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Abstract: By utilising the so-called Doss-Sussman transformation, we link our stochastic 3D Burgers
equation with linear multiplicative noise to a random 3D Burger equation. With the help of techniques
from partial differential equations (PDEs) and probability, we establish the global well-posedness of
stochastic 3D Burgers with the diffusion coefficient being constant. Next, by developing a solution
which is orthogonal with the gradient of coefficient of the noise, we extend the global well-posedness
to a more general case in which the diffusion coefficient is spatial dependent, i.e., it is a function of the
spatial variable.

Our results and methodology pave a way to extend some regularity results of stochastic 1D Burgers
equation to stochastic 3D Burgers equations.
AMS Subject Classification: 60H15, 35Q35.
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1 Introduction

In this paper, we are concerned with 3D positive viscosity stochastic Burgers equation driven by linear
multiplicative noise on the three dimensional torus T3 := R3/2πZ3. To be more precise, fix any T >
0, let (Ω,F ,P, {Ft}t∈[0,T ]) be a stochastic basis which is given through out the whole paper, wherein
the filtration {Ft}t∈[0,T ] is assumed to fulfil the usual conditions and ({B(t)}t∈[0,T ]) is a one-dimensional
standard {Ft}t∈[0,T ] adapted-Brownian motions. We use E to denote the expectation with respect to P. We
consider the following Cauchy problem

du(t, x) = (ν∆u(t, x) − (u · ∇)u)(t, x)dt + u(t, x) ◦ b(x)dB(t), on [0,T ] × T3, (1.1)

u(0, x) = u0(x), x = (x1, x2, x3) ∈ T3,

∗Corresponding author.
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for a 3D vector valued random field u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) ∈ R3, t ∈ [0,T ] and x ∈ T3,
where the parameter ν > 0 in the system (1.1) stands for the viscosity, b(x) : T3 → R is a given smooth
function, and ◦ denotes the Stratonovich integral. To simplify the notations, we set ∂i = ∂xi, i = 1, 2, 3.
Moreover, ∆ := ∂2

1 + ∂
2
2 + ∂

2
3 is the Laplace operator, ∇ := (∂1, ∂2, ∂3) is the gradient operator. From

Section 3 to Section 5, we consider (1.1) when b(x) is only a constant. In Section 6, we establish the
global well-posedness of (1.1) with b(x) being a smooth function of the spatial variable.

The Burgers equation was first introduced by H. Bateman [9] and Forsyth [30] in 1915 to describe
both nonlinear propagation effects and diffusive effects, occurring in various areas of applied mathemat-
ics, such as gas dynamics, fluid mechanics, nonlinear acoustics, and (more recently) traffic flow. This
equation was studied mathematically by J. M. Burgers (see [18]) in the 1940s. Adding a random force
so that the equation becomes a stochastic Burgers equation, the corresponding result is totally different,
see for instance [19, 23, 36, 33]. Moreover, the stochastic Burgers equations have also been applied to
study the dynamics of interfaces in the seminal work [37].

One dimensional stochastic Burgers equation has been fairly well studied. By an adaptation of the
celebrated Hopf-Cole transformation, Bertini, Cancrini, and Jona-Lasinio [8] solve the one dimensional
modified Burgers equation with additive space-time white noise, where the nonlinearity in the equation
was formulated in terms of Wick product. Moreover, Chan [20] utilises Hopf-Cole transformation to
study the scaling limit of Wick ordered KPZ equation involving additive space-time white noise. Later,
Da Prato, Debussche, Temam [23] study the Burgers equation based on semigroup property for the heat
equation on a bounded domain. In the paper [23], the authors establish the existence of an invariant mea-
sure for the corresponding transition semigroup. In [5], Bakhtin, Cator, and Khanin study the long-term
behavior of the Burgers dynamics for the situation where the forcing is a space-time stationary random
process. In particular, they construct space-time stationary global solutions for the Burgers equation on
the real line and show that they can be viewed as one-point attractors. In [3], Bakhtin consider the Burg-
ers equation with random boundary conditions. Concerning the one-dimensional Burgers equation with
viscosity coefficient defined on a bounded domain driven by multiplicative Gaussian noise, Da Prato and
Debussche [22] succeed to obtain its global well-posedness. Furthermore, Gyöngy and Nualart [32] ex-
tend the results of Da Prato and Debussche to the Burgers equation defined on the whole line. When the
Gaussian force is replaced by Lévy jumps, Dong and Xu prove its global well-posedness of the strong,
weak and mild solutions as well as the ergodicity in [26, 25].

For the multidimensional Burgers equations, Kiselev and Ladyzhenskaya [40] prove the existence
and uniqueness of solution in the class of functions L∞(0, T ; L∞(O))∩ L2(0,T ; H1

0(O)). Inspired by [40],
Pooley, Robinson [46] prove the global well-posedness for 3D Burgers equations in H

1
2 .When the vis-

cosity tends to zero and the initial condition is zero, Bui [17] prove the convergence of solutions to the
inviscid Burgers equations on a small time interval. In the higher dimensional inviscid stochastic case, the
stationary solution and a stationary distribution were constructed by Gomes, Iturriaga, Khanin and Padil-
la in [35] based on a very delicate use of the Lagrangian formalism and the Hamilton-Jacobi equation.
Based on the stochastic version of Lax formula for solutions to the initial and final value problems for the
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viscous Hamilton-Jacobi equation, Gomes, Iturriaga, Khanin and Padilla in [31] prove convergence of
stationary distributions for the randomly forced multi-dimensional Burgers and Hamilton-Jacobi equa-
tions in the limit when viscosity tends to zero. Utilising the maximum principle, Brzezniak, Goldys and
Neklyudov [13] establish the global existence and uniqueness for the mild solutions to multidimensional
Burgers equations with additive noise. Furthermore, the asymptotic behavior of solutions to multidimen-
sional stochastic Burgers equations is studied when the viscosity tends to zero. For the multidimensional
generalised stochastic Burgers equation in the space-periodic setting, Boritchev [10] prove that if the
solution u of this equation is a gradient, then each of Sobolev norms of u averaged in time and in en-
semble behaves as a given negative power of the viscosity coefficient µ, which gives the sharp upper and
lower bounds for natural analogues of quantities characterising the hydrodynamical turbulence. Recent-
ly, Khanin and Zhang [39] generalized the results of an important paper [28] to arbitrary dimensional
Burgers equation by using Green bundles method, which is complete different from the approach used
by [28].

There are extensive works dealing with the stochastic partial differential equations driven by linear
multiplicative noise, see e.g., [1, 16, 14, 15, 43, 11, 12, 6, 7, 42, 48, 49, 51] and references therein. The so-
called Doss-Sussman transformation is extensively used, see [27, 49]. And one can also refer to Barbu,
Röckner and Zhang [6, 7, 51] where the same method was used for stochastic nonlinear Schrödinger
equations under the name of rescaling approach. There are also other methods to solve stochastic partial
differential equations driven by linear noise, let us mention that Brzézniak, Flandoli, and Maurelli [12]
implement a Lagrangian approach to solve the strong existence and the pathwise uniqueness of solutions
of the stochastic 2D Euler equations. Some inventive and general method are introduced by Brzézniak,
Hausenblas and Razafimandimby [14] to solve stochastic penalised nematic liquid crystals with linear
Gaussian noise. A Wong-Zakai approximation for stochastic Landau-Lifshitz-Gilbert equations with
linear noise is addressed, see Brzézniak, Manna, Mukherjee and Panda [16, 43]. One can also find
similar results in Chugreeva and Melcher [21], Röger and Weber [48]. A natural question is how about
Wong-Zakai approximation for stochastic 3D Burgers equation. Inspired by the celebrated work [13],
one can adapt the argument of [16, 43] to establish Wong-Zakai approximation for stochastic 3D Burgers
equation (1.1).

In what follows, let us explicate the essential difficulties we encountered in treating this high nonlin-
ear multidimensional stochastic system without incompressibility.

1. The 3D Burgers equation is a high nonlinear model without cancellation property. When the
noise is introduced into this equation new difficulties emerge. The first difficulty is how to adapt
the frame of PDEs to the stochastic frame such that the maximum principle is available for Itô
equations, i.e., stochastic 3D Burgers equation. To address the global well-posedness of (1.1),
the key point is how to utilize the probabilistic techniques and deterministic techniques to control
the effect of the noise such that the maximum principle can be applied to stochastic 3D Burgers
equation. Based on this strategy, the noise in (1.1) is linear. If the noise is nonlinear, the maximum
principle is unavailable.
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2. To solve (1.1) globally, our ideal is that we firstly perform the Doss-Sussman transformation on
(1.1), then apply the maximum principle to the Galerkin approximations of 3D random Burgers
equation. Here, we should mention that different from the deterministic cases, random 3D Burgers
equation loses some regularity with respect to time, which forces us to establish the local well-
posedness for the random 3D Burgers equation in a more regular space H

3
2 (T3) than the global

strong solution space H1(T3), see the proof of Theorem 4.1.

3. In Theorem 4.5, we establish a maximum principle for the relevant random 3D Burgers equations.
Here, the random maximum principle enable us to derive several important moment estimates for
stochastic 3D Burgers equations.

4. In Section 6, we construct a global solution u for (1.1) which is orthogonal with ∇b(x), please see
Theorem 6.6. The results and methods presented here seem to be new even for the deterministic
PDEs and might pave a way to extend the results of [45, 44] to higher dimensions.

The paper is organised as follows. Arguments from Section 2 to Section 5 are devoted to the regularities
of (1.1) with b(x) being only a constant. Section 6 further establishes the global well-posedness of
(1.1) with b(x) being a smooth function. More precisely, preliminaries are presented in Section 2, the
local existence and uniqueness of the solutions to (1.1) are given in Section 3, the global existence and
regularities of solutions to (1.1) are established in Section 4. Moment estimates are derived in Section 5
for (1.1) in various functional spaces. In section 6, we establish the global well-posedness of 3D Burgers
equation with the noise u ◦ b(x)dB(t), where b(x) is a given smooth function. Appendix states some
illustrations about the model considered in Section 6.

Throughout the paper, we use c > 0 for a generic constant with possibly different values at each
appearance. Unless a specific description is given, we denote by c(a) > 0 a constant which depends on
parameter a.

2 Mathematical preliminaries

2.1 Notational conventions

For 1 ≤ p ≤ ∞, let Lp(T3) be the usual Lebesgue spaces Lp(T3;R3) with the norm | · |p.When p = 2, we
denote by 〈·, ·〉 the inner product in L2(T3). Similarly, without confusion, we denote by Lp(T3) the usual
Lebesgue spaces Lp(T3;R) with the norm | · |p. For s ≥ 0, we introduce an operator Λs acting on Hs(T3)
which is a Sobolev space Hs(T3;R3). For the detail, please see the following. Assuming f ∈ Hs(T3) with
the Fourier series

f (x) =
∑

k∈Z3

f̂keik·x ∈ Hs(T3), (2.2)

we define
Λs f (x) =

∑

k∈Z3

|k|s f̂keik·x ∈ L2(T3).
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Denote by ‖ · ‖s the seminorm |Λs · |2, then the Sobolev norm ‖ · ‖Hs of Hs(T3) is equivalent to | · |2 + ‖ · ‖s.
Hence, we can define the norm on Hs by

‖ f ‖Hs =
( ∑

k∈Z3

(1 + |k|2s)| f̂k|2
)1/2
.

Obviously, for 0 < s1 ≤ s2, we have ‖ f ‖s1 ≤ ‖ f ‖s2 and Λ2 = −∆. For s ∈ R+, set Ḣs(T3) = { f ∈ L2(T3) :
∑

k∈Z3 |k|2s| f̂k|2 < ∞}. Then, we have Hs(T3) ⊂ Ḣs(T3). Obviously, ‖ · ‖s is the seminorm in Ḣs(T3).
Similarly, we can define Hs(T3), which is a Sobolev space Hs(T3;R) with s ≥ 0. Let

{en(x), x ∈ T3, n ≥ 1} be an orthogonal basis of L2(T3), then we know {en(x), n ≥ 1} =
{1, sin x, cos x, sin 2x, cos 2x, ..., sin nx, cos nx, ...}. Assuming g ∈ Hs(T3) with the Fourier series

g(x) =
∞∑

n=1

ĝnen(x) ∈ Hs(T3),

then

Λsg(x) =
∞∑

n=1

|n|sĝnen(x) ∈ L2(T3).

Without confusion, we still denote by ‖ · ‖s the seminorm |Λs · |2, then the Sobolev norm ‖ · ‖Hs of Hs(T3)
is equivalent to | · |2 + ‖ · ‖s. Hence, we can define the norm on Hs(T3) by

‖g‖Hs =
( ∞∑

n=1

(1 + |n|2s)|ĝn|2
)1/2
.

Without loss of generality, we simply take the viscosity parameter ν = 1. In fact, we only need ν to
be any strictly positive number. In the following, we first introduce notations of local solution, maximum
solution and global solution to (2.3) and (2.4). Since (2.3) and (2.4) is discussed by pathwise, so these
definitions are from deterministic PDEs.

Definition 2.1 (Local strong solutions to (2.3) and (2.4)). Suppose u0 is an H1(T3) valued, F0 measur-
able random variable, T is an arbitrary positive constant.

1. A pair (v, τ) is a local strong pathwise solution to (2.3) and (2.4) if τ is a strictly positive random
variable taking values in (0,∞) and v(· ∧ τ) satisfies (2.3) and (2.4) in a weak sense so that the
following regularities hold almost surely,

v(· ∧ τ) ∈ C([0, T ];H1(T3)) ∩ L2([0,T ];H2(T3)),

and

∂tv(· ∧ τ) ∈ L1([0, T ];L2(T3)).

