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ABSTRACT
The primal-dual gradient dynamics is a broadly investigated approach for handling optimisation
problems. In this paper, we provide an extension of such dynamics under the adaptive updating
framework for solving equality-constrained quadratic programmes. We show that the performance
of the proposed method is theoretically guaranteed and it has asymptotic convergence to the solu-
tion of the optimisation problem and the minimum inter-event time is non-trivial. A numerical
example and an application show the effectiveness and advantages of the proposed method.
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1. Introduction

In practice, many problems can be formulated as
a quadratic programme problem. For example, it is
shown in Zhang and Li (2017) that the receding hori-
zon optimal consensus problem can be converted
to a quadratic programme by performing the Taylor
expansion. In the field of robotics, the inverse kinemat-
ics problem of redundant robot manipulators is also
often described as a quadratic programme problem
(Jin et al., 2017; Xie et al., 2022; Zhang et al., 2018). For
the two problems, control actions are executed accord-
ing to the real-time solution generated by the solver.
To guarantee the performance, traditional numerical
algorithms for solving convex optimisation problems
are not used, while dynamical system-based methods
such as dynamical neural networks are adopted (Cui
et al., 2022; Zhang et al., 2021, 2022). For these meth-
ods, the updating frequency for the control actions is
the same as the sampling frequency, which requires
many computational resources, and thus they are time-
triggered.

Time-triggered approaches are widely used to deal
with both optimisation and control problems on dig-
ital platforms, for which the update of variables or
control actions is performed in a periodic manner
(Huang et al., 2021; Tan et al., 2021). For example, for
control problems, in general, a controller is derived
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on the basis of continuous-time system dynamics and
is implemented in the physical system through digi-
tal controllers with a fixed sampling period. A general
requirement for this kind of implementation is that
the sampling period is sufficiently small. Compared
with time-triggered approaches, the event-triggered
ones do not need to conduct periodic updating of
state variables or control actions, while guarantee-
ing the performance (Qi et al., 2022). Intuitively, in
the event-triggered framework, actions will only be
executed only when certain events occur, i.e. when
some condition is met. Such conditions are referred
to as triggering conditions. By this way, the costs of
computational resources and communications are sig-
nificantly reduced (Wang et al., 2015). Additionally,
the event-triggered approach preserves closed-loop
stability.

Although great progress have been achieved in
event-triggered control, such as Li et al. (2021), Liu
et al. (2022), and Zhao and Hua (2021) and the ref-
erences therein, existing results on event-triggered
optimisation are relatively limited with a particu-
lar focus on distributed optimisation. For example,
Chen and Ren (2016) proposed a novel algorithm
to deal with the distributed consensus optimisa-
tion problem on a directed network, where a set of
agents cooperatively minimise the sum of their utility
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functions, which is an unconstrained distributed opti-
misation problem. The problem was also investigated
in Meinel et al. (2014). However, the results of Chen
and Ren (2016), Li et al. (2021), Liu et al. (2022),
Meinel et al. (2014), and Zhao and Hua (2021) do not
apply to optimisation-basedmethods for the control of
systems due to the existence of constraints in the prob-
lem formulation. Note that event-triggered dynamics
are different from model predictive control (MPC)
(Hadian et al., 2021).MPC is a time-triggeredmethod,
where the control is computed in a fixed sampling gap.

Inspired by the above observations, an event-
triggered method for solving quadratic programmes
is beneficial and demanded. As a preliminary work,
we focus on an event-triggered optimisation problem
with an equality constraint. The proposed method is
based on some results reported on the primal-dual
gradient dynamics for handling optimisation prob-
lems (Cherukuri et al., 2016; Feijer & Paganini, 2010;
Qu & Li, 2019). Note that the existing results about
the primal-dual gradient dynamics are derived under
the time-triggering framework, and it is not trivial to
extend them to the case with an event-triggering rule.
Conventionally, the derivation procedure of a con-
troller with an event-triggered property is often on
the basis of a Lyapunov function with known system
equilibrium. Compared with the problems addressed
by existing event-triggered control methods, the equi-
librium of the problem of interest in this paper is
unknown (note that the equilibrium corresponds to
the solution of the quadratic programme, which needs
to be solved), which is also shown in Figure 1.
Thus, it is not straightforward to use the existing

event-triggered control methods to solve the problem
here.

