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In this paper, semilocal Milnor K-theory of fields is introduced and studied. A strongly

convergent spectral sequence relating semilocal Milnor K-theory to semilocal motivic

cohomology is constructed. In weight 2, the motivic cohomology groups Hp
Zar(k,Z(2)),

p � 1, are computed as semilocal Milnor K-theory groups K̂M
2,3−p(k). The following

applications are given: (i) several criteria for the Beilinson–Soulé Vanishing Conjecture;

(ii) computation of K4 of a field; (iii) the Beilinson conjecture for rational K-theory

of fields of prime characteristic is shown to be equivalent to vanishing of rational

semilocal Milnor K-theory.

1 Introduction

It is a classical fact of algebraic K-theory of fields that Milnor K-groups KM
0 , KM

1 , KM
2

agree with Quillen’s K0, K1, K2. However, KM
n is only a small piece of Quillen’s Kn for

n � 3. A key technical tool to make computations in algebraic K-theory is the motivic

spectral sequence

E2
p,q = Hq−p

Zar (k,Z(q)) �⇒ Kp+q(k)

relating algebraic K-theory to motivic cohomology (see, e.g., [6]).
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2 G. Garkusha

By well-known theorems of Nesterenko–Suslin [23] and Totaro [28], the Milnor

K-theory ring KM∗ (k) is isomorphic to the ring
⊕

Hn
Zar(k,Z(n)). We also know that

H1
Zar(k,Z(2)) = Kind

3 (k), where Kind
3 (k) is the indecomposable K-theory of k. The

other motivic cohomology groups are a complete mystery. Their computation, and

hence computation of algebraic K-theory, is one of the hardest problems in the field

and several outstanding conjectures are related to this problem. For instance, the

celebrated Beilinson–Soulé vanishing conjecture states that all motivic cohomology

groups Hp
Zar(k,Z(q)) vanish for p � 0 and q > 0 [27, §3]. The finite coefficient

motivic cohomology groups are much better understood due to the norm residue

isomorphism theorem (formerly known as Milnor/Bloch–Kato conjectures) relating the

motivic cohomology to étale cohomology [32]. The mysteries (such as the Beilinson–

Soulé vanishing conjecture) mostly surround the K-theory and motivic cohomology

with rational coefficients. In positive characteristic, the Beilinson conjecture states that

Milnor K-theory and Quillen K-theory agree rationally:

KM
n (k)Q

∼=−→ Kn(k)Q.

As we have mentioned above, Milnor K-theory is isomorphic to the motivic

cohomology diagonal
⊕

Hn
Zar(k,Z(n)). The main purpose of this paper is to introduce

and investigate “semilocal Milnor K-theory of fields”. We show that it is precisely

related to motivic cohomology outside the diagonal. An advantage of the theory is that

it is defined in elementary terms whereas the motivic complexes are sophisticated

and enormously hard for computations. All the definitions of the motivic complexes

are strictly geometric, whereas the definition of semilocal Milnor K-theory is strictly

algebraic (whenever the base field is infinite—see Remark 3.2).

By definition, semilocal Milnor K-theory of a field k consists of bigraded Abelian

groups K̂M
n,m(k), m, n � 0 (see Definition 3.1). Precisely, let �̂•

k be the cosimplicial

scheme, where each �̂�
k is the semilocalization of the standard affine scheme ��

k at its

vertices v0, . . . , v� (see Definition 2.3). Let K M
n be the Zariski sheaf of Milnor K-theory in

degree n � 0. Semilocal Milnor K-theory complex is the chain complex K M
n (�̂•

k) and

K̂M
n,m(k) := Hm(K M

n (�̂•
k)).

If k is infinite, the complex K M
n (�̂•

k) is defined naively in terms of generators and rela-

tions (see Remark 3.2). So semilocal Milnor K-theory groups are defined as homology

groups of complexes defined by generators and relations.
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Semilocal Milnor K-Theory 3

The main result of the paper, Theorem 3.5, says that there is a strongly

convergent spectral sequence relating semilocal Milnor K-theory to semilocal motivic

cohomology

E2
pq = Hp(Hn−1−q

Zar (�̂•
k, τ<nZ(n))) �⇒ K̂M

n,p+q+2(k).

Here τ<nZ(n) is the truncation complex of Z(n) for degrees smaller than n and

Hn−1−q
Zar (�̂•

k, τ<nZ(n)) is the chain complex obtained by the evaluation of the (n−1−q)-th

Zariski cohomology sheaf of the complex τ<nZ(n) at the cosimplicial semilocal scheme

�̂•
k. Moreover, if n = 2, then the spectral sequence above collapses, and hence for any

p � 1 there is an isomorphism Hp
Zar(k,Z(2)) = K̂M

2,3−p(k). Thus, semilocal Milnor K-

theory is related to motivic cohomology exactly outside the diagonal ⊕Hn(k,Z(n)) in

contrast with the classical Milnor K-theory. Another important and strong property

of semilocal Milnor K-theory that distinguishes it, say, from motivic cohomology

and Quillen’s K-theory is that it is invariant under purely transcendental extensions

(see Theorem 3.14). The spectral sequence of Theorem 3.5 also implies that plenty

of information is removed from motivic cohomology groups to get semilocal Milnor

K-theory groups (see Corollary 3.7 as well).

Various applications of semilocal Milnor K-theory are given in the paper.

First, several criteria for the Beilinson–Soulé vanishing conjecture are established in

Theorem 4.1. We next pass to computation of K4 of a field. The group K3 was actively

investigated in the 80s—see Levine [17, 18], Merkurjev and Suslin [21, 24] (it is worth

mentioning that semilocal PIDs play an important role in their analysis). Recall that

K3(k) fits into an exact sequence

0 → KM
3 (k) → K3(k) → Kind

3 (k) → 0.

We compute the group Kind
3 (k) as K̂M

2,2(k) in Corollary 3.10, so that K3(k) is fully deter-

mined by Milnor K-theory and semilocal Milnor K-theory. The latter computation is of

independent interest. Similarly to K3(k) we show in Theorem 5.4 that K4(k) is also fully

determined by Milnor K-theory and semilocal Milnor K-theory. These are somewhat

surprising results. As a whole, the relationship between the semilocal Milnor K-theory

K̂M∗,∗(k) and algebraic K-theory K∗(k) is of great interest. Indeed, semilocal Milnor

K-theory groups are homology groups of complexes defined naively by generators and

relations (if k is infinite), whereas K∗(k) is defined as homotopy groups of some infinite-

dimensional space and thus seemingly very inaccessible to computations.
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4 G. Garkusha

Another application is given for the Beilinson conjecture on the rational

K-theory of fields of prime characteristic. Namely, it is shown in Theorem 6.1 that

this conjecture is equivalent to vanishing of rational semilocal Milnor K-theory. Also,

vanishing of rational semilocal Milnor K-theory is shown to be a necessary condition

for Parshin’s conjecture (see Theorem 6.3).

In the final Section 7, it is shown that in contrast with motivic cohomology

groups with mod 2 coefficients, semilocal Milnor K-theory groups with Z/2-coefficients

K̂M
n,∗(k,Z/2) are zero for any n > 1. This is another property of semilocal Milnor K-theory

distinguishing it with the classical Milnor K-theory/motivic cohomology of fields. We

also raise a conjecture in this section on rational contractibility of the logarithmic de

Rham–Witt sheaves Wr�
n
log.