2. Strong pathwise solutions of (2.3) and (2.4) are said to be pathwise unique up to a random positive
time τ > 0 if given any pair of solutions (v1, τ), (v2, τ) which coincide at t = 0 on the event
Ω̃ = {v1(0) = v2(0)} ⊂ Ω, then

P(IΩ̃(v1(t ∧ τ) − v2(t ∧ τ)) = 0;∀t ∈ [0, T ]) = 1.
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Definition 2.2 (Maximal and global strong solutions to (2.3) and (2.4)).

(i) Let ξ be a positive random variable which may take ∞ at some ω ∈ Ω. We say the pair (v, ξ) is
a maximal pathwise strong solution if for each random variable τ ∈ (0, ξ), (v, τ) is a local strong
pathwise solution satisfying

sup
t∈[0,τ]

‖v(t)‖1 < ∞, and lim sup
t→ξ

I[ξ<∞]‖v(t)‖1 = ∞

almost surely.

(ii) If (v, ξ) is a maximum pathwise strong solution and ξ = ∞ a.s., then we say the solution v is global.

Definition 2.3 (Local weak solutions to (2.3) and (2.4)). Suppose u0 is an H
1
2 (T3) valued, F0 measur-

able random variable, T is an arbitrary positive constant.
(i) A pair (v, τ) is a local weak pathwise solution to (2.3) and (2.4) if τ is a strictly positive random

variable taking values in (0,∞) and v(·∧ τ) satisfies (2.3) and (2.4) in a weak sense so that the following
regularities hold almost surely,

v(· ∧ τ) ∈ C([0, T ];H
1
2 (T3)) ∩ L2([0, T ];H

3
2 (T3)),

and

∂tv(· ∧ τ) ∈ L1([0, T ];L2(T3)).

(ii) Weak pathwise solutions of (2.3) and (2.4) are said to be pathwise unique up to a random positive
time τ > 0 if given any pair of solutions (v1, τ), (v2, τ) which coincide at t = 0 on the event Ω̃ = {v1(0) =
v2(0)} ⊂ Ω, then

P(IΩ̃(v1(t ∧ τ) − v2(t ∧ τ)) = 0; t ∈ [0,T ]) = 1.

Definition 2.4 (Maximal and global weak solutions to (2.3) and (2.4)).

(i) Let ξ be a positive random variable which may take ∞ at some ω ∈ Ω. We say the pair (u, ξ) is
a maximal weak pathwise solution if for each random variable τ ∈ (0, ξ), (v, τ) is a local strong
pathwise solution satisfying

sup
t∈[0,τ]

‖v(t)‖ 1
2
< ∞, and lim sup

t→ξ
I[ξ<∞]‖v(t)‖ 1

2
= ∞

almost surely.

(ii) If (v, ξ) is a maximum weak pathwise solution and ξ = ∞ a.s., then we say the solution v is global.

Definition 2.5 (Global strong solutions to (1.1)). Suppose u0 is aH1(T3) valued, F0 measurable random
variable. A stochastic process u is said to be a global strong solution to (1.1) if

(i) for arbitrary T > 0 and t ∈ [0, T ], u(t) is an Ft adapted process satisfying u ∈ C([0, T ];H1(T3))∩
L2([0,T ];H2(T3)) almost surely;

6



(ii) u solves the stochastic 3D Burgers equation in the following sense:

u(t) −
∫ t

0
∆uds +

∫ t

0
(u · ∇u)ds = u(0) +

∫ t

0
b(x)u ◦ dB(s), a.s.,

with the equality understood in H and t ∈ [0, T ]. Furthermore, let u and ũ be two global strong solutions
to (1.1). If u(0)= ũ(0) a.s., we have

P(u(t) = ũ(t), f or all t ∈ [0,T ]) = 1,

then we say the strong solution u to (1.1) is unique.

Definition 2.6 (Global weak solutions to (1.1)). Suppose u0 is aH
1
2 (T3) valued, F0 measurable random

variable. A stochastic process u is said to be a global weak solution to (1.1) if
(i) for arbitrary T > 0 and t ∈ [0,T ], u(t) is an Ft adapted process satisfying u ∈ C([0,T ];H

1
2 (T3))∩

L2([0,T ];H
3
2 (T3)) almost surely;

(ii) u solves the stochastic 3D Burgers equation in the following sense:

〈u(t), φ〉 +
∫ t

0
〈u(s),Λ2φ〉ds +

∫ t

0
〈(u · ∇u)(s), φ〉ds

= 〈u(0), φ〉 +
∫ t

0
〈b(x)u(s, x), φ〉 ◦ dB(s),

for all t ∈ [0,T ] and φ ∈ D(Λ2). Furthermore, let u and ũ be two strong solutions to (1.1). If u(0)= ũ(0)
a.s., we have

P(u(t) = ũ(t), f or all t ∈ [0,T ]) = 1,

then we say the weak solution u to (1.1) is unique.

2.2 Reformulation of stochastic 3D Burgers equations

From this part to Section 5, we only consider the case that b(x) is only a constant. Let W(t) = bB(t), and
α(t) = exp (−W(t)), t ∈ [0, T ]. As we know the characteristic function of −W(t) is

E exp (−ixW(t)) = exp(
−1
2

b2tx2), x ∈ R, i is the imaginary unit,

which implies that exp (−W(t) − 1
2 b2t) is a martingale. Hence, by Doob’s maximum inequality we have

E sup
t∈[0,T ]

αn(t) = E sup
t∈[0,T ]

exp
(
− nW(t)

)

≤ E sup
t∈[0,T ]

exp
(
− nW(t) − n2

2
b2t

)
exp

(n2

2
b2T

)

≤
(
E sup

t∈[0,T ]
exp

(
− 2nW(t) − 2n2b2t

)) 1
2

exp
(
n2b2T

)

≤ 2
(
E exp

(
− 2nW(T ) − 2n2b2T

)) 1
2

exp
(
n2b2T

)
= 2 exp

(
n2b2T

)
,
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where n ≥ 1. Similarly, we also have

E sup
t∈[0,T ]

α−n(t) ≤ 2 exp
(
n2b2T

)
.

Set v = αu, then equations (1.1) is equivalent to the following

dv(t, x) = ∆v(t, x)dt − α−1(t)[(v · ∇v)(t, x)]dt, on [0,T ] × T3, (2.3)

v(0, x) = u(0, x), x = (x1, x2, x3) ∈ T3. (2.4)

We firstly consider the Galerkin approximation of (2.3)-(2.4). For n ∈ N let Pn denote the projection on
to the Fourier modes of order up to n, that is

Pn



∑

k∈Z3

ûkeix·k

 =

∑

|k|≤n

ûkeix·k.

Then we obtain the Galerkin approximation of (2.3)-(2.4) as the following

dvn(t, x) = ∆vn(t, x)dt − α−1(t)Pn[(vn · ∇vn)(t, x)]dt, on [0, T ] × T3, (2.5)

vn(0, x) = un(0, x) = Pnu(0, x), x = (x1, x2, x3) ∈ T3. (2.6)

Since (2.5)-(2.6) is a locally-Lipschitz system of random ODEs, we set vn to be the unique local solution
to (2.5)-(2.6) with vn(0, x) ∈ H 1

2 (T3). Define

τn = inf{t ∈ R+ : sup
0≤s≤t
‖vn(s)‖

H
1
2
= ∞}.

Obviously, vn ∈ C([0, τn) × T3).
For the multidimensional Burgers equations, if the initial data has zero average, the solutions are not

necessary to have zero average for positive times. This leads to that, for positive s, ‖ · ‖s is smaller than
‖ · ‖Hs . Hence, ‖ · ‖s is not equivalent to ‖ · ‖Hs for the multidimensional Burgers equations. This is dif-
ferent from the case of Navier-Stokes equations. Further more, due to the absence of the incompressible
property and high nonlinearity of 3D Burgers equations, one can not obtain the a priori estimates in
L2(T3). To overcome the difficulty, we need to use estimates in Ḣs(T3) and L1(T3) norm of initial data
to dominate the energy in L2(T3), see (2.8) and Lemma 2.1. In fact, one can see that estimate (2.7) in
Lemma 2.1 is vital to establish the uniqueness of the solutions to the stochastic 3D Burgers equations,
see derivation of (3.11), (3.11), (4.29) and (4.30).

2.3 Some lemmas

Lemma 2.1. Let u, v be the local solutions of (2.5) up to a random positive time τ > 0, with initial data
u0 ∈ H

1
2 (T3) and v0 ∈ H

1
2 (T3), respectively. Let ξ := u − v and ξ0 := u0 − v0, then for t ∈ [0, τ], we have

∣∣∣∣∣

∫

T3

(
ξ(t) − ξ0

)
dx

∣∣∣∣∣ ≤ 8π3α−1
∫ t

0
‖ξ‖ 1

2
(‖u(s)‖ 1

2
+ ‖v(s)‖ 1

2
)ds. (2.7)
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In particular, taking v ≡ 0 yields the following
∣∣∣∣∣

∫

T3
u(x, t)dx

∣∣∣∣∣ ≤ 8π3
∫ t

0
α−1(s)‖u(s)‖21

2
ds +

∣∣∣∣∣

∫

T3
u0(x)dx

∣∣∣∣∣ .

Proof. For k ∈ Z3, let ûk, v̂k and ξ̂k be the kth Fourier coefficients of u, v and ξ, respectively. In view of
the equations of by u and v, we derive the following

d
dt

∫

T3
ξ(t, x)dx = −α−1

∫

T3

(
(u · ∇)ξ(t, x) + (ξ · ∇)v(t, x)

)
dx

= −8π3iα−1
∑

k∈Z3

{(
ûk(t) · k

)
ξ̂k(t) +

(
ξ̂k(t) · k

)
v̂k(t)

}
.

Hence
∣∣∣∣
d
dt

∫

T3
ξ(t, x)dx

∣∣∣∣ ≤ 8π3α−1
∑

k∈Z3

|ξ̂k||k|(|ûk| + |v̂k|)

≤ 8π3α−1‖ξ(t)‖ 1
2
(‖u(t)‖ 1

2
+ ‖v(t)‖ 1

2
),

and (2.7) then follows from the integration of the above estimate with respect to t. !

In view of Lemma 2.1, we can obtain Corollary 2.1 where the formula (2.8) will play important roles
in the proofs of global existence and uniqueness results for solutions to (2.3)-(2.4), see Theorem 4.1 and
Theorem 4.3.

Corollary 2.1. Let vn be the solution to (2.5)-(2.6) with vn(0)(∈ H 1
2 (T3)) and τ being its initial data and

existence time, respectively. For any s > 0 and t ∈ [0, τ], we have

‖vn(t)‖s ≤ ‖vn(t)‖Hs ≤ ‖vn(t)‖s + c
∫ t

0
‖vn(s)‖21

2
ds + c|u0|1, (2.8)

for some c = max{(2π)9/2α−1(t), (2π)3/2}.

Proof. Define v̄n = v̄n(t) =
∫
T3 vn(t, x)dx, t ∈ [0, τ]. If we make a decomposition of vn as in (2.2), then

we find that v̄n is the first component of vn. Hence, for any s > 0, we have

|vn|2 ≤ |vn − v̄n|2 + (2π)3/2|v̄n| ≤ ‖vn‖s + (2π)3/2|v̄n|

≤ ‖vn‖s + (2π)9/2α−1(t)
∫ t

0
‖vn‖21

2
ds + (2π)3/2|u0|1,

where the last inequality follows by Lemma2.1. Consequently, we have

‖vn(t)‖s ≤ ‖vn(t)‖Hs ≤ ‖vn(t)‖s + c
∫ t

0
‖vn(s)‖21

2
ds + c|u0|1,

for some c = max{(2π)9/2α−1(t), (2π)3/2}. !

To prove Theorem 4.1 and Theorem 4.3, we further need the following two classical lemmas from
[50] and [41] respectively.
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Lemma 2.2. Let B0, B, B1 be Banach spaces such that B0, B1 are reflexive and B0
c⊂ B ⊂ B1, where

B0
c⊂ B stands for compact imbedding. Define, for 0 < T < ∞,

X :=
{

h
∣∣∣∣h ∈ L2([0, T ]; B0),

dh
dt
∈ L2([0, T ]; B1)

}
.

Then X is a Banach space equipped with the norm |h|L2([0,T ];B0) + |h′|L2([0,T ];B1). Moreover,

X
c⊂ L2([0,T ]; B).

Lemma 2.3. Let V,H,V ′ be three Hilbert spaces such that V ⊂ H = H ⊂ V ′ , where H′ and V ′ are the
dual spaces of H and V respectively. Suppose u ∈ L2(0, T ; V) and u′ ∈ L2(0,T ; V ′). Then u is almost
everywhere equal to a function continuous from [0,T ] into H.

One can refer to Temam [50] and other references for the proof of the Lemma 2.2. The Lemma
2.3, a special case of a general result of Lions and Magenes [41], will help us to verify the continuity
of the solution to stochastic Burgers equations with respect to time. For the proof of the Lemma 2.3,
one can also see [50]. In fact, this regularity is important for us to establish the global existence of
solutions to stochastic equations (2.3)-(2.4). As we know, the maximum principle should be applied
to classical solutions to differential equations. But there is no classical solutions to stochastic partial
differential equations. Therefore, our ideal is that we apply the maximum principle to random Galerkin
approximations. Then, we combine the compactness argument with the regularity of the local solutions
to show that the global well-posedness of (2.3)-(2.4) holds, see the proof of Theorem 4.1 for details.

