characteristics to 3D space known as 3D-MRP, was proposed by
Lucas et al. [10]. 3D predictors, 3D-block octree partitioning and classification, and
volume-based optimisation for high bit-depth volumetric medical dataset reduction
are supported within this implementation. The algorithm subdivides volume data into
fixed-size 3D blocks, whereby the 3D-predictor will independently be applied while
specifying a class and threshold per block. The enhanced 3D-predictor exploits not
only spatial redundancies within the current frame but also redundancies from prior
encoded frames (i.e. inter-frame redundancies) within the 3D block. The maximum
number of casual voxels utilised by the predictor is 64 voxels, with a maximum
Manhattan distance of 4 pixels horizontal, vertical, and axial directions, as shown
in Fig. 2.33. The classification strategy supports hybrid 2D and 3D types whereby
octree block partitioning is applied based on the given region context. The intention
is to evaluate whether a single class can e�ciently represent the 3D block or multiple
classes corresponding to each of the 2D blocks alternatively utilised. Similar to the
original MRP algorithm, quantisation of thresholds using enhanced context modelling
and arithmetic coding to reduce residue coding is applied.

Figure 2.34: Octree-based partitioning of a 3D-block, with one of the subblocks (in the
bottom-right corner) being further divided into independent 2D-blocks, as proposed
by the hybrid classification step of 3D-MRP algorithm. [10]
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2.4.6.2 Learning-Based Prediction Methods

The shifting toward deep learning strategies instead of traditional codecs is due to
their increased capabilities and robustness in understanding and capturing nonlinear
domains and data distributions. Compared to the classical methods, learning-based
approaches can be adjusted to many dataset types while remarkably beating traditional
outcomes. Many well-known classical codecs utilise hand-crafted features or linear
combinations schemes when reducing data size, restricting their overall performance.
In contrast, deep learning methods demonstrate higher flexibility in representing
nonlinear distributions and likelihood estimations while learning arbitrarily complex
mappings and patterns. Overall, innovations and contributions to learning-based
approaches from great potentials and considerably promising research direction. The
current deep learning methods are outperforming state-of-the-art classical methods
in solving numerous domain problems, including data compression for both lossy
and lossless qualities [160–162]. Within the data compression field, the research
contributions utilising deep learning methods o�er either novel strategies or hybrid
coding solutions replacing some components of traditional codecs with DL alternatives.
Such components can be the predictor, quantiser, and entropy coder. This subsection
will highlight the current research contributions within lossless compression using
deep-learning prediction-based techniques.

A novel DL-based prediction method combined with error modelling and a context-
tree based bit-plane (CBP) codec for residual error encoding was proposed in [138].
The applications for this codec includes reducing photographic images, lenslet images,
and video frames losslessly. A pixel-wise prediction scheme is used, where large local
causal neighbourhood pixels are utilised for predicting the current pixel (i.e. size of
(b+1)◊(2b+1) causal neighbourhood, which selects up to a distance of b pixels from
the current position). A dual prediction strategy is employed wherein the prediction
of any pixel is made with some state-of-the-art prediction methods and enhanced
by predicting its residual with a CNN-based model. Also, an enhanced version of
CALIC’s context modeller is employed as an error modelling unit. Furthermore, the
modelled error is then further reduced by an entropy coder.

A novel macro-pixel prediction method based on Convolutional Neural Network
(CNN) model (MP-CNN) was introduced by Schiopu, and Munteanu [163], specifically
for reducing large light field images losslessly. Their predictor utilises a volume of
six immediate causal macro-pixels neighbourhood to predict the current macro-pixel
value. The residual errors are encoded with a new context modelling method built on
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the CALIC codec to utilise the macro-pixel structure in lenslet images. The model
architecture for this lenslet image codec consists of 57 convolutional layers.

A block-wise prediction using CNN-based with multi-resolution design is proposed
by Schiopu et al. [140] and known as Angular intra-Prediction Convolutional Neural
Network (AP-CNN), especially for lossless video coding applications. The novelty
in their methodology is replacing HEVC standard intra-prediction schemes with
learning-based CNN prediction methods. Better bit reductions (i.e. rate saving of
5% over HEVC) are accomplished by e�ciently enhancing some HEVC components
with alternative learning CNN-based blocks. A novel residual block estimator along
with 33 angular learning-based inter-prediction replacement modes are presented. The
prediction mechanism operates in pixel-wise and block-wise (i.e. 4 ◊ 4 and 8 ◊ 8 block
sizes) paradigms while seeking better reductions for di�erent image types. The primary
drawback of this hybrid video coder is the higher computation cost of inferencing
compared to the original HEVC implementation, which is expected given the high
run-time required by the CNN-based model.

A learning-based model that uses not only spatial information but also spectral
information for lossless hyperspectral images coding was introduced by Jiang et
al. [164]. Their proposed shallow neural network (i.e. only two-hidden layers) operates
as an adaptive filter, where feature extraction and predictive filtering are performed.
The architecture comprises two parallel NN concatenated, wherein each is fed with
di�erent input formats (i.e. spatial and spectral contexts). Thus, this codec is known
as Concatenated Shallow Neural Network (CSNN). The model’s output predicts the
target pixel; then, the prediction error is computed and encoded using an entropy coder
(i.e. Golomb Rice Codec). Their presented methodology implies low computational
cost as it does not demand pre-training and has a relatively small model. Compared
to other state-of-the-art codecs, CSNN achieves higher compression results.

A comprehensive exploration of the current literature for lossless predictive-based
codecs is presented in Table 2.5, including classical and learning-based approaches with
a detailed overview of prediction patterns (i.e. the number of causal neighbourhoods
utilised), spatial dimensions, domains applications, and methodology details.
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Predictive Coding Method Type
Number of Causal

Neighborhood Utilised

Dimensions of the Causal

Neighborhood Utilised
Compression Quality Data Compression Domains Methodology Details

JPEG-LS [13] Classical 3 2D Lossless Image (16 bit-depths) LOCO-I mode-selection predictor based on linear combinations of small causal neighbourhood

HEVC [9] Classical Coding Tree Unit (CTU), which can vary in size
from 8 ◊ 8 to 64 ◊ 64 pixels

3D Lossless/Lossy Video and Medical Volumes (16
bit-depths)

HEVC partitions frames into smaller rectangular regions (tiles), whereby Inter/Intra predictor reduces
temporally or spatially neighbouring redundancies. Finding the best-matched block is determined
by the motion information within the frame. After prediction, the residual error is computed and
transformed into transform blocks, wherein the coding redundancy is reduced using an entropy coder.

MRP [135] Classical The K previous encoded reference pixels, ordered
by an increasing Manhattan distance from the un-
known pixel. In MRP, K=5

2D lossless Still Images (8 bit-depths) MRP supports an adaptive block-based prediction scheme whereby each block can be encoded by
a di�erent predictor classified by a set of coe�cients. The prediction error will be minimised using
context modelling that infers the Probability Density Function (PDF) of the error followed by an
arithmetic coding.

3D-MRP [10] Classical Total of 64 voxels, with maximum Manhattan dis-
tance of 4 pixels in the horizontal, vertical, and
axial directions

3D lossless Volumetric Medical Images (16
bit-depths)

3D-MRP extends and enhances the original functionalities of MRP to 3D space while supporting
the reduction of volumetric medical images for both 8 and 16 bit-depths. The 3D-predictor in this
version utilised 3D causal neighbouring with 64 voxels.

CALIC [134] Classical 6 2D lossless image (8 bit-depths) CALIC computes an edge descriptor to determine seven edge types, including its direction and
strength. A complex context conditioning based on a GAP nonlinear predictor utilises a small causal
neighbourhood. The prediction error is then encoded using a context-adaptive variable-length entropy
coding method.

3D-CALIC [136] Classical Neighborhoods pixels from two bands to predict
the current sample pixel

3D lossless multi-spectral images such as
color images, remotely sensed im-
ages, and satellite images (16 bit-
depths)

3D-CALIC contains a non-linear spectral predictor that uses values in a reference band to predict
the current band. Such methodology allows exploiting both inter-band and intra-band based on the
local neighbourhoods correlations. A context-based entropy reduces the statistical redundancies by
utilising residual correlations and some spatial or spectral context.

M-CALIC [137] Classical Neighbourhood pixels from the two previous im-
age’s rows

3D Lossless/Near-Lossless Satellite images or Aircraft images
(16 bit-depths)

An improved version of CALIC-based coder, which proposes a novel multiband spectral predictor at
which spectral data are e�ectively decorrelated. Within this predictive coder, a linear combination of
the two previous bands is involved in the current reference line while optimising model parameters
and quantisation thresholds selections.

Concatenated
Shallow Neural
Network
(CSNN) [164]

DL-based Spatial context (12 neighbouring pixels from cur-
rent and the 2 previous bands) spectral context
(4 pixels from previous bands co-located with the
current pixel)

3D Lossless Hyperspectral images A shallow neural network (i.e. only two-hidden layers) operates as an adaptive filter, where feature
extraction and predictive filtering are performed. The architecture comprises two parallel NN
concatenated, wherein each is fed with di�erent inputs (i.e. spatial and spectral contexts). The
model’s output predicts the target pixel; then, the prediction error is computed. Lastly, the residuals
are encoded using an entropy coder (i.e. Golomb Rice Codec).

DeepZip [145] DL-based A sequence is divided into overlapping segments of
length K + 1 (shifted by one), where K represents
the previously encountered symbols. In DeepZip,
K was chosen to be 64.

Sequential Data Lossless Text and Genomic Data DeepZip provides a lossless encoder-decoder framework wherein each model consists of two primary
blocks: an RNN-based probability estimator and arithmetic coding.

LSTM-
Compress [146]

DL-based Not specified Sequential Data Lossless Text and Genomic Data Like DeepZip, LSTM-Compress also utilises LSTM predictors as probability estimators to adaptively
learn the source distribution while condensing the learned representations into more compact forms
with an arithmetic coding unit.

Dzip [3] DL-based The number of previous symbols used for prediction
is set by default to K = 64

Sequential Data Lossless Variety of Real Datasets (regard-
less of the alphabet size), for
example, Text, Genomics, Ex-
ecutable Files, Audio Data, and
Double Precision Floating-point
Datasets

A general-purpose lossless compressor uses NN-based statistical data modelling combined with
arithmetic coding. During training, DZip utilises a hybrid training scheme at which a combination of
semi-adaptive and adaptive training approaches are applied to two models, a bootstrap model and a
supporter model.

CNN-based
Prediction
(PredNN) [165]

DL-based The causal neighbourhood N(b) of size (b + 1) x
(2b + 1) selects pixels up to the distance b from
the current position. The last b+1 values on the
last row are set to 0.

2D Lossless High-resolution Photographic Im-
ages

A novel pixel-wise conventional predictor that utilises di�erent predicting mechanisms based on the
textural region types. For highly textural regions with sharp edges, the traditional LOCO-I predictor
is applied, while for flat areas with weak edges, the traditional CALIC predictor is used. Such a
methodology allows this CNN-based model to recognise the local patterns and identify a feature
vector. CALIC reference coder is then involved in reducing the coding redundancy.

Residual-error
prediction REP-
CNN [139]

DL-based The causal neighbourhood N(b) of size (b + 1) x
(2b + 1) selects pixels up to the distance b from
the current position. The last b+1 values on the
last row are set to 0.

2D Lossless High-resolution Photographic Im-
ages

Enhance the residual coding unit by utilising a reference codec based on CALIC and a novel residual
error prediction model (REP-CNN).

Macro-Pixel
prediction (MP-
CNN) [163]

DL-based A volume of six macro-pixels of immediate causal
neighborhood.

2D Lossless Large Light Field Images A CNN-based predictor uses block-wise macro-pixels specifically for compression light field images
losslessly. The prediction errors are then encoded by a reference CALIC codec adapted to perform
macro-pixels of the lenslet images with a new context modelling method.

CNN-Based
Intra-Prediction
[140]

DL-based A block-wise (4 ◊ 4 and 8 ◊ 8 block sizes) 3D Lossless Video A block-wise prediction using CNN-based with multi-resolution design is proposed. The novelty in
their methodology is replacing HEVC standard intra-prediction schemes with learning-based CNN
prediction methods.

Novel Hybrid
Coding [138]

DL-based The causal neighborhood Nb(x, y), of size
(b+1)◊(2b+1) which selects pixels up to the dis-
tance of b pixels from the current position. The
last b+1 values in the last row are unknown at the
decoder side. Thus, they are set to 0.

2D/3D Lossless High-resolution Photographic Im-
ages, Lenslet Images, and Video
Frames

A novel DL-based predition method with context-tree based bit-plane (CBP) codec for residual error
coding. A pixel-wise prediction scheme is used, where large local causal neighbourhood pixels are
utilised for predicting the current pixel. A dual prediction strategy is employed wherein the prediction
of any pixel is made with some state-of-the-art prediction methods and enhanced by predicting
its residual with a CNN-based model. Also, an enhanced version of CALIC’s context modeller is
employed as an error modelling unit.

Table 2.5: A comprehensive exploration of the current literature for lossless predictive-based codecs is presented, including classical and
learning-based approaches with a detailed overview of prediction patterns (i.e. the number of causal neighbourhoods utilised), spatial
dimensions, domains applications, and methodology details.
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2.4.7 Challenges and Observations

• As only limited contributions have been recently made to the lossless learning-
based compression, no comprehensive survey studies yet cover this particular
literature. Most recent review papers focus on lossy learning-based techniques
or other lossless classical-based compression methods.

• One of the main challenges for learning-based domain methods is the generalis-
ability across unseen volumes, di�erent medical modalities, and scanner settings
(e.g. variations in HU’s ranges based on beam’s setting [55]).

• It would be interesting to notice research contributions that propose end-to-end
compression frameworks seeking lossless compression quality potentially. For
instance, iWave3D [166] that was recently introduced by Xue et al. iWave3D is
an end-to-end Brain image compression based on learning-based 3-D Wavelet
Transform.

• Naturally, it is challenging to develop an e�cient combination of a likelihood-
based model and entropy coding that is practical and computationally e�cient
while gaining a reasonable compression rate for lossy or lossless quality. However,
some existing learning-based models demonstrate promising yet practically fully
parallelisable implementations such as L3C [32] and SReC [4].
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This chapter covers the experimental details shared within the following technical
chapters of this thesis. Such information includes descriptions of dataset details,
metrics used for evaluation, customized loss functions, and other experimental setups.

3.1 Dataset Details

All datasets utilised in this thesis consist of a set of DICOM files stored in 16 bit-depths
grayscale images. The modality of the medical images belonging to any dataset is
either Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). More
details on each of the used datasets are given in the following subsections.
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3.1.1 Dataset 1 - Private CT
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Figure 3.1: Overview of the voxel intensity histogram across all volumes (16 bit-depths)
belonging to dataset 1.

This private dataset contains 43 high-resolution volumes generated by the same
hospital and represents CT scans for a patient’s entire trunk, stored in DICOM format.
All the scans have the same resolution (i.e. width and height) 512◊512; however, they
di�er in the depth of the volume (i.e. number of frames per volume) z œ [750, 1120].
The slice thickness is 0.625 mm in all patients belonging to this set. The pixel spacing
varies between patients PS œ {.488, .578, .625, .703}. Intensity values range from
-1024 to 3071 (12 bits stored as 16 bits integer). An illustration of the voxel intensity
histogram across all volumes (16 bit-depths) belonging to dataset 1 is shown in Fig.
3.1. Moreover, a detailed overview of dataset 1 characteristics is presented in table
3.1. Furthermore, some sample volumes (16 bit-depths) belonging to this set are
presented in Fig. 3.2. This dataset was utilised in all the technical chapters of this
thesis, including chapters 4, 5, 6, and 7.
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Figure 3.2: Visualisations of three orthogonal slice views of some (16 bit-depths)
sample volumes belong to dataset 1.
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Volume ID Pixel Spacing Slice
Thickness Resolution Frames Min.

Value
Max.
Value

1 [0.488, 0.488] 0.625 512 ◊ 512 728 -1024 3071
2 [0.625, 0.625] 0.625 512 ◊ 512 840 -1024 3071
4 [0.625, 0.625] 0.625 512 ◊ 512 784 -1024 3071
5 [0.488, 0.488] 0.625 512 ◊ 512 840 -1024 3071
6 [0.488, 0.488] 0.625 512 ◊ 512 840 -1024 3071
7 [0.488, 0.488] 0.625 512 ◊ 512 952 -1024 3071
9 [0.488, 0.488] 0.625 512 ◊ 512 840 -1024 3071
10 [0.625, 0.625] 0.625 512 ◊ 512 952 -1024 3071
11 [0.625, 0.625] 0.625 512 ◊ 512 952 -1024 3071
13 [0.578, 0.578] 0.625 512 ◊ 512 784 -1024 3071
15 [0.625, 0.625] 0.625 512 ◊ 512 952 -1024 3071
17 [0.625, 0.625] 0.625 512 ◊ 512 1120 -1024 3071
18 [0.488, 0.488] 0.625 512 ◊ 512 840 -1024 3071
19 [0.488, 0.488] 0.625 512 ◊ 512 840 -1024 3071
20 [0.615, 0.615] 0.625 512 ◊ 512 784 -1024 3071
21 [0.578, 0.578] 0.625 512 ◊ 512 784 -1024 3071
22 [0.625, 0.625] 0.625 512 ◊ 512 840 -1024 3071
23 [0.488, 0.488] 0.625 512 ◊ 512 952 -1024 3071
25 [0.625, 0.625] 0.625 512 ◊ 512 896 -1024 3071
26 [0.578, 0.578] 0.625 512 ◊ 512 728 -1024 3071
27 [0.625, 0.625] 0.625 512 ◊ 512 1008 -1024 3071
28 [0.551, 0.551] 0.625 512 ◊ 512 728 -1024 3071
29 [0.488, 0.488] 0.625 512 ◊ 512 896 -1024 3071
30 [0.488, 0.488] 0.625 512 ◊ 512 952 -1024 3071
31 [0.703, 0.703] 0.625 512 ◊ 512 840 -1024 3071
32 [0.488, 0.488] 0.625 512 ◊ 512 840 -1024 3071
33 [0.488, 0.488] 0.625 512 ◊ 512 840 -1024 3071
34 [0.488, 0.488] 0.625 512 ◊ 512 952 -1024 3071
35 [0.488, 0.488] 0.625 512 ◊ 512 840 -1024 3071
36 [0.580, 0.580] 0.625 512 ◊ 512 896 -1024 3071
38 [0.488, 0.488] 0.625 512 ◊ 512 896 -1024 3071
39 [0.625, 0.625] 0.625 512 ◊ 512 784 -1024 2274
40 [0.625, 0.625] 0.625 512 ◊ 512 782 -1024 3071
41 [0.488, 0.488] 0.625 512 ◊ 512 952 -1024 3071
42 [0.488, 0.488] 0.625 512 ◊ 512 952 -1024 3071
43 [0.488, 0.488] 0.625 512 ◊ 512 896 -1024 3071
44 [0.625, 0.625] 0.625 512 ◊ 512 1120 -1024 3071
45 [0.429, 0.429] 0.625 512 ◊ 512 1008 -1024 3071
46 [0.488, 0.488] 0.625 512 ◊ 512 840 -1024 3071
47 [0.488, 0.488] 0.625 512 ◊ 512 952 -1024 3071
49 [0.488, 0.488] 0.625 512 ◊ 512 952 -1024 3071
50 [0.553, 0.553] 0.625 512 ◊ 512 840 -1024 3071
51 [0.488, 0.488] 0.625 512 ◊ 512 784 -1024 3071

Table 3.1: Overview of dataset 1 details composed of (16 bit-depths) CT medical
images.
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3.1.2 Dataset 2 - Public CT

This publicly available dataset contains only two volumes from The Cancer Imaging
Archive (TCIA) [14,15]. The DICOM files store CT scans of a human lung for patients
who su�er from non–small cell lung cancer. The datasets characteristics are presented
in table 3.2. An overview of the histogram of voxel intensity across the two volumes
(16 bit-depths) belonging to this set is illustrated in Fig. 3.3. This set was only used
to evaluate the models in chapter 4.
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Figure 3.3: Overview of the histogram of voxel intensity in dataset 2 (16 bit-depths).

Volume ID Pixel Spacing Slice
Thickness Resolution Frames Min.

Value
Max.
Value

CT Lung R004 [0.830078, 0.830078] 5.0 512 x 512 68 -1024 3071
CT Lung R013 [0.623047, 0.623047] 5.0 512 x 512 67 -1024 3071

Table 3.2: Overview of dataset 2 information composed of 16 bit-depth CT medical
images [14,15].
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3.1.3 Dataset 3 - Public MRI

This set is a public dataset that contains 12 MRI volumes of patients’ head and
neck scans stored as (16 bit-depths) grayscale images [16–18]. All volumes have
512 ◊ 512 ◊ 120 resolution, slice thickness 2.0 mm, and PS = 0.5 pixel spacing. The
minimum intensity value across all volumes is 0, and the maximum is 689. A detailed
overview of dataset 3 characteristics is presented in table 3.3. Moreover, visualisations
of some sample volumes (16 bit-depths) belonging to this set are presented in Fig. 3.4.
This dataset was used as an evaluation set in chapter 5, 6, and 7. Also, it was utilised
as a training set only in chapter 7.

Volume ID Pixel Spacing Slice
Thickness Resolution Frames Min.

