
 1 

Title 

A low dimensional surrogate model for a fast estimation of strain in the thrombus 

during a thrombectomy procedure 

 

Authors 

Sara Bridioa, Giulia Luraghia, Francesco Migliavaccaa, Sanjay Pantb, Alberto García-

Gonzálezc and Jose F. Rodriguez Matasa 

a Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, 

Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy 

b Faculty of Science and Engineering, Swansea University, Swansea, Wales, UK 

c Laboratori de Càlcul Numèric (LaCàN), E.T.S. de Ingeniería de Caminos, Universitat 

Politècnica de Catalunya - BarcelonaTech, Barcelona, Spain 

 

Corresponding author 

Sara Bridio 

Computational Biomechanics Laboratory – LaBS 

Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” 

Politecnico di Milano 

Piazza L. Da Vinci 32, 20133, Milano, Italy 

Tel: +39 02 2399 3399 

Email address: sara.bridio@polimi.it 

  

Manuscript File Click here to view linked References



 2 

Abstract 

Background - Intra-arterial thrombectomy is the main treatment for acute ischemic 

stroke due to large vessel occlusions and can consist in mechanically removing the 

thrombus with a stent-retriever. A cause of failure of the procedure is the fragmentation 

of the thrombus and formation of micro-emboli, difficult to remove. High-fidelity 

simulations of the thrombectomy procedure allow to investigate the causes of thrombus 

fragmentation. However, due to the required computational time, they are not suitable for 

estimating the fragmentation risk in a pre-operative planning phase. This work proposes 

a methodology for the creation of a low-dimensional surrogate model of the mechanical 

thrombectomy procedure, able to estimate the evolution of the maximum first principal 

strain in the thrombus. 

Method - A parametric finite-element model was created, composed of a tapered vessel, 

a thrombus, a stent-retriever and a catheter. A design of experiments was conducted to 

sample 100 combinations of the model parameters and the corresponding thrombectomy 

simulations were run and post-processed to extract the maximum first principal strain in 

the thrombus during the procedure. Then, a surrogate model was built with a combination 

of principal component analysis and Kriging. 

Results - The surrogate model was tested with 10 additional cases: it provided predictions 

of the strain curves that well replicated the true ones, with correlation above 0.9.  

Conclusions - The surrogate model provides nearly instantaneous estimates and 

constitutes a valuable tool for evaluating the risk of thrombus rupture during pre-operative 

planning for the treatment of acute ischemic stroke. 
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1 Introduction 

Acute Ischemic Stroke (AIS) is a neurovascular pathology occurring when a blood clot 

obstructs a cerebral artery and prevents the perfusion of downstream cerebral tissues. This 

causes the development of an infarct zone in cerebral tissues, which is irreversible if not 

re-perfused in a short time [1]. The main treatment for AIS due to large vessel occlusions 

is intra-arterial thrombectomy (IAT) [2], an endovascular technique which aims at 

mechanically removing the thrombus from the patient’s artery. The IAT procedure can 

be performed with stent-retrievers, or aspiration catheters, or in combined techniques 

involving both devices [3]. In the case of stent-retriever IAT, the crimped stent is 

minimally invasively navigated to the occlusion site through a micro-catheter, aided by 

angiographies to correctly position the device. Once the occlusion is reached, the catheter 

is unsheathed, and the stent is deployed. Stent-retrievers are made of super-elastic Nickel-

Titanium (NiTi) alloys, hence in this phase the stent tends to recover its original non-

crimped configuration and can entrap the blood clot. The stent-thrombus complex is then 

retrieved out of the patient to restore cerebral artery perfusion.  

Despite being the standard of care for large-vessel occlusion AIS, the IAT procedure still 

requires optimization to improve the clinical outcome of the patients [4], in particular to 

reduce the recanalization time and the vascular damage [5]. A frequent complication of 

the IAT procedure is the thrombus embolization, caused by the fragmentation of the blood 

clot and the occlusion of smaller distal vessels, more difficult to recanalize [6,7]. The 

improvement of clinical outcome could be achieved by providing tools for performing an 
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accurate and fast biomechanical analysis as pre-operative planning (which is now based 

only on clinical imaging), to identify the most suitable procedure and device, considering 

the vascular geometry, the occlusion site and the blood clot characteristics of the specific 

patient. Besides, the procedure itself and the design of the devices are subjected to 

improvement in maximizing the grip of the stent to the clot and minimizing the clot 

fragmentation and vascular trauma. 

Recent studies in the literature proposed models for high-fidelity simulations of the IAT 

procedure. In [8], a finite-element model (FEM) of the thrombectomy procedure was 

created, composed of rigid-walls vessels, a quasi-hyperelastic foam model for the 

thrombus and a stent-retriever model discretized with beam-elements. The model was 

successfully validated with in vitro experiments replicating the clinical procedure. The 

same authors used the model developed in [8] to reproduce a patient-specific case [9], 

where the thrombus model, including fracture properties, developed by Fereidoonnezhad 

et al. [10] was integrated, and to perform a study on the impact of patient-specific vascular 

geometry on the outcome of the IAT procedure [11]. 