3 Local existence of the solutions to (1.1)

We will use the approach of Galerkin approximations to show the existence of a local strong solution to
equation (2.3)-(2.4). In fact, it is sufficient to establish the existence of a local strong solution on time
interval [0, 1] as what we do in Proposition 3.1. Because, in view of Proposition 3.1, we can extend the
existence time of the local solutions to a more broad time interval than [0, 1] by repeating the proof of
Proposition 3.1. Through the iterative extension, we can seek the maximum existence time for the local
strong solutions to (2.3)-(2.4). If the maximum existence time equals to infinite almost surely, then the
local strong solutions are the global strong solutions.

Proposition 3.1. Suppose u0 is an H1(T3) valued, F0 measurable random variable. Then, there exists a
unique local strong pathwise solution v to equation (2.3)-(2.4) on the time interval [0, 1] satisfying

sup
t∈[0,τ∗0]

‖v(t)‖2
H1 +

∫ τ∗1

0
‖v(t)‖22dt < ∞,P − a.e.ω ∈ Ω,

where τ∗0 is a positive random variable which is smaller than 1. Moreover, the local strong pathwise
solution v to equation (2.3)-(2.4) is Lipschitz continuous with respect to the initial data u0 in H1(T3).
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Proof. For t ∈ (0, τn ∧ 1), taking inner product of (2.5) in L2([0, t] × T3) with Λ2vn yields

‖vn(t)‖21 + 2
∫ t

0
‖vn(s)‖22ds

≤ ‖vn(0)‖21 +
∫ t

0
α−1(s)

∫

T3
|(vn · ∇)vn(s, x)| × |Λ2vn(s, x)|dxds.

Then by the Hölder inequality, the Sobolev imbedding theorem and the interpolation inequality, we have

‖vn(t)‖21 + 2
∫ t

0
‖vn(s)‖22ds

≤ ‖vn(0)‖21 + ε
∫ t

0
‖vn‖22ds + c(ε)

∫ t

0
α−2(s)|∇vn|23|vn|26ds

≤ ‖vn(0)‖21 + ε
∫ t

0
‖vn‖22ds + c(ε)

∫ t

0
α−4(s)‖vn(s)‖21|vn(s)|46ds

≤ ‖vn(0)‖21 + ε
∫ t

0
‖vn‖22ds + c(ε)

∫ t

0
α−4(s)‖vn(s)‖21‖vn(s)‖4

H1ds.

Note that
‖vn(s)‖4

H1 = (‖vn(s)‖1 + |vn(s)|2)4

and
|vn(s)|2 ≤ ‖vn(s)‖1 + c

∫ s

0
‖vn(r)‖21

2
dr + |u0|1,

where c only depends on the dimain T3. In view of the estimates above, we arrive at

‖vn(t)‖21 +
∫ t

0
‖vn(s)‖22ds

≤ ‖vn(0)‖21 + c
∫ t

0
α−4(s)‖vn(s)‖21

(
‖vn(s)‖1 + c

∫ s

0
‖vn(r)‖21

2
dr + |u0|1

)4
ds

≤ ‖vn(0)‖21 + c
∫ t

0
α−4(s)‖vn(s)‖21

[
‖vn(s)‖41 + c

( ∫ s

0
‖vn(r)‖21

2
dr + |u0|1

)4]
ds

≤ ‖vn(0)‖21 + c
∫ t

0
α−4(s)‖vn(s)‖21

[
‖vn(s)‖41 + c

( ∫ t

0
‖vn(r)‖21

2
dr + |u0|1

)4]
ds.
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Split the last term into two terms, we get

‖vn(t)‖21 +
∫ t

0
‖vn(s)‖22ds

≤ ‖vn(0)‖21 + c
∫ t

0
α−4(s)‖vn(s)‖61ds + c

∫ t

0
α−4(s)‖vn(s)‖21ds

( ∫ t

0
‖vn(s)‖21

2
ds + |u0|1

)4

≤ ‖vn(0)‖21 + c
∫ t

0
α−4(s)‖vn(s)‖61ds + c|u0|41

∫ t

0
α−4(s)‖vn(s)‖21ds

+c
∫ t

0
α−4(s)‖vn(s)‖21ds

( ∫ t

0
‖vn(s)‖21

2
ds

)4

≤ ‖vn(0)‖21 + c
∫ t

0
α−4(s)‖vn(s)‖61ds + c|u0|41

∫ t

0
α−4(s)‖vn(s)‖21ds

+c
( ∫ t

0
α−4(s)‖vn(s)‖21ds

)5
+ c

( ∫ t

0
‖vn(s)‖21ds

)5

≤ ‖vn(0)‖21 + c
∫ t

0
α−4(s)‖vn(s)‖61ds + c|u0|41

∫ t

0
α−4(s)‖vn(s)‖21ds

+c
∫ t

0
t4α−20(s)‖vn(s)‖10

1 ds + c
∫ t

0
t4‖vn(s)‖10

1 ds.

At the beginning of the proof, we know that t ∈ [0, 1], so we obtain

‖vn(t)‖21 +
∫ t

0
‖vn(s)‖22ds ≤ ‖vn(0)‖21 +

∫ t

0

(
c(1 + α−4(s))(1 + |u0|41)1/5‖vn(s)‖21

)5
ds

+

∫ t

0

(
c(1 + |u0|41)1/5(1 + α−4(s))

)5
ds

Let f (s) := c(1 + α−4(s)) and g(s) := c(1 + |u0|41)1/5(1 + α−4(s)). Then

‖vn(t)‖21 +
∫ t

0
‖vn(s)‖22ds = ‖vn(0)‖21 +

∫ t

0

(
f (s)‖vn(s)‖21

)5
ds +

∫ t

0
g5(s)ds

≤ ‖vn(0)‖21 +
∫ t

0
( f (s)‖vn(s)‖21 + g(s))5ds

≤ ‖u0‖21 +
∫ t

0
(‖vn(s)‖21 sup

s∈[0,1]
f (s) + sup

s∈[0,1]
g(s))5ds.

For simplicity, we set A := sup
s∈[0,1]

f (s) and B := sup
s∈[0,1]

g(s), then we have

‖vn(t)‖21 +
∫ t

0
‖vn(s)‖22ds ≤ ‖vn(0)‖21 +

∫ t

0
(A‖vn(s)‖21 + B)5ds. (3.9)

By the comparison theorem (see Theorem III-5-1 in page 59 of [34]), it follows that

‖vn(t)‖21 ≤
A‖u0‖21 + B

A(1 − 4At(A‖u0‖21 + B)4)1/4
− B

A
. (3.10)
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The estimates above rules out a blowup of vn in H1(T3) before the time

τ∗ :=
1

4A(A‖u0‖21 + B)4
.

It follows that one can choose τ∗0 =
τ∗
2 > 0 such that τ∗0 is independent of n ∈ N, which together with

(3.9) and (3.10) implies that vn are uniformly bounded in L∞([0, τ∗0];H1) ∩ L2([0, τ∗0];H2). From (2.3),
by virtue of the Hölder inequality, the Sobolev imbedding theorem and Young’s inequality we have

|∂tvn|2 ≤ α−1|vn · ∇vn|2 + |∆vn|2
≤ α−1|vn|∞|∇vn|2 + ‖vn‖2
≤ cα−1‖vn‖

1
2
H1‖vn‖

1
2
H2‖vn‖1 + ‖vn‖2

≤ cα−1(‖vn‖
3
2
1 ‖vn‖

1
2
2 + ‖vn‖

3
2
1 |vn|

1
2
2

+|vn|
1
2
2 ‖vn‖1‖vn‖

1
2
2 + |vn|2‖vn‖1) + ‖vn‖2,

where c is independent of dimension n and random time τ. In view of (2.8), we note that

|vn(t)|2 ≤ c
( ∫ t

0
‖vn(s)‖21

2
ds + |v0|1

)
,

where c is independent of n and random time τ. Hence, from (3.9)-(3.10), we know ∂tvn are uniform-
ly bounded in L2([0, τ∗0];L2(T3)). From Lemma 2.2 and Lemma 2.3, we conclude that there exists a
subsequence of vn, which is still denoted by vn, such that vn converges to v in L2([0, τ∗0];H1(T3)) and
v ∈ C([0, τ∗0];H1(T3)). Following a standard argument as in [50], one can show that v is the local strong
solution to (2.3)-(2.4).

In the following, we will prove the uniqueness of v in C([0, τ∗0];H1(T3)). Let v1 and v2 be two local
strong solutions to (2.3)-(2.4). Denote by v̂ := v1 − v2. Then, for t ∈ [0, τ∗0], we have

1
2
∂t|v̂|22 + ‖v̂‖21 ≤ −α−1〈v̂ · ∇v1, v̂〉 − α−1〈v2 · ∇v̂, v̂〉

≤ α−1|v̂|
1
2
2 ‖v̂‖

3
2
H1‖v1‖1 + ε‖v̂‖21 + cα−2|v2|2∞|v̂|22

≤ ε‖v̂‖21 + α−4|v̂|22‖v1‖41 + cα−2
(
‖v2‖1 +

∫ t

0
‖v2‖21

2
ds + |u0|1

)

×
(
‖v2‖2 +

∫ t

0
‖v2‖21

2
ds + |u0|1

)
|v̂|22,

which implies via the Gronwall inequality and v̂(0) = 0 that |v̂(t)|2 = 0, t ∈ [0, τ∗0]. Taking inner product
of (2.5) in L2(T3) with (−∆vn) and using interpolation inequality further yields,

1
2
∂t‖v̂‖21 + ‖v̂‖22 ≤ α−1〈v̂ · ∇v1,∆v̂〉 + α−1〈v2 · ∇v̂,∆v̂〉

≤ α−1‖v̂‖2‖v̂‖
1
2
1 ‖v̂‖

1
2
2 ‖v1‖1 + α−1‖v2‖

1
2
H1‖v2‖

1
2
H2‖v̂‖1‖v̂‖2

≤ ε‖v̂‖22 + c(ε)α−4‖v̂‖21‖v1‖41 + c(ε)α−2‖v2‖H1‖v2‖H2‖v̂‖21,
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which implies via the Gronwall inequality and v̂(0) = 0 that ‖v̂(t)‖1 = 0 for t ∈ [0, τ∗0]. The above two
estimates about v̂ imply the Lipschitz continuity of the local strong solution v with respect to the initial
data in H1(T3). !

We should emphasise here that the following Lemma is key to establish the global well-posedness
for strong solutions and weak solutions to (1.1) in C([0, T ];H1(T3)) and C([0, T ];H

1
2 (T3)), respectively.

The local strong solutions should be smoother than the global solutioms. That is what the Lemma 3.1
does.

The proof of Lemma 3.1 relies on commutator estimates, see Theorem A.8 of [38] for more details
of commutator estimates.

Lemma 3.1. Suppose u0 is an H
3
2 (T3) valued, F0 measurable random variable. Then, there exists a

unique local strong pathwise solution v to equation (2.3)-(2.4) on [0, 1] satisfying

sup
t∈[0,τ1]

‖v(t)‖2
H

3
2
+

∫ τ1

0
‖v(t)‖25

2
dt < ∞,P − a.e.ω ∈ Ω.

where the positive random variable τ1 is the local existence time for v. Moreover, the local strong path-
wise solution v to equation (2.3)-(2.4) is Lipschitz continuous with respect to the initial data in H

3
2 (T3).

Proof. For t ∈ (0, τn), taking inner product of (2.5) in L2([0, t] × T3) with Λ3vn yields

1
2
∂t‖vn‖23

2
+ ‖vn‖25

2
= −α−1〈Λ1/2(vn · ∇vn),Λ5/2vn〉

which implies

‖vn(t)‖23
2
+ 2

∫ t

0
‖vn(s)‖25

2
ds ≤ ‖u0‖23

2
+ ε

∫ t

0
‖vn(s)‖25

2
ds

+c sup
s∈[0,t]

α−2(s)
∫ t

0

∫

T3
|Λ1/2(vn · ∇vn)|2dxds. (3.11)

In order to bound the last term on the right hand side of (3.11), we will use Theorem A.8 in [38]. Without
loss of generality, we assume t ≤ 1. Then the estimates of the last term follows

∫ t

0

∫

T3
|Λ1/2(vn · ∇vn)|2dxds

≤ 3
∫ t

0

∫

T3
|vn · (Λ3/2vn)|2dxds + 3

∫ t

0

∫

T3
|(Λ1/2vn) · (Λvn)|2dxds

+c
{∫ t

0

( ∫

T3
|Λ3/8vn|6dx

)2/3

ds
}1/2

{∫ t

0

( ∫

T3
|Λ9/8vn|3dx

)4/3
ds

}1/2

=: I1 + I2 + I1/2
3 × I1/2

4

≤ I1 + I2 + I3 + I4.
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Using the Holder inequality, the interpolation inequality and Young’s inequality, we get

I2 ≤
∫ t

0
|Λvn(s)|22|Λ1/2vn(s)|2∞ds

≤ c
∫ t

0
‖vn(s)‖21‖vn(s)‖ 3

2
‖vn(s)‖ 5

2
ds

≤ ε

∫ t

0
‖vn(s)‖25

2
ds + c

∫ t

0
‖vn(s)‖63

2
ds.

In view of the Holder inequality, the Sobolev embedding theorem and (2.8), we have

I1 ≤ c
∫ t

0
|vn|2∞‖vn‖23

2
ds ≤ c

∫ t

0
‖vn‖4

H
3
2
ds

≤ c
∫ t

0
‖vn‖43

2
ds + c

∫ t

0
|vn|42ds

≤ c
∫ t

0
‖vn‖43

2
ds + ct

( ∫ t

0
‖vn(s)‖21

2
ds

)4
+

∫ t

0
|u0|41ds

≤ c
∫ t

0
‖vn‖43

2
ds + c

∫ t

0
‖vn(s)‖81

2
ds + ct|u0|41.