The author would like to thank Daniil Rudenko and Matthias Wendt for

numerous discussions on the Beilinson–Soulé vanishing conjecture. He also thanks Jean

Fasel and the anonymous referees for helpful comments.

2 Preliminaries

Throughout the paper, we denote by Sm/k the category of smooth separated schemes of

finite type over a field k. By a smooth semilocal scheme over k, we shall mean a k-scheme

W for which there exists a smooth affine scheme X ∈ Sm/k and a finite set x1, . . . , xn of

points of X such that W is the inverse limit of open neighborhoods of this set. We will

deal with both complexes for which the differential has degree −1 (chain complexes) and

those for which the differential has degree +1 (cochain complexes). By the homological

shift of a chain complex A, we mean the chain complex A[1] with A[1]n = An+1 and

differential −dA. The author should stress that the machinery of motivic homotopy

theory is not used here (except the proofs of Theorem 3.14 and Proposition 5.1) because

we often work with non-A1-invariant (pre)-sheaves having no transfers.

Following [25, §2], for any presheaf F : Sm/k → Ab, let C̃1F denote the following

presheaf:

C̃1F (X) = lim−→
X×{0,1}⊂U⊂X×A1

F (U).

There are two obvious presheaf homomorphisms (given by restrictions to X×0 and X×1,

respectively) i∗0, i∗1 : C̃1F → F .
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Semilocal Milnor K-Theory 5

Definition 2.1 ([25, 27]). A presheaf F is said to be rationally contractible if there

exists a presheaf homomorphism s : F → C̃1F such that i∗0s = 0 and i∗1s = id.

Example 2.2. (1) Given n, l > 0, the Zariski sheaves with transfers Ztr(G
∧n
m ) :=

Cor(−,G∧n
m ) and Ztr(G

∧n
m )/l defined in [27, Section 3] are rationally contractible by [27,

9.6].

(2) Let k be a perfect field of characteristic not 2. Then the presheaf with Milnor–

Witt correspondences Z̃(G×n
m )/Z̃((1, . . . , 1)) := C̃or(−,G×n

m )/C̃or(−, (1, . . . , 1)) in the sense

of [4] is rationally contractible by [2, 2.5], and hence its direct summand Z̃(G∧n
m ) :=

C̃or(−,G∧n
m ) is (see the proof of [27, 9.6] as well). Z̃(G∧n

m ) is a Zariski sheaf by [4, 5.2.4].

Definition 2.3. Given a field k and � � 0, let O(�)k,v denote the semilocal ring of the

set v = {v0 = (1, 0, . . . , 0), . . . , vn = (0, . . . , 0, 1)} of vertices of ��
k = Spec(k[t0, . . . , t�]/(t0 +

· · · + t� − 1)) and set

�̂�
k := SpecO(�)k,v.

Then � �→ �̂�
k is a cosimplicial semilocal subscheme of �•

k.

Proposition 2.4 (Suslin [25]). The following statements are true:

(1) Let F : Sm/k → Ab be a rationally contractible presheaf. Then the presheaf

Cn(F ) = Hom(�n
k , F ) is also rationally contractible.

(2) Assume that the presheaf F is rationally contractible. Then the complex

F (�̂•
k) is contractible, and hence acyclic.

If F • is a cochain complex, then the canonical truncation τ<0F • of F • has the

property that Hi(τ<0F •) = Hi(F •) for i < 0 and Hi(τ<0F •) = 0 if i � 0. If F • is a cochain

complex of presheaves, we will write H −q to denote the −qth cohomology presheaf of

the complex F •.

By a tower in a triangulated category T , we mean a sequence of maps

· · · fq+2−−→ Xq+1
fq+1−−→ Xq

fq−→ · · · f1−→ X0

in T . The q-th layer of the tower is an object Bq ∈ T fitting in a cofiber sequence

Xq+1
fq+1−−→ Xq → Bq → �Xq+1 in T .
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6 G. Garkusha

The following result plays an important role in our analysis. It says that

the zeroth cohomology of a non-positive cochain complex of rationally contractible

presheaves evaluated at �̂•
k is recovered, up to homology, from negative cohomology

evaluated at �̂•
k.

Theorem 2.5. Suppose F •

· · · d−3−−→ F−2 d−2−−→ F−1 d−1−−→ F 0 → 0 → · · · (1)

is a cochain complex of rationally contractible presheaves concentrated in non-positive

degrees. Let L −n := Kerd−n, n > 0, and L := Cokerd−1. Then the chain complex of

Abelian groups L (�̂•
k) is zig-zag quasi-isomorphic to the chain complex L −1(�̂•

k)[−2].

Moreover, there is a tower in the derived category D(Ab) of chain complexes of Abelian

groups which are concentrated in non-positive degrees

· · · α−3−→ L −3(�̂•
k)[−2]

α−2−→ L −2(�̂•
k)[−1]

α−1−→ L −1(�̂•
k) (2)

with q-th layer, q � 0, being the complex H −1−q(�̂•
k)[−q]. In particular, the tower (2)

gives rise to a strongly convergent spectral sequence

E2
pq = Hp(H −1−q(�̂•

k)) := Hp(H −1−q(τ<0F •)(�̂•
k)) ⇒ Hp+q+2(L (�̂•

k)).

Proof. Consider a short exact sequence of presheaves

0 → Im d−1 → F 0 → L → 0.

It induces a short exact sequence of Abelian groups in each degree n � 0:

0 → lim−→
U�v0,...,vn

(Im d−1)(U) → lim−→
U�v0,...,vn

(F 0)(U) → lim−→
U�v0,...,vn

L (U) → 0,

where v0, . . . , vn are the vertices of �n
k and U ⊆ �n

k . We also use here the fact that the

direct limit functor is exact. The latter is nothing but the short exact sequence

0 → (Im d−1)(�̂n
k ) → (F 0)(�̂n

k ) → L (�̂n
k ) → 0.
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Semilocal Milnor K-Theory 7

Since F 0 is rationally contractible by assumption, it follows that the complex of Abelian

groups (F 0)(�̂•
k) is contractible by Proposition 2.4(2). Now the induced triangle in D(Ab)

(Im d−1)(�̂•
k) → (F 0)(�̂•

k) → L (�̂•
k)

τ−→ (Im d−1)(�̂•
k)[−1]

yields a zig-zag quasi-isomorphism of chain complexes τ : L (�̂•
k)

∼−→ (Imd−1)(�̂•
k)[−1].

For the same reasons, (Imd−1)(�̂•
k) is zig-zag quasi-isomorphic to L −1(�̂•

k)[−1]. For this,

one uses the short exact sequence of presheaves L −1 ↪→ F−1 � Imd−1. So L (�̂•
k) is zig-

zag quasi-isomorphic to L −1(�̂•
k)[−2].

Similarly, each short exact sequence of presheaves

0 → L −n in−→ F−n pn−→ Im d−n → 0

gives rise to a quasi-isomorphism of chain complexes an : (Imd−n)(�̂•
k) � L −n(�̂•

k)[−1].

It is induced by the map bn : Imd−n → L −n[−1] in D(Ab) given by the zig-zag map of

chain complexes

Here the chain complex in the middle is concentrated in degrees 1 and 0.

Next, each short exact sequence of presheaves

0 → Im d−n−1 jn−→ L −n → H −n → 0

gives rise to a triangle in D(Ab)

L −n−1(�̂•
k)[−1] −→ L −n(�̂•

k) → H −n(�̂•
k) → L −n−1(�̂•

k).

