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Abstract 
An understanding of epilepsy genetics is important for the adult neurologist as genetic 
diagnoses are of clinical benefit. In this review we describe the key features of different 
groups of genetic epilepsies.  We describe the common genetic tests that are available and 
how to interpret them.  

Key Points 
• A genetic cause can be found for a proportion of adults with certain types of epilepsy 

and can be of clinical benefit. 
• Epilepsy gene panels/whole exome sequencing and chromosomal microarrays are 

typically first line genetic tests with increasing use of genome sequencing. 
• Genetic diagnoses can be missed in the paediatric clinic, be sceptical about historical  

aetiological diagnoses. 
• Consider reviewing previous non-diagnostic genetic results in light of new evidence. 
• Discussing genetic test results and cases within a multidisciplinary team including 

clinical geneticists and bioinformaticians is recommended. 

Introduction 
We have known about the link between epilepsy and genetics for a long time; Hippocrates 
wrote of epilepsy: “its origin is hereditary, like that of other diseases”.1 However, it wasn’t 
until 1995 that the first epilepsy gene was discovered.2 Since then, significant advances have 
been made in our understanding of epilepsy genetics. Although there is much we don’t 
understand, particularly in terms of the genetic architecture of the more common 
epilepsies, enough is now known that genetic diagnoses can be made and used to influence 
treatment decisions in the adult neurology clinic.  

Most (but not all) single gene (monogenic) epilepsies will present in childhood and be 
diagnosed by our paediatric specialist colleagues. However, many of these children will 
transition to adult services where the genetic diagnosis may influence prognosis and 
treatment. The diagnosis might not have been made in the paediatric clinic.3 4 Precision 
therapies for certain epilepsies are available and will be an increasing part of clinical 
practice.5 It is important therefore that the adult neurologist has an understanding of 
epilepsy genetics. We do not offer a comprehensive review of epilepsy genetics here but 
describe key practical points for the adult neurologist seeing patients with epilepsy. 

Taking a History 
A family history is obviously important, but it is worth remembering that epilepsy is 
sometimes not fully disclosed in families, particularly in older generations. Speak with older 
family members if possible.6 Parents and grandparents can also help with recording the 
presence of febrile seizures in the patient and other family members which can be useful for 
the diagnosis of Genetic Epilepsy with Febrile Seizures plus (GEFS+) — figure 1.6 Typical 
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febrile seizures are convulsive and occur in the context of fever between the ages of 6 
months and 6 years. Febrile seizures plus (FS+) occur outside this age or may consist of 
seizures that occur with and without fever.7 Prolonged febrile seizures, particularly with a 
hemiclonic component, are associated with Dravet’s syndrome.8 Some monogenic 
epilepsies are due to de novo [footnote: Occurring due to a new mutation and not present 
in parents] or recessive mutations and there may be little or no family history in these 
situations.  

The age of onset of different seizure types is particularly important and may give clues to a 
genetic diagnosis. For example early onset absence epilepsy (absences occurring in a child 
less than four years old) is associated with SLC2A1 mutations9, most seizures start before 
the age of 20 in autosomal dominant nocturnal frontal lobe epilepsy,10 and age of onset 
helps with diagnosing particular developmental and epileptic encephalopathies (DEEs) 
(table 1). 

Birth details are traditionally part of the epilepsy history given that perinatal events can 
cause epilepsy. However, changes in neonatal care have, for the most part, improved 
outcomes, and having a premature or a traumatic birth or a previous label of cerebral palsy 
might not exclude a genetic cause for epilepsy. In a recent study, 58% of adults with 
epilepsy and intellectual disability, who had previously been thought to have a known 
historic cause for their epilepsy such as perinatal trauma, were found to have a genetic 
diagnosis.4 Infants with neurological abnormalities may also be more likely to have difficult 
deliveries e.g. due to hypotonia. 

Specific scenarios  

Developmental and Epileptic encephalopathies.  

DEEs are an overlapping group of syndromes, normally presenting in childhood, with severe 
epilepsy and associated cognitive and behavioural impairment. The seizures themselves 
may be the key driver to the cognitive impairment (epileptic encephalopathy) or play a less 
prominent role (developmental encephalopathy) but most often there is a significant 
overlap.11  

The vast majority of DEEs present in childhood but a significant proportion of patients 
transition to, or present in the adult clinic.3 4 In the adult neurology clinic we have an 
opportunity to make a genetic diagnosis in previously “unsolved” DEEs or DEEs falsely 
ascribed to symptomatic causes such as mild perinatal trauma.4 We also need to be aware 
of specific treatment options for some DEEs. 