Utilising the interpolation inequality and (2.8), we then derive

I4 ≤ c
∫ t

0
|Λ9/8vn|43ds ≤ c

∫ t

0
‖vn‖7/2

H
3
2
‖vn‖1/2

H
5
2
ds

≤ ε

∫ t

0
‖vn‖2

H
5
2
ds + c

∫ t

0
‖vn‖14/3

H
3
2

ds

≤ ε

∫ t

0
‖vn(s)‖25

2
ds + c

∫ t

0
‖vn(s)‖14/3

3
2

ds

+c
∫ t

0
‖vn(s)‖41

2
ds + ct|u0|21 + c

∫ t

0
‖vn(s)‖28/3

1
2

ds + ct|u0|14/3
1 .

By the Sobolev imbedding theorem, we obtain

I3 ≤ c
∫ t

0
‖vn‖43

2
ds.

Combing the argument above, we get the new estimates for (3.11 ), that is,

‖vn(t)‖23
2
+

∫ t

0
‖vn(s)‖25

2
ds

≤ c‖u0‖23
2
+ c sup

s∈[0,1]
α−2(s)

∫ t

0

[
(1 + |u0|21) + ‖vn(s)‖23

2

]14
ds.

Define A = 1 + |u0|21. Then we have

‖vn(t)‖23
2
+

∫ t

0
‖vn(s)‖25

2
ds ≤ c‖u0‖23

2
+ c sup

s∈[0,1]
α−2(s)

∫ t

0
(A + ‖vn(s)‖23

2
)14ds. (3.12)
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Again, by the comparison theorem (see Theorem III-5-1 in page 59 of [34] )

‖vn(t)‖23
2
≤

A + ‖u0‖23
2

[
1 − 13c sup

s∈[0,1]
α−2(s)t(A + ‖u0‖23

2
)13

]1/13 − A. (3.13)

Hence the estimates (3.13) rules out a blowup of vn in H
3
2 before the time τ∗1 =

1
13c sup

s∈[0,1]
α−2(s)(A+‖u0‖23

2
)13 .

It follows that there exists τ1 > 0, we can for example take τ1 = τ∗1/2, such that τn ≥ τ1 for all n. From
(3.12 ) and (3.13), we have uniform bounds for vn in L∞([0, τ1];H

3
2 (T3)) and in L2([0, τ1];H

5
2 (T3)). It is

easy to show that ∂tvn is uniformly bounded in L2([0, τ1];L2(T3)). By Lemma 2.2 and Lemma 2.3, there
exists a subsequence of vn, which converges to v in L2([0, τ1];H

3
2 (T3)) with v ∈ C([0, τ1];H

3
2 (T3)). By a

standard argument one knows v is a local strong solution to (2.3)-(2.4). Taking a similar argument as in
Proposition 3.1, we can show that v is Lipschitz continuous with respect to the initial data in H

3
2 (T3).

!

Lemma 3.2. The maximum existence times τ∗ and τ∗∗ for local solutions in Proposition 3.1 and Lemma
3.1, satisfy

P
(
I(τ∗∗<∞)(τ∗ − τ∗∗) ≥ 0

)
= 1.

Proof. In order to prove the result, it is equivalent to prove

P(τ∗∗ = ∞) + P(τ∗∗ < ∞, τ∗ − τ∗∗ ≥ 0) = 1.

If P(τ∗∗ = ∞) = 1, then the result follows. Or else, we assume P(τ∗∗ < ∞) > 0, then the above equality
is equivalent to

P(τ∗ − τ∗∗ ≥ 0|τ∗∗ < ∞) = 1.

On (τ∗∗ < ∞), for arbitrary t ∈ (0, τ∗∗), we have

v ∈ C([0, t];H
3
2 (T3)).

Note that H
3
2 (T3) ⊂ H1(T3), which implies t < τ∗. By the arbitrariness of t, one gets that on (τ∗∗ < ∞),

τ∗∗ ≤ τ∗ holds. It completes the proof. !

4 Global well-posedness to (1.1)

The key tool in our study of the regularity of the solutions to stochastic 3D Burgers equations is the
maximum principle, stated as Lemma 4.1.

Lemma 4.1. If vn is a solution to the random Burgers equation (2.5)-(2.6) on the time interval [0, t], then

sup
s∈[0,t]

|vn(s)|∞ ≤ |vn(0)|∞, P − a.s.ω ∈ Ω. (4.14)
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Proof. Let β > 0 and set f (s, x) := e−βsvn(s, x) for all s ∈ [0, t] and x ∈ T3. Then, multiplying v on both
sides of (2.3) yields

∂s|vn(s)|2 + α−1(s)vn(s) · ∇|vn(s)|2 − 2(∆vn · vn)(s) = 0.

Note that |vn(s)|2 = | f (s)|2e2βs satisfies

(e2βs∂s| f (s)|2 + 2βe2βs| f (s)|2) + e3βsα−1(s) f (s) · ∇| f (s)|2 − 2e2βs∆ f (s) · f (s) = 0,

which implies

∂s| f (s)|2 + 2β| f (s)|2 + eβsα−1(s) f (s) · ∇| f (s)|2 − 2∆ f (s) · f (s) = 0.

On the other hand, since

2∆ f (s) · f (s) = ∆| f (s)|2 − 2|∇ f |2,

then we have

∂s| f (s)|2 + 2β| f (s)|2 + eβsα−1(s) f (s) · ∇| f (s)|2 − ∆| f (s)|2 + 2|∇ f |2 = 0.

We observe that if | f | has local maximum at (t, x) ∈ (t0, t] × T3, then the left hand side of the above
equality is positive unless | f (t, x)| ≡ 0. Therefore,

| f (s)|∞ ≤ | f (0)|∞,

which implies

|vn(s)|∞ ≤ eβs|vn(0)|∞, for s ∈ (0, t].

Let β tends to 0, we get the desired result. !

In the following, we will use Lemma 4.1 as well as compactness and regularity arguments to complete
the proof of the global well-posedness of (2.3)-(2.4).

Theorem 4.1. Suppose u0 is an H1(T3) valued, F0 measurable random variable. Then, for any T >
0, there exists a unique global strong pathwise solution v to (2.3)-(2.4) in the sense of Definition 2.1
satisfying

sup
t∈[0,T ]

‖v(t)‖2
H1 +

∫ T

0
‖v(s)‖2

H2ds ≤ ‖u0‖2H1 + c‖v(ε)‖2
H1 exp

(
c‖v(ε)‖2

H
3
2

∫ T

0
α−2(s)ds

)
< ∞,

almost surely, where ε is some positive random variable in (0, T ).Moreover, the strong pathwise solution
v to equation (2.3)-(2.4) is Lipschitz continuous with respect to the initial data in H1(T3).
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Proof. Let τ∗ be the maximum existence time for the unique local strong solution v to (2.3)-( 2.4). For
t ∈ (0, τ∗), taking inner product of (2.5) with Λ2vn in L2(T3) yields

∂t‖vn‖21 ≤ 2α−1
∣∣∣∣∣

∫

T3
(vn · ∇)vn∆vndx

∣∣∣∣∣ − 2‖vn‖22 ≤ α−2|vn|2∞‖vn‖21 + ‖vn‖22.

For 0 < ε < t < τ∗, by Lemma 4.1, we have

‖vn(t)‖21 +
∫ t

ε
‖vn(s)‖22ds ≤ c‖vn(ε)‖21 exp

(
c‖vn(ε)‖2

H
3
2

∫ t

0
α−2(r)dr

)
. (4.15)

From the proof of Proposition3.1, there exists (a subsequence of) vn converging to v in L2([0, τ̂];H1(T3)),
where the random variable τ̂ ∈ (0, τ∗) and v ∈ C([0, τ̂];H1(T3)) ∩ L2([0, τ̂];H2(T3)). It implies that we
can choose a subsequence of vn still denoted by itself such that

vn(t)→ v(t) in H1(T3) almost every with respect to time t ∈ [0, τ∗),

Without loss of generality, we assume v(ε) ∈ H2(T3) ⊂ H 3
2 (T3). Regarding ε as the initial time of (2.3)-

(2.4), by Lemma 3.1, there exists a maximum local solution (v, τ∗∗). By the proof of Lemma 3.1, there
exists a subsequence of vn still denoted by the above sequence such that

vn(r)→ v(r) in H
3
2 (T3) almost every with respect to time r ∈ [ε, τ∗ ∧ τ∗∗).

Letting n tend to infinite in (4.15) yields

‖v(t)‖21 ≤ c‖v(r)‖21 exp
(
c‖v(r)‖2

H
3
2

∫ t

0
α2(s)ds

)
, (4.16)

where (4.16) holds for t and r almost everywhere in [0, τ∗) and [ε, τ∗ ∧τ∗∗) respectively. Keeping in mind
that v ∈ C([0, τ∗);H1(T3)) ∩C([ε, τ∗ ∧ τ∗∗);H 3

2 (T3)), then from (4.16 ) we get that

‖v(t)‖21 ≤ ‖v(ε)‖21 exp
(
‖v(ε)‖2

H
3
2

∫ t

0
α2(s)ds

)
, for arbitrary t ∈ [0, τ∗)

which implies

sup
t∈[0,T ]

‖v(t)‖21 ≤ ‖v(ε)‖21 exp
(
‖v(ε)‖2

H
3
2

∫ T

0
α2(s)ds

)
, f or arbitrary T ∈ [0,∞). (4.17)

As the arguments as above, we can choose s ∈
[
ε, τ∗ ∧ τ∗∗

)
such that there exists a subsequence (vn′)n′∈N′

of (vn)n∈N with N′ ⊂ N satisfying

vn′(s)→ v(s) in H1(T3), for almost everywhere s ∈
[
ε, τ∗ ∧ τ∗∗

)
,

and

vn′(s)→ v(s) in H
3
2 (T3), for almost everywhere s ∈

[
ε, τ∗ ∧ τ∗∗

)
.
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From (4.15), for t ∈ (0, τ∗), we arrive at

sup
n′∈N′

∫ t

s
‖vn′(s)‖22ds ≤ c sup

n′∈N′
‖vn′(s)‖21 exp

(
c‖vn′(s)‖2

H
3
2

∫ T

0
α−2(r)dr

)
< ∞, P − a.e.ω ∈ Ω.

Hence, there exists a subsequence (vn′′)n′′∈N′′ of (vn′)n′∈N′ with N′′ ⊂ N′ such that vn′′ converges to v
weakly in L2

([
ε, T

]
;H2(T3)

)
. That is,

vn′′ ⇀ v, in L2
([
ε, T

]
;H2(T3)

)
, as n′′ → ∞,

where ⇀ stands for weak convergence. Let φ be the test function in L2([0, T ];H2(T3)) with∫ T
0 ‖φ(s)‖22ds ≤ 1. Then, we obtain

∫ t

s
〈∆v(r),∆φ〉dr = lim

n′′→∞

∫ t

s
〈∆vn′′(r),∆φ〉dr

≤ c lim
n′′→∞

‖vn′′(s)‖1 exp
(
c‖vn′′(s)‖2

H
3
2

∫ T

0
α−2(r)dr

)

= c‖v(s)‖1 exp
(
c‖v(s)‖2

H
3
2

∫ T

0
α−2(r)dr

)
< ∞,P − a.s.,

which implies that
∫ t

s
‖v(r)‖22dr ≤ c‖v(s)‖21 exp

(
c‖v(s)‖2

H
3
2

∫ T

0
α−2(r)dr

)
< ∞,P − a.s.

For simplicity, we set
∫ t

s
‖v(r)‖22dr = h1(s) and c‖v(s)‖21 exp

(
c‖v(s)‖2

H
3
2

∫ T

0
α−2(r)dr

)
:= h2(s).

Then

h1(s) ≤ h2(s), for almost everywhere s ∈
[
ε, τ∗ ∧ τ∗∗

)
.

From Proposition 3.1 and Lemma 3.1, we know that

v ∈ C
(
[0, τ∗);H1(T3)

)
∩L2

loc

(
[0, τ∗);H2(T3)

)
and v ∈ C

([
ε, τ∗ ∧τ∗∗

)
;H

3
2 (T3)

)
∩L2

loc

([
ε, τ∗ ∧τ∗∗

)
;H

5
2 (T3)

)
.

It means hi(s), i = 1, 2, is continuous in
[
ε, τ∗ ∧ τ∗∗

)
. Consequently, we get that h1(ε) ≤ h2(ε). That is,

∫ t

ε
‖v(r)‖22dr ≤ c‖v(ε)‖21 exp

(
c‖v(ε)‖2

H
3
2

∫ T

0
α−2(r)dr

)
< ∞,P − a.s. (4.18)

In Proposition 3.1, we have establish the existence of local strong solutions to (2.3)-(2.4). Hence, we
define

t∗ = inf
{
t ∈ [0, τ∗)|

∫ t

0
‖v(r)‖22dr ≥ ‖u0‖21

}
.
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Then we have
∫ t∗

0
‖v(r)‖22dr ≤ ‖u0‖21,P − a.s.ω ∈ Ω.

If ε in (4.18) is small enough such that ε ≤ t∗, P-a.e., then we have
∫ t

0
‖v(r)‖22dr ≤ ‖u0‖21 + c‖v(ε)‖21 exp

(
c‖v(ε)‖2

H
3
2

∫ T

0
α−2(r)dr

)
< ∞,P − a.s.ω ∈ Ω.

where t ∈ [0, τ∗). Therefore, the results of this theorem follows. The uniqueness is given in
Proposition3.1. !

In view of Theorem 4.1 and v = αu, it is clearly true that

Theorem 4.2. Suppose u0 is an H1(T3) valued, F0 measurable random variable. Then, there exists a
unique global strong pathwise solution u to (1.1) in the sense of Definition 2.1.