Value
Max.
Value

1 [.5, .5] 2.0 512 x 512 120 0 421
2 [.5, .5] 2.0 512 x 512 120 0 479
3 [.5, .5] 2.0 512 x 512 120 0 494
4 [.5, .5] 2.0 512 x 512 120 0 394
5 [.5, .5] 2.0 512 x 512 120 0 498
6 [.5, .5] 2.0 512 x 512 120 0 527
7 [.5, .5] 2.0 512 x 512 120 0 689
8 [.5, .5] 2.0 512 x 512 120 0 523
9 [.5, .5] 2.0 512 x 512 120 0 452
10 [.5, .5] 2.0 512 x 512 120 0 446
11 [.5, .5] 2.0 512 x 512 120 0 639
12 [.5, .5] 2.0 512 x 512 120 0 406

Table 3.3: Overview of dataset 3 composed of 12 MRI volumes of patients’ head and
neck scans (16 bit-depths) [16–18].
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Figure 3.4: Visualisations of three orthogonal slice views of some (16 bit-depths)
sample volumes belong to dataset 3.
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3.2 Loss Function

Inspired by [150], a joint loss L
joint

(Eq. 3.1) was chosen as the loss function for all the
proposed models proposed in this thesis. This loss function jointly combines the Mean
Absolute Error (MAE) (Eq. 3.2) with the Pearson Correlation Coe�cient (PCC) (Eq.
3.3) also known as bivariate correlation:

L
Joint

= MAE + ⁄(1 ≠ |PCC|) (3.1)

MAE =
q

n

i=1 |y
i

≠ ŷ
i

|
n

(3.2)

PCC = cov(y
i

, ŷ
i

)
‡

y

i

‡
ŷ

i

(3.3)

Where, y
i

is the ground truth voxel value, ŷ
i

is the models’ prediction, n is the total
number of data samples, cov is the covariance, ‡

y

i

is the standard deviation of y
i

, and
‡

ŷ

i

is the standard deviation of ŷ
i

. The intention of using PCC in the loss function is
to measure the statistical relationship between the ground truth value y

i

and ŷ
i

. When
PCC = 0, this means no linear correlation between the two continuous variables. In
the L

joint

, the absolute value of PCC is computed, which limits the PCC value to be
less than or equal to 1. If the value is equal to 1, it means the variables are linearly
correlated. Incorporating PCC with the MAE for solving the regression problem has
a significant impact in enhancing the accuracy and stabilizing the training.

3.3 Evaluation Metrics

3.3.1 Compression Ratio

The compression ratio in bit-per-pixel (bpp) was applied as the primary evaluation
criteria across all the technical chapters to compare the compression performance of
our proposed codecs to the state-of-the-art lossless codecs. This evaluation metric can
be calculated as follows:

bpp = Compressed Image Size (Bits)
Number Of V oxels

(3.4)

3.3.2 Compression Time

Compression time is an evaluation metric that measures a codec compression speed by
computing its encoding or decoding time (in seconds) – used only in chapters 5 and 6.
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Lossless Compression for Volumetric Med-
ical Images Using Deep Neural Network
with Local Sampling
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This work was originally published in the IEEE International Conference on Image
Processing 2020, Awarded ICIP 2020 Top Viewed Q&A Paper Award (2nd
place), [43], by the thesis author alongside Dr J. Whittle, Dr J. Deng, Prof. B. Mora,
and Prof. M. W. Jones.

4.1 Introduction

Data compression forms a central role in handling the bottleneck of data storage,
transmission and processing. Lossless compression requires reducing the file size
whilst maintaining bit-perfect decompression, which is the main target in medical
applications. This chapter presents a novel lossless compression method for 16-bit
medical imaging volumes. The aim is to train a neural network (NN) as a 3D data
predictor, which minimizes the di�erences with the original data values and to compress
those residuals using arithmetic coding. We evaluate the compression performance of
our proposed models to state-of-the-art lossless compression methods, which shows
that our approach accomplishes a higher compression ratio compared to JPEG-LS,
JPEG2000, JP3D, and HEVC while generalising well.

Medical imaging is used for clinical diagnosis. Precise medical imaging techniques
have been developed where radiologists can acquire high quality and high-resolution
scans for clinical purposes. 3D medical imaging is often used for further diagnosis and
precise pre-surgery planning. According to Diagnostic Imaging Dataset Statistical
Release published by NHS, between September 2018 to September 2019, over 45 million
medical images were acquired for clinical use, including 5.8M CT scans and 3.7M MRI
scans. Data storage for a large amount of medical images poses a great challenge. Most
modern hospitals’ scanners produce massive volumetric scans with higher resolutions,
bit-depths, and vast amounts of data. Consequently, it becomes both demanding
and challenging to encode medical images with the guarantee of keeping quality.
Especially for clinical purposes, artefacts introduced by lossy compression could result
in misleading diagnoses and unfavourable treatment [30].

Lossless compression standards are classified into two main types – image encoders
and volumetric encoders. Standard image encoders include JPEG2000 [142], Lossless
and Near-Lossless Compression of Continuous-Tone Still Images (JPEG-LS) [13],
Context-based Adaptive Lossless Image Codec (CALIC) [134], and Minimum Rate
Predictor (MRP) [135]. In contrast to 2D image encoders, volumetric encoders enhance
the compression ratio by applying a reduction in a higher-dimensional context, such as:
JPEG2000 Part 10 Extensions (JP3D) [7], High-E�ciency Video Coding (HEVC) [9],
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3D-CALIC [136], M-CALIC [137], and 3D Minimum Rate Predictor (3D-MRP) [167].
The problem with some of the current lossless compression standards is that they
rely on hand-crafted codecs, which may calculate only linear transformations and
have limitations in representing non-linear correlations. Recently, state-of-the-art
deep neural networks have been demonstrated as feasible to construct both lossy and
lossless image compression, which also achieves higher compression ratios than classic
linear methods. Thus, the alternative and emerging options involve neural networks
to automate the algorithm and introduce non-linearity, which also can converge to a
better solution.

State-of-the-art deep learning approaches address lossy reduction to assist purposes
such as dimensionality reduction (autoencoders) [168], super-resolution images or video
reconstructions [151–153], estimating pixel likelihood (auto-regressive) [148,155], and
generative compression [169,170]. Less attention has been made to address the lossless
performance using NNs. The current deep learning literature for lossless compression
usually combine a density estimator model with an arithmetic coder or Asymmetric
Numeral System (ANS). The density estimator can be categorised into various types,
namely fully connected NN [171], Recurrent Neural Network (LSTM/GRU) DeepZip
[145], recursive bits-back coding Bit-Swap [144], and hierarchical probabilistic model
L3C [32]. Our proposed model for lossless compression has a fully connected deep NN
as its data estimator, which should be faster to train than a Recurrent Network in
DeepZip and estimate higher dimensional data (i.e. 3D medical images) compared
to [171], which compresses only 2D scans. Additionally, our proposed 3D sampling
scheme allows the model to generalise well to unseen samples. A more in-depth
scope of the relevant and recent related works was presented in section
2.4.5.

Our main contributions in this chapter are:

• A novel 3D predictor model using a neural network that achieves lossless com-
pression for volumetric medical images.

• A computationally e�cient model that achieves a higher compression ratio when
compared to state-of-the-art lossless compression methods.

• Demonstrate the robustness and generalization of our proposed models experi-
mentally on many datasets for higher dynamic range (16 bit-depths).

The rest of the chapter is organised as follows: In Section 4.2, we introduce the
proposed method with a detailed overview of the compression framework. The same

125



Section 4.2.1 also highlights the 3D local sampling utilised to exploit the spatial simil-
arity and redundancy in a volumetric medical context. The NN model’s architecture
and training hyperparameters for our 3D predictor are then described in Subsection
4.2.2. The following Section 4.3, proposes results and discussion for evaluating models’
performance across two distinct datasets. The last Section 4.4, concludes the main
findings while highlighting limitations and potentials for development.
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Reconstructed	
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Arithmetic	
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Arithmetic 
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MLP	Model
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$ 	+ "

MLP	Model
(Decompressor)

Figure 4.1: An overview of the proposed lossless compression method.

4.2 Proposed Method

We propose (Fig. 4.1) a lossless compression approach using a neural network spe-
cifically for volumetric medical images, where the data compression is formulated
as a sequential prediction problem. Our approach consists of: the data prediction
module called the compressor, the entropy coding using arithmetic coder, and the
data recovery module, namely decompressor. Both compressor and decompressor use
one neural network model where the same architectures and weights are shared. The
model learns the projection function to predict the target voxel given a sequence of
samples from its neighbourhood (Fig. 4.2). In order to achieve a high compression
ratio for the arithmetic encoder, we train the neural network to minimize the di�erence
between the prediction and the ground-truth (see subsection 2.4.6 for more details
on the sequence prediction coding procedure). The regression problem can be solved
by learning a mapping function f that predict the output y from an input sequence
X through the back-propagation process given a training dataset. The hypothesis
is that the prediction is highly correlated with its neighbours’ local appearance and
geometric structure. Formally, given a data distribution defined over X œ RN , where
X contains input samples from the same distribution (e.g. X = {x1, x2, ..., x

n

} forms
a 1D vector of spatial neighboring voxel-intensities), we learn a di�erentiable mapping
function ŷ = f(X) that maps the vector X to a predicted value ŷ to minimize the
di�erences with the ground truth voxel value y, where f(X) is represented using a
neural network model. Therefore, the residual or prediction error E is calculated as
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follows:
E = y ≠ ŷ (4.1)

The residual error E is then encoded using an arithmetic coder and transmitted in a
lower bit-rate. The better the model performs in approximating the data distribution,
the smaller the residual gets and the lower code-length the coder produces. If many of
the error values are negligible (equal zero), this indicates that the model is accurate.
All prediction errors are compressed using entropy coding such as Hu�man and
arithmetic coding to reduce the coding redundancy. Storing and transmitting the
compressed error reduces the file size compared to the GT volume. To fully recover
the original data from the compressed representation, the bit-stream is decompressed
first, and then the residual values E are added to the prediction values ŷ (Fig. 4.1). It
is important to understand that we compare the compression size of the volumetric
residual/prediction error (generated by our proposed learning-based models) to the
compressed size of the GT medical volume (generated by state-of-the-art lossless
compression methods).

4.2.1 Local Sampling

z = -3 z = -2 z = -1 z = 0

y = 0

y = -3

3D Cube
Neighboring

Sequence

3D Pyramid
Neighboring

Sequence

x

x y = 0

y = -3

Figure 4.2: Two neighbourhoods used for prediction. z=0 represents the current slice,
the target voxel for prediction is black, grey voxels are used in the input sequence.
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The input sequence forms a crucial role in learning the mapping function of the data
distribution. We experimented with di�ering sampling neighbourhoods and sampling
strategies in order to find optimal compression. There is a trade-o� between the
amount of information presented to the model and the computation cost. Many image-
based codecs use the immediate neighbouring pixels (e.g. four previous pixels) to
predict the current pixel location. In 3D, neighbours from previous slices are included.
These neighbouring sequences allow the encoder to exploit the spatial correlation and
redundancy in the 2D plane as well as within the inter-frame region.

Training a model on samples uniformly selected across multiple volumes is problem-
atic, as such a high dynamic searching space does not allow the model to accomplish
a maximum compression performance. Therefore, in our proposed chapter, we reduce
the sampling space to one volume with the assumption that the data distribution
of the human body across the volumes would share some structural similarity and
common feature representation since all scans share the same resolution across width
and height and are captured by the same hospital with similar scanning parameters
(for training set and test set 1). Instead of sampling randomly from the whole volume
(uniform voxel sampling) or biasing our sampling towards part of it (3D Gaussian
voxel sampling), we extract multiple complete 2D slices across the volume z-axis
with a fixed stride (i.e. ten slices from one volume). Then, for each voxel in the ten
slices, we extract the 3D neighbouring voxels. We introduce two di�erent shapes of
the neighbouring blocks; namely, 3D cube neighbouring sequence and 3D pyramid
neighbouring sequence (See Fig. 4.2). In both types, the sequences never include
voxels from future slices. All volume values are normalized to the range [≠1, 1], and
the volume is padded, as determined by the block size, by its minimum voxel value.
Padding the volume is crucial in order to include the edge and corner cases in training.
All the 3D sequences will be flattened to 1D vectors and randomly shu�ed before
inputting them to the predictor models. The reason for selecting such sampling
schemes is to provide better coverage of the data to benefit the compression ratio. We
find that training the model on whole slices with every voxel within the selected slices
being available during training leads to an improvement in the final compression ratio
on all slices, including those not trained on.
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4.2.2 Transforming Function

Layer Number of Neurons Activation Function Used
Fully Connected 1024 LeakyReLU
Fully Connected 512 LeakyReLU
Fully Connected 256 LeakyReLU
Fully Connected 128 LeakyReLU

Output 1 Linear

Table 4.1: The proposed neural network architecture.

Multi-layer Perception (MLP) is used to build the sequence prediction models, which
consists of an input layer, 4 fully connected hidden layers with non-linear activation
functions and followed by a linear output layer as output. The parameter settings
of individual layers are given in Table 4.1. A detailed overview of the loss function
L

Joint

(Eq. 3.1) used to train the neural network is given in section 3.2.

Model
ID Sampling Space Shapes of the input

Neighbouring Block Hyper Parameters

1 All samples were generated
from 10 slices extracted from
one volume (patient 40)

3D Cube
(11x11x11) in-
put sequence

Batch size = 256, learning
rate = 0.0002, no L2 regu-
larization, no dropout and
no batch normalization

2 All samples were generated
from 10 slices extracted from
one volume (patient 40)

3D pyramid input
sequence (13x13,
9x9, 5x5, 1x1)

Batch size = 32, learning
rate =3e-5, no L2 regular-
ization, no dropout and no
batch normalization

Table 4.2: Illustrating the neural network training specifications for the two proposed
models.

4.3 Results and Discussion

4.3.1 Dataset Details

Both training set and testing set 1 are from the same data source – generated by the
same hospital and with similar scanning parameters such as the slice thickness and
spacing between slices but with some variation in the pixel spacing œ [.488, .5, .635, .703]
(see section 3.1.1 for further details on the dataset specifications). The training set
consists of ten slices out of 840 slices extracted from one volume (i.e. volume ID
40) with pixel spacing [0.625, 0.625] and slice thickness 0.625. The two proposed
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NN models were evaluated on test set 1, consisting of 42 volumes from the same
dataset 3.1.1. On the other hand, test set 2 contains only two volumes from a publicly
available dataset provided by The Cancer Imaging Archive (TCIA) [16] (see section
3.1.2 for further details on the dataset specifications). Overview of the histogram of
voxel intensity across all volumes (16 bit-depths) belonging to test set 1 (Orange) and
test set 2 (Blue) is illustrated in Fig. 4.3. By initially exploring the histogram plot
across test set 1 and test set 2 volumes, it is noticeable that there are di�erences in
data distributions between the two datasets (e.g. test set 2 has less sample density
than set 1 indicating a partial volume e�ects problem). Other dissimilarities include
di�erences in tissue types, as test set 2 contains non-small lung cancer while test set 1
does not.
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Figure 4.3: Overview of the histogram of voxel intensity across all volumes (16
bit-depths) belonging to the test set 1 (Orange) and test set 2 (Blue).

4.3.2 Comparisons with the state-of-the-art

To select the block size with the best compression performance, we experimentally
applied di�erent neighbouring sizes for the 3D cube input sequence, including (3x3x3),
(5x5x5), (7x7x7), (9x9x9), and (11x11x11). Figure 4.2 illustrates an example of each
input sequence type. In the given examples, z=0 represents the current slice, the black
voxel refers to the target voxel that needs to be predicted, and the grey voxels are the
input sequences while the white voxels are the ones that will be masked because they
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are unknown information during decompression. In the given 3D cube example, the
block size is set to (7x7x7), implying that the maximum distance from the target voxel
in each dimension (x, y, z) is 3. However, in the 3D pyramid neighbouring example,
the distance to the target voxel decreases in both x and y axes at each posterior z
step. For instance, (at z=0, the block size=7x7), and (at z=-1, the block size=5x5),
etc. Based on several experiments, we choose (11x11x11) as the input block size for
model 1 as it produces the best compression rate. However, for model 2, the 3D
pyramid sequences with (13x13, 9x9, 5x5, 1x1) sequence size are used. The rationale
for choosing a pyramid is that it reduces the number of voxels in each training sample
(and consequently storage size and training time) but still retains the possibility to
integrate information from previous slices into the training.
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Figure 4.4: An illustration of models loss function plots (i.e. training loss and testing
loss) over epochs.

For the neural network, we set the parameters ⁄ = 1, which weights the contribution
of the two losses to be the same. We optimised the neural network using Stochastic
Gradient Descent (SGD) with momentum — = 0.9. Both models have a good stability
even without applying batch normalization, weights L2 regularization or dropout.
The training hyperparameters of the two models are illustrated in table 4.2. The
hyperparameters for model 1 are with batch size of 256, learning rate of 0.0002.
However, for model 2, the batch size of 32 and learning rate of 3e-5 are used. The
training hyperparameters were empirically selected based on the machine capabilities,
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while all these models were trained until convergence. An illustration of models loss
function plots (i.e. training loss and testing loss) over epochs is presented in Fig. 4.4.

We evaluated the compression performance in bpp (Eq. 3.4) of the proposed
neural network models in comparison to the state-of-the-art lossless compression
methods, including JPEG-LS, JPEG2000, JP3D and HEVC (HM-SCC-extensions-
4998) using the lossless configuration with main-RExt profile available in [172]. Figure
4.5, illustrates the compression rate in bpp on test set 1 compressed by the state-of-
the-art lossless methods and our two proposed neural network models. The results
indicate that the proposed predictor models achieve the best compression ratio on test
set 1 compared to the existing methods. Additionally, it is clear that the methods
using 3D contents (i.e. two proposed models and JP3D) gained a smaller bit-rate than
the ones using 2D content only (i.e. JPEG2000 and JPEG-LS). Among the di�erent
compression approaches, our 3D data predictor model (i.e. Model 2) achieves the best
compression ratio.

We also evaluated the generalization ability of our models on a completely di�erent
data distribution (CT of lung cancer). Our models were not trained on these volumetric
medical images. However, it can achieve a close compression ratio to other methods,
as shown in table 4.3. This is achieved even though the scanning parameters of the
test set 2 di�ers totally from the training set and test set 1. The slice thickness is 5mm
while in training set and test set 1, the thickness is .625 mm, which influences the 3D
neighbouring quality learned by our models. Since our neural network models were
trained to learn the explicit relation of neighbouring voxels in a specific resolution (i.e.
training set), di�erent volume resolution (i.e. test set 2) will influence the performance
of the models. However, our model is generalized to gain better compression if the
data provided is consistent and has similar structure to the training set (i.e. test
set 1 has similar slice thickness but variation in pixel spacing). We tested this by
resampling test set 2 to matching characteristics (i.e. pixel spacing of 0.625 with
higher sampling density) and compressing it. Our models accomplish the best bit
reduction on the new resampled test set compared to the other lossless codecs. Such
compression gains are expected as volumes with similar 3D local structures allow our
3D predictors to exploit spatial redundancies more e�ciently. Compared to other deep
learning approaches such as DeepZip [145], our encoding procedure is fully parallelized
and rapid. Decoding time can be enhanced by decoding slices diagonally.
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Figure 4.5: Comparing the compression ratio in bpp for the proposed models with
the state-of-the-art lossless compression methods over 16-bits volumes on test set 1
(see table 4.3). Another version of this figure that illustrates a scatter plot of the bpp
across the same test set 1 ordered by pixel spacing, is presented in B.1
.

Figure 4.5 and table 4.3 illustrate the compression performance in bpp for all
datasets computed by our two proposed models and the existing state-of-the-art
lossless methods for 16-bits volumes. The table also includes the volumes scanning
parameters including pixel spacing and slice thickness.

