
Received: 9 July 2022 Revised: 17 November 2022 Accepted: 14 December 2022 IET Communications

DOI: 10.1049/cmu2.12559

ORIGINAL RESEARCH

A high efficient next generation reservoir computing to predict

and generate chaos with application for secure communication

Leisheng Jin1 Zhuo Liu1 Ai Guan1 Zhen Wang1 Rui Xue1 Lijie Li2

1College of Integrated Circuit Science and
Engineering, Nanjing University of Posts and
Telecommunications, Nanjing, China

2College of Engineering, Swansea University,
Swansea, UK

Correspondence

Lijie Li, College of Engineering, Swansea University,
Swansea SA1 8EN, UK.
Email: l.li@swansea.ac.uk

Funding information

China Postdoctoral Science Foundation,
Grant/Award Number: 2019T120447

Abstract

In this work, a high efficient next generation reservoir computing (HENG-RC) paradigm
that adopts the principle of local states correlation and attention mechanism is proposed,
which is able to process dynamical information generated by both the low dimensional
and very large spatiotemporal chaotic systems (VLSCS). From a dynamical system per-
spective, the dynamical characteristics such as density distribution, Poincaré plots and max
Lyapunov exponents of the proposed HENG-RC are studied. It is revealed that the trained
model can be seen as a data-driven chaotic system. Furthermore, a novel scheme of secure
communication based on chaotic synchronization of two HENG-RC systems is designed,
of which the security is enhanced as the intruder needs to know simultaneously the training
signal and details of the parameter setting in the HENG-RC. The digital implementation
using field programmable gate array is experimentally realised, proving the feasibility of the
secure communication scheme.

1 INTRODUCTION

The incorporation of machine learning based approaches into
the field of communication is of great significance[1–3]. The
reservoir computing (RC), as a new kind of recurrent neural
network (RNN)[4], is deemed as a best-in-class machine learn-
ing platform for processing data generated by various types of
dynamical systems [5–10]. Specifically, the explicit expression
between memory capacity and forecasting ability of a recurrent
network including RC was studied. The RC scheme realised by
random topological magnetic textures was proven to be capable
of processing data even faster. The RC trained by the Tikhonov
least squares regression was revealed to be capable of conduct-
ing high efficient prediction tasks. So far, various RC models
have been proposed. These include double-reservoir echo state
network (DRESN) [11], broad echo state network (BESN)
[12], hierarchical delay-memory echo state network (HDESN)
[13], integer echo state networks (intESN) [14] etc. Particularly,
Appeltant et al. introduced a special architecture of RC that
only used a single dynamical node with delayed feedback, i.e the
time-delay reservoir (TDR)[15]. Based on TDR computing, a
few modified models such as deep TDR computing were also
developed [16–18]. Vastly different from the above-mentioned
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RC models, very recently, a brand new type of RC which used
nonlinear vector autoregression (NVAR) for constructing a fea-
ture vector to replace actual reservoir was newly proposed [19,
20]. The paradigm released the requirement for optimising a
multitude of metaparameters as in traditional RCs and showed
an excellent performance at reservoir computing benchmark
tasks such as forecasting, reproducing and inferring unseen
data/behaviour of a dynamical system, and was claimed to her-
ald the next generation of reservoir computing (NG-RC). How-
ever, it is still limited for studying the low dimensional chaotic
systems. If the NG-RC is applied for very large spatiotempo-
ral chaotic systems (VLSCS), a predictable problem arising is
that the computing expense will become extremely high, as the
VLSCS brings a huge amount of terms into the feature vector
construction process. Therefore, the advanced technique requir-
ing minimal computing resources, together with holding the
functionality of dealing with a wide range of dynamical systems
with a high efficiency, particularly for the VLSCS, are highly
desired.

In this work, we firstly postulate a HENG-RC with fea-
ture vector constructed by adopting the principle of local states
correlation. The principle describes the local nature of interac-
tions between neighbouring states in spatiotemporal domain of
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a dynamical system, and can be effectively employed for pre-
dicting spatiotemporal time series[21, 22]. Compared with the
NVAR, the construction of feature vector using this principle
can eliminate many redundant terms for extracting the fea-
ture of dynamical time series, which reduce the computational
expense greatly. More importantly, in the training process we
introduce the attention mechanism that can enhance the predic-
tion ability as well as increasing the efficiency. Numerically, we
take Lorenz system and Kuramoto–Sivashinsky (KS) equation,
as low-dimensional and VLSCS examples, respectively, to verify
the effectiveness of the proposed model. The high efficiency, in
particular for dealing with VLSCS is emphasised, and compar-
isons regarding to the traditional RC and the latest NG-RC are
given in detail.