In this paper, we extend the primal-dual gradi-
ent dynamics to the event-triggered scenario, so as
to inherit the convergence to the optimal solution
as well as to have the advantages of event-triggered
methods. Recently, Cherukuri et al. (2018) proposed
a self-triggered approach for the primal-dual gradient
dynamics, of which the analysis is based on a Lya-
punov candidate function with the equilibrium explic-
itly included. Our work is different from Cherukuri
et al. (2018) because (1) from the methodology per-
spective, our method falls into the event-triggered cat-
egory, while Cherukuri et al. (2018) belong to the self-
triggered one; (2) in terms of technical details, in our
approach, the equilibrium of the primal-dual gradient
dynamics is not explicitly included in the Lyapunov
candidate function, and thus the theoretical analysis
is different. Specifically, we derive the event-triggering
condition and analyse the corresponding minimum
inter-event time.We employ the Lyapunov approach to
conduct an analysis on the convergence of the method
and use a numerical example to validate the theoretical
conclusions. This is our first work on even-triggered
dynamics, which is different from our previous works
on time-triggered optimisation and control (Zhang
& Li, 2017; Zhang et al., 2021, 2018, 2022). The con-
tributions of this paper include the following.

(1) For the first time, an event-triggered method
for equality-constrained quadratic optimisation
is proposed and illustrated on the basis of the
primal-dual gradient dynamics.

Figure 1. Comparisonwith existing event-triggeredmethods,where xe denotes the systemequilibrium, from the perspective of control.
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(2) Theoretical results are presented to guarantee the
performance of the proposed method, including
the convergence to the optimal solution and the
existence of the non-trivial minimum inter-event
time.

(3) The proposed method is applied to the kinematic
control problem of redundant robot manipula-
tors.

The remainder of this paper is organised as such.
In Section 2, the problem formulation and the prelim-
inary are shown. Then, the proposed event-triggered
method is presented in Section 3.Anumerical example
is shown in Section 4 to validate the theoretical conclu-
sions and illustrate the performance and advantages of
the method. An application of the proposed method
to the kinematic control of redundant robot manipu-
lators is shown in Section 5, followed by conclusions
and final remarks given in Section 6.

2. Problem formulation and preliminary

In this section, we describe the problem investigated in
the paper and give some useful preliminaries.

2.1. Problem formulation

In this paper, we are concerned with the following
quadratic programme with an equality constraint:

min
x

xTHx/2,

s.t. Ax = b,
(1)

where x ∈ R
n is the decision variable; H ∈ R

n×n is a
symmetric and positive definite matrix; matrix A ∈
R
m×n is full row-rank; and b ∈ R

m is a vector.
As in existing results of primal-dual gradient

dynamics, we adopt the following assumption (Qu
& Li, 2019).

Assumption 2.1: There exists κ1 > 0 ∈ R and κ2 >

0 ∈ R such that AAT − κ1Im � 0 and κ2Im − AAT �
0 (i.e. they are positive semidefinite), where Im ∈ R

m×m

denotes the m-by-m identity matrix.

In this paper, we are interested in designing an
event-triggered method to solve the optimisation
problem (1).

2.2. Time-triggered primal-dual gradient dynamics

To lay a basis for latter comparison and discus-
sion, the time-triggered primal-dual gradient dynam-
ics for solving equality-constrained quadratic pro-
gramme (1) is given as follows (Cherukuri et al., 2016;
Feijer & Paganini, 2010; Qu & Li, 2019):

ρẋ = −∇xL(x, λ) = −Hx − ATλ,

ρλ̇ = η∇λL(x, λ) = η(Ax − b),
(2)

where the Lagrangian function is defined as

L(x, λ) = xTHx/2 + λT(Ax − b),

with λ ∈ R
m being the Lagrangianmultiplier; η > 0 ∈

R and ρ > 0 ∈ R are design parameters scaling the
feedback strength. Let vector z = [xT, λT]T ∈ R

m+n.
The time-triggered primal-dual gradient dynamics
can be rewritten as

ρż = f (z) (3)

with

f (z) = Qz −
[
0
ηb

]
, (4)

where matrix Q is given as follows:

Q =
[−H −AT

ηA O

]
.

From the control perspective (Jin et al., 2017), the
primal-dual gradient dynamics can be viewed as a
first-order system as follows:

ρż = u,

with the input u = f (z), which drives the state variable
z to converge to the theoretical solution of (1). Note
that (Jin et al., 2017) deals with the problem of non-
linear equations by using a time-triggered approach,
while our method proposed in this paper deals with
the quadratic programme problem by using an even-
triggered approach. Thus, the two works are totally
different.

