)
e Using Structural Bias to Analyse the Behaviour

of Modular CMA-ES

Diederick Vermetten
LIACS, Leiden University
The Netherlands
d.Lvermetten@liacs.leidenuniv.nl

Bas van Stein”
LIACS, Leiden University
The Netherlands
b.van.stein@liacs.leidenuniv.nl

ABSTRACT

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
is a commonly used iterative optimisation heuristic for optimising
black-box functions. CMA-ES comes in many flavours with different
configuration settings. In this work, we investigate whether CMA-
ES suffers from structural bias and which modules and parameters
affect the strength and type of structural bias. Structural bias occurs
when an algorithm or a component of the algorithm biases the
search towards a specific direction in the search space irrespective of
the objective function. In addition to this investigation, we propose
a method to assess the relationship between structural bias and
the performance of configurations with different types of bias on
the BBOB suite of benchmark functions. Surprisingly for such a
popular algorithm, 90.3% of the 1620 CMA-ES configurations were
found to have Structural Bias. Some interesting patterns between
module settings and bias types are presented and further insights
are discussed.

CCS CONCEPTS

» Theory of computation — Theory of randomized search heuris-
tics; Random search heuristics; Bio-inspired optimization.

KEYWORDS

structural bias, algorithmic behaviour, evolutionairy strategies,
benchmarking

ACM Reference Format:

Diederick Vermetten, Fabio Caraffini, Bas van Stein, and Anna V. Kononova.
2022. Using Structural Bias to Analyse the Behaviour of Modular CMA-ES.
In Genetic and Evolutionary Computation Conference Companion (GECCO
"22 Companion), July 9-13, 2022, Boston, MA, USA. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3520304.3534035

*Corresponding author

This work is licensed under a Creative Commons Attribution International 4.0 License.

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3534035

Fabio Caraffini
Institute of Artificial Intelligence,
De Montfort University
Leicester, UK
fabio.caraffini@dmu.ac.uk

Anna V. Kononova
LIACS, Leiden University
The Netherlands
a.kononova@liacs.leidenuniv.nl

1 INTRODUCTION

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
is a very popular heuristic optimisation algorithm for continuous
optimisation problems. CMA-ES is considered state-of-the-art in
evolutionary computation and has been adopted as one of the stan-
dard tools for continuous optimisation in many research labs. There
are many flavours and variants of CMA-ES developed through the
years and different implementations of sub-components such as
the sampling strategy and the boundary correction method. In re-
cent works, the different modules and configurations of CMA-ES
are explored and analysed based on their performance [4]. In that
research a modular CMA-ES framework is presented, representing
a plethora of different CMA-ES configurations. In this paper, the
modular CMA-ES framework is used to analyse the many different
aspects of CMA-ES with respect to Structural Bias (SB). Structural
Bias is a known deficiency found in many iterative optimisation
heuristics (IOHs), as previously shown in [3, 15, 16, 22] for differen-
tial evolution, single solution optimisation methods and compact op-
timisation methods. Does CMA-ES also suffer from Structural Bias?
And if so, which modules and settings mostly affect the strength
and type of bias? In addition to these questions, we investigate how
the different types of structural bias that we find in CMA-ES con-
figurations affect the performance of these algorithms. We do this
by comparing configurations with different types of SB on different
benchmark function instances where we know that the optimum
of the instance is either close to the centre of the search space or
far away. We also investigate the relation between the strength
and type of bias with the fraction of infeasible solutions that the
algorithms generate. Using a wide set of experiments and config-
urations we can finally come up with recommendations on using
particular CMA-ES modules and raising awareness of potential
issues in different configuration settings.

This paper is structured as follows: In Section 2 the modular
CMA-ES framework is introduced in more detail and the methods
for detecting Structural Bias and the strength of SB are presented.
In Section 3 the first experiment is discussed, including setup and
results, showing which CMA-ES configurations and modules have
what kind of Structural Bias. In further experiments in Section 4, an
analysis of the performance over different BBOB function instances
is performed to see how different Bias types affect the performance.
Finally we draw conclusion in Section 5.

https://orcid.org/0000-0003-3040-7162
https://orcid.org/0000-0001-9199-7368
https://orcid.org/0000-0002-0013-7969
https://orcid.org/0000-0002-4138-7024
https://doi.org/10.1145/3520304.3534035
https://doi.org/10.1145/3520304.3534035
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3520304.3534035&domain=pdf&date_stamp=2022-07-19

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

2 METHODOLOGY

To investigate the strength and types of structural bias, we make
use of several algorithmic frameworks and methods. In the follow-
ing subsections, the Modular CMA-ES framework and employed
benchmark functions are explained in detail. The concept of SB in
stochastic optimisation algorithm is also defined, and an in-depth
description of how it is measured is provided.

2.1 Modular CMA-ES

To investigate several commonly and less commonly used configu-
rations and variants of the CMA-ES algorithm, we use the Modular
CMA-ES framework as introduced by van Rijn et al. [21] and further
developed by de Nobel et al. [4]. The framework is open-source and
available as part of the IOHprofiler [5] environment!. The latter is
further employed to run some of the experiments in this paper and
easily access benchmark functions of the BBOB and COCO [11]
software platforms.

The modular CMA-ES package consists of 11 modules with vari-
ous options. These are Active update (2), Elitism (2), Orthogonal
Sampling (2), Sequential Selection (2), Threshold Convergence (2),
Step-Size adaptation (7), Mirrored Sampling (3), Quasi-Gaussian
Sampling (3), Recombination Weights (2), Restart Strategy (3) and
Boundary Correction (6). We indicated in brackets the number of
possibilities for each module, giving a total of 72.576 possible con-
figurations. A detailed description of each of these modules and
their settings can be read in [4]. From previous work, we know that
especially the strategy of dealing with infeasible solutions (SDIS)
can greatly affect structural bias [3]. A SDIS transforms/corrects
candidate solutions that are sampled outside the search domain
into feasible points inside such domain. Without such component,
the algorithm cannot be claimed to address constrained problems
fairly. The following boundary correction methods are available in
the framework:

uniform Uniform Re-sample replaces all infeasible coordi-
nates of a solution with new coordinates sampled uniformly
at random within the given search space.

mirror The mirror strategy mirrors all infeasible coordinates
of a solution with respect to its closest boundary.

