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Abstract. Reverse engineering (RE) has played a key role in producing low de-

mands parts, especially with the recent advent of robust additive manufacturing 

(AM) techniques. The synergetic interaction of both cutting-edge RE and AM 

techniques significantly enhance part re-producing and minimize the product de-

velopment cycle time, even if there is no blueprint for the desired product. Re-

cently, computer vision algorithms have enhanced the RE process and strengthen 

its capabilities to reconstruct challenging shapes. Nevertheless, the large body of 

the reported literature is restricted to estimate the 3D shape of the scanned part 

from a single/multiple 2D/3D image based on predefined classes using super-

vised learning. The ability to reconstruct intricate geometrical features of real 

mechanical parts and complex shapes has not been fully realized yet. In this con-

text, this paper reports on a hybrid learning technique-based conceptual computer 

vision framework to enhance RE process for reproducing of low demand prod-

ucts. The hybrid learning proposed herein is a supervised and unsupervised learn-

ing technique using a dual deep learning models to enrich the computer vision 

technique with the ability to reconstruct 3D complex features using a single 3D 

depth image. 

Keywords: Computer Vision, Machine Learning, Deep Learning, Hybrid learn-

ing, 3D Reconstruction, Production, Additive Manufacturing (AM), Reverse 

Engineering (RE). 

1 Introduction 

Additive manufacturing (AM, also known as 3D printing) plays an essential role in 

modern manufacturing because it enables printing components in a Make-To-Order ap-

proach, for low-demand products and replaceable spare parts [1]. Although, regular 

mass-production systems offer cost-effective solution for high demand products, this is 

not the case for producing low-demand products and spare parts [1-2]. 3D Printing of 

spare parts could be an achievable task if the blueprint of the part to be manufactured 
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is already exists, but it will be very costly and time-consuming to reproduce the blue-

print if it is no longer available [2]. Reverse Engineering (RE) helps avoid redraw-

ing/remodeling of existing parts, with no blueprint available, to facilitate their 3D print-

ing. RE is described by acquiring and recognizing the features of the existing part to 

reconstruct its shape in a computer added design (CAD) format, e.g. standard triangle 

language (STL) format, in order to be produced [2].  

 

In RE, the reconstruction process of the 3D model is carried out via characterizing 

the original product, i.e. old spare part, using a camera or a 3D scanner. Current RE 

methods are developed based on 3D scanning and photogrammetry [3]. The photogram-

metry workflow starts by capturing various images of an existing part. Then these im-

ages are fed into the photogrammetry algorithm to estimate the 3D shape and features 

of the product and to remove unwanted features such as background and overlap with 

another part.  Finally, the 3D shape is to be converted to the STL/CAD format and 

loaded onto the 3D printer. Figure 1 shows the workflow of the RE process. 

 

 
Fig. 1. Workflow of reverse engineering of additively manufactured parts (modified 

from [3]).  

 

 Most of recent photogrammetry methods are computer vision algorithms and devel-

oped to convert a large number of 2-dimensional red-green-blue (2D RGB) images into 

a 3-dimensional image including the depth feature and is called “RGB-D image”, 

“depth image”, or “3D image”. This depth image is used to generate a 3D model. The 

disadvantages of using the photogrammetry method are as follows; capturing a large 

number of 2D images is time-consuming and needs a high processing power afterwards 

to reconstruct the 3D image/STL file of the part. In addition, the method omits the 

ability to estimate missing information such as uncaptured features or damaged/broken 

area in the scanned part. The aforementioned limitations preclude the full potential of 

RE to produce accurate replaceable spare parts and low demand products.  
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Machine learning (ML) and deep learning (DL) can be utilized to impower computer 

vision algorithms to enable the reconstruction of the 3D part features using a limited 

number of 2D/3D images. ML and DL are defined as a group of computer algorithms 

that can autonomously expand their classification/estimation/decision making capabil-

ities utilizing a number of learning techniques [5-7].  In ML/DL, the algorithms build a 

learning model using a sample of data, termed “training data” or “ground truth data”, 

which is the previous information of what the output of the model should be for a given 

input. The outcome of the learning process enables the algorithm to make predictions 

or take a specific action without being explicitly pre-programmed to perform [5-7]. 

ML/DL algorithms are used in a wide variety of applications such as search engine 

recommendations, natural language processing, speech recognition, smart robotics/en-

vironment interaction, and computer vision.  

