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Abstract

Face reenactment is a task aiming for transferring the expression and head pose

from one face image to another. Recent studies mainly focus on estimating optical

flows to warp input images’ feature maps to reenact expressions and head poses in

synthesized images. However, the identity preserving problem is one of the major

obstacles in these methods. The problem occurs when the model fails to preserve the

detailed information of the source identity, namely the identity of the face we wish to

synthesize, and especially obvious when reenacting different identities. The underlying

factors may include unseen the leaking of driving identity. The driving identity stands

for the identity of the face that provides the desired expression and head pose. When

the source and the driving hold different identities, the model tends to mix the driving’s

facial features with those of the source, resulting in inaccurate optical flow estimation

and subsequently causing the identity of the synthesized face to deviate from the source.

In this paper, we propose a novel face reenactment approach via generative land-

mark coordinates. Specifically, a conditional generative adversarial network is devel-

oped to estimate reenacted landmark coordinates for the driving image, which success-

fully excludes its identity information. We then use generated coordinates to guide

the alignment of individually reenacted facial landmarks. These coordinates are also

injected into the style transferal module to increase the realism of face images. We

evaluated our method on the VoxCeleb1 dataset for self-reenactment and the CelebV

dataset for reenacting different identities. Extensive experiments demonstrate that our

method can produce realistic reenacted face images by lowering the error in head pose

and enhancing our models’ identity preserving capability.

In addition to the conventional centralized learning, we deployed our model and

used the CelebV dataset for federated learning in an aim to mitigate potential privacy

issues involved in research on face images. We show that the proposed method is

capable of showing competitive performance in the setting of federated learning.
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1 Introduction

1.1 Motivation

Deep learning has achieved great success in a variety of computer vision tasks, ranging

from image classification to video understanding. Face reenactment, a conditional image

generation task, also benefits from deep learning. The input, namely the condition, to a

face reenactment model comprises two parts, the source and the driving. The source is

one or a set of images of a specific person, serving to provide appearance features of the

person. The driving image could be the face of the same person or other people. The goal

of face reenactment is to transfer the head pose and expression from the driving image to

the face in the source image, as shown in the examples of Figure 1.1. Real world application

of face reenactment includes video conferencing and film production. In the scenario video

conferencing, the speaker’s face can be reenacted to match the face motion of a translator [1].

In the film industry, face reenactment can be used in a similar fashion, creating more natural

localized motion pictures in different languages. Film makers can also further edit actors

expressions without re-shooting the entire scene.

Source Driving Proposed Source Driving Proposed

Figure 1.1: Examples of Face Reenactment.

Given the fact that it is infeasible to collect image pairs of two different people with

identical head pose and expression, the self-supervised training strategy proposed by authors

of X2Face [2] greatly helped the evolution of face reenactment methods. The self-supervised

training of face reenactment constrains the identity of an input source-driving image pair

to be the same person during training, therefore the driving image is also the groundtruth

for the generated image. Despite the ease of training, in the testing scenario where the

source and driving image are taken from different people, models trained by this strategy is
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at the risk of mixing the driving’s identity in the image generator, resulting in the identity

preserving problem, that is, the reenacted image shares structural similarity with both people

in the input, instead of being the exact person in the source image.

Location of facial landmarks is valuable for defining a person’s identity and head pose.

During self-supervised training, if the eyes, nose and mouth in an generated image are

precisely aligned with their corresponding location in the driving image, the generated image

is more likely to be a faithful reenactment. Landmark locations can then be used to guide

the model in the self-reenactment scenario. However, when reenacting different people,

landmark locations in the driving image does not lead to desired output, as the location now

reflects facial features of a different person, which can only aggravate the identity preserving

problem. To help face reenactment methods benefit from landmark locations, landmark

coordinates also need to be reenacted. If these coordinates reflect the source’s identity while

matching the driving’s head pose and expression, they can guide the model to process the

test sample as if it is a self-reenactment case.