COTN The Complete One-tailed Normal Correction Strategy
replaces all infeasible coordinates with new coordinates in-
side the search space according to a re-scaled one-sided
normal distribution centred on the boundary.

saturation The Saturation strategy set all infeasible coordi-
nates to the closest corresponding bound.

toroidal The Toroidal strategy reflects all infeasible coordi-
nates off the opposite boundary inwards.

However, the effect of these strategies is still unknown for CMA-
ES. For all other modules, it is also unknown how these options
affect structural bias and the type of structural bias, which we
will investigate in this paper. For the experiments in our work a
sub-set of 1620 configurations, with two different initialisation
methods (making a total of 3 240 algorithms), is used to make the
experiments computational feasible. Some modules are left to their
default setting as we assume these modules (such as Orthogonal

https://github.com/IOHprofiler/ModularCMAES

1675

Vermetten, Caraffini, van Stein, Kononova

Sampling) do not relate strongly to the presence of structural bias.
Specific details of the used modules and their options are defined
in Section 3.

2.2 Structural bias

In the context of heuristic optimisation, SB refers to the set of
algorithmic behaviours arising from the iterative application of the
employed operators, including their parameter setting and their
interplay, preventing the algorithm from equally exploring the
entire search space regardless of the problem at hand.

When these artificial biases emerge during the search, they can
interfere with the direction being explored by the algorithm to
generate new candidate solutions. Hence, even if this can be bene-
ficial to speed up the search, or to improve upon the quality of the
returned near-optimal solution in some very specific cases, being
structurally biased is generally a strong deficiency for a general-
purpose algorithm meant to address black-box problems.

2.2.1 Structural bias and use of probabilistic objective function fy.
To separate the structural effects of the employed algorithmic frame-
work from those induced by the problem at hand, the ‘special’
function fy was first introduced in [17]. By executing a heuristic
for optimisation over fy (whose definition is reported in Equation
(1)) for a number N of independent runs, its SB would show as
non-uniform distribution of the obtained final best solutions.

fo:[0,1]" — [0,1], where ¥x fy(x) ~ U(0,1). (1)
Besides the mathematical proofin [17], one might also intuitively
expect such an outcome on fj, as its stochastic nature makes sure
that each component of its minimum is randomly located within
the feasible range without giving preferences to particular values
n [0, 1]. Hence, information obtained on the fitness by the cyclic
application of the search operators forming a heuristic algorithm,
and their search actions, gets ‘decoupled’ thus unveiling only the
actual structural algorithmic behaviour. In turn, as the minima
of fy across multiple runs are uniformly distributed, an unbiased
algorithm too should return the same distribution of final best
solutions. As such, failing to return a uniform distribution of optima
found across runs is a clear symptom of SB.

2.2.2 Measuring and classifying structural bias. The simple experi-
mental practice based on fy has become an established approach,
turning the problem of detecting SB into the mathematical prob-
lem of testing for the uniformity of the distribution of the (near-)
optimal solutions obtained over multiple independent optimisation
processes.

By allotting components of the final solutions in dedicated axes,
to be displayed in parallel coordinates [12, 17], first results on swarm
intelligence and evolutionary algorithms have graphically shown
such distributions not to follow the expected (uniform) pattern
for many classic algorithmic under different parameters settings
and configurations [2, 3, 17]. To remove errors from subjective
interpretations of visual inspections of such results, and automatise
the process, several statistical tests have been then investigated
to process results from large and diverse sets of algorithms® and
experimental setups [15, 16, 22, 24], before being able to design the

2These include single-solutions and estimation of distribution heuristic algorithms.

https://github.com/IOHprofiler/ModularCMAES

Using Structural Bias to Analyse the Behaviour of Modular CMA-ES

BIAS toolbox [26]. This represents the current state-of-the-art in
detecting SB.

BIAS is an open-source software tool. Once fed with raw data
(i-e. final best positions) from multiples optimisation runs over f,
it applies 36 statistical tests on each dimension of the available
optimal positions and aggregates them to make a decision on the
presence/absence of SB. Furthermore, through the use two random
forest models, it also returns the type of SB among 5 possible sce-
narios having the self-explanatory names of bounds, clusters,
centre, discretisation and none.

2.2.3 Existing results on SB. Analysing SB reveals interesting pat-
terns in the behaviour of several heuristics for real-valued continu-
ous optimisation based on their parameters setting and employment
of auxiliary operators.

An interesting relation between the number of individuals and
SB strength exists for genetic algorithms, where this deficiency is ex-
pected to grow stronger with increasing population sizes [17]. The
opposite scenario occurs for a standard particle swarm optimisation
algorithm [15], which presents a strong bias for small swarm sizes.
‘Compact’ counterparts of these (and other established) population-
based algorithm, i.e. simplified estimation of distribution algorithms
mimicking the working logic of known heuristics, seems to be less
plagued by SB, but still display mild levels of SB and, and very
strong ones in some specific implementations [15] Single solution
heuristic are too affected by SB [16]. In the latter, SB introduced
during the algorithmic design process is difficult to be mitigated
with parameter tuning or by changing auxiliary operators such
as the adopted bound correction methods. This is not the case of
differential evolution, where the strategy used for dealing with
infeasible solutions can make the difference, see e.g. [3, 22, 25],
with saturation being the one introducing most SB, while other
strategies can be applied only with some specific parameter settings,
e.g. mirror does not introduce SB if used in conjunction with a
relatively high scale factor (i.e. > 1.13). Generally speaking, high
values of both the control parameters cause more bias than low
ones, apart from when some specific mutation operators are used,
such as DE/curr-to-rand/1. This shows how complex mitigating
SB can be, and how its emergence depends on many factors such
as the interplay between operators and parameter configurations.