Nevertheless, in clinical applications the use of high-fidelity numerical simulations of 

IAT is unaffordable, or even impossible, due to both the required time and computational 

cost. In [9], the IAT simulation in a patient-specific vessel geometry is reported to run in 

approximately 24 hours (on 40 CPUs of an Intel Xeon64 with 256 GB of RAM). The 

required time is incompatible with clinical pre-operative planning, where the treatment to 

AIS should be provided during the initial hours after symptoms onset [1]. From another 

perspective, FEM simulations are also impractical when a big volume of virtual 

procedures needs to be analyzed, as it happens in the case of an in silico trial, whose 

possibility of substituting or integrating clinical trials has become in recent years a 
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promising field of research [12]. A possible solution to this limitation is the creation of 

surrogate models of high-fidelity simulations of the IAT procedure. Surrogate modeling 

consists of finding a mapping between a set of input parameters describing a model and 

an output function representing the response. Once the mapping function is found, the 

surrogate model can nearly instantaneously estimate the output, given a new set of input 

parameters. Studies in the literature successfully applied the surrogate modeling 

techniques to biomechanical problems, for example for the prediction of stress 

distributions in the aortic walls [13] or in atherosclerotic arteries for estimating the risk 

of plaque rupture [14]. 

The combination of dimensionality reduction with surrogate modeling is a methodology 

used to reduce problem complexity in different disciplines and context. Lataniotis et al. 

[15] combined Gaussian Process modeling (Kriging) and polynomial chaos expansion 

surrogates and kernel Principal Component Analysis (kPCA) to perform uncertainty 

quantification in two engineering problems. This methodology has been also applied for 

the uncertainty quantification and Bayesian calibration of a hydrological model [16]. 

Rocas et al. [17] used a combined kPCA with metamodeling to carry out uncertainty 

quantification analysis in crashworthiness. Li et al. [18] integrate dimension reduction 

(Principal Component Analysis, PCA) together with Kriging surrogate models to perform 

sensitivity analysis in models with high-dimensional output. 

In this work, a method combining dimensionality reduction and surrogate modeling 

techniques is implemented and applied for a fast and accurate estimation of the outcomes 

in thrombectomy procedures, avoiding costly FEM simulations. As a first feasibility 

study, a low dimensional surrogate model of high-fidelity virtual simulations of the IAT 

procedures is developed, able to predict the evolution of the maximum first principal 
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strain in the thrombus due to the interaction with the stent-retriever, following the scheme 

in Figure 1. First, a parametric FEM model is created, composed of a blood vessel, a 

blood clot, and a stent-retriever (Subsection 2.1). Then, a Design of Experiment (DoE) 

[19] is conducted to sample uniform combinations of the FEM model parameters to run 

the high-fidelity IAT simulations and extract the output of interest (Subsection 2.2). A 

combination of PCA and Kriging modeling technique is used to build the final low-

dimensional surrogate model (Subsection 2.3). PCA, a dimensionality reduction 

technique [20], is used to reduce the high-dimensional output of the FEM simulations to 

a low number of independent components. The Kriging model [21] is then used to 

determine a response surface describing the linkage between the FEM model parameters 

and the independent components in the reduced space after PCA. After defining the 

metric for error quantification (Subsection 2.4), the predictive ability of the developed 

surrogate model is tested by comparing the estimated output with the outcome of new 

FEM simulations, not used in the training phase. The results are reported in Section 3 and 

discussed in Section 4. 
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Fig. 1. Schematic representation of the steps for the construction and testing of the 

surrogate model for the prediction of the maximum first principal strain (MaxFP strain) 

in the thrombus during a thrombectomy procedure. 

 

2 Methods 

2.1 Parametric FEM model of the thrombectomy procedure 

Figure 2 shows the FEM model created for the high-fidelity IAT procedure simulations. 

To keep a limited number of parameters, a simplified tapered vessel geometry was 

chosen. The part of the vessel with large diameter corresponds to the internal carotid 

artery (ICA) segment, while the part with small diameter corresponds to the distal tract 

of the middle cerebral artery (MCA). The vessel, of total length of 200 mm, was 

discretized with rigid quadrilateral shell elements (average element size 0.35 mm). 
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Fig. 2. A) FEM model for the IAT procedure and the 5 model parameters: small and large 

diameters of the tapered vessel, D_MCA and D_ICA, respectively (MCA: middle 

cerebral artery; ICA: internal carotid artery); length (L_clot) and composition in terms of 

fibrin content (%FIB) of the thrombus; positioning of the stent-retriever with respect to 

the thrombus (X_stent). B) Examples of models with different parameters. 

