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Abstract. In this communication, we show the model of a nonlinear periodic chain with fractional-order damping in-
cluded. The model includes point masses connected through cubic nonlinear and linear springs and fractional spring-pot
elements. The motion equation is solved by using the first-order multiple scales perturbation analysis. The case with
weak nonlinearity and damping is observed and the corresponding dispersion equation derived. A parametric study is
performed to examine the effects of different parameters on dispersion curves. Given the wavenumber, the cubic non-
linearity and fractional damping parameter have shown to produce lower frequencies than the corresponding undamped
linear system.
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1. INTRODUCTION

The interest for phonic crystals, acoustic and elastic metamaterials in their mechanical setup has significantly grown
over the past decade. The main feature of these materials is geometric or material periodicity, which can cause formation of
band gaps. It is a well known fact that band gaps existing in elastic metamaterials can block propagation of incident waves
in certain frequency ranges. This can be achieved by manipulating with their periodicity, geometry and material density
or properties of local resonators. Therefore, one can design different types of phonic crystals or mechanical metamaterials
having desired wave propagation characteristics based on application demands. Some recent studies gave a comprehensive
review of available works in this field and possible directions for future research Hussein et al. (2013); Banerjee et al.
(2019). Two main mechanisms that are used to induce band gaps in phononic crystals and elastic metamaterials are Bragg
scattering and local resonance. However, some recent findings revealed the existence of amplitude-induced band gaps Bae
and Oh (2020). This property is specific for nonlinear mechanical systems, where different kinds of nonlinearity such as
material or geometric one can cause amplitude dependent behavior to come into effect.

Narisetti et al. (2011) explored the amplitude-dependent dispersion and band-gap behavior of discrete periodic sys-
tems with cubic nonlinearities demonstrating that the boundary of the dispersion curve shifts with the amplitude for
a single plane wave. However, the subject of wave propagation in nonlinear periodic structures has a longer history
and some researchers suggested the application of multiple scales perturbation method for studying the problems with
weak nonlinearity Asfar and Nayfeh (1983); Chakraborty and Mallik (2001). Later, this method was applied to solve
some other problems such as wave-wave interactions in cubically nonilnear monoatomic chain Manktelow et al. (2011),
one-dimensional periodic structures with quadratic nonlinearity Panigrahi et al. (2017b) or nonlinear dispersion in one-
dimensional diatomic lattice with cubic inter-atomic coupling Lepidi and Bacigalupo (2019). Panigrahi et al. (2017a) also
analysed the low-amplitude travelling waves in a periodic chain with both quadratic and cubic nonlinearity. Moreover,
the interaction of two waves in diatomic chain and monoatomic two-dimensional lattice with a cubic nonlinearity were
studied by Manktelow et al. (2014). Some other approaches are used in the literature to study strongly nonlinear systems
of locally resonant granular crystals Vorotnikov et al. (2018) and one-dimensional chains and two-dimensional lattices
Narisetti et al. (2012).

However, dissipation in phononic structures and metamaterials can cause significant shift of band gaps and introduction
of damping, also known as metadamping, is important for constructing reliable models of such materials, Hussein et al.
(2013). The problem of metadamping in multiresonator metamaterials was recently investigated by Aladwani and Nouh
(2021), where viscoelastic damping in one-dimensional multibandgap metamaterials is studied by combining the linear
hereditary theory of viscoelasticity and the Floquet-Bloch theory. Besides the classical approaches to describe energy



dissipation in materials, in the literature one can find more general fractional viscoelasticity models used in mechanics
and structural dynamics to describe this phenomenon for linear, Rossikhin and Shitikova (2010), as well as for nonlinear
problems, Rossikhin and Shitikova (2009). Despite a number of applications of fractional damping models, only a recent
work by Cajić et al. (2020) provided a detailed study of fractional metadamping in linear metamaterials and phononic
crystals.

In this study, our aim is to introduce the fractional damping into the model of one-dimensional monoatomic chain with
cubic nonlinearity. The solution is sought by using the multiple scales method with corresponding fractional derivative
expansion. Obtained approximated solution is used to perform the parametric study and investigate the influence of
different parameters on nonlinear dispersion. The effect of the order of fractional derivative and damping parameter are
investigated separately to demonstrate the generality of the fractional damping models. Effect of nonlinear cubic and
linear stiffness are also examined to show their impact on dispersion.