 

In ML/DL, the learning techniques could be supervised, unsupervised, semi-super-

vised or reinforcement. The main difference among these learning techniques is the 

level of availability of ground truth data. In particular, in supervised learning, a labeled 

dataset is utilized to train a function and enrich its ability to map inputs to outputs of 

the processed dataset. Face recognition is considered a supervised learning problem, in 

which the algorithm learns how to autonomously distinguish and correlate human face 

images with associated “labels”, people names in this case. Dissimilar to the previous 

learning technique, in unsupervised learning, there is no labeled outputs and thus its 

goal is to perform clustering of similar features out of a group of data. A search engine 

recommendation exemplifies un supervised learning task, where the algorithm clusters 

relevant words/sentence based on understanding their features. The semi-supervised 

learning bridges both former techniques by utilizing a blend of labeled and unlabeled 

datasets. This enables the algorithm to extract information from the labeled data to take 

proper decisions such as classification of the unlabeled dataset [5-7]. Finally, the rein-

forcement learning which is a technique of rewarding true activities and punishing false 

activities. This technique assigns true values “1” to the required actions and false values 

“0” to unwanted actions in order to train the algorithm “agent” how to take right deci-

sions. Smart robotics/environment interactive systems and autonomous cars are good 

examples for the implementation of the reinforcement learning technique. Figure 2 

shows the different between the four learning techniques. 
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Fig. 2. The different between the four machine learning algorithms  

 In the literature, the utilization of ML/DL in computer vision for 3D reconstruction 

was restricted to supervised learning. In this case, the algorithm recognizes the part and 

correlate it to one class of the predefined dataset, which enables to retrieve the full part 

features from the saved features database and complete the missing features of the part. 

However, and in case the part doesn’t exist in the database, the algorithm will not be 

able to estimate the missing features [7-10]. Further elaboration of the 3D reconstruc-

tion using supervised learning will be given in Section 2. 

 

In this paper, the authors introduce a new conceptual computer vision framework 

based on hybrid leaning approach using supervised and unsupervised learning tech-

niques. The proposed leaning approach is designed based on dual deep learning algo-

rithms to enhance the 3D reconstruction method. Following this introduction, the re-

mainder of this paper is organized as follows; in Section 2, the state-of-the-art is re-

viewed. In Section 3, the proposed approach entailing computer vision reconstruction 

method is explained. In Section 4, the hardware specs and the overall system architec-

ture are presented. In Section 5, the implications and expected outcome are discussed. 

In Section 6, the conclusion is drawn and future work is suggested. 
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2 State-of-the-Art of 3D shape reconstruction 

As formerly stated, recent computer vision algorithms [7-8], have shown high po-

tential to reconstruct a 3D object from a small number of 2D/3D image, only if the 

object is part of the saved database. It is worth emphasizing that this methodology of 

3D reconstruction inspired as an extension of the face recovery algorithms [9], but again 

with limited competence to estimate missing features and full features of a complex 

shape.   

 

Recently, there are a number of studies [10-12] attempted to reconstruct complex 

shapes by acquiring multiple images based on supervised approach. Nevertheless, the 

limitation in these studies was the low resolution of the reconstructed part. In [13-14], 

authors introduced a high-resolution 3D shape via Octree representation. Octree is a 

tree-base data structure which enables structure nodes to formalize 3D graphical data. 

Also, in order to increase the quality of the produced 3D image, the authors in [15] 

designed a pseudo-renderer to predict depth 3D shapes. The pseudo-renderer performs 

decisions to filled the gaps between similar pixel segments and set gaps between dif-

ferent pixel segments to reproduce the full 3D features. 

 

In order to avoid error and enhance quality of the estimated part, the missing features 

of the 3D shape can be completed by applying plane fitting algorithm on the captured 

3D images/points cloud. The algorithm can complete the missing area in the 3D shape 

as shown in Figure 3. Plane fitting is an algorithm to extract the plane feature from 

points cloud. It can be implemented via a number of methods such as least squares 

fitting (LSF) and principal component analysis (PCA). In LSF, the algorithm performs 

iterative steps to find the best fitted plane with the least-squares constraint of the dis-

tances from the scanned points to the plane. In the PCA, the algorithm calculates the 

eigenvector of point cloud as a perpendicular vector for finding out the parameters of 

the best plane. 

 

 
Fig. 3. Convert points cloud to full shape using plane fitting algorithm (modified from 

[18-19]) 
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 In [20-21], the authors utilized a shape symmetry technique to estimate the unknown 

features in the image using template feature algorithm based on supervised learning. 