To evaluate the dynamical characteristics of an RC paradigm
is significant for practical application exploration. Here, we
further conduct the dynamical analysis of the HENG-RC.
It is found that the HENG-RC after being trained exhibits
dynamical characteristics. This evokes the secure communica-
tion application based on chaotic synchronisation. We, then,
conceive the secure communication scheme that is based on
chaos synchronisation of two HENG-RCs in parallel, which is
simple and characterised by high reconfigurability in choosing
encrypting chaotic systems, i.e. the HENG-RC can learn what-
ever types of chaotic systems and then behave like a real one,
lifting the need for setting continuous chaotic systems as in tra-
ditional secure communication schemes [23–26]. The security
of the scheme is high as the intruder needs to know simulta-
neously both the training signal and parameter setting details
of the employed HENG-RC. The digital implementation of
the scheme is experimentally conducted, which can prove the
feasibility of the scheme.

To the best of our knowledge there is few work so far to
design a reliable as well as with high security secure scheme
by incorporating NG-RC. Though the work in [27], reported a
secure communication scheme using traditional RC for replac-
ing the receiver. In their design, the encryption systems cannot
be set arbitrarily. In addition, the realisation of their scheme
is limited by optical means. The work is structured as follows.
The working principle of the proposed HENG-RC is intro-
duced in Section 2. Numerical simulations of the HENG-RC
using Lorenz system and KS equation, as low-dimensional and
VLSCS examples, respectively, are conducted and compared
with other RC models in Section 3. The dynamical analysis of
the proposed HENG-RC is given in Section 4. The secure com-
munication scheme together with its hardware experiment is
presented in Section 5. Finally, the conclusion is presented.

2 METHOD: MODEL CONSTRUCTION

We first briefly describe the working principle of the NG-RC
recently developed in [20]. It uses the NVAR to replace the con-
ventional reservoir [19]. The NG-RC creates a feature vector
using input data at states of time t and number of time-delay
states (k) with respect to t . Assuming a three-dimensional vector
u(t ) composed of X (t ),Y (t ) and Z (t ) with time t in discrete as

input signal, the feature vector consists of two parts: linear and
nonlinear. The linear part is composed of the input vector from
time t to t − k (k = 1, 2, …), and the nonlinear part is composed
of the outer product of the linear vector. The mathematical
process for feature construction can be described by:

S = Sc ⊕ Sl ⊕ Snl , (1)

S
p
nl = Sl ⊗ Sl …⊗ Sl . (2)

In Equation (2) S k
l (t ) = u(t ) ⊕ u(t − 1)…⊕ u(t − k), ⊕

represents the vector concatenation operation,⊗ represents the
outer product operation and p is the number of outer product
operation. Sc is a constant vector, S k

l and Snl represent the linear
and nonlinear part vector, respectively. k denotes the number of
time-delay states.

There are two phases: training and predicating, included in
the operation of NG-RC. In the training phase, the output
weight matrix is adjusted via a regularised linear least-squares
optimisation procedure, which can be expressed as [28]:

Wout = YS T (SS T + 𝜆I )−1, (3)

where Y is the output we desired (u(t + 1)), I is an identity
matrix and 𝜆 is ridge parameter to prevent over-fitting. After
training, the Wout is fixed, and one can let the output vector Y ′

feed back into input layer, the reservoir computer can automat-
ically run itself for generating future states, i.e. the predicating
phase. And in the predicting phase, the output vector is calcu-
lated by multiplying the S (t ), and the output weight matrix Wout ,
i.e.:

Y ′ = Wout × S . (4)

However, this type of NG-RC has a high computational
expense, especially when dealing with VLSCS, as the feature
construction procedure generates so many non-linear terms. In
order to make the NG-RC more efficient as well as to maintain
an excellent performance, an HENG-RC adopting the principle
of local states correlation is proposed here, i.e. instead of using
outer product of all linear states in linear vector, we, based on
local states correlation, consider only the products of the neigh-
bouring linear states to form the nonlinear part of the feature
vector. The general architecture is given in Figure 1.