 

A blood clot was positioned in the smaller straight part of the vessel, as thrombus 

occlusions mostly occur in the distal segments of the MCA [22], with a diameter equal to 

90% of the vessel diameter. The clot was discretized with an average of 12400 linear 

tetrahedral elements (average element size 0.2 mm) and modeled with a quasi-

hyperelastic foam material proposed by [23]. The model approximates the principal 

components of the Kirchhoff stress, 𝜏𝑖, 𝑖 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, as: 

 𝜏𝑖 = 𝑓(𝜆𝑖) − 𝑓 (𝐽− 𝜈
1−2𝜈) (1) 
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where 𝜈 is the initial Poisson’s ratio (0.3 from [8]), and 𝑓(∙) is a function identified from 

a uniaxial stress-strain curve, 𝜏 = 𝑔(𝜆): 

 𝑓(𝜆) = 𝜆𝑔(𝜆) + 𝜆−𝜈𝑔(𝜆−𝜈) + ⋯ + 𝜆(−𝜈)𝑛𝑔(𝜆(−𝜈)𝑛). (2) 

The values of 𝑓(𝜆) are calculated at the beginning of the analysis and do not require an 

analytical expression for function 𝑓(𝜆) since it is calculated from the uniaxial stress-strain 

data. This material formulation is available within the finite-element solver LS-DYNA 

(ANSYS, Canonsburg, PA, USA) used to perform the simulations. Unconfined 

compression tests conducted on clot analogues obtained from ovine blood [8] were used 

to calibrate the model. Clots of different compositions were tested, ranging from fibrin-

rich to red blood cell-rich clots (Figure 3). Linear interpolation was used to approximate 

the stress-strain behavior of clots of compositions between the tested ones. 

 

Fig. 3. Stress-strain curves obtained from unconfined compression tests on clot analogues 

with different fibrin (FIB) and red blood cells (RBC) content. 

 

The chosen stent-retriever was a Trevo ProVue (Stryker, Kalamazoo, MI, USA) with 4 

mm diameter and 40 mm length. The geometry of the stent was reconstructed by 
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identifying the repeating cell and creating a parametric model in Matlab (Math-Works, 

Natick, MA, USA) (Figure 4A). The cross-section of the stent struts was identified with 

the use of a confocal laser microscope. The reconstructed stent geometry was then 

discretized with 1032 linear beam elements (average element length 0.2 mm). The 

Hughes-Liu formulation with cross-section integration was chosen. The NiTi material of 

the stent-retriever was modelled in LS-DYNA with the available shape-memory material 

formulation [24]. The material parameters were calibrated by numerically reproducing an 

experimental uniaxial tensile test performed on a Trevo ProVue stent. The material 

parameters used for the simulations are listed in Figure 4. 

 

Fig. 4. A) Model of the Trevo ProVue stent-retriever. B) Stress-strain curve for the NiTi 

material. C) Parameters used for modelling the stent material in LS-DYNA [24]. 

 

The developed FEM model was parametrized with 5 relevant features (green text in 

Figure 2A): 1) D_ICA, the maximum diameter of the tapered vessel, 2) D_MCA, the 

minimum diameter of the tapered vessel, 3) L_clot, the length of the blood clot, 4) %FIB, 
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the percentage of fibrin content of the blood clot (the composition of the thrombus 

determines different mechanical properties [25]), and 5) X_stent, the distance between 

the proximal end of the thrombus and the head of the stent, giving an indication of the 

relative position of the stent-retriever with respect to the clot. The last parameter is a 

derived parameter: it is obtained with the formula R·(L_stent – L_clot), where L_stent is 

the length of the stent-retriever and R is a parameter which can take a value between 0 

and 1, ensuring that the stent always covers the entire length of the clot. The 5 parameters 

vary in ranges as listed in Table 1. The parameters referring to the vessel and the thrombus 

were determined on the basis of literature values [26,27]. Figure 2B shows examples of 

models with different parameters. 

 Table 1. Ranges of the 5 parameters of the FEM model of the IAT procedure. 

Parameter Range 

D_ICA [4 – 7.5] mm 

D_MCA [2.5 – 4] mm 

L_clot [5 – 35] mm 

%FIB [5 – 95] % 

X_stent [0 – 35] mm 

 

2.2 Design of Experiment (DoE) and creation of the training dataset 

A DoE was conducted to create the training dataset for the surrogate model, which is 

constituted by a set of FEM simulations of IAT procedure. The parameter space was 

sampled by 100 points from the Sobol sequence, which produces a quasi-random space-

filling DoE while adhering to uniformity of samples’ distribution [19]. The DoE resulted 

in the creation of 100 different FEM models of IAT. The geometrical features (D_ICA, 

D_MCA, L_clot, X_stent) were varied thanks to the parametrization of the geometry of 
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the FEM model. The different clot compositions (%FIB) were implemented by adjusting 

the material parameters for the blood clot model, based on experimental tests, as detailed 

in Subsection 2.1. 