Although structural and metabolic brain problems can cause DEEs, they are mostly genetic 
in origin. Significant inroads have been made in understanding the underlying genetics of 
these disorders which are often associated with de novo mutations.12  There are over one 
hundred genes associated with DEEs.12 13 

Epilepsy gene panels or whole exome/genome sequencing are standard diagnostic clinical 
tests for patients with DEEs and should be requested if not already done so. In some ways 
these tests reduce the need to remember the large number of genes associated with DEEs.12 
Be familiar with some of the more important DEEs though (table 1) as having a clear 
epilepsy phenotype can help interpret genetic results. However, many individuals with a 
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DEE do not have a distinct phenotype and genetic testing should still be considered in these 
cases.  
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Syndrome Age at onset Clinical Features / Pointers Genetics 

Dravet syndrome 1st year of life, 
typically around 
6 months 

Seizures associated with fever (especially hemiclonic, or status epilepticus) common at onset. 
Multiple seizure types in the first year: hemiclonic, myoclonic and focal seizures with status 
epilepticus. Development delay usually apparent in second year and usually moderate to severe 
intellectual impairment. Seizures (and fever sensitivity) persist throughout life but frequency may 
decrease. Higher risk of sudden unexplained death in epilepsy (SUDEP). Motor problems 
(“crouching” gait) and decline in mobility, behavioural problems and swallowing difficulties 
feature in adulthood.14 Sodium channel anti-seizure medications can make seizures worse. 
Treatment options include fenfluramine, cannibidol and ketogenic diet. 8 15 16  

>80% have pathogenic 
SCN1A variants.17 

Other genes associated with 
similar phenotype include 
GABRA1, GABRG2, HCN1, 
KCNA2, SCN1B.18 

Early infantile epileptic 
encephalopathy 
Ohtahara syndrome 

0–3 months Frequent intractable seizures, tonic seizures. Consider early myoclonic encephalopathy if 
myoclonic seizures predominate. Structural brain aetiology most common. Also, metabolic as well 
as genetic causes. Can evolve to West or Lennox-Gastaut Syndrome. Normally severe 
developmental delay. Abnormal EEG with burst suppression can evolve to hypsarrythmia.12 

STXBP1 (most common 
maybe 10%) others include 
SCN2A, STXBP1, and 
KCNQ2.12 

Epilepsy of infancy with 
migrating focal seizures 

1st year of life, 
typically 0–6 
months 

Rare and severe with focal seizures migrating between hemispheres. Most have severe 
developmental problems after onset of seizures. EEG can be normal initially, slowing with time, 
ictal changes correlate with seizures.12 19 

Genes include KCNT1 (30%), 
SCN2A, SCN1A, PLCB1, 
TBC1D24 and CHD2.19 

West syndrome 1st year of life, 
typically around 
6 months 

Infantile spasms at onset with EEG hypsarrhythmia. Structural (tuberous sclerosis) and metabolic 
causes as well as genetic causes. Corticosteroids, vigabatrin and the ketogenic diet can be useful. 
Can evolve to Lennox-Gastaut syndrome. 

Genes include CDKL5, ARX, 
SPTAN1 and STXBP1 

Epileptic 
encephalopathy with 
continuous spike-and-
wave during sleep 

Childhood onset, 
typically 4–5 
years. 

Progressive cognitive decline is prominent and is associated with characteristic EEG abnormality of 
continuous slow spike and wave in slow sleep. Seizures can remit but cognitive impairment can 
persist. A spectrum including Landau-Kleffner syndrome (milder phenotype with prominent 
aphasia) 

GRIN2A 

“Metabolic” DEEs  Rare but potentially treatable genetic metabolic problems which can present as a DEE include: 
guanidinoacetate methyltransferase (GAMT) deficiency – DEE phenotype, low serum creatinine 
can be a clue, check plasma and urine creatine, creatinine and guanidinoacetate. MR spectroscopy 
can be diagnostic. Oral creatine supplementation and dietary manipulation can cause dramatic 
improvements.20 Pyridoxine dependent epilepsy (PDE) is typically neonatal onset with drug 
resistant epilepsy and a DEE phenotype that responds to high doses of pyridoxine. Elevated 
plasma and urinary levels of alpha-aminoadipic semialdehyde.21 

GAMT (GAMT deficiency) – 
recessive 
ALDH7A1 (PDE) – recessive 

 

Table 1 Important developmental and epileptic encephalopathies (DEEs). 
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Specific Genetic Epilepsy Phenotypes 