Specifically, assuming a general input that has Q-dimensions
as shown in Figure 1, the overall nonlinear part Snl is divided
into k individual parts if there are k time-delay states con-
sidered: S j

nl ( j = 1, 2… k). Each of S j
nl is further divided to

Q sub-vectors S ji
nl , which corresponds to the dimension num-

ber of the input vector. The S ji
nl is composed of the products

between Hi (t − j ) and the three neighbouring dimensional
states (i − 1, i, i + 1) in input vector at time t − j and time t −
j − 1, i.e. : Hi−1(t − j ),Hi (t − j ),Hi+1(t − j ),Hi−1(t − j −
1),Hi (t − j − 1),Hi+1(t − j − 1). Mathematically, the con-
struction process for the nonlinear part of feature vector can
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JIN ET AL. 3

FIGURE 1 The architecture of the proposed HENG-RC with
incorporating attention mechanism. The yellow dotted box indicates the region
in feature vector where the attention mechanism is applied

be expressed as:

Snl = S 1
nl ⊕ S 2

nl …⊕ S k
nl , (5)

and

S j
nl = S 1i

nl …⊕ S ji
nl ⊕… S Qi

nl , (6)

with

S ji
nl = Hi (t − j ) × Hi−1(t − j )

⊕Hi (t − j ) × Hi (t − j )

⊕Hi (t − j ) × Hi+1(t − j )

⊕Hi (t − j ) × Hi−1(t − j − 1)

⊕Hi (t − j ) × Hi (t − j − 1)

⊕Hi (t − j ) × Hi+1(t − j − 1). (7)

It can be seen that the terms in the nonlinear part for con-
structing the feature vector is Q × 5 × k, while the number in
original NG-RC is (Q × (k + 1) + 1) × (Q × (k + 1))∕2. The
computational expense is therefore lowered.

To increase the prediction performance as well as the effi-
ciency, for the first time we introduce the attention mechanism
for training the proposed HENG-RC. As indicated by the yel-
low dash box in Figure 1, each row, i ∈ [1,Q], of output weight
matrix Wout is trained independently with attention on neigh-
bouring dimensions (m, i − 1, … , i, i + 1, ..n), where the m and
N decide the attention range. The training process can be
expressed by:

Wout = W1 ⊕W2 ⊕…⊕WQ, (8)

with

Wi = Yi (Li )
T [Li (Li )

T + 𝜆I ]−1

Li = S jm
nl ⊕ S jm

l …⊕ S jn
nl ⊕ S jn

l , (9)

where Yi is the ith-dimension of the expected output Y , Li is
the linear and non-linear states neighbouring the ith-dimension,
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FIGURE 2 Prediction for x, y and z-dimensional time series of chaotic
Lorenz system using HENG-RC is verified, and the prediction performance is
compared between three models: RC, NG-RC and the proposed HENG-RC.
The training data length for RC is 800 while for HENG-RC is 400

and S jm
l is the mth-dimension of input at time t − j . Note that

i − m = n − i = b, b is the number of neighbouring dimensions
involved in attention. The prediction ability of low-dimensional
chaotic system and VLSCS are verified, respectively, in the
following section.

3 RESULTS AND DISCUSSIONS

3.1 Low-dimensional chaotic system:
Lorenz equation

We first use the Lorenz equation as an example of low-
dimensional chaotic system to train the proposed HENG-RC.
The model of Lorenz equation is expressed as [29]:

ẋ = 𝜎(y − x ),

ẏ = 𝛾x − y − xz,

ż = xy − 𝛽z. (10)

where 𝜎 = 10, 𝛾 = 28 and 𝛽 = 8∕3, and in such a parameter
setting the system works in chaotic state. The training data can
be easily established using standard Runge–Kutta method, dur-
ing which time steps in transient state should be discarded. The
HENG-RC is then trained according to the procedure described
in last section. The prediction results of in x, y and z-dimensions
based on HENG-RC are given in Figure 2. To compare, we also
calculate the time series prediction using traditional RC and the
original NG-RC. From Figure 2, it can be seen that the pro-
posed HENG-RC works comparably with the traditional RC as
well as the NG-RC. But to achieve such a result the HENG-
RC requires much less training data than RC. To be specific,
we only used 400 time steps for training HENG-RC while it
is 800 time steps for RC with 2000 neurons. Referring to the
comparison with the NG-RC, it should be mentioned that the
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FIGURE 3 The proposed HENG-RC can learn and predict the
dynamical characteristics of KS-equation in spatiotemporal domain. (a) The
spatiotemporal evolution of the KS-equation; (b) The spatiotemporal evolution
of the traditional RC after trained by KS; (c) The spatiotemporal evolution of
the proposed HENG-RC after trained by KS; (d) Error dynamics of time series
between the original system and the RC; (e) Error dynamics of time series
between the original system and the proposed HENG-RC. Δmaxt is the largest
Lyapunov time derived by multiplying maximum Lyapunov exponent and time

proposed HENG-RC uses less non-linear states for construct-
ing the feature vector. The number of terms involved decide, to
some extent, the efficiency of an algorithm. The high efficiency
of the proposed HENG-RC will be more obviously in dealing
with VLSCS.

