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• Chemical class can be deduced directly from NMR spectra using a
convolutional neural network.

• Other methods were found to be not suitable for this task.
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Abstract

This paper presents a proof-of-concept method for classifying chemical com-
pounds directly from NMR data without performing structure elucidation.
This can help to reduce the time in finding good structure candidates, as
in most cases matching must be done by a human engineer, or at the very
least a process for matching must be meaningfully interpreted by one. The
method identified as suitable for classification is a convolutional neural net-
work (CNN). Other methods, including clustering and image registration,
have not been found to be suitable for the task in a comparative analysis.
The result shows that deep learning can offer solutions to spectral interpre-
tation problems.
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1. Introduction

Nuclear Magnetic Resonance (NMR) spectroscopy is an established tech-
nique in analytical chemistry. As a result of its rich structural and dynamic
information content, it is particularly suitable for compound identification.
However, full elucidation may not always be possible or even necessary since
some properties might be achieved directly from the spectra. If this is the
case, a prioritization of substances to be closely investigated for compound
assignment can be performed in the early stages of a study.

A previous example of this idea was demonstrated in [1], where the au-
thors showed that the existence of certain substructures can be concluded
from profiles in the spectra. Another potentially useful application is chemi-
cal classification. These rely strongly on annotated chemical entities to pro-
vide a computable chemical taxonomy based on substructures. In this paper,
we infer chemical taxonomy from the spectra. Similar approaches have been
applied with Mass Spectrometry (MS) data where chemical classifications
can be achieved from fragmentation patterns on MS/MS data [2].

Together with the MolNetEnhancer method [3] and Molecular Networks
[4], chemical classification has been shown to be a valuable tool for the an-
notation of compounds of unknown compounds and for the classification of
samples for prioritization, for example. The authors have decided to work
with spectral images in this current study, but working with raw data would
be another option. Working with the images, we frame the problem very
much as a digital image processing and machine vision methodology. Com-
puter science has developed a wide range of techniques here, in particular
over the last few years, with image processing gaining importance in areas
like autonomous driving or security monitoring (see [5] for an overview).
While these techniques are mostly used to process video or photographic im-
ages, they can also be used to process data from scientific instruments [6].
On this basis, in this paper, we want to examine the question of whether
chemical classes can be deduced directly from NMR spectra, using digital
image processing techniques. If so, the best method will be identified.

2. Results

2.1. Image similarities

Table 1 shows the results of the image similarity methods described in
Section 4.2. First, we can see that, as expected, all of the methods find
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the spectra identical to themselves. Calculating the similarities within and
between superclasses gives, on average, similar results. For example, using
MobileNetV2 CS gives an average similarity of 0.94 within the superclasses
and of 0.91 between superclasses. Although the similarity is slightly lower
between superclasses, the difference is not significant. The same is true for
the other methods, where SSICompare even gives the same average similarity.
From this we conclude that these methods are not suitable for classifying the
NMR spectra according to the chemical class of the compound.

2.2. Image registration

In order to test the image registration, we have trained the CNN model
used in VoxelMorph for 20 epochs to ensure convergence with the training
images of one class. We then register test images from that class and some
other classes. We then sum up pixel by pixel the absolute value of the
shifts found by the registration. Similar images should need less change
and therefore have a smaller shift overall. An example run is available on
the GitHub repository in results/voxelmorph.txt. The class used for training
here is the Benzoids. The convergence in training is visible. We then sum
up the shifts for three Benzoids, the resulting values are 43499, 38834, and
41487. Doing the same for three Organic Oxygen compounds gives 50596,
44232, and 44537. For other classes, the results were similar. In some cases,
the other molecules needed even less change than those from the same class.
From those values we can conclude that this method did not find useful
information.

2.3. Clustering based on deep learning

The authors have executed the clustering as described in Section 4.4 on
the 400 images in the training set. These are from nine superclasses, so we
did the clustering with nine clusters. The nine clusters formed are shown in
Table 2, together with the superclasses from which the compounds clustered
in them came from. From this table, we can conclude that the clustering is
not conclusive, clusters contain compounds from a variety of classes, and the
classes are distributed over all clusters.