About the time-triggered primal-dual gradient
dynamics (2), we have the following lemma.

Lemma 2.1: If Assumption 2.1 holds, the equilibrium
of (2) is identical to the solution of (1) and it is globally
exponentially stable.
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Proof: The proof can be readily generalised from the
proof of Theorem 1 in Qu and Li (2019). �

The analysis on the robustness of the primal-
dual gradient dynamics can be found in Nguyen
et al. (2018). As seen from Equation (2), when directly
using primal-dual gradient dynamics to solve equality-
constrained quadratic programme (1), the system
states need to be monitored all the time and the term
f (z) need to be updated at each sampling instant. If the
solution of the quadratic programme is used for a con-
trol system with ẋ = uwith u denoting the input, then
we need to update the system input at each sampling
instant. Such examples include the kinematic control
problem of robot manipulators. Obviously, if the actu-
ator state is frequently changed, the life time of it can
be shortened, which is not desirable. Thus, an event-
triggered approach can be beneficial, for which we
still keep on monitoring the states of the system while
changing the actuator state only when a well-defined
event is detected.

It should be noted that the extension of the time-
triggered primal-dual gradient dynamics to the event-
triggered one is not trivial since the equilibrium of
the dynamical system is not explicitly given. In partic-
ular, the condition ‖f (z)‖2 ≤ χ‖z‖2 with χ > 0 ∈ R

is not satisfied, which is widely adopted in literature
about event-triggered control when analysing themin-
imum inter-event time, such as Tabuada (2007) and
Zhu et al. (2017).Meanwhile, the derivation of the trig-
gering condition should get rid of the Zeno behaviour
(Tabuada, 2007; Zhu et al., 2017).

The difference between the time-triggered approach
and the even-triggered approach for the primal-dual
gradient dynamics lies in the updating for ż. For the
time-triggered approach, ż is updated in each sam-
pling instant, while ż is only updated when an event
occurs in our event-triggered approach. The advantage
of the event-triggered approach lies in the reduction
of the updating frequency of ż without significantly
sacrificing the solution performance.

3. Event-triggered primal-dual gradient
dynamics

In this section, the event-triggered primal-dual gradi-
ent dynamics is derived to solve the problem described
in the previous section. For event-triggered method,

there are twomajor issues to be addressed, i.e. the trig-
gering condition and the minimum inter-event time.
Specifically, we need a well-defined condition with
respect to the state of the system to check whether we
need tomodify the input to the system, and we need to
guarantee that the minimum difference between two
consecutive event times is strictly larger than 0.

Let {tk}∞k=0 with tk+1 > tk denote the time when
an event happens, where k ∈ {0, 1, 2, . . .}. The event-
triggered primal-dual gradient dynamics can is
described as

ρż(t) = u(t) = f (z(tk)), ∀ t ∈ [tk, tk+1). (5)

We assume that the first event occurs at time t0 = 0.
If at time t ∈ (tk,+∞), an event occurs, the term u(t)
is updated by using the latest sampled state. An event
occurs when a triggering condition described by an
inequality is satisfied. Note that, in some literature,
such a condition is also defined by an equality. In prac-
tice, an inequality condition is more robust than an
equality one. For the sake of presentation, we define
the state measurement error as follows:

ε(t) = z(tk) − z(t), ∀ t ∈ [tk, tk+1).

As stated above, the triggering condition is directly
related to the state measurement error.

3.1. Triggering condition

In this subsection, we derive the triggering condition
for the primal-dual gradient dynamics (5). Note that,
for the convenience of presentation, the argument t is
omitted somewhere.

Let zk = z(tk). According to Equation (4), we have

f (zk) = Qzk +
[

0
−ηb

]
.

Let

P =
[
ηcH ηAT

ηA cI

]
,

where c = 4max{l, ηκ2/ν} with l = λmax(H) > 0 and
ν = λmin(H) > 0. Evidently, there exist p̄ and q̄ such
that ‖P‖F ≤ p̄ and ‖Q‖F ≤ q̄ due to the boundedness
of the elements in the two matrices. Let M = −QT

P − PQ.
Note that, for matrix M we have the following

lemma.
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Lemma 3.1 (Qu & Li, 2019): Let τ = min{ηκ1
4l ,

κ1ν
4κ2 }.