Some epilepsies have well described genetic causes. For example, familial epilepsy 
syndromes or epilepsies due to mitochondrial disease (table 2)— request genetic testing in 
these cases. 
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Gene/Syndrome Clinical presentation/clues Genetics 

Genetic epilepsy with febrile 
seizures plus (GEFS+) 

A wide spectrum of epilepsies within the family consisting predominately of febrile seizures but also febrile 
seizures plus**, generalised (absence, myoclonic, atonic) and focal seizures.7 A GEFS+ family has at least two 
individuals with GEFS+ phenotypes, including at least one with febrile seizures or febrile seizures plus (figure 1). 
GEFS+ families may have individuals with developmental or epileptic encephalopathies, particularly Dravet 
syndrome or Myoclonic-astatic epilepsy. 

SCN1A (19%), GABRG2 (9%), 
SCN1B (8%) 

Glucose transporter 1 
deficiency syndrome 
(GLUT1) 

Variants in SLC2A1 which encodes a brain glucose transporter can produce a spectrum of phenotypes including 
epileptic encephalopathies and milder epilepsies with or without intellectual disability.22 Can also cause early 
onset absence epilepsy (onset <4 years) and/or paroxysmal exercise induced dyskinesia (limb movements 
including dystonia and chorea after exercise).9 23 Responds well to the ketogenic diet.23 

SLC2A1 

Autosomal dominant sleep-
related hypermotor epilepsy 
(ADSHE)* 

Seizures from sleep usually starting in childhood and persisting into adulthood. Brief tonic or hypermotor 
seizures occurring in clusters. Awake seizures are rare. Mostly drug responsive, particularly to carbamazepine.24 
Sometimes more severe with drug resistance and intellectual disability/psychiatric comorbidities, KCNT1 
variants associated with a more severe phenotype.25 26 

CHRNA4, CHRNB2, CHRNA2 
(nicotinic AChR subunit 
genes) and DEPDC5 KCNT1. 

Autosomal dominant 
epilepsy with auditory 
features (ADEAF)§ 

Seizures with auditory features typically starting in adolescence. Auditory auras, commonly sounds such as 
ringing or buzzing, sometimes receptive aphasia and auditory hallucinations. Focal and focal to bilateral 
convulsive seizures. Seizures can be sometimes triggered by sounds. Relatively drug responsive.24 27 

LGI1 (30–50% of familial 
cases, 2% of sporadic cases). 
Also DEPDC5, RELN.28 29 

Familial focal epilepsy with 
variable foci (FFEVF) 

Focal epilepsy in multiple family members with different seizure foci in different family individuals (seizure 
focus remaining constant within the individual). E.g. temporal lobe epilepsy in the proband, frontal lobe 
epilepsy in father, occipital lobe epilepsy in grandfather. Variety in epilepsy onset and severity but mostly drug 
responsive, sometime psychiatric comorbidity. Can occur in families with fewer affected individuals. DEPDC5 is 
part of the mammalian target of rapamycin pathway raising possible treatment options.24 30 

DEPDC5 (around 80%).  

Ring chromosome 20 
syndrome 

Rare. Focal onset, drug resistant, seizures with frontal lobe semiology starting dramatically in childhood, 
typically around the age of 7. Hyperkinetic seizures during sleep as well as focal seizures with altered awareness 
and non-convulsive status epilepticus. Onset of seizures can be preceded by marked nocturnal hallucinations 
and behavioural/developmental disturbance after the onset of seizures is common.31 

Ring formation on 
chromosome 20 – check 
karyotype. (figure 2) 

Mitochondrial disease Clues include deafness, diabetes and short stature as well as occipital onset seizures and non-convulsive status 
epilepticus.32 Myoclonic epilepsy with ragged red fibres (MERRF) can present as a progressive myoclonic 
epilepsy with cognitive change, ataxia, short stature, and multiple lipomas.33 Mitochondrial encephalopathy 
with lactic acidosis and Stroke-like episodes (MELAS) can present in adulthood. Seizures are a key features of 
the stroke-like episodes and headache and vomiting can also features.34 35 POLG-related epilepsies can be 

POLG and mitochondrial 
genes 
m.8344A>G (90% of MERRF) 
MELAS: m.3243A>G; 
m.3271T>C 
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severe (Alpers-Huttenlocher Syndrome) and present with convulsive status epilepticus and epilepsia partialis 
continua in childhood and adolescence as well as cognitive changes and hepatopathy. Avoid sodium valproate 
in POLG disease.32 

Table 2 Clinical features of important genetic epilepsies and associated genetic conditions in the adult clinic. *Previously known as autosomal dominant nocturnal frontal lobe epilepsy. 
**Febrile seizures plus are febrile seizures occurring outside the normal age range for febrile seizures (6months to 6 years) or afebrile seizures occurring concurrently with febrile seizures. AChR 
= Acetylcholine receptor. §Previously called autosomal dominant partial/lateral temporal epilepsy with auditory features.  