Again, the captured image is compared with some of template which contains some 

different classes. If the captured image matches one of templates, the algorithm collects 

the full features from the database and reconstructs the missing features of the part. For 

example, morphable 3D models are exploited for face reconstruction, as shown in Fig-

ure 4(a). This face reconstruction method was edited to reconstruct simple objects in 

[21], as shown in Figure 4(b).  

 

 
Fig. 3. The estimation of missing information, (a) 3D face reconstruction while, (b) 3D object 
reconstruction (modified from [20-21]) 

With the rapid improvement of depth cameras, the RGB-D images are utilized to 

reconstruct the 3D object shape. Recent studies [24] estimated the 3D shape via a deep 

learning algorithm from several 3D images such as ShapeNets DL model. The Shap-

eNets [25] introduces a 3D reconstruction of shape from a single 3D image. The process 

is performed as follows; the ShapeNet model recognizes the 3D shape from a single 

depth image based on 10 object classes classifier (see Figure 5(a)) and then completes 
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the missing features based on the saved featured in the database, as shown in Figure 5 

(b-c).  

 

 
Fig. 5. 3D shape reconstruction using 3D ShapeNets, (a) shows the architecture of the classifier 

which is used in recognition stage, (b) represents the algorithm architecture, (b) shows the 
workflow of the algorithm from the step of the object capturing till the completion of the miss-
ing features and generates the full 3D image (modified from [25]). 

Looking at the reviewed literature, to the best of the authors knowledge all of the 

existing algorithms are found limited to classifying the objects on the basis of objects 

stored in a database by means of supervised learning. In case of capturing part that is 

not stored in the classes of the database, the algorithm will fail to estimate part missing 

features. This is even more problematic given that most of the available datasets are for 

toys, human bodies and there is no comprehensive dataset for mechanical and engineer-

ing part. Also, there is no a clear path for how existing method can be utilized to recon-

struct complex shapes.  

3 Proposed Algorithm  

In this paper, the authors introduce a new computer vision framework based on a 

hybrid, supervised and unsupervised, learning techniques to estimate full 3D shape 

structure from a single image. The proposed design will be built using the C++ pro-

gramming language, the open computer vision library (OpenCV) and the PyTorch 
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machine learning framework [26-28]. The algorithm starts by capturing a 3D image for 

the existing spare part from a single view. Then the algorithm preprocesses the captured 

3D image for edge detection and background removing. Then, the algorithm will try to 

classify the shape in a supervised way. If this fails because the object/shape of the image 

belongs to an unknown class, the algorithm will estimate the shape in a fully unsuper-

vised way using a defined group of geometric shapes (see Section 3.2). The proposed 

approach workflow is shown in Figure 6. In the following sub-sections, the three phases 

of design and development of the proposed algorithm (collecting data and prepro-

cessing - model design and training - platform selection and model deployment) are 

explained in detail. 

 

 
Fig. 6. The workflow of the proposed approach  

3.1 Data Collecting and Preprocessing  

In this phase the data will be collected and preprocessed. The data will be collected 

from four dataset sources. The first source is the “Object Scans” dataset [29] which has 

more than ten thousand RGB-D images for the real objects such as mugs, toys, con-

struction cars. Also, it has more than four hundred reconstructed CAD model which 

allows for training of 3D classifier model and 3D reconstruction model. The second 

dataset is a large-scale annotated mechanical component benchmark which is called 

“MBC dataset” and has 58,696 mechanical components in 3D shape in 68 classes [30]. 

The third data source is a big CAD model dataset which is called “ABC dataset” and 

has a one million CAD models for geometric learning purpose [31]. Every model of the 

ABC dataset is a group of obviously parametrized arcs, curvatures and surfaces which 

offer the ground truth for variance amounts such as sematic segmentation, geometric 
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feature recognition, and object feature reconstruction. Finally, the fourth source is in 

house dataset build in our 3D printing labs for printed parts. 

   

All of the four dataset groups will be preprocessed to create RGB-D images from 

different orientations of the objects, front, back, top, bottom, right and left side along 

with its corresponding full feature 3D image. Then a data augmentation technique will 

be implemented on the dataset in order to increase the amount of data by adding modi-

fied copies of the already existing data or newly created data form the existing dataset 

[32]. This procedure increases the accuracy of the deep leaning model by avoiding 

overfitting of the model [32], which takes place when the model function is strictly 

aligned to a limited set of data points [32].   

 

The purpose of compiling the four different dataset groups is to increase the variety 

and number of features and classes of the spare parts and real objects (see Section 3.2). 