3.2 VLSCS: Kuramoto-Sivashinsky equation

The standard Kuramoto-Sivashinsky (KS) equation is taken as
the VLSCS example. Here, we study the prediction perfor-
mance based on the proposed HENG-RC. The KS equation is
expressed by [30]:

yt = −yyx − yxx − yxxxx , (11)

where the y(x, t ) is a scalar field. The scalar field is periodic in
the interval of [0,L]. L can be seen as the scalar parameter in
spatial dimension. The Equation (11) can be solved numerically
to generate a data set H (t ). The H (t ) is derived with a time
step of 0.25 on a grid of Q equidistant points, and thus the
H (t ) can be considered as a Q-dimensional input sequence. The
proposed HENG-RC is then proven to be able to predict the
KS-equation. As shown in Figure 3c, with 40 largest Lyapunov
training time, in prediction phase the proposed HENG-RC can
output same results with the KS-equation for a certain time.
Likewise, we also conduct the comparisons with the traditional
RC. Based on the same training data set, the predicated spa-
tiotemporal evolution of KS equation based on RC is given in
Figure 3b. To be clearer, we calculate the error dynamics regard-
ing to the predicated results and actual data generated by KS.
The results using, RC and proposed HENG-RC, are presented

TABLE 1 The comparison of needed resources that decide the
computational efficiency of RC using the case of VLSCS with L = 22,Q = 64

Model States Effective Wout
a Training length

RC[31] 3968 253,952 50,000

NG-RC 8385 536,640 /b

HENG-RC 769 28,416 10,000

aThe number of non-zero terms in Wout .
bThe data of using NG-RC in [20] is unknown since the NG-RC was reported for studying
low-dimensional chaotic system only. However, if the NG-RC is employed for this case,
the states and effective weights numbers can be calculated, which are much larger than
the proposed.

in Figure 3d,e, respectively. It is shown that the accurate predic-
tion length based on the proposed HENG-RC outperforms the
traditional RC.

In addition, we, in Table 1, conduct the comparisons between
RC, NG-RC and the proposed HENG-RCin terms of states
involved for feature construction, training data length and num-
ber of effective weights. The comparison is based on the same
task for predicting VLSCS with L = 22 and Q = 64. It can be
seen that the proposed model needs the least states and effec-
tive weight numbers. We can use only 769 states, 28416 weights
and 10,000 training points to accomplish the task that con-
sumes RC 3968 states (neurons), 25,3952 weights and 50,000
training points. The efficiency is therefore much lowered. Since
the original NG-RC is limited for studying low-dimensional sys-
tems, the comparison between the HENG-RC and NG-RC can
only be reflected from the needed states and weights. Specifi-
cally, the original NG-RC involves a huge numbers of weights
and states, i.e. 536,576 and 8385, several orders larger than the
proposed HENG-RC.

To deeply understand why the proposed method works out-
standingly in dealing with VLSCS, we analyse the values of
weight (Wout ) after being trained by a data set generated by the
KS with setting L = 22 and Q = 64. The results are given in
Figure 4. In Figure 4a, the weight values in Wout , under the abso-
lute and Log operation, are derived based on the regular training.
It can be seen that in Figure 4a the weights are to some extent
localised, which means that the principle of local states corre-
lation is reasonably applied for extracting the feature of input
signal, and it is not necessary for using NVAR for constructing
the feature vector during which many redundant states generate.
In Figure 4b, we further present the result with attention mech-
anism considered. There is an obvious bright region appeared
which proves that the attention can concentrate the key states
for extracting the feature and thereby enhance the prediction
performance as well as increase the efficiency.