Once prepared the FEM models, 100 high-fidelity simulations of the IAT procedure were 

run with the FE-solver LS-DYNA. Each simulation is composed of 3 steps (Figure 5): 

1) catheter and stent tracking: the guide catheter (0.5 mm diameter, modeled as rigid) is 

positioned inside the vessel, pushing the blood clot against the vessel walls. A friction-

less soft penalty contact is defined between the clot and the catheter. Then, the stent-

retriever is crimped inside the catheter, by imposing the movement of the tip of the stent 

along the centerline of the catheter. At the end of the crimping the stent is positioned at 

the selected location with respect to the occlusion. A hard penalty contact is defined 

between stent and catheter; 

2) stent deployment: the deployment of the stent-retriever is performed simulating the 

unsheathing the catheter with the progressive removal of the contacts between the stent 

and progressive portions of the catheter;  

3) stent and thrombus retrieval: the retrieval of the stent-thrombus complex is simulated 

by imposing the movement of the stent tip along the vessel centerline. A rough soft 

penalty contact is defined between thrombus and vessel wall, with friction coefficient of 

0.1. Between the stent and the thrombus, a soft penalty contact is defined, with friction 

coefficient of 0.2, while a hard penalty contact is defined between stent and vessel wall. 

A mass proportional damping of 10 s-1 was applied to the thrombus to achieve numerical 

stability without an excessively reduced time-step [28]. 

The setting of the simulations was derived from the work in [8], where the thrombectomy 

simulation was also validated with in vitro experiments.  
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The results of the FEM simulations were post-processed to extract the output of interest. 

Due to the simplified geometry of the vessel, in only 2 simulations the thrombus was not 

removed from the vessel, while in the other 98 simulations the procedure was successful. 

The chosen output of interest was the evolution of maximum First Principal (MaxFP) 

strain in the thrombus during the procedure (Figure 6). More precisely, at each time step 

of the simulation, the 10 clot elements with the highest MaxFP strain were identified and 

averaged: the output extracted from each simulation is a curve reporting the evolution of 

the value during the procedure. The choice of the MaxFP strain was based on the finding 

in [29], where the fracture of thrombi is demonstrated as strain-driven. Each simulation 

is made of 217 time steps, leading to an output dataset made of 217x100 MaxFP strain 

values. 

  

Fig. 5. Steps of the IAT procedure (the catheter is removed from visualization to show 

the stent-retriever): 1) the crimped stent-retriever is positioned through the catheter at the 

occlusion location; 2) the catheter is unsheathed and the stent is deployed to entrap the 

thrombus; 3) the stent is retrieved to remove the thrombus from the vessel.  
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Fig. 6. Example of MaxFP strain curve and contour plot of the maximum first principal 

strain at the end of stent deployment: the red areas, in contact with the stent struts, are the 

ones at risk of fracture initiation. 

2.3 Creation of the surrogate model 

A surrogate model was built for the prediction of the MaxFP strain curves. The creation 

of the surrogate model was entirely performed in Matlab and was made of two main steps. 

Principal Component Analysis (PCA). The first step consisted in the reduction of the 

dimensionality of the output dataset obtain from the FEM simulations. PCA [20] is a 

technique that reduces the dimensionality of a system belonging to a space ℝ𝑑×𝑛𝑠 (where 

𝑛𝑠 is the number of samples of dimension 𝑑), by projecting it into a reduced space of 

dimension ℝ𝑘×𝑛𝑠, with 𝑘 ≪ 𝑑. The dimension 𝑘 must be chosen such that the information 

contained in the original data is properly kept. The principal components are orthonormal 

vectors defining a new basis for describing the data. An eigenvalue or singular value is 

associated to each principal component, whose magnitude, with respect to the others, 

indicates the amount of variance (i.e. information of the system) explained by that 
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principal component. Therefore, the analysis of the eigenvalues or singular values allows 

to determine the optimal number of dimensions 𝑘 of the reduced space. 

In this case, the system to reduce is the matrix 𝑿 ∈ ℝ𝑑×𝑛𝑠 containing the MaxFP strain 

values, where 𝑛𝑠 = 100 is the number of thrombectomy simulations, and 𝑑 = 217 is the 

number of time steps in each simulation. After centering the data, a PCA was carried out 

by performing a Singular Value Decomposition (SVD) of the matrix 𝑿. SVD is a 

technique which allows to avoid matrix diagonalizations required by standard PCA, by 

providing a factorization of the 𝑿 matrix of the form: 

𝑿 =  𝑼𝜮𝑽𝑻 (3)  

where the matrix 𝑼 ∈ ℝ𝑑×𝑑 contains the orthonormal eigenvectors of the matrix 𝑿𝑿𝑇, 

the matrix 𝑽 ∈ ℝ𝑛𝑠×𝑛𝑠 contains the orthonormal eigenvectors of the matrix 𝑿𝑇𝑿, and the 

matrix 𝜮 ∈ ℝ𝑑×𝑛𝑠 has non-zero values in the diagonal only. The values on the diagonal 

of 𝜮 represent the singular values of the matrix 𝑿 [30]. The singular values in 𝜮 appear 

in descending order: the first singular value is the one explaining the highest amount of 

variance.  