Then,M � τP.

Based on Lemmas 2.1 and 3.1, we have the following
theorem to show the triggering condition, which guar-
antees the convergence of the corresponding event-
triggered primal-dual gradient dynamics.

Theorem 3.1: If Assumption 2.1 holds, the optimisa-
tion problem (1) is globally asymptotically solved by
event-triggered primal-dual gradient dynamics (5) with
the triggering condition given as follows:

‖ε‖2 ≥ (1 − α)λ‖f (z)‖2
2p̄q̄2

. (6)

Proof: Consider the Lyapunov candidate function

V = ρf T(z)Pf (z).

Because matrix P is symmetric and positive-definite
(Qu & Li, 2019), V is nonnegative. The derivative of
V along the state trajectory of event-triggered primal-
dual gradient dynamics (5) is then calculated as fol-
lows:

V̇ = ρ

(
∂f (z)
∂z

ż
)T

Pf (z) + ρf T(z)P
∂f (z)
∂z

ż

= (Qf (zk))TPf (z) + f T(z)PQf (zk)

= f T(zk)QTPf (z) + f T(z)PQf (zk)

= (f (z) + f (zk) − f (z))TQTPf (z) + f T(z)PQ(f (z)

+ f (zk) − f (z))

= f T(z)QTPf (z) + f T(z)PQf (z) + 2f T(z)PQQε

= −f T(z)Mf (z) + 2f T(z)PQQε

≤ −f T(z)Mf (z) + 2‖f ‖2‖P‖F‖Q‖2F‖ε‖2.

To guarantee the asymptotic convergence of the sys-
tem, the triggering condition needs to make the fol-
lowing inequality hold:

V̇ ≤ −αf T(z)Mf (z)

with 0 < α < 1 being a design parameter to scale the
sacrifice of convergence rate due to the introduction of
the event-triggering mechanism, i.e.

− f T(z)Mf (z) + 2‖f ‖2‖P‖F‖Q‖2F‖ε‖2
≤ −αf T(z)Mf (z). (7)

Based on Lemma 3.1, there exists λ > 0 ∈ R such that,
for all z, the following inequality holds:

f T(z)Mf (z) ≥ λ‖f (z)‖22.

Together with

2‖f (z)‖2‖P‖F‖Q‖2F‖ε‖2 ≤ 2‖f (z)‖2p̄q̄2‖ε‖2,

inequality (7) can be guaranteed by making

(1 − α)λ‖f (z)‖22 ≥ 2‖f (z)‖2p̄q̄2‖ε‖2,

i.e.

‖ε‖2 ≤ (1 − α)λ‖f (z)‖2
2p̄q̄2

,

which is guaranteed by the triggering condition (6). As
a result, we have

V̇ ≤ −αf T(z)Mf (z),

which together with Lemma 3.1, gives

V̇ ≤ −ατ f T(z)Pf (z) = −ατV/ρ,

by which V exponentially converges to zero with the
decay rate being ατ/ρ and, consequently, f (z) expo-
nentially converges to zero. According to Lemma 2.1,
the solution to (1) is identical to the solution of
f (z) = 0. Thus, it is concluded that the state variable
of the event-triggered primal-dual gradient dynamics
asymptotically converges to the solution to optimi-
sation problem (1). Together with the fact that the
Lyapunov candidate function is radially unbounded,
we further concluded that state variable of the
event-triggered primal-dual gradient dynamics glob-
ally asymptotically converges to the solution to opti-
misation problem (1). The proof is complete. �

The proposed event-triggered primal-dual gradient
dynamics consists of (5) and the triggering condi-
tion (6). If (6) is satisfied, then the term u(t) in (5)
is updated with u(t) = f (z(t)); Otherwise, the value
of u(t) is not changed. Such dynamics is suitable for
hardware implementation.

Regarding the Lyapunov candidate function in
Theorem 3.1, we have the following remark.

Remark 3.1: In the adopted Lyapunov candidate
function, the solution of the equality-constrained
quadratic programme is not explicitly included.
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Instead, the right-hand side of the original time-
triggered primal-dual gradient dynamics, i.e. f (z), is
used. As the equilibrium of the time-triggered primal-
dual gradient dynamics corresponds to the solution
of the equality-constrained quadratic programme, the
right-hand side of it actually provides a measure of
the difference between the current state value and the
theoretical solution. In fact, we cannot include the the-
oretical solution of the equality-constrained quadratic
programme into the Lyapunov candidate function as it
will lead to a triggering condition with respect to the
theoretical solution, which is infeasible in practice.