This variety make the proposed DL model is able to deal with missing features in com-

plex parts. 

3.2 Model Design and Training  

 The proposed hybrid learning technique will be trained by using labeled and unla-

beled data to be able to estimate the missing features for given input. The potential of 

using hybrid learning in 3D reconstruction can be summarized in the following points; 

1. In supervised learning, the algorithm is trained using classes of training ex-

amples and can estimate parts precisely if they belong to these training clas-

ses. 

2. In unsupervised learning, all examples are unlabeled, and the algorithm will 

estimate the part features without restriction to specific classes. However, es-

timation quality will be low in comparison with the supervised learning case. 

3. In the hybrid learning, both of labeled and unlabeled dataset of parts is uti-

lized to optimize the parameters of the model. Where the dual DL models get 

the advantage of supervised and unsupervised leaning and minimize their in-

dividual disadvantages.  

The proposed design of the DL model is inspired from a Pixel2Mesh++ model and 

GAN-BERT model [33-34]. Pixel2Mesh++ is DL model based on supervised learning 

technique for 3D reconstruction and GAN-BERT is DL model based semi-supervised 

learning model utilized for text classification, as optical character recognition (ORC) 

problem. In the proposed DL model of supervised learning, the algorithm reconstructs 

the shapes which is listed in the database (has labels) but if the shape is recognized as 

unknown shape, the shape will be reconstructed using the unsupervised leaning model. 

The unsupervised model is trained via labeled and unlabeled dataset with additional 

noise and geometric data. The utilization of this dataset is as follows; a gaussian noise 

data will be generated to produce fake cases by captivating the input of a 100-dimen-

sional gaussian feature. This noise data is added to the geometric shapes vectors to 
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generate fake noisy geometric data. The generator of the DL model receives this data 

and reconstructs the 3D shape (see Figure 7). 

 

 The discriminator is built based on a multilayer perceptron with a last layer of Soft-

Max activation function. The discriminator will receive the fake noisy geometric data 

from the generator (G) and the real object data generated by graph convolutional net-

works (GCN). Then, the SoftMax’s layer has output dimension K+1-dimension vector 

of logits, where k is the number of defined classes in the defined database and 1 is the 

unknow class. The discriminator classifies the input data into real, those belong to class 

of labeled dataset of the supervised learning, or nonreal object, which are not part of 

the database. In case of prediction the input as real instance, the algorithm predicts 

which classes this object belongs to and then reconstructs its features based on the saved 

features in the database. In case of nonreal object, the discriminator will provide the 

shape which is generated according to the training using the noise geometric data, as 

unsupervised leaning.  

In particular, the mathematical formulation of the proposed model is as follows [34]; 

Where D and G as the discriminator and generator, and pD and pG as the real data dis-

tribution and the generated samples, correspondingly.  The model will be trained to 

classify object in K classes and the generator will work to estimate the class K+1. The 

objective of D is defined as follow; 

pm(y(hat) = y|x, y = k + 1) is the probability provided by the model m that a generic 

case x is linked with the fake class and pm (ˆy = y|x, y ∈ (1, ..., k)) that x is considered 

real object, thus related to one of the target classes.  

 

𝐿𝑜𝑠𝑠𝐷 = 𝐿𝑜𝑠𝑠𝐷 (𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑) + 𝐿𝑜𝑠𝑠𝐷 (𝑢𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑) 

𝐿𝑜𝑠𝑠𝐷 (𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑) = 𝔼𝑠𝐷 𝑥,𝑦~𝑝𝑑𝐿𝑜𝑔[𝑝𝑚(𝑦(ℎ𝑎𝑡) = 𝑦|𝑥, 𝑦 ∈ (1, . . , 𝐾))] 

𝐿𝑜𝑠𝑠𝐷 (𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑) = 𝔼𝑠𝐷 𝑥,𝑦~𝑝𝑑𝐿𝑜𝑔[1 − 𝑝𝑚(𝑦(ℎ𝑎𝑡) = 𝑦|𝑥, 𝑦 ∈ (𝑘 + 1))]

−  𝔼𝑠𝐷 𝑥,𝑦~𝐺𝐿𝑜𝑔[𝑝𝑚(𝑦(ℎ𝑎𝑡) = 𝑦|𝑥, 𝑦 ∈ (𝑘 + 1))] 