133



Set Type Volume ID Pixel Spacing,
Slice Thickness JPEG-ls JPEG2000 HEVC JP3D Model 1 Model 2

Training Set 40 0.625, 0.625, 0.625 5.387 5.387 5.389 5.23 5.256 5.119

Test Set 1

1 0.488, 0.488, 0.625 5.571 5.495 5.715 5.362 5.106 5.056
2 0.625, 0.625, 0.625 5.374 5.357 5.346 5.196 5.272 5.189
4 0.625, 0.625, 0.625 5.117 5.1 5.077 4.961 5.036 4.934
5 0.488, 0.488, 0.625 5.455 5.361 5.589 5.243 5.045 4.982
6 0.488, 0.488, 0.625 5.616 5.525 5.755 5.396 5.085 5.084
7 0.488, 0.488, 0.625 5.359 5.32 5.437 5.18 5.167 5.138
9 0.488, 0.488, 0.625 5.306 5.197 5.378 5.033 4.887 4.83
10 0.625, 0.625, 0.625 5.511 5.534 5.566 5.385 5.375 5.265
11 0.625, 0.625, 0.625 5.511 5.534 5.566 5.385 5.375 5.265
13 0.578, 0.578, 0.625 5.603 5.605 5.701 5.461 5.393 5.302
15 0.625, 0.625, 0.625 5.463 5.448 5.429 5.311 5.388 5.266
17 0.625, 0.625, 0.625 5.373 5.357 5.346 5.196 5.272 5.189
18 0.488, 0.488, 0.625 5.552 5.46 5.711 5.353 5.085 5.056
19 0.488, 0.488, 0.625 5.262 5.162 5.36 5.033 4.905 4.841
20 0.615, 0.615, 0.625 5.669 5.66 5.737 5.508 5.464 5.342
21 0.578, 0.578, 0.625 5.329 5.228 5.275 5.04 5.077 4.973
22 0.625, 0.625, 0.625 5.465 5.448 5.429 5.311 5.388 5.266
23 0.488, 0.488, 0.625 5.599 5.507 5.761 5.386 5.155 5.105
25 0.625, 0.625, 0.625 5.283 5.286 5.274 5.137 5.214 5.101
26 0.578, 0.578, 0.625 5.605 5.605 5.701 5.461 5.393 5.302
27 0.625, 0.625, 0.625 4.935 4.931 4.895 4.786 4.854 4.752
28 0.551, 0.551, 0.625 5.444 5.363 5.454 5.213 5.174 5.117
29 0.488, 0.488, 0.625 5.676 5.562 5.779 5.437 5.186 5.18
30 0.488, 0.488, 0.625 5.137 5.057 5.321 4.895 4.666 4.653
31 0.703, 0.703, 0.625 5.793 5.896 5.827 5.686 5.88 5.807
32 0.488, 0.488, 0.625 5.535 5.471 5.682 5.318 5.09 5.053
33 0.488, 0.488, 0.625 4.717 4.671 4.738 4.569 4.512 4.524
34 0.488, 0.488, 0.625 5.57 5.495 5.715 5.362 5.106 5.056
35 0.488, 0.488, 0.625 5.468 5.378 5.618 5.26 5.031 4.988
36 0.580, 0.580, 0.625 5.853 5.829 5.963 5.703 5.563 5.477
38 0.488, 0.488, 0.625 5.59 5.515 5.756 5.391 5.12 5.093
39 0.625, 0.625, 0.625 5.294 5.317 5.322 5.137 5.139 5.031
41 0.488, 0.488, 0.625 5.478 5.404 5.638 5.3 5.117 5.073
42 0.488, 0.488, 0.625 5.525 5.456 5.641 5.355 5.242 5.23
43 0.488, 0.488, 0.625 5.638 5.552 5.788 5.441 5.189 5.163
44 0.625, 0.625, 0.625 5.516 5.467 5.461 5.296 5.389 5.242
45 0.429, 0.429, 0.625 5.448 5.3 5.675 5.233 4.901 4.868
46 0.488, 0.488, 0.625 5.417 5.353 5.615 5.239 4.99 4.945
47 0.488, 0.488, 0.625 5.263 5.162 5.36 5.033 4.905 4.841
49 0.488, 0.488, 0.625 5.605 5.484 5.736 5.389 5.174 5.106
50 0.553, 0.553, 0.625 5.491 5.473 5.674 5.348 5.184 5.122
51 0.488, 0.488, 0.625 5.446 5.341 5.563 5.223 5.003 4.959

Test Set 2 CT Lung R004 0.830, 0.830, 5.000 5.937 6.014 5.739 5.967 6.664 6.715
CT Lung R013 0.623, 0.623, 5.000 5.747 5.539 5.835 5.623 5.959 5.847

Resampled Test Set 2 CT Lung R004 0.625, 0.625, 0.625 5.459 5.243 - 5.195 4.915 4.904
CT Lung R013 0.623, 0.623, 0.625 5.698 5.485 - 5.375 5.237 5.238

Table 4.3: Compression performance in bpp for all datasets computed by our two
proposed models and the existing state-of-the-art lossless methods for 16-bits volumes.
The best compression result (bpp), is in bold.

4.4 Conclusion and Further Work

In this chapter, we proposed a novel lossless compression system using a neural network
for volumetric medical image (16 bit). Two localized sampling methods were intro-
duced and evaluated on real 3D volumetric medical imaging datasets. The comparison
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study shows that our method outperforms the standard lossless compression methods.
It also suggests that the proposed method is feasible to generalize to unseen dataset
while retains satisfactory performance. Further work includes: Study of generalization
across samples with di�erent pixel spacing or scan quality. Moreover, it would be
interesting to extend the applications of our method to include di�erent image type
and modalities (e.g. MRI, and RGB images). The e�ect of model size and weight
sparsity on compression ratio from transmitting both the compressed representation
and decoder. Optimization of the decoder to leverage parallelism over the diagonal
leading edge to reduce decode time at small batch sizes.

In the following chapter, we consider a further investigation of using a neural
network as a 3D data predictor in various directions, including network architecture and
input sampling space. We investigate the use of a di�erent Neural Network architecture
(i.e. Long Short-Term Memory (LSTM)) as a 3D data predictor to compress volumetric
medical images (with 16 bits-depth) losslessly. The study evaluates the compression
performance of the proposed models (i.e. MedZip) compared to state-of-the-art lossless
compression methods over various medical scans modalities.
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This work was originally published in the 25th International Conference on Pattern
Recognition (ICPR) 2020, [44], by the thesis author alongside Dr J. Whittle, Dr J.
Deng, Prof. B. Mora, and Prof. M. W. Jones.

5.1 Introduction

Modern hospital imaging and scanning equipment produce massive volumetric scans
with higher resolutions, bit-depths, and vast amounts of data. Building on our
motivation chapter 1, the number of medical images is increasing yearly, which also
demands reducing storage overhead while guaranteeing exact reconstruction of clinical
data for accurate diagnosis. Based on our findings in the previous chapter 4, the
performance of the learning-based sequence prediction models is mainly influenced
by the various pixel spacings and scanning quality. Thus, in this chapter, we seek
to improve the compression performance by enhancing the model generalisability
across di�erent scanning settings and modalities. We hypothesise that by selecting
training samples with di�erent scanning settings while using a recurrent network as
our learning-based model, our compression framework would have better memorability
of voxel dependencies and hence better generalisability. Among the other RNN-based
models, we choose the LSTM model as it is explicitly designed for sequence prediction
problems and its ability to handle gradient problems (e.g. exploding or vanishing
gradients) better than the RNN by utilising its gating mechanism. These features
allow LSTM to learn long-term dependency with more stabilised training.
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Figure 5.1: An overview of our proposed lossless compression framework using LSTM
model.

Compression performance depends on the type of data redundancy, which is
classified into three main types, spatial, coding, and spectral (psycho-visual) redund-
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ancy [160]. Each type represents the correlation between di�erent parts of the data,
and by reducing such repetition, a coder gains compression. For instance, spatial
redundancy computes the correlation of a pixel value based on its neighbouring pixels
intensities. If such correlation was computed within a 3D space (e.g. between video
frames), then it is known as temporal redundancy (interframe coding). On the other
hand, computing input statistics to apply variable length coding is known as coding
redundancy. In spectral (psycho-visual) redundancy, correlation is computed over
visual perception (e.g. colour planes or spectral bands) (covered in details in section
2.3.1). Recent related works covering the scope of this chapter in-depth was
presented in section 2.4.5.

Deep learning approaches form a promising and emerging research direction due
to their ability to estimate non-linear transformations and data likelihood. Current
state-of-the-art deep learning methods illustrate that neural networks can construct
lossy and lossless performance with results comparable to or even better than standard
linear codecs. This chapter proposes a lossless compression approach using LSTM
specifically for 16-bit volumetric medical images reduction.

Our proposed lossless compression framework integrates a recurrent neural network
(LSTM) to learn spatial correlations of neighbourhood sequences within the 3D regions,
followed by an entropy encoding for the residual errors. A high-level overview of
our proposed lossless compression framework is given in Fig. 5.1. Given a set of
neighbouring voxels, the LSTM model predicts the next intensity value in the sequence.
The prediction error is calculated as the di�erence between the Ground Truth (GT)
voxel and the predicted one.

The contributions of this chapter are as follows:

• A novel lossless compression method using LSTM recurrent neural network cells
that achieves a higher compression ratio compared to state-of-the-art lossless
compression methods.

• Our proposed approach MedZip is for a domain-specific application, namely,
volumetric medical images (with 16 bit-depths).

• We demonstrate the generalization of our proposed models on many datasets
for a higher dynamic range.

The rest of the chapter is outlined as follows. Section 5.2 presents the compression
framework, which contains the LSTM model as a many-to-one sequence prediction
model. A detailed description of the network architecture, training datasets, and
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training hyperparameters for each of the three proposed MedZip models are given 5.2.3.
Experimental results and discussions are introduced in Section 5.3. In Subsection
5.3.2, compression performance (bpp and time) of two di�erent neighbourhood shapes
are compared. The same Section 5.3.3 propose details of experimental evaluation of
the proposed models with a comparison against the current state of the art lossless
compression alternatives. Finally, the main findings and potentials for future work
are reported in Section 5.4.

5.2 Proposed Method

5.2.1 Overview

As the LSTM model is one of the state-of-the-art sequence models, we formulated our
proposed lossless compression approach as a supervised sequence prediction problem
and integrated the LSTM model as a 3D sequence predictor (see Fig. 5.1). Our LSTM
model solves a many-to-one sequence prediction problem, which takes a sequence of
3D neighbouring voxels as input and predicts the next intensity value. The intention
of using LSTM memory cells to solve the sequence prediction is its ability to maintain
the gradient flow across the cells in a way considerably better than RNN. The gates
mechanisms in LSTM controls updating the long dependencies with less potential to
get gradient vanishing or exploding problems. Such flow control (gates) allows the
internal memory of LSTM to learn the long-term inter-frame correlation between slices
as well as the spatial correlation. As shown in Fig.5.1, both sender and receiver have
the same LSTM predictive model with the same architectures and sharing the same
weights. Given a data distribution defined over V œ RN , we extract training sequence
samples X

n

µ V , where each X
i

= {x1, x2, ..., x
l≠1} is a flattened vector containing 3D

neighboring intensities of voxel y
i

and l is the sequence length of the 3D neighborhood.
The LSTM model is trained to learn a di�erentiable mapping function ŷ

i

= f(X
i

)
that maps a sequence input X

i

to a single output ŷ
i

to minimize the di�erence with y
i

(ground truth voxel). After training, the model applies compression, with the sender
computing the residual error (prediction error) E for each voxel as:

E = y
n

≠ ŷ
n

(5.1)

The error is compressed with arithmetic coding and sent or stored with a lower bit-rate.
To reconstruct the original data by the receiver, a reversed operation is applied by
the arithmetic decoder, which losslessly reconstructs the residual error E. The LSTM
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model is used to generate predictions ŷ
n

, which are added to the error values E as
illustrated in figure 5.1.

5.2.2 Network Architecture

The proposed models are LSTM models, which are composed of the input layer, LSTM
layer with 128 cells, and a linear output layer. The activation functions of the LSTM
cells are sigmoid and tanh. The parameter settings of each layer is presented in Table
5.1. Details on the loss function used for training all the models are provided in section
3.2.

Layer Number of Neurons Activation Function Used
LSTM 128 Sigmoid and Tanh
Output 1 Linear

Table 5.1: The proposed LSTM architecture.

5.2.3 Local Sampling

In a sequence prediction model, the shape and amount of the input sequence form a
crucial role in learning the mapping function of the data distribution to the target
output. The sequence length is determined by the number of previous observations
or features imposed with some explicit order that a model analyses before making
a prediction. However, within a recurrent neural network, the challenge is that as
the sequence length increases, the model will su�er from the vanishing or exploding
gradient problem. Practically, by breaking the input into a smaller fixed sequence
length, this problem can be avoided. Image compression generally utilises the four
previous neighbouring pixels to encode the target pixel. Video and 3D predictor codecs
involve neighbouring pixels from previous frames to discover temporal (inter-frame)
redundancy.

In our proposed sequence prediction model, we formulate the input sequence
to utilise 3D neighbours (i.e. integrating information from previous slices) with a
decreased number of voxels. We refer to this sequence pattern as 3D pyramid (see
Fig. 5.2.b). A comparison to block-based models is given in section 4.3. The aim
is to learn 3D spatial correlation within the volume space by fetching a fixed-length
representative input sequence that can lead to optimal compression. We choose a 3D
pyramid sequence with (13◊13, 9◊9, 5◊5, 1◊1) regions on each slice to be the input
sequence to our models. To choose the training set we sampled uniformly through
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multiple volumes with a specific pixel spacing. For each voxel in the set, we extract the
3D pyramid neighbouring sequences (edge voxels are padded with minimum intensity).
All volume values are normalized to the range [≠1, 1]. Each sequence prediction model
is trained to make one-step ahead prediction until convergence.

Model ID Training Set
(Pixel Spacing)

Training Set
(Slice Thickness) Hyper Parameters Preprocessing

MedZip1 Random samples from
volumes with pixel spa-
cing .488

.625 Batch size=128, &
learning rate=0.00005

–3D pyramid neighboring sequence
with (13 ◊ 13, 9 ◊ 9, 5 ◊ 5, 1 ◊ 1)
sequence size.

–All samples values are
normalized between [-1, 1].

MedZip2 Random samples from
volumes with pixel spa-
cing .625

.625 Batch size=128, &
learning rate=0.00005

MedZip3 Random samples from
volumes with pixel spa-
cing .488, .578, .625

.625 Batch size=128, &
learning rate=0.0001

Table 5.2: An overview of the training set and the training hyper parameters for each
of the proposed LSTM models.

5.3 Results and Discussion

5.3.1 Dataset

The two datasets used in this chapter consist of a set of DICOM files with two di�erent
modalities, Computed Tomography (CT) and Magnetic Resonance Imaging (MRI),
stored in 16-bit grayscale images. Dataset1 is a private dataset containing 43 volumes
representing CT scans for a patient’s entire trunk (for further details on the dataset
specifications, refer to section 3.1.1). The proposed three models were trained on
random subsets extracted from volumes with a specific pixel spacing (i.e. MedZip1 and
MedZip2) or a subset obtained from various pixel spacing (i.e. MedZip3 training set).
Table 5.2 presents an overview of the training set for each model. The evaluation was
conducted on TestSet1, which contains the rest of the volumes belonging to Dataset1.
We also evaluate our three proposed models on a public dataset (TestSet2), which
has a di�erent modality (MRI) and represents a di�erent part of the patient’s body,
namely, the head and neck [16–18] (see section 3.1.3 for further details on the dataset
specifications).

5.3.2 The Proposed Models

This subsection provides the experiential and training details for the three proposed
sequence prediction models. For all these models, we used a vanilla LSTM architecture
(see section 5.2.2). Since the capacity of the recurrent network is determined by the
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number of memory cells the network has, we found that the LSTM with 128 cells has
enough capacity to learn the 3D voxel correlation. This relatively compact network
reduces the overhead of model size.

!	 = 	−% !	 = 	−& !	 = 	−' !	 = 	(

)

*

!	 = 	−% !	 = 	−& !	 = 	−' !	 = 	(
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b)

a)

Figure 5.2: Two di�erent neighborhood shapes : a) 3D cube neighboring sequence and
b) 3D pyramid neighboring sequence. z=0 represents the current slice. The red voxel
refers to the target voxel that needs to be predicted, and blue voxels are the input
sequences while the white voxels are ignored (masked)

3D Pyramid
Neighboring Sequence

3D Cube
Neighboring Sequence

Neighborhood
Block Size (13x13,9x9, 5x5,1x1) (5x5x5) (7x7x7) (9x9x9)

bits-per-pixel (bpp) 4.267 4.702 4.478 4.36
Compression Time
(hh:mm:ss) 1:23:58 0:44:51 1:17:13 2:27:47

Table 5.3: Comparing the compression performance (compression ratio (bpp) and
compression time (s)) of di�erent neighboring sequence (3D pyramid & 3D cube) with
di�erent block sizes.

Two di�erent 3D neighbourhood shapes were applied to find the input sequence
that can lead to an optimal compression, namely, the 3D cube and the 3D pyramid
neighbouring sequence. Each type introduces a diverse coverage of the block around
the target voxel. Figure 5.2 illustrates an example of each 3D shape. For both types,
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z=0 represents the current slice. The sequence only includes voxels from the current
slice and previous slices. Any future voxels in the three axes (i.e. x, y, and z-axis)
are not included as they are unknown during decompression. The red voxel refers to
the target voxel that needs to be predicted, and blue voxels are the input sequences
while the white voxels are ignored (masked). In the same figure, a) the 3D cube
neighbourhood size is (7 ◊ 7 ◊ 7) while b) the 3D pyramid neighbourhood size is
(7 ◊ 7, 5 ◊ 5, 3 ◊ 3, 1 ◊ 1).

The intention for choosing the 3D pyramid neighbouring sequence with this specific
shape is built upon applying the Manhattan distance from the target voxel to a certain
distance in each dimension. The 3D local appearance and structures tend to be highly
correlated, leading to spatial and interframe redundancy reductions. Experimentally,
di�erent lengths to the target voxel were applied to select the 3D neighbouring size
with the best compression performance as presented in Table 5.3. Both compression
ratio in (bpp) and compression time have been computed to select the optimal input
sequence. As illustrated in Table 5.3, the pyramid structure was compared to a full
block neighbourhood at (5◊5◊5), (7◊7◊7), and (9◊9◊9) block sizes. As expected,
with the increase in the 3D cube block size, the compression rate also increases as
well as the compression time due to the longer the sequence length becomes. The
3D pyramid neighbourhood demonstrates a great balance between the compression
time and overall compression achievement. Therefore, the 3D pyramid sequence with
(13 ◊ 13, 9 ◊ 9, 5 ◊ 5, 1 ◊ 1) sequence size was used as input for all the proposed models.
We found that compared to using a full cube block, there was no performance loss
in terms of the size of the compressed file, and the training time was substantially
reduced because fewer samples were used.

The training hyperparameters and training set specifications of the three models are
provided in Table 5.2. As Dataset1 has variance in the pixel spacing between volumes,
we empirically investigate the e�ect on compression ratio when training on di�erent spa-
cing. MedZip1 was trained on samples selected randomly from volumes with [.488, .488]
pixel spacing. MedZip2 was trained on samples from volumes with [.625, .625] spacing.
MedZip3 was trained on subsets sampled equally from volumes with all di�erent
spacing [.488, .488], [.578, .578] and [.625, .625] pixel spacing. Both MedZip1 and
MedZip2 were trained with batch size=128 and learning rate=0.00005. However,
MedZip3 training hyperparameters are batch size=128 and learning rate=0.0001. All
LSTM networks were optimized by Adam optimizer with —1 = 0.9, and —2 = 0.999
while training until convergence. The parameter ⁄ in the joint loss L

joint

(equation
3.1) was set to ⁄ = 1, which weights the contribution of the two losses to be the same.
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5.3.3 Comparisons with the state-of-the-art

In this subsection, we evaluate the compression performance of our three proposed
models on two di�erent medical images datasets (TestSet1 and TestSet2). We compare
the compression size of our models to the state-of-the-art lossless compression methods.
The selected methods include image-based codecs, namely, JPEG-LS [173], and
JPEG2000 (OpenJPEG software) [174] and 3D volumetric codecs – JP3D [174], and
HEVC (HM-SCC-extensions-4998) using lossless configuration with main-RExt profile
available in [172] [159]. The evaluation compression also includes the Prediction by
Partial Matching (PPMd) algorithm [175] with ultra compression level. Lastly, we
have benchmarked our approach against a deep learning lossless compression method
known as LSTM-Compress [146], which follows an entropy-based coding methodology
(see subsection 2.4.5.2 for further details).
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Figure 5.3: The Bits-per-pixel (bpp) for each lossless compression method was measured
over TestSet1. The first column is colour mapped by the pixel spacing value of each
volume. The other cells are highlighted from the maximum compression of 3.837 bpp
(Blue) to the minimum compression of 6.236 bpp (Red). For the average row, MedZip3
saves 15.4% space compared to the best performer (JP3D).
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Figure 5.4: An illustration of the bpp average and the standard deviation over TestSet1
groups for all the lossless compression methods from Fig. 5.3. The first column is
colour mapped by the pixel spacing value of each set in TestSet1.

TestSet1. The evaluation over TestSet1 is illustrated in Fig.5.3. The volumes are
classified into four sets based on their pixel spacing value, separated by horizontal
black lines. Each row represents the bpp over a single volume except for the last
row, which computes the average of (bpp) for each method through all volumes. The
first column presents the pixel spacing of each volume in Dataset1. Cells in the
first column are highlighted from minimum pixel spacing .488 (White) to maximum
spacing .703 (Black). Each other column represents the bits per pixel (bpp) of a lossless
compression method, including PPMd, JPEG-LS, JPEG2000, HEVC, JP3D, MedZip1,
MedZip2, and MedZip3, respectively. Cells are highlighted from the maximum
compression 3.837 bpp (Blue) to the lowest compression 6.236 bpp (Red). Overall,
the performance of our RNN models illustrates the best improvement in compression
compared to the standard algorithms. Among the standard codecs, JP3D has a
better bit-per-pixel than the image-based codecs (i.e. JPEG-LS and JPEG2000) by
exploiting of 3D correlation within frames. HEVC 3D-codec gave worse than average
compression results on volumes with pixel spacing .488 and .57 but slightly better
performance than image-codecs (JPEG-LS and JPEG2000) on volumes with larger
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pixel spacing. For the standard compression methods, PPMd produces the least
compression ratio overall volumes in TestSet1. Of our new methods, MedZip1 has
the best compression ratio for volumes with .488 pixel spacing – the spacing it was
trained-on. Less performance was gained on volumes with larger pixel spacing but still
better than classical approaches. MedZip2, which was trained on .625 pixel spacing,
gains a considerably good compression ratio overall regardless of volumes pixel spacing.
MedZip3 has a good compression performance overall on volumes with various pixel
spacing demonstrating generalization. The robustness of this model was gained by
training it on samples that belong to volumes with di�erent pixel spacing.
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Figure 5.5: Illustrating the compression ratio in bpp for the proposed models compared
to the state-of-the-art lossless compression methods on TestSet2 (16-bits volumes).
The first column is colour mapped by the pixel spacing value of each volume. The
other cells are highlighted from the maximum compression 2.949 bpp (Blue) to the
minimum compression of 4.52 bpp (Red).