In this way, we obtain the desired tower (2) with layers as stated. Up to shift the

morphism α−n equals the composite map jn(�̂•
k) ◦ a−1

n . Note that the nth complex of the

tower L −n−1(�̂•
k)[−n] is (n − 1)-connected, and hence the tower gives rise to a strongly

convergent spectral sequence

Epq
2 = Hp(H −1−q(�̂•

k)) ⇒ Hp+q+2(L (�̂•
k))

after applying [6, 6.1.1] to it. This completes the proof. �
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8 G. Garkusha

Remark 2.6. Similarly to [6, 6.1], the spectral sequence of the preceding theorem

occurs from an exact couple (with maps i, j, k of bidegrees (1, −1), (0, 0), (−2, 1), respec-

tively)—see [6, p. 798] for details.

Let A be a V-category of correspondences on Sm/k in the sense of [9]

(V-categories are just a formal abstraction of basic properties for the category of finite

correspondences Cor). We say that A is nice if for any smooth semilocal scheme W

and any A1-invariant presheaf F with A -correspondences the canonical morphism of

presheaves F → FZar induces an isomorphism of Abelian groups F (W)
∼=−→ FZar(W).

Here FZar is the Zariski sheaf associated to the presheaf F . For example, the category

of finite correspondences Cor is nice by [29, 4.24]. If the base field k is infinite perfect

of characteristic different from 2, then the category of finite MW-correspondences in

the sense of [4] is nice by [2, 3.5].

Corollary 2.7. Under the conditions of Theorem 2.5 suppose that (1) is a cochain

complex of Zariski sheaves with nice correspondences such that its presheaves L

and H −q-s are A1-invariant. Then the chain complex of Abelian groups LZar(�̂
•
k) is

quasi-isomorphic to the chain complex of Abelian groups L −1(�̂•
k)[−2] = L −1

Zar(�̂
•
k)[−2].

Moreover, the q-th layer of the tower (2) equals the complex H
−1−q

Zar (�̂•
k)[−q]. Here H

−q
Zar

stands for the −qth cohomology Zariski sheaf of the complex of Zariski sheaves (1). In

particular, the tower (2) gives rise to a strongly convergent spectral sequence

E2
pq = Hp(H

−1−q
Zar (�̂•

k)) := Hp(H
−1−q

Zar (τ<0F •)(�̂•
k)) ⇒ Hp+q+2(LZar(�̂

•
k)).

3 Semilocal Milnor K-Theory

Let Z(n) be Suslin–Voevodsky’s motivic complex of Zariski sheaves of weight n � 0 on

Sm/k (see [27, Definition 3.1]). By definition, it is concentrated in cohomological degrees

m � n. More precisely, it equals the cochain complex with differential (of degree +1)

equal to the alternating sum of face operations

· · · → Cor(�2
k × −,G∧n

m ) → Cor(�1
k × −,G∧n

m ) → Cor(−,G∧n
m ) → 0 → · · · (3)

Here the Zariski sheaf Cor(−,G∧n
m ) is in cohomological degree n. Basing on well-known

theorems of Nesterenko–Suslin [23] and Totaro [28], define the n-th Milnor K-theory

sheaf K M
n as the Zariski sheaf H n

Zar(Z(n)).
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Semilocal Milnor K-Theory 9

Similarly, let Z̃(n) be Calmès–Fasel’s Milnor–Witt motivic complex of Zariski

sheaves of weight n � 0 on Sm/k (see [4]). More precisely, it equals the cochain complex

with differential (of degree +1) equal to the alternating sum of face operations

· · · → C̃or(�2
k × −,G∧n

m ) → C̃or(�1
k × −,G∧n

m ) → C̃or(−,G∧n
m ) → 0 → · · · (4)

Denote by K MW
n the Zariski sheaf H n

Zar(Z̃(n)). We shall also refer to K MW
n as the n-th

Milnor–Witt K-theory sheaf .

Definition 3.1. Let k be any field and n � 0. The n-th semilocal Milnor K-theory

complex of the field k is the chain complex of Abelian groups K M
n (�̂•

k).

The (n, q)-th semilocal Milnor K-theory group K̂M
n,q(k) of k is defined as the q-th

homology group Hq(K M
n (�̂•

k)) of the n-th semilocal Milnor K-theory complex of k. By

definition, K̂M
n,q(k) = 0 for all q < 0.

Let k be an infinite perfect field of characteristic not 2 and n � 0. The n-th

semilocal Milnor–Witt K-theory complex of the field k is the chain complex of Abelian

groups K MW
n (�̂•

k).

The (n, q)-th semilocal Milnor–Witt K-theory group K̂MW
n,q (k) of k is defined as the

q-th homology group Hq(K MW
n (�̂•

k)) of the n-th semilocal Milnor K-theory complex of k.

By definition, K̂MW
n,q (k) = 0 for all q < 0.

If A is an Abelian group, then the same definitions are given “with

A-coefficients”, in which case we just tensor the relevant complexes by A to get

K M
n (�̂•

k) ⊗ A and K MW
n (�̂•

k) ⊗ A and then semilocal Milnor and Milnor–Witt K-

theory groups with A-coefficients K̂M
n,∗(k, A), K̂MW

n,∗ (k, A) are homology groups of these

complexes. In what follows, we mostly deal with the case A = Q, in which case we write

the subscript Q.

All statements that are proven below with integer coefficients will automatically

be true with Q-coefficients. The interested reader will always be able to repeat the

relevant proofs rationally (we do not write them for brevity). Also, many statements

are valid with any coefficients, say, when A is finite. Since motivic cohomology with

finite coefficients is well studied, we do not discuss this case either, assuming that the

interested reader will do this easily.

We also recall from [5, 16, 23] that the nth Milnor K-group KM
n (R) of a

commutative ring R is the abelian group generated by symbols {a1, . . . , an}, ai ∈ R×,

i = 1, . . . , n, subject to the following relations:
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10 G. Garkusha

(1) for any i, {a1, . . . , aia
′
i, . . . , an} = {a1, . . . , ai, . . . , an} + {a1, . . . , a′

i, . . . , an};
(2) {a1, . . . , an} = 0 if there exist i, j, i �= j, such that ai + aj = 0 or 1.

Remark 3.2. If the field k is infinite, it follows from [5, 16] that K M
n (�̂�

k) = KM
n (O(�)k,v).

The n-th semilocal Milnor K-theory chain complex K M
n (�̂•

k) is therefore isomorphic to

the chain complex KM
n (O(•)k,v). In particular, K̂M

n,q(k) = Hq(KM
n (O(•)k,v)) for all n, q � 0.

We see that K M
n (�̂�

k) is defined naively in terms of generators and relations.

Lemma 3.3. Given any field k, the complex K M
0 (�̂•

k) has only one non-zero homology

group in degree zero, K̂M
0,0(k), which is isomorphic to Z.

Proof. This follows from the fact that the complex Z(0) is canonically quasi-

isomorphic to the constant sheaf Z, positioned in degree 0 (see [27, 3.2]). �

Recall from [15, 2.3.1] that a presheaf with transfers F is birationally invariant

if F (X)
�−→ F (U) for any dense open immersion j : U → X. Birationally invariant

homotopy invariant presheaves with transfers are called birational sheaves.

Lemma 3.4. Given a birational sheaf F and an irreducible X ∈ Sm/k, the natural

morphism of complexes of Abelian groups

F (k(X)) → F (�̂•
k(X))

is a quasi-isomorphism.