 

 



Epilepsy Genetics – A Practical Guide for Adult Neurologists Pickrell, Fry 

Progressive Myoclonic Epilepsies  

The progressive myoclonic epilepsies (PME) are a rare, heterogeneous group of disorders 
characterised by predominantly progressive myoclonic seizures and progressive cognitive 
decline and ataxia (table 3).36 Of note is that cognition is largely preserved in Unverricht-
Lundborg disease. PMEs predominantly present in childhood or early adolescence and are 
mostly autosomal recessive.37 Consider PME in a case of juvenile myoclonic epilepsy with 
progressive (particularly action) myoclonus, additional features such as ataxia or cognitive 
decline and a family history. It is now possible to get a genetic diagnosis for at least 70% of 
PMEs.37 38 
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Syndrome Clinical Features / Pointers Genetics 

Unverricht-Lundborg 
disease (ULD) 

Most common and mildest PME. Progressive disabling action myoclonus. Cascade seizures 
with increasingly intense myoclonus. Occasional generalised tonic-clonic seizures. 
Photosensitivity common.36 39 Preserved cognition until relatively late distinguishes from 
other PMEs. Geographical variation in prevalence (Baltic myoclonus). Avoid sodium-channel 
blocking drugs. 

CSTB (dodecamer nucleotide repeats) 

Neuronal ceroid 
lipofuscinosis (NCL) 

Group of neurodegenerative lysosomal storage disorders. Common cause of childhood 
dementia. Prominent cognitive decline and visual failure, also cerebellar atrophy myoclonus 
and other seizures. Genetically heterogeneous, currently at least 14 genes, age at onset 
useful to classify. Other diagnostic tests e.g. skin biopsy can be useful.36 40 

Loci: CLN1-14  
Genes: PPT1, TPP1, CLN3, DNAJC5, 
CLN5, CLN6, MFSD8, CLN8, CTSD, 
ATP13A2, CTSF, KCTD7  

Lafora disease (LD) Adolescent onset in otherwise normal individuals. Headaches, myoclonus, occipital seizures, 
visual hallucinations. Biopsy can reveal Lafora bodies (polyglucosan inclusions). Progressive 
dementia and death usually 10 years after onset.36 41 42 

EPM2A, NHLRC1, PRDM8 

Others Myoclonic Epilepsy with Ragged Red Fibres (MERRF) – see table 2. Sialidosis is a lysosomal 
storage disorder with ‘cherry red spots’ seen on fundoscopy as well as visual decline, ataxia 
and dysmorphia (sialidosis type 2). Spinal muscular atrophy associated with progressive 
myoclonus epilepsy (SMA-PME) is caused by acid ceramidase deficiency and has typically 
distal lower motor neurone weakness. 

MERRF (mitochondrial) 
Sialidosis: NEU1,  
SMA-PME: ASAH1 

Table 3 The progressive myoclonic epilepsies (PME).  
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Malformations of cortical development 

Malformations of cortical development (MCD) are neurodevelopmental disorders caused by 
abnormal formation of the cerebral cortex. They are diverse in their aetiology and 
presentation but represent a common cause of intractable epilepsy.43 In the adult epilepsy 
clinic MCDs are typically discovered with an abnormal MRI of the brain. Table 4 lists some of 
the most common MCDs.  

Many MCDs have genetic causes and recommended genetic investigations include a 
chromosomal microarray and an MCD gene panel.43 However, some MCDs are due to 
mosaic mutations (e.g. focal cortical dysplasia and hemimegalencephlay). Causative mosaic 
mutations may only be present in the brain and either absent or rare in other body tissues. 
Mosaic mutations can therefore be missed by standard tests on blood-derived DNA. 
Detection may require testing of alternative tissue samples (saliva, skin or brain material) 
and/or targeted testing (ultra-deep resequencing).  