TestSet2. To demonstrate the robustness and generalization ability of our pro-
posed LSTM models, we evaluate our models’ performances on an out of the domain
public dataset with a di�erent modality (MRI) and represents a di�erent part of a
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patient’s body (head and neck). We also compare against a deep learning lossless
compressor known as LSTM-Compress. The evaluation over TestSet2 is illustrated
in Fig. 5.5. The first column illustrates the pixel spacing of TestSet2, which is the
same for all volumes (0.5). Each other column represents the bits per pixel (bpp)
of a lossless compression method, including PPMd, JPEG-LS, JPEG2000, HEVC,
JP3D, LSTM-Compress, MedZip1, MedZip2, and MedZip3, respectively. The last row
is the average (bpp) for each method through all volumes. Cells in other columns
are highlighted from the maximum compression 2.949 bpp (Blue) to the minimum
compression of 4.52 bpp (Red). Among the standard codecs, JPEG2000 yields the
best bit-per-pixel results, followed by JP3D. Unexpectedly, HEVC, which can exploit
inter-frame redundancy, gains only better compression than PPMd. Additionally, the
PPMd algorithm has the worst compression compared to the other methods. Com-
pared to the state-of-the-art techniques, the deep learning approach (LSTM-Compress)
achieves better compression. Overall, the proposed RNN approaches gained the best
compression bit-rate when compared to the standard codecs and the deep learning
method (LSTM-Compress). Although our models were not trained on this dataset,
they have still obtained the best bpp reduction.

In comparison to the deep learning method (LSTM-Compress), our proposed
MedZip models demonstrate the best compression ratio and reduce compression time,
showing that using 3D neighbourhood information works well to predict voxel values.
MedZip models are notably faster than LSTM-Compress (2.26 hours vs 56.66 hours)
to compress all of the volumes in Testset2. The main limitation of LSTM-Compress is
due to the non-deterministic framework, which prevents parallel implementation and,
thus, slower coding (for further details on this limitation, refer to subsection 2.4.5.2).
In terms of compression ratio over Testset2, MedZip has a size reduction of up to
11% compared to LSTM-Compress. Since each volume takes around 30 hours to be
compressed by LSTM-Compress, we compared the compression performance of LSTM-
Compress on seven volumes selected randomly from TestSet1. The average compression
performance of MedZip3 on those volumes is 4.50 bpp while LSTM-Compress is 5.13
bpp, with MedZip3 showing a saving of 12% over LSTM-Compress.

In Fig. 5.6, a summary of the compression performance over the two test sets is
computed using the percentage change for each lossless method. Each row represents
the performance of a single compression method over di�erent datasets. Cells are
coloured from the maximum compression percentage 100.00% (Blue) to the minimum
performance of 136.56% (Red) – (Less value indicates better performance). Among
the existing codecs, JP3D proposes the best compression performance on TestSet1.
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However, over TestSet2, JPEG2000 gains the best reduction. An unexpected per-
formance was given by the 3D codec HEVC, which produces better compression
than PPMd on all datasets. Although the compression level of PPMd was set to
Ultra setting, this algorithm performs the worst result on average on both datasets.
By observing the results of Fig. 5.6, the overall compressing performance of our
MedZip models illustrates the best reduction over the di�erent datasets. MedZip3
outperforms MedZip2 with better reduction up to 5%. The advantage of MedZip1 is
more noticeable, reaching a gain of almost 36% over the PPMd. To conclude, MedZip3
performs the state-of-the-art compression percentage of 100.00% on 16-bits volumetric
medical images.
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Figure 5.6: A summary overview of the compression performance over the two test sets
for all the lossless methods. Cells are coloured from the best compression performance
100.00% (Blue) to the worst performance 136.56% (Red). (Less value indicates better
performance).

5.4 Conclusion and Further Work

This chapter proposed a novel lossless compression approach using LSTM, specifically
for compressing 3D medical images (16 bit-depths). A solution for the lossless com-
pression problem was presented using the LSTM-based sequence prediction model and
3D pyramid-shaped sequences as the model’s input. MedZip empirically demonstrates
a reduction in the compressed size (bpp) compared to the state-of-the-art lossless
compression methods. Additionally, our pre-trained LSTM model generalized well
to unseen modality (MRI) and achieved a higher compression ratio than the other
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methods. Finally, although the current case study focuses on 3D medical images,
we hypothesize that our approach can further be extended to other volumetric data-
sets such as video. We also believe that the proposed models would achieve more
improvement by integrating them with attention-based mechanisms.

In the following chapter, we extensively analyse the impact of various strategies for
extracting the model’s input sequences and training batches specifically for compressing
(16-bit depth) volumetric medical scans losslessly. The intention is to determine the
option with the best balance between compression time and compression ratio.
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6.1 Introduction
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Figure 6.1: Illustration of the supervised learning LSTM model with an explicit
overview of the method for extracting the causal neighbouring sequence from 3D
medical images (16 bit-depth).

As discussed in the previous chapters 4 and 5, we proposed a novel learning-based
codec as a sequence prediction model and improved its generalisability across di�erent
scanner settings and quality. This chapter broadly explores and analyses various input
sequence options while empirically highlighting trade-o�s and studying the impact on
compression performance (i.e. compression time and ratio). Also, in this chapter, we
seek to leverage parallelism within decoding to reduce compression time.

In the current research trends within the compression field, precisely the predictive
compression scheme, various local sampling grids can be applied. For deep learning
predictor-based models, the input sequence shape and size play a crucial role in
learning a mapping function from the input data of known causal neighbours to the
target output of the next unknown value. Generally, there is a trade-o� between the
sequence size and the computational cost of a model. For 3D data, various block
coverage around the target voxel can be applied [43, 44]. This chapter examines
further options for the causal neighbouring sequence and determines the compression
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trade-o�s between size and speed. To the best of our knowledge, this is the first
extensive research that focuses on the voxel-wise prediction for a high resolution
volumetric medical imaging lossless compression.

6.1.1 Contributions

This chapter investigates various strategies for generating neighbourhood sequences to
find the best pattern, which would lead to optimal compression quality and performance
for volumetric medical scans. Briefly, the main contributions are as follows:

1. We present recurrent neural network (LSTM) learning-based models for com-
pressing 16-bits medical data and o�er parallelisation of the decoder resulting in
a speed-up of up to 37◊ compared to previous methods.

2. We demonstrate a comprehensive study on sampling strategies and how they
influence compression performance (compression time and compression ratio).
The strategies include competing neighbourhood sampling sequences and the
extraction of training sample batches from the 3D scans.

3. We demonstrate a comprehensive comparison study of the various strategies,
including against state-of-the-art lossless compression methods. We outperform
other methods for compression ratio and speed.

The remainder of this chapter is organized as follows: Section 6.2 outlines the
current state-of-the-art approaches for lossless compression and deep learning predictive
models. Section 6.3 describes the proposed methodology, model’s architectures,
training settings, and evaluation benchmarks. The experimental results are introduced
and discussed in Section 6.4 with compression results of our proposed models compared
to the state-of-the-art lossless compression methods across multiple benchmarks. The
outcomes and conclusions are reported in Section 6.5.

6.2 Related Work

Compression is commonly described as a reduction in the bit rate required to represent
data. Entropy is a unit used to measure the minimum number of bits required on
average to represent a symbol belonging to a stream according to Shannon [97–99].
The level of compression that can be achieved depends on the type of patterns and
assumption that can be made about the target data such as spatial, coding and
spectral (psycho-visual) redundancy [133]. According to current compression research
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trends, reduction methodologies can be classified into four main types: prediction-
based [9, 10, 13, 43, 44, 134–141], transform-based [7, 142], quantisation-based [143, 144],
and end-to-end compression frameworks [147]. This chapter will highlight the current
research trends of the prediction-based paradigm, including classical (non-learned)
lossless compression literature and deep learning compression literature.

Prediction-based compression is applied to reduce redundancy, wherein a decorrel-
ation of the causal neighbouring values is applied to predict a target value. When
compression is applied over a 2D varying signal, the method is known as image-codec.
3D data can be considered either a stack of 2D frames over time (video-codec) or a
3D varying signal (volume-codec). After iteratively applying a compression model
to create a map of predicted values, a residual error is usually computed to measure
the di�erence between predictions and the ground truth values. This prediction error
will be further compressed losslessly using an entropy coder to reduce the coding
redundancy, such as arithmetic coding, context adaptive binary arithmetic coding,
Asymmetric Numeral Systems (ANS), or Hu�man coding. Various linear or non-linear
combinations of causal neighbourhood values, along with the number of neighbours
and the shape of their sampling patterns, are applied within the predictive-based
lossless compression literature, spanning both classical and learning-based predictive
approaches.

6.2.1 Classical Prediction Based Methods

Among the classical predictor-based methods, and within the image-codec category, the
Joint Photographic Experts Group-Lossless (JPEG-LS) utilises the immediate three
pixels neighbourhood to predict a target pixel applying a mode-selection scheme with
the LOCO-I algorithm [13]. A more complicated technique for image compression,
which employs six pixels of the causal neighbouring into context-based Gradient
Adjusted Predictor (GAP) known as Context Based Adaptive Lossless Image Codec
(CALIC) [134]. Minimum-Rate Predictor (MRP) has a wider causal neighbourhood
and is an adaptive predictive-based method that applies 2D-block classification [135].
To compress higher dimensional volumetric data, including videos and 3D medical
images, several classical image coders extended their functionality to 3D space. Both
(3D-CALIC) [136] and (M-CALIC) [137] are extended versions of the image coder
CALIC. 3D-CALIC is an enhanced version supporting context decorrelation for both
inter-band and intra-band modelling. On the other hand, the M-CALIC algorithm
outperforms 3D–CALIC in decorrelating hyperspectral data with multiband lossless
and near-lossless compression. 3D-MRP similarly extended the MRP algorithm to

156



utilise 3D causal neighbourhood pixels and provides an enhanced error estimation,
and context estimator for both 8 and 16-bit depth contents [10].

A well-known 3D codec for video compression is High E�ciency Video Coding
(HEVC) [9], which combines numerous coding tools and provides compression for
both lossy and lossless options. The lossless mode is a predictive-based scheme that
applies both inter and intra-prediction to reduce data redundancies within and between
frames. HEVC lossless mode applications include 3D medical imagery using Range
Extension [159] with 4:0:0 chroma format for one channel component 16-bit data. In
summary, most of the classical lossless compression approaches rely on hand-crafted or
linear combinations with a few causal neighbouring pixels coverage for their predictions.
Moreover, such methods are designed to perform well only on specific data domains
for which they were intended, most commonly natural images or video sequences.
These main limitations demand novel approaches with more flexibility in estimating
non-linearity. The deep learning approaches form a great potential and promising
research direction that provides both e�cacy and the flexibility to represent non-linear
data distributions.

6.2.2 Learning Based Prediction Methods

Compared to classical state-of-the-art compression methods, the current deep learn-
ing methods are gaining remarkable compression results for both lossy and lossless
compression [160–162]. This shifting toward the learning-based methods is consequent
to its outstanding performance in many domains, exceptional ability to represent
non-linearity, and GPU utilisation. Numerous learning-based approaches are proposed
for lossy compression for applications including image-super resolution [176], dimen-
sionality reduction (autoencoders) [148], generative compression [169], and end-to-end
compression frameworks [147]. An autoregressive model is one of the state-of-the-art
models in estimating data distribution and pixels likelihood. In PixelRNN [155], the
probability of each pixel conditionally depends on the probability distributions of all
the previous pixels for each channel, which results in the pixel generating process being
relatively slow due to the sequential implementation. However, the PixelCNN [155]
provides a parallelised version, employing a smaller receptive field but not fully utilising
the available context. PixelCNN++ [156] and Multiscale-PixelCNN [157] are further
enhanced versions utilising both parallelisation and context employment with some
regularisations.

Sequence models are a particular type of supervised learning algorithm, which
employ a predictive scheme. This neural network o�ers outstanding flexibility for
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various sequential input and output of arbitrary lengths that a model can maintain.
Based on the length of the processed sequences, this model can be categorised into
numerous types, including one-to-one, many-to-one, one-to-many, and many-to-many
sequence prediction models. The domains for such models are numerous for sequential
and higher-dimensional data, including sequence prediction, sequence generation,
sequence classification, and sequence-to-sequence prediction. A few examples of
applications are weather forecasting, product recommendation, stock market prediction,
sentiment analysis, text translation, image caption, and text generation [120]. Some
state-of-the-art sequence prediction models contain an internal state or memory unit,
which helps to learn the long-term temporal contextual information. Generally, when
solving a sequence prediction problem, a model learns a mapping function f(x

t

), which
maps an input series x

t

to an output sequence y
t

. Examples of the state-of-the-art
deep learning sequence prediction models are Recurrent Neural Network (RNN) [122],
Long Short-Term Memory (LSTM) [123], Gated Recurrent Units (GRU) [124], and
Transformers [121,131,132].

Although only a few contributions have been made to address lossless compression
within the deep learning literature, this area is gaining more attention recently. Schiopu
and Munteanu proposed a novel hybrid lossless image codec with a predictive paradigm
that utilises large causal neighbouring pixels to predict a target output [138]. Their
method also includes a residual error block to further exploit the pixel’s inter-prediction
and a novel context-based bit entropy coder outperforming the traditional state-of-the-
art lossless codecs. The same authors proposed an enhanced version with a di�erent
NN architecture, resulting in better e�ciency and better predictions [139]. Another
image codec that manipulates neighbouring pixels known as a channel-wise progressive
prediction was presented in [141]. Their proposed network is a Multilayer Perceptron
(MLP), whereas a progressive training scheme is applied on both residual and channel-
wise. Additionally, an Adaptive Arithmetic Coder (AAC) is used to encode the error
based on the coding context. Compared to engineered codecs, the results of this
MLP-based approach outperform standard image codecs in all test datasets by a
significant margin. A more recent lossless compression method that employs a CNN
as a predictor for video coding was produced by [140]. This block-wise compression
approach replaced all intra-prediction modes of the HEVC with deep learning CNNs
and gained an average bit reduction of 5% compared to the standard HEVC. Another
deep learning lossless compressors that apply a predictive scheme but for sequential
data are DeepZip [145], LSTM-Compress [146], and Dzip [3]. In these compression
frameworks, a combination of neural network-based compressor and arithmetic coding
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is utilised. Both DeepZip and LSTM-Compress involve RNN-based models (e.g. GRU
or LSTM models) as probability estimators along with an arithmetic coding unit and
are specifically employed for losslessly compressing text and Genomic datasets. DZip
is a more general-purpose NN-based model for reducing various dataset types using a
hybrid training approach. Compared to these methods, our proposed models have
a noticeably faster encoding/decoding computation time and achieve a better bit
reduction compared to [146] (see section 6.4 for more details).

In the previous chapters 4 and 5, we proposed learning-based predictive methods,
which support lossless compression for 3D medical imaging (16-bit depths). Two
unique 3D shapes of the surrounding neighbouring voxels (e.g. 3D cube and 3D
pyramid) were applied to train MLP and LSTM models, respectively. These two
approaches di�er from the aforementioned learning-based codec as they o�er a voxel-
wise prediction model with 3D contextual neighbouring voxels to predict a single
target voxel. This chapter builds on these prior many-to-one sequence models by
comprehensively studying the e�ect of numerous causal neighbouring voxels over
di�erent dimensions and coverage (shapes) on compression performance (bpp) and
compression time. Compared to most deep learning approaches, the prior and current
network model architectures are relatively small (i.e. only 810 Kilobytes (KB)), but
have su�cient capacity and achieve the best bit reduction compared to other classical
compression approaches. Additionally, one of the main contributions in this chapter is
a significant improvement of the decoder procedure compared to other lossless options
in terms of compression quality and performance. Evaluation results are compared to
state-of-the-art lossless compression methods over various 3D datasets.
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6.3 Proposed Method

6.3.1 Problem Description
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Figure 6.2: Overview of the optimized version of our lossless compression framework
using LSTM. This version leverages parallelism by employing a novel input sequence,
which adds more flexibility and allows the decoder to process several batches of
sequences in parallel.

Given a data distribution defined over V µ RN , we extract several causal neighbouring
sequences X

n

for training, where X
n

œ V . Each sequence X
i

has a set of observations
of surrounding neighbouring voxels’ intensities X

i

= {x0, x1, x2, ..., x
l≠1} with a fixed

sequences’ length l as illustrated in Figure 6.1. The LSTM model is expected to learn a
di�erentiable mapping function ŷ

i

= f(X
i

) that maps the sequence of intensity values
X

i

to a prediction of the next single target voxel value ŷ
i

. While training, the LSTM
predictor model learns to minimize the di�erence between the prediction value ŷ

i

and the ground truth value y
i

through backpropagation. When evaluating the model,
the residual or prediction error E = y

i

≠ ŷ
i

is computed. This volumetric prediction
error is then compressed losslessly to a lower bit rate using an arithmetic coder. To
recover the original volume within the receiver side, an arithmetic decoding is applied
to decompress the volumetric error E. The LSTM model will then auto-regressively
generate the prediction values ŷ

i

that are summed to the residuals E (see Fig. 6.2 for
more details).

6.3.2 Causal Neighbouring Sequence

In a predictive-based model, the input sequence plays an essential role in learning the
mapping function to the target output. Naturally, there is a trade-o� between the
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amount of information a sequence produces to the LSTM model and the computational
cost. Commonly, the longer the length of a sequence is, the slower the model gets,
and the less stable the training becomes with a higher chance of facing gradient prob-
lems. This study examines and proposes various options of surrounding neighbouring
sequences extracted from 3D high-resolution medical volumes. Two di�erent block
shapes were introduced: the cube and the pyramid shapes, as illustrated in Figure
6.3. For each shape, several sizes (various distances to the target voxel) were applied.
Moreover, aggregation of surrounding voxels form di�erent dimensions were applied,
including 1D, 2D, and 3D coverage.
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Figure 6.3: A demonstration of the proposed causal neighbouring sequences that can
have di�erent shapes, dimensions, block sizes, and sequence lengths. The two main
shapes are (a) Cube and (b) Pyramid. The red voxel refers to the target voxel to be
predicted while the green voxels form the model’s input sequence and the white voxels
are masked (excluded). z = 0 represent the current slice which is also the only active
slice when extracting a 2D sequence. The left (yellow) pixels were included in the
training for experiment 6.3.4.1, but omitted from the input sequence of experiment
6.3.4.2.
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6.3.3 Model
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We formulate the lossless compression problem as a supervised machine learning task.
This proposed solution is also known as a many-to-one prediction model, whereas
a mapping from the input sequence to the target output is learned by the LSTM
model through the backpropagation process. An illustration of a many-to-one LSTM
predictive model with a detailed overview of the cells’ gates is provided in Figure 6.4.

6.3.3.1 Training Hyper Parameters

Layer Number of Neurons Activation Function Used
LSTM 128 Sigmoid and Tanh
Output 1 Linear

Table 6.1: The NN architecture used as the standerd specification for all the proposed
models.

Architecture: The proposed model is composed of a single LSTM layer containing
128 units followed by a linear output layer used as the main architecture with the same
weights for both encoder and decoder (as shown in Table 6.1). The storage size required
for the model’s weights only is 276 KiloBytes (KB), while the complete model’s size
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(weights and training hyperparameters) is 810 Kilobytes (KB). Optimizer: We use
Adam optimizer [177], with parameters —1 = 0.9, —2 = 0.98, a learning rate of 1e ≠ 4,
and a batch size of 128 for all the proposed models. Loss Function: Details on the
loss function L

joint

used for training all the models are provided in section 3.2.

6.3.4 Benchmarks

This section presents each of the benchmarks we investigate, including motivation,
rationale, experimental settings, and evaluation metrics. This extensive study aims
to establish the local sampling grid and sampling scheme that allow the RNN model
to achieve a high compression ratio and fast encoding-decoding performance for
3D medical image reduction. All models used in this chapter are standard Long
Short-Term Memory Networks (LSTM) with a single hidden layer with 128 units
and a linear output layer. An evaluation procedure of 4-fold cross-validation on 12
high-resolution CT volumes of patients’ Torso from Dataset1 was applied. Each
of the proposed models was trained using one of the sampling patterns using the
same training parameters and an equal number of training-steps (60 epochs). The
results are reported using bits-per-pixel/voxel storage for each model. Also, we further
tested the proposed pre-trained models on completely unseen public MRI volumes
from Dataset2.

6.3.4.1 Benchmark1: Optimal Input Sequence (shape and size)

Sequence prediction using the described approach produces a competitive compression
ratio. In this experiment, we evaluate many alternative strategies for selecting the
local sampling grid to produce optimal sequence prediction. Within this benchmark,
we examine 15 local sampling grid options around the target voxel, including causal
voxels values from di�erent dimensions. In the 1D case, only the previous five left
voxels (voxels from only the x-axis) are used. In comparison, the 2D case has four
options: two with a cube shape and another two for the pyramid shape, each with
(13 ◊ 13) and (11 ◊ 11) block sizes. In the 2D cases, only local neighbourhood voxels
from the same slice are included. For the 3D case, numerous options have been
provided, including five samples for each shape to find the optimal input vector. In
the 3D cube block, voxels with the following block sizes: (33), (53), (73), (93), and
(113) were extracted. For the pyramid shape, various distances to the target voxel
were utilised including (5 ◊ 5, 3 ◊ 3, 1), (7 ◊ 7, 5 ◊ 5, 3 ◊ 3, 1), (9 ◊ 9, 5 ◊ 5, 3 ◊ 3, 1),
(9 ◊ 9, 7 ◊ 7, 5 ◊ 5, 3 ◊ 3, 1), and (13 ◊ 13, 9 ◊ 9, 5 ◊ 5, 3 ◊ 3, 1). A demonstration
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of the proposed neighbouring sequences that have di�erent shapes (a) cube and (b)
pyramid are shown in Figure 6.3, where the red voxel refers to the target voxel to be
predicted, the green voxels form the model input sequence, and the white voxels are
masked (i.e. excluded). z = 0 represents the current slice which is also the only active
slice when extracting a 2D sequence. In the novel input sequences, the yellow voxels
will be removed. Sequence values are normalised to the range [≠1, 1] before inputting
them to the LSTM model.