The dimensionality of the system was then reduced to the first 𝑘 singular values, 

depending on the percentage of the system information that needed to be explained. The 

results obtained with 4 different percentages of explained variances were compared, 

namely 60%, 70%, 80% and 90%, which in the following will be referred to as Model 1, 

Model 2, Model 3 and Model 4, respectively. The choice of the percentage of explained 

variance determines the number 𝑘 of singular values for the dimensionality reduction: the 

initial data contained in 𝑿 was projected onto the reduced space, by performing the 

operation: 
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𝑨 =  𝑼̂𝑇𝑿 (4) 

where the matrix 𝑼̂ ∈ ℝ𝑑×𝑘 contains the first 𝑘 orthonormal eigenvectors of 𝑼, and the 

matrix 𝑨 ∈ ℝ𝑘×𝑛𝑠 contains the components of the projections of each MaxFP strain curve 

onto the new reduced space. 

Kriging models. After performing the reduction of the dimensionality of the system, 𝑘 

independent Gaussian Process surrogate models (also known as Kriging models) were 

trained to identify the mapping function between the set of 5 parameters of the FEM 

model and each of the components contained in 𝑨 ∈ ℝ𝑘×𝑛𝑠 for the respective strain curve. 

For a detailed explanation of Kriging models and background the reader is referred to 

[21], whereas the main concepts are here reported. A Kriging model identifies a response 

surface by interpolating between points constituting realizations of a system. It assumes 

that the observed output is the result of a stochastic process with a Gaussian distribution. 

The mapping between the output 𝑌 and a vector of input data 𝒛 can be expressed as: 

𝑌(𝒛) = 𝛽 +  𝐺(𝒛) (5) 

where 𝛽 is an unknown hyperparameter and 𝐺(𝒛) is a Gaussian process with zero mean 

and covariance given by: 

𝐶𝑜𝑣(𝐺(𝒛, 𝒛’)) =  𝜎𝑧
2 𝑘(𝒛, 𝒛′) (6) 

where 𝜎𝑧
2 is the variance of the process and 𝑘(𝒛, 𝒛′) is a correlation (kernel) function. In 

this case, a Gaussian kernel function was chosen: 

𝑘(𝒛, 𝒛’) = exp [−
1
2

∑
(𝒛𝑚 − 𝒛′

𝑚)2

𝜃𝑚
2

𝑝

𝑚=1

] (7) 
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where 𝑝 is the number of parameters of each input vector and 𝜽 = {𝜃1, 𝜃2, … , 𝜃𝑝} is a 

vector of 𝑝 unknown hyperparameters. 

In the current application, the vector of input data 𝒛 contains, for each sample, the 5 

parameters of the FEM model (D_ICA, D_MCA, L_clot, %FIB, X_stent), and the 

observed outputs 𝑌(𝒛) are the corresponding components of the projections of the MaxFP 

strain curve in the reduced space, contained in the columns of matrix 𝑨 ∈ ℝ𝑘×𝑛𝑠. 

A Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [31], a 

quasi-Newtonian optimization algorithm, was selected to find the optimal values of the 

hyperparameters (𝛽, 𝜎𝑧, 𝜽) of the Kriging model. 

This procedure was repeated 𝑘 times to obtain 𝑘 independent Kriging models: each of 

them is able to estimate one of the singular components 𝑎𝑖 where 𝑖 = {1, 2, … , 𝑘}, given 

a new set of input parameters (D_ICA, D_MCA, L_clot, %FIB, X_stent). The vector 𝒂 ∈

ℝ𝑘 of estimated singular components, multiplied by the matrix 𝑼̂ ∈ ℝ𝑑×𝑘, provides the 

vector 𝒙̂ ∈ ℝ𝑑 , which is the estimation of the MaxFP strain curve for the new set of input 

parameters. 