The following theorem states the uniqueness and global existence for the weak solutions to (2.3)-
(2.4). Our idea is that if the initial data u0 ∈ H

1
2 (T3), taking advantage of the parabolic structure of

the Burgers equation we know that for arbitrary positive constant ε and some t ∈ (0, ε), the local weak
solution v(t) ∈ H 3

2 (T3) ⊂ H1(T3). Then the global existence of the strong solutions to (2.3)-(2.4) can be
applied to the case of weak solutions.

Theorem 4.3. Suppose u0 is an H
1
2 (T3) valued, F0 measurable random variable. Then, there exists

a unique global weak pathwise solution v to (2.3)-(2.4) in the sense of Definition 2.4. Moreover, the
weak pathwise solution v to equation (2.3)-(2.4) is Lipschitz continuous with respect to the initial data
in H

1
2 (T3).

Proof. Let z be the periodic solution to the linear heat equation with initial data u0, then zn := Pnz
satisfies

∂tzn − ∆zn = 0, zn(0) = Pnu0. (4.19)

Let v̂n := vn − zn, then v̂n satisfies

∂tv̂n + α
−1Pn[(vn · ∇)vn] − ∆v̂n = 0, v̂n(0) = 0. (4.20)

Let τn be the maximal existence time for vn to (2.5)-(2.6). Then for t ∈ [0, τn) , taking inner product of
equation (4.19) in H yields,

1
2
∂t|zn(t)|22 + ‖zn(t)‖21 = 0.

which implies

|zn(t)|22 + 2
∫ t

0
‖zn(s)‖21ds = 2|Pnu0|22.
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Multiplying (4.19) with Λzn(t), taking integration with respect to spatial variables and time yields

‖zn(t)‖21
2
+ 2

∫ t

0
‖zn(s)‖23

2
ds = 2‖Pnu0‖21

2
.

Combining the estimates above for zn yields,

sup
s∈[0,t]

‖zn(s)‖2
H

1
2
+ 2

∫ t

0
‖zn‖2

H
3
2
≤ 2‖Pnu0‖2

H
1
2
. (4.21)

Multiplying (4.20) with Λv̂n and integrating over T3 gives

‖v̂n(s)‖21
2
+ 2

∫ t

0
‖v̂n(s)‖23

2
ds

≤
∫ t

0
α−1(s)|vn(s)|6|∇vn(s)|2|Λv̂n(s)|3ds

≤ c
∫ t

0
α−1(s)‖vn(s)‖H1‖vn(s)‖1‖v̂n(s)‖ 3

2
ds, (4.22)

where the last inequality follows by the Sobolev imbedding theorem. To estimate (4.22), by Lemma 2.1,
we have

α−1(s)‖vn(s)‖H1‖vn(s)‖1
≤ cα−1(s)

(
‖vn(s)‖1 +

∫ s

0
‖vn(s)‖21

2
ds + |u0|1

)
‖vn(s)‖1

≤ cα−1(s)(‖zn(s)‖21 + ‖v̂n(s)‖21)

+cα−1(s)(‖zn(s)‖1 + ‖v̂n(s)‖1)
( ∫ s

0
‖vn(s)‖21

2
ds + |u0|1

)
.

In view of (4.22) and Young’s inequality we have

α−1(s)(‖zn(s)‖21 + ‖v̂n(s)‖21)‖v̂n(s)‖ 3
2

≤ ε‖v̂n(s)‖23
2
+ c(ε)α−2(s)‖zn(s)‖41 + α−1(s)‖v̂n(s)‖ 3

2
‖v̂n(s)‖21

≤ ε‖v̂n(s)‖23
2
+ c(ε)α−2(s)‖zn(s)‖41 + α−1(s)‖v̂n(s)‖23

2
‖v̂n(s)‖ 1

2
,

and

α−1(s)(‖zn(s)‖1 + ‖v̂n(s)‖1)
( ∫ s

0
‖vn(s)‖21

2
ds + |u0|1

)
‖v̂n(s)‖ 3

2

≤ 1
2
α−2(s)‖v̂n(s)‖ 3

2
(‖zn(s)‖21 + ‖v̂n(s)‖21)

+α−2(s)‖v̂n(s)‖ 3
2

( ∫ s

0
‖vn(s)‖21

2
ds + |u0|1

)2

≤ ε‖v̂n(s)‖23
2
+ c(ε)α−4(s)‖zn(s)‖41 +

1
2
α−2(s)‖v̂n(s)‖ 3

2
‖v̂n(s)‖21

+c(ε)α−4(s)
( ∫ s

0
‖vn(s)‖21

2
ds + |u0|1

)4

≤ ε‖v̂n(s)‖23
2
+ c(ε)α−4(s)‖zn(s)‖41 + c(ε)α−2(s)‖v̂n(s)‖23

2
‖v̂n(s)‖ 1

2

+c(ε)α−4(s)
( ∫ s

0
‖vn(s)‖21

2
ds + |u0|1

)4
.
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Rearranging the argument below (4.22) yields,

sup
s∈[0,t]

‖v̂n(s)‖21
2
+ 2

∫ t

0
‖v̂n(s)‖23

2
ds

≤ c
∫ t

0
α−4(s)‖zn(s)‖41ds + c sup

s∈[0,t]
‖v̂n(s)‖ 1

2

∫ t

0
α−2(s)‖v̂n(s)‖23

2
ds

+c
∫ t

0
α−4(s)

( ∫ s

0
‖vn‖21/2ds + |u0|1

)4
ds + c

∫ t

0
α−2(s)‖zn(s)‖41ds

+ sup
s∈[0,t]

‖v̂n(s)‖ 1
2

∫ t

0
α−1(s)‖v̂n(s)‖23

2
ds

≤ ε sup
s∈[0,t]

‖v̂n(s)‖21
2
+ c(ε)

( ∫ t

0
(α−2(s) + 1)‖v̂n(s)‖23

2
ds

)2

+c
∫ t

0
α−4(s)

( ∫ s

0
‖vn‖21/2ds + |u0|1

)4
ds + c

∫ t

0
(1 + α−4(s))‖zn(s)‖41ds.

Hence, we have

sup
s∈[0,t]

‖v̂n(s)‖21
2
+

∫ t

0
‖v̂n(s)‖23

2
ds

≤ ct sup
s∈[0,t]

α−4(s)|u0|41 + c
(
1 + sup

s∈[0,t]
α−4(s)

) ∫ t

0
‖z(s)‖41ds

+ct sup
s∈[0,t]

α−4(s)
( ∫ t

0
‖z(s)‖21/2ds

)4
+ ct5 sup

s∈[0,t]
α−4(s)‖v̂n(s)‖81

2

+c sup
s∈[0,t]

(
1 + α−4(s)

)( ∫ t

0
‖v̂n(s)‖23

2
ds

)2
.

To simplify the notations, we introduce

h(t) := c sup
s∈[0,t]

(
1 + α−4(s)

) ∫ t

0
‖v̂n(s)‖23

2
ds + ct5 sup

s∈[0,t]
α−4(s)‖v̂n(t)‖61

2

and

I(t) := ct sup
s∈[0,t]

α−4(s)|u0|41 + c
(
1 + sup

s∈[0,t]
α−4(s)

) ∫ t

0
‖z(s)‖41ds + ct sup

s∈[0,t]
α−4(s)

( ∫ t

0
‖z(s)‖21

2
ds

)4
.

Then we have

sup
s∈[0,t]

‖v̂n(s)‖21
2
+

∫ t

0
‖v̂n(s)‖23

2
ds ≤ I(t) + h(t)

(
sup

s∈[0,t]
‖v̂n(s)‖21

2
+

∫ t

0
‖v̂n(s)‖23

2
ds

)
. (4.23)

In the following, we will find a uniform lower bound for the maximal existence time τn, then we can
show that the local solutions exist. Set

τ∗n := sup{t ∈ [0, τn) : h(t) ≤ 1/2}.
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Since h is continuous, we have τ∗n < τn. Obviously, h(t) ↑ ∞ as t ↑ τn and h(τ∗n) = 1
2 . It is easy to see that

I(t) is continuous, increasing and positive except at t = 0. Denote

κ := sup
{
t ∈ [0,∞) : I(t) < min

( 1
8c sup

s∈[0,t]
(1 + α−4(s))

,
1

(32ct5 sup
s∈[0,t]

α−4(s))1/3

)}
.

Obviously, κ > 0 and is independent of n.We will show that τn ≥ κ for all n. Suppose, for contradiction,
that τ∗n < κ for some n, then by (4.23),

sup
s∈[0,τ∗n]

‖v̂n(s)‖21
2
+

∫ τ∗n

0
‖v̂n(s)‖23

2
ds ≤ 2I(τ∗n),

which implies

h(τ∗n) := c sup
s∈[0,τ∗n]

(1 + α−4(s))
∫ τ∗n

0
‖v̂n(s)‖23

2
ds + c(τ∗n)5 sup

s∈[0,τ∗n]
α−4(s)‖v̂n(τ∗n)‖61/2 <

1
2
.

This results in a contradiction. So, we obtain that τn ≥ κ for all n. Furthermore, we have that

sup
s∈[0,κ]

‖v̂n(s)‖21
2
+

∫ κ

0
‖v̂n(s)‖23

2
ds ≤ 2I(κ). (4.24)

Therefore, (v̂n)∞n=1 is uniformly bounded in L2([0, κ];H
3
2 (T3)) and L∞([0, κ];H

1
2 (T3)); From (4.20), let

ϕ ∈ H 1
2 (T3), we have

〈∂sv̂n,ϕ〉 = α−1〈Pn[(vn · ∇)vn(s)],ϕ〉 − 〈Λ3/2v̂n,Λ
1/2ϕ〉

≤ α−1|ϕ|3|∇vn(s)|2|vn(s)|6 + ‖v̂n(s)‖ 3
2
‖ϕ‖
H

1
2

≤ cα−1‖ϕ‖
H

1
2
‖vn(s)‖

H
1
2
‖vn(s)‖

H
3
2
+ ‖v̂n(s)‖ 3

2
‖ϕ‖
H

1
2
,

where the last inequality follows from the interpolation inequality. Therefore,
∫ κ

0
〈∂sv̂n(s),ϕ〉2dt ≤ c

∫ κ

0
α−2(s)‖ϕ‖2

H
1
2
‖vn(s)‖2

H
1
2
‖vn(s)‖2

H
3
2
ds

+2
∫ κ

0
‖v̂n(s)‖23

2
‖ϕ‖2
H

1
2
ds. (4.25)

From (4.24), (4.25) and (2.8), we have ∂tv̂n ∈ L2([0, κ];H−
1
2 (T3)). In view of Lemma2.2 and Lemma2.3,

we have (vn)n≥1 converges to v in L2([0, κ];H
1
2 (T3)) and v ∈ C([0, κ];H

1
2 (T3)) ∩ L2([0, κ];H

3
2 (T3)). Ob-

viously, following a standard argument (see [50]), we see that v is the local weak pathwise solution to
(2.3)-(2.4) according to Definition 2.3.

Let τv be the maximum existence time of v. In order to prove the global existence of v, in view of
Definition 2.4, it is sufficient to show that

P{τv < ∞} = 0.
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Let us prove it by contradiction. In deed, if we assume

P{τv < ∞} > 0,

then for arbitrary ε ∈ (0, κ), we have

P
(

sup
t∈[ε,τv)

‖v(t)‖
H

1
2
= ∞|τv < ∞

)
= 1. (4.26)

By the local existence of weak solutions established above, we can choose

v(ε) ∈ H 3
2 (T3) ⊂ H1(T3).

If we regard v(ε) ∈ H1(T3) as the initial data of (2.3)-(2.4), by Theorem 4.1, we know that the unique
global strong solution exists on [ε,∞), P-a.e.ω ∈ Ω.More precisely, for arbitrary T > 0, we have

P
(

sup
t∈[ε,T ]

‖v(t)‖H1 < ∞
)
= 1,

or

P
(

sup
t∈[ε,T ]

‖v(t)‖H1 = ∞
)
= 0. (4.27)

We will apply (4.27) to (4.26 ) to derive a contradiction. In deed,

P
(

sup
t∈[ε,τv)

‖v(t)‖
H

1
2
= ∞, τv < ∞

)

= P
(

sup
t∈[ε,τv)

‖v(t)‖
H

1
2
= ∞,∪∞n=1(τv < n)

)

≤
∞∑

n=1

P
(

sup
t∈[ε,n)

‖v(t)‖
H

1
2
= ∞

)

≤
∞∑

n=1

P
(

sup
t∈[ε,n]

‖v(t)‖H1 = ∞
)
= 0,

which implies

P
(

sup
t∈[ε,τv)

‖v(t)‖
H

1
2
= ∞|τv < ∞

)
=

P
(

sup
t∈[ε,τv)

‖v(t)‖
H

1
2
= ∞, τv < ∞

)

P(τv < ∞)
= 0.

The contradiction folllows. Therefore, we arrive at P{τv < ∞} = 0, which implies the global existence
of the weak pathwise solutions.