Proof. By [14, 4.1.3], F is a birational motivic sheaf. By [14, p. 513], F (k(X)) →
F (�̂•

k(X)
) is a quasi-isomorphism. �

We are now in a position to prove the main result of the paper.

Theorem 3.5. Suppose k is any field. The following statements are true:

(1) For any n � 1, K̂M
n,0(k) = K̂M

n,1(k) = 0.

(2) For any n � 1, there is a strongly convergent spectral sequence

E2
pq = Hp(H

n−1−q
Zar (τ<nZ(n))(�̂•

k)) �⇒ K̂M
n,p+q+2(k),

where τ<nZ(n) is the truncation complex of Z(n) for degrees smaller than n.
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Semilocal Milnor K-Theory 11

(3) If n = 2 and p � 1, there is an isomorphism of Abelian groups Hp
Zar(k,Z(2)) =

K̂M
2,3−p(k).

(4) If the field k is infinite perfect of characteristic different from 2 and n � 1,

then the natural morphism of chain complexes of Abelian groups K MW
n (�̂•

k) → K M
n (�̂•

k)

is a quasi-isomorphism. In particular, it induces isomorphisms of Abelian groups

K̂MW
n,q (k)

∼=−→ K̂M
n,q(k) for all q ∈ Z.

Proof. (1)-(2). By Example 2.2 the Zariski sheaf with transfers Cor(−,G∧n
m ), n � 1,

is rationally contractible. It follows from Proposition 2.4 that the Zariski sheaf with

transfers Cor(��
k × −,G∧n

m ) is rationally contractible for every � � 0. Now the desired

spectral sequence of the second assertion follows from Corollary 2.7 if we apply it to the

cochain complex of rationally contractible Zariski sheaves with transfers (3). Another

argument proving (2) is that there is an exact triangle

0 → Tot(τ<nZ(n)(�̂•
k)) → Tot(Z(n)(�̂•

k)) → KM
n (�̂•

k)[−n] → 0

using the fact that the complex in the middle is acyclic.

Next, by Theorem 2.5 and Corollary 2.7, there is a quasi-isomorphism K M
n (�̂•

k) �
L −1

Zar(�̂
•
k)[−2] of chain complexes for some presheaf with transfers L −1 (the shift is

homological). Assertion (1) now follows.

(3). Suppose k is perfect. Since the motivic complex of weight one Z(1) is acyclic

in non-positive cohomological degrees by [27, 3.2], the proof of [29, 4.34] and Voevodsky’s

cancellation theorem [33] imply that

Hom(G∧1
m , H p

Zar(Z(2))) ∼= (H p(Hom(G∧1
m ,Z(2))))Zar = 0

for all p � 1. It follows from [15, 2.5.2] that each H
p

Zar(Z(2)), p � 1, is a birational

(Nisnevich) sheaf.

Lemma 3.4 implies that the natural map of chain complexes

H
p

Zar(Z(2))(k) → H
p

Zar(Z(2))(�̂•
k), p � 1,

is a quasi-isomorphism. Thus, Hi(H
p

Zar(Z(2))(�̂•
k)) = 0 for all i �= 0 and H0(H

p
Zar(Z(2))(�̂•

k)) =
H

p
Zar(Z(2))(k). Using Corollary 2.7 applied to the cochain complex of rationally

contractible Zariski sheaves with transfers (3), the qth layer H
−1−q

Zar (�̂•
k)[−q] of the

tower (2) is a complex having only one homology group in degree q. Using induction in q
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12 G. Garkusha

and applying homology functor to each triangle L
−q−2
Zar (�̂•

k)[−q−1] −→ L
−q−1
Zar (�̂•

k)[−q] →
H

−1−q
Zar (�̂•

k)[−q]
+−→ coming from the tower (2), we get an isomorphism of Abelian groups

Hp
Zar(k,Z(2)) = K̂M

2,3−p(k) for any p � 1.

Next, suppose K/k is a finitely generated field extension of the perfect field k.

Then K = k(U) for some U ∈ Sm/k. Each scheme �̂�
K is the semilocalization of ��

k × U at

the points (v0, η), . . . , (vn, η), where η is the generic point of U. Lemma 3.4 implies that

the natural map of chain complexes

H
p

Zar(Z(2))(K) → H
p

Zar(Z(2))(�̂•
K), p � 1,

is a quasi-isomorphism. Thus, Hi(H
p

Zar(Z(2))(�̂•
K)) = 0 for all i �= 0 and

H0(H
p

Zar(Z(2))(�̂•
K)) = H

p
Zar(Z(2))(K). As above, we get isomorphisms of Abelian groups

Hp
Zar(K,Z(2)) = K̂M

2,3−p(K), p � 1, for any finitely generated field extension K/k.

Finally, for any field K of characteristic p we follow the same argument as in

[25, p. 244]. We use the fact that it can be written as a directed limit K = lim−→i
Ki of fields

finitely generated over Z/p, and the fact that the above homology/cohomology groups

commute with directed limits (we use [20, Lemma 3.9]). We also use here the fact that the

cohomology groups H∗
Zar(K,Z(n)) = lim−→ H∗

Zar(Ki,Z(n)) are defined intrinsically in terms

of the field K and are independent of the choice of the base field.

(4). The proof is based on Bachmann’s results on the MW-motivic cohomology

[1]. By Example 2.2, the Zariski sheaf C̃or(−,G∧n
m ) is rationally contractible for every

n > 0.

If we consider the cochain complex of Zariski sheaves (4) and repeat the

arguments for the proof of the second assertion, we shall get a strongly convergent

spectral sequence

Ẽ2
pq := Hp(H

n−1−q
Zar (Z̃(n))(�̂•

k)) �⇒ K̂MW
n,p+q+2(k).

The natural functor of additive categories of correspondences C̃or → Cor induces a

map of spectral sequences Ẽ2
pq → E2

pq, where E2
pq is the spectral sequence of the second

assertion.

It follows from [1, Theorem 17] that the morphism of complexes τ<nZ̃(n) →
τ<nZ(n) is a quasi-isomorphism, locally in the Nisnevich topology. This means that

each morphism of Nisnevich sheaves H
p

Nis(Z̃(n)Nis) → H
p

Nis(Z(n)), p �= n, is an

isomorphism. The relation between notations of [1] and this paper is as follows:

πi(H̃Z)j = H
j−i

Nis (Z̃(j)Nis), πi(HμZ)j = H
j−i

Nis (Z(j)Nis).
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Semilocal Milnor K-Theory 13

It follows from [2, 3.5] that

H
p

Nis(Z̃(n)Nis)(�̂
�
k) = H

p
Zar(Z̃(n))(�̂�

k), � � 0.

Using [29, 5.5], one has

H
p

Nis(Z(n))(�̂�
k) = H

p
Zar(Z(n))(�̂�

k), � � 0.

Therefore, the morphism of strongly convergent spectral sequences Ẽ2
pq →

E2
pq is an isomorphism. This isomorphism implies that the map of chain complexes

K MW
n (�̂•

k) → K M
n (�̂•

k) is a quasi-isomorphism, as was to be proved. �

Corollary 3.6. Given any field k, semilocal Milnor K-theory complex K M
1 (�̂•

k) is

acyclic. In particular, K̂M
1,q(k) = 0 for all q ∈ Z.