In order to test this, we make an assignment of classes to clusters that
optimizes the number of correct guesses. The pairs of clusters/classes are
Alkaloids and derivatives/9, Benzenoids/8, Lipids and lipid-like molecules/4,
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MobileNetV2 CS MobileNetV2 E ORBCompare SSICompare

With 1-1 1 0 1 1
itself 5-5 1 0 1 1

9-9 1 0 1 1

Within 1-2 0.96 8.84 0.97 0.97
superclass 1-3 0.96 8.19 0.99 0.98

1-4 0.96 9.21 0.99 0.98
5-6 0.92 12.83 0.95 0.96
5-7 0.93 12.58 0.55 0.94
5-8 0.94 11.30 0.75 0.96
9-10 0.98 6.69 0.99 0.99
9-11 0.91 13.87 1.00 0.99
9-12 0.96 9.63 0.90 0.98

Average 0.94 10.34 0.88 0.97

Between 1-5 0.91 13.64 0.98 0.96
superclasses 1-6 0.92 13.27 0.93 0.98

1-7 0.89 15.33 0.63 0.95
1-8 0.93 11.96 0.75 0.97
2-5 0.92 13.22 0.97 0.97
2-6 0.91 13.94 0.95 0.98
2-7 0.90 14.92 0.60 0.95
2-8 0.94 11.65 0.82 0.97
3-5 0.92 13.09 0.98 0.97
3-6 0.94 10.89 0.92 0.98
3-7 0.90 14.51 0.66 0.96
3-8 0.94 11.24 0.76 0.97
4-5 0.91 14.18 0.98 0.97
4-6 0.90 14.51 0.94 0.98
4-7 0.89 15.38 0.62 0.96
4-8 0.93 12.26 0.70 0.97
1-9 0.93 12.05 1.00 0.98
1-10 0.93 12.00 0.98 0.98
1-11 0.87 16.50 1.00 0.99
... ... ... ... ...

Average 0.91 12.84 0.86 0.97

Table 1: Distance measures achieved using various clustering methods. The numbers in
the column “Images” column indicate the images used as explained in Section 4.2. The
full table is found in Supplemental Material S1.
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Actual superclasses/Cluster number 1 2 3 4 5 6 7 8 9 Sum

Alkaloids and derivatives 0 5 0 0 2 1 1 0 9 18
Benzenoids 1 17 2 6 11 4 2 4 8 55

Lipids and lipid-like molecules 0 4 4 23 13 15 3 3 16 81
Nucleosides, nucleotides, and analogues 0 1 1 0 0 1 5 0 5 13

Organic acids and derivatives 6 2 17 13 2 16 6 1 3 66
Organic nitrogen compounds 1 2 0 0 0 8 1 0 0 12
Organic oxygen compounds 1 8 14 3 2 24 5 1 4 62

Organoheterocyclic compounds 0 11 10 4 7 6 6 0 5 49
Phenylpropanoids and polyketides 1 11 0 4 3 2 7 1 15 44

Sum 10 61 48 53 40 77 36 10 65 400

Table 2: Results of k-means clustering based on deep learning. The 9 clusters formed are
shown from left to right. The actual classes of the members are shown from top to bottom.
Sums of classes are given on the right, and sums of clusters are given on the bottom. For
example, there were 18 samples from the class of “Alkaloids and derivates”. Of these, 0
were clustered in cluster 1, 5 in cluster 2, 0 in cluster 3 and so forth. On the other hand,
cluster 1 had 10 members altogether; it consisted of 0 compounds from “Alkaloids and
derivates”, 1 from “Benzoids” and so forth.

Nucleosides, nucleotides, and analogues/7, Organic acids and derivatives/6,
Organic nitrogen compounds/6, Organic oxygen compounds/3, Organohete-
rocyclic compounds/5, Phenylpropanoids and polyketides/2. The sum of
correctly classified samples in this combination is 87, which is 21.75%. This
is clearly better than the value to expect from a random guess, but also much
worse than the CNN results.

The results using the other clustering methods are similar. For agglom-
erative clustering, the correctly classified samples were 22.75%, see Table 3
for details. Affinity-propagation clustering produced 41 clusters with up to
28 entries, many having only one, using the default settings in Scikit-learn.
Changing the parameter preference and random state did not produce sig-
nificantly better results. Spectral clustering produced similarly inconclusive
results.

