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Abstract—The identity preserving problem is one of the major1

obstacles in face reenactment. The problem occurs when the2

model fails to preserve the detailed information of the source3

identity, and especially obvious when reenacting different iden-4

tities. The underlying factors may include the leaking of driver5

identity, due to the identity mismatch, and unseen large head6

poses. In this paper, we propose a novel face reenactment ap-7

proach via generative landmark coordinates. Specifically, a con-8

ditional generative adversarial network is developed to estimate9

reenacted landmark coordinates for the driving image, which10

successfully excludes its identity information. These generated11

coordinates are further injected into the subsequent inference12

style transferal module to increase the realism of face images.13

We evaluated our method on the VoxCeleb1 dataset for self-14

reenactment and the CelebV dataset for reenacting different15

identities. Extensive experiments demonstrate that our method16

can produce more realistic reenacted face images.17

Index Terms—face reenactment, GAN, style transfer, facial18

landmarks19

I. INTRODUCTION20

Face reenactment is a conditional image generation task.21

The input, namely the condition, to a face reenactment model22

comprises two parts, the source and the driving. The source23

is one or a set of images of a specific person, serving to24

provide appearance features of the person. The driving image25

is another image with an arbitrary face. The goal of face26

reenactment is to transfer the head pose and expression from27

the driving image to the face in the source image. Real world28

application of face reenactment includes video conferencing29

and film production. In the scenario video conferencing, the30

speaker’s face can be reenacted to match the face motion of a31

translator [1]. In film industry, face reenactment can be used32

in a similar fashion, creating more natural localized motion33

pictures in different languages. Film makers can also fine-tune34

actors’ facial movements with the help of face reenactment35

models.36

Given the fact that it is infeasible to collect image pairs of37

two different people with identical head pose and expression,38

the self-supervised training strategy proposed by authors of39

X2Face [6] greatly helped the evolution of face reenactment40

methods. During training, the self-supervised strategy con-41

strains the source and driving image in an input pair to be42

taken from the same video clip of the same person, therefore43

the driving image is also the groundtruth for the generated44

image. Despite the ease of training, in the testing scenario45

where the source and driving image are taken from different46

people, models trained by this strategy is at the risk of mixing47

the driving’s identity in the image generator, resulting in the 48

identity preserving problem, that is, the reenacted image shares 49

structural similarity with both people in the input, instead of 50

being the exact person in the source image. 51

Location of facial landmarks is valuable for defining a 52

person’s identity and head pose. During self-supervised train- 53

ing, if the eyes, nose and mouth in the generated image 54

are precisely aligned with their corresponding location in the 55

driving image, the generated image is more likely to be a 56

faithful reenactment. Landmark locations can then be used to 57

guide the model in the self-reenactment scenario. However, 58

when reenacting different people, landmark locations in the 59

driving image do not lead to desired output, as the locations 60

now reflects the facial structures of different people, which 61

can only aggravate the identity preserving problem. To help 62

face reenactment methods benefit from landmark location, 63

landmark coordinates also need to be reenacted. If these 64

coordinates reflect the source’s identity while matching the 65

driving’s head pose and expression, they can guide the model 66

to process the test sample as if it is a self-reenactment case. 67

To obtain more realistic landmark estimation, we model this 68

problem from the perspective of face reenactment evaluation. 69

Specifically, for a generated face to be considered as a good 70

reenactment, the generated face should look like the same 71

person in the source image. Meanwhile, the generated pose 72

and expression should match the ones in the driving image. 73

We then propose a conditional generative adversarial network 74

(GAN) to generate facial landmark points based on a person’s 75

identity as well as the desired head pose and expression. 76

We follow the convention of face reenactment evaluation to 77

formulate the head pose as pitch, yaw and roll angles, the 78

expressions are formulated as the combination of facial action 79

units (AUs) [16], which are considered the fundamental com- 80

ponents of human face expressions. The proposed landmark 81

GAN is not only beneficial for improving the performance, 82

but it may also be employed to semantically generate human 83

faces with expressions. This is because expressions can be 84

decomposed into combinations of AUs. Given a combination 85

of AUs, our landmark GAN can estimate fiducial points that 86

match the desired expression, which can be subsequently used 87

to generate face images [38]. 88

With generated landmark coordinates, we explicitly lever- 89

ages them to guide the reenactment process. We align in- 90

dividual facial landmarks based on these coordinates, we 91

also generate facial landmark heatmaps to yield style transfer 92
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parameters, which are used to improve the realism of generated93