Proof. By [27, 3.2], the complex τ<1Z(1) is acyclic. Therefore, the E2-page of the

strongly convergent spectral sequence of Theorem 3.5(2) for n = 1 is trivial. Our

statement now follows. �

Corollary 3.7. K̂M
n,2(k) = Coker(Hn−1

Zar (�̂1
k,Z(n))

∂1−∂0−−−→ Hn−1
Zar (k,Z(n))) for any field k and

n > 1.

If k is a field of positive characteristic p, then Milnor K-theory groups of k are p-

torsionfree by a theorem of Izhboldin [13]. The following statement says that semilocal

Milnor K-theory groups are p-uniquely divisible.

Corollary 3.8. Given any field k of positive characteristic p > 0, semilocal Milnor

K-theory groups K̂M
n,m(k) are p-uniquely divisible for all n > 0 and m ∈ Z. In particular,

K̂M
n,m(k) = K̂M

n,m(k) ⊗ Z[1/p].

Proof. We claim that H s
Zar(Z(n)) is a sheaf of Z[1/p]-modules for all n > 0 and s < n.

The Geisser–Levine theorem [11, 1.1] implies that H s
Zar(Z(n))(K) is p-uniquely divisible

for any field extension K/k. It follows that the morphism of sheaves H s
Zar(Z(n)) →

H s
Zar(Z(n)) ⊗ Z[1/p] is an isomorphism on field extensions K/k, and hence it is an

isomorphism of sheaves by [29, 4.20].

We see that the E2-term of the strongly convergent spectral sequence of Theorem

3.5(2) consists of p-uniquely divisible Abelian groups, and hence the semilocal Milnor

K-theory groups of the statement are p-uniquely divisible. �
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14 G. Garkusha

Remark 3.9. The preceding theorem implies that the evaluation of the Milnor–Witt

sheaf K MW
n , n � 1, at �̂•

k “deletes” the information about quadratic forms.

By Remark 3.2 if the base field k is infinite, Milnor K-theory of semilocal

schemes like �̂�
k has an explicit, naive description, whereas motivic cohomology involves

sophisticated constructions. Thus Theorem 3.5 computes some motivic cohomology

groups as homology groups of certain naive complexes. In particular, we can apply

“symbolic” computations to cycles in motivic complexes. It is worth pointing out that

the term “symbolic” here refers to the symbols in the definition of Milnor K-theory.

Furthermore, a theorem of Kerz [16, 1.2] implies that the norm residue homo-

morphism induces an isomorphism of complexes

K M
n (�̂•

k) ⊗ Z/�
∼=−→ Hn

et(�̂
•
k, μ⊗n

� ), n > 0,

if the field k is infinite of characteristic not dividing �. Since the second and the third

statement of Theorem 3.5 are true with finite coefficients, it follows that semilocal

Milnor K-theory groups with finite coefficients can be computed as homology groups

of complexes Hn
et(�̂

•
k, μ⊗n

� ).

Recall from [24] that the indecomposable K3-group of a field k, denoted by

Kind
3 (k), is defined as the cokernel of the canonical homomorphism KM

3 (k) → K3(k).

Corollary 3.10. For any field k, there is an isomorphism Kind
3 (k) = K̂M

2,2(k). In

particular, K3(k)
(2)
Q

= K̂M
2,2(k)Q.

Proof. The motivic spectral sequence gives an isomorphism Kind
3 (k) = H1

Zar(k,Z(2)).

Now Theorem 3.5 implies the claim. �

Corollary 3.11. For any perfect field k, any connected X ∈ Sm/k and any p � 1, there

is an isomorphism

Hp
Zar(X,Z(2)) = K̂M

2,3−p(k(X)),

where k(X) is the function field of X.

Proof. This follows from Lemma 3.4, the proof of Theorem 3.5(3) and the fact that for

any p � 1 there is an isomorphism of groups Hp
Zar(X,Z(2)) = Hp

Zar(k(X),Z(2)). �
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Semilocal Milnor K-Theory 15

Since Hp
Zar(k,Z(q)) is uniquely divisible for p � 0 and any field k (see, e.g., [34,

Exercise VI.4.6]), Theorem 3.5(3) implies the following

Corollary 3.12. For any field k and any n � 3, the group K̂M
2,n(k) is uniquely divisible.

Corollary 3.13. For any field k, there are isomorphisms of rational vector spaces

K4+p(k)
(2)
Q

= K̂M
2,3+p(k), p � 0.

Moreover, K3(k)Q = KM
3 (k)Q ⊕ K̂M

2,2(k)Q.

Proof. This follows from Theorem 3.5, Corollary 3.12, and the fact that for any p � −1

there is an isomorphism H−p
Zar(k,Q(2)) = K4+p(k)

(2)
Q

. �

Theorem 3.14. Semilocal Milnor K-theory is invariant under purely transcendental

extensions. Namely, K̂M
n,q(k) = K̂M

n,q(k(x)) for any field k and n, q � 0.

Proof. Suppose the base field k is perfect. Then the Zariski sheaf K M
n on Sm/k is

strictly homotopy invariant. Its Eilenberg–Mac Lane motivic S1-spectrum EM(K M
n ) is

A1-local by [22, 6.2.2], hence Hn
Nis(X, K M

n ) = SHS1(k)(X+, EM(K M
n )[n]), where SHS1(k)

is the homotopy category of motivic S1-spectra. In particular, the homology groups

of the complex K M
n (�̂•

k(X)/k) are isomorphic to the homotopy groups of the spectrum

EM(K M
n )(�̂•

k(X)/k) for any irreducible X ∈ Sm/k. By [14, 2.2.6], the latter spectrum is

stably weakly equivalent to s0(EM(K M
n ))(X), where s0(EM(K M

n )) is the zeroth slice of

EM(K M
n ) in the motivic Postnikov tower (see [14, §1.2]). Applying s0(EM(K M

n )) to the

morphism A1 → pt, one gets a stable weak equivalence of spectra s0(EM(K M
n ))(pt) →

s0(EM(K M
n ))(A1). We see that K̂M

n,q(k) = K̂M
n,q(k(x)) for any n, q � 0.

Suppose now k is any field of characteristic p > 0. Denote by k∞, the perfect

closure of k. Following Suslin [26], the theory of motivic cohomology and associated

categories of motives with p−1-coefficients over k is essentially the same with the

theory over k∞. We shall write K M
n,∞ for the nth Milnor K-theory sheaf on Sm/k∞.

By [26, 1.1 and 1.3] the canonical functor ϕ
 : ShvNis(k) → ShvNis(k∞) between the

categories of Nisnevich sheaves takes K M
n to K M

n,∞ (they are Nisnevich sheaves as well).

It follows from [26, 2.13] that the natural morphism of chain complexes K M
n (�̂•

k)[p−1] →
K M

n,∞(�̂•
k∞)[p−1] is an isomorphism. It remains to apply Corollary 3.8 and invariance

under purely transcendental extensions for perfect fields proven above. �
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16 G. Garkusha

We say that two smooth k-varieties X and Y are stably A1-equivalent if their

suspension motivic S1-spectra �∞
S1 X+ and �∞

S1 Y+ are isomorphic in the homotopy

category of motivic S1-spectra SHS1(k). If Y = pt we call X stably A1-contractible. For

example, any motivic equivalence between X and Y in the category of motivic spaces

induces an isomorphism of �∞
S1 X+ and �∞

S1 Y+.