4 DYNAMICAL ANALYSIS

This section aims to investigate if the proposed HENG-RC
can be seen as a data-driven dynamical model. First, the den-
sity distribution is investigated. Assuming that the HENG-RC
is trained by the training data set generated by Lorenz system
with length of 104, the trained HENG-RC can output similar
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FIGURE 4 The values of weight matrix Wout of
the proposed HENG-RC without the attention
mechanism is shown in (a). Each point (n, i)
represents the connection strength between nth state
in feature vector and the i-dimension output. Note
that the values are taken under the absolute and the
logarithm operation. The values of weight matrix
Wout of the proposed HENG-RC with the attention
mechanism is shown in (b)
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FIGURE 5 Density distribution of x-dimension of original Lorenz
system and the output of proposed HENG-RC: (a) Training HENG-RC with
data length 104 generated by Lorenz system (𝛾 = 28); (b) Training HENG-RC
with data length 104 generated by Lorenz system (𝛾 = 56); (c) Training
HENG-RC with data length 2 × 103 generated by Lorenz system (𝛾 = 28); (d)
Training HENG-RC with data length 2 × 103 generated by Lorenz system
(𝛾 = 56). The length of original system data and prediction data is 6 × 105 as
close as possible to the extreme distribution of the data

density distribution with the actual system in x-dimension, as
shown in Figure 5a,b where the system parameter 𝛾 is taken dif-
ferently. Moreover, we reduce the length of training data as 103.
In such a case, the training data set cannot actually reflect the
data distribution of the original system. Surprisingly, the trained
HENG-RC can still output similar density distribution with the
original, which proves that the proposed HENG-RC can learn
the Lorenz system well. The results are present in Figure 5c,d.

We also plot the Poincaré section (y = 0) of the actual Lorenz
system with different system parameter 𝛾 and the proposed
HENG-RC after trained by a data set with length of 6 × 105.
The results are presented in Figure 6. It is seen that the pro-
posed HENG-RC can output similar Poincaré section as shown
in Figure 5b,d, with the original system as shown in Figure 5a,c.
We further calculate the maximum Lyapunov exponent, a pos-
itive value which indicates chaos, based on the observation of
output data of the proposed HENG-RC after being trained.
The detailed method for calculating the maximum Lyapunov
exponent by observing a small data set can be found from [32].
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FIGURE 6 Poincaré section (y = 0) of the original Lorenz system and the
output of the proposed HENG-RC: the point sets of (x, z) along a long
trajectory of the actual Lorenz system (a,c), as well as along the output
trajectory of the proposed HENG-RC (b,d), are plotted when |y| < p, where p
= 10−4. In (a,b) the parameter 𝛾 = 28 while (c,d) the 𝛾 = 56. The data length
is 6 × 105

The calculation of maximum Lyapunov exponent is then con-
ducted and the result is shown in Figure 7, where the slope
of the straight line is the maximum Lyapunov exponent. The
maximum Lyapunov exponent of the original Lorenz chaotic
system and the NG-RC are about 1.05 and 0.95, respectively.
This can prove the unpredictability of the output of the trained
NG-RC, and hence the trained NG-RC can be seen as an actual
chaotic system.

5 SECURE COMMUNICATION AND
HARDWARE EXPERIMENT

The proposed HENG-RC can be seen as a data-driven dynam-
ical model working in the chaotic state. In this section, we
propose a secure communication scheme as shown in Figure 8.
The transmitter and receiver are all equipped with a HENG-RC,
where the HENC-RC behaves like an actual dynamical chaotic
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6 JIN ET AL.

FIGURE 7 Maximum Lyapunov exponent calculation based on the
observation of time series data. The blue (solid) and green (solid) line
represents the original Lorenz system and the proposed HENG-RC after being
trained, respectively, and the maximum Lyapunov exponent is extracted by
calculating the slope of the two solid lines

FIGURE 8 The secure communication scheme. The transmitter and
receiver are both equipped with NG-RC and trained using a common chaotic
system, indicated by the yellow block. The two NG-RCs are different in terms
of parameters settings. The intruder has to know both the training signals and
parameters settings for stealing the encrypted information