6.3.4.2 Benchmark2: Optimising Decoder Performance

a b c
Target voxel/s 
for processing

Processed/
recovered Voxels

Unprocessed 
Voxels

Figure 6.5: The order in which the decoder will decode voxels based on the defined
causal neighbourhood specifications. (a) The order of decoding voxels (sequentially)
restricted by neighbourhood dependencies applied in 6.3.4.1. (b) The order of decoding
voxels (in parallel) by decoding an entire batch applied in 6.3.4.2. (c) a possible
parallel approach to decoding voxels, which does not allow full GPU occupancy.

Additionally, we propose a novel input sequence with 14 local sampling grid options
to optimise the decoding time by leveraging parallelism. Other learning-based lossless
compression approaches [3, 145] need to run in a deterministic environment during
compression and decompression to produce the correct lossless results. Due to hardware
or framework limitations, these methods perform encoding and decoding on a single
CPU thread to guarantee deterministic computation. In [43, 44] only the decoder
needs to run in a deterministic environment due to the sequential nature of voxels’
dependencies (generating the neighbouring voxels before processing the next target),
as shown in Fig. 6.5 (a). A benefit of our proposed approach is that we leverage
parallelism and take full advantage of GPU acceleration while ensuring that both
encoder and decoder are running in a deterministic fashion.

We adjust the input sequence to allow parallelism and retain favourable compression
performance. We introduce a reduced version of all the neighbourhood sequences
proposed in the previous subsection 6.3.4.1. In these sequences, the left x-axis voxels
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(i.e. yellow voxels in Fig. 6.3) are removed from the input sequence. This allows
the decoder to process batches of sequences in parallel, as illustrated in Fig. 6.5 (b).
Removing the left voxels forms a simple but e�ective strategy to leverage parallelism
compared to decoding voxels diagonally Fig. 6.5 (c). Parallel implementation using
diagonal voxels does not lead to optimal GPU occupancy compared to our approach
and complicates implementation.

6.3.4.3 Benchmark3: Encoding-Decoding Performance

This benchmark demonstrates the computation time in seconds (s) to compress and
decompress the same file with each model trained on a unique causal sequence. All
experiments have been conducted on one machine with NVIDIA GeForce GTX 1080
GPU and Intel(R) Core(TM) i7 ≠ 4770K CPU.

6.3.4.4 Benchmark4: Sampling Strategy

Approximately one billion voxels are available in the dataset, making training on all
samples costly. This benchmark examines various sampling strategies for selecting
training voxels from volumetric CT scans. Three main strategies were investigated,
namely, random sampling, Gaussian sampling, and slice-based sampling. The inten-
tion is to find whether there is any preference for generating training samples as a
representative subset of the available voxels in a way that benefits the compression
performance. For all these sampling schemes, the same number of training samples
were used, with a total of approx 4.7M unique training samples and the same causal
neighbouring sequence (3D pyramid, (13 ◊ 13, 9 ◊ 9, 5 ◊ 5, 1), N = 175) was applied
as the sequence shape for each strategy.

A uniform selection across multiple volumes is applied in random sampling, where
each voxel has the same probability of being selected. In contrast, Gaussian sampling
performs a biasing scheme toward the centre of the volume, so voxels in mid-slices
will have higher probabilities than the edge voxels. The slice-based scheme extracts
multiple complete 2D slices across the volume z-axis with a fixed stride (fixed interval),
where the aim is to fully sample individual cross-sections.

6.3.4.5 Benchmark5: Compression Improvement During Train-
ing

Evaluation of compression ratio in bpp for the trained models is provided in this
examination. To clarify, we want to measure the improvement of compression quality
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during training time for five di�erent models by compressing the same volume. The
evaluation was conducted at specific epochs during training namely, 10, 20, 30, 40, 50,
and 60 epochs. Each model was trained on a unique causal neighbouring sequence (i.e.
3D pyramid shape with left voxels) including: (5 ◊ 5, 3 ◊ 3, 1), (7 ◊ 7, 5 ◊ 5, 3 ◊ 3, 1),
(9 ◊ 9, 5 ◊ 5, 3 ◊ 3, 1), (9 ◊ 9, 7 ◊ 7, 5 ◊ 5, 3 ◊ 3, 1), and (13 ◊ 13, 9 ◊ 9, 5 ◊ 5, 3 ◊ 3, 1).

6.3.4.6 Benchmark6: Comparing with State-of-The-Art Lossless
Compression Methods

In this benchmark, the trained models with the best compression results from bench-
marks 6.3.4.1 and 6.3.4.2 are compared to existing state-of-the-art approaches for
lossless compression of volumetric medical data. Compression ratios for all compared
approaches are reported using bits per pixel over the two available datasets.

6.4 Results and Discussion

6.4.1 Dataset

The first dataset used in this study contains 12 high-resolution CT private volumes
of human Torso generated by a local hospital known as Dataset1. All scans have
[.488, .488] pixel spacing and .625mm slice thickness (for further details on the dataset
specifications, refer to section 3.1.1). An illustration of orthogonal slice views and 3D
volume rendering of two sample volumes from Dataset1 are presented in figure 6.6
(a) and (b).

Another dataset, which was involved only for conducting experimental evaluation,
is a public dataset known as Dataset2. Dataset2 contains DICOM files that form a
total of 12 MRI volumes of patients’ head and neck scans with [.5, .5] pixel spacing,
and 2mm slice thickness [16–18] (see section 3.1.3 for further details on the dataset
specifications). An illustration of orthogonal slice views of two sample volumes from
Dataset2 is shown in Fig. 6.6 (c) and (d).
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(a) Volume1 from Dataset1

(b) Volume6 from Dataset1

(c) Volume1 from Dataset2

(d) Volume12 from Dataset2

Figure 6.6: A visualisation of some (16-bits) sample volumes from the two datasets
used in this chapter, namely, Dataset1 and Dataset2 is shown. Figure 6.6 (a) and
(b) illustrates 3D volume visualization of patient’s entire Torso with three orthogonal
slice views (axial, sagittal and coronal) of two sample volumes from Dataset1. While
Fig. 6.6 (c) and (d) presents three orthogonal slice views (axial, sagittal and coronal)
of sample MRI volumes from Dataset2 illustrating the patient’s head and neck.
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6.4.2 Performance Metrics

4-fold cross-validation has been applied to evaluate the accuracy and performance of
our LSTM predictive models for each of the di�erent neighbouring sequence types
over Dataset1. Each fold consists of nine volumes belonging to the training set
and three for the testing. Generally, such a validation technique aims to measure a
trained model’s e�ectiveness and generalisation on unseen data. Moreover, additional
experimental tests have been conducted over an out of domain public data Dataset2
to further evaluate the generalisability and robustness of the trained models across
other unseen and distinctive medical modalities (e.g. MRI).

The bpp (Eq. 3.3.1) has been chosen as the evaluation metric of the compression
ratio obtained by all our LSTM models. In addition to evaluating compression time
(in seconds), measured per model for both the encoding and the decoding operations
(3.3.2).

6.4.3 Benchmark1: Optimal Input Sequence (shape and size)

This experiment aims to determine the best input sequence (shape and size) that
would lead to optimal compression for 3D medical images. Figure 6.7 illustrates
the compression ratio in bpp for each model trained on the neighbouring sequence
options. Volumes are grouped into their respective cross-validation fold, wherein
each row represents a volume, and each fold contains validation over three volumes
– separated with a horizontal black line. The last row reports the average bpp of
models through all volumes. Each column represents a model trained on a specific
neighbouring sequence case with the shape, size and sequence length indicated. Cells
are coloured from maximum compression 3.913 bpp (Green) to the lowest compression
5.506 bpp (Red). The best compression result is in bold. The model trained on a
1D sequence produces the worst compression ratio because only five previous voxels
from only the x-axis were utilised. The models trained on sequences extracted from
2D slices gain better compression performance for both cube and pyramid shapes.
The 2D pyramid sequences are more promising since they use fewer neighbouring
voxels but still gain comparable compression results to the 2D block cases. For 3D
sequences with cubic shape, as the block size increases, those models’ compression
performance improves apart for block size (113), which may need longer training or a
larger model. Within the 3D cube models, the model trained on input vector with
(33) block size produces the least compression ratio while the model trained on a
block size of (93) gains the best compression. LSTM models trained on sequences
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with a 3D pyramid shape achieve an excellent compression performance, starting
with the smallest block size with just 22 voxels. This input vector allows its LSTM
model to gain comparable compression results to the one trained on the 3D cube with
N = 62 voxels. The following block size with an input length of N = 55, obtains a
compression reduction similar to the cubic input with N=171 voxels. The next three
models with surrounding neighbouring sequences gain the best compression among all
the other options. Interestingly, it appears that models trained on the 3D pyramid
with (9◊9, 5◊5, 1) and (13◊13, 9◊9, 5◊5, 1) accomplish this result due to involving
more voxels from x and y-axis while still maintaining information from the depth slice
z-axis (pyramid with wider base). Overall, the pyramid neighbouring sequence forms
a good balance between utilising the contextual information around the target voxel
while keeping the sequence length compact, thus allowing faster training.
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Figure 6.7: Benchmark 1 result that illustrates the compression ratio in Bits-per-
pixel (bpp) for compressing Dataset1 using models trained on di�erent neighbouring
sequences applied in Benchmark 1 section 6.4.3. The top labels specify the input
sequences’ specifications, including dimensions, shape, block size, and sequence length,
respectively. Cells are coloured from maximum compression 3.913 bpp (Green) to the
lowest compression 5.506 bpp (Red). (Another version of this figure with a di�erent
reordering is presented in Appendix B - Fig. B.2)
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Figure 6.8: Compression performance in (bpp) for evaluating the trained models
with di�erent neighbouring sequences from Benchmark 1 section 6.4.3 validated over
Dataset2. Models pre-trained on distinct neighbouring sequences from Dataset1
are evaluated over this unseen set and grouped into corresponding folds separated by
horizontal lines. The top labels specify the input sequences’ specifications, including
dimensions, shape, block size, and sequence length, respectively. Cells are coloured
from maximum compression 2.9432 bpp (Green) to the lowest compression 4.247 bpp
(Red).
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Figure 6.8 presents a validation of all trained models over Dataset2. Models
pre-trained on distinct input configurations from Dataset1 are evaluated on this
set and grouped into corresponding folds separated by horizontal lines. Each row
represents the compression ratio of di�erent models over a single volume, while each
column illustrates the reduction ratios of four models trained on the same input
pattern across di�erent volumes. The last row estimates average bpp achievements
overall folds’ means. Although our proposed models were not trained on this dataset,
they still generalise well to all volumes belonging to this data. Cells are coloured
from maximum compression 2.9432 bpp (Green) to the lowest compression 4.247 bpp
(Red). As expected, the model trained on the shortest input sequence (i.e. 1D) has the
worst compression ratio with a bpp ratio of 3.971 on average. Across this particular
dataset, it appears that the models trained on 2D patterns for both cube and pyramid
shapes gain comparable compression performance to some 3D input configurations.
The performance gain in 2D cases is expected when recognising the similarity in pixel
spacing quality to what the models were trained on (i.e. trained on [.488, .488] and
evaluated on [.5, .5]). While in the case of 3D quality, there is a variation in the slice
thickness between what the models learned from (i.e. .625mm) and validated on (i.e.
2mm slice thickness). Models trained on input with 3D cube shapes gradually gain
better compression ratios as their block size expand, starting from least performer
with an average of 3.488 bpp to their highest compression result of 3.147 bpp on
average. Compared to the 3D cube configurations, the 3D pyramid o�ers a more
condensed inputs’ length and yet better compression results achieving a mean of 3.123
bpp by the best compressor. Overall, the proposed models with 2D pyramid (11 ◊ 11),
3D Cube (93) and 3D pyramid (13 ◊ 13, 9 ◊ 9, 5 ◊ 5, 1) input sequences obtain the
best bpp reductions over Dataset2 compared to other competitors gaining 3.081bpp,
3.079bpp, and 3.11bpp, respectively. From observing the evaluation results in all folds,
one may interestingly recognise that all pre-trained models, regardless of their input
formats, accomplish the worst compression results on volume 5 while best compression
reductions were gained on volume 6. The compression performance on these two
volumes has similar results by the state-of-the-art compression methods, as will be
shown in Fig 6.15.
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6.4.4 Benchmark2: Optimising Decoder Performance
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Figure 6.9: Benchmark 2 result that illustrates the compression ratio in (bpp) for
compressing Dataset1 using models trained on reduced neighbourhood sequences
applied in section 6.4.4. The top labels specify the input sequences’ specifications,
including dimensions, shape, block size, and sequence length, respectively. Cells are
coloured from maximum compression 4.051 bpp (Green) to the lowest compression
5.412 bpp (Red). (An additional version of this figure with a di�erent reordering is
presented in Appendix B - Fig. B.3)

This experiment introduces new sequences that drop the left neighbouring voxels in
order to achieve parallel decoding. Figure 6.9 presents the compression ratio in bpp
for each of the new neighbouring sequence options. 4-fold cross-validation was applied
over Dataset1. Each column represents models’ performance trained on a specific
sequence overall volumes. The last row presents the average bpp per model across all
volumes. Cells are coloured from maximum compression 4.051 bpp (Green) to least
5.412 bpp (Red). The best compression result is in bold. The 1D input sequence in not
included since it is not applicable. The models trained on 2D neighbourhood sequences
all produce similar results, with the pyramid-shaped sequences having lower costs
since fewer voxels are used. The models trained on cubic shaped input demonstrate
better compression as block size increases. The model trained with (33) has the least
compression at 5.114 bpp, while the (113) block size demonstrates 4.566 bpp. The
models trained on sequences based on a 3D pyramid achieve the best reductions
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regardless of block size. The sequences with N = 61 and N = 169 voxels produce
the best bit reduction among all the models on Dataset1. Overall, this novel input
strategy’s performance has a drop of ¥ 0.2 bpp in compression ratio compared to
the non-parallel version (Figure 6.7), which is expected when removing some of the
contextual information from the sequences. However, this comes with a significant
positive impact on the compression times (see next section 6.4.5). A summary overview
of the average storage impact of the method bpp over all 12 volumes for the two
experiments is presented in Fig. 6.10.

4.2

4.4

4.6

4.8

5

5.2

5.4

5 
le

ft 
vo

xe
l

11
x1

1

13
x1

3

11
x1

1

13
x1

3

3x
3x

3

5x
5x

5

7x
7x

7

9x
9x

9

11
x1

1x
11

(5
x5

,3
x3

,1
)

(7
x7

,5
x5

,3
x3

,1
)

(9
x9

,5
x5

,1
)

(9
x9

,7
x7

,5
x5

,3
x3

,1
)

(1
3x

13
,9

x9
,5

x5
,1

)

1D 2D Cube 2D Pyramid 3D Cube Neighboring 3D Pyramid Neighboring

B
it 

pe
r p

ix
el

 (
B

PP
)

Average BPP - with including sequence’s left voxels Average BPP - without including sequence’s left voxels

Figure 6.10: A summary overview of the average (bpp) over Dataset1’s volumes
using all models trained with left voxels (in Green) and without (in Red) applied in
Benchmark 1, and Benchmark 2, respectively. Overall, models pre-trained on reduced
inputs result in a performance drop of ¥ 0.2 bpp, but with a significant positive
impact on the compression times (see section 6.4.5 for further details). Additional
version of this figure with a di�erent reordering is presented in Appendix B ≠ Fig B.4.
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Figure 6.11: Compression performance in (bpp) for evaluating models trained on the
reduced neighbourhood sequences applied in section 6.4.4 on Dataset2. The top
labels specify the input sequences’ specifications, including dimensions, shape, block
size, and sequence length, respectively. Cells are coloured from maximum compression
3.025 bpp (Green) to the lowest compression 3.915 bpp (Red).
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In figure 6.11, models trained on the reduced input configurations from di�erent
folds of Dataset1 are evaluated in bpp over this out of domain public set (i.e.
Dataset2). Cells are coloured from maximum compression 3.025 bpp (Green) to the
lowest compression 3.915 bpp (Red). Models pre-trained on 2D sequence formats all
provide relatively similar compression results around 3.202 bpp that matched other
3D configurations across this specific dataset. The performance di�erence in the 3D
models’ cases is expected due to the variations in scanning quality, precisely the slice
thickness between the training data (i.e. Dataset1 .625mm) and the testing data
(i.e. Dataset2 2mm). However, it is interestingly noticeable that many of the 3D
input sequences still achieve a significant compression performance of 3.176 bpp by
the best performer. Within the models trained on 3D cube sequences, both N = 359
and N = 659 voxels options yield the best bit reductions with 3.187 bpp, and 3.176
bpp, respectively. However, when recognising the compression time a�ected by their
sequence lengths, the balance of compactness and speed of models with 3D pyramid
inputs N = 61 and N = 169 is more desirable, obtaining comparable reductions
with 3.216 bpp and 3.223 bpp. As was indicated in the previous Fig. 6.9, models
trained with the reduced version of neighbouring sequences are expected to have a
drop in the compression performance (i.e. ¥ .2 bpp over Dataset1) since the input
lacks a number of the spatial voxels’ values. However, in Dataset2, the performance
drop a�ected by the novel version of input formats is only ¥ .11 bpp, which achieves
encoding-decoding speed-up and a�ords a significant gain to the overall compression
rate.

6.4.5 Benchmark3: Encoding-Decoding Performance

Table 6.2, presents the time in seconds (s) required to compress and decompress a single
slice belonging to Dataset1 with all the di�erent neighbourhood models. The inputs
length naturally influences the computation cost. The table compares the compression
time using models trained with left voxels and the novel (reduced version) without
left x-axis voxels. The model with the best bpp on average is in bold. Although the
compression ratio of models that include left voxels gain a better bpp reduction, the
decoding time is significantly slower than encoding time regardless of the sequence
specification. However, when comparing the models that remove the left voxels, the
impact of leveraging parallelism is more noticeable with the same computation time for
both encoding and decoding. By observing the results of Table 6.2, one concludes that
the 3D pyramids with (13 ◊ 13, 9 ◊ 9, 5 ◊ 5, 1), N = 169, and (9 ◊ 9, 5 ◊ 5, 1), N = 61
present the best balance of compression time and ratio (5.95s, 4.511 bpp), and (3.6s,
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Models trained
with including sequence’s left voxels

Models trained
without including sequence’s left voxels

Neighbouring Sequence
(Shape & Size)

Sequence
Length (l)

Average
(BPP)

Compression
Time (s)

Decompression
Time (s)

Sequence
Length (l)

Average
(BPP)

Compression
Time (s)

Decompression
Time (s)

1D (5) 5 5.287 1.93 606.18 – – – –
2D Block (11x11) 60 4.427 3.19 1127.65 54 4.651 3.12 3.21
2D Block (13x13) 84 4.416 3.73 1408.7 77 4.643 3.71 3.66
2D Diamond (11x11) 54 4.424 2.96 1066.61 48 4.644 2.89 3.07
2D Diamond (13x13) 64 4.426 3.17 1158.08 58 4.644 3.05 3.11
3D Cube (3x3x3) 13 4.853 2.33 627.91 11 5.114 2.09 2.16
3D Cube (5x5x5) 62 4.575 3.25 1167.93 59 4.824 3.22 3.56
3D Cube (7x7x7) 171 4.432 5.76 2445.81 167 4.642 5.72 5.86
3D Cube (9x9x9) 364 4.383 10.46 4776.11 359 4.59 10.24 10.44
3D Cube (11x11x11) 665 4.466 17.6 8384.63 659 4.566 17.61 17.67
3D Pyramid (5x5,3x3,1) 22 4.588 2.48 718.38 19 4.738 2.41 2.47
3D Pyramid (7x7,5x5,3x3,1) 55 4.441 3.39 1049.63 51 4.64 3.29 3.34
3D Pyramid (9x9,5x5,1) 68 4.332 3.5 1200.53 61 4.538 3.36 3.5
3D Pyramid (9x9,7x7,5x5,3x3,1) 118 4.333 4.9 1815.33 112 4.566 4.61 4.69
3D Pyramid (13x13,9x9,5x5,1) 175 4.3 6.14 2512.65 169 4.511 5.94 5.85
LSTM-Compress – – – – – 4.891 133.22 132.32
Average – 4.512 4.986 2004.409 – 4.665 5.09 5.185

Table 6.2: Benchmark 3: Encoding-Decoding Performance measured by (bits-per-pixel bpp, and time in seconds) for compressing
and decompressing a single slice belongs to Dataset1. The comparison includes all models trained on di�erent causal neighbouring
sequences (with and without the left voxels) from Benchmark1 and Benchmark2. The best compression result (bpp) on average,
is in bold.176



4.538 bpp), respectively.
Comparison to existing method: We also evaluated against a comparative existing

and available deep learning method (LSTM-Compress [146]) for compressing the same
slice. LSTM-Compress performed compression time and rate of (133.22s, 4.891 bpp),
and (132.32s) for decompression time. Our two proposed models have noticeable
compression reductions of (0.38 bpp, or 8.4%), and (0.353 bpp, or 7.8%), respectively,
when comparing them against LSTM-Compress. Moreover, our proposed predictive
models outperform LSTM-Compress producing speedup gains about 22◊ and 37◊
faster encoding-decoding performance.