2.4 Surrogate model evaluation 

The strain curves predicted by the surrogate model were compared with the curves 

extracted from the output of the simulations by means of the normalized Euclidean 

distance between corresponding curves with the formula: 

𝐸𝑟𝑟𝑜𝑟 =  
‖𝒙 − 𝒙̂‖

‖𝒙‖ × 100 (8) 

where the vector 𝒙 ∈ ℝ𝑑 contains the MaxFP strain calculated by the FEM simulation 

during the IAT procedure, and the vector 𝒙̂ ∈ ℝ𝑑 contains the MaxFP strain predicted by 

the surrogate model. 
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The goodness of the predictions of the MaxFP strain curves were also assessed by 

calculating the Pearson correlation coefficient [32] between the predicted curve and the 

one obtained from the FEM simulation, with the formula: 

𝜌(𝒙, 𝒙̂) =  
1

𝑑 − 1
∑ (

𝑥𝑖 − 𝜇𝑥

𝜎𝑥
) (

𝑥̂𝑖 − 𝜇𝑥̂

𝜎𝑥̂
)

𝑑

𝑖=1

 =  
𝑐𝑜𝑣(𝒙, 𝒙̂)

𝜎𝑥𝜎𝑥̂
(9) 

where 𝑑 is the number of observations for each variable (in this case, the number of time 

steps of the FEM simulation), 𝜇𝑥 and 𝜎𝑥 are the mean and standard deviation of the strain 

curve obtained from the FEM simulation, 𝜇𝑥̂ and 𝜎𝑥̂ are the mean and standard deviation 

of the strain curve predicted by the surrogate model. Therefore, the Pearson correlation 

coefficient is the ratio between the covariance of the curve from FEM (𝒙) and the 

predicted curve (𝒙), and the product of their standard deviations. The Pearson correlation 

coefficient measures the linear dependence between the two variables: the closer the value 

of 𝜌(𝒙, 𝒙̂) is to 1, the stronger is the correlation between the variables (i.e. the prediction 

is good); if the two variables are independent, the value of 𝜌(𝒙, 𝒙̂) is 0. 

To better characterize the ability of the surrogate model in describing the problem, an 

analysis of variance (ANOVA) [33] was performed to assess the influence of the input 

parameters and their interactions on the outcome of both the high-fidelity and the 

surrogate model. For each parameter or pair of parameters, the ANOVA analysis provides 

a p-value indicating its significance. A p-value<0.05 indicates that the parameter has 

significative influence on the determination of the output. The ANOVA analysis was 

performed on the 100 samples used for building the surrogate. The interest in this case is 

not on the accuracy of the prediction, but to see the ability of the surrogate model to 

describe the influence of the input variables on the output. Thus, two ANOVA analyses 

were performed to determine the influence of each of the 5 input parameters and of their 
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pairwise interactions on the mean MaxFP strain values, obtained with the simulations and 

with the surrogate model. The results of the analyses are compared to assess if the 

relevance of the input variables in the FEM simulations is respected in the surrogate 

model. 

 

3 Results 

3.1 Dimensionality reduction 

The first step of the creation of the surrogate model consisted in the reduction of the 

dimensionality of the problem by means of a PCA. In Figure 7 a graph of the individual 

and cumulative explained variance of the eigenvalues is shown. The individual explained 

variance is the amount of the system information explained by each eigenvalue, while the 

cumulative explained variance indicates the amount of the system information explained 

by the sum of a progressive number of eigenvalues (which sums to 1 when all the 

eigenvalues are considered). Four percentages of system information were considered: to 

keep 60% of the information, 3 principal components need to be used (Model 1); to keep 

70%, 80% and 90% of the information, 6, 12 and 25 principal components are 

respectively needed (Models 2, 3 and 4, respectively). 
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Fig. 7. Individual and cumulative explained variance of the eigenvalues. The first 3 

principal components (PCs) explain 60% of the system information (Model 1), the first 6 

PCs the 70% (Model 2), the first 12 PCs the 80% (Model 3) and the first 25 PCs the 90% 

(Model 4). 

3.2 Surrogate model predictions 

Four surrogate models were then built to predict the MaxFP strain evolution during the 

thrombectomy procedure, one for each selected percentage of system information. To test 

the predictive ability of each model, 10 additional simulations of the IAT procedure were 

run, with random combinations of the 5 input parameters of the FEM model. Figure 8 

shows the corresponding parameters together with the result of the FEM simulation 

(dashed blue line). The prediction error in each test case was calculated with Eq. 8, 

obtaining the results shown in Figure 9, top left. The increase in the number of principal 

components does not produce significative changes in the prediction error. In the bottom 

part of Figure 9, the MaxFP strain curves predicted by the surrogate models are compared 

to the true curve from the FEM simulation of test cases 6 and 8 (the curves obtained with 

Model 4 are omitted as they were superimposed to the ones obtained with Model 3). The 
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two examples show that the predicted curves are very similar with all the tested number 

of principal components, with differences only in the initial tract. The choice of Model 2 