Let v1 and v2 be weak pathwise solutions to equation (2.3). Then we denote by v the difference of v1

and v2, i.e., v = v1 − v2. Taking inner product of the equation satisfied by v with Λv in L2(T3) yields,

‖v(t)‖21
2
+ 2

∫ t

0
‖v(s)‖23

2
ds

≤ c
∫ t

0
α−1(s)|v1(s)|6|∇v(s)|2|Λv(s)|3ds + c

∫ t

0
α−1(s)|v(s)|6|∇v1(s)|3|Λv(s)|2ds

≤ c
∫ t

0
α−1(s)|v1(s)|6‖v(s)‖1‖v(s)‖ 3

2
ds + c

∫ t

0
α−1(s)|v(s)|6‖v1(s)‖ 3

2
‖v(s)‖1ds

=: K1 + K2, (4.28)
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where in the last inequality, we have used |∇v1(s)|3 ≤ c‖v1(s)‖ 3
2
. Since by the interpolation inequality,

the Sobolev inequality and Young’s inequality, we have

K1 ≤ c
∫ t

0
α−1(s)‖v1(s)‖H1‖v(s)‖1/21

2
‖v(s)‖3/23

2
ds

≤ c(ε)
∫ t

0
α−4(s)‖v1(s)‖4

H1‖v(s)‖21
2
ds + ε

∫ t

0
‖v(s)‖23

2
ds,

and

K2 ≤ c
∫ t

0
α−1(s)|v(s)|6‖v1(s)‖ 3

2
‖v(s)‖1ds

≤ c
∫ t

0
α−1(s)

(
‖v(s)‖1 +

∫ s

0
‖v(r)‖21

2
dr

)
‖v(s)‖1‖v1(s)‖ 3

2
ds

≤ c
∫ t

0
α−1(s)‖v(s)‖ 1

2
‖v‖ 3

2
‖v1(s)‖ 3

2
ds

+c
∫ t

0
α−1(s)

(
‖v1(s)‖23

2
+ ‖v2(s)‖23

2

)
ds

∫ t

0
‖v(s)‖21

2
ds

≤ ε

∫ t

0
‖v(s)‖23

2
ds + c(ε)

∫ t

0
α−2(s)‖v‖21

2
‖v1(s)‖23

2
ds

+c
∫ t

0
α−1(s)

(
‖v1(s)‖23

2
+ ‖v2(s)‖23

2

)
ds

∫ t

0
‖v(s)‖21

2
ds.

From (4.28) and estimates of K1 and K2, we have

‖v(t)‖21
2
+ 2

∫ t

0
‖v(s)‖23

2
ds

≤ c
∫ t

0
α−4(s)‖v1(s)‖4

H1‖v(s)‖21
2
ds + c

∫ t

0
α−2(s)‖v(s)‖21

2
‖v1(s)‖23

2
ds

+c
∫ t

0
α−1(s)

(
‖v1(s)‖23

2
+ ‖v2(s)‖23

2

)
ds

∫ t

0
‖v(s)‖21

2
ds. (4.29)

From (2.8), we know that
∫ t

0
α−4(s)‖v1(s)‖4

H1ds

≤
∫ t

0
α−4(s)‖v1(s)‖21

2
‖v1(s)‖23

2
ds + c sup

s∈[0,t]
α−4(s)

( ∫ t

0
‖v1(s)‖21ds + |u0|

)4

for arbitrary t(> 0). Therefore, by (4.29) and the Gronwall inequality, we obtain that ‖v(t)‖ 1
2
= 0 for

arbitrary t(> 0). Then in view of (2.8) that

|v(t)|2 ≤ |v(t) − v̄(t)|2 + (2π)
3
2 |v̄(t)| ≤ ‖v(t) − v̄(t)‖ 1

2
+ (2π)

3
2 |v̄(t)|

≤ ‖v(t)‖ 1
2
+ ‖v̄(t)‖ 1

2
+ (2π)

3
2 |v̄(t)| = ‖v(t)‖ 1

2
+ (2π)

3
2 |v̄(t)|

≤ ‖v(t)‖ 1
2
+ (2π)

9
2

∫ t

0
‖v(s)‖ 1

2

(
‖v1(s)‖ 1

2
+ ‖v2(s)‖ 1

2

)
ds = 0. (4.30)
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where v̄ =
∫
T3 v(x)dx and ‖v̄(t)‖ 1

2
= 0. Hence, in view of (4.30) we arrive at that, for each t ≥ 0,

v(t, x) = 0 for a.e.x ∈ T3.Moreover, from (4.29) and (4.30), we can establish the Lipschitz continuity of
v with respect to the initial data in H

1
2 (T3). The uniqueness of the weak solutions to (2.3)-(2.4 ) follows

from the continuous dependence of v with respect to the initial data. !

In view of Theorem 4.3 and v = αu, it is clearly true that

Theorem 4.4. Suppose u0 is an H
1
2 (T3) valued, F0 measurable random variable. Then, there exists a

unique global weak pathwise solution u to (1.1) in the sense of Definition 2.4.

Theorem 4.5. For any F0−adapted initial value u0 ∈ H
3
2 (T3), let (v, ξ) be the maximum strong solution.

Then for any t ∈ (0, ξ), the solution v to (2.3)-(2.4) satisfies

sup
s∈[0,t]

|v(s)|∞ ≤ |v(0)|∞ = |u(0)|∞,P − a.s.ω ∈ Ω.

Proof. In view of Remark 1, there exists a subsequence of solutions vn to (2.5)and (2.6), which is still
denoted by vn such that

vn(s)→ v(s) in L2([0, t];H
3
2 (T3)).

Then we can choose a subsequence of vn still denoted by vn satisfying

vn(s)→ v(s) in L∞(T3) for almost every s ∈ [0, t].

Let ϕ ∈ L1(T3) with |ϕ|1 ≤ 1, we have

〈v(s),ϕ〉 = lim
n→∞
〈vn(s),ϕ〉 ≤ lim

n→∞
|vn(s)|∞ ≤ lim

n→∞
|vn(0)|∞ ≤ |v(0)|∞,

where the first equality above holds for almost every s ∈ [0, t] and the second inequality follows by
Lemma 4.1. Hence, by Theorem 4.6 we arrive at

sup
s∈[0,t]

|v(t)|∞ ≤ |v(0)|∞ = |u(0)|∞.

!

Theorem 4.6. Suppose u0 is an H
3
2 (T3) valued, F0 measurable random variable. Then, for any T > 0,

there exists a unique global strong pathwise solution v to (2.3)-(2.4) satisfying v ∈ C([0, T ];H
3
2 (T3)) ∩

L2([0, T ];H
5
2 (T3)) and v is Lipschitz continuous with respect to the initial data in H

3
2 (T3).

Proof. Let (v, ξ) be the maximum strong solution to (2.3)-(2.4) with u0 ∈ H
3
2 (T3). For t ∈ (0, ξ), taking

inner product of (2.3) in L2([0, t] × T3) with Λ3v yields,

1
2
∂t‖v‖23

2
+ ‖v‖25

2
= −α−1〈Λ1/2(v · ∇v),Λ5/2v〉

26



which implies

‖v(t)‖23
2
+ 2

∫ t

0
‖v(s)‖25

2
ds ≤ ‖u0‖23

2
+ ε

∫ t

0
‖v(s)‖25

2
ds

+c sup
s∈[0,t]

α−2(s)
∫ t

0

∫

T3
|Λ1/2(v · ∇v)|2dxds. (4.31)

In order to bound the last term on the right hand side of (4.31), we will use Theorem A.8 in [38]. Without
loss of generality, we assume t ∈ (0, ξ). Then the estimates of the last term follows

∫ t

0

∫

T3
|Λ1/2(v · ∇v)|2dxds

≤ 3
∫ t

0

∫

T3
|v · (Λ3/2v)|2dxds + 3

∫ t

0

∫

T3
|(Λ1/2v) · (Λv)|2dxds

+c
{∫ t

0

( ∫

T3
|Λ3/8v|6dx

)2/3

ds
}1/2

{∫ t

0

( ∫

T3
|Λ9/8v|3dx

)4/3
ds

}1/2

=: I1 + I2 + I1/2
3 × I1/2

4

≤ I1 + I2 + I3 + I4.

Using the Holder inequality, the interpolation inequality, Young’s inequality and Theorem 4.1, we get

I2 ≤
∫ t

0
|Λv(s)|22|Λ1/2v(s)|2∞ds

≤ c
∫ t

0
‖v(s)‖21‖v(s)‖ 3

2
‖v(s)‖ 5

2
ds

≤ ε

∫ t

0
‖v(s)‖25

2
ds + c

∫ t

0
‖v(s)‖23

2
ds.

In view of the Holder inequality, the Sobolev embedding theorem and (2.8), we have

I1 ≤ c
∫ t

0
|v(s)|2∞‖v(s)‖23

2
ds ≤ c‖u0‖

H
3
2

∫ t

0
‖v(s)‖23

2
ds

Utilising the interpolation inequality and (2.8), we then derive

I4 ≤ c
∫ t

0
|Λ9/8v|43ds ≤ c

∫ t

0
‖v‖7/2
H

3
2
‖v‖1/2
H

5
2
ds

≤ ε

∫ t

0
‖v‖2
H

5
2
ds + c(ε)

∫ t

0
‖v‖14/3

H
3
2

ds

≤ ε

∫ t

0
‖v(s)‖25

2
ds + c

∫ t

0
‖v(s)‖14/3

3
2

ds

+c
∫ t

0
‖v(s)‖41

2
ds + ct|u0|21 + c

∫ t

0
‖v(s)‖28/3

1
2

ds + ct|u0|14/3
1 .
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By virtue of the interpolation inequality, the Hölder inequality and Theorem 4.1, we obtain

I4 ≤ ε

∫ t

0
‖v(s)‖25

2
ds + c

∫ t

0
‖v(s)‖7/31 ‖v(s)‖7/32 ds + cT

≤ ε

∫ t

0
‖v(s)‖25

2
ds + c

∫ t

0
‖v(s)‖7/63

2
‖v(s)‖7/65

2
ds + cT

≤ ε

∫ t

0
‖v(s)‖25

2
ds + c

∫ t

0
‖v(s)‖14/5

3
2

ds + cT

≤ ε

∫ t

0
‖v(s)‖25

2
ds + c

∫ t

0
‖v(s)‖7/51 ‖v(s)‖7/52 ds + cT ≤ cT.

By the Sobolev imbedding theorem and Theorem 4.1, we arrive at

I3 ≤ c
∫ t

0
‖v(s)‖2

H1‖v(s)‖2
H2ds < cT.

The global existence of v in C([0, T ];H
3
2 (T3)) follows by (4.31), estimates of I1, ..., I4 and the Gronwall

inequality. The Lipschitz continuity with respect to the initial data in H
3
2 (T3) is proved in Lemma 3.1 or

we can follow the argument in Proposition 3.1 to establish it. !

Remark 1. In view of Theorem 4.6, repeating the argument in Proposition3.1, one can choose a subse-
quence of vn, which is still denoted by vn, such that vn is uniformly bounded in L∞([0,T ];H

3
2 (T3)) and

converges to v in L2([0,T ];H
3
2 (T3)).

Noticing the argument above and v = αu, we arrive at

Theorem 4.7. Suppose u0 is an Hm(T3) valued, F0 measurable random variable. Then, for any T >
0, there exists a unique global strong pathwise solution u to (1.1) satisfying u ∈ C([0,T ];Hm(T3)) ∩
L2([0, T ];Hm+1(T3)).

5 Moment estimates to (1.1)

This section is devoted to moment estimates for stochastic 3D Burgers equations with multiplicative
noise.

Proposition 5.1. For any F0−adapted initial value u0 ∈ H
3
2 (T3) satisfying E‖u0‖q+δ

H
3
2
< ∞, q ≥ 1, and δ

is an arbitrary small positive constant. Then for any T > 0, the unique global strong solution u to (1.1)
satisfies

E sup
t∈[0,T ]

|u(t)|qp ≤ c exp cT,

where the constant c is independent of T.
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Proof. From Lemma 4.1 and the Sobolev imbedding theorem, we know

sup
t∈[0,T ]

|vn(t)|p ≤ sup
t∈[0,T ]

|vn(t)|∞ ≤ sup
n∈N
|vn(0)|∞ ≤ c‖vn(0)‖1 ≤ c‖v(0)‖1 = c‖u(0)‖1,

where the constant c is independent of T. Hence, there exists a subsequence of vn still denoted by vn such
that

vn ⇀
∗ v in L∞([0,T ];Lp(T3)), P − a.e.ω ∈ Ω,

where v is the strong solution to (2.3)-(2.4), see Theorem 4.1.
Let φ ∈ L1([0,T ];Lq(T3)) with 1

p +
1
q = 1 and

∫ T
0 |φ(s)|qds ≤ 1. Then we have that

∫ T

0

∫

T3
φ(t, x)v(t, x)dxdt = lim

n→∞

∫ T

0

∫

T3
φ(t, x)vn(t, x)dxdt

≤
∫ T

0
|φ(s)|qds sup

t∈[0,T ]
|vn(t)|p

≤ ‖u(0)‖1.

Hence, for arbitrary m ≥ 1, we obtain that

E sup
t∈[0,T ]

|v(t)|qp ≤ cE‖u(0)‖q1 < ∞.

For positive constants p′ and q′ satisfying 1
p′ +

1
q′ = 1, we have

E sup
t∈[0,T ]

|u(t)|qp ≤
(
E sup

t∈[0,T ]
|v(t)|qp′

p
) 1

p′
(
E sup

t∈[0,T ]
α−qq′(t)

)1/q′

≤ c
(
E‖u(0)‖qp′

H
3
2

) 1
p′
(
E sup

t∈[0,T ]
α−qq′(t)

)1/q′
.

Let Q = qq′, recall that W(t) = bB(t), t ∈ [0, T ]. Then W(t) ∼ N(0, b2t), where N(0, b2t) denotes the
normal distribution with mean 0 and variance b2t. In the following, we will compute E sup

t∈[0,T ]
α−qq′(t). By

the Doob’s maximal inequality,

E sup
t∈[0,T ]

α−qq′(t) = E sup
t∈[0,T ]

(
exp W(t)

)Q

≤
( Q
Q − 1

)Q
E exp QW(T )

=
( Q
Q − 1

)Q 1√
2πb2T

∫ ∞

−∞
exp(− x2

2b2T
+ Qx)dx

=
√

2
( Q
Q − 1

)Q
exp(b2T Q2/2). (5.32)

Hence

E sup
t∈[0,T ]

|u(t)|qp ≤
(
E‖u(0)‖qp′

H
3
2

) 1
p′ 2

1
2q′

( qq′

qq′ − 1

)q
exp(b2Tq2q′/2).