6.4.6 Benchmark4: Sampling Strategy
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Figure 6.12: Benchmark 4 results, which empirically demonstrates the bits-per-pixel
(bpp) for each sampling strategy whereby training batches are uniquely extracted
from the 3D CT scans in Dataset1. Cells are highlighted from maximum compression
3.9039 bpp (Green) to minimum compression 4.5767 bpp (Red).

Figure 6.12 shows the bpp of models trained on samples extracted by each sampling
scheme from Dataset1. 4-fold cross-validation was applied to each method. The
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last row is the average bpp overall. Based on the experiment, all three strategies
produce similar compression results on average. Overall, both random sampling and
the slice-based scheme achieved the best reduction on average. It appears that training
the model on whole slices with every voxel within the selected slices being available
leads to improvement in the compression results and yields comparable results to the
uniform sampling.

6.4.7 Benchmark5: Compression Improvement During Training
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Figure 6.13: Benchmark5 result, which illustrates (bpp) variations during models’
training steps. To clarify, this plot does not demonstrate the model’s training loss
function, but it evaluates trained models’ compression qualities after di�erent epochs.
Models with pyramid input vectors (including left voxels from Benchmark1) are
evaluated after 10, 20, 30, 40, 50 and 60 epochs. (A di�erent version of this figure
that compares the loss function plot across these models is provided in figure B.5).

Figure 6.13 illustrates the change in (bpp) over-training epochs when compressing
the same volume. This experiment shows the increase in the compression ratio when
training models with di�erent neighbourhood sequences, namely, the pyramid input
vectors (including left voxels). To clarify, this plot does not illustrate the model’s
training loss function, but it evaluates trained models’ compression bpp after di�erent
epochs. Among these cases, the pyramid with (13 ◊ 13, 9 ◊ 9, 5 ◊ 5, 1) block size
obtains the best reduction followed by (9 ◊ 9, 7 ◊ 7, 5 ◊ 5, 1), and (9 ◊ 9, 5 ◊ 5, 1)
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6.4.8 Benchmark6: Comparing with State-of-The-Art Lossless Com-

pression Methods
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Figure 6.14: Benchmark 6 result that illustrates the compression ratio in bpp for two of
the proposed models compared the state-of-the-art lossless compression methods over
Dataset1 (16-bits volumes). Cells are highlighted from maximum compression 3.913
bpp (Green) to minimum compression 6.144 bpp (red). Our two proposed models
have 3D pyramid shapes with (13 ◊ 13, 9 ◊ 9, 5 ◊ 5, 1) while N = 170 forms sequence
without including left voxels, and N = 176 is sequence including left voxels

The experiment in Fig. 6.14 and Fig. 6.15 evaluate the compression performance in
bpp for compressing Dataset1 and Dataset2 using the proposed models and some
state-of-the-art lossless compression methods, including well-known image and video
coders, namely, PPMd [175], JPEG-LS [173], JPEG2000 [174], HEVC [159, 172],
JP3D [174], and the deep learning method LSTM-Compress [146].

By observing the results in figure 6.14, one noticed that among the standard codecs,
JP3D gains the best reduction over Dataset1 with 5.184 bpp on average, followed by
JPEG2000 with 5.316 bpp. Compared to the LSTM-Compress model, our two LSTM
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predictive-based models obtain 0.38 bpp and 0.591 bpp (or 8.84% and 13%) better
reductions, respectively.
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Figure 6.15: Illustrating the compression ratio in bpp for evaluating some of our
pre-trained models compared to the state-of-the-art lossless compression methods
over Dataset2 (16-bits volumes). Cells are highlighted from maximum compression
2.943 bpp (Green) to minimum compression 4.52 bpp (red). The proposed models
are selections of best performers from di�erent folds (emphasised by ”F”) and include
models evaluated on distinctive 2D and 3D sequences with and without including the
left voxels (emphasised by sequence’s length ”N”).

In figure 6.15, the compression performance over Dataset2 is presented for each of
the lossless compressors, including some well-known classical codecs, a deep learning
alternative codec (i.e. LSTM-Compress), and our best model performers. Among the
standard codecs, JPEG2000 outperforms other classical codecs with a compression
performance of 3.548 bpp. When comparing our proposed models’ compression results
to its competing codec LSTM-Compress, noticeable save in spaces around 10% and
7% are gained by our two state-of-the-art models trained on input sequence with 3D
pyramid-shapes. The same figure demonstrates the trade-o�s between our individual
proposed models in terms of compression performance and speed a�ected by choice of
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input sequences’ shape and length options.
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Figure 6.16: A summary overview of the compression performance over di�erent 3D
medical datasets (16-bits) (Dataset1 and Dataset2) using the proposed input sequences
of LSTM predictor models compared to the state-of-the-art lossless compression
methods (Less value indicates better performance).

Overall, our one-step-ahead prediction models achieve state-of-the-art compression
for all datasets with 17%, and 13% save in spaces over Dataset1, and 12%, and 9%
saving in storage over Dataset2 compared to the best performers among classical
methods JP3D, and JPEG2000, respectively, as illustrated in Figure 6.16.

6.4.9 Residual Plots

In this subsection, we illustrate a number of residual comparisons plots from three
random volumes belonging to Dataset1. Each figure illustrates a plot of a mid-slice
residual from one volume. It is only this residual slice that needs to be compressed
using arithmetic coding (or a similar technique) in order to provide lossless compression
of the complete slice/data set. All figures contain comparisons among the di�erent
causal neighbouring sequences categorised based on the sampling grid dimensions (e.g.
1D, 2D, and 3D). The odd rows of each plot are models trained on the sequence’s
including left voxels, while the even rows are models trained excluding the sequence’s
left voxels. The first column illustrates the ground truth slice while the rest are
plotting of the residual slices. Each sub-figure is titled with the input sequence’s
specifications, including the sampling grid dimension and the sequence length. The
compression ratio in (bpp) for each residual slice is also included under each sub-figure.
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All residual slices are colour mapped with a diverging colourmap, wherein the zero
values are coloured with White, values less than zero are coloured with Blue, and
values larger than zero are coloured with Red. Fig. 6.17, 6.18, and 6.19 illustrates
plots of middle residual slices selected randomly from volumes one, seven, and ten,
respectively.
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Figure 6.17: Comparing the residual slices plot among the di�erent sampling schemes
for a middle slice extracted from volume 1 while focusing on a specific region within the
slice to highlight the impact. (Refer to Appendix B ≠ Fig. B.6 to see the visualization
of the whole residual slices).
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Figure 6.18: Comparing the residual slices plot among the di�erent sampling schemes
for a middle slice extracted from volume 7 while focusing on a specific region within the
slice to highlight the impact. (Refer to Appendix B ≠ Fig. B.7 to see the visualization
of the whole residual slices).
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Figure 6.19: Comparing the residual slices plot among the di�erent sampling schemes
for a middle slice extracted from volume 10 while focusing on a specific region within
the slice to highlight the impact. (Refer to Appendix B ≠ Fig. B.8 to see the
visualization of the whole residual slices).
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6.5 Conclusion and Further Work

We present a thorough study of a supervised LSTM prediction-based model for com-
pressing 3D medical images (12-bits data stored as 16-bits depth volumes) losslessly.
Six main benchmarks were conducted to determine the optimal input sequence for med-
ical domain compression. We evaluated all experiments by choosing the compression
performance (bpp and time in seconds) as primary evaluation metrics. Moreover, many
sequences of the causal neighbourhood were empirically investigated and analysed to
highlight trade-o�s. Furthermore, a novel and e�cient type of input sequence was
introduced (without immediate left voxels), which allows simple parallelism of the
decoder and still provides a favourable compression. From the experimental results;
we conclude that the pyramid-shaped input sequences accomplish state-of-the-art
compression results compared to the other options and with a compression gain of
¥ 17% and ¥ 12% compared to the classical lossless compression alternatives over
Dataset1, and Dataset2, respectively. Its e�ectiveness is driven by its balance between
compactness and representativity, reflecting the local correlation around a target voxel.
Moreover, the proposed reduced sequences reach almost a 3◊ lossless compression
ratio of the original volumes in the best case, and up to 500◊ decoding speed-up can be
achieved with little e�ect on the compression performance. Furthermore, the proposed
trained models outperform other state-of-the-art lossless codecs in compressing all 3D
medical volumes and for various modality types, including CT and MRI. In the future,
we plan to extend this work to include di�erent types of deep learning NN models
for a predictive-based compression domain. Another promising research direction
is investigating deep learning models’ generalisation across other high-dimensional
domain applications such as video.

In the following chapter, we proposed novel approaches for extracting training
batches from 3D medical scans (16-bit depth) while analysing the impact on the
model’s training stability and evaluation performance.
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7.1 Introduction

The task of the prediction-based model seeks to learn a mapping function from the
given input to target output over a particular set of samples distributions. In such a
model, it is desirable to include significantly more informative sequences within the
training set, especially in domain tasks that contain up to billions of available sample
options (e.g. volumetric medical scans). With such data distributions, and regardless
of the specified deep learning task, the challenge that arises is the computation cost
and feasibility of e�ciently training on all available samples within the domain. Such
a task is not restricted to medical datasets only; it forms one of the most challenging
tasks in machine learning in many data application domains. As the number of
samples grows, training steps scales linearly, with a higher chance to face training
instability problems.

The increasingly massive scale of dataset generation resides the challenge of the
deep learning training tasks. Based on the model’s size, the training time dramatically
raises as the number of training samples increases. Not to mention the data variance
and overfitting problems, which are a�ected by the quality and size of the samples [178].
The selection of training samples plays an essential role in the model’s training stability
and overall performance. Choosing a representative subset of a dataset would speed
up the training process while still retaining favourable learning achievements. The
impact of sampling informative data would further extend to reduce the training time
while improving stability.

We seek to determine whether it is possible to select a set of training sequences
that is more representative than other sampling schemes (e.g. uniform sampling). We
hypothesise that by training on more informative sequences that cover various data
distributions, our many-to-one prediction model will produce better predictions with
more compressible residuals than a similar model trained on a randomly sampled
training set. We proposed novel data-driven sampling schemes using weighted gradi-
ent scores for training our LSTM prediction-based model. The developed selection
procedure directly pre-chooses a fixed number of training sample points based on their
gradient magnitudes and the specified thresholds. The performance of the proposed
scheme was evaluated compared to models trained on various data-driven sampling
schemes such as uniform, Gaussian, and sliced-based sampling to study its e�ectiveness
and measure its quality.

Our proposed sampling scheme biases the training set by selecting samples with
varying percentages of gradient magnitudes in order to increase the knowledge of

189



the learned content. We hypothesise that by drawing training samples with variance
gradient magnitudes (i.e. in non-uniform proportions), the model will gain better
learning performance than randomly uniform sample points due to targeting more
informative groups.

The contributions of this chapter’s work focus on developing an algorithm for
strategically selecting sample points to feed into a sequence prediction model in order
to improve the overall model’s training and evaluation performance. Briefly, the main
contributions are summarised as follows:

• A novel methodology of an o�ine data-driven sample selection scheme for
training a many-to-one prediction model on a fixed size is proposed.

• The main intention is to reduce training volume and computation cost by extract-
ing representative reduced training subsets while still achieving a remarkable
compression ratio on large-scale medical datasets (16 bits).

• Evaluations compared to alternative data-driven sampling schemes (uniform,
Gaussian, and sliced-based) have been examined to measure the e�ectiveness
and quality of the chosen input samples on models’ learning outcomes.

• Experimentally indicates the generalisability and bit-reduction achievements of
the predictive model when training it on our proposed subsampling scheme and
comparing it to other state-of-the-art lossless alternatives.

The remainder of this chapter is organised as follows: Section 7.2 highlights the
current research contributions in important sampling and subsampling within the
deep learning domain. Section 7.3 explains the proposed sampling schemes and some
alternative sampling strategies. Additional information on datasets, training settings,
model architectures, and experimental results are provided in Section 7.4. The same
section evaluates the compression results in (bpp) of the proposed models compared
to the state-of-the-art lossless compression methods. The last Section 7.5, reports the
outcomes and summarises the chapter.

7.2 Related Work

Subsampling large-scale data distributions tend to seek multiple objectives, including
speeding up the training process, increasing convergence rate, reducing the computa-
tional cost, and reducing the error rate while solving the given task. Many strategies
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have been developed to tackle some problems related to model capacity and the qual-
ity of the selected training sample points; namely, overfitting and underfitting [116].
Further objectives include enhancing the overall training performance and outcomes
(i.e. training stability, time, generalisability, and convergence rate). When focusing on
the reduction in dataset size, the advantages can further extend to include space and
bandwidth savings as the data storage and communications are decreased. Such a fea-
ture would be notably desirable in the domains with bandwidth or power consumption
limitations like multi-agents systems [38]. Another domain which significantly benefits
from reducing the number of data points are the supervised learning tasks, specifically
the human-annotated labelling. In such a task, the massive data size influences the
given work as the labelling process is manually applied by human e�orts, making
it time-consuming and expensive [39]. By reducing the number of samples to more
representative ones, the labelling workload would be notably reduced and faster to
apply.

7.2.1 Contributions in Enhancing SGD Optimiser & Sampling
Selection

A considerable amount of research contributions have been proposed to improve the
learning performance when employing a Stochastic Gradient Descent (SGD) optimiser.
The improvement involves many aspects, such as proposing variants of the SGD
optimiser [179], improved batch-selection mechanisms [180], enhancing the quality
of samples within mini-batches using an important sampling scheme to accelerate
training and speed up convergence rate [181,182], or introducing enhanced sampling
of observations to reduce overfitting [183,184]. Generally, the less variance a batch’s
gradients show, the more informative and further stabilised the training becomes, with
a speedup gain in the training steps.

Korchi and Ghanou proposed a random sampling mechanism for drawing new
training subsets to improve NN e�ciency [183]. Their novel approach selects a new
subset in each iteration while increasing the batches’ diversity to avoid training
instability problems (i.e. overfitting). The e�ciency and generalisability of their
data-driven method were empirically evaluated over three datasets (i.e. MNIST,
CIFAR-10, and SVHN), showing better accuracy and training speed overall testing
sets, although the models were trained only on 60% of the available data. A novel
importance sampling for mini-batches was introduced by Csiba and Richtárik to solve
supervised learning tasks [181]. The results of their method demonstrate improvement
in training speed and reduction in stochastic variance compared to other uniform mini-
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batching methods. The speedup factor was theoretically measured over both synthesis
and real datasets, illustrating an order of magnitude improvement. Recent unbiased
sampling that yields optimal batch variance for faster SGD convergence was proposed
by Mariet [182]. In their batch selection method, they utilised learned distributions of
the first and second-order marginals. Thus, the batches produce experimentally by
their sampling method demonstrate lower-variance estimations that outperforms other
batch-selection methods in convergence speed. Another optimised sampling method
that picks representative and noiseless sample points specifically for training model
solving One-Class Classification task was presented by Hadjadji, and Chibani [184].
Ioannou et al. [180] developed a novel biased batch-selection method, where more
complex samples are selectivity added into training batches at each epoch. This biased
sampling mechanism allows the deep neural network to converge faster with fewer
training steps and better generalisation. The evaluations were conducted over four
datasets (i.e. Boston housing, MNIST, CIFAR10, and CIFAR100), solving separate
regression and classification tasks, respectively. Experimental results demonstrate
accelerated convergence speed by up to 50% over the chosen datasets.

7.2.2 Contributions in Sampling Quality & Scoring Metrics

Other enhancements include modulating minibatch samples selections, producing
important score metrics for determining training samples’ quality based on their
impact on learning performance, investigating dataset characteristics (i.e. diversity
and redundancy), [38–42].

Subsampling representatives and fewer data points yet su�cient for training form
a significant challenge in deep learning domains, regardless of the tasks to be solved.
The work proposed by Katharopoulos and Fleuret [40] demonstrated that not all
samples have equal importance; in many cases, training can be e�ciently ended
with smaller training steps if representative and more informative data points are
chosen. Their work focused on accelerating the training by employing an importance
sampling scheme, which reduces the gradient variance while still picking samples
with significant updating impacts on the NN parameters. An empirical study was
proposed by Vodrhalli et al. [42], which investigates the quality and properties of
some well-known datasets such as CIFAR-10/100, ImageNet and MNIST in terms
of redundancy and diversity of samples. Similar to our work, this study utilises
the gradient magnitude as their primary scoring matric. However, they only focus
on analysing models’ performance trained only on the four image datasets. Their
conclusion includes that some sample images are more important than others, given
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evidence of model generalisability, which was one of the potential backbones for
our proposed hypothesis. Another work that closely overlaps with our contribution
but focuses on solving language modelling tasks was proposed by Fernandez, and
Downey [41]. They seek to increase the learning outcomes while accelerating the
learning process of the RNN language model by selecting more informative samples and
complex sentences as training samples. Their results demonstrate that training a model
on their weighted sampling strategy e�ectively outperforms the random sampling
approach with similar sample size. Defining a compact but representative subset
with minimum cardinality out of an original massive dataset has been experimentally
investigated by Ghadikolaei et al. [38]. A demonstration of their proposed sampling
algorithm for extracting representative samples was analytically and synthetically
being evaluated. The algorithm expresses that the size of training samples can be
reduced without much drop impact on the learning outcomes and performance. A
diversity-driven sampling algorithm with boundary balancing constraints for solving
classification tasks was proposed by Ramalingam et al. [39]. Their novel subset selection
framework boosts performance gain while training using fewer training samples than
other traditional deep-learning models. Experimental evaluation was carried out
over four stander image classification datasets, including CIFAR-10, CIFAR-100,
CIFAR-100-LT, and ImageNet.

Compared to the current literature, we proposed a novel subsampling scheme
based on voxel’s gradient magnitude to learn domain-specific data distributions in
a way that allows a many-to-one sequence prediction model to maximise its gained
knowledge. We study the impacts of the chosen training subset generated by our o�ine
data-driven importance sampling on the overall model’s compression performance. The
sampling methods vary in homogeneous and heterogeneous regions scales and settings
for threshold values. Many options have been considered based on the frequency
distributions of voxels’ gradient magnitudes across volumes belonging to di�erent
datasets. Also, compression to other popular alternative strategies such as random,
Gaussian, and slice-based sampling was presented. Furthermore, evaluation of the
compression performance, as opposed to the state-of-the-art lossless methods, was
highlighted.
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7.3 Methodology

7.3.1 Problem Description

Given a data distribution defined over P µ Rd, the aim is to learn the distribution and
gain knowledge about the specific population P by selecting representative portions
(i.e. a training subset D µ P). The selection process of observations is known as
sampling, while the total number of observations is described as sample size N . A
subsampling strategy involves picking procedures when collecting datapoints, which
can be classified into random and non-random schemes (e.g. stratified, clustered, or
systematic). The common purpose is to collect su�cient data that explicitly represent
the whole population. A sample is defined to be representative based on how well
it describes the population or some of its characteristics. Thus, a strongly biased
sampling scheme could systematically influence a study’s outcomes as it may not
reliably represent all individuals within a population. Generally, bias is not usually
recommended in sampling as it may produce incorrect inferences about a population
due to uniform selections. A selection is defined as biased if there are variations in
the samples’ selection likelihoods [185].

Selecting training samples is crucial and challenging in a deep learning context
as it influences the overall learning process and stability. We formulated the data
compression as a sequential prediction problem and solved it as a classical regression
task. Our LSTM model is expected to learn a di�erentiable mapping function
f : X ≠æ Y while adjusting the model’s parameters ◊ through the back-propagation
process given a training dataset D. Where X represents an input space, and Y
represents an output space. A training dataset D consists of finite input-output pairs
of samples with N sample size, whereby D = {(X

i

, y
i

)}
iœN

, X
i

œ X , y
i

œ Y, and
ŷ

i

= f(X
i

). Each X
i

consists of a sequence of multiple voxels’ intensity values (i.e.
X

i

= {x0, x1, x2, ..., x
l≠1} with a fixed length l) surrounding a ground-truth target

voxel known as y
i

as illustrated in Fig. 7.1. As our LSTM model is fed with chains of
input voxels’ values X

i

while predicting only a single value y
i

as an output, thus it is
known as a many-to-one sequence prediction model. During training, a minimisation
of the loss function L(ŷ

i

, y
i

) is sought to reduce the distance between prediction ŷ
i

and
ground trough values y

i

while updating the model’s parameters ◊. When evaluating
the pre-trained model, a computation of the residual/prediction error E is applied,
whereby the di�erence between prediction and actual value at each voxel location
within the 3D volume is measured by E

i

= y
i

≠ ŷ
i

. This volumetric residual E is
reduced losslessly to a lower bit rate with an arithmetic coder on the encoder side.
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When decompressing, a reversible decoding operation is applied at the receiver side
by the arithmetic decoder to recover volumetric error E. Our LSTM model is then
involved, whereby the ŷ

i

voxels’ values are progressively predicted and summed to
their correspondence residuals values E

i

in order to reconstruct the original volume
(see Fig. 6.2 in chapter 6 for more details).

7.3.2 Alternative Sampling Strategies

The number of voxels included within some medical imaging datasets can be on a
scale of billions, making training on all samples computational costly and impractical.
The task of the many-to-one sequence prediction model seeks to learn a mapping from
the input sequences to the target output through a set of training samples. Such a
supervised learning process is a�ected by the quality of the selected sample points,
especially on massive scale training datasets. The goal is to adaptively subsample
data to reduce the number of observations required to train a model. The challenging
question is whether it is possible to select a smaller set of critical data points that
are more informative and representative to reduce training steps while not negatively
influencing the overall learning performance. An illustration of the various sampling
acquisition strategies applied in this chapter is proposed in Fig. 7.1, including a)
Slice-based Sampling, b) Random (Uniform) Sampling, c) Gradient-based Sampling,
and d) Gaussian Sampling.