(surrogate model built with 6 principal components and 70% of the system information) 

appears a reasonable trade-off between the reduction to a low number of principal 

components and the amount of preserved information of the system. Figure 9, top right, 

shows the values of the Pearson correlation coefficient (Eq. 9) between the predicted 

strain curve and the one obtained from the FEM simulations, using Model 2: for all the 

test cases the coefficients are very close to 1, demonstrating a strong correlation between 

the true and predicted curves. Figure 8 shows the comparison of the MaxFP strain curves 

calculated with the FEM simulations (dashed blue line) and predicted by Model 2 (red 

line) for all the 10 test cases, showing the ability of the surrogate model to predict the 

shape of the strain curves, but also demonstrating the smoothing effect of the model. In 

terms of computational time, the surrogate model provides nearly instantaneous 

predictions of the strain curves, while each high-fidelity FEM simulation of the IAT 

procedure required on average 40 hours on 20 CPUs of an Intel Xeon64 with 120 GB of 

RAM memory. 

3.3 Analysis of the influence of the input parameters  

An ANOVA analysis was performed to assess if the chosen surrogate model (Model 2) 

can replicate the behavior of the high-fidelity model in terms of influence of the input 

parameters (as described in Section 2.4). The results of the ANOVA analyses for the FEM 

model and the surrogate model are summarized in Table 2, which reports the input 

parameters, or pairs of parameters, found as significative for the determination of the 

output in the two models. The significant parameters for the FEM output were found to 
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be significant also for the surrogate model, for which two additional parameters, namely 

X_stent and D_ICA, were also found as relevant. 

Table 2. Results of the ANOVA analysis: input parameters, or pairs of parameters, 

found as relevant for the determination of the mean value of the MaxFP strain obtained 

with both the FEM simulation and the surrogate model, in decreasing order of influence 

(p = p-value). 

FEM simulation Surrogate model 

1. L_clot – X_stent (p=0.0015)  1. L_clot – X_stent (p<0.001) 

2. L_clot – D_MCA (p=0.0085) 2. %FIB – X_stent (p=0.0039) 

3. %FIB – X_stent (p=0.0209) 3. L_clot (p=0.0098) 

4. L_clot (p=0.026) 4. L_clot – D_MCA (p=0.0221) 

 5. X_stent (p=0.0312) 

6. D_ICA (p=0.0412) 
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Fig. 8. Surrogate model predictions (Model 2, using 6 principal components) of the 

MaxFP strain curves (red lines) for the 10 test cases and comparison with the MaxFP 

strain curves obtained with the FEM simulations (dashed blue line). 

 

Fig. 9. Top left: prediction errors of the MaxFP strain curve in the 10 test cases obtained 

with the surrogate models using 60% (Model 1), 70% (Model 2), 80% (Model 3) and 90% 

(Model 4) of the system information (using 3, 6, 12 and 25 principal components (PCs) 

respectively). Top right: Pearson correlation coefficients between the predicted curves 

and the curves fom FEM, shown for the case of Model 2. Bottom: tests 6 and 8 are shown 

as examples of the obtained strain curves (the ones obtained with Model 4 are omitted as 

they were superimposed to the ones obtained with Model 3). 

4 Discussion 

In the present work, a method for creating a low dimensional surrogate model of high-

fidelity simulations of the IAT procedure was proposed. The surrogate model can provide 
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an estimation of the evolution of the maximum first principal strain in the thrombus 

during a thrombectomy procedure performed on a simplified tapered vessel geometry, 

given as input parameters the minimum and maximum diameters of the vessel, the length 

of the thrombus, its composition and the relative position between the thrombus and the 

stent-retriever.  

The use of surrogate modeling combined with dimensionality reduction techniques is 

emerging as a substitute of parametric finite-element modeling in biomedical 

applications, where the necessity of a fast intervention or a large number of cases to 

evaluate makes the use of complex high-fidelity FEM simulations impractical. In the 

literature, few studies with biomedical application used the surrogate modeling technique 

to speed up the obtainment of results with respect to the use of high-fidelity simulations. 

In [34], a machine learning technique is used to estimate pressure and flow velocity 

distributions inside the thoracic aorta, trained on computational fluid dynamics 

simulations. The same authors used FEM simulations to create machine learning-based 

surrogate models able to predict stress distributions in the aortic walls [13]. In [14], a 

machine learning algorithm trained with FEM simulations is implemented to predict the 

maximum Von Mises stress in the walls of atherosclerotic arteries, which is used to 

estimate the risk of plaque rupture. Finally, in [35] a machine learning-based model is 

built, based on FEM simulations, to provide real-time inference on the outcome of liver 

surgery, with the final aim of having a computer aided surgery. These models demonstrate 

the great potential of the use of surrogate models trained on FEM simulations and able to 

substitute them when a real-time response is needed. All the above models were created 

using machine learning algorithms, that required several hundreds or even thousands of 

simulations for the training phase. 
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The model presented in this work constitutes the first attempt of using the surrogate 

modeling techniques for the estimation of the outcome of an IAT procedure. The creation 

of the model was based on a combination of PCA and Kriging interpolation rather than 

on machine learning algorithms to limit the number of samples required for the training 

of the model. The complexity of the interaction between the stent-retriever and the 

thrombus requires a fine discretization, both spatial and temporal, that imply a high 

computational cost for each simulation (approximately 40 hours on a system with 20 

CPUs and 120 GB of RAM). 