The following result says that semilocal Milnor K-theory is an invariant for

stably A1-equivalent varieties.

Corollary 3.15. Suppose k is a perfect field. If X, Y ∈ Sm/k are irreducible and stably

A1-equivalent, then K̂M
n,q(k(X)) is isomorphic to K̂M

n,q(k(Y)) for any n, q � 0. In particular,

if X is irreducible and stably A1-contractible, then K̂M
n,q(k(X)) is isomorphic to K̂M

n,q(k)

for any n, q � 0.

Proof. We use the proof of Theorem 3.14 showing that the K̂M
n,q(k(X)) (respectively,

K̂M
n,q(k(Y))) are isomorphic to homotopy groups π∗(s0(EM(K M

n ))(X)) = SHS1(k)(�∞
S1 X+[∗],

s0(EM(K M
n ))) (respectively, π∗(s0(EM(K M

n ))(X)) = SHS1(k)(�∞
S1 Y+[∗], s0(EM(K M

n )))). �

4 Some Criteria for the Beilinson–Soulé Vanishing Conjecture

In this section, an application of the technique developed in the previous sections is

given. Recall that the Beilinson–Soulé vanishing conjecture states that each complex

Z(n), n > 0, on Sm/k is acyclic outside the interval of cohomological degrees [1, n]. It

follows from [31, p. 352] that it suffices to verify acyclicity of the complex Z(n) on Sm/k

outside the interval [1, n] whenever k is perfect. Therefore, the base field k is assumed

to be perfect throughout this section.

The main result of this section, Theorem 4.1, gives equivalent conditions for

the Beilinson–Soulé vanishing conjecture. In particular, it says that instead of verifying

acyclicity of the sophisticated complexes Z(n) in non-positive cohomological degrees,

it is enough to verify acyclicity of the chain complexes of Abelian groups Z 0(n)(�̂•
K/k),

where Z 0(n) := Ker∂0 with ∂0 : Cor(�n
k ×−,G∧n

m ) → Cor(�n−1
k ×−,G∧n

m ) being the zeroth

differential of the complex Z(n), and K/k is a finitely generated field extension.

Theorem 4.1. The following conditions are equivalent:

(1) the Beilinson–Soulé vanishing conjecture is true for complexes Z(n), n � 1,

on Sm/k;

(2) for every n � 1 and every finitely generated field extension K/k,

Z 0(n)(�̂•
K/k) is an acyclic chain complex;
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Semilocal Milnor K-Theory 17

(3) for every n � 1, Z 0(n) has a resolution in the category of Zariski sheaves

· · · d−2−→ R−1 d−1−→ R0 → Z 0(n)

such that each Ri is rationally contractible and cohomology presheaves

H i<0 are trivial on the semilocal schemes of the form �̂�
K/k, where K/k is

a finitely generated field extension;

(4) for every n � 1 and every finitely generated field extension K/k, the

total complex of the bicomplex τ�0(Z(n))(�̂•
K/k) is acyclic, where τ�0 is the

truncation in corresponding cohomological degrees;

(5) for every n � 1 and every finitely generated field extension K/k, the total

complex of the bicomplex τ[1,n](Z(n))(�̂•
K/k) is acyclic.

Proof. (1) ⇒ (2). Given � � 0 and n > 0, set

W −1−�(n) := Ker(∂−� : Cor(�n+�
k × −,G∧n

m ) → Cor(�n+�−1
k × −,G∧n

m )).

The proof of Theorem 2.5 and Corollary 2.7 shows that there is a tower in the derived

category D(Ab) of chain complexes of Abelian groups

· · · α−3−→ W −3(n)(�̂•
K/k)[−2]

α−2−→ W −2(n)(�̂•
K/k)[−1]

α−1−→ W −1(n)(�̂•
K/k) (5)

with q-th layer, q � 0, being the complex H
−q

Zar (�̂•
K/k)[−q]. Here H

−q
Zar stands for the −qth

cohomology sheaf of the complex Z(n). By definition, W −1(n) = Z 0(n). We use here

the fact that Cor(�n+�
k × −,G∧n

m ) is a rationally contractible sheaf by Example 2.2 and

Proposition 2.4. Similarly to Theorem 3.5, the tower (5) yields a strongly convergent

spectral sequence

E2
pq = Hp+q(H

−q
Zar (�̂•

K/k)) ⇒ Hp+q(Z 0(n)(�̂•
K/k)) (6)

By assumption, H
p

Zar(Z(n)) = 0 for p � 0. Therefore, the strongly convergent spectral

sequence (6) is trivial, and hence Z 0(n)(�̂•
K/k) is acyclic.

(2) ⇒ (1). We use induction in n. By [27, 3.2] Z(1) is acyclic in non-positive

degrees, hence the base case n = 1. Suppose Z(n − 1) is acyclic outside the interval

[1, n − 1]. We want to show that Z(n) is acyclic outside the interval [1, n]. Voevodsky’s
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18 G. Garkusha

cancellation theorem [33] together with [29, 4.34] implies that

Hom(G∧1
m , H p

Zar(Z(n))) = Hom(G∧1
m , H p

Nis(Z(n))) = H
p−1

Nis (Z(n − 1)) = 0

for all p � 0. We use here the fact that FZar = FNis for any homotopy invariant presheaf

with transfers (see [29, 5.5]). It follows from [15, 2.5.2] that each H
p

Zar(Z(n)), p � 0, is a

birational (Nisnevich) sheaf.

Let K/k be a finitely generated field extension. Then K = k(X) for some

X ∈ Sm/k. Lemma 3.4 implies that the natural map of chain complexes

H
p

Zar(Z(n))(K) → H
p

Zar(Z(n))(�̂•
K), p � 0,

is a quasi-isomorphism. Thus, Hi(H
p

Zar(Z(n))(�̂•
K)) = 0 for all i �= 0 and

H0(H
p

Zar(Z(n))(�̂•
K)) = H

p
Zar(Z(n))(K). Therefore, the strongly convergent spectral

sequence (6) collapses, and hence

0 = Hi(Z
0(n)(�̂•

K/k)) = H −i
Zar(Z(n))(K), i � 0.

Each sheaf H −i
Zar(Z(n)) is homotopy invariant by [29] and trivial on finitely generated

field extensions. It follows from [29, 4.20] that H −i
Zar(Z(n)) = 0, hence Z(n) is acyclic

outside the interval [1, n].

(1) ⇒ (3). This is straightforward: set R� := Cor(�n+�+1
k × −,G∧n

m ) with

differentials being those of Z(n). We use here the facts that Cor(�n+�
k × −,G∧n

m )

is rationally contractible (see Example 2.2 and Proposition 2.4) and that for any

smooth semilocal scheme W, any A1-invariant presheaf F with transfers the canonical

morphism F (W)
∼=−→ FZar(W) is an isomorphism [29, 4.24].

(3) ⇒ (2). This follows from the spectral sequence of Theorem 2.5.

(1) ⇒ (4). This is obvious.

(4) ⇔ (5). It is enough to observe that the total complex of the bicomplex

(Z(n))(�̂•
K/k) is acyclic for n > 0. The latter easily follows from [25, 2.2; 2.4] (see [2,

2.3] as well).