7.3.2.1 Random Sampling

A random sampling of observations implies that all volumes’ voxels have an equal
probability of being selected. Moreover, uniformly subsampling voxels across multiple
volumes is a simplistic and fair sampling technique with no biasing, making general-
isations about the whole population, as demonstrated in Fig. 7.1 b). One of its main
advantages is that it does not need prior knowledge about the data being collected.
Moreover, it is one of the most popular sampling techniques as it applies an equitable
procedure with no biasing when picking points.

7.3.2.2 Gaussian Sampling

Although in statistics, it is usually not recommended to apply a densely biased
sampling scheme, in this chapter, we study the e�ect of a 3D Gaussian sampling
on the overall model’s learning performance. The intention is to utilise the domain
knowledge about the nature of 3D medical scans, which usually locates the patient’s
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Figure 7.1: The sampling acquisition strategies applied in this chapter, including a) Slice-based Sampling, b) Random (Uniform)
Sampling, c) Gradient-based Sampling, and d) Gaussian Sampling.
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body in the middle of the image surrounded by air. Therefore, we hypothesise that
our sequence prediction model may enhance the performance of the learned mapping
function by biasing training samples toward the centre of a volume (i.e. more detailed
body materials and tissues). In 3D Gaussian sampling, voxels from mid-slices would
have higher probabilities for being selected than voxels at edges as shown in Fig. 7.1 d)
(i.e. by intending to pick voxels from the body materials in the middle rather than air
at the edge). Moreover, within our experiment, the sampling’s mean µ and standard
deviation ‡ will vary based on the sampled volumes’ dimensions.

7.3.2.3 Slice-based Sampling

A slice-based sampling is a less random scheme but a more systemic approach in
drawing samples from a population. This method can be utilised on high-dimensional
data distribution such as 3D medical images or videos. All samples belonging to a
cross-sectional slice or frame would be included in the dataset D. The process of
selecting all samples of a cross-section will repeatedly being applied to a volume’s
z-axis after a fixed sampling interval (i.e. every nth stride), as illustrated in Fig.
7.1 a). The intention is to thoroughly sample individual cross-sections region while
intending to improve compression performance by learning multiple complete 2D slice
distributions across the z-axis. This sampling approach has demonstrated e�ectiveness,
and generalisation across many datasets through our findings in previous chapters
4, and 6 as it was comparable to other sampling schemes, namely, uniform sampling
6.4.6.

7.3.3 Proposed Sampling Method

7.3.3.1 Background

A gradient of a multivariate function f (e.g scalar data f : Rn ≠æ Rn) is the first-
derivative indicated as “f demonstrated in Eq 7.1, which is a vector representing the
direction to the most significant change at a point p (i.e. directional change). At a
particular point p in a scalar field, the gradient can be described as the slope of a
tangent line, the instantaneous rate of change, and the direction to the steepness change
(i.e. increasing or decreasing). At the same time, the gradient’s magnitude corresponds
to the rate of change in that direction. The first-derivative f Õ and the second-derivative
f” of any function are considered as data-driven data features commonly involved in
many fields and applications, including image processing and medical imaging domains.
Such applications are applied to data with di�erent dimensionalities. For instance,

197



in 2D space, edge detection or image segmentation are computed [186]. While in
higher-dimensional spaces such as 3D spaces, mathematical computation of surface-
based gradient norm for high-quality shading is employed [66]. More utilisations of
the gradient’s magnitudes include 3D segmentation, 3D visualisation, the definition of
the local change in the fields, and emphasising the material’s boundaries [1, 63, 66, 68].

“ f =
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g
y

g
z

T
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Where ˆf

ˆx

is the derivative with respect to x (i.e the gradient in the x direction)
while ˆy

ˆy

is the derivative with respect to y (i.e. the gradient in the y direction) and
ˆf

ˆz

is the derivative with respect to z (i.e. the gradient in the z direction).
In a volumetric medical dataset, a simplistic but popular procedure to approximate

the gradient norm at each voxel location within the 3D grid is known as Central
Di�erences [187,188]. The main principle is to estimate the voxel normal by utilising
the intensity values from its six local neighbourhoods, as computed in equation 7.3.
The gradient magnitudes can then be determined by computing the vector’s length
using equation 7.2.

Î f Î=
Ò

g2
z

+ g2
y

+ g2
x

(7.2)

Where Î f Î denotes the gradient’s magnitude, while g
x

, g
y

, and g
z

represent the
gradient’s vector components. This calculation can be precomputed and stored in
a separate gradient volume to reduce the computational overhead, especially when
handling large-scale high-resolution volumes.
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Where f(v
x

, v
y

, v
z

) is the gradient approximation at voxel location (v
x

, v
y

, v
z

) computed
using Central Di�erences, while h denotes the distance between voxels in the 3D grid

—(i.e. h = 1 for all volumes utilised within this chapter).
As gradient magnitude is a scalar quantity that emphasises the local rate of change

at a particular voxel location, we selected to utilise it as a scoring mechanism within
our importance sampling scheme. Determining gradient magnitudes provides intuitions
about whether a voxel belongs to material, transition or boundaries between materials
(i.e. a boundary is formed between high and low-intensity values). When the computed
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vector’s length is zero, the corresponding voxel belongs to a homogenous region (e.g.
materials), representing a critical point (i.e. local minima, local maxima, or a saddle
point). However, a significant length result (i.e. high-gradient magnitudes) at the
current voxel location indicates that the sample voxel belongs to a non-homogenous
or heterogeneous region (e.g. materials’ boundaries). We empirically investigate the
e�ect of choosing training samples belonging to homogenous or heterogeneous regions
with di�erent scales to learn various distributions su�ciently (see Figure 7.1 (c)). We
gradually increased the proportion of sample points between the two areas and varied
the magnitude’s threshold to find the best balance for enabling the LSTM model to
gain the best compression performance.

7.3.3.2 Gradient-based Sampling

A gradient sampling method can be characterised as a type of cluster sampling, where
voxels belonging to any volume are classified into di�erent groups (i.e. homogeneous,
and non-homogeneous regions) based on their gradient magnitude values. Then,
random sampling is applied to collect the samples belonging to each cluster based
on the specified important scores. A basic illustration of the methodology for this
sampling scheme is shown in Fig. 7.1 c).

7.4 Experimental Results and Discussion

7.4.1 Performance Metrics

The bits-per-pixel (bpp) (Eq. 3.3.1) has been chosen to be the evaluation metric of
the compression ratio obtained by all our LSTM models.

7.4.2 Dataset Details

Dataset1 contains 12 high-resolution CT volumes with a total of 2.7 billion voxels
available for training. Each volume represents a human Torso generated by a local
hospital (private dataset) and stored as 16-bit grayscale (DICOM) files. A detailed
overview of the volume specifications is shown in table 7.1 (for further details on the
dataset specifications, refer to section 3.1.1). Visualisations of some sample volumes
belong to Dataset1 is presented in figure 7.2. Each subfigure illustrates 3D volume
visualisation of the patient’s entire Torso with three orthogonal slice views (axial,
sagittal and coronal) for colour mapping of slices’ intensity values (top row) and
gradient magnitude values (bottom row). A validation procedure of 4-folds cross-
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validations has curred out over this dataset (i.e. Dataset1), where each fold contains
nine volumes belonging to the training set while three volumes are held for testing.

Volume ID Resolution Depth Pixel Spacing,
Slice Thickness

Minimum
Value

Maximum
Value

1 512 ◊ 512 728 0.488, 0.488, 0.625 -1024 3071
2 512 ◊ 512 1008 0.488, 0.488, 0.625 -1024 3071
3 512 ◊ 512 784 0.488, 0.488, 0.625 -1024 3071
4 512 ◊ 512 952 0.488, 0.488, 0.625 -1024 3071
5 512 ◊ 512 784 0.488, 0.488, 0.625 -1024 3071
6 512 ◊ 512 952 0.488, 0.488, 0.625 -1024 3071
7 512 ◊ 512 952 0.488, 0.488, 0.625 -1024 3071
8 512 ◊ 512 896 0.488, 0.488, 0.625 -1024 3071
9 512 ◊ 512 840 0.488, 0.488, 0.625 -1024 3071
10 512 ◊ 512 840 0.488, 0.488, 0.625 -1024 3071
11 512 ◊ 512 728 0.488, 0.488, 0.625 -1024 3071
12 512 ◊ 512 1008 0.488, 0.488, 0.625 -1024 3071

Table 7.1: Dataset1 composed of 16 bit-depth medical images.

Another dataset used for evaluation purposes is a public set that contains around
377 million voxels in total, known as Dataset2. It contains 12 MRI (16 bit-depths)
volumes of patients’ head and neck scans with [.5, .5] pixel spacing, and 2mm slice
thickness [16–18] (see section 3.1.3 for further details on the dataset specifications).
Visualisations of some sample volumes belong to Dataset2 is shown in Fig. 7.3.
Each subfigure illustrates a patient’s head and neck with three orthogonal slice views
(axial, sagittal and coronal) for colour mapping of slices’ intensity values (top row) and
gradient magnitude values (bottom row). The performance of each of the proposed
pre-trained models was measured in bpp 3.3.1 on this unseen out of domain dataset (see
subsection 7.4.4.1 for more details). Another experiment was applied to this dataset
with a validation procedure of 4-folds cross-validations, where each fold contains nine
volumes belonging to the training set while three volumes are held for testing (see
subsection 7.4.4.2 for more details).
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a) Volume 1

b) Volume 6

c) Volume 10
Figure 7.2: Visualisations of some (16 bit-depths) sample volumes belong to Dataset1.
Each subfigure illustrates 3D volume visualisation of the patient’s entire Torso with
three orthogonal slice views (axial, sagittal and coronal) for colour mapping of slices’
intensity values (top row) and gradient magnitude values (bottom row).
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a) Volume 1

b) Volume 5

c) Volume 12

Figure 7.3: Visualisations of some (16 bit-depths) sample volumes belong to Dataset2.
Each subfigure illustrates a patient’s head and neck with three orthogonal slice views
(axial, sagittal and coronal) for colour mapping of slices’ intensity values (top row)
and gradient magnitude values (bottom row).
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7.4.3 Model Details

This subsection identifies the training settings and model details. To retain that the
comparison between competing models is fair and convenient for all experiments, we
employed the same RNN architecture in table 7.2 as the stander specification for
all models used in this chapter. Although the size of this LSTM model is relatively
compact (i.e. the storage size required for the model’s weights only is 276 KiloBytes
(KB), while the complete model’s size (i.e. weights and training hyperparameters) is
810 Kilobytes (KB)), it has demonstrated that it has enough capacity to learn the 3D
voxel correlation through our previous findings in [43,44].

Layer Number of Neurons Activation Function Used
LSTM 128 Sigmoid and Tanh
Output 1 Linear

Table 7.2: The NN architecture used as the stander specification for all the proposed
models.

For all the training applied in this chapter, we use Adam optimizer [177], with
the following parameter settings —1 = 0.9, —2 = 0.98, a learning rate of 1e ≠ 4, and
the training batch size is typically chosen to be 128. Each model was trained on a
subset with a fixed sampling size for 60 epochs while minimising L

joint

loss function
(see section 3.2 for details).

7.4.4 Gradient-based Sampling

As the outcomes of our comprehensive study in chapter 6 demonstrated, we chose
to train the models in this study on the best performer (i.e. sequences with the
3D-Pyramid (13x13,9x9,5x5,1) - N=175). The same sample size (i.e. 4.7M unique
samples) was empirically employed in all experiments to keep the comparison among
the di�erent sampling schemes fair and convenient. Moreover, all chosen voxels
drawn by di�erent strategies are taken without replacements. We empirically evaluate
the e�ectiveness, robustness, and generalisation for each distinct sampling method,
including the various configurations within the gradient sampling scheme.

7.4.4.1 Gradient-based Sampling Applied to Dataset1

In the experiments, we gradually change the proportions for homogeneous and het-
erogeneous regions within the sampling bu�er to find the balance that would lead to
higher compression reduction. The study also includes changing the threshold rate
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based on the frequency distribution of the gradient magnitude values. Figure 7.4
shows the gradients’ magnitudes histogram plots for both linear and logarithmic scales
across Dataset1 (sub-figures 7.4(a) and 7.4(b), respectively). From the frequency
distribution, it is noticeable that a massive proportion of the voxels’ gradient normals
are located within a homogeneous region (i.e. zero bin). Therefore, we sampled
voxels within that area while varying the scale, in steps of 0% up to 60% and with
threshold value of zero (i.e. Gradient Sampling 1, 2, 3, and 4 as demonstrated in
Fig. 7.5). Sampling bu�er with higher homogeneous divisions, for example, 80% and
100%, was empirically impractical to train-on, causing training instability problems
(i.e. gradient explosion). Such a problem is expected when considering less diversity
or the unbalanced size of duplicated samples.

Sampling ID Gradient Magnitude
Threshold

Homogeneous
Percentage

Non-Homogeneous
Percentage

Configuration for
Non-Homogeneous

1 0 0% 100% -
2 0 20% 80% -
3 0 40% 60% -
4 0 60% 40% -
5 0 20% 80% (10, 100, 200, >)

6 0 20% 80% (50, 100, 150, 200,
250, 300, 350, >)

7 10 40% 60% -
8 100 40% 60% -
9 100 40% 60% No Air Intensity

Table 7.3: A summary overview of all the proposed gradient sampling schemes across
Dataset1.

For Gradient Sampling 4 and 5, only 20% of the homogeneous region was included
with a threshold of zero value while the rest 80% represent heterogeneous quarters.
Based on the linear distribution of the gradient magnitude values, the bins with the
higher frequencies have been massively sampled within each division. For instance, in
Gradient Sampling 4, sample voxels within non-homogeneous regions with magnitude
values (10, 100, 200, and other larger values) have a better chance of being selected up
to 20% likelihood for each. Within Gradient Sampling 5, more magnitude distributions
are chosen explicitly with a proportion of only 10% for each group, including (50, 100,
150, 200, 250, 300, 350, and other higher values) as shown in Fig. 7.5.
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b) Gradient magnitude (logarithmic scale) histograms across Dataset1

Figure 7.4: Gradient magnitudes histogram plots (linear & logarithmic scales) across
Dataset1.

As in a scalar field, relatively homogeneous regions with low-gradient magnitudes
would represent materials, while non-homogeneous areas have high-gradient mag-
nitudes, indicating boundaries between materials. Thus, our experiments also include
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likelihood patterns with di�erent threshold values, including (10 and 100 magnitude
values) for Gradient Sampling with 7, 8, and 9 IDs. The intention is to find a balance
and diversity in voxel selections that benefit our sequence prediction model while
learning the input-output mapping function. Through the examination of sampling
subdivisions (i.e. homogenous and non-homogeneous classes), we found that propor-
tions of 40% and 60% achieve a favourable correlation of compression performance and
voxel selection. Thus, we further investigate defining an upper bound value for the
homogeneous region that restricts elections within that limit. In Gradient Sampling 7,
a threshold value of 10 was employed as the limit for the homogeneous group, while
voxels with higher magnitude values have likelihoods for being chosen within the
proportion of 60%. On the other hand, Gradient Sampling 8 has an upper bound
of 100 for its homogeneous section. Similarly, Gradient Sampling 9 has a bound of
100 for its homogeneous section; however, we exclude voxels with air intensity value
from being chosen in this sampling scheme. Although such sampling methodology can
be relatively biased, the main objective is to massively focus all training samples on
learning distributions of voxels from the body’s materials. A summary overview of all
the proposed gradient sampling schemes across Dataset1 is proposed in table 7.3.
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Figure 7.6: Bits-per-pixel (bpp) for compressing Dataset1 using models trained on
di�erent training subsets. The top labels specify the subsampling scheme specifications
for drawing samples. Volumes are grouped into their respective cross-validation fold,
wherein each row represents a volume, and each fold contains validation over three
volumes – separated with a horizontal black line. Cells are coloured from maximum
compression 3.893 bpp (Purple) to the lowest compression 4.589 bpp (Brown).

An evaluation scheme of 4-fold cross-validation on Dataset1 consisting of 12 high-
resolution CT volumes were applied, whereas each model’s compression performance
in bpp was reported in Figure 7.6. Each row represents the compression measurement
in bpp over a single volume, while the combination of three volumes forms validation
across a single fold – separated with a horizontal black line. Each column forms a
specific model trained with a unique sampling scheme while the configurations are
indicated on the top. The last row summarises the average bpp of all models through
all volumes. Cells are coloured from maximum compression 3.893 bpp (Purple) to the
lowest compression 4.589 bpp (Brown). The best compression result is in bold.

By examining the compression results of the alternative sampling methods, both
random and slice-based sampling archives the same reduction with 4.29 on average
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overall folds. Similarly, within the other subsampling approaches, Gradient Sampling
Grad2 introduced the same reduction on average. Among the proposed gradient
subsampling schemes, Grad8 with thershold = 100, a subdivision of 40% and 60%
sections, achieves the best reduction with 0.45% space-saving on average as opposed
to the standard random sampling method. On the other hand, the worst compression
reduction was generated by Grad9, which is expected when strongly biasing the
sampling to eliminate one of the data distributions (i.e. air intensity). However,
the performance drop of this sampling scheme is only 1.45% compared to the best
performer on average (i.e. Gradient Sampling Grad8).

In figure 7.7, models pre-trained on Dataset1 are now evaluated in bpp over an out
of domain public set (i.e. Dataset2). This experiment measured the generalisation of
each model trained on distinct subsampling schemes by evaluating its compression
performance on unseen volumes (16 bit-depths). As each sampling approach was
trained using a 4-fold cross-validation scheme, the evaluation of each of its trained
models (i.e. four models per subsampling scheme) is grouped into corresponding folds
separated by horizontal lines. To be precise, each column illustrates the reduction ratios
of four models trained with the same sampling methodology across di�erent volumes.
However, each row presents the compression ratio of di�erent models over a single
volume except for the last row, which shows an estimation of average bpp achievements
overall folds’ means. Cells are coloured from maximum compression 2.9157 bpp (Purple)
to the lowest compression 3.4342 bpp (Brown). The best compression result is in bold.
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Figure 7.7: Compression performance in (bpp) for evaluating models’ trained with
di�erent sampling strategies validated over Dataset2. Models pre-trained on dis-
tinct training subsets from Dataset1 are evaluated on this set and grouped into
corresponding folds separated by horizontal lines. The top labels specify the sampling
configurations used when drawing training samples. Cells are coloured from maximum
compression 2.9157 bpp (Purple) to the lowest compression 3.4342 bpp (Brown).
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Across this particular dataset, it appears that the biased Gradient Sampling Grad9
achieves the best bpp reduction (i.e. 3.051 bpp) over all volumes in Fold4. By checking
its mean over all folds, its average bpp ratios considered to be relatively comparable
to the best performer. Although this subsampling excludes voxels with air intensity
from the training bu�er, it is still able to gain best reduction during the evaluation
on this high-dynamic medical dataset. While looking into the compression reduction
comprehensively, it is apparent that Gradient Sampling Grad5 produce the smallest
bpp means overall folds with an average of 3.084 bpp. Precisely, this sampling scheme
obtains equivalent bpp to Sampling Grad9 over Fold4 with 3.056 bpp. When only
focusing on the validation results across Fold4, it appears that most of the proposed
gradient sampling approaches gain comparable compression performance, including
Sampling with the following IDs: 1, 3, 5, 6, 7, 8, and 9. Comparing the validation
results of our best sampler to the alternative sampling schemes’ (i.e. slice-based,
random, and Gaussian) on the same fold, these methods are taking more noticeable
storage spaces of 2.78%, 1.412%, and 0.9197%, respectively. The average mean of
the alternative sampling schemes across all folds, yield relatively similar compression
performance on average with almost 3.119 bpp. When comparing the bpp average
reduction of the random sampling compared to the best performer (i.e. Gradient
Sampling Grad6) over Dataset2, the gain in storage reach to almost 0.932%. On the
other hand, the worst compression result on average on this dataset was accomplished
by Grad4 with a mean of 3.163 bpp. Interestingly, the Gaussian sampling scheme,
which performed the least reduction among all sampling methods over Dataset1,
accomplished a better compression than slice-based and uniform sampling on this
dataset. The evaluation results of Gaussian and Grad9 sampling schemes may indicate
that by entirely biasing the training samples toward the tissues and body’s materials,
the learning-based coder may gain better generalisability, allowing better reduction
for solving this particular task.

211



7.4.4.2 Gradient-based Sampling Applied to Dataset2
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a) Gradient magnitudes histogram plot across Dataset2
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Figure 7.8: Gradient magnitudes histogram plots (linear & logarithmic scales across
Dataset2.
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Sampling ID Gradient Magnitude
Threshold

Homogeneous
Percentage

Non-Homogeneous
Percentage

Configuration for
Non-Homogeneous

1 0 0% 100% -
2 0 20% 80% -
3 0 40% 60% -
4 0 60% 40% -
5 10 40% 60% -
6 0 20% 80% (1, 5, 10, >)

Table 7.4: A summary overview of all the proposed gradient sampling schemes across
Dataset2.