2.3 COCO and BBOB

COCO’s optimisation benchmarking environment [10] has been
established in the field of heuristic optimisation as a recommended
tool a fair comparison with other state-of-the-art methods using
state-of-the-art practices for benchmarking algorithms [1]. In the
decade since its introduction, its suites of Black-Box Optimisation
Benchmarks (BBOB) have continuously gained popularity, for ex-
ample through its yearly workshops organised at GECCO and large
set of publicly available performance data for a wide variety of op-
timisation algorithms. Among other things, COCO makes available
a set of 24 single-objective, distinct noiseless functions [7] defined
using box-constraints of [-5,5]" referred to as BBOB function set.
Each of these functions can be instantiated with different trans-
formations — such as rescaling, translation and rotation, referred
to as instances of these functions — leading to a different location
of the global optimum and a different optimal function value [10].

1676

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

Instances are identified by their numbers where instance 0 corre-
sponds to the original untransformed function. Since all applied
transformations are known, the location of optima can be computed
for any instance, but generally only instances between 0 and 99 are
considered.

The mechanism of generation of such instances is not ideal
and has been criticised in the past concerning the reliability of
features computed on the landscapes [19], especially in terms of
stability across instances of the same function generated through
translations or rotations [18], [13]. Other papers have concluded
that differences between instances can be ignored [27], [20] or
learnt from [6]. In our view, the absence of a definitive answer
necessitates further studies on BBOB and its instance generating
functionality.

3 BEHAVIOURAL CHARACTERISATION OF
MODULAR CMA-ES

The first experiment covers a large number of CMA-ES configura-
tions with commonly used settings and modules. In this experiment
we use the BIAS toolbox [26] to detect the presence and type of
SB in each of the configurations. In addition, we use the number
of rejections of the null-hypothesis of uniformity from the statisti-
cal tests included in the BIAS toolbox to indicate the ‘strength’ or
‘severity” of SB.

3.1 Experimental setup

For our experiments with the modular CMAE-ES framework [4],
we make use of a reduced set of modules. The used setup contains
a total of 1620 configurations, constructed by using all combina-
tions of the following modules: elitism (false, true), mirrored
sampling (mirrored, mirrored pairwise, none), step-size adapta-
tion (cumulative step-size adaptation, population success
rule), base sampler (Gaussian, Halton, Sobol’), recombination

weights (%’1, default, equal), local restart (BIPOP, IPOP, none) and
SDIS (COTN, mirror, saturate, toroidal, uniform). The remain-
ing modules are set to their default values in the modular CMA-ES
framework, with the initial step-size set of 20% of the domain as
recommended in [9].

Using this large set of configurations we follow the methodology
as described in Section 2.2, and minimise function f; (see Equation
(1)) in n = 30 dimensions. All considered configurations run with
a fixed budget of 10000 X n fitness evaluations, in a series of 100
independent runs. The aforementioned setup is considered for 2
initialisation variants (which is determined by the location of the
initial centre of mass): centre of the space as commonly used in
the field [8] and uniform at random as recommended in [9].

The BIAS toolbox [26] is used to test for presence of SB and to
predict the type of SB, IOHprofiler is used for logging the details
of the optimisation process on fy and BBOB and processing this
data [28].

3.2 Structural bias on CMA-ES variants

By analysing the outcome of the extensive aforementioned ex-
perimental setup, we discover that also state-of-the-art CMA-ES
algorithms are not free from SB. Surprisingly, 90.3% of the 1620

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

elitist False True 1.0
mirrored None mirrored mirrored pairwise
base_sampler gaussian halton sobo
weights_option 1/2~lambda default equal 0.5
local_restart BIPOP IPOP None
bound_correction COTN mirror saturation toroidal uniform
step_size_adaptation sa 0 0
elitist False True 1.0
mirrored None mirrored mirrored pairwise
base_sampler gaussian halton sobol
weights_option 1/2”lambda default equal 0.5
local_restart BIPOP IPOP None
bound_correction COTN saturation toroidal uniform
step_size_adaptation csa psr 0.0
EI True 1.0
None mirrored mirrored pairwise
base_sampler gaussian halton sobol
weights_option 1/2~lambda default equal 0.5
local_restart BIPOP IPOP None
bound_correction COTN mirror saturation toroidal uniform
step_size_adaptation psr 0 0
elitist False True 1.0
mirrored None mirrored mirrored pairwise
base_sampler gaussian halton sobol
weights_option 1/2~lambda default equal 0.5
local_restart IPOP None
bound_correction saturation toroidal uniform
step_size_adaptation O 0

Figure 1: The top two heat maps show the fraction of con-
figurations that are detected to have SB for each individual
module option, while the lower two heat maps show the frac-
tion of infeasible solutions per module option. The first and
third heat map are using centre of the space initialisation
and the second and fourth using uniform.

presents SB of various ‘strength’ (measured heuristically as previ-
ously explained) and kind, according to the BIAS toolbox.

Results showing SB are visually reported in the top two dia-
grams of Figure 1, which show the fractional contribution to SB
carried by each module under investigation for the case of centre
and uniform initialisation respectively, and in Figure 2, where the
strength of the biases for all the configurations at hand is depicted
in relation to the fraction of infeasible solutions generated by the
algorithm during the search.

From the graphical results in the top part of Figure 1 we can
see that the vast majority of module configurations lead to biased
searches, regardless of the initialisation method. In both cases, the
same modules are coherently contributing with similar intensity to
the global SB, with a clear difference being made by the employed
strategy for dealing with infeasible solutions, where mirror leads
to the lowest proportion of biased configurations. While other
modules also affect the overall number of biased configurations,
their impact is comparatively small.