faces. Our contributions of this paper can be summarized94

below:95

1) We propose a face reenactment method explicitly guided96

by facial landmark coordinates. An optical flow is first esti-97

mated based on the input source and driving image. The optical98

flow is a grid of coordinates determining where each pixel in99

the input should be moved into. We use the estimated optical100

flow to warp the feature maps of the source image. Individual101

landmarks are then respectively reenacted and aligned to guide102

the warped result.103

2) We introduce a conditional landmark GAN that gener-104

ates landmark coordinates based on the input face’s identity,105

desired head pose angles and facial action units. In addition,106

we estimate style transfer parameters based on our estimated107

landmark coordinates to obtain more realist images. No in-108

formation on the driving’s identity is involved in these two109

modules.110

3) We evaluate our method on the VoxCeleb1 [34] dataset111

for self-reenactment and the CelebV [35] dataset for reenacting112

different identities.113

II. RELATED WORKS114

A. Face Reenactment115

Approaches to face reenactment can be categorized by the116

operation they used to generate new images, specifically, early117

face reenactment studies [1]–[5] mainly focus on rendering118

desired images from estimated 3D face models, while recent119

research more relies on optical flows to warp input images. The120

pipeline of rendering-based methods generally involves fitting121

3D faces from images, then morphing these 3D models and122

rendering the reenacted results. These methods often require a123

large quantity of video frames as inputs to extract texture fea-124

tures for rendering, they are also limited to reenacting specific125

people due to the availability of 3D models. Recent works [6]–126

[12] propose warping-based face reenactment methods which127

utilise optical flows to map pixels from the source image to128

the reenacted image. Image warping on convolutional neural129

networks (CNN) was first proposed in [13], where the model130

can estimate optical flows that warp skewed numerical digits131

back to the regular view, thus improving the classification132

accuracy. In the context of face reenactment, optical flows133

are estimated based on input images. Optical flows are used134

to warp the source images [6] or the feature maps of source135

images [7]–[9], [11]. Given an input image and an optical flow,136

the warping operation generates a new image by moving each137

pixel from the input image to the coordinate in the new image138

indicated by the optical flow.139

As mentioned in Section I, obtaining images for different140

people with the exact same poses and expressions is infeasible141

in practice, a now widely adopted self-supervised learning142

paradigm was proposed in [6]. Given a source image sampled143

from a video sequence, a corresponding driving image of the144

same person is also randomly sampled from the same video,145

making supervised learning possible as the driving image is the146

expected reenactment result. The self-supervised strategy sub- 147

sequently leads to the identity preserving problem described 148

in [7]. To remedy this issue, facial landmark coordinates are 149

widely used as the guidance in face reenactment. The authors 150

of ReenactGAN [35] built person-specific models to estimate 151

landmark boundaries of reenacted faces. This method is ca- 152

pable of predicting reasonable facial structure, however, it is 153

required to train separate landmark boundary estimator for dif- 154

ferent faces. MeshGCN [11] employed 3D Morphable Models 155

(3DMM) to estimate dense 3D points on the reenacted faces. 156

The work of [11] explicitly excludes the identity information 157

of driving images by constructing reenacted 3D faces using 158

the identity parameters of the source. This method achieved 159

good performance in identity preserving. However, its optical 160

flow estimation module is rather computationally heavy, as it 161

is a graph convolutional neural network [15] that runs on the 162

source and the reenacted meshes each with 53,215 vertices. 163

Inspired by 3DMM, authors of [7] proposed a landmark 164

transformer, which breaks down sparse 3D facial landmark 165

coordinates into a base 3D face, and principal components that 166

controls face shapes and expressions. This method was also 167

later used by authors of [10]. By estimating corresponding 168

principal component coefficients, the landmark transformer 169

modifies landmark coordinates of the driving image to be 170

more fitting to the identity of the source image. However, the 171

performance of [7] is limited by the expressiveness of chosen 172

principal components. The authors FSGANv2 [37] took an 173

iterative approach to gradually rotate landmark coordinates 174

through multiple steps until 2D landmark points match the 175

desired poses. For the reenactment on expressions,FSGANv2 176

directly swaps the mouth points in the source image with 177

corresponding points from the driving image. 178

Compared to previous works, our method estimates sparse 179

2D landmark coordinates in an end-to-end fashion through 180

the landmark conditional GAN. The proposed method directly 181

generates landmark points by considering the source’s identity, 182

desired head pose angles and expressions. Similar to 3DMM, 183

landmark points estimated by our method exclude the driving’s 184

identity by only considering the source’s facial structure, but 185

2D landmark points are more accessible than dense face 186

vertices. In addition, our method adopts facial action units to 187

formulate expressions instead of approximating by principal 188

components. Evaluation results show that the proposed land- 189

mark GAN helps our model greatly improve the performance 190

on identity preserving while maintaining a relatively low head 191

pose error. 192

B. Generative Adversarial Network 193

Generative adversarial networks (GANs) [17] are a family 194

of neural networks that learn to map input from certain 195

distribution to a desired distribution. A GAN consists of a 196

generator and a discriminator, these two networks play a zero- 197

sum game such that when the training converges, the discrim- 198

inator can no longer differentiate generated samples from real 199

ones, namely the generator learns to produce realistic data 200

samples. The input to the generator is not limited to random 201
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Fig. 1. Overview of proposed method for self-reenactment and reenacting different identities. Dashed boxes show loss functions that are responsible for the
corresponding module.