Other Structural Brain Abnormalities 

Tuberous sclerosis complex is characterised by multiple benign tumours in the skin, brain 
and other organ systems with a variety of clinical features and presentations. Cutaneous 
manifestations (hypopigmented macules, angiofibromas, shagreen patches and forehead 
fibrous plaques) and neuropsychiatric problems occur in >90% of patients.44 45 Epilepsy 
occurs in around 80% of cases, tends to be early onset and can be severe.45 De-novo (80%) 
and familial (autosomal dominant) mutations in TSC1 and TSC2 are found in more than 90% 
of tuberous sclerosis cases and cause an overactivation of the mTOR pathway.45 46 As well as 
anti-seizure medications, including cannibidol and vigabatrin, treatment options include 
mTOR inhibitors such as everolimus, the ketogenic diet and surgery.45 

Cerebral cavernous malformations or cavernomas are low flow vascular malformations that 
can cause epilepsy as well as being relatively common incidental MRI findings.47 Around 20% 
of patients have a familial, autosomal form of the disease and tend to have multiple 
cavernous malformations and pathogenic variants in one of three main genes: CCM1 
(KRIT1), CCM2 and CCM3 (PDC10).48 Treatment of epilepsy associated with cavernous 
malformations normally involves anti-seizure medications although surgery can be an 
option.48 

Other genetic structural brain abnormalities that may cause epilepsy include 
leukoencephalopathies and neurofibromatosis.49 50  
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Phenotype Description Genetics 

Periventricular nodular 
heterotopia (PVNH) 

Grey matter along the ventricular walls unilaterally or bilaterally. Can occur as part of another 
disorder.43 Can be caused by FLNA mutations (X-linked) which increase risk of systemic 
complications including heart, lung and GI disease. FLNA disease mostly affects females as 
usually lethal in males.51 

Numerous copy number variants and 
single gene mutations (including FLNA) 

Polymicrogyria Overfolding and abnormal cortical lamination. MRI: apparent cortical thickening with 
irregular cortical surface and ‘stippled’ grey-white junction.52 Genetic and congenital causes. 
Congenital CMV infection accounts for around 30% of cases (suspect if additional 
microcephaly, congenital hearing loss, intracranial calcification). Can be associated with 
peroxisomal disorders (additional leukoencephalopathy) check plasma very long chain fatty 
acids.43 

Copy number variants including 22q11.2 
and 1p36 deletions and many single 
gene mutations including GRIN1, 
WDR62, PIK3CA and PIK3R2 

Lissencephaly spectrum “smooth brain”, absent or reduced gyri.  Spectrum encompasses agyria, pachygyria and 
subcortical band heterotopia.43 53 Mostly genetic causes, MRI findings/patterns can strongly 
predict genotype. 

Include LIS1, DCX, TUBG1, TUBA1A, 
ARX43 

Subcortical band 
heterotropia  

Part of the lissencephaly spectrum. A band of grey matter separated from the cortex and 
lateral ventricles by zones of grey matter.43  

LIS1 (PAFAH1B1), DCX 

Subcortical 
heterotropia (SUBH) 

Heterotopic grey matter within the white matter between cortex and lateral ventricles. Less 
common to find genetic cause.43 54 

Mostly recessive, include GPSM2, EML1 
TUBB, KATNB1 or CENPJ43 54 

Tubulinopathies Microtubules are important for neurodevelopment and mutations in tubulin genes can cause 
a range of MCDs including pachygyria, polymicrogyria and microlissencphaly.55 Additional 
features include dysmorphic basal ganglia, “hooked” frontal horns in the ventricles, agenesis 
of the corpus callosum and cerebellar and brainstem hypoplasia. Each tubulin gene is 
associated with a predominant phenotype. 43 55 

Include TUBA1A, TUBB2A, TUBB2B, 
TUBB3, TUBB4A, TUBB and TUBG1 

Focal cortical dysplasia 
(FCD) 

Focal irregularities of cortical morphology and thickness. Indistinct grey-white boundary. Can 
be subtle and occur as part of tuberous sclerosis. Overlap with Familial focal epilepsy with 
variable foci (FFEVF) (table 2)—consider if familial epilepsy. 

mTOR pathway genes including TSC1, 
TSC2, MTOR; GATOR1 complex genes 
including DEPDC5, NPRL2 NPRL3. 