Motivated by the above observation, we propose a face reenactment method that explic-

itly leverages landmark locations to guide the reenactment process. To estimate landmark

coordinates that meet the requirements of face reenactment, namely reenacting the driving’s

expression while preserving the source’s identity, we first adopt a coordinate style transfer

method to estimate reenacted landmark coordinates. To further enhance the quality of gen-

erated images, we then introduce a generative network that takes the source image’s identity,

the driving image’s head pose angle, and facial action units detected in the driving image

as input, more accurately estimating reenacted landmark coordinates. We also reenact cru-

cial facial landmarks individually, and align them based on estimated coordinates. When

reenacting different identities, we inference style transfer parameters based on estimated

landmark coordinates to correct distortion in generated images.

Since face reenactment is a task that involves the entire region of faces, it requires mod-

els to extract features that cover the structure and appearance of the entire face. Vision

Transformer is a particular neural network architecture which is based on the self-attention

mechanism and designed to perceive the interconnections of all regions in an image. We

argue that Vision Transformer is also a suitable backbone for face reenactment, however,

to the best of our knowledge, little research has been conducted on face reenactment with

Vision Transformer. Therefore, another focus of the thesis is to investigate the possibility of

applying Vision Transformer to face reenactment.

The nature of this study requires the use of human face images, however, there has
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been a growing concern on privacy issues involved in computer vision research. Face images

are unique biometric data that malicious attackers are constantly trying to steal and lever-

age for illegal purposes. Therefore, faces in the ImageNet dataset [3] has been obfuscated

while the MS-Celeb-1M dataset [4] has been retracted from the internet [5]. To bridge the

gap between research and privacy protection, federated learning was proposed. This deep

learning paradigm allows researchers to leave the private data alone with data owners, only

distributedly trained models are transferred to researchers for evaluation. In addition to the

proposed method, we demonstrate that our model is compatible with federated learning,

thus the privacy issues can be mitigated.

1.2 Contributions

Contributions of the thesis are the following:

• We propose a face reenactment method guided by facial landmark coordinates. An

optical flow is first estimated based on the input source-driving image pair, the esti-

mated optical flow is subsequently used to warp the feature maps of source images,

then individual landmarks are respectively reenacted and aligned based on landmark

coordinates to guide the warped results. Direct guidance from landmark coordinates

ensures lower head pose error compared to existing methods.

• We introduce a landmark conditional GAN to alleviate the identity preserving prob-

lem induced by the self-supervised learning strategy in recent face reenactment meth-

ods. The proposed landmark GAN generates landmark coordinates based on the input

source person’s identity, desired head pose and facial action units, generated landmark

coordinates are subsequently used to guide the face reenactment process. Because fa-

cial action units are a widely used building blocks for human expressions, our landmark

conditional GAN may be beneficial for face image generation controlled by expressions.

In addition, we estimate style transfer parameters based on the generated landmark

coordinates to improve the realism of generated faces. Since the driving’s identity has

been explicitly excluded from the proposed landmark GAN, we greatly improved our

models’ performance on identity preserving.

• We apply the FedGAN algorithm and the CelebV dataset for training face reenactment

models in the federated setting. Considering the rise of privacy concerns in deep

learning research, federated learning is becoming more valuable for projects involving
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sensitive biometric data. Our work will provide the stepping stone for further research

on federated face reenactment.

• We evaluate our method on the VoxCeleb1 [6] dataset for self-reenactment and the

CelebV [7] dataset for reenacting different identities. Experiments on the CelebV

dataset covers three face reenactment scenarios: reenacting different unseen identi-

ties, reenacting different known identities and reenacting known identities with models

trained through federated learning.

1.3 Thesis Layout

This rest of the thesis is split up into the following chapters:

• Chapter 2 starts with a brief introduction on neural network architectures involved

in our method, including convolutional neural networks, transformers, and generative

adversarial networks. We then introduce the development of recent face reenactment

methods, from 3D rendering to self-supervised 2D methods, which are more commonly

used nowadays. Lastly, we present an introduction on federated learning, specifically,

we focus on the FedAvg algorithm as it laid the foundation for our experiments.