(4) ⇒ (2). The complex τ�0(Z(n)) equals

· · · → Cor(�n+2
k × −,G∧n

m ) → Cor(�n+1
k × −,G∧n

m ) → Z 0(n) → 0 → · · ·

Example 2.2(1), Proposition 2.4 and [26, 4.7] imply that the complex Cor(�n+�
k ×

−,G∧n
m )(�̂•

K/k) is acyclic for all n > 0. The spectral sequence for a double complex implies
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Semilocal Milnor K-Theory 19

that the homology groups of the complex τ�0(Z(n))(�̂•
K/k) are those of the complex

Z 0(n)(�̂•
K/k), and hence the remaining implication follows. �

5 K4 of a Field

In this section, another application of semilocal Milnor K-theory is given. We show that

the group K4(k) is completely determined by extensions involving the classical Milnor

K-theory and semilocal Milnor K-theory. If k is algebraically closed, then K4(k) is a

direct sum of relevant Milnor K-theory and semilocal Milnor K-theory groups of k.

Recall that the motivic spectral sequence relates algebraic K-theory to motivic

cohomology [6]

E2
p,q = Hq−p

Zar (k,Z(q)) ⇒ Kp+q(k). (7)

It is a strongly convergent spectral sequence concentrated in the first quadrant. It is

obtained from a tower of connected S1-spectra

· · · → K3 → K2 → K1 → K0 := K(k), (8)

where K(k) is Quillen’s K-theory spectrum of k. Rationally, the motivic spectral

sequence collapses at E2 = E∞ and

Kn(k)Q =
⊕

q

H2q−n
Zar (k,Q(q)) (9)

(see [7] for details).

Proposition 5.1. Let k be a perfect field (respectively, any field with char(k) = p > 0)

and let F be a homotopy invariant Nisnevich sheaf with transfers of Abelian groups

(respectively, Z[1/p]-modules). Let Â1
k be the semilocalization of the affine line at 0, 1.

Then

F (Â1
k) = F (k)

⊕
⎛
⎜⎝ ⊕

x∈A1
k\{0,1}

F−1(k(x))

⎞
⎟⎠ ,

where each x in the direct sum is a closed point of A1
k.
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20 G. Garkusha

Proof. Suppose k is perfect and U is an open subset of A1
k with Z = A1

k\U = {x1, . . . , xn}.
The Gysin triangle for motives [30] gives a triangle in DMeff (k)

n⊕
1

M(G∧1
m,k(xi)

) → M(U) → M(pt)
+−→

If x0 ∈ U is a rational point, then this triangle splits. If we apply DMeff (k)(−, F ) to this

triangle, one gets a canonical isomorphism F (U) = F (k) ⊕ (⊕n
i=1F−1(k(xi))). It follows

that

F (Â1
k) = colimU�{0,1}F (U) = F (k)

⊕
⎛
⎜⎝ ⊕

x∈A1
k\{0,1}

F−1(k(x))

⎞
⎟⎠ ,

as required. Here the splitting onto the first summand is given by x0 := 0 ∈ A1
k.

The statement for fields of positive characteristic is the same if we use Suslin’s

results [26] saying that Voevodsky’s theory for motivic complexes works for non-perfect

fields as well provided that we deal with sheaves with transfers of Z[1/p]-modules. �

The following result says that the motivic cohomology groups Hn−1
Zar (k,Z(n))

fit into a finite tower of homomorphisms of groups with subsequent quotients being

semilocal Milnor K-theory groups.

Theorem 5.2. There are exact sequences of Abelian groups

⊕
x∈A1

k\{0,1}
Hn−2

Zar (k(x),Z(n − 1))
u−→ Hn−1

Zar (k,Z(n)) → K̂M
n,2(k) → 0

and

⊕
x∈A1

k\{0,1}
K̂M

2,2(k(x))
u−→ H2

Zar(k,Z(3)) → K̂M
3,2(k) → 0.

Here n > 1 and each x of the left direct sums is a closed point. The homomorphism u is

the restriction of

∂1 − ∂0 : Hn−1
Zar (Â1

k,Z(n)) → Hn−1
Zar (k,Z(n))

to
⊕

x∈A1
k\{0,1} Hn−2

Zar (k(x),Z(n − 1)) ⊂ Hn−1
Zar (Â1

k,Z(n)).
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Semilocal Milnor K-Theory 21

Proof. The first exact sequence follows from Proposition 5.1 and Corollary

3.7. The second exact sequence is a particular case of the first one if we apply

Theorem 3.5(3). �

Corollary 5.3. Let n > 1 and X = {K̂M
�,2(k(x)) | x is a closed point in A1

k and

2 � � � n}. Then Hn−1
Zar (k,Z(n)) belongs to the smallest localizing Serre subcategory of Ab

containing X .

Proof. This is a consequence of Theorem 5.2 and [8, Proposition 2]. �

The motivic spectral sequence (7) gives a long exact sequence of Abelian groups

H−1
Zar(k,Z(2)) → π1(K3) → K4(k) → H0

Zar(k,Z(2))
d−→ KM

3 (k) → K3(k) → H1
Zar(k,Z(2)) → 0.

Here K3 is the fourth entry of the tower (8). It follows from [34, VI.4.3.2] that d = 0. By

Corollary 3.11 the latter long exact sequence can be rewritten as

K̂M
2,4(k) → π1(K3) → K4(k) → K̂M

2,3(k)
0−→ KM

3 (k) → K3(k) → K̂M
2,2(k) → 0.

Next, by using the motivic spectral sequence, we find that π1(K3) fits into an exact

sequence

KM
4 (k) → π1(K3) → H2

Zar(k,Z(3)) → 0.

By Theorem 5.2, H2
Zar(k,Z(3)) fits into an exact sequence

⊕
x∈A1

k\{0,1}
K̂M

2,2(k(x))
u−→ H2

Zar(k,Z(3)) → K̂M
3,2(k) → 0,

where each x in the direct sum is a closed point of A1
k.

We see that π1(K3) is expressed in terms of Milnor K-theory and semilocal

Milnor K-theory groups, and hence so is K4(k).

We are now in a position to prove the main result of the section.

Theorem 5.4. Let k be any field. The following statements are true:
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22 G. Garkusha

(1) K4(k) is entirely expressed in terms of Milnor K-theory and semilocal Milnor

K-theory groups. Precisely, K4(k) fits into an exact sequence

K̂M
2,4(k) → A → K4(k) → K̂M

2,3(k) → 0,

where A is an Abelian group fitted into an exact sequence

KM
4 (k) → A → B → 0

with B fitted into an exact sequence

⊕
x∈A1

k\{0,1}
K̂M

2,2(k(x)) → B → K̂M
3,2(k) → 0.

(2) There is an isomorphism of Abelian groups

K4(k)Q
∼= KM

4 (k)Q ⊕ K̂M
3,2(k)Q ⊕ K̂M

2,3(k) ⊕ F,

where F is a direct summand of
⊕

x∈A1
k\{0,1} K̂M

2,2(k(x))Q.

(3) If k is algebraically closed, then there is an isomorphism of Abelian groups

K4(k) ∼= KM
4 (k) ⊕ K̂M

3,2(k)Q ⊕ K̂M
2,3(k) ⊕ F,

where F is a direct summand of
⊕

k×\{1} K̂M
2,2(k)Q.

The isomorphisms from (2) and (3) are not canonical.