Regarding the intuition of the event-triggering
primal-dual dynamics, we have the following remark.

Remark 3.2: As seen from the proof of Theorem 3.1,
essentially, the event-triggering primal-dual dynamics
is achieved via sacrificing the convergence rate of the
corresponding Lyapunov candidate function, which
is scaled by the coefficient α, while guaranteeing the
negativeness of the derivative of it along the state tra-
jectory. As a result, although the convergence can be
a bit slower, the global and asymptotic convergence
properties are preserved. The benefit of it is that during
a certain time region, the input to the system does not
need to be changed, i.e. control actions do not need to
be updated. It can be expected that, if the value of α is
set smaller, the number of triggered events would also
be smaller.

3.2. Minimum inter-event time

In this subsection, we analyse the minimum inter-
event time of the event-triggered primal-dual dynam-
ics (3) with the triggering condition given in (6). The
analysis for the minimum inter-event time is neces-
sary to guarantee that the event-triggered method is
feasible in practice.

The minimum time interval between two consecu-
tive event times is defined as follows:

�min = min
k=0,1,2,...

{tk+1 − tk},

which is often referred to as the minimum inter-
event time in the event-triggered control commu-
nity (Berneburg & Nowzari, 2021). To make event-
triggered method implementable in practice, it is nec-
essary to avoid the existence of the Zeno behaviour
(Chen & Ling, 2021; Chen et al., 2021; Yu & Chen,

2021), i.e. an infinite number of events are generated
in finite time. As a result, it is necessary to theoreti-
cally guarantee that the minimum inter-event time is
not trivial, i.e. strictly larger than zero.

For the proposed event-triggered primal-dual
dynamics (3) with the triggering condition given
in (6), we have the following theorem to guarantee that
its minimum inter-event time is non-trivial.

Theorem 3.2: The minimum inter-event time �min of
the event-triggered primal-dual gradient dynamics (5)
with the triggering condition given in (6) is strictly larger
than zero.

Proof: Suppose that at time tk the triggering con-
dition is satisfied. Then, according to the triggering
condition (6), the next event time is determined by

arg mint>tk

{
‖ε(t)‖2 ≥ (1 − α)λ‖f (z(t))‖2

2p̄q̄2

}
.

Note that, when an event is invoked, we have ε(t) =
0. Thus, the inter-event time is determined by the
evolution of ‖ε(t)‖2/‖f (z(t))‖2 from 0 to 1/C with

1
C

= (1 − α)λ

2p̄q̄2
> 0.

Note that we have

d
dt

‖ε‖2
‖f (z)‖2

=
√

εTε√
f T(z)f (z)

=
1√
εTε

εTε̇
√
f T(z)f (z) − 1√

f T(z)f (z)
f T(z) df (z)dt

√
εTε

f T(z)f (z)

=
1√
εTε

εTε̇
√
f T(z)f (z) − 1√

f T(z)f (z)
f T(z)Qż

√
εTε

f T(z)f (z)

=
1√
εTε

εTε̇
√
f T(z)f (z) − 1√

f T(z)f (z)
f T(z)Qf (z)

√
εTε/ρ

f T(z)f (z)

= −εTf (z)/ρ
‖ε‖2‖f (z)‖2 − f T(z)Qf (z)‖ε‖2/ρ

‖f (z)‖32

≤
(‖ε‖2‖f (z)‖2

‖ε‖2‖f (z)‖2 + q̄‖f (z)‖22‖ε‖2
‖f (z)‖32

)
/ρ

= 1
ρ

(
1 + q̄‖ε‖2

‖f (z)‖2

)
,
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where q̄ ≥ ‖Q‖F > 0. Let

y = ‖ε‖2
‖f (z)‖2 .

By the above analysis, ẏ ≤ (1 + q̄y)/ρ, and we con-
clude that y(t) ≤ ϕ(t), where ϕ(t) is the solution of the
following equation:

ϕ̇ = 1
ρ

(1 + q̄ϕ)

with ϕ(0) = 0. Then, the inter-execution time is lower
bounded by the solution tmin of ϕ(tmin) = 1/C. By
solving the differential equation with ϕ(0) = 0, we
have

ϕ(t) = 1
q̄

(
exp

(
q̄
ρ
t
)

− 1
)
,

where q̄ > 0 andρ > 0. It is obvious thatϕ(t) is strictly
increasing on [0,+∞) because

ϕ̇(t) = 1
ρ
exp(q̄t) > 0, ∀ t ∈ [0,+∞).