𝐿𝑜𝑠𝑠𝐷 (𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑)  measures the error in estimate the false class to a real example among 

the defined k categories. 𝐿𝑜𝑠𝑠𝐷 (𝑢𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑) measures the error in incorrectly recog-

nizing a real (unlabeled) example as fake and not recognizing a fake example. At the 

same time, G is expected to generate examples that are similar to the ones sampled from 

the real distribution pd. As suggested in [33], G has to generate data approximating the 

statistics of real data as much as possible. In other words, the average example gener-

ated in a batch by G should be similar to the real prototypical one. Formally, let’s f(x) 

denote the activation on an intermediate layer of D. The feature matching loss of G is 

then defined as: 𝐿𝑜𝑠𝑠𝐺(𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑒) =∥ 𝔼𝑥~𝑝𝑑 𝐹(𝑥) −  𝔼𝑥~𝐺 𝐹(𝑥) ∥  2
2  .  
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Fig. 7. The architecture of the proposed hybrid learning model. 

In the training phase, the algorithm optimized three losses values, which are discrim-

inator loss, generator loss, and the GCN. The discriminator loss is the summation of the 

losses of hybrid algorithms: first loss measures the error in assigning the wrong class 

to a real example among the original k categories, while the second loss measures the 

error in incorrectly recognizing of the unrecognized object. The generator loss is also 

the result of summation from 2 other losses (features matching loss and feature gener-

ation loss). Feature matching loss ensures that the generator produces 3D image which 

is similar to which input to the discriminator via the real images. The feature generation 

loss measures the error induced by fake geometric which identified by the discrimina-

tor. The GCN loss is the error of labeled wrong class in supervised learning. 

3.3 Platform Selection and Model Deployment 

For the proposed algorithm, a D455 Intel depth camera is selected for capturing the 

3D image of the desired part [35]. The camera specs are as follows; its depth resolution 

is up to 1280 x 720 and its depth accuracy is less than 2 %. The camera frame rate per 

second is up to 90. The camera interfaces with a Jetson X2 embedded kit. This kit is 

loaded by the algorithm software [36]. The Jetson X2 is a small Embedded Linux con-

troller with a graphical processing unit (GPU) to enable running software in a parallel 

computing way. The parallel processing features make the kit a good platform to train 

and deploy the deep neural network models. Also, it has a several software packages to 

enable installing machine/deep learning frameworks such as Scikit-learn, PyTorch, 

TensorFlow.  

 

 The Jetson X2 kit is utilized in training phase and in deployment phase as well be-

cause the model architecture is loaded on the kit and the DL/ML libraries as well. The 

dataset is loaded on the kit. After that, the training phase is started and it expected to 



12 

stop after 1000 epoch and the validation phase will start to make sure there is no over-

fitting. After that, the training will be stopped and the model is extracted in PyTorch 

format, i.e. pth extension, see Figure 8.    

 

 
Fig. 8. The block diagram of the hardware setting in: (a) the training and validation 

phase, (b) deployment and inference phase. 

4 Implications and Expected Outcome  

This research presents a new methodology of utilizing computer vision approach 

along RE in AM process. As apparent from this research, RE processes are recently 

plagued by a number of limitations such as the need for a large number of images and 

huge processing power and long time. These limitations can be addressed by the pro-

posed approach which can perform the 3D reconstruction stage of RE by using only 

one depth image and estimate the hole part features.  

 

The utilization of using hybrid learning techniques in the proposed computer vision 

framework provides dual different DL algorithms which has the ability to deal with 

known and unknow objects and estimate the full 3D features from a single depth image 

for complex shape. The utilization of the proposed framework enables high potential 

for utilized computer vision for successful implementation of RE. In terms of manufac-

turing, through this approach, industries would be able to gain the benefits that com-

puter vision offers in terms of enhanced RE implementation in short time with low 

processing power which has a high impact on the performance of AM process.  
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5 Conclusions  

In this paper, the authors proposed a conceptual computer vision framework to ex-

tract the full 3D feature of the acquired object in the RE process. The proposed algo-

rithm is able to learn deep representation of 3D shapes from a single RGB-D image to 

reconstruct its 3D shape in a short time with low processing power. This approach is 

designed based on hybrid learning techniques. The implementation of the proposed ap-

proach is intended to strengthen the manufacturing competence by enhancing the qual-

ity of AM printed part and enable performing successful RE in the spare parts which 

has missing features or damage area. The proposed approach covers a wide range of 

engineering parts with variety of features in training phase in order to be able to esti-

mate missing features in complex shapes. For the future work, authors are plan to im-

plement this framework and experimentally validate the results. 
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