These results show that the overall clustering is inferior to the CNN ap-
proach for this problem.
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Actual superclasses/Cluster number 1 2 3 4 5 6 7 8 9 Sum

Alkaloids and derivatives 0 6 0 1 9 0 0 1 1 18
Benzenoids 2 23 6 4 6 1 1 6 6 55

Lipids and lipid-like molecules 10 19 4 19 15 2 0 1 11 81
Nucleosides, nucleotides, and analogues 1 0 0 2 5 2 0 3 0 13

Organic acids and derivatives 15 5 1 19 7 8 6 3 2 66
Organic nitrogen compounds 0 1 0 8 0 0 1 2 0 12
Organic oxygen compounds 3 9 1 25 5 13 1 4 1 62

Organoheterocyclic compounds 8 14 1 7 6 5 0 2 6 49
Phenylpropanoids and polyketides 0 10 1 3 14 0 0 4 12 44

Sum 39 87 14 88 67 31 9 26 39 400

Table 3: Results of agglomerative clustering with ward linkage based on deep learning.
The 9 clusters formed are shown from left to right. The actual classes of the members
are shown from top to bottom. The sums of classes are given on the right, and the sums
of clusters are given on the bottom. For example, there were 18 samples from the class
of “Alkaloids and derivates”. Of these, 0 were clustered in cluster 1, 6 in cluster 2, 0
in cluster 3 and so forth. On the other hand, cluster 1 had 39 members altogether; it
consisted of 0 compounds from “Alkaloids and derivates”, 2 from “Benzoids” and so on.

2.4. CNN

The accuracy achieved using the simple Convolutional Neural Network
described in Section 4.5 is given in Table 4. The results of the tests are
provided in the results directory of the GitHub repository. Since this is using
a fixed test set, we have also run the HMBC case using cross-validation. The
average results for the metrics in Table 4 are 53.52, 53.53, 51.76, 55.54, and
48.07%. This is less than for our test set, but still significantly above the
random guess. It should be noted that the same training set used here is
used for image registration and clustering, indicating that direct comparison
should be made with the results in Table 4.

The numbers show as the main finding that a CNN is able to distinguish
chemical classes by using visual NMR spectra. Since we have 9 classes, a ran-
dom selection of classes should give about 11% accuracy. All the accuracies
from this method are well above that. HMBC alone has better results than
HSQC alone, and both together are similar to HSQC. For single networks,
this is in line with the results reported in [1] for substructure classification. It
should be noted that, as explained in Section 4.5, the results are likely to be
optimized, and this represents a proof of concept. Unlike [1], the combined
results are not similar to the HMBC results, but rather to the HSQC result.
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HMBC HSQC HMBC and HSQC

Accuracy
Average 62.47 43.42 48.76
Min/Max 55.23/64.76 38.09/51.42 37.14/62.85

F1-score
Average 62.10 44.36 48.97
Min/Max 47.99/69.84 40.72/52.36 35.86/63.74

Recall
Average 60.47 43.67 47.29
Min/Max 41.14/69.09 40.36/5104. 34.89/61.54

Precision
Average 64.15 45.12 51.02
Min/Max 58.00/70.60 41.02/53.79 36.93/66.19

Matthews
Average 56.71 34.13 40.34

Correlation
Min/Max 47.98/59.57 27.43/43. 26.54/57.36

Coefficient

Table 4: Classification metric achieved by the network described in Section 4.5, over ten
runs. All numbers in %.

3. Discussion

The results show that the convolutional neural network is the only method
that is capable of directly determining a chemical class from NMR spectra.
We can achieve an accuracy of more than 60% with an unoptimised standard
CNN. Almost certainly, optimizing the network would increase the accuracy
even more. On the contrary, other methods have not provided an accuracy
significantly above the random result. This is perhaps unsurprisingly true for
conventional image similarities. It is also true for the clustering and image
registration methods we have tried. It should be noted that there is a wide
range of such methods available, and others might give better results. In
particular, clustering might give better results with the right combination of
distance metrics, clustering method, and parameters. Considering that CNN
is also the first attempt and a standard architecture, the result is significant.