variables sampled from a specified distribution, it can also be202

categorical labels [18], texts [19] or even images [20], granting203

more control over generated content. Face reenactment shares204

similarity with the image-to-image translation, a generative205

task that transfers an image from one domain to an image206

in another domain. Authors of Pix2Pix [20] have shown that207

supervision on pixel values combined with the use of GAN208

yields most realistic image-to-image translation results. This209

finding inspired many works on face reenactment, and GAN210

has become an indispensable component when generating211

realistic face images.212

Vid2Vid [21] extended the work of Pix2Pix to generate213

video frames. For the pipeline of Vid2Vid, past frames and214

semantic segmentation maps are fed into the generator, an op-215

tical flow is estimated from the input and then applied to a past216

frame to generate the video frame for the current time step.217

The discriminator is responsible for the realness of generated218

video frames while generated frames are also supervised by219

the pixel values of real frames. Generative models such as220

Pix2Pix and Vid2Vid are supervised by groundtruth examples,221

and their input is also not non-stochastic, namely the input222

domain and the output domain are both well-defined, therefore223

these methods seldom consider the feature disentanglement224

problem presents in models with stochastic nature. Pipelines of225

optical flow based face reenactment methods are comparable226

to that of Vid2Vid, optical flows are estimated from the source227

and driving images, and then applied to the source image to228

synthesize reenacted faces. In terms of the use of GAN to229

generate face images, our method is also not an exception.230

GAN was deployed to ensure the realness of reenacted images,231

moreover, we also applied GAN to make sure that landmark232

coordinates generated by our method follows the distribution233

of real landmark coordinates. Details of GAN in our method234

are given in Section III.235

III. METHOD236

Figure 1 shows the overall framework of our face reenact-237

ment model. In general, we first estimate an optical flow based238

on input images. Then the eyes, nose and mouth in the source239

image are individually reenacted. Lastly, we use the estimated240

optical flow to warp the feature maps of the source image, 241

and use reenacted facial landmarks to guide the subsequent 242

image generation process. Specifically, when the identity of 243

the driving image is different from the source, we can no 244

longer leverage driving landmark coordinates for guidance 245

because of identity mismatch. We therefore estimate landmark 246

coordinates that match the source’s identity and the driver’s 247

expression and head pose. These landmark coordinates are 248

further adopted to yield style transfer parameters that improves 249

the quality of generated images, as shown in Figure 1(b). 250

A. Optical Flow Estimation 251
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Fig. 2. Architecture of Vision Transformer as optical flow feature extractor.

Input images are sent to a neural network to extract features 252

for optical flow estimation. Considering the fact that face reen- 253

actment requires the information on expression over an entire 254

face, we adopt Vision Transformer as the feature extractor, as 255

Vision Transformer directly learns the attention over the entire 256

image while CNNs focus more on the locality of images. A 257

ResNet feature extractor is also evaluated in Secction IV for 258

comparison. 259

For Vision Transformer in our method, its architecture is 260

shown in Figure 2. An input image i with size 224 ⇥ 224 261

is divided into 256 patches with size 14 ⇥ 14. Each image 262

patch is embedded into a 768-dimensional vector, resulting in 263

a 256⇥768 tensor vi for an input image. In addition, a tensor 264

t 2 R3⇥768 with learn-able initial values are concatenated 265

to vi, the first two rows of t store features for the optical 266

flow estimation, and the third row of t contains features for 267

landmark coordinate regression, which acts as an auxiliary task 268

that helps the model perceive human faces. After an input 269



image being embedded into vi 2 R259⇥768, it further goes270

through three self-attention layers. The self-attention process271

is given as follows.272

Q = viWq, K = viWk, V = viWv (1)
273

↵ = softmax(QKT /
p
dk), v⇤i = ↵V (2)