2. Mathematical model of a nonlinear periodic chain

2.1 Governing equation

Let us consider the mass–spring-spring-pot chain that is given is such way that each mass is separated by a distance L
from its nearest neighbour at the equilibrium state, see Fig. 1. We assume that all the masses are equal mj = m and only
the adjacent masses have direct influence on each other.

Figure 1: Illustration of an infinite mass-spring-spring-pot chain.

The equation of motion of the considered system is given as

ÿj + kl(2yj − yj−1 − yj+1) + ϵµDα
t (2yj − yj−1 − yj+1) + ϵkn

[
(yj+1 − yj)

3 + (yj − yj−1)
3
]
= 0, (1)

for j = −∞, . . . , 1, 0, 1, . . . ,∞, kl = kl/m with kl denoting the stiffness coefficient of the linear spring, kn = kn/m
with kn denoting the stiffness of the nonlinear spring and µ = µ/m with µ denoting the damping parameter of the
fractional-order term representing the spring-pot element. Here, Dα

t denotes the operator of Riemann–Liouville fractional
derivative of order α for 0 < α < 1, Rossikhin and Shitikova (2009). Small parameter ϵ is introduced in order to have a
small damping and small nonlinearity.

2.2 Wave dispersion analysis

Before continuing with the analysis let as first introduce the fractional Riemann-Liouville derivative in time as given
by Rossikhin and Shitikova (2009)

Dα
+ =

d

dt

∫ t

−∞

x(t− t′)

Γ(1− α)t′α
dt′. (2)

This allows us to use the following formula for the exponential function when lower limit is equal to zero

Dα
0+ = (iω)αeiωt +

sinπα

π

∫ ∞

0

uαe−utdu

u+ iω
, (3)

where for t → +∞ the equation reduces to the first term only. Also, in Rossikhin and Shitikova (2009) it was noted
that under certain conditions the improper integral term can be neglected. In our case, the improper integral term will be
neglected in all presented cases.



The above equation of motion Eq. (1) can be analysed by using the first-order multiple scales method, where we
introduce the fast t = T0 and slow t = ϵT1 time scales. Based on methodology from Rossikhin and Shitikova (2009), we
introduce the following assumptions for time derivatives in terms of new time scales

d

dt
= D0 + ϵD1 + ...,

d2

dt2
= D2

0 + ϵ(2DD1) + ...,
dα

dtα
= Dα

0+ + ϵαDα−1
0+ D1 + ..., (4)

where Dn = ∂
∂Tn

. Further, we assume the approximate solution for small amplitudes in terms of different time scales as
yj = q(j)0(T0, T1) + ϵq(j)1(T0, T1). Substituting this into Eq. (1) and equating like powers of ϵ we have

ϵ0 : D2
0q(j)0 + kl(2q(j)0 − y(j−1)0 − y(j+1)0) = 0, (5a)

ϵ1 : D2
0q(j)1 + kl(2q(j)1 − y(j−1)1 − y(j+1)1) = −2D0D1q(j)0 + 3knq(j)0q

2
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(5b)

We assume a travelling dispersive wave solution as

q(j)0 = Aei(κxj−ω0T0) + c.c. (6)

where κ is the wave number and xj±1 = xj ± L. By replacing this assumed solution into Eq. (5a) we get the following

ω0 = (2kl(1− cosκL))1/2. (7)

If we again use the assumed solution for ϵ0 in Eq. (5b), we can find the solvability condition resulting from the secu-
larity terms associated with ei(κxj−ω0T0) while taking the polar form of complex amplitude A = 1/2ae−iφ. Elimination
of secular terms, solving equations for a and φ and taking that ei(κxj−ωt) = ei(κxj−ω0t−φ) gives the following dispersion
relation

ω = ω0 − µϵωα−1
0 cos

απ

2
(1− cosκL) +

3a20kn sin
2(κL2 )

2ωα
0 µt sin(

απ
2 )

(e−4µϵtωα−1
0 sin2(κL

2 ) sin(απ
2 ) − 1) (8)

where amplitude a is defined as a = a0e
(βt) for β = −µϵωα−1

0 sin απ
2 (1 − cosκL). According to Rossikhin and

Shitikova (2009), ratio of the dissipation coefficient β and the linear part of the difference in frequencies ω − ω0 =
µϵωα−1

0 cos απ
2 (1 − cosκL) is equal to β/ω−ω0 ≈ tan (απ/2) i.e. the coefficient of dissipation depends approximately

linearly on the difference of damped and undamped frequencies. On the other hand, the nonlinear part of ω − ω0 is
dependent on the squared amplitude.