!
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Proposition 5.2. For any F0−adapted initial value u0 ∈ H
3
2 (T3) satisfying E‖u0‖q+δ

H
3
2
< ∞, q ≥ 1 and δ

is an arbitrary small positive constant. Then for any T > 0, the unique global strong solution u to (1.1)
satisfies

E sup
t∈[0,T ]

|u(t)|q∞ ≤ c exp cT,

where the constant c is independent of T.

Proof. Let u and v be the unique strong solutions to equations (1.1) and (2.3) respectively. Then note
that u = α−1v. Hence for q ≥ 1 we have

sup
t∈[0,T ]

|u(t)|q∞ ≤ sup
t∈[0,T ]

|v(t)|q∞ sup
t∈[0,T ]

α−q(t) ≤ |u(0)|q∞ sup
t∈[0,T ]

α−q(t).

For positive constants p′ and q′ satisfying 1
p′ +

1
q′ = 1, we have

E sup
t∈[0,T ]

|u(t)|q∞ ≤
(
E sup

t∈[0,T ]
|v(t)|qp′

∞
) 1

p′
(
E sup

t∈[0,T ]
α−qq′(t)

)1/q′

≤ c
(
E‖u(0)‖qp′

H
3
2

) 1
p′
(
E sup

t∈[0,T ]
α−qq′(t)

)1/q′
.

Finally, the estimate of the Theorem follows by (5.32). !

Next, we aim to obtain E lim
t∈[0,T ]

‖u(t)‖21 < ∞ for the strong solution u of (1.1). But, it is difficult!

Due to the high nonlinearity of stochastic 3D Burgers equations, we can only establish the logarithmic
moments in H1(T3), see the Theorem 5.3 below. We need techniques from logarithmic moments to
reduce the powers arising from the nonlinear term.

Theorem 5.3. For any F0−adapted initial value u0 ∈ H
3
2 (T3) satisfying E‖u0‖2+σ

H
3
2
< ∞, and σ is an

arbitrary small positive constant. Then, for any T > 0, the unique global strong solution u to (1.1)
satisfies

E sup
t∈[0,T ]

log(1 + ‖u(t)‖2
H1 ) ≤ c exp cT,

where the constant c is independent of T.

Proof. Taking a similar argument as in the proof of Lemma 2.1 yields,

1
2
∂t‖v‖21 + ‖v‖22 ≤ α−1|〈v · ∇v,Λ2v〉 ≤ ε‖v‖22 + c(ε)α−2|v|2∞‖v‖21.

Then by the maximum principle for random Burgers equations Theorem 4.5, we have

∂t log(‖v‖21 + 1) +
‖v‖22
‖v‖21 + 1

≤ cα−2p + c|u(0)|2q
∞ ,
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where p > 1, q > 1 and 1
p +

1
q = 1. By the Gronwall inequality, we have

E sup
t∈[0,T ]

log(‖v(t)‖21 + 1) ≤ E log(‖v(0)‖21 + 1) + cE sup
t∈[0,T ]

α−2p(t) + cE|u(0)|2q

H
3
2
≤ c exp cT,

where the constant c is independent of T. Note that log(‖u(t)‖21 + 1) ≤ log(‖v(t)‖21 + 1) + log(α−2(t) + 1),
the result follows. !

Remark 2. Due to the high non-linearity and the absence of incompressibility of the stochastic 3D
Burgers equation, it is difficult to obtain the logarithmic moments E sup

t∈[0,T ]
log

(
1 + ‖u(t)‖2

H
3
2

)
< ∞.

6 Regularity of (1.1) with infinitely dimensional noise

This section establishes the global well-posedness of 3D Burgers equation with the noise having the form
of u(t, x) ◦ b(x)dB(t), where b : x ∈ T3 8→ b(x) ∈ R is a given smooth function of the spatial varialbe, i.e.,
b ∈ C∞(T3).

We consider 3D Burgers equation (1.1) with b(x) being a given smooth function. For reader’s conve-
nience, we rewrite it here.

du(t, x) = ∆u(t, x)dt − ((u · ∇)u(t, x))dt + u(t, x) ◦ b(x)dB(t), on [0,T ] × T3, (6.33)

u(0, x) = u0(x), x = (x1, x2, x3) ∈ T3,

where b(x) : T3 9 x→ R, is a given smooth function. To simplify the notations, let

λ = sup
(t,x)∈[0,T ]×T3

[(
|

3∑

i=1

∂xib(x)B(t)|
)2
+ |∆b(x)B(t)|

)]
.

For (t, x) ∈ [0, T ] × T3, we define

v̂(t, x) = u(t, x) exp
(
− b(x)B(t)

)
exp(−λt) =: u(t, x)α(t, x) exp(−λt).

Consequently, (6.33) is equivalent to the following

∂tv̂(t, x) − ∆v̂(t, x) − 2
3∑

i=1

(
∂xib(x)B(t)

)
∂xi v̂(t, x) (6.34)

+α−1(t, x) exp(λt)
3∑

i=1

v̂i(t, x)∂xi v̂(t, x)

+
(
λ −

( 3∑

i=1

∂xib(x)B(t)
)2 −

(
∆b(x)B(t)

))
v̂(t, x)

+α−1(t, x) exp(λt)
( 3∑

i=1

v̂i(t, x)∂xib(x)B(t)
)
v̂(t, x) = 0, on [0,T ] × T3,

v̂(0, x) = u0(x), x = (x1, x2, x3) ∈ T3,
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where v̂(t, x) = (v̂1(t, x), v̂2(t, x), v̂3(t, x)) ∈ R3, x ∈ T3, t ∈ [0, T ]. The definitions of solutions to (6.34)
are given in appendix, which are very close to the definitions in Section 2. The Galerkin approximation
of (6.34) is given by

∂tv̂n(t, x) − ∆v̂n(t, x) − 2Pn
( 3∑

i=1

(
∂xib(x)B(t)

)
∂xi v̂n(t, x)

)
(6.35)

+Pn
(
α−1(t, x) exp(λt)

3∑

i=1

v̂n,i(t, x)∂xi v̂n(t, x)
)

+Pn
[(
λ −

( 3∑

i=1

∂xib(x)B(t)
)2 − ∆b(x)B(t)

)
v̂n(t, x)

)]

+Pn
(
α−1(t, x) exp(λt)

( 3∑

i=1

v̂n,i(t, x)∂xib(x)B(t)
)
v̂n(t, x)

)
= 0, on [0, T ] × T3,

v̂n(0, x) = un(0, x), x = (x1, x2, x3) ∈ T3.

where v̂n(t, x) = (v̂n,1(t, x), v̂n,2(t, x), v̂n,3(t, x)) ∈ R3, (t, x) ∈ [0, T ] × T3.

To assure the global well-posedness of (6.34), we assume

Any two compoments o f ∇b(x) = (∂x1b(x), ∂x2b(x), ∂x3b(x)), are linearly correlated, (6.36)

where x = (x1, x2, x3) ∈ T3. For the reason that why we choose this condition, please see the detailed
arguments in the appendix.

Remark 3. There are lots of examples satisfying (6.36). The first example is the case that b(x) is a
constant, then ∇b(x) ≡ 0, for all x ∈ T3. We have discussed this case from Section 3 to Section 5. The
second example is, there exists constant c ∈ R such that ∂x1b(x) = c∂x2b(x), holds for all x ∈ T3, that is
(∇b(x) = (c∂x2b(x), ∂x2b(x), ∂x3b(x))) holds for all x ∈ T3. The third example is, there is a component of
∇b(x) equaling to some constant c ∈ R, i.e., ∇b(x) = (∂x1b(x), ∂x2b(x), c) for all x ∈ T3.

Without loss of generality, under the condition (6.36), we assume there exists some constant a ∈ R,
such that

∂x1b(x) = a∂x2b(x), holds f or all x ∈ T3. (6.37)

Let η = (1,−a, 0) ∈ R3. In the following we will find a solution ṽn(t, x) = gn(t, x)η to (6.35), where
gn : [0,T ]×T3 → R will be determined by (6.39). Obviously, ṽn(t, x) solves (6.35) if and only if it solves
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the following equation.

∂tṽn(t, x) − ∆ṽn(t, x) − 2Pn
( 3∑

i=1

(
∂xib(x)B(t)

)
∂xi ṽn(t, x)

)
(6.38)

+Pn
(
α−1(t, x) exp(λt)

3∑

i=1

ṽn,i(t, x)∂xi ṽn(t, x)
)

(
λ −

( 3∑

i=1

∂xib(x)B(t)
)2 − ∆b(x)B(t)

)
ṽn(t, x) = 0, on [0, T ] × T3,

ṽn(0, x) = gn(0, x)η ∈ H 1
2 (T3), x = (x1, x2, x3) ∈ T3,

equivalently,

∂tgn(t, x) − ∆gn(t, x) − 2Pn
( 3∑

i=1

(
∂xib(x)B(t)

)
∂xign(t, x)

)
(6.39)

+Pn
(
α−1(t, x) exp(λt)(gn(t, x)∂x1 − agn(t, x)∂x2)gn(t, x)

)

Pn
((
λ −

( 3∑

i=1

∂xib(x)B(t)
)2 − ∆b(x)B(t)

)
gn(t, x)

)
= 0, on [0, T ] × T3,

gn(0, x) ∈ H
1
2 (T3), x = (x1, x2, x3) ∈ T3.

Since (6.39) is a locally-Lipschitz system of random ODEs, we set gn to be the unique local solution to
(6.39).

Similar to Lemma 2.1, we have the following Poincaré’s inequality (6.40) for (6.35).
In fact, let (ṽn, τn) be the unique local solution to the (6.38). Recall that ¯̃vn = ¯̃vn(t) =

∫
T3 ṽn(t, x)dx, t ∈

[0, τn). From (6.38), by integration by parts, it is not difficult to derive that

| ¯̃vn(t)| ≤ c(T,ω)
∫ t

0
‖ṽn(s)‖1ds + c(T,ω)

∫ t

0
‖ṽn(s)‖21

2
ds + c(T,ω)

∫ t

0
| ¯̃vn|(s)ds.

By the Gronwall inequality, we get

| ¯̃vn(t)| ≤ c
( ∫ t

0
‖ṽn(s)‖1ds +

∫ t

0
‖ṽn(s)‖21

2
ds

)
exp(ct).

Then we have

|ṽn(t)|2 ≤ |ṽn − ¯̃vn|2 + (2π)
3
2 | ¯̃vn| ≤ ‖ṽn‖ 1

2
+ c

( ∫ t

0
‖ṽn(s)‖1ds +

∫ t

0
‖ṽn(s)‖21

2
ds

)
exp(ct). (6.40)

One can take similar arguments as in Proposition 3.1 with minor modifications to achieve the local
existence of solutions to the following equation. The definitions of the local well-posedness and global
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well-posedness of (6.41) are very similar to the appendix.

∂tg(t, x) − ∆g(t, x) − 2
3∑

i=1

(
∂xib(x)B(t)

)
∂xig(t, x) (6.41)

+α−1(t, x) exp(λt)(g(t, x)∂x1 − ag(t, x)∂x2 )g(t, x)
(
λ −

( 3∑

i=1

∂xib(x)B(t)
)2 − ∆b(x)B(t)

)
g(t, x) = 0, on [0,T ] × T3,

g(0, x) := g0 ∈ H1(T3), x = (x1, x2, x3) ∈ T3.

We state the local well-posedness (6.41) as the Proposition 6.1 without proof.

Proposition 6.1. Suppose g0 is an H1(T3) valued, F0 measurable random variable. Then, there exists a
unique maximum strong solution (g, ξ) to equation (6.41).

Under the condition (6.36), Proposition 6.1 is equivalent to the following

Proposition 6.2. Suppose ṽ(0, x) = (g0,−ag0, 0) is an H1(T3) valued, F0 measurable random variable.
Then, there exists a unique maximum strong solution (ṽ, ξ) to equation (6.34) in sense of Definition 7.2.

Adapting the argument as in Lemma 3.1, one can prove that

Proposition 6.3. Suppose ṽ(0, x) = (g0,−ag0, 0) is an H
3
2 (T3) valued, F0 measurable random variable.

Then, there exists a unique maximum strong solution (ṽ, ξ) to equation (6.34) in sense of Definition 7.2.
That is, for any positive random variable η ∈ (0, ξ), ṽ ∈ C([0, η];H

3
2 (T3)),P-a.s..

Remark 4. Similarly to the proof of Lemma 3.1, in the process of proving Proposition 6.3, one obtains
a subsequence of ṽn, which are solutions of (6.35), such that ṽn converges to ṽ the solution to (6.34) in
L2([0, τ];H

3
2 (T3)), where the positive random variable τ is smaller than the maximum existence time ξ,

i.e., 0 < τ < ξ,P-a.s..

Proposition 6.4. Let (ṽn, ξn) be a maximum strong solution to (6.35) with F0 measurable initial data
Pnu0 = Pn(g0,−ag0, 0) ∈ H 3

2 (T3), then under the condition (6.36) or (6.37),

sup
s∈[0,ξn)

|ṽn(s)|∞ ≤ |u0|∞, P − a.s.ω ∈ Ω.