Proof. The first statement follows from the arguments above the theorem. The second

statement is a consequence of the first statement and isomorphism (9). It also uses

a rational splitting of the exact sequence for H2
Zar(k,Z(3)) from Theorem 5.2. We also

use here the fact that the group K̂M
2,3(k) is uniquely divisible by Corollary 3.12. Finally,

the third statement follows from the second one and the fact that KM
4 (k) and K4(k) are

uniquely divisible Abelian groups if k is algebraically closed (see, e.g., [34, pp. 267, 511,

514]). �

It is worth mentioning that since H−2
Zar(k,Z(1)) = 0 by [27, 3.2], the Beilinson–

Soulé vanishing conjecture for K4 requires only K̂M
2,3(k) = 0.
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6 On Conjectures of Beilinson and Parshin

Let k be a field of characteristic p > 0. A conjecture of Beilinson [3, 2.4.2.2] says that

Milnor K-theory and Quillen K-theory agree rationally:

KM
n (k)Q

∼=−→ Kn(k)Q.

The purpose of this section is to show that the Beilinson conjecture is equivalent to

vanishing of the rational semilocal Milnor K-theory. Since semilocal Milnor K-theory is

defined in elementary terms, its vanishing with rational coefficients should be much

easier for verification than the original Beilinson conjecture. We shall also show in this

section that vanishing of the rational semilocal Milnor K-theory is a necessary condition

for Parshin’s conjecture.

Theorem 6.1. The Beilinson conjecture for rational algebraic K-theory of fields of

positive characteristic is true if and only if rational semilocal Milnor K-theory groups

K̂M
n,m(k)Q of such fields vanish for all n > 0, m � 0.

Proof. Assume the Beilinson conjecture. Then the isomorphism (9) implies

Hi
Zar(k,Q(n)) = 0 for i �= n and all fields of prime characteristic. It follows that Zariski

cohomology sheaves except the nth cohomology are zero (we use here [29, 4.20]). Now

the spectral sequence of Theorem 3.5 and Corollary 3.6 imply K̂M
n,m(k)Q vanish for all

n > 0, m � 0.

Conversely, suppose that K̂M
n,m(k)Q vanish for all n > 0, m � 0 and all fields of

prime characteristic. We claim that each complex Q(n), n � 1, has only one non-zero

cohomology sheaf in degree n. We use induction in n. By [27, 3.2], Q(1) is acyclic in

non-positive degrees, hence the base case n = 1.

Assume that the complex Q(n), n � 1, has only one non-zero cohomology sheaf in

degree n. Repeating the proof of Theorem 3.5(3) word for word (see the proof of (2) ⇒ (1)

in Theorem 4.1 as well), we obtain that

Hm
Zar(k,Q(n + 1)) = K̂M

n+1,n−m+2(k)Q = 0, m � n.

Then Zariski cohomology sheaves except the (n + 1)th cohomology of Q(n + 1) are zero

(we use here [29, 4.20]), and our claim follows.

The isomorphism (9) now implies that the natural homomorphism KM
n (k)Q →

Kn(k)Q is an isomorphism, as was to be shown. �
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24 G. Garkusha

Remark 6.2. (1) We should stress that in the proof of Theorem 6.1 we work with

all fields of prime characteristic (not with individual ones) in order to annihilate the

relevant Zariski cohomology sheaves.

(2) By Corollary 3.8, K̂M
n,m(k) = K̂M

n,m(k) ⊗ Z[1/p] for all n > 0, m � 0. It follows

that K̂M
n,m(k)Q = K̂M

n,m(k) ⊗ Z(p). Therefore, K̂M
n,m(k)Q = 0 if and only if K̂M

n,m(k) ⊗ Z(p) = 0.

Recall that Parshin’s conjecture [3, 2.4.2.3] states that for any smooth projective

variety X defined over a finite field, the higher algebraic K-groups vanish rationally:

Ki(X)Q = 0, i > 0.

We finish the section by the following

Theorem 6.3. Let k be a field of characteristic p > 0 and assume Parshin’s conjecture.

Then rational semilocal Milnor K-theory groups K̂n,m(k)Q vanish for all n > 0, m � 0.

Proof. It follows from [10, p. 203] that Hi
Zar(k,Q(n)) = 0 for i �= n. The proof of Theorem

6.1 shows that rational semilocal Milnor K-theory groups K̂n,m(k)Q vanish for all n >

0, m � 0, as required. �

7 Concluding Remarks

In contrast with motivic cohomology with mod 2 coefficients, we show in this section

that semilocal Milnor K-theory groups with Z/2-coefficients K̂M
n,∗(k,Z/2) are zero for

any n > 1 (see Definition 3.1). This is another property of semilocal Milnor K-theory

distinguishing it with the classical Milnor K-theory/motivic cohomology of fields. This

also distinguishes semilocal Milnor K-theory with relative Milnor K-theory in the sense

of Levine [19]. More precisely, we have the following:

Theorem 7.1. For any infinite perfect field k and any n > 1 the n-th semilocal Milnor

K-theory complex with Z/2-coefficients K M
n (�̂•

k) ⊗ Z/2 is acyclic or, equivalently, the

semilocal Milnor K-theory groups with Z/2-coefficients K̂M
n,∗(k,Z/2) are zero.

Proof. We separate two cases in the proof: when char(k) = 2 and char(k) �= 2. If

char(k) = 2, then Geisser–Levine’s theorem [11] implies that the sheaf K M
n /2 is quasi-

isomorphic to a shift of Z/2(n). It follows from Example 2.2 and Proposition 2.4 that

the total complex of the bicomplex Z/2(n)(�̂•
k) is acyclic, hence so is the complex

K M
n (�̂•

k) ⊗ Z/2.
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Suppose now that char(k) �= 2. Set,

In+1 := ker(K MW
n → K M

n ), n � 0,

where K MW
n , K M

n are Nisnevich sheaves of Milnor–Witt and Milnor K-theory, respec-

tively. By [16, 7.10] and [12, 6.3] there is an isomorphism of sheaves

In/In+1 = K M
n /2. (10)

Consider a short exact sequence of sheaves

0 → In+1 → K MW
n → K M

n → 0, n � 1.

It follows from Theorem 3.5(4) and [2, 3.6] that the complex In+1(�̂•
k) is acyclic for all

n � 1. The isomorphism (10) and [2, 3.6] imply that the complex K M
n (�̂•

k)⊗Z/2 is acyclic

if n > 1. �

In characteristic p, it follows from the Geisser–Levine theorem [11] that the

logarithmic de Rham–Witt sheaf Wr�
n
log is quasi-isomorphic to a shift of Z/pr(n). Using

this quasi-isomorphism, the proof of the preceding theorem shows that the complex

Wr�
n
log(�̂•

k) is acyclic. The converse is also true. More precisely, using the technique

developed in this paper for semilocal Milnor K-theory, one can show that if the complex

W1�n
log(�̂•

k) is acyclic for any n > 0 then the complex Z/p(n) has only one cohomology

sheaf isomorphic to W1�n
log. The latter implies (using induction in r) that the only non-

trivial cohomology sheaf of Z/pr(n) is Wr�
n
log.

The above arguments justify to raise the following

Conjecture. Each logarithmic de Rham–Witt sheaf Wr�
n
log is rationally contractible.

This conjecture will shed new light not only on the fundamental theorem of

Geisser–Levine [11] but also on further properties of the logarithmic de Rham–Witt

sheaf Wr�
n
log which is of fundamental importance. In particular, if the conjecture

were solved in the affirmative then the complex Wr�
n
log(�̂•

k) would be contractible

by Proposition 2.4(2). A good starting point for the conjecture would be rational

contractibility of W1�n
log.
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