A sensitivity analysis was conducted on the number of principal components to be 

considered for the reduction of the dimensionality of the problem. The results (Figure 9) 

showed that good predictions of the MaxFP strain curves can be obtained with a very 

limited number of principal components (up to 3, corresponding to Model 1, with 60% of 

the information of the original system). However, Model 2 (using 6 principal components 

and 70% of information) was chosen to present the final results, as a reasonable trade-off 

between the low dimension of the reduced space and the amount of preserved information 

of the system. 

With the chosen surrogate model, the shapes of the MaxFP strain curves obtained with 

the FEM simulations were well approximated for each test case (Figure 8). In particular, 

the model was able to accurately capture the initial tract of each curve, up to the end of 

stent deployment. This is the phase with a sudden increase in the MaxFP strain in the 

thrombus, that may be decisive for the initiation of the fracture of the thrombus. When 

considering the point-to-point error (Figure 9, top left), 60% of the cases had error below 

20%, the minimum error was 11% (test 8), while the maximum error was 28% (test 5). 

Despite these errors suggest there remains scope for improvement, the model proved able 
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to capture well the shapes of the strain curves. Indeed, the analysis of the Pearson 

correlation coefficient between the predicted curves and the ones obtained from the FEM 

simulations (Figure 9, top right) demonstrated a strong correlation between the two 

curves, with values of the coefficient close to 1 for each test case.  

Results from the ANOVA analysis of Model 2 indicated that the surrogate model is able 

to reproduce the behavior of the high-fidelity model in terms of influence of the input 

parameters (Table 2). The analysis on the FEM outputs indicated four parameters or pair 

of parameters as significant: the interactions between L_clot and X_stent, between L_clot 

and D_MCA, between %FIB and X_stent, and L_clot. The same four parameters were 

found as significant for the determination of the outputs of the surrogate model. In this 

case, two other parameters (X_stent and D_ICA) were found as significant, although with 

higher p-values with respect to the others. Therefore, besides the accuracy loss associated 

with the reduced nature of the model, the statistical analysis shows that the description of 

the behavior of the output provided by the surrogate model is in good agreement with 

high-fidelity FEM simulations. 

These results are encouraging for the possibility of applying this surrogate modeling 

method, but they indicate that there are some limitations that need to be addressed. A first 

limitation lies in the choice of the MaxFP strain as output of interest. The MaxFP strain 

is calculated, at each time step, as the average value of the 10 elements with higher strain 

values. This means that the 10 elements are not necessarily the same in each time step, 

determining a very irregular shape of the strain curves (see Figure 6 as an example). The 

choice of a smoother variable would provide more regular curves, which would be more 

easily approximated by the surrogate model. Secondly, the model itself may be improved 

by increasing the number of samples in the training dataset or by building an ad hoc kernel 
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in the Kriging model (Eq. 7) which better adapts to the prediction of the principal 

components’ coefficients. Another limitation is the simplified vessel geometry. For 

exploring the feasibility of building this kind of surrogate model a straight tapered vessel 

was chosen. To extend the application of the modeling technique to patient-like cases, a 

more realistic vessel geometry can be considered. The parametric FEM model will 

include curved vessels to represent the carotid siphon and a bifurcation to represent the 

so-called T-junction (bifurcation of the ICA into MCA and anterior cerebral artery). Once 

the new training dataset is obtained, the technique for the creation of the surrogate model 

will not be different from the one implemented in this study. 

Despite these limitations, the developed methodology for the prediction of the maximum 

strain in the thrombus during a thrombectomy procedure (which in the future can be 

adapted to the prediction of other variables of interest, e.g. the maximum stress) is 

valuable for a better understanding of the thrombus mechanics during the treatment and 

to predict the thrombus evolution and potential fragmentation. The surrogate model 

provides nearly instantaneous predictions of the strain level, making it suitable for 

performing a pre-operative planning. By building a model for each of the most used 

commercial devices, when a new patient needs to be treated it would be possible to make 

few measurements on the patient’s vasculature and thrombus to interrogate the surrogate 

models and obtain an estimation of the level of strain produced in the clot by each device, 

choosing the one with the lowest risk of fragmenting the thrombus. A similar application 

could be used for future in silico trials. The creation of a surrogate model would allow to 

estimate the level of strain produced in the thrombus by a new device in a big number of 

virtual patients, without the need of running a computationally demanding and time-

consuming high-fidelity simulation for each of them. 
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