Proof. Note that (∆ṽn · ṽn)(s) = 1
2∆|ṽn|2 − |∇ṽn|2. Hence, multiplying (6.34) by ṽn yields,

1
2
∂s|ṽn|2(s, x) − 1

2
∆|ṽn|2(s, x) + |∇ṽn|2(s, x) −

3∑

i=1

(
∂xib(x)B(s)

)
∂xi |ṽn|2(s, x)

+
1
2
α−1(s, x) exp(λs)

3∑

i=1

ṽn,i(s, x)∂xi |ṽn|2(s, x)

(
λ −

( 3∑

i=1

∂xib(x)B(s)
)2 −

(
∆b(x)B(s)

))
|ṽn|2(s, x)

+α−1(s, x) exp(λs)
( 3∑

i=1

ṽn,i(s, x)∂xib(x)B(s)
)
|ṽn|2(s, x) = 0, on [0, ξn) × T3,
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where ṽn = (ṽn,1, ṽn,2, ṽn,3) ∈ R3. Note that

3∑

i=1

ṽn,i(s, x)∂xib(x)B(s) = 0, on [0, ξn) × T3,

and

(
λ −

( 3∑

i=1

∂xib(x)B(s)
)2 −

(
∆b(x)B(s)

))
≥ 0, on [0, ξn) × T3.

According to maximum principle (see Theorem 4 in page 352 of [29]), if |ṽn|2 has local maximum at
(s, x) ∈ (0, ξn) × T3, then |ṽn| ≡ 0. Therefore,

sup
s∈[0,ξn)

|ṽn(s)|∞ ≤ |u0|∞, P − a.s.ω ∈ Ω.

!

Theorem 6.5. Let (ṽ, ξ) be a maximum strong solution to (6.35) with F0 measurable initial data u0 =

(g0,−ag0, 0) ∈ H 3
2 (T3). Then the solution ṽ to (6.34) with condition (6.36) satisfies

sup
t∈[0,ξ)

|ṽ(t)|∞ ≤ |v(0)|∞ = |u(0)|∞, P − a.s.ω ∈ Ω.

Proof. In view of Remark 4, there exists a subsequence of solutions ṽn to (6.35), which is still denoted
by ṽn such that

ṽn(t)→ ṽ(t) in L2([0, τ];H
3
2 (T3)),

where τ is any positive random variable which is smaller than ξ. Then we can choose a subsequence of
ṽn still denoted by ṽn satisfying

ṽn(t)→ ṽ(t) in L∞(T3) for almost every t ∈ [0, ξ).

Let ϕ ∈ L1(T3) with |ϕ|1 ≤ 1, we have

〈ṽ(t),ϕ〉 = lim
n→∞
〈ṽn(t),ϕ〉 ≤ lim

n→∞
|ṽn(t)|∞ ≤ |ṽ(0)|∞,

where the first equality above holds for almost every t ∈ [0, ξ) and the second inequality follows by
Proposition 6.4. Consequently, in view the continuity of ṽ in H

3
2 (T3), Proposition 6.3 implies that

sup
t∈[0,ξ)

|ṽ(t)|∞ ≤ |v(0)|∞ = |u(0)|∞.

!

Theorem 6.6. Suppose u0 = (g0,−ag0, 0) is an H1(T3) valued, F0 measurable random variable. Then,
for any T > 0, there exists a unique global strong solution ṽ to (6.34) with condition (6.36) in the sense
of Definition 7.2.
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Proof. We assume (ṽ, ξ) is the unique maximum strong solution to (6.34) in sense of Definition 7.2. For
t ∈ (0, ξ), taking inner product of (6.34) with Λ2ṽ in L2(T3) yields,

∂t‖ṽ‖21 + 2‖ṽ‖22 ≤ cλ‖ṽ‖1‖ṽ‖2 + cα−1 exp (λt)|ṽ|∞‖ṽ‖1‖ṽ‖2 (6.42)

+cλ|ṽ|2‖ṽ‖2 + cλα−1 exp (λt)|ṽ|∞|ṽ|2‖ṽ‖2
≤ ‖ṽ‖22 + c(T,ω)‖ṽ‖21 + c(T,ω)|ṽ|2∞‖ṽ‖21 + c(T,ω)|ṽ|2∞ + c(T,ω)|ṽ|4∞,

where we have used |ṽ|2 ≤ (2π)
3
2 |ṽ|∞ and

λ = sup
(t,x)∈[0,T ]×T3

(( 3∑

i=1

∂xib(x)B(t)
)2
+ |∆b(x)B(t)|

)
.

From Proposition 6.3, we can choose t0 ∈ (0, ξ) such that ṽ(t0) ∈ H2(T3). Consequently, applying Propo-
sition 6.4 to (6.42) on t ∈ [t0, ξ) yields,

‖ṽ(t)‖21 ≤ c(T,ω)(1 + ‖ṽ(t0‖4H2 ) exp
(
c(T,ω)(1 + ‖ṽ(t0‖2H2 )

)
.

The global existence of the strong solution ṽ follows. The uniqueness of ṽ is similar to the argument
before, we omit it. !

Similar to the arguments of Theorem 4.3, we can also obtain:

Theorem 6.7. Suppose u0 = (g0,−ag0, 0) is an H
1
2 (T3) valued, F0 measurable random variable. Then,

there exists a unique global weak pathwise solution ṽ to (6.34) with condition (6.36) in the sense of
Definition 7.4.

Global well-posedness of weak and strong solutions to (6.33) are equivalent to (6.34), hence, we do
not restate the global well-posedness of (6.33). See the details in Remark 5. Following section 5, one
can also discuss the moments estimates of solutions to (6.33).

7 Appendix

In the following, we give the definitions of weak and strong solutions to (6.34), which are PDE sense.

Definition 7.1 (Local strong solutions to (6.34)). Suppose u0 is an H1(T3) valued, F0 measurable
random variable, T is an arbitrary positive constant.

1. A pair (v, τ) is a local strong pathwise solution to (6.34) if τ is a strictly positive random variable
taking values in (0,∞) and v(·∧τ) satisfies (6.34) in a weak sense so that the following regularities
hold almost surely,

v(· ∧ τ) ∈ C([0, T ];H1(T3)) ∩ L2([0,T ];H2(T3)), (7.43)

and

∂tv(· ∧ τ) ∈ L1([0, T ];L2(T3)).
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2. Strong pathwise solutions of (6.34) are said to be pathwise unique up to a random positive time
τ > 0 if given any pair of solutions (v1, τ), (v2, τ) which coincide at t = 0 on the event Ω̃ = {v1(0) =
v2(0)} ⊂ Ω, then

P(IΩ̃(v1(t ∧ τ) − v2(t ∧ τ)) = 0;∀t ∈ [0, T ]) = 1.

Definition 7.2 (Maximal and global strong solutions to (6.34)). Let ξ be a positive random variable
which may take ∞ at some ω ∈ Ω. We say the pair (v, ξ) is a maximal pathwise strong solution if for
each random variable τ ∈ (0, ξ), (v, τ) is a local strong pathwise solution satisfying

sup
t∈[0,τ]

‖v(t)‖1 < ∞, and lim sup
t→ξ

I[ξ<∞]‖v(t)‖1 = ∞ (7.44)

almost surely. And ξ is called the maximum existence time of v.

If (v, ξ) is a maximum pathwise strong solution and ξ = ∞ a.s., then we say the solution is global.

Definition 7.3 (Local weak solutions to (6.34) ). Suppose u0 is an H
1
2 (T3) valued, F0 measurable

random variable, T is an arbitrary positive constant.
(i) A pair (v, τ) is a local weak pathwise solution to (6.34) if τ is a strictly positive random variable

taking values in (0,∞) and v(·∧ τ) satisfies (6.34) in a weak sense so that the following regularities hold
almost surely,

v(· ∧ τ) ∈ C([0, T ];H
1
2 (T3)) ∩ L2([0, T ];H

3
2 (T3)), (7.45)

and

∂tv(· ∧ τ) ∈ L1([0, T ];L2(T3)).

(ii) Weak pathwise solutions of (6.34) are said to be pathwise unique up to a random positive time τ > 0
if given any pair of solutions (v1, τ), (v2, τ) which coincide at t = 0 on the event Ω̃ = {v1(0) = v2(0)} ⊂ Ω,
then

P(IΩ̃(v1(t ∧ τ) − v2(t ∧ τ)) = 0; t ∈ [0,T ]) = 1.

Definition 7.4 (Maximal and global weak solutions to (6.34)). Let ξ be a positive random variable
which may take∞ at some ω ∈ Ω. We say the pair (u, ξ) is a maximal weak pathwise solution if for each
random variable τ ∈ (0, ξ), (v, τ) is a local strong pathwise solution satisfying

sup
t∈[0,τ]

‖v(t)‖ 1
2
< ∞, and lim sup

t→ξ
I[ξ<∞]‖v(t)‖ 1

2
= ∞ (7.46)

almost surely. And ξ is called the maximum existence time of v.

If (v, ξ) is a maximum weak pathwise solution and ξ = ∞ a.s., then we say the solution is global.

Remark 5. Taking advantage of maximum principle we know the global solutions to Galerking approx-
imations of (6.34) are adapted, then so are the limit of these solutions.
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Definition 7.5 (Global strong solutions to (6.33)). Suppose u0 is a H1(T3) valued, F0 measurable
random variable. A stochastic process u is said to be a global strong solution to (6.33) if

(i) for arbitrary T > 0 and t ∈ [0, T ], u(t) is an Ft adapted process satisfying u ∈ C([0, T ];H1(T3))∩
L2([0,T ];H2(T3)) almost surely;

(ii) u solves the stochastic 3D Burgers equation in the following sense:

u(t) −
∫ t

0
∆uds +

∫ t

0
(u · ∇u)ds = u(0) +

∫ t

0
b(x)u ◦ dB(s), a.s.,

with the equality understood in H and t ∈ [0, T ]. Furthermore, let u and ũ be two global strong solutions
to (6.33). If u(0) = ũ(0) a.s., we have

P(u(t) = ũ(t), f or all t ∈ [0,T ]) = 1,

then we say the strong solution u to (6.33) is unique.

Definition 7.6 (Global weak solutions to (6.33)). Suppose u0 is a H
1
2 (T3) valued, F0 measurable ran-

dom variable. A stochastic process u is said to be a global weak solution to (6.33) if
(i) for arbitrary T > 0 and t ∈ [0,T ], u(t) is an Ft adapted process satisfying u ∈ C([0,T ];H

1
2 (T3))∩

L2([0,T ];H
3
2 (T3)) almost surely;

(ii) u solves the stochastic 3D Burgers equation in the following sense:

〈u(t), φ〉 +
∫ t

0
〈u(s),Λ2φ〉ds +

∫ t

0
〈(u · ∇u)(s), φ〉ds

= 〈u(0), φ〉 +
∫ t

0
〈b(x)u(s, x), φ〉 ◦ dB(s), (7.47)

for all t ∈ [0,T ] and φ ∈ D(Λ2). Furthermore, let u and ũ be two strong solutions to (1.1). If u(0)= ũ(0)
a.s., we have

then we say the weak solution u to (6.33) is unique.

In Section 6, we solve the global well-posedness of 3D random Burgers equation (6.34) in the frame
of deterministic 3D Burgers equation (see page 11 of [47]), where the maximum principle is a key tool.
According to the maximum principle, the coefficient of v̂ should be nonnegative. That is to say, one
needs that

B(t)
3∑

i=1

v̂i(t, x)∂xib(x) ≥ 0, on [0,T ] × T3,

or equivalently,

B(t)
3∑

i=1

ui(t, x)∂xib(x) ≥ 0, on [0, T ] × T3. (7.48)
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In fact, it seems very difficult to find a solution u to (6.33) (or v̂ to (6.34)) satisfying (7.48). Because, if
there is solution v̂ satisfies

B(t)
3∑

i=1

v̂i(t, x)∂xib(x) > 0, on any interval [t1, t2] ⊂ [0,T ],

it contradicts with the fundamental properties of Brownian motion B(t), in particular, the support property
that with positive probability, B(t) may visit everywhere. The inequality (7.48) can be only possible when

v̂(t, x) · ∇b(x) = 0, on [0, T ] × T3,P − a.s.. (7.49)

In fact, following the arguments as in Section 3, one can prove that there exists a unique local solution
to (6.34). If one further requires the solution should satisfy (7.49), this may lead to the solution equaling
to a trivial solution. For example, let ∇b(x) = (b1(x), b2(x), b3(x)), x ∈ T3. We try to find a function
g : [0,T ] × Ω → R and construct a solution v̂ = v̂(t, x) = g(t, x)(−b2(x), b1(x), 0), (t, x) ∈ [0, T ] × T3, to
(6.34). Note that, here v̂ satisfies (7.48), hence, if v̂ is a local solution to (6.34), then it must be global.
Substituting v̂ with g(t, x)(−b2(x), b1(x), 0) in (6.34) yields,

b1(x)∂tg(t, x) − (∆b1(x))g(t, x) − b1(x)∆g(t, x) − 2
3∑

j=1

∂x jb1(x)∂x jg(t, x)

+b1(x)∂x1b1(x)g2(t, x) + b2
1(x)g(t, x)∂x1g(t, x)

+b2(x)∂x2b1(x)g2(t, x) + b1(x)b2(x)g(t, x)∂x2g(t, x) = 0,

and

b2(x)∂tg(t, x) − (∆b2(x))g(t, x) − b2(x)∆g(t, x) − 2
3∑

j=1

∂x jb2(x)∂x jg(t, x)

+b1(x)∂x1b2(x)g2(t, x) + b1(x)b2(x)g(t, x)∂x1g(t, x)

+b2(x)∂x2b2(x)g2(t, x) + b2
2(x)g(t, x)∂x2g(t, x) = 0.

Obviously, if b1(x) ! b2(x), one can only obtain that g ≡ 0, on [0, T ] × T3. Hence, in Section 6, we find
a unique global solution to (6.34) under the assumption

Any two compoments o f ∇b(x) = (∂x1b(x), ∂x2b(x), ∂x3b(x)), are linearly correlated.
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