• Chapter 3 presents each module in our proposed neural network. We first introduce

how we leverage the Vision Transformer to estimate optical flows for warping the

feature maps of source images, we then explain the reenactment of individual facial

landmarks and the method we used to estimate landmark coordinates for accurately

aligning reenacted landmarks. In this chapter we show the architecture of our image

generator and how the style transfer branch is blended in to help generate more realistic

images. Definitions of loss functions used in this study are also introduced in this

chapter. In addition to the architectural details of the proposed method, we show how

this model is deployed and trained in the federated learning setting.

• Chapter 4 focuses on presenting experimental results and analysis on these results.

We give definitions of metrics for evaluating face reenactment methods, and how

datasets are split up for different scenarios. For centralized learning, we evaluate our

models through 3 different experimental settings: self-reenactment, reenacting differ-

ent unseen identities, and reenacting different known identities. In terms of federated

learning, we focus on reenacting different known identities to evaluate how our models

perform compared to those trained through centralized learning.

4



• Chapter 5 concludes the thesis and gives analysis on limitations of the proposed

method, we also discuss potential solutions and areas that may bring improvement to

our method.

1.4 Publication

The following is a list of published and submitted papers as a result of this thesis:

Chen Hu, Xianghua Xie. One-Shot Decoupled Face Reenactment with Vision Transformer.

Pattern Recognition and Artificial Intelligence (ICPRAI) 2022. Lecture Notes in Computer

Science, vol 13364. Springer, Cham.

Chen Hu, Xianghua Xie, Ling Wu. Face Reenactment with Generative Landmark Guidance.

Image and Vision Computing, 2022.
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2 Background

In this chapter, we begin by outlining two types of face reenactment methods: rendering-

based and more recent image warping-based. We focus on introducing image warping-based

methods as they are more widely used nowadays due to the ease of training and better

generalization capability, our method also falls into this category. We then give an overview

on generative adversarial networks, which are an essential component of ours and many other

face reenactment methods. We also briefly review the Vision Transformer architecture, which

is used in our method in hope of helping our model better perceive human faces. Lastly, we

cover federated learning, explaining its definition and noteworthy algorithms which are the

cornerstone of our research in this area.

2.1 Face Reenactment

Face reenactment in general is not limited to visual input, audio-driven face reenactment [8,9]

is also an active research area. These methods often learn a mapping from audio features

to facial blendshapes, then reenacted images can be rendered based on tweaked blendshapes

that match input audio track. The most noticeable difference between audio-driven and

visual-driven face reenactment is that audio-driven face reenactment focuses on reenacting

the mouth region of the face image, while visual-driven face reenactment needs to consider

the expression over the entire face and the movement of the head. Audio-driven methods

are beyond the scope of the thesis, we instead focus on presenting an introduction on visual-

driven face reenactment methods.

Approaches to visual-driven face reenactment can be categorized by the way of synthe-

sizing new images, namely rendering from 3D models or warping 2D images. In this chapter

we look at typical examples of each type of face reenactment method and discuss how they

are related to our method.

2.1.1 Rendering-based Face Reenactment

Early face reenactment studies [1,10–13] prefer rendering desired images from estimated 3D

face models. The pipeline of rendering-based methods generally involves fitting faces from

images to 3D models, then morphing these 3D faces and rendering the reenacted results. For

instance, given a pair of source and driving image, Deep Video Portraits [11] first estimates

3DMM [14] faces for both the source and driving images. Estimated 3D models contain

the illumination, identity, pose, expression and eye gaze parameters. By plugging in the
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source images’ illumination and identity parameters into the driving images’ 3D models, the

reenacted 3D faces are obtained, which can then be rendered into desired images. Deep

Video Portraits is capable of generating convincing images, but it has high computation cost

and difficulties with changing poses. The rendering process of this method has two stages,

a 3DMM face with 53,215 vertices is first rendered based on estimated illumination and

reflectance parameters, the rendered output is then sent to an image translation network

to synthesize the reenacted image. Regarding the problem with pose changes, since this

method only focuses on the heads, undesired artifacts can be seen around the upper body

when there are obvious pose changes in input images.