where Wq 2 R768⇥dq , Wk 2 R768⇥dk and Wv 2 R768⇥dv274

are learn-able parameters, we set dq = dk = dv = 768. ↵ 2275

R259⇥259 is the attention score given the input tensor vi, and276

v⇤i 2 R259⇥768 is the output of the self-attention operation,277

it further goes through an MLP layer to yield the final result278

of a transformer block. Note that we only take the first two279

rows of v⇤i as the feature for optical flow estimation. In the280

case of ResNet, features obtained from the final global average281

pooling layer are projected to the dimension of R2⇥768 that282

matches Vision Transformer’s output.283

Optical flow features for the source and the driving image284

are denoted by us, ud 2 R2⇥768 respectively. us and ud are285

first compressed to R2⇥128 then reshaped to R1⇥256, next,286

these two features are concatenated and sent to an multi-287

layer perceptron, resulting in f 2 R1⇥6272, f is reshaped to288

R7⇥7⇥128 and after going through a series of transpose con-289

volutional layers, the estimated optical flow f⇤ 2 R2⇥224⇥224
290

is obtained.291

B. Individual Landmark Reenactment292

Our motivation for individually reenacting facial landmarks293

is to help the model correctly perceive human faces when reen-294

acting different identities. We observed that without explicitly295

specifying individual facial landmarks in the image generator,296

the model tends to synthesize more mouths or eyes than they297

should be on a single face when the source and the driving298

have different identities. This problem is more likely to happen299

when the model is trained on a dataset with fewer identities,300

such as CelebV. Another benefit of individually reenacting301

facial landmarks is that these landmarks can be aligned based302

on landmark coordinates to explicitly guide the reenactment303

process. We use four convolutional neural networks with304

an identical architecture, and each of them is dedicated to305

reenacting a different part of the face, namely the left eye,306

the right eye, the nose, and the mouth. Figure 3(a) shows we307

concurrently reenact selected landmarks; Figure 3(b) gives an308

example of the crop of the mouth from the source image,309

along with its counterpart from the landmark heatmap of the310

driving image are first sent to convolution layers, with the size311

of feature maps reduced by max pooling, then feature maps312

of the RGB mouth crop and that of the landmark heatmap are313

added element-wise and sent to transpose convolution layers314

to generate reenacted landmarks. All crops are fixed-sized and315

they are cropped around the centre point of corresponding316

landmark coordinates. The size of a landmark crop takes the317

value of the average size of corresponding landmark in the318

dataset. The landmark heatmap is obtained by first drawing319

68 facial landmark points on a 224 ⇥ 224 image with black320

background, then points are connected by fitting B-spline321

curves, drawing the outlines of the face, eyes, eye brows, nose 322

and mouth. When all landmarks are reenacted, they are directly 323

placed on another blank 224⇥ 224 image Ip, and their centre 324

point all align with the centre point of corresponding parts in 325

the landmark heatmap. 326
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1) Landmark Coordinate Style Transfer: Since the driving 327

landmark coordinates need to be modified to fit the source’s 328

identity, and inspired by [33]; we first propose a naive method 329

for estimating the landmark coordinates, i.e., aligning the mean 330

and variance of the driving coordinates lmkdriving and those 331

of the source coordinates lmksource. The alignment is defined 332

as, 333

lmkreenact =
lmkdriving � µdriving

�driving
⇥�source+µsource (3)

µsource,�source, µdriving,�driving can be obtained by com- 334

puting the mean and variance of each person’s landmark 335

coordinates in the dataset, no learning is involved in this 336

process. We also shift lmkreenact such that its centre point 337

is at the same location as lmkdriving. Figure 3(b) shows 338

an example the driving landmark heatmap generated by the 339

original landmark coordinates and the one generated by style- 340

transferred coordinates. 341

2) Landmark Conditional GAN: One major problem with 342

the above landmark style transfer is that Equation 3 pushes 343

landmark coordinates towards the average head pose in the 344

dataset instead of truthfully acting as the desired pose. As 345

shown in Figure 3(b), landmark coordinates modified by style 346

transfer To remedy this problem, we propose the landmark 347

conditional GAN as a more reliable estimator. 348
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The input to our conditional GAN is inspired by the349