In line with the previous considerations, a close glance at the
left-hand diagram of Figure 2 shows that SB appears with most dele-
terious strengths when saturation is used, followed by uniform
and COTN - mirror is raked last. Interestingly, the saturation is
the main responsible for discretisation SB, as can be deducted
from the diagram on the right-hand side of 2, where all kind of de-
tected biases are reported. Note that all possible kind of biases that
can be detected with the BIAS toolbox appears in this graph, thus
showing that different combinations of modules can make CMA-ES
behave very differently. However, centre is the most frequent kind
of SB. This is intuitively explainable by the fact that the working
mechanism of CMA-ES is based on the use of a Normal distribution.

1677

Vermetten, Caraffini, van Stein, Kononova

Using the centre of the search space for initialising the search could
be another reason for this finding.

3.3 Infeasibility

Unlike other evolutionary algorithms, see [14], most CMA-ES vari-
ants feature a more constrained search. Indeed, in support of this
observation, the toolbox identifies the most biased configurations
as having centre SB. Not surprisingly, in Figure 2 one can spot a
negative correlation between the strength of this kind of SB and
the proportion of infeasible solutions.

However, all configurations do generate infeasible solutions and,
as highlighted in the previous section, the way used to handle
them can significantly alter the algorithmic behaviour. This means
that configurations having modules generating higher proportions
of infeasible solutions would activate the selected SDIS more fre-
quently, thus strengthening the SB. In turn, this might alter the
search direction into generating more solutions violating the search
boundaries. To easily identify such configurations, the fractional
contribution per module on the proportion of infeasible solutions,
for the centre and the uniforminitialisation methods, are reported
in the two bottom diagrams of Figure 1 respectively. An example
of a module influencing the proportion of infeasible solutions is
provided in Figure 3, which shows the consequences of employing
a non-elitist approach versus an enlists one for the uniform ini-
tialisation methods. Note that the non-elitist approach introduces
both unbiased and discretisation-biased cases, both leading to
high numbers of infeasible solutions (probably due to the use of
the saturation SDIS for the cases with discretisation SB). A
full gallery of images showing both SB strengths and proportions
of infeasible solutions per module is made available in our online
repository at [23].

To conclude this analysis, it has to be pointed out that saturation
is the strategy leading to more proportions of infeasible solutions,
regardless of the initialisation method. This makes sense, given
that it places infeasible solutions to the boundaries. Interestingly, a
clear positive correlation between the strength of SB induced by
saturation,ie. discretisation, and the proportion of infeasible
solutions emerge from Figure 2. This confirms that saturation
should not be recommended for these configurations.

3.4 Impact of initialisation

From the observation made in the previous section, it is obvious
that choosing the right initialisation method matters on CMA-ES.
This aspect is often overlooked, with the most popular method
consisting in centring the initial multivariate normal distribution
at the centre of the search space. This might be a very practical
and quick choice, used by practitioners and most researchers in
the field [8], but not necessarily the best one. For this study, we
compared the differences in terms of algorithmic behaviour while
using a different, still common, initialisation method that randomly
draws the mean vector of the initial distribution uniformly on the
search space [9]. As we show that the second option leads to less
severe SB, see Figure 1, we argue that the initialisation module is
as important as other more complex modules, and we call for more
attention to details that might lead to undesired results. Hence, for

Using Structural Bias to Analyse the Behaviour of Modular CMA-ES

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

103
£ 10?
[@)]
e
p
n . Bias Type
L SDIS Centre (56.2%)
[10 . e . « saturation (20.0%) Clusters (14.0%)
L .« uniform (20.0%) Discretisation (15.4%)
'_ « COTN (20.0%) None (9.7%)
o « toroidal (20.0%) Gaps (3.6%)
107 - mirror (20.0%) Bounds (1.0%)
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Proportion Infeasible Solutions

Proportion Infeasible Solutions

Figure 2: Bias Strength versus the fraction of infeasible solutions for all 1620 configurations. Colours on the left plot indicate
the boundary correction strategy (i.e. SDIS) and on the right the predicted type of SB using the BIAS toolbox.

1.0 Bias Type
Discretization
Center

« Gaps

« Clusters

« None

« Bounds

o 4 o
ES o @

Fraction Infeasible Solutions

o
N

elitist

Figure 3: The proportion of infeasible solutions per config-
uration split by the setting of the elitist module, colours
indicate the SB type for each configuration.

all cases where one does not know if the optimum is at the centre of
the search space, we do not recommend using centre initialisation.

4 LOCATION-DEPENDENT PERFORMANCE
COMPARISON ON BBOB

4.1 Selection of instances from BBOB

As shown in Section 3.2, 90.3% of considered CMA-ES configura-
tions have been identified as suffering from structural bias. Follow-
ing the definition of SB (see Section 2.2), what this means is that the
algorithm might be subjected to an internal ‘force’ acting on the
evolving population and additionally steering solutions irrespec-
tive of the objective function, in a ‘superpositional’ manner. Using
the stochastic objective function fy allows disentangling the SB
‘force’ from the landscape ‘force’ naturally acting on the evolving
population since the latter is effectively averaged out. However,
such disentanglement on runs on any functions other than f; is

1678

not straightforward due to the contribution of the landscape that
cannot be easily averaged out.