In the case of CNN, the precision is less than that of the same network for
the classification of substructures in [1]. This is reasonable, since the concept
of chemical class as implemented in ClassyFire is more complex than that
of a single substructure. As in [1], we get a better result from the HMBC
spectra than from the HSQC spectra. In this paper, we obtain an accuracy
for the combined spectra closer to the HSQC data than the HMBC data.
This shows that the processing method is not suitable here, since the higher
information content of the HMBC is effectively lost.
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4. Methods

4.1. The data

The source of NMR spectra for this article is nmrshiftdb2 [7] and the Bi-
ological Magnetic Resonance Bank (BMRB) [8]. For BMRB, raw NMR data
for several small molecules are available for download at https://bmrb.io/
ftp/pub/bmrb/metabolomics/entry_directories/. We have downloaded,
using a script, the HMBC and HSQC spectra for all compounds for which
both spectra exist. The structures were also downloaded in the mol file for-
mat. Similarly, nmrshiftdb2 offers a raw data download for some compounds.
We have downloaded HMBC and HSQC spectra together with the structures
in mol file format here as well, where available.

Then all structures were submitted to the ClassyFire interface at http:
//classyfire.wishartlab.com/queries/new. ClassyFire [9] is a software
that classifies chemical compounds according to a well-defined ontology by
structural features. The ontology term used in this article is ClassyFire su-
perclass. The use of superclasses was mandated because there is a reasonable
number of examples of superclasses in the data, whereas more specific terms
do not have enough examples for training. We have only used superclasses,
which have a minimum number of examples of 15. We also performed a
stratified random split into training and test data. The final classes and
their examples are shown in Table 5.

All 2D spectra were processed automatically starting from the raw time
domain data using a custom Mnova script. Mnova NMR [10] is a software
package for the processing, analysis and prediction of NMR data. It includes
a scripting engine (Javascript based) for tasks automation and custom de-
velopments. In all cases, a zero filling level was applied along the direct
dimension (F2). For the indirect dimension (F1), zero filling was applied so
that the number of points is the same as in F2. Linear prediction was not
used. For non-phase sensitive experiments (e.g. COSY), the magnitude was
calculated, and the apodisation functions applied were sine bell for F2 and
sine square for F1. Phase-sensitive experiments (e.g. HSQC) were automat-
ically phase-corrected, and the apodization functions were sine bell (90◦) for
both dimensions. As a result, the spectral images have the same scale, no
additional rulers, grids, or other formatting in the image, and the same depth
display of the z-dimension. This is different from the approach in [1], where
images uploaded to BMRB were used. These images are not uniform with
respect to the settings mentioned. The images used, in directories for the
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Superclass
Training
instances

Test
instances

Total
instances

Alkaloids and derivatives 13/5 3/2 16/7
Benzenoids 48/7 12/0 60/7

Lipids and lipid-like molecules 68/13 16/5 84/18
Nucleosides, nucleotides, and analogues 13/0 4/0 17/0

Organic acids and derivatives 64/2 19/0 83/2
Organic nitrogen compounds 12/0 3/0 15/0
Organic oxygen compounds 52/10 15/3 67/13

Organoheterocyclic compounds 45/4 11/2 56/6
Phenylpropanoids and polyketides 39/5 9/1 48/6

Sum 354/46 92/13 446/59

Table 5: Overview of the number of samples for which HMBC and HSQC spectra were
available for this project. In the pairs of numbers, the first number refers to BMRB, and
the second to nmrshiftdb2.

superclasses and the training / test set, are available in the classesbothfinal
folder in the GitHub repository of the project. Such a large set of uniformly
processed NMR data, to the authors’ knowledge, is not available so far.

4.2. Image similarities

As a working hypothesis, the authors assume that the spectra of com-
pounds of the same class are more “similar” than the spectra of compounds
of different classes. On the basis of this, it should be possible to determine
the distance of a spectrum from the spectra of compounds of the various
ClassyFire superclasses. The most similar spectrum should then tell which
class the new compound belongs to. To test this hypothesis, the authors
have tested a number of commonly used image similarity metrics.

• MobileNetV2 pre-trained ML model by Google [11], combined with
cosine similarity (MobileNetV2 CS in here), using the implementation
from Keras.

• MobileNetV2 pre-trained ML model by Google, combined with Eu-
clidean distance (MobileNetV2 E in here), using the implementation
from Keras.