evaluation metrics of face reenactment methods, specifically,350

we feed the source’s identity, the driving’s head pose, and351

facial action units appeared on the driving’s face into the352

generator to obtain 68 2-D landmark coordinates. Facial action353

units (AUs) are predefined basic muscle movements on human354

faces. Figure 4 shows selected AUs in our method, these AUs355

are also used for face reenactment evaluation.356

The convention of AU study is that a complex expression357

can be expressed by the addition of many different facial action358

units. For instance, an unhappy mouth can be expressed as359

AU15+AU17. We then took a similar approach to process AUs360

in the conditional GAN. Embedding vectors of facial action361

units appeared in the driving image are first selected, then these362

vectors are summed up to yield the overall expression feature363

for the input. The overall architecture of landmark conditional364

GAN is shown in Figure 5.365

C. Image Generator366

The face reenactment module is a U-Net-like convolutional367

neural network with only one skip-connection in the middle,368

Figure 5 shows its overall architecture. The source image is369

first sent to three convolutional layers with the size of its370

feature map r being reduced to 58 ⇥ 58, then the estimated371

optical flow map f⇤ (Section 2.1) with size 224⇥224 is resized372

to match the size of r and warps r, yielding the warped feature373

map r⇤. The image Ip with reenacted landmark parts from the374

landmark reenactment module (Section 2.2) is also resized to375

58⇥58 and concatenated to r⇤. The concatenated feature map376

r⇤cat. continues to go through intermediate convolutional layers377

with no change in feature map size, then r⇤ is concatenated to378

r⇤cat. through the skip connection, the resulting feature map is379

further upsampled through bilinear interpolation and processed380

by convolution layers to generate the final reenacted image. 381

The use of bilinear upsampling is aiming for alleviating the 382

checkerboard artifact in images generated by convolutional 383

neural networks [36]. 384

1) Style Transfer Branch: In the case of reenacting dif- 385

ferent identities, although our landmark estimation methods 386

greatly alleviated the identity preserving problem, unnatural 387

face deformations exist as a result of inaccurate optical flow 388

estimation. To rectify this issue, we further introduce a style 389

transfer branch to the generator. The architecture of the style 390

transfer branch is inspired by StyleGAN2 [26]. Instead of 391

estimating style transfer parameters from random inputs, our 392

model takes 1-channel landmark heatmaps as input. These 393

landmark heatmaps are generated by first estimating the 394

landmark coordinates using the conditional GAN in Section 395

III.B.(2), then b-spline curves are fitted between adjacent 396

landmark points that belong to the same facial landmark, 397

namely drawing out the contours of the face, eyes, eyebrows, 398

nose, and mouth. The use of heatmaps avoids the identity 399

leak which is destined to happen if RGB driving images were 400

used. Furthermore, since the heatmaps are generated based 401

on coordinates estimated by our landmark conditional GAN, 402

the identity information of the driving person is excluded as 403

much as possible. The architecture of the style transfer branch 404

is show in Figure 5. 405

D. Loss Function 406

Overall we use the weighted sum of four types of loss 407

function to train our face reenactment model. 408

• L1 Loss: L1 loss is responsible for supervising the 409

pixel value in generated images. During training, driving 410

images are also the groundtruths for generated images, 411

L1 loss is computed between these images. The weight 412

on this loss is set to 20 for the entire image, and 5 for 413

individually reenacted landmarks. We find that putting 414

more weight on the L1 loss prevents the model from 415

generating unexpected artifacts. 416

• Adversarial Loss: The adversarial loss we used for train- 417

ing is the same as [28]. Driving images are treated as 418

”real samples” while reenacted images are labeled as 419

”fake”.We set the weight for this loss to 1. 420

• GAN Feature Matching Loss [27]: GAN feature matching 421

requires the discriminator to return intermediate features 422

of real and generative samples, then forcing these features 423

to be the same. For generative tasks with groundtruth 424

samples, GAN feature matching loss makes the training 425

more stable and converge faster. The weight for this loss 426

is set to 1. 427

• Perceptual Loss [29]: Perceptual loss relies on a pre- 428

trained VGG model to extract shallow visual features for 429

real and generative samples. Pushing these features to 430

be close ensures that low level features in the generated 431

image, such as the shape of the face and shoulder, to be 432

more realistic. The weight for this loss is set to 10. 433
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IV. EXPERIMENTS434