To investigate the effect of Structural Bias on the performance
of the optimisation algorithms, fy cannot be used, since perfor-
mance cannot be meaningfully interpreted on this random function.
Unfortunately, it is also impossible to directly compare algorithm
configurations without bias and configurations with different types
of SB because we cannot disentangle the effects of the different
modules versus the effects of the different types of SB. To mitigate
these issues we propose here an approach to compare the config-
urations to themselves. The proposed method relies on the BBOB
mechanism of instance generation. This mechanism is claimed [10]
to fully preserve landscape features and only modify the location
and height of the optima. Therefore, a structurally biased algorithm
running on maximally different problem instances will show per-
formance differences that can only be caused by SB and not by
differences in landscapes (given that the assumption of different in-
stances preserving the landscape features holds). We suggest using
the Euclidean distance between the location of the optima and the
centre of the BBOB domain ([—5, 5]™) as a measure of the difference
between instances. Therefore, by examining 100 instances available
per BBOB function with can find instances that have optima closest
to and furthest away from the centre of the domain. To make results
more robust we consider two additional instances: the 15¢, Z"d, 99th
and 100" closest to the centre. Results of such procedure are shown
in Table 1.

4.2 Experimental setup

In this second experiment, a subset of 30 representative CMA-ES
configurations with different kinds of structural bias (see Table 2)
have been selected from the 1620 configurations analysed in Sec-
tion 3.2. These configurations have been run on 24 single-objective
noiseless versions of BBOB functions in n = 5 dimensions, on 4
instances selected as described in Section 4.1, using 25 runs on each

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

Table 1: Instances selected from the first 100 intances per
BBOB function in dimensionality 5 which have optima 15,
2nd 99th 314 100th closest to the centre of domain, Euclidean
distance per such instance (in colour, with 4 values of spec-
trum shown below) and maximal distance between extremal
optima.

st znd 99th 100th 15t 2nd 99th looth looth_lst
closest optimum to the centre of domain distance

fi instance id distance to centre difference
1 85 54 40 74 5.00786680
2 93 84 91 68 5.23236165
3 7 38 51 87 4.87961205
4 7 38 51 87 4.87961205
5 0 72 36 99 0

6 14 21 78 79 4.52860968
7 93 9 35 21 4.76917961
8 92 79 5 18 3.50059649
9 63 21 19 97 9.1e-15

10 95 12 27 50 5.82548516
11 85 42 8 75 5.15158430
12 16 24 17 15 5.03646435
13 89 36 48 3 5.82278654
14 59 56 19 74 5.99024808
15 28 70 22 1 5.30984707
16 9 34 93 23 5.10054334
17 2 27 11 87 4.62649956
18 2 27 11 87 4.62649956
19 7 88 71 75 1.29%e-14
20 0 72 36 99 0
21 80 85 9 91 6.02089024
22 79 48 8 84 5.66685170
23 64 81 19 22 5.80242661
24 0 72 36 99 0

colour egend [0 ISTENESINEN

instance. The stopping criteria for each run is set to either 10 000X n
or attained precision of < 1078,

To evaluate the different CMA-ES configurations on the BBOB
instances we use the Area Under the ECDF Curve as defined in
Definition 4.1.

Definition 4.1 (Area Under the ECDF Curve, AUC). For a given
optimisation algorithm A with a budget of B function evaluations
for minimising a function f: X — R and a given finite set of targets
YV C R, the AUC value of A on f is approximated by

B —
AUC(A, f,V) = / F(t; A, f,V)dt @)
1

where

N
PPRICESEDE

~ 1
F(t; A =—
ALy NIV peV i=1

®)

and N is the number of runs for which we have performance logs,
and 1(¢;(A, f,$) < t) is an indicator function that returns 1 if the
first hitting time of target ¢ in run i of A is not larger than ¢. If the
target ¢ is not hit in this run, the indicator always returns 0.

1679

Vermetten, Caraffini, van Stein, Kononova

Table 2: Module settings and predicted bias types for centre
and uniform initialisation for the different configurations
used in the location-dependent performance comparison.

Config id | weights step size SDIS SB Type SB Type
option adapt-n (centre) (uniform)
1056 %A csa toroidal bounds centre
992 default csa uniform bounds bounds
1020 |equal csa saturation |bounds bounds
993 default psr uniform centre centre
994 default csa COTN centre none
995 default psr COTN centre centre
996 default csa toroidal centre centre
997 default psr toroidal centre clusters
1057 %A psr toroidal centre centre
1052 %A csa uniform centre centre
1055 %A psr COTN centre centre
1054 %A csa COTN centre none
1053 %A psr uniform centre centre
1025 equal psr COTN centre centre
1027 |equal psr toroidal clusters clusters
1023 |equal psr uniform clusters centre
990 default csa saturation |discr. discr.
991 default psr saturation |discr. discr.
1051 %A psr saturation |discr. discr.
1050 %/1 csa saturation |discr. discr.
1024 |equal csa COTN none none
1028 |equal csa mirror none none
1026 |equal csa toroidal none none
1058 %’1 csa mirror none none
1022 |equal csa uniform none none
1021 |equal psr saturation |none discr.
999 default psr mirror none none
998 default csa mirror none none
1029 equal psr mirror none none
1059 %A psr mirror none none

4.3 Analysis of results

In Figure 4 we show the results from two one-sided statistical tests
on the performance of each configuration (25 runs per function
instance) on two instances with the optimum closest to the cen-
tre of the domain and two instances with the optimum furthest
from the centre of the domain. White dotted vertical lines separate
the different types of SB in the configurations and white dashed
horizontal lines indicate the BBOB functions that do not have a
difference in the distance from optima to the centre. In the latter
case, we would expect no significant performance difference be-
tween the instances. However, we can see that there are for some
configurations significant performance differences even in those
function ids, suggesting that the optimisation landscapes between
different function instances are significantly different while the
BBOB benchmark suite advertises them to be similar in behaviour.