system. After trained by a common chaotic sequence gener-
ated by any chaotic systems, the two NG-RCs can achieve chaos
synchronisation, and by utilising the chaos synchronisation the
signal masked by chaotic signal can be decoded. The security
of the scheme can be attributed to that the chaos synchronisa-
tion of HENG-RC provides a “hardware key” that the attacker
who aims to steal the secret message has to know simultaneously
the common training signal and all parameter settings related to
the HENG-RC. In addition, with different ridge parameters in
training phase, the synchronisation time is controllable to some
extent, which can be used for enhancing the security of the
scheme. We conduct the simulation that the two HENG-RCs
are trained using parameters with a tiny differences. Specifically,
the first one is trained with ridge parameter 𝜆0 = 2 × 10−6,
and the second is trained with ridge parameter with tiny dif-
ferences, i.e. 𝜆1 = 𝜆0 + 2 × 10−6, +2 × 10−8, +2 × 10−10.
The calculated RMSE of the three cases are given in Figure 9.
It is shown that with different ridge parameters the synchroni-
sation time between two HENG-RC, indicated by the dashed
box, can be modulated in a certain range. Therefore, in practi-
cal secure communication, one can set RHE appropriate time
window depending on specific tasks.

FIGURE 9 The synchronisation window modulation by setting different
ridge parameters in the training process of two proposed HENG-RCs. The
different time length of synchronisation, indicated by the black box, are
calculated by setting ridge parameters:
𝜆1 = 𝜆0 + 2 × 10−6, +2 × 10−8, +2 × 10−10

FIGURE 10 The FPGA design for the proposed HENG-RC. Operations
of multiplication and matrix multiplication are indicated by black and green
lines. Xi denotes register. The yellow lines with arrowhead show the process of
register assignment

For digital circuit implementation, the proposed secure com-
munication can avoid the problems such as disturbance brought
by analog devices. It does not involve random numbers and
large matrix multiplication as in the traditional RC models. Here,
we use the field programmable gate array (FPGA) to imple-
ment the proposed scheme. The specific digital circuit design
is given in Figure 10. It is mainly composed of two modules:
feature vector and output weight matrix. The design circuit
can run in 30 clock cycles with double-float precision by using
pipeline optimisation.

Experimentally, the Xilinx ZYNQ 7020 Soc is used to
realise the HENG-RC. By taking the Lorenz system as the
source of training signal, the synchronisation result is dis-
played on oscilloscope via a digital to analog converter (DAC)
unit. The experimental setup and actual results are present in
Figure 11. It is seen that the digital design can well be used
for implementing the scheme, with stable chaos synchronisa-
tion achieved between the two hardware realised HENG-RCs.
Figure 12 is given for providing a clear evidence of the achieved
chaos synchronisation.
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FIGURE 11 Hardware experiment based on the two proposed
HENG-RC and the synchronising signals is shown on the oscilloscope

FIGURE 12 Clear synchronisation results on oscilloscope during the
experiment. The yellow line represents the y-dimension signal of first proposed
HENG-RC; The pink line represents the y-dimension signal of the second
proposed HENG-RC; The blue line represents the z-dimension signal of the
first proposed HENG-RC and the cyan line represents the z-dimension signal
of the second proposed HENG-RC

FIGURE 13 The NG-RC in transmitter after trained can encrypt the
video data, and the encrypted data are displayed on the right screen

Moreover, based on the chaos synchronisation achieved
between two HENG-RC in transmitter and receiver, respec-
tively, the practical video communication is tested, where the
transmitter and receiver communicate via Ethernet. Except for
the limited training set to synchronise the two ends, there
is no additional overhead for transmitting data. As shown in
Figure 13, the NG-RC after trained in transmitter can be used

FIGURE 14 The NG-RC in receiver after trained by the common signal
can decrypt the sending video data. From the result displayed on the two
screens one can conclude that our secret communication scheme can work
successfully

for encrypting the video information. And in Figure 14, the
NG-RC after trained can decrypt the received information.

6 CONCLUSION

A novel HENG-RC paradigm which incorporates the princi-
ples of local states correlation and attention mechanism has
been proposed. The HENG-RC demonstrates outstanding per-
formance for chaotic time series prediction regarding to both
low-dimensional chaotic system and VLSCS. Particularly for
VLSCS, the HENG-RC shows a high efficiency. The HENG-
RC after being trained is revealed for behaving like an actual
data-driven chaotic system. Based on chaos synchronisation
between the two HENG-RCs, a novel secure communication
scheme has been designed. The security of which is enhanced
attributing to the fact that the intruder has to know the train-
ing signal and all the details of parameters setting in HENG-RC
simultaneously. By using FPGA, the digital chaos synchronisa-
tion of the HENG-RC is experimentally realised, which proves
that the scheme can work in practical. Our work advances
the cross-over study between machine learning approaches and
nonlinear dynamics, as well as sheds light on realising secure
communication based on data-driven models.
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