9



• ORB key features matching [12], as implemented in OpenCV ( https:
//docs.opencv.org/3.4/d1/d89/tutorial_py_orb.html).

• Structural Similarity Index (SSIM)[13], as implemented in OpenCV
(https://docs.opencv.org/4.x/dd/d3d/tutorial_gpu_basics_similarity.
html).

These methods were applied using the mentioned implementations. The
authors first calculated the similarities between two instances of the same
images to check the methods, since we expect identity here. Then, we cal-
culated the similarities between HMBC images from the same class and
between images from different classes. The average of similarities in and
between classes was calculated. If the methods can perform a proper classifi-
cation, we would expect the similarities within the classes to be significantly
higher than between different classes. The BMRB numbers of the images
used and their numbers in Table 1 are as follows: Alkaloids and derivatives:
bmse001010 (1), bmse001193 (2), bmse001248 (3), bmse001281 (4), Lipids
and lipid-like molecules: bmse000317 (5), bmse000394 (6), bmse000478 (7),
bmse000484 (8), Organic oxygen compounds: bmse000302 (9), bmse000303
(10), bmse000304 (11), bmse000306 (12). The code for the calculations is
available in the python folder in the github repository of the project.

4.3. Image registration

Image registration in general means transforming different sets of data
into one coordinate system. Possible data include images. A typical appli-
cation would be to align MRI images of different slices of a human brain.
For our purposes, we measure the amount of transformation needed to align
two spectra. Similarly to the image similarity calculation, our hypothesis is
that the spectra for compounds of the same class would require less change
to align.

To test this, we have used the VoxelMorph image registration program
[14]. VoxelMorph is based on deep learning and is considered an advanced
image registration technique. We train it with the images of one class and
then try to register images from the same class and other classes to see the
necessary changes. The code for the calculations is available in the python
folder in the GitHub repository of the project.
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4.4. Clustering based on deep learning

Clustering techniques can be used to group instances by similarity. Simi-
larly as before, if the spectra could be clustered by their similarity, then the
ClassyFire superclass of a compound could be determined by the cluster into
which its spectra fall. We use a pre-trained network for feature extraction and
execute k-means clustering, following https://towardsdatascience.com/

how-to-cluster-images-based-on-visual-similarity-cd6e7209fe34. k-
means clustering seems particularly appropriate in this case since the number
of clusters needed is known and must be the same as the number of ClassyFire
superclasses.

In order to make sure that the clustering algorithm is not at fault for
this, we have tried to find more clustering methods, namely agglomerative
clustering with ward linkage, affinity propagation, and spectral clustering.
The algorithms were taken from Scikit-learn [15]. The code is available in
the python folder in the GitHub repository of the project.

4.5. CNN

Convolutional neural networks (CNNs) have become a popular choice for
many tasks, in particular, image processing. Typical tasks here are image
classification (e.g., finding all images in a set that contain a car) or image
segmentation (finding all cars in an image). The authors do not cover details
of the work and many applications here; for details and literature references,
see the recent review [16]. What is important in this context is the ability of
CNNs to extract complex information. We have shown in [1] that chemical
information is accessible for CNNs from the image representation of the NMR
spectra. CNNs have also been shown to process raw data from NMR spectra
[17]. This paper focuses purely on visual information.

The authors used the same networks as in [1]. For the prediction of
HMBC and HSQC prediction only, this is a network consisting of 7 layers,
2 of which are input and output layers (Figure 1a). This network has been
trained with HMBC and HSQC separately. The same structure is also used in
the combined neural network (Figure 1b). This combined CNN architecture
consists of 2 initial branches, forming independent CNNs, which are then
connected to a dense layer and followed by an output layer. Networks are
implemented with Python 3 using the Keras and Tensorflow libraries [18, 19].

Furthermore, this study assumes a closed-world hypothesis, where all
compounds fall into exactly one category (i.e. are of exactly one superclass).
The network will decide on one class due to the Softmax activation function
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(a)

(b)

Figure 1: Architecture of (a) the single spectrum convolutional neural network and (b)
the convolutional neural network for the combined HMBC and HSQC spectra (from [1]).

in the output layer. Working under an open-world assumption is an open
problem in AI research and not part of this pilot study.