In Figure 5 the AUC-based performance per run is visualised
for f5 and f22. For these two functions, we can observe interesting
behaviours of the configurations. For f5, which is a linear slope
function, we see that discretisation and unbiased configurations

Using Structural Bias to Analyse the Behaviour of Modular CMA-ES

BOB Function ID

S e < YO\ (<
oo xS e X0 oY
00" : S W
2SO
o

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

Low Distance > High Distance

No Decision

High Distance > Low Distance

0% @ ef® (o N
50\)(\ Ce(\ C\\)é“ ‘ e{\ga" WO
2O
o

Figure 4: The configurations grouped by bias type are indicated on the X-axis and the BBOB function id is on the Y-axis. Each
cell represents the results from two one-sided Wilcoxon rank-sum tests on the AUC-based performance (25 runs) of the two

instances (15 and 2"%) with the optimum closest to the centre, versus the two instances with the optimum furthest from the
centre (99" and 100'"). Yellow indicates that the configuration performed significantly better on the 15! and 2"¢ instance, dark
violet indicates significant worse performance on these instances (¢ = 0.01, Bonferroni correction across all functions and
configurations for each test direction). On the left diagram the experiment with centre initialisation is shown and on the right

the one with uniform initialisation.

1.0 - - _ - _ .- 1.0{= = =io = = - = a e 3 0 oim - e e a=e - -
s o - - = o e cie o s - = e o
3 - < s e > ¢« pie g LY Y e ¢
i 08 Ll 7 . 2 ¢ gin ¢ @ e - ‘i a P
08) . . . 4 T, A i, e ™ i . ® .
3 . v R : ~ .
Instance ID - . o . Instance ID
006 e 0 (1stclosest to centre) L 0.6 e 79 (1st closest to centre)
<D(: e 72 (2nd closest to centre) <D(N & w e 48 (2nd closest to centre)
. ; 36 (99th closest to centre) . 8 (99th closest to centre)
0.4y, & 2 N i 99 (100th closest to centre) 0.4 . 84 (100th closest to centre)
H YLz 5oeo® . - “ . [-
H : | ¥ > ‘¥ : £ : ¢ y
¢ 14 PR ; $ - (L & 3 : s ; :
N 3 0L i: & 2ig R T 02|, § & : ; 2T : i
02 Py by o1 iEad s i 20 HHEERE
S e (S A00 e as (e S Lo e
o A x@ 200 ot 2 o x@ R o0
oV e s .sde‘\sa A ooV e o L« x5 A\

Figure 5: Performance results (AUC) for f5 and f>; instances of the BBOB suite with 25 runs per configuration. Configurations
are grouped by bias type on the X-axis. The instances with an optimum closest to the centre are shown in blue and the instances
with an optimum furthest from the centre are shown in green.

perform better than configurations with Cluster and Centre bias.
This makes sense as the f5 function never has the optimum near
the centre, and therefore centre bias would logically work against
the search. For fo5 one can observe that the instances that have
an optimum close to the centre of the search space give better
performance than those that have an optimum further away from
the centre.

In general, it is hard to compare configurations with different
bias types against each other, because these configurations also
use different CMA-ES modules. Analysing which part of the per-
formance difference comes from the different module settings and

1680

which part from having some type of SB is not easily possible. It is
interesting to notice that even unbiased configurations of CMA-ES
show many significant differences between the function instances,
even more than biased configurations. This result shows that the
assumption of instances preserving landscape features and thus
being equally hard to solve might not be valid for all problems. We
can however not conclude that centre bias configurations perform
significantly better on instances with their optimum close to the
centre, so the effect of the structural bias seems to not affect the
performance of the algorithm strongly enough in this experiment.

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

0.4
0.2

0.0 — e —
-02 ’ SEEEEER
. Step Size Adaptation
-0.4 e Csa
psr

Relative AUC Improvement

1 2 3 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24
BBOB Function ID

Figure 6: Relative improvement in AUC for each selected
configuration when using centre initialisation instead of
uniform initialisation, for each BBOB function.

Having collected performance data for two different ‘centre of
mass’ initialisation methods lets us consider the relative improve-
ment in AUC achieved for each configuration when switching from
the random initialisation to the one using the centre of the search
space. This relative improvement is shown in Figure 6, where we
can see that the impact of initialisation differs rather significantly
between functions. The figure also highlights the interplay between
the used step-size adaptation mechanism and initialisation, where
we note that the population success rule is more severely impacted
by this change than the cumulative step-size adaptation.

5 CONCLUSIONS

1620 configurations of commonly used module settings of the very
popular CMA-ES algorithm have been analysed using several ex-
periments. A large portion (90.3%) of these configurations shows
the structural bias of various types. While the type and strength of
bias seems to be largely impacted by the used SDIS, it is important
to note that this module is an integral component of the CMA-ES
implementation necessary to handle constraints. The strength of
Bias also seems to be correlated with the fraction of infeasible solu-
tions generated by the algorithm configurations. This is especially
the case for discretisation bias (which is mostly caused by the satu-
ration boundary correction strategy), which has the bias strength
positively correlated with the fraction of infeasible solutions. centre
bias on the other hand, which is very common for many different
configurations of CMA-ES, shows a negative correlation between
the strength of bias and the fraction of infeasible solutions. This
makes perfect sense since strongly biased configurations towards
the centre of the search space rarely generate candidate solutions
that are outside the bounds. This partly confirms the validity of
the heuristic introduced to measure the strength of SB and the
predicted types of bias using the BIAS toolbox.

In addition to these findings, we also show how much each
module setting affects the presence and strength of SB in most
overall configurations. This is done using both the recommended
initialisation around the centre of the search space and with a
uniform sampling initialisation. It is interesting to note that using
the recommended initialisation structural bias is more present than
when using uniform sampling.

In an attempt to investigate the effect of structural bias on the
performance of these algorithms an additional experiment is carried
out using specific function instances that have their optimum either

1681

Vermetten, Caraffini, van Stein, Kononova

far away or close to the centre of the search space. We observed
that there are many significant differences in performance between
the different function instances. This indicated that the different
function instances have a significantly different function landscape
which is not expected as BBOB advertises these function instances
as comparable behaviour. These significant differences even oc-
cur when the optimum is similarly positioned with respect to the
centre of the search space. Unfortunately, there are no clear pat-
terns that prove or disprove the efficiency of biased versus unbiased
configurations.