A. Datasets and Experimental Settings435

We evaluated our methods on the VoxCeleb1 dataset for436

self-reenactment, and the CelebV dataset for reenacting dif-437

ferent identities. VoxCeleb1 is a dataset with 22,496 video438

clips extracted from YouTube. It contains 1,251 identities,439

and people’s faces have been cropped into 256⇥ 256 images.440

CelebV has around 40,000 images for each of the five people441

in the dataset. For each person, their images are sampled from442

the same video and has also been cropped into 256 ⇥ 256443

images.444

For self-reenactment, we followed the protocol in [7], [11]445

and trained our model on the VoxCeleb1 dataset. The test set446

for evaluation consists of 100 videos from the test split given447

by the authors of VoxCeleb1, 2,083 source-driving image pairs448

are sampled from these videos for evaluation. For reenacting449

different identities, since our landmark conditional GAN and450

style transfer module require the information of known identi-451

ties, we evaluated our method in two different scenarios. The452

first scenario follows [7], [11] and aims at reenacting unseen453

identities. Models are only trained on the VoxCeleb1 dataset,454

however, the test set are image pairs sampled from the CelebV455

dataset. For each person in CelebV, 2,000 source-driving image456

pairs are randomly sampled. In the second scenario, models457

are only trained on the CelebV dataset. Test set in this case also458

comprises 2,000 source-driving image pairs randomly sampled459

for each person.460

B. Model Variants461

We evaluated two model variants, denoted by their backbone462

network for optical flow estimation, namely ViT and ResNet.463

Further ablation studies were also conducted to validate the464

proposed landmark GAN and style transfer branch. The ViT465

model has three Vision Transformer layers for optical flow466

estimation, for the ResNet variant, transformer layers are re-467

placed by ResNet-34. In the work of [22], a modified ResNet-468

50 (25 million parameters) outperforms the base 12-layer469

Vision Transformer (86 million parameters) on ImageNet top-1470

accuracy by 10% with a pre-training dataset of 10M images.471

Given that there are three Vision Transformer layers (19M 472

parameters) in our baseline model, we hence choose ResNet- 473

34 (21M parameters) for comparison, which is shallower than 474

ResNet-50. Additionally, we applied landmark style transfer 475

described in Section 2.2 to both models and evaluated their 476

performance accordingly. Models with landmark style transfer 477

are denoted by ViT+LSt and ResNet-34+LSt. 478

C. Metrics 479

Performance on self-reenactment was evaluated through 480

the following metrics, cosine similarity (CSIM), structural 481

similarity (SSIM), peak signal-to-noise ratio (PSNR), root 482

mean square error of head pose angles (PRMSE), and the 483

ratio of correct facial action units (AUCON). CSIM measures 484

the model’s capability on identity preserving. It is derived 485

from the cosine similarity between embedding vectors of the 486

source and generated image, these vectors are extracted by 487

a pretrained face recognition model Arcface [32]. SSIM and 488

PSNR are exclusive to self-reenactment evaluation as they both 489

require ground-truth images to compute, which is not possible 490

for reenacting different identities. PSNR evaluates low-level 491

similarity between generated images and ground-truths, while 492

SSIM jointly evaluates the contrast, luminance, and structural 493

between images. Head pose angels and facial action units 494

are detected by OpenFace [30]. PRMSE is computed by 495

calculating the root mean square error of head pose angles 496

angels of the generated image compared against those of the 497

driving image. For AUCON, both the driving and generated 498

image are sent to OpenFace, the returned results show if facial 499

action units in Figure 4 appear or not in the given image. Given 500

the AU recognition results of the driving image, the ratio of 501

AUs that correctly appear or do not appear in the generated 502

image yields the AUCON. 503

D. Experimental Results and Analysis 504

Our experiments show that landmark coordinates of the 505

driving image is a helpful heuristics for preserving the source’s 506

identity and achieving accurate head poses. By directly using 507

driving landmark coordinates to guide the alignment of indi- 508

vidual landmarks in the generated image, our model achieved 509
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Fig. 7. Qualitative results of proposed models on CelebV dataset.



TABLE I
EVALUATION OF SELF-REENACTMENT ON VOXCELEB1

Model CSIM" SSIM" PSNR" PRMSE# AUCON"
Mesh Guided GCN [11] 0.822 0.739 30.394 3.20 0.887

MarioNETte [7] 0.755 0.744 23.244 3.13 0.825
Monkey-Net [9] 0.697 0.734 23.472 3.46 0.770
FirstOrder [8] 0.813 0.723 30.182 3.79 0.886

NeuralHead-FF [31] 0.229 0.635 20.818 3.76 0.791
X2face [6] 0.689 0.719 22.537 3.26 0.813

ViT 0.879 0.608 29.297 1.97 0.767
ResNet 0.878 0.650 29.606 1.58 0.793

Bold shows the best results, second bests are underlined. " indicates the larger the value, the better the performance, # means otherwise.

TABLE II
EVALUATION OF REENACTING DIFFERENT IDENTITIES WITH UNSEEN

DATA ON CELEBV

Model CSIM" PRMSE# AUCON"
MarioNETte [7] 0.520 3.41 0.710

Mesh Guided GCN [11] 0.635 3.41 0.709
Monkey-Net [9] 0.451 4.81 0.584
FirstOrder [8] 0.462 3.90 0.667