Together with ϕ(0) = 0 and ϕ(tmin) = 1/C > 0, it
is concluded that tmin > 0. Therefore, the minimum
inter-event time �min of the event-triggered primal-
dual gradient dynamics (5) with the triggering condi-
tion given in (6) is strictly larger than zero. The proof
is complete. �

The above theorem shows that the minimum inter-
event time is strictly larger than zero, and thus events
will not be triggered all the time. Consequently,
compared with time-triggered approaches, such as
Cherukuri et al. (2016), Feijer and Paganini (2010),
and Qu and Li (2019), for solving the optimisation
problem, where events are actually triggered all the
time, the proposed method does not require to update
the system input at each sampling instant. Thus, it can
save computational resources and potentially enhance
the life time of associated actuators in practice. With
Theorems 3.1 and 3.2, we show that even-triggered
primal-dual gradient dynamics is theoretically feasi-
ble, and the convergence performance is still satisfac-
tory. Thismakes it possible to use such event-triggered
dynamics to deal with control problems. For example,
as demonstrated in the robot manipulator application,
the event-triggering mechanism allows more flexible
updating of control inputs to the robot manipulator.

4. Numerical example

In this section, a numerical example is presented to
verify the theoretical results and substantiate the effec-
tiveness of the proposed event-triggered primal-dual
gradient dynamics for solving equality-constrained
quadratic programmes.

We verify the theoretical results by a numerical
example as (1) withH = [1, 0; 0, 1], x = [x1, x2]T,A =
[1, 2], and b = [3], for which the theoretical solution
is x∗ = [0.6, 1.2]T. This example is adopted because
it is easy to verify the performance of the proposed
event-triggered primal-dual gradient dynamics for
this example, such as the solution accuracy. We set
η = 1 and ρ = 1. Then, based on the aforementioned
definitions, for this example, we have

Q =
⎡
⎣−1 0 −1

0 −1 −2
1 2 0

⎤
⎦ , AAT = 5.

Thus, ‖Q‖F ≈ 3.46. As a result, q̄ is set to 3.5, and κ2
is set to 6. Because H is an identity matrix, we have
ν = λmin(H) = 1 and l = λmax(H) = 1, by which c =
4max{l, ηκ2/ν} = 24. Then, matrix P is obtained as
follows:

P =
⎡
⎣24 0 1
0 24 2
1 2 24

⎤
⎦ .

Thus, ‖P‖F ≤ p̄ = 42. So, p̄ is set to 42. Then, matrix
M = −QTP − PQ is

M =
⎡
⎣ 46 −4 1

−4 40 2
1 2 10

⎤
⎦ ,

andwe haveλmin(M) ≈ 41.37. Thus, we setλ = 41.36.
In addition, we set α = 0.1. The simulation is con-
ducted on Matlab by using the Euler difference rule
with the step size being 1.0 × 10−4. As seen from
Figure 2(a), the state variables converges to the theo-
retical solution of the optimisation problem, which is
also indicated by Figure 2(c) where the Lyapunov can-
didate function V(t) asymptotically converges to zero.
The convergence of the Lagrangianmultiplier is shown
in Figure 2(b). The above results verify Theorem 3.1.
As seen from Figure 2(d), there are less than 600
triggered events among the 20/(1 × 10−4) = 2.0 ×
105 sample instants, which shows the efficiency of
the proposed event-triggered method compared with
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Figure 2. Dataprofiles for the simulationwhen the event-triggeredprimal-dual gradient dynamics is employed to solve theoptimisation
problem with initial state x(0) = [0, 0]T. (a) Profiles of x. (b) Profile of λ. (c) Profile of the Lyapunov candidate function V. (d) Profile of
inter-event time�k = tk+1 − tk with k denoting the event index.

time-triggered ones. The average inter-event time is
3.67 × 10−2, which is much larger than the step size
1.0 × 10−4. Besides, as seen fromFigure 2(d), themin-
imum inter-event time is not trivial (larger than 0.035),
which verifies Theorem 3.2. Note that the triggered
instants can be readily found from Figure 2(d) in view
of �k = tk+1 − tk in which tk is the triggered instant
and t0 = 0.