Table 4 – Some Malformations of cortical development (MCD) that can cause epilepsy.  
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‘Common’ Epilepsies 

Most people with epilepsy in clinic will have generalised or non-lesional focal epilepsy 
[footnote: No obvious acquired cause (e.g. stroke, cerebral infection, traumatic brain injury) 
for the epilepsy and a normal MRI brain or a MRI brain without a lesion to explain the 
epilepsy], without an underlying cause, family history or suggestion of a known genetic 
phenotype. Genetics makes a significant contribution to the aetiology of these common, 
idiopathic epilepsies with the risk of developing epilepsy increased two to four times in first-
degree relatives and increased concordance in monozygotic twins.56 57 

It is unlikely that these epilepsies are caused by a single genetic problem. One study found 
heterozygous intestinal-cell kinase variants in 7% of individuals with Juvenile Myoclonic 
Epilepsy, but this finding could not be replicated in a large independent cohort.58 59  

We now know that the combined effect of common genetic variants, rare genetic variants 
and copy number variants contribute towards the genetic cause of common epilepsies. 22 60-

62 Other genetic mechanisms that are likely to play a role include modifier genes, nucleotide 
repeats, and epigenetic factors.5 22 63  

At present we would not routinely recommend genetic tests for common, idiopathic 
generalised or drug-responsive focal epilepsies without additional features (see box 1). This 
could change in the future, for example polygenic risk scores may provide information on 
the prognosis and treatment options available for idiopathic epilepsies.5 

Treatment and prognosis 
Obtaining a genetic diagnosis can inform treatment options.64 For example sodium channel 
blocking drugs should be avoided in Dravet syndrome caused by SCN1A loss of function 
mutations, the ketogenic diet may improve outcomes for people with SLC2A1 mutations 
and sodium valproate can cause severe hepatotoxicity in POLG deficiency.64 Genetic 
treatments, for example anti-sense oligonucleotide therapies, have been used 
experimentally for epilepsy and hold significant promise for the future.65 

Human Leucocyte Antigen (HLA) genotype can influence the risk of severe adverse drug 
reactions and HLA genotyping can be considered before starting carbamazepine treatment 
(HLA-B*1502 for certain Asian ethnicities and HLA-A*3101 for Japanese, Korean and 
European ethnicity).66 67 There are no other clinical pharmacogenetic tests at present 
despite the likelihood that genetics influences treatment response. 

Recent studies have shown higher schizophrenia polygenic risk scores in people with 
epilepsy with post-ictal psychosis and levetiracetam induced psychosis when compared to 
those without.68 69 This raises the possibility that genetic testing may help predict prognosis 
and outcomes in future, although none are clinically available at present.70 
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Genetic Testing 

When should I request a genetic test in epilepsy clinic?  

The threshold for requesting an epilepsy genetic test is continuing to fall. It may be in the 
near future that almost all people with epilepsy will have a genetic test. However currently 
we would recommend prioritising genetic testing for cases where results are most likely to 
have the highest yield and influence clinical management (box 1).71  

 

Developmental and Epileptic encephalopathies (DEEs) (table 1)  

Epilepsy with intellectual disability and/or other neurodevelopmental disorder 

Individual and or family phenotype suggestive of a known genetic cause (table 2) 

Features suggestive of mitochondrial disease (table 2) 

Progressive myoclonic epilepsies (table 3) 

Malformations of cortical development (table 4) or other genetic structural abnormality 

Early onset (<3 years) 

Drug resistant epilepsy of unknown aetiology 
Box 1 Clinical scenarios where genetic testing is indicated 

Advantages and disadvantages to genetic testing 

Obtaining a genetic diagnosis can have clear clinical benefits. These include: selecting 
specific treatment options and avoiding contraindicated treatments, informing prognosis, 
enabling pre-conception planning and genetic counselling, preventing unnecessary 
investigation, identifying groups of patients for clinical trials, providing an explanation, and 
ending the diagnostic odyssey.72 73  

There are also disadvantages. It is important to consider the broader implications of 
requesting a genetic test, discussing these with the patient and/or family as part of the 
consent process. For example, test results may not give an answer, have implications for 
other family members, give uncertain results (variants of uncertain significance), and 
provide additional unexpected findings (particularly with whole exome and genome 
sequencing). Unexpected findings can include risk factors for health problems (e.g. heart 
disease or cancer) and uncover sensitive issues such as non-paternity in families.74 

What genetic test should I do? 

Chromosomal microarrays  

Molecular methods have replaced routine karyotyping, where chromosomes are stained 
and visualised by microscope, to detect structural genomic variants. These chromosomal 
microarrays (or simply ‘arrays’) complement gene panels and exomes because they are 
sensitive to medium- and large-scale deletions and duplications [also known as ‘copy 
number variants’ (CNVs)] which are often missed by sequencing-based tests. 
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The main array methods used are comparative genomic hybridisation (CGH) or Single 
Nucleotide Polymorphism (SNP) based platforms. SNP arrays have the advantage of being 
sensitive to uniparental disomy [footnote: inheriting two copies of the same chromosome 
from one parent] which can be relevant to conditions such as Angelman syndrome and 
Prader-Willi syndrome. 