As Dataset2 has another modality (i.e. MRI) and represents di�erent segments of
the patient’s body (i.e. head and neck), the setting for the gradient sampling patterns
may vary according to the voxels’ gradient magnitude frequency distributions. Figure
7.8(a) demonstrates the gradients’ magnitudes histogram plots for both linear and
logarithmic scales across Dataset2. Examining the distribution would help choose the
threshold value and the proportions for homogeneous and heterogeneous regions within
the sampling bu�er. Compared to Dataset1, both the voxels’ intensity and gradient
magnitude frequency range is considerably small. Consequently, such a compact range
would reduce the number of possibilities for gradient-based sampling. Based on the
distribution, we introduce six main gradient-based sampling schemes. Starting by
assigning the homogeneous division to 0% up to 60% while the threshold value was
zero for Gradient Sampling 1 to 4.

Given the gradients’ magnitudes frequency plot, we focus on massively sampling
voxels with high-frequency rates for the other two sampling schemes. For instance,
Sampling Grad5 has a threshold value of 10 for its homogeneous group, while voxels
with higher magnitude values have likelihoods for being chosen within the proportion
of 60%. In Gradient Sampling Grad6, the threshold value of zero has a likelihood
of only 20% while voxels’ with magnitude values (1, 5, 10, and other larger values)
have a better chance of being included in the sampling bu�er up to 20% for each. A
summary overview of all the proposed gradient sampling schemes across Dataset2 is
proposed in table 7.4.

A similar experiment with an evaluation scheme of 4-fold cross-validation but
on Dataset2 was investigated in this section, whereas each model’s compression
performance in bpp was described in Figure 7.9. Each fold demonstrates the validation
over a group of three volumes, while each column denotes four models trained on
subsets extracted with the same subsampling method over various volumes. The last
row forms the mean overall folds, while the best compression result (bpp) is bold.
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Figure 7.9: Bits-per-pixel (bpp) for compressing Dataset2 using models trained on
di�erent training subsets. The top labels specify the subsampling scheme specifications
for drawing samples. Volumes are grouped into their respective cross-validation fold,
wherein each row represents a volume, and each fold contains validation over three
volumes – separated with a horizontal black line. Cells are coloured from maximum
compression 2.5238 bpp (Purple) to the lowest compression 2.8618 bpp (Brown).

Cells are coloured from maximum compression 2.5238 bpp (Purple) to the lowest
compression 2.8618 bpp (Brown). The sampling schemes that perform the minimum
compression reduction on Dataset2 are Gaussian and Gradient-based sampling Grad4
with a bpp ratio of 2.705. On the other hand, models trained on subsets drawn by
slice-based and random sampling accomplish comparable results with a compression
ratio of approximately 2.658 bpp. Overall, the performance of models trained with
sampling Grad5 improves the compression results and yields comparable results to
the uniform sampling, which requires 0.223% more storage. A similar performance
was produced by our other proposed gradient-based sampling with IDs 2 and 6.

214



7.4.5 Comparing with State-of-The-Art Lossless Compression
Methods
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Figure 7.10: Illustrating the compression ratio in bpp of models trained with the some
of proposed sampling schemes compared to the state-of-the-art lossless compression
methods over Dataset1 (16-bits volumes). Cells are highlighted from maximum
compression 3.893 bpp (Purple) to minimum compression 5.779 bpp (Brown). The
best compression result (bpp), is in bold.
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Figure 7.11: Illustrating the compression ratio in bpp of all models trained with
the proposed sampling schemes compared to the state-of-the-art lossless compression
methods over Dataset2 (16-bits volumes). Cells are highlighted from maximum
compression 2.524 bpp (Purple) to minimum compression 4.273 bpp (Brown). The
best compression result (bpp), is in bold.

This section measures the impact of our various data-driven sampling schemes on the
compression performance compared to some well-known image and video coders. The
state-of-the-art lossless compression methods include PPMd [175], JPEG-LS [173],
JPEG2000 [174], HEVC [159,172], JP3D [174], and the deep learning method LSTM-
Compress [146]. In this experiment, only models with the best performance over
Dataset1 and Dataset2 are presented.

Based on the results of figure 7.10, it is noticeable that the maximum compression
ratio is gained by our model trained with the proposed gradient sampling scheme (i.e.
ID 8). When focusing on saving in space over Dataset1, compared to our Grad8, most
of the classical compressors (i.e. PPMd, JPEG-ls, JPEG2000, HEVC, and JP3D) take
up to 27%, 21%, 20%, 23%, and 18% more storage, respectively. Similarly, compared
to the competing deep learning compressor (i.e. LSTM-Compress), this method needs
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up to 13% more storage than our proposed model.
Over Dataset2 in Fig. 7.11, compared to the best compressor Grad5, the state-of-

the-art lossless compression methods (i.e. PPMd, JPEG-ls, JPEG2000, HEVC, and
JP3D) need up to 37%, 33%, 25%, 35%, and 28% more storage. Moreover, Grad5
model demanded less storage requirements when compared against LSTM-Compress
(i.e. a deep learning alternative codec), which need up to 23% more storage.

7.5 Conclusion and Further Work

We introduce multiple importance sampling approaches to enhance the quality and
e�ectiveness of the training sample’s selections for LSTM compressor models. We
observed that a more targeted subsample set was su�cient for learning the desired
mapping function to solve the particular prediction-based task on the given 3D medical
datasets. Although only 0.172% and 1.250% proportions of the large-scale medical
datasets were utilised by each of the proposed sampling schemes, their compression
results outperform alternative traditional compressors by a significant margin. We
demonstrate that model trained on sampled extracted using gradient-based sampling
scheme with (i.e. threshold = 10, 40.0% Homogeneous, and 60.0% Non-Homogeneous)
yields the best bpp overall datasets with a better bpp reduction when compared to
other models trained with random and biased training sets with similar sample size.
By extracting a fixed number of representative training samples, a lower computation
cost is obtained by leveraging parallelism over a limited proportion of the original
massive dataset. Such a technique allows training the many-to-one LSTM model to
predict the voxel values e�ectainly and more accurately given the reduced size of its
residual values. Overall, the results of the gradient sampling are promising and in-
tended to be a proof of concept given the benefits achieved in compression performance.

The following chapter will summarise the presented thesis, concluding all the
principles and observations across all proposed techniques. It will also highlight some
of the potential future works and research trends in the field of lossless compression of
3D medical images using deep learning methods.
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Concluding Remarks

8.1 Summary of Contributions

In this PhD thesis, we addressed the problem of compressing high-resolution volumetric
medical images losslessly using novel learning-based techniques. We formulated the
compression problem as a sequence prediction problem and intended to solve it as a
classical supervised regression task. To this end, we have provided contributions in
the areas of lossless compression, 3D medical imaging, and deep learning.

Given the demand for ample storage by health care systems and its massive
resolution scanned images, it is desirable to learn the spatial information and exploit
data characteristics to reduce the amount of information required intelligently and
e�ciently. We initially present novel 3D localised sampling methods (cube-shaped and
pyramid-shaped) in chapter 3 to detect voxels’ spatial features from the underlying
geometric structure of the medical images domain. Additionally, a novel encoder-
decoder compression framework consisting of a neural network predictor model followed
by an arithmetic coder was utilised. We also developed a joint loss function that
combines the Mean Absolute Error (MAE) with the Pearson Correlation Coe�cient
(PCC). We found that incorporating these two losses for solving the regression task has
a significant impact in enhancing the accuracy and stability of the training. The main
intention is to investigate the e�ectiveness of learning a projection function leveraged
by a neural network model. An evaluation of the learned mapping was investigated
over various datasets while identifying its strengths and limitations. Although the
model’s size is only 7MB, the compression achievements were optimistic and proved
its compression e�cacy compared to the alternative well-known standard lossless
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compressors. The main limitation was related to the model’s generalisation. Given
that our prediction model learns the spatial features at the voxels level, changes in
the scanners’ quality or parameters would a�ect the overall compression performance.
Therefore, the feasibility for this model to generalise on unseen datasets is practically
accomplished when retaining a satisfactory performance.

In order to improve the model’s compression accuracy and generalisability, in
chapter 4, we employed LSTM cells as our prediction-based model, leveraging its
strength in memorising the sequences of 3D spatial voxels information. By utilising
its gating mechanism, the LSTM block can exploit long dependencies within the input
sequence, allowing better compression achievements while solving the given many-
to-one prediction problem. A minimal yet su�cient model’s weights size (i.e. only
810 Kilobytes (KB)) achieves the best reduction while still retaining the bandwidth
transmission potential limit when sending compressed representation with the decoder.
The contribution also includes examining the e�ect on compression quality when
training on samples drawn from images with di�erent scanning parameters. Both
robustness and generalisability were gained when picking training examples from
di�erent data distributions (i.e. images with varying pixel spacing and slice thickness).
Compared to the other state-of-the-art lossless compressors, our MedZip models can
reduce high-resolution 3D medical scans to higher bit reductions within a high degree
of e�ciency when predicting at a voxel level.

Chapter 5 examines the use of various causal neighbouring elements extracted
from medical imagery on the learned mapping function acquired by a prediction-based
compressor. We proposed the first comprehensive study on voxel-wise prediction using
several input sampling schemes. Both compression ratio and time were measured for
each proposed model trained on a district input sequence to highlight trade-o�s and
performance gains while defining the optimal sequence configuration. When focussing
on the 3D spatial voxel’s association, the pyramid-shaped sequence demonstrated
outstanding balances between compactness and representativity while capturing local
correlations. The study contributions include leveraging parallelism and speeding up
the decompression process by introducing a novel methodology that eliminates left
voxels from sequences. Such a procedure results in a drop in compression ratio (i.e.
only ¥ .2 bpp) while considerably payback in speeding up decoder performance up
to 37◊. Our predictive codec has a noticeably small model size of only 810(KB) yet
su�cient to outperform state-of-the-art codecs by a significant margin.

In chapter 6, a novel data-driven subsampling technique was proposed to decrease
the number of training samples required while still gaining favourable compression
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performance. The development of a data-driven important sampling method aids
the learnability outcomes, while substantially reducing the computation cost and
time needed compared to impractically training on entirely massive original data.
Evaluation performance in bpp of the pre-trained models was chosen to be the primary
measurement of the e�ectiveness of the proposed subsampling scheme. As our sequence
prediction model exploits voxels’ 3D local correlations, picking the voxels’ gradient
magnitude as a scoring metric for our subsampling method supports identifying spa-
tially localized features. The study also empirically investigates setting distinctive
gradient thresholds and selecting multi-scale homogeneous and heterogeneous segments
to find the balances which would lead to better performance. When examining the com-
pression achievements, we found that a set with (threshold = 10, 40.0% homogeneous,
and 60.0% non-homogeneous) sampling configurations experimentally demonstrates
having representative and su�cient sample variations across di�erent datasets. Con-
sequently, this importance sampling methodology demonstrates promising results that
outperform not only state-of-the-art lossless compressors but also models trained on
sets drawn by other sampling schemes, including uniform, slice-based, and Gaussian
sampling methods.
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Predictive Codec Method Type
Number of Causal

Neighborhood Utilised

Dimensions of the Causal

Neighborhood Utilised

Compression

Quality

Data Compression

Domains
Highlights

NN-Based
Predictive
Model [43]

DL-based 3D Cubic and 3D
Pyramid causal
neighborhood

3D Lossless 3D Medical Images
(16 bit-depths) CT
Scans

A novel encoder-decoder compression framework consisting of a neural network
predictor model followed by an arithmetic coder was utilised for compressing
volumetric medical images losslessly. Our NN-predictor utilises novel 3D
localised sampling methods (cube-shaped and pyramid-shaped) to capture
voxels’ spatial features from the underlying geometric structure of the medical
images domain. The main intention is to investigate the e�ectiveness of learning
a projection function leveraged by a neural network model. The main limitation
was related to the model’s generalisation. Given that our prediction model
learns the spatial features at the voxels level, changes in the scanners’ quality
or parameters would a�ect the overall compression performance.

MedZip Predict-
ive Model [44]

DL-based 3D Cubic and 3D
Pyramid causal
neighborhood

3D Lossless 3D Medical Images
(16 bit-depths) CT
and MRI Scans

A compression framework based on the LSTM predictor was introduced to
code 3D medical images losslessly while improving the model’s compression
accuracy and generalisability. The intention of using the LSTM model as a
3D predictor is to leverage its strength in memorising sequence dependences
over 3D spatial information across di�erent volumes. Both robustness and
generalisability were gained when picking training examples from di�erent
data distributions (i.e. images with varying pixel spacing and slice thickness).
Compared to the other state-of-the-art lossless compressors, MedZip models
can e�ciently reduce large-scale medical volumes to higher bit reductions when
predicting at voxel levels.

Comprehensive
Sampling
Strategies
for Predictive
Model [45]

DL-based 1D, 2D, and 3D
(Cubic and Pyramid
shaped) causal neigh-
borhood

1D/2D/3D Lossless 3D Medical Images
(16 bit-depths) CT
and MRI Scans

The first comprehensive study of a voxel-wise prediction model was introduced
to find the best pattern that would lead to optimal compression quality and
performance. Studying the use of various input features extracted from the
causal medical distributions on the learned mapping function acquired by a
prediction-based compressor. Both compression ratio and time were measured
for each proposed model trained on a district input sequence to highlight trade-
o�s and performance gains while defining the optimal sequence configuration.
The study contributions include leveraging parallelism and speeding up the
decompression process by introducing a novel methodology that eliminates left
voxels from sequences.

Gradient-based
Importance
Sampling for
Predictive Model

DL-based 3D Pyramid causal
neighborhood

3D Lossless 3D Medical Images
(16 bit-depths) CT
and MRI Scans

A novel data-driven subsampling technique was proposed to decrease the
number of training samples required while still gaining favourable compression
performance. Our many-to-one prediction model exploits voxels’ 3D local
correlations, so picking the voxels’ gradient magnitude as a scoring metric
for our subsampling method supports identifying spatially localized features.
The study also empirically investigates setting distinctive gradient thresholds
and selecting multi-scale homogeneous and heterogeneous segments to find the
balances which would lead to a better model’s performance. The proposed
sampling scheme demonstrates promising results that outperform not only
state-of-the-art lossless compressors but also models trained on sets drawn by
other sampling schemes, including uniform, slice-based, and Gaussian sampling
methods.

Table 8.1: Overall summary table for the main contributions proposed in this PhD thesis.
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8.2 Future Research Work

An essential step in any research contribution is to reflect on the current work’s
limitations and future research trends to identify open questions, highlight potential
enhancements, and support developing future novel alternative strategies. The work
presented in this thesis can be extended in the following directions:

• The fundamental objective of our proposed work throughout this thesis is
to compress 3D medical images losslessly. Thus, intending to evaluate our
compressors on other potential high-dimensional data domains such as videos
would be fascinating.

• Investigating and exploring the performance of utilising other varieties of neural
network architectures as a backbone for solving the same compression task.
Utilising di�erent NN architectures would allow highlighting the strengths and
limitations of each type over di�erent data domains while examining the impact
on learning performance and compression performance.

• Deeply analysing the generalisation across the learned mapping of spatially
distinct 3D features (e.g. pixel spacing, and slice thickness), di�erent scans’
settings, and quality, while intending to use this knowledge will help facilitate
the development of more generalised and robust deep learning models. Other
potential directions include studying a model’s generalisability across the same
patient scanned with di�erent scanners, scanning quality, or modalities (e.g.
medical images of the same patient scanned in CT and MRI).

• Studying the e�ect of model size and weight sparsity on compression ratio and
transmitting both compressed representation and decoder.

• While we select the gradient magnitude as our primary score metric for sub-
sampling datapoints, enhancing the sampling methodology or combining it with
other alternative metrics would be interesting to improve the outcomes.

• Further investigate automating the gradient-based sampling technique in choos-
ing the threshold value, homogenous, and heterogeneous regions adaptively
according to the underlying dataset characteristics. As in our proposed contribu-
tion, the threshold values and region ratios are manually assigned based on the
data distribution; automating the selection would further expand the domain
applications while independently adjusting to di�erent dataset characteristics.
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• Although the proposed importance sampling metric used for our o�ine data-
driven sampling scheme proves its e�ectiveness, it would be desirable to leverage
its strength in extracting samples immediately for in-loop training. An enhance-
ment would be examining the possibility of extracting a new subset in each
iteration while increasing the batch’s diversity and strategically targeting more
informative training samples (e.g. including more complex samples into training
batches at each epoch [180]).

• Investigate the potential for designing a novel End-to-End lossless compres-
sion framework that jointly learns to compress images/volumes bit-rate while
optimising the overall model performance (e.g. [166]).

• Introduce a systematic survey and benchmarks to thoroughly summarise and
compare learning-based lossless codecs.

• One of the common and non-trivial challenges related to data quality, specifically
3D medical images, is registration. This process tends to align the stack of 2D
images to match the corresponding anatomical regions and spatial locations
perfectly. The quality of such a task is crucial as the accuracy of the registration
algorithm would influence the overall performance of any postprocessing or
analysis techniques that would follow up. However, in the case of a lossless
compression procedure, it is required that all the information remains intact as
any modifications are intolerable. Although such a problem may a�ect the overall
learning quality, applying the registration method within the lossless reduction
is unallowable. Therefore, the data providers should apply such approach to
enhance the volume quality and accuracy before any posterior operations can
be applied.

Overall, the potential of deep learning within the fields of data compression and
medical analysis is massive. This field has numerous open opportunities and gaps in
science that could be filled with new and novel contributions. Developing learning-
based schemes within such an emerging field would benefit a wide range of applications
and communities, principally when focusing on lossless compression quality.

It is my hope that the findings presented in this thesis will lay the foundations
of a new and exciting field of study, combining modern deep learning and lossless
compression techniques in principled and practical ways.
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B Appendix - Additional Experimental
Figures

B.1 Chapter 4 - Additional Experimental Figures

This section introduces another version of Fig. 4.5 while ordering volumes from test
set 1 based on their pixel spacing values to highlight any interesting impact.
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Figure B.1: Comparing the compression ratio in bpp for the proposed MLP models
with the state-of-the-art lossless compression methods over 16-bits volumes on test set
1 ordered by the pixel spacing (see Fig. 4.5 for another version of this figure).
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B.2 Chapter 6 - Additional Experimental Figures

This section introduces laid out of some figures (i.e. 6.7, 6.9, and 6.10) from chapter
6 in another manners to put the overall receptive density next to each other for
comparison including input options with similar dimensions (i.e. 3D) and block
sizes between di�erent input shapes pyramids and cubes. For instance, considering
3D-pyramid (7 ◊ 7, 5 ◊ 5, 3 ◊ 3, 1) has much overlap with 3D-cube (7 ◊ 7 ◊ 7), such
comparison intends to highlight the e�ect of dropping those other voxels.
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Figure B.2: Another version of Benchmark 1 results compares the overall receptive
density in 3D input options next to each other from Fig. 6.7 in section 6.4.3. The top
labels specify the input sequences’ specifications, including dimensions, shape, block
size, and sequence length, respectively. Cells are coloured from maximum compression
3.913 bpp (Green) to the lowest compression 5.506 bpp (Red).
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Figure B.3: Another version of Benchmark 2 results compares the overall receptive
density in 3D input options next to each other using models trained on reduced
neighbourhood sequences from Fig. 6.9 in section 6.4.4. The top labels specify the
input sequences’ specifications, including dimensions, shape, block size, and sequence
length, respectively. Cells are coloured from maximum compression 4.051 bpp (Green)
to the lowest compression 5.412 bpp (Red).

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5 l
ef

t v
ox

el

(1
1x

11
)

(1
1x

11
)

(1
3x

13
)

(1
3x

13
)

(3
x3

x3
)

(5
x5

x5
)

(5
x5

,3x
3,1

)

(7
x7

x7
)

(7
x7

,5x
5,3

x3
,1)

(9
x9

x9
)

(9
x9

,5x
5,1

)

(9
x9

,7x
7,5

x5
,3x

3,1
)

(1
1x

11
x1

1)

(1
3x

13
,9x

9,5
x5

,1)

1D 2D Cube 2D Pyramid 2D Cube 2D Pyramid 3D Cube 3D Cube 3D Pyramid 3D Cube 3D Pyramid 3D Cube 3D Pyramid 3D Pyramid 3D Cube 3D Pyramid

Overlaps in Receptive
Field

Overlaps in Receptive
Field

Overlaps in Receptive
Field

Overlaps in Receptive
Field

Overlaps in Receptive Field

Bi
ts 

pe
r p

ixe
l (

BP
P)

Average BPP - with including sequence’s left voxels Average BPP - without including sequence’s left voxels

Figure B.4: An additional version of Fig. 6.10 reorders the sequence options to show
the overlaps in the receptive field next to each other, which may give further insight
into their contributions (see figure 6.10 and section 6.4.4 for further details).
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Figure B.5: An illustration that compares model loss function plots (i.e. training loss and evaluation loss) with di�erent pyramid
input vectors (including left voxels from Benchmark1) over 60 epochs. (Another version that illustrates (bpp) variations during
models’ training steps is presented in Fig. 6.13.).
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Figure B.6: Comparing the residual slices plot among the di�erent sampling schemes
for a middle slice extracted from volume 1. (A di�erent version of this figure that only
focuses on a specific region within the residual slices plot is presented in Fig 6.17).
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Figure B.7: Comparing the residual slices plot among the di�erent sampling schemes
for a middle slice extracted from volume 7. (A di�erent version of this figure that only
focuses on a specific region within the residual slices plot is presented in Fig 6.18).
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Figure B.8: Comparing the residual slices plot among the di�erent sampling schemes
for a middle slice extracted from volume 10. (A di�erent version of this figure that
only focuses on a specific region within the residual slices plot is presented in Fig
6.19).
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