Owing to the fact that our work is on developing
an event-triggered model for the primal-dual gradi-
ent dynamics, we only compare the model with the
time-triggered primal-dual gradient dynamics. To our
knowledge, there is no other methods for solving the
equality-constrained quadratic optimisation problem
via an event-triggered approach. To compare the per-
formance of the proposed event-triggered primal-dual
gradient dynamics with the time-triggered primal-
dual gradient dynamics, the simulation results under
the same setting when the latter is employed is shown
in Figure 3. As seen from Figures 2 and 3, the con-
vergence rate of the event-triggered primal-dual gra-
dient dynamics is similar to the time-triggered primal-
dual gradient dynamics, and the differences about the

profiles of x, λ, and V is quite small. This is consistent
with the statement that the event-triggered primal-
dual gradient dynamics can achieve almost the same
solution performance with the time-triggered primal-
dual gradient dynamics. The proposed method share
similar advantages of event-triggered methods over
time-triggered methods, i.e. the updating frequency
for ż is reduced. For the time-triggered primal-dual
gradient dynamics, ż should be updated in each sam-
pling instant, while ż is only updated when an event
occurs in our method without significantly sacrificing
the solution performance.

To show whether the initial values affect the con-
vergence of the proposed event-triggered primal-dual
gradient dynamics, i.e. the global convergence prop-
erty, simulation results for other two sets of initial
values for the same problem are also presented. In
the simulations, the parameters are set the same as
the above, except that we use different initial values
for x(0) and α is set to 0.5. As seen from Figure 4,
with initial state x(0) = [100, 100]T, the proposed
event-triggered primal-dual gradient dynamics can
still guarantee the convergence to the optimal solution
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Figure 3. Data profiles for the simulation when time-triggered primal-dual gradient dynamics (2) is employed to solve the optimisation
problem with initial state x(0) = [0, 0]T. (a) Profiles of x. (b) Profile of λ. (c) Profile of the Lyapunov candidate function V.

to the equality-constrained quadratic programmewith
the Lyapunov function asymptotically converging to
zero. Note that, compared with the previous simu-
lation shown in Figure 2, due to the much larger
initial error, the state variable takes more time to
converge to the theoretical solution. Besides, as seen
from Figure 4(c), during the solution process, less
than 1000 events are triggered, among the 2.0 × 105

sample instants, and the minimum inter-event time
is larger than 0.02. As seen from Figure 5, for the
casewith x(0) = [−100,−100]T, the above results also
hold. Thus, the proposed event-triggered primal-dual
gradient dynamics is globally convergent.

5. Application to kinematic control of
redundant robot manipulators

To show the practical value of the proposedmethod, let
us consider the kinematic control problem of a redun-
dant robot manipulator (Li & Li, 2022; Ouyang et al.,
2006). Let r ∈ R

m denote the end-effector coordinate
of a serial robot manipulator and θ ∈ R

n denote its
joint angle vector. Let ω = θ̇ = dθ/dt denote the joint
velocity command, which is the input to the robot

manipulator. The forward kinematics r = φ(θ) of a
serial robot manipulator can be theoretically derived
by following the steps of the D-H convention (Zhang
& Jin, 2018).

According to Zhang and Jin (2018), for the end-
effector regulation problem, the minimum-velocity-
norm kinematic control scheme can be formulated as

min
ω

1
2
ωTω, (8a)

s.t. J(θ)ω = −γ (φ(θ) − rd), (8b)

where J(θ) = ∂φ(θ)/∂θ is called the Jacobian matrix
of the forward kinematics, rd ∈ R

m describes the
desired end-effector coordinate, and γ > 0 ∈ R is a
gain parameter. In the optimal kinematic control, it
is desired to minimise the joint velocity norm so as
to save energy while complete the given task. Thus,
in the problem formulation of the kinematic control,
the performance index is chosen as the joint veloc-
ity norm, and the equality constraint is an equiv-
alent velocity-level description for the end-effector
tracking task. Compared with non-optimal control
approaches, the optimal kinematic control can help
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Figure 4. Dataprofiles for the simulationwhen the event-triggeredprimal-dual gradient dynamics is employed to solve theoptimisation
problem with initial state x(0) = [100, 100]T. (a) Profiles of x. (b) Profile of the Lyapunov candidate function V. (c) Profile of inter-event
time�k = tk+1 − tk with k denoting the event index.