Chromosomal microarrays are now the standard tests used to detect CNVs from around a 
few hundred kilobases in size (figure 2). CNVs are part of normal genetic variation (perhaps 
accounting for 5–10% of the human genome).75 CNVs can cause disease though and several 
specific CNVs are associated with epilepsy, these include 1q21.1, 15q13.3, 15q11.2, 16p11.2 
and 16p13.11.76 77  

Chromosomal microarrays are insensitive to balanced rearrangements such as inversions, 
translocations and ring chromosomes. For example, karyotyping should be requested if ring 
chromosome 20 [r(20)] syndrome is suspected (see table 2 and figure 3). R(20) is a rare 
condition where the ends of chromosome 20 fuse to form a ring structure replacing the 
normal chromosome 20 (figure 3).31 R(20) is frequently mosaic [footnote: Occurring in only 
a proportion of cells] and so a repeat karyotype test or visualisation of more cells should be 
considered, after discussion with the genetics lab, if there is a strong clinical suspicion.31  

A chromosomal microarray should be considered in an adult with unexplained epilepsy 
particularly if there is comorbid intellectual disability, dysmorphism, autism or schizophrenia 
or a family history of these conditions. The overall diagnostic yield of arrays in selected 
populations can be around 10%.73 

Epilepsy Gene Panels 

Epilepsy gene panels, together with whole exome and genome sequencing, are perhaps the 
most common and useful genetic tests in the adult epilepsy clinic at present. Multiple 
(hundreds) of genes can be tested in one request.  

The overall yield of an epilepsy gene panel may be around 20% but will vary with certain 
phenotypes and the number of genes included on the panel.73 The genes that are screened 
on gene panels will change with time, vary regionally and nationally, and tend to be grouped 
into broad phenotypes e.g. developmental and epileptic encephalopathies, progressive 
myoclonic epilepsies or malformations of cortical development and so it is worth checking 
with your genetics lab. For example, almost all genes mentioned in this paper can be found 
in the Genomics England R87 cerebral malformations or R59 Early onset or syndromic 
epilepsy panels.78 

Whole Exome and Whole Genome Sequencing 

These are now regularly being used clinically, often with input from a local genetics service. 
Genome sequencing, particularly with longer read technology, can be used to detect copy 
number variants and may replace the current separate microarray and gene panel approach 
soon as a “one-stop shop” for genetic testing.79 80 81  

Many testing centres will use virtual gene panels where sets of genes are selected for 
analysis from whole exome or genome sequencing results. This has the advantage of 
reducing the variant interpretation workload associated with whole exome and genome 
sequencing, being able to reanalyse different genes in future and maintaining diagnostic 
yield.82 
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Additional genetic analysis 

Chromosomal microarrays and current sequencing-based tests are limited in their ability to 
detect certain types of genetic variation. Additional targeted testing needs to be considered 
if these are suspected. Examples include mosaic genetic changes (see above), mitochondrial 
mutations, repeat expansion disorders and imprinting disorders (and promotor and intronic 
variants for exome sequencing). 

Consider mitochondrial genetic testing if there are features of mitochondrial disease (table 
1). Mitochondrial tests range from targeted testing for point mutations (e.g. MELAS, NERFF, 
NARP), to assays for large deletions and duplications, to whole mitochondrial genome 
sequencing.  Variable tissue distribution may mean that variants are undetectable in blood 
requiring testing of muscle or urine sediment. It should be remembered that mitochondrial 
disorders are often caused by defects in genes encoded in the nuclear genome e.g. POLG. 

Some epilepsies and disorders associated with epilepsy are cause by nucleotide repeat 
disorders. These include Unverricht-Lundborg disease (table 3) and benign adult familial 
myoclonic epilepsy, a rare autosomal dominant condition with cortical tremor and 
myoclonus and infrequent generalised tonic clonic seizures.63 83 Other repeat expansion 
disorders associated with epilepsy include Fragile X syndrome (also associated with 
intellectual disability and autism) and Huntington disease. Targeted PCR or Southern 
blotting-based techniques are required to detect these. 

Angelman syndrome and Prader-Willi syndrome are examples of disorders than can be 
caused by abnormal methylation patterns on chromosome 15 (in addition to large 
chromosomal deletions and uniparental disomy as discussed above). Targeted methylation-
sensitive PCR can detect methylation abnormalities as well as uniparental disomy. 