2.3 Numerical results

Here, we will perform the parametric study to investigate the behavior of dispersion curves for changes of certain
parameters of the model. The case of a monoatomic chain with unit cells having a single degree of freedom is investigated
(see Fig. 1). The aim of this analysis is to show both the effect of nonlinearity and fractional damping on dispersion.
For the simulation purposes we use the following values of parameters in the model L = 1, kl = 1, kn = 1, µ = 0.5,
α = 0.5, ϵ = 0.3 and the initial amplitude constant a0 = 0.3 if not given differently in figures. The results are obtained
by evaluating the expression (8) over the entire First Brillouin Zone (FBZ).

Fig. 2 shows the influence of the linear and nonlinear stiffness coefficient on dispersion. In Fig. 2a one can notice
that dispersion curve is very sensitive to changes in linear stiffness, where frequency significantly increases, especially
at the edges of the FBZ. On the other side, in Fig. 2b one can notice a decrease of the frequency for an increase of the
nonlinear stiffness parameter. This change is less then the previous one but it is also more pronounced at higher values
of the wave number. When comparing frequencies of nonlinear and damped dispersion to that of linear and undamped
dispersion (black dashed curve) we can notice that they are lower.

It is well known that attenuation can occur both in space or time. In the case of temporal attenuation, the frequency is
complex, interpreted as damping, and energy is lost as time evolves i.e. it is related to the energy loss. However, in the
case of spatial attenuation the wave number is a complex value and this is characterized as a geometric attenuation without
energy loss. The case of fractional damping that is studied in this work belongs to the temporal type of attenuation. Fig. 3



(a) The effect of nonlinear stiffness parameter (b) The effect of linear stiffness parameter
Figure 2: The effect of linear and nonlinear stiffness parameters on dispersion

(a) The effect of order of fractional derivative (b) The effect of damping parameter
Figure 3: The effect of the order of fractional derivative and damping parameter on dispersion

shows the effect of fractional order damping term on nonlinear dispersion. In Fig. 3a one can notice that an increase of
damping parameter causes a decrease of the nonlinear dispersion frequency for fixed values of other parameters. Using
the terminology from Manktelow et al. (2011), we can notice that in all presented cases we have the so-called softening
chain effect i.e. frequency is lower than the frequency of the linear undamped chain (black dashed line). Further, an
increase of the order of fractional parameter shows unusual behavior of increased frequency for an increase of the order
of fractional derivative and fixed value of damping parameter. This means that effect of the order of fractional derivative
is strong and gives different results from the usual integer damping model. This effect is even more enhanced for larger
values of the damping parameter µ. This can be seen in Fig. 3b, where for fixed value of α the frequency decreases for
an increase of the damping parameter. More details on linear and nonlinear fractional damping oscillators one can find in
Rossikhin and Shitikova (2010).

Finally, Fig. 4 shows the effect of small parameter ϵ on dispersion curves. It is a well known fact that the perturbation
analysis is valid for small displacements. We depicted three different cases where ϵ is changed in the range 0.1 − 0.3 to
reveal the effect of cubic nonlinearity. Despite the asymptotic analysis usually means a small value of ϵ, the simulations
shows that as we increase the value of small parameter nonlinear behavior becomes more enhanced i.e. the frequency
decreases in a manner similar to those in Fig. 2a. When compared to the the dispersion of the linear and undamped
chain (black dashed line), one can notice that frequencies are lower due to introduced both fractional damping and cubic
nonlinearity within the monoatomic chain.

2.4 Conclusion

In this work, dispersion characteristics of a discrete nonlinear medium represented by a monoatomic chain with a
cubic type material nonlinearity is investigated. The main contribution includes development of the model that includes
fractional order derivative damping and solution of the corresponding nonlinear fractional differential equation by the
multiple time scales perturbation method. This enabled us to study both the effects of nonlinearity and fractional damping.
The presented parametric study uncovered the effects of cubic nonlinearity showing that the cubic nonlinearity lead to
lower frequencies when compared to the linear case. On the other side, an increase of damping parameter lead to lower



Figure 4: The effect of the small scale parameter on dispersion.

frequency while an increase of frequency can be observed for an increase of the order of fractional derivative. The
presented methodology and analysis can be used in future studies of more complex nonlinear periodic systems with
fractional damping.
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