Reproducibility To ensure reproducibility, we provide our
source code and several intermediary artefacts in our figshare repos-
itory [23]. Additionally, this repository contains a large number of
extra figures, among them the equivalent of Figure 5 for all other
functions and initialisation methods, and the distribution and exact
test failures for all 3 240 configurations run on fj.

REFERENCES

[1] Claus Aranha, Christian L. Camacho Villalon, Felipe Campelo, Marco Dorigo,
Rubén Ruiz, Marc Sevaux, Kenneth Sorensen, and Thomas Stiitzle. 2021.
Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm
Intelligence (2021). https://doi.org/10.1007/s11721-021-00202-9

Fabio Caraffini and Anna V. Kononova. 2019. Structural bias in differential
evolution: A preliminary study. AIP Conference Proceedings 2070, 1 (2019), 020005.
https://doi.org/10.1063/1.5089972

Fabio Caraffini, Anna V. Kononova, and David W. Corne. 2019. Infeasibility and
structural bias in differential evolution. Information Sciences 496 (2019), 161-179.
https://doi.org/10.1016/j.ins.2019.05.019

Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas
Bick. 2021. Tuning as a Means of Assessing the Benefits of New Ideas in Interplay
with Existing Algorithmic Modules. Association for Computing Machinery, New
York, NY, USA, 1375-1384. https://doi.org/10.1145/3449726.3463167

Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Back. 2018.
IOHprofiler: A benchmarking and profiling tool for iterative optimization heuris-
tics. arXiv preprint arXiv:1810.05281 (2018).

Tome Eftimov, Gorjan Popovski, Quentin Renau, Peter Korosec, and Carola Doerr.
2020. Linear Matrix Factorization Embeddings for Single-objective Optimization
Landscapes. In 2020 IEEE Symposium Series on Computational Intelligence, SSCI
2020, Canberra, Australia, December 1-4, 2020. IEEE, 775-782. https://doi.org/10.
1109/SSCI47803.2020.9308180

Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. 2010. Real-
parameter black-box optimization benchmarking 2009: Presentation of the noiseless
functions. Technical Report. INRIA.

N. Hansen. 2006. The CMA evolution strategy: a comparing review. In Towards a
new evolutionary computation. Advances on estimation of distribution algorithms,
J.A. Lozano, P. Larranaga, L. Inza, and E. Bengoetxea (Eds.). Springer, 75-102.
Nikolaus Hansen. 2016. The CMA Evolution Strategy: A Tutorial. https:
//doi.org/10.48550/ ARXIV.1604.00772

Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tusar, and
Dimo Brockhoff. 2021. COCO: A platform for comparing continuous optimizers
in a black-box setting. Optimization Methods and Software 36, 1 (2021), 114-144.
Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized
Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (2001),
159-195. https://doi.org/10.1162/106365601750190398

Alfred Inselberg. 1985. The plane with parallel coordinates. The visual computer
1, 2 (1985), 69-91. https://doi.org/10.1007/BF01898350

Pascal Kerschke and Heike Trautmann. 2019. Automated Algorithm Selection on
Continuous Black-Box Problems by Combining Exploratory Landscape Analysis
and Machine Learning. Evol. Comput. 27, 1 (mar 2019), 99-127. https://doi.org/
10.1162/evco_a_00236

Anna V. Kononova, Fabio Caraffini, and Thomas Béck. 2021. Differential evolution
outside the box. Information Sciences 581 (2021), 587-604. https://doi.org/10.
1016/j.ins.2021.09.058

Anna V. Kononova, Fabio Caraffini, Hao Wang, and Thomas Béck. 2020. Can
Compact Optimisation Algorithms Be Structurally Biased?. In Parallel Problem
Solving from Nature — PPSN XVI, T. Back, M. Preuss, A. Deutz, H. Wang, C. Doerr,
M. Emmerich, and H. Trautmann (Eds.). Springer International Publishing, Cham,
229-242. https://doi.org/10.1007/978-3-030-58112-1_16

Anna V. Kononova, Fabio Caraffini, Hao Wang, and Thomas Béck. 2020. Can
Single Solution Optimisation Methods Be Structurally Biased?. In 2020 IEEE
Congress on Evolutionary Computation (CEC). IEEE, Glasgow, 1-9. https://doi.

(12]

=
&

[16]

https://doi.org/10.1007/s11721-021-00202-9
https://doi.org/10.1063/1.5089972
https://doi.org/10.1016/j.ins.2019.05.019
https://doi.org/10.1145/3449726.3463167
https://doi.org/10.1109/SSCI47803.2020.9308180
https://doi.org/10.1109/SSCI47803.2020.9308180
https://doi.org/10.48550/ARXIV.1604.00772
https://doi.org/10.48550/ARXIV.1604.00772
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1007/BF01898350
https://doi.org/10.1162/evco_a_00236
https://doi.org/10.1162/evco_a_00236
https://doi.org/10.1016/j.ins.2021.09.058
https://doi.org/10.1016/j.ins.2021.09.058
https://doi.org/10.1007/978-3-030-58112-1_16
https://doi.org/10.1109/CEC48606.2020.9185494
https://doi.org/10.1109/CEC48606.2020.9185494

Using Structural Bias to Analyse the Behaviour of Modular CMA-ES

[17]

(18]

[19]

[20]

[21]

[22]

org/10.1109/CEC48606.2020.9185494

Anna V. Kononova, David W. Corne, Philippe De Wilde, Vsevolod Shneer, and
Fabio Caraffini. 2015. Structural bias in population-based algorithms. Information
Sciences 298 (2015), 468-490. https://doi.org/10.1016/j.ins.2014.11.035

Mario A. Munoz, Michael Kirley, and Saman K. Halgamuge. 2015. Exploratory
Landscape Analysis of Continuous Space Optimization Problems Using Informa-
tion Content. Trans. Evol. Comp 19, 1 (feb 2015), 74-87. https://doi.org/10.1109/
TEVC.2014.2302006