optimise a performance index of interest, such as the
velocity norm considered in the simulation. The prob-
lem (8a) can be viewed as quadratic programme (1)
in this paper with x = ω, H = I, A = J(θ), and b =
−γ (φ(θ) − rd). Thus, the proposed event-triggered
optimisation can be applied to the kinematic control
problem. Firstly, in this scenario, with the proposed
event-triggered optimisation method, we only need
to update the input (i.e. the joint velocity command)
to the robot manipulator when the triggering condi-
tion is met. This could be help to enlarge the lifetime
of joint actuators (Houtzager et al., 2013). Secondly,
the controller may not be located in the vicinity of
the robot manipulator. Therefore, a communication
network is needed for the interaction between the
controller and the manipulator. In this case, event-
triggered control could help save communication bur-
den (Kumar, 2019).

To adapt to this application, the triggering condition
is relaxed to

‖ε(t)‖2 ≥ (1 − α)λ|‖f (zk)‖2 − q̄‖ε(t)‖2|
2χ

,

∀ t ∈ (tk, tk+1], (9)

with constant χ ≥ ‖PQQ‖F , where ε(t) = z(tk) −
z(t), ∀t ∈ [tk, tk+1). Clearly, for the triggering con-
dition (9), the terms α, λ, χ , and q̄ are constants,
while ‖f (zk)‖2 only needs to be calculated for once
during two successive triggering instants. We con-
sider a PUMA560 robot manipulator (Zhang & Jin,
2018), for which n = 6 and m = 3. We use the pro-
posed event-triggered primal-dual gradient dynamics
to solve the optimal kinematic control problem (8),
and the obtained real-time solution ω is used as the
control input for the manipulator. In the application,
the relevant parameters are set to α = 0.1, λ = 0.01,
q̄ = 4, γ = 2, ρ = 10−3, α = 0.8, and χ = 20. The
simulation is performed using Euler difference rule
in Matlab with the step size being 10−6 s. The initial
joint angle is θ(0) = [π/6,π/6,π/6,π/6,π/6,π/6]T

rad and the desired end-effector coordinate is set to
rd = [0.46, 0.48, 0.1]T m.

The simulation results are shown in Figures 6 and 7,
from which it is found that, with the aid of the event-
triggered primal-dual gradient dynamics (5) with trig-
gering condition (9), the end-effector of the robot
manipulator is successfully regulated to the desired
position. From the simulation data, it is found that
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Figure 5. Dataprofiles for the simulationwhen the event-triggeredprimal-dual gradient dynamics is employed to solve theoptimisation
problemwith initial statex(0) = [−100,−100]T. (a) Profiles ofx. (c) Profile of the Lyapunov candidate functionV. (d) Profile of inter-event
time�k = tk+1 − tk with k denoting the event index.

Figure 6. End-effector trajectory of the PUMA560 robotmanipu-
lator during theend-effector regulationprocesswith the aidof the
event-triggeredprimal-dual gradientdynamics (5)with triggering
condition (9).

there are totally 5 × 106 sampling instants, for which
there are only 22,223 triggering events (meaning that
the term ‖f (zk)‖2 only needs to be calculated in
less than 5 thousandth of the sampling instants), and
the minimum inter-event time is 2.25 × 10−4 s. The

results substantiate the effectiveness of the proposed
method for the robot manipulator application.

6. Conclusions

In this paper, the primal-dual gradient dynamics has
been investigated under the event-triggering frame-
work for solving the equality-constrained quadratic
programmes. Theoretical results have shown that the
proposed method guarantees the convergence to the
solution of the problem and the minimum inter-event
time is non-trivial. The theoretical results have been
validated by a simulative example. The potential appli-
cation of the proposed method has also been demon-
strated. We would like to summarise the novelty of
the paper as follow. This is the first work of event-
triggered primal-dual gradient dynamics for solving
equality-constrained quadratic optimisation problems
with theoretically guaranteed asymptotic convergence
and non-trivial minimum inter-event time. The exten-
sion of the current method to distributed optimisation
(Cheng, 2011) will be our future work. The integration
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Figure 7. Data profiles for the application of the event-triggered primal-dual gradient dynamics (5) with triggering condition (9) to the
end-effector regulation of the PUMA560 robot manipulator. (a) Joint angle θ . (b) Joint velocity command ω. (c) λ. (d) End-effector error
e = r − rd.

of the proposed method with reinforcement learning
(Zamfirache et al., 2022) would also be interesting.
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