Face2Face [1] is another example of rendering-based face reenactment methods. The

authors first reconstruct 3D models for the source and driving person, respectively. Ex-

pression features are then extracted from the driving model and transferred to the source

model. The reenacted 3D face is obtained in a similar fashion like Deep Video Portraits,

namely plugging the source parameters into the driving 3D model. To further enhance the

generated image, the authors retrieve the RGB mouth region from the entire video sequence

of the source person, aiming to find the frame in which the mouth movement best matches

that of the driving frame. Lastly, the final output is rendered based on the retrieved mouth

and reenacted 3D model. Retrieving the mouth region from the input sequence is the most

noticeable issue with Face2Face, as it requires the input to be diverse and long enough to

provide good reenactment around the mouth.

In general, rendering-based methods can synthesize high-fidelity images. However, to

capture facial details in the 3D space, the number of vertices has to increase, which creates

more computation overhead. In addition, to further enhance rendered images, rendering

based methods such as Face2Face resort to retrieving information from input video sequences,

resulting in the disadvantage of not being able to process short videos or static images. The

above limitations may impede real-world applications of rendering-based methods [15], recent

research focuses more on image warping-based methods instead.

2.1.2 Image Warping-based Face Reenactment

Recent works [2,15–20] propose one-shot or few-shot face reenactment and utilise optical flow

to map pixels from the source image to the reenacted image, image warping then becomes

an essential operation for these methods. Image warping on convolutional neural networks

(CNN) was first proposed in [21], where the model can estimate an optical flow that warps

skewed numerical digit back to the regular view, thus improving the classification accuracy.
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The estimated optical flow is usually a tensor with shape H ×W × 2, where H is the height

of the image, W is the width of the image. One channel of the optical flow tensor contains

the X-axis coordinates for the warping operation, the other channel stores the values on the

Y-axis. For face reenactment, the optical flow is first estimated from features extracted from

both the source and driving image, then image warping is conducted, which uses the optical

flow to determine how pixel values should be sampled from the source image or its feature

maps such that the desired image can be generated.

In X2Face, the authors first estimate an optical flow that warps the source image to

obtain the embedded face, namely warping the input source image of arbitrary head pose

to its corresponding frontal view. Another optical flow is estimated from the driving image,

and this optical flow is applied to the embedded face, leading to the reenacted output of

X2Face model. Directly applying optical flow on the face image is relatively stable when

the pose variation between the source and driving image is subtle. When there are drastic

changes in the head pose, warping the RGB image can often distort the reenacted face,

resulting in degraded output. More recent methods [15–18] choose to estimate the optical

flow for intermediate feature maps of input images. The benefit of this choice is that even

distortion happens in intermediate feature maps, subsequent convolution layers can still learn

to counter this effect, whereas in the case of X2Face, once the RGB image is warped, nothing

can further enhance the output image.

As mentioned in Chapter 1, obtaining images for different people with the exact same

poses and expressions is infeasible in practice, a now widely adopted self-supervised learning

paradigm was proposed in [2]. Given the source image sampled from a video sequence, a

corresponding driving image of the same person is randomly chosen from the same video,

making supervised learning possible as the driving image is exactly the expected reenactment

result.

Although the self-supervised strategy in X2Face enables easy training for face reenact-

ment models, it introduces a more noticeable problem, namely the identity preserving prob-

lem first described in [16]. When the identity of the source image and that of the driving

are different from each other, models trained by self-supervised learning tend to combine

the identity features of both identities, the generated face will fail to preserve the identity

of the source image. To remedy this issue, the work of [15,16,19] resorts to facial landmark

coordinates as a cue to help the model retain the source’s identity. In contrast, Monkey-

Net [18] and the FirstOrder [17] method focus on animating arbitrary images in stead of

face reenactment, these methods does not explicitly leverage facial landmark points, they
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detect key points in input images and then derive the optical flow based on the motion of

key points. When facial landmark coordinates are used to guide the reenactment process,

these coordinates also need be reenacted to match the identity of the source face along with

the head pose and the expression of the driving face.

The authors of MeshGCN [15] explicitly estimate the dense face coordinates with the

help of 3D Morphable Models (3DMM) [14]. 3DMM decouples a 3D face into the following

three components: an average emotionless 3D face, identity displacement and expression

displacement. The 3DMM formulation enables straightforward face reenactment in the 3D

space. This is because the source face’s 3DMM identity parameters can be extracted from

the input source image, while the driving face’s expression parameters can be also extracted

in a similar fashion. Then by replacing the expression parameters of the source 3DMM face

with corresponding parameters extracted from the driving image, the 3D face with the source

identity and the driving expression can be obtained.

The authors of MeshGCN first estimate 3DMM parameters from input images, then they

construct reenacted 3D faces following the above process. To estimate the optical flow for

the warping operation, the authors apply a graph neural network [22] for this task. The

input to this network is the dense coordinates of the source model Vreen ∈ R53215×3 and that

of the reenacted model Vreen ∈ R53215×3, incurring high computation cost. However, due to

the decoupling of identity and expression in 3DMM’s formulation, the driving face’s identity

is removed from the reenactment process, which greatly helps MeshGCN to achieve excellent

performance on identity preserving.

The authors of MarioNETte [16] are also inspired by 3DMM, but their method esti-

mates 3D coordinates of 68 landmark points instead of dense coordinates like MeshGCN.

The authors decomposes landmark points following the 3DMM formulation, they first per-

form principal component analysis (PCA) on landmark coordinates extracted from the Vox-

Celeb1 [6] dataset, the principal components are used as identity and expression basis. The

authors then train a neural network to regress coefficient associated with the expression ba-

sis such that their landmark decomposition matches the landmark coordinates in the input

image. The landmark reenacted of MarioNETte is also achieved by replacing the source

face’s expression parameters with that of the driving face’s. Once the reenacted landmark

coordinates are computed, the authors of MarioNETte use the coordinates to generate ras-

terized landmark images, the optical flows are estimated based on these landmark images

combined with the original input. Nonetheless, the performance of MarioNETte is limited

by the expressiveness of principal components, and MarioNETte requires multiple images of

9



the source identity as input for optimal performance.

In addition to above methods, there are also face reenactment methods that do not reen-

act landmark coordinates. NeuralHead [23] is an example of such method. The authors

directly feed the facial landmark heatmap of the driving image into the image generator,

source images are sent to a neural network to predict style transfer parameters that mod-

ifies intermediate features maps in the image generator. Although images generated by

NeuralHead accurately reenact head poses in driving images, they show significantly poorer

performance in terms of identity preserving.

To summarise, X2Face ushers recent image warping-based methods into the self-supervised

training paradigm, but this method can induce noticeable distortion in synthesized images as

it directly warps the input images. MarioNETte decomposes sparse landmark points to guide

the reenactment process, however, its PCA-based decomposition is a simplified modification

of 3DMM, and this method requires multiple images as the input for best performance. In

contrast, MeshGCN uses the full 3DMM to estimate optical flows, which subsequently brings

more computation overhead. Lastly, NeuralHead leverages the raw landmark points in im-

ages to synthesize images. Although this method has lower head pose error, the generated

faces share less similarity with the faces in source images.

Our method also leverages landmark coordinates to guide the reenactment process. When

the source and the driving images share the same identity, we do not modify landmark co-

ordinates, which is akin to NeuralHead. This is because in this scenario, the landmark

coordinates in the driving images are the groundtruths, any modification would be redun-

dant. When reenacting different people’s faces, we propose a conditional GAN to estimate

reenacted landmark coordinates based on the face’s identity, the desired expression and

head pose. Our method is efficient as it works on sparse 2D points. In addition, the training

data can be conveniently annotated with the help of existing facial analysis tools such as

OpenFace [24].

Table 2.1 shows the comparison of landmark coordinate reenactment between MeshGCN,

MarioNETte and the proposed method. Both MeshGCN and MarioNETte need to estimate

3D landmark points. MeshGCN leverages dense points of 3D face models thus it requires a

3DMM face alignment model to regress 3DMM parameters from input images. MeshGCN

directly estimates the optical flow by feeding landmark coordinates and corresponding adja-

cency matrix to a graph neural network. In comparison, MarioNETte only takes 68 points, it

needs a 3D landmark detector to provide 3D coordinates. As mentioned above, coordinates

estimated by MarioNETte are used to synthesize rasterized landmark images and feed to
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the neural network for optical flow estimation. Our proposed landmark conditional GAN

requires the information on facial action units that appears in the driving image and the

angle of the driving face. In addition, sparse 2D landmark points are sufficient for our face

reenactment method. Compared to MeshGCN, our method is more computationally effi-

cient. Moreover, we do not make the assumption on the composition of landmark points or

expression basis, thus our method has less inductive bias compared to MarioNETte. Evalu-

ation results show that our method has lower head pose error and is capable of generating

realistic images that preserve the source’s identity.

Table 2.1: Comparision of Landmark Coordinate Reenactment Methods

Model Dimension Usage of Coordinates Required Extra Model

MeshGCN [15] R53215×3 estimate optical flow 3DMM Face Alignment

MarioNETte [16] R68×3 synthesize landmark image

to estiamte optical flow

3D Landmark Detection

Ours R68×2 guide landmark alignment

and style transfer

AU Recognition and

Head Pose Estimation

2.2 Generative Adversarial Networks

2.2.1 Vanilla GAN and Conditional GAN

Generative adversarial networks (GANs) are a family of neural networks that learn to map

input from certain distribution to a desired distribution. A GAN consists of a generator

G and a discriminator D, these two networks play a min-max game with a value function

V (G,D) [25],

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] (2.1)

where x is the real data sample, px is the groundtruth distribution of the real data, z is a

random input and p(z) is the predefined distribution where z is sampled from. Minimizing

V (G,D) with respect to G implies that the log probability of D(G(z)) in Equation 2.1

needs to be maximized, namely the generator needs to produce realist samples such that the

discriminator can be fooled. On the other hand, maximizing the value function with respect

to D suggests that the discriminator should maximize D(x) while minimize D(G(z)), which

is equivalent to assigning high probability to real data samples and low probability to samples

generated by G.
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As shown in Equation 2.1, the input to the original GAN is a random vector sampled from

a known distribution, such as a Gaussian distribution. The authors of conditional GAN [26]

extended the framework of GAN by providing a conditional input y to both the generator and

the discriminator, then D(x) and G(z) in the above equation becomes D(x|y) and G(z|y),
respectively, which means both the discriminator and the generator are now conditioned on

the given y. Introducing the condition y to GAN brings more flexibility and control over the

output of the generator, as the generator now takes the given condition into consideration.

In terms of generating images with a conditional GAN, the condition y can be categorical

labels [27], texts [28] or even images [29], depending on the objective of each task.

2.2.2 Image-to-Image Translation and Video Generation

Face reenactment is similar to image-to-image translation from the perspective of image gen-

eration. The objective of image-to-image translation is to transfer an image from one domain

to another domain. For instance, the generator of Pix2Pix [29] takes semantic segmentation

maps as input and synthesizes realistic RGB images. Regarding face reenactment, the image

generator takes the source and the driving image as input, generating an image with the

driving expression and head pose transferred to the source’s face. The relation between face

reenactment and image-to-image translation enables that lessons learned from the latter can

be applied to the former. Specifically, authors of Pix2Pix find that in order to synthesize

clearer images, both the L1 loss on pixel values and the adversarial loss of GAN need to

be used to supervise the model. The finding is also applied to recent self-supervised face

reenactment methods, driving images are responsible for the L1 loss while a discriminator

helps the generator synthesize more realistic images.

Vid2Vid [30] is another GAN that is closely related to face reenactment. The objective

of Vid2Vid is to generate video frames by estimating optical flow. The authors of Vid2