How do I interpret genetic test results? 

As gene panel, exome sequencing and genome sequencing are becoming more widespread 
we are getting more confident in interpreting their results. Please also see some excellent 
articles from this journal.81 84  

Clinical genomic laboratories employ international guidelines such as those from the 
American College of Medical Genetics for variant interpretation.85 These attempt to bring 
objectivity and consistency to the challenge of variant interpretation. Currently American 
College of Medical Genetics guidelines use features such as evolutionary conservation, 
phenotype match, computer predictions, population genetic data and family segregation to 
classify variants as either: 5) pathogenic, 4) likely pathogenic, 3) uncertain significance, 2) 
likely benign or 1) benign.81 85  

If the test reports a variant as pathogenic, with an established phenotype matching your 
patient’s, then you probably have the answer. Like any other clinical test there is the chance 
of false positive and false negative results however and sometimes it can be difficult to 
interpret the clinical significance of some results. Factors that you should consider when 
interpreting your results are shown in box 2. Remember that it is possible for a patient to 
have more than one genetic diagnosis. It is important to consider whether enough of a 
genetic explanation has been found (e.g., a 1q21.1 deletion detected by chromosomal 
microarray is a risk factor for epilepsy but would not be sufficient to explain a severe DEE). 
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Is there a zygosity mismatch between previously published results and your result? i.e. 
previously published genotypes are homozygous but the results are heterozygous.  

Do the phenotypes match (although phenotypic heterogeneity is common in epilepsy)?  

Is this a previously published or described variant?  

The quality of published evidence of the pathogenicity of the variant. 

Is this a variant that is present in the general population? (in this case it is less likely to 
explain a rare epilepsy) 

Does the variant segregate in the family? i.e. affected family members carry the variant 
and unaffected family members do not carry the variant.  

Box 2 Factors to consider when deciding on the clinical significance of genetic results 

In South Wales we have established a quarterly epilepsy genetics multidisciplinary team 
meeting, attended by clinical geneticists, genetic laboratory scientists, paediatric 
neurologists, specialist nurses as well as neurology trainees and adult neurologists. We 
would advise discussing patients and test results within the genetic multidisciplinary team 
to aid clinical decision making and the interpretation of genetic test results. Without access 
to a formal genetics meeting, we would advise discussing genetic test results and requests 
with clinical and laboratory genetics staff and colleagues if there is any doubt. 

In cases without a definite genetic diagnosis, it is worth considering research participation 
to look for new genetic causes, periodic reanalysis of genomic data or retesting with newer 
testing techniques.86  

Further Reading 
www.epilepsydiagnosis.org. Useful website with definitions of epilepsy syndromes including 
genes. 

www.epilepsygenetics.net Beyond the ion channel the International League Against Epilepsy 
(ILAE) genetics commission Blog. Written by Dr Ingo Helbig and contains a host of very 
readable blogs about epilepsy genetics and related topics. Subscribe for an email update! 

Krey et al. Current practice in diagnostic genetic testing of the epilepsies. Epileptic Disord 
2022;24:1–22. Useful detail on genetic testing in the epilepsies from the ILAE Genetics 
Commission recommendations for 86 

Morris HR, Houlden H, Polke J. Whole-genome sequencing. Practical Neurology 
2021;21:322-327.  

Keogh MJ, Daud D, Chinnery PF. Exome sequencing: how to understand it. Practical 
Neurology 2013;13:399-407.  
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Figure 1 An example of a family with Genetic Epilepsy with Febrile Seizures Plus (GEFS+) – 
see table 2. Squares are male, circles are female. Red quadrants represent febrile seizures. 
Red halves represent febrile seizures plus (febrile seizures occurring outside the ages of 6 
months and 6 years or afebrile seizures occurring concurrently with febrile seizures). 
Complete grey shading represents epilepsy. 

 

Figure 2 Output from a single nucleotide polymorphism (SNP) microarray a common way to 
look for copy number variants (CNVs). In this case there was a CNV, a deletion, on the short 
arm of chromosome 4. The lower box (B) is a scaled plot around the deletion and the yellow 
box highlights the deletion. There is a lower log R ratio in the yellow area representative of 
less sample DNA (a deletion). DNA duplications have areas of higher log R. The log R is a 
measure of signal intensity and correlates with the amount of DNA present.  

 

Figure 3 Karyotype showing a ring chromosome 20 (arrow). Ring chromosome 20 syndrome 
is a rare cause of epilepsy (table 2) 
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