NeuralHead-FF [31] 0.108 3.30 0.722
X2face [6] 0.450 3.62 0.679

ViT 0.525 2.95 0.694
ResNet 0.515 2.35 0.708

TABLE III
EVALUATION OF REENACTING DIFFERENT IDENTITIES WITH MODELS

TRAINED ON CELEBV

Model CSIM" PRMSE# AUCON"
X2Face [6] 0.467 8.12 0.611

ViT 0.568 2.77 0.692
ViT+LGAN+Style 0.653 2.66 0.675

ResNet 0.570 2.57 0.695
ResNet+LGAN+Style 0.661 2.68 0.672

better performance on identity preserving and head pose510

accuracy on the VoxCeleb1 dataset, shown in Table I.511

Following evaluation protocols in [7], [11], we evaluate our512

baseline models trained on VoxCeleb1 for reenacting unseen513

people from the CelebV test set. Shown in Table II, our514

methods still have lower head pose error, however, the identity515

preserving capability is less ideal compared to Mesh Guided516

GCN [11]. The main reason is that the driving’s identity517

information was dismissed in the optical flow estimation stage518

of [11]. The landmark GAN and style transfer module we519

proposed are aiming at alleviating the identity preserving520

problem. These methods are designed to leverage training521

data to improve the quality of generated images, hence their522

evaluation are shown in separate tables, viz. Table III. In523

general, both landmark GAN and style transfer can improve524

the model’s identity preserving capability. When combined525

together, our method achieves better identity preserving ca-526

pability while maintaining a lower head pose error.527

1) Self-reenactment: Table I shows models’ performance528

on the VoxCeleb1 dataset. Our method better preserves iden-529

tities (higher CSIM) and shows lower error on head pose530

angels (lower PRMSE). This illustrates that coordinates of531

driving landmarks are a strong prior that can help models532

TABLE IV
EVALUATION OF LANDMARK ESTIMATION FOR REENACTING DIFFERENT

IDENTITES ON CELEBV

Model CSIM" PRMSE# AUCON"
ViT 0.568 2.77 0.692

ViT+LSt 0.620 3.87 0.646
ViT+LGAN 0.619 2.60 0.682

ResNet 0.570 2.57 0.695
ResNet+LSt 0.616 3.78 0.650

ResNet+LGAN 0.614 2.49 0.687

TABLE V
EVALUATION OF STYLE TRANSFER FOR REENACTING DIFFERENT

IDENTITES ON CELEBV

Model CSIM" PRMSE# AUCON"
Style 0.647 4.75 0.646
ViT 0.568 2.77 0.692

ViT+Style 0.587 3.22 0.668
ResNet 0.570 2.57 0.695

ResNet+Style 0.606 2.97 0.670

perform better on these two metrics. SSIM takes the structural 533

similarities into consideration, which includes both the face 534

and background of the image. Our method pays more attention 535

on the face region, backgrounds in reenacted images are often 536

distorted, resulting in a low score in SSIM. We believe the 537

expression accuracy (AUCON) of our method is related to 538

the presumption made in terms of reenacting individual facial 539

landmarks. In the preprocessing stage, eyes and mouths for all 540

people in the dataset are cropped into fixed sizes to ensure that 541

the landmark reenactment model can handle varying landmark 542

and camera movement in images. However, this also limits 543

the model’s capability as there are cases where landmarks 544

cannot fit in the cropped region. For instance, a wide open 545

mouth or a close-up camera can lead to a larger mouth region, 546

the model may still try to fit the entire mouth into region 547

we cropped, resulting in less accurate expression reenactment. 548

This phenomenon is also observed when reenacting different 549

identities. 550

2) Reenacting Different Identities: Table II shows the over- 551

all performance on the CelebV dataset for models trained only 552

on the VoxCeleb1 dataset. As mentioned above, Mesh Guided 553

GCN [11] excluded the driving’s identity when reconstructing 554

3D face models, the optical flows are then estimated based 555

on these 3D models, leading to better identity preserving in 556



generated images. With the guidance of landmark locations,557

our methods show more accurate head poses, since these558

landmark locations do not reflect the identity of the source559

image, our methods performs poorer than the self-reenactment560

scenario. In Figure 8, we cited image from [7] to compare561

images generated by different models.562

The proposed landmark estimation and style transfer meth-563

ods rely on learning from training samples to assist the image564

generation process, we then trained these models on the565

CelebV dataset. X2Face [6] is also trained from scratch on566

CelebV for comparison. Shown in Table III, X2Face shows567

slightly better identity preserving compared to results in Table568

II, however, the head pose error significantly increased. We569

found that X2Face has difficulty in converging when trained570

on a smaller dataset such as CelebV. Our methods achieve571

better identity preserving and lower head pose error thanks to572

the proposed landmark GAN and style transfer module.573

3) ViT vs ResNet: In general, the ResNet variant of our574

method performs slightly better than its ViT counterpart. We575

believe this is because estimated optical flows are used to warp576

CNN features regardless of the network’s backbone. ResNet577

is more compatible with this feature representation as it is578

also a CNN based model. However, Vision Transformer is still579

promising for face reenactment. When evaluated on ImageNet580

[22] with 10 million images for training, a Vision Transformer581

with 86 million parameters is outperformed by ResNet-50582

with only 25 million parameters. In our case, the ViT head583

for optical flow estimation has 19 million parameters while584

the ResNet head has 21 million parameters. Our results show585

that the performance difference between these two models is586

negligible, a future study on Vision Transformer based image587

generator for face reenactment is worth investigating.588

4) Landmark Estimation and Style Transfer: Table IV589

shows the ablation study on proposed landmark estimation590

methods. Landmark Style Transfer, denoted by LSt, is a591

crude way of estimating landmark coordinates, it achieves592

the best identity preserving among evaluated models, but it593

also significantly hinders the pose and expression accuracy.594

Landmark conditional GAN (LGAN), on the other hand, better595

balances these metrics.596

Table V shows the ablation study on style transfer. The597

model named ”Style” is a baseline model without optical flow598

estimation, its reenactment process solely relies on the image599

generator and style transfer branch in Figure 6. Although this600

model shows relatively good identity preserving capability, it601

generates images with the poorest quality. Facial textures in602