Note that this is a proof-of-concept study with a relatively low number of
examples. Therefore, we have not separated a validation set from the main
data set. The authors are using a fixed test set rather than cross-validation,
which was performed for the first class without returning significantly differ-
ent results. The test and training set are stratified, i. e. there each class
is split into test and training set and both contain the classes in the same
proportions. The authors also did not optimize the network by tuning its
architecture and parameters. Furthermore, we did not try to tune the image
export. The images were exported as PNG files with a size of 1133x791 pix-
els; no further image manipulations were applied. In this sense, the numbers
reported in Section 2.4 are a baseline. They represent the average result of
ten runs of the training process with the fixed test set. Ten runs were chosen
to iron out minor differences between runs. We trained for 20 epochs for
the single networks and for 30 for the combined network since the networks
converge somewhere beyond 10 and, respectively, 20 epochs. The main met-
ric used is the accuracy, since this is most appropriate for a classification
problem. Additionally, we have calculated the F1 score, recall, precision,
and Matthews correlation coefficient.

In addition to CNNs, we have also tried Capsule Neural Networks (Cap-
sNet). These were pioneered by Geoff Hinton et al. in [20] and promise better
image processing than CNNs. We have tried the implementations available at
https://colab.research.google.com/drive/1WiqyF7dCdnNBIANEY80Pxw_
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mVz4fyV-S?usp=sharing and https://towardsdatascience.com/implementing-capsule-network-in-tensorflow-11e4cca5ecae.
Both deal with the MNIST dataset in the original implementation, which
contains images of size 28× 28 pixels. The authors found that dealing with
images of our size is impossible for these implementations, even on a com-
puter with large memory. Therefore, we have decided not to use CapsNet.
This is also justified because a major advantage here is the ability of the
NMR spectra to deal with the rotation of elements, which is not a common
distortion in NMR spectra.

5. Conclusion

We have shown that CNNs can extract chemical class information from
NMR spectra. This is in contrast to other image processing methods, which
are unable to do so. The accuracies achieved are intended only to show a
proof-of-concept, not as a final result. Improving the network is a task for
future research. In particular, the combination of HMBC and HSQC spectra
needs attention, since it should get at least as good a result as the best
single input result. Another potential research route is the inclusion of more
information, e. g. from mass spectrometry.
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K. B. Kang, N. Kessler, I. Koester, A. Korf, A. Le Gouellec, M. Lud-
wig, C. Martin H., L.-I. McCall, J. McSayles, S. W. Meyer, H. Mo-
himani, M. Morsy, O. Moyne, S. Neumann, H. Neuweger, N. H.
Nguyen, M. Nothias-Esposito, J. Paolini, V. V. Phelan, T. Pluskal,
R. A. Quinn, S. Rogers, B. Shrestha, A. Tripathi, J. J. J. van der
Hooft, F. Vargas, K. C. Weldon, M. Witting, H. Yang, Z. Zhang,
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lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, software available from ten-
sorflow.org (2015).
URL http://tensorflow.org/

16

https://doi.org/10.1109/cvpr.2018.00964
https://doi.org/10.1109/cvpr.2018.00964
https://doi.org/10.1109%2Fcvpr.2018.00964
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mrc.5292
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mrc.5292
http://arxiv.org/abs/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/pdf/10.1002/mrc.5292
http://arxiv.org/abs/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/pdf/10.1002/mrc.5292
http://arxiv.org/abs/https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/pdf/10.1002/mrc.5292
https://doi.org/https://doi.org/10.1002/mrc.5292
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mrc.5292
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mrc.5292
https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://tensorflow.org/
http://tensorflow.org/
http://tensorflow.org/


[20] S. Sabour, N. Frosst, G. E. Hinton, Dynamic routing between capsules
(2017). doi:10.48550/ARXIV.1710.09829.
URL https://arxiv.org/abs/1710.09829

17

https://arxiv.org/abs/1710.09829
https://doi.org/10.48550/ARXIV.1710.09829
https://arxiv.org/abs/1710.09829

	Introduction
	Results
	Image similarities
	Image registration
	Clustering based on deep learning
	CNN

	Discussion
	Methods
	The data
	Image similarities
	Image registration
	Clustering based on deep learning
	CNN

	Conclusion