Mario A. Munoz, Michael Kirley, and Kate Smith-Miles. 2021. Analyzing ran-
domness effects on the reliability of exploratory landscape analysis. Natural
Computing (2021). https://doi.org/110.1007/s11047-021-09847-1

Quentin Renau, Johann Dréo, Carola Doerr, and Benjamin Doerr. 2021. To-
wards Explainable Exploratory Landscape Analysis: Extreme Feature Selection
for Classifying BBOB Functions. In Applications of Evolutionary Computation -
24th International Conference, EvoApplications 2021, Held as Part of EvoStar 2021,
Virtual Event, April 7-9, 2021, Proceedings (Lecture Notes in Computer Science,
Vol. 12694), Pedro A. Castillo and Juan Luis Jiménez Laredo (Eds.). Springer,
17-33. https://doi.org/10.1007/978-3-030-72699-7_2

Sander van Rijn, Hao Wang, Bas van Stein, and Thomas Back. 2017. Algorithm
configuration data mining for cma evolution strategies. In Proceedings of the
Genetic and Evolutionary Computation Conference. 737-744.

Bas van Stein, Fabio Caraffini, and Anna V. Kononova. 2021. Emergence of
Structural Bias in Differential Evolution. In Proceedings of the 2021 Genetic and
Evolutionary Computation Conference Companion (Lille, France) (GECCO ’21
Companion). Association for Computing Machinery, New York, NY, USA. https:

1682

[23

[24

[25

™
2

[27

(28]

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

//doi.org/10.1145/3449726.3463223

Diederick Vermetten, Anna V. Kononova, Fabio Caraffini, and Bas van Stein. 2022.
Using Structural Bias to Analyse the Behavior of Modular CMA-ES - Figures.
(2022). https://doi.org/10.6084/m9.figshare.19578991.v1

Diederick Vermetten, Anna V. Kononova, Fabio Caraffini, Hao Wang, and Thomas
Bick. 2021. Is There Anisotropy in Structural Bias?. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion (Lille, France) (GECCO
°21). Association for Computing Machinery, New York, NY, USA, 1243-1250.
https://doi.org/10.1145/3449726.3463218

Diederick Vermetten, Bas van Stein, Anna V Kononova, and Fabio Caraffini.
2022. Analysis of Structural Bias in Differential Evolution Configurations. In
Differential Evolution: From Theory to Practice. Springer, 1-22.

Diederick Vermetten, Bas van Stein, Fabio Caraffini, Leandro Minku, and Anna V.
Kononova. 2021. BIAS: A Toolbox for Benchmarking Structural Bias in the
Continuous Domain. https://doi.org/10.36227/techrxiv.16594880.v1

Diederick Vermetten, Hao Wang, Thomas Béck, and Carola Doerr. 2020. To-
wards Dynamic Algorithm Selection for Numerical Black-Box Optimization:
Investigating BBOB as a Use Case. In Proceedings of the 2020 Genetic and Evolu-
tionary Computation Conference (Cancun, Mexico) (GECCO °20). Association for
Computing Machinery, New York, NY, USA, 654-662.

Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, and Thomas Béck.
2022. IOHanalyzer: Detailed Performance Analyses for Iterative Optimization
Heuristics. ACM Transactions on Evolutionary Learning and Optimization 2, 1,
Article 3 (apr 2022), 29 pages. https://doi.org/10.1145/3510426

https://doi.org/10.1109/CEC48606.2020.9185494
https://doi.org/10.1016/j.ins.2014.11.035
https://doi.org/10.1109/TEVC.2014.2302006
https://doi.org/10.1109/TEVC.2014.2302006
https://doi.org/110.1007/s11047-021-09847-1
https://doi.org/10.1007/978-3-030-72699-7_2
https://doi.org/10.1145/3449726.3463223
https://doi.org/10.1145/3449726.3463223
https://doi.org/10.6084/m9.figshare.19578991.v1
https://doi.org/10.1145/3449726.3463218
https://doi.org/10.36227/techrxiv.16594880.v1
https://doi.org/10.1145/3510426

	Abstract
	1 Introduction
	2 Methodology
	2.1 Modular CMA-ES
	2.2 Structural bias
	2.3 COCO and BBOB

	3 Behavioural characterisation of modular CMA-ES
	3.1 Experimental setup
	3.2 Structural bias on CMA-ES variants
	3.3 Infeasibility
	3.4 Impact of initialisation

	4 Location-dependent performance comparison on BBOB
	4.1 Selection of instances from BBOB
	4.2 Experimental setup
	4.3 Analysis of results

	5 Conclusions
	References
	GECCO2022_AABOH_CMAES.pdf
	Abstract
	1 Introduction
	2 Methodology
	2.1 Modular CMA-ES
	2.2 Structural bias
	2.3 COCO and BBOB

	3 Behavioural characterisation of modular CMA-ES
	3.1 Experimental setup
	3.2 Structural bias on CMA-ES variants
	3.3 Infeasibility
	3.4 Impact of initialisation

	4 Location-dependent performance comparison on BBOB
	4.1 Selection of instances from BBOB
	4.2 Experimental setup
	4.3 Analysis of results

	5 Conclusions
	References

	GECCO2022_AABOH_CMAES.pdf
	Abstract
	1 Introduction
	2 Methodology
	2.1 Modular CMA-ES
	2.2 Structural bias
	2.3 COCO and BBOB

	3 Behavioural characterisation of modular CMA-ES
	3.1 Experimental setup
	3.2 Structural bias on CMA-ES variants
	3.3 Infeasibility
	3.4 Impact of initialisation

	4 Location-dependent performance comparison on BBOB
	4.1 Selection of instances from BBOB
	4.2 Experimental setup
	4.3 Analysis of results

	5 Conclusions
	References