generated images are often a mixture of the source and driving603

image. Although we explicitly excluded the RGB information604

from the style transfer input by using one-channel landmark605

heatmaps instead, the model ”memorizes” the connection606

between landmark heatmaps and their corresponding color607

images due to the self-supervised nature of the training stage.608

Evaluation metrics also show that style transfer promotes our609

models’ the identity preserving capability at the cost of head610

pose and expression accuracy. However, this does not reflect611

the real contribution of style transfer. As shown in Figure 9,612

faces generated by non-style-transfer methods are distorted 613

because of the warp operation, style transfer can help our 614

model revert unnecessary distortion on faces, generating more 615

realistic images. 616

5) Comparison with FSGANv2: Unlike most methods in 617

Table I, the face reenactment of FSGANv2 does not rely on 618

the optical-flow-based warping operation to generate images. 619

We cited generated images from [37] to compare FSGANv2 620

with our method. Figure 10 shows the comparison between our 621

ViT model and FSGANv2 on self-reenactment. The image at 622

the top left corner is served as the the source image, while all 623

images in the first row are driving images. In this scenario, 624

when the difference between head pose angles are relatively 625

small, both methods can generate realistic faces, while our 626

method preserves sharper details in the source’s face. As the 627

head pose angles increase, the quality of generated images 628

decreases for both methods. Figure 11 shows the comparison 629

on reenacting different identities. Both the source and driving 630

images are in-the-wild samples for our model. In addition, 631

our landmark GAN and the style transfer branch is limited 632

to working on known faces, therefore we also opted to the 633

ViT model in Table I for this comparison. As mentioned in 634

Section I, FSGANv2 iteratively rotates facial landmarks then 635

synthesizes images based on rotated landmark points, enabling 636

FSGANv2 to better preserve facial structures in generated 637

images. 638

V. CONCLUSIONS AND FUTURE WORK 639

We propose a face reenactment method guided by gener- 640

ative landmark coordinates. We evaluated our method in the 641

following scenarios: 642

• Self-reenactment. In this scenario, the source and the 643

driving image are taken from the same video clip of the 644

same person, which allows us to directly use landmark 645

coordinates in the driving image to guide the reenactment. 646

We evaluated our method on the VoxCeleb1 dataset and 647

compared against exiting methods following the same 648

protocol. We show that images generated by our method 649

are more similar to the input image’s identity, and our 650

method has lower head pose error compared to others. 651

Our result show that landmark coordinates in the driving 652

image are informative and helpful for identity preserving 653

and accurately reenacting head pose angles. 654

• Reenacting Different Unknown Identities. In this sce- 655

nario, the identities of the source and the driving image 656

are different and they are not included in the training 657

set. We used our self-reenactment model trained on Vox- 658

Celeb1 for evaluation on the CelebV dataset. Our method 659

still managed to achieve lower head errors, indicating that 660

the heuristic of using driving landmark coordinates to 661

guide face reenactment is beneficial for accurately reen- 662

acting head movement. However, landmark coordinates 663

require further adjustment to match the source face’s 664

identity. 665

• Reenacting Different Known Identities. In this sce- 666

nario, the identities of the source and the driving image 667
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are different but they all appear in the training set. We668

proposed the landmark conditional GAN and the style669

transfer branch to assist our baseline model. Ablation670

experiments show that the landmark conditional GAN671

mainly contributes to identity preserving while the style672

Source Driving FSGANv2 Ours

Fig. 11. Comparison with FSGANv2 on Reenacting Different Identites.

transfer branch fixes shape distortions in generated im- 673

ages. When these two modules are combined together, the 674

performance on identity preserving is greatly improved 675

while the head pose errors remain relatively low. This 676

proves that using head pose angles and facial action units 677

can effectively estimate landmark coordinates of desired 678

faces. 679

One noticeable limitation of our method is that it does 680

not generate well to reenacting different and unknown iden- 681

tities. Our method heavily relies on landmark coordinates, 682

but proposed landmark estimation method is only applicable 683

to known faces. Another limitation of our method involves 684

the proposed style transfer branch. Because the input to this 685



module is a facial landmark heatmap, the modules struggles686

with appearance variations in the training data. For instance,687

in the VoxCeleb1 dataset, there are multiple video clips for688

the same person. The person may have beard in one video but689

the beard may be shaved in another video. In this case, the690

style transfer branch tends to remove the beard in generated691

images because the beard is not represented in the input.692

Based on the above limitations, we suggest that one possible693

future work is to enhance the proposed landmark estimation694

method’s generalisation capability. More generalised identity695

representations, such as identity embeddings from a face696

recognition model, can be used. Another topic worth in-697

vestigating is to develop the style transfer branch that can698

handle varying appearances. Instead of modifying the entire699

feature maps, we could only transfer the styles to facial700

regions that needs changing. Lastly, we argue that it is also701

possible to design Vision Transformer based image generator.702

The performance of our model with the Vision Transformer703

backbone is lower than its ResNet counterpart. We believe704

this is because our estimated optical flows are used to warp705

feature maps estimated by a CNN, therefore ResNet is more706

compatible with this task. A Vision Transformer based image707

generator may be more suitable to the Vision Transformer708

backbone, however, how to define the warping operation on709

intermediate features of the Vision Transformer is still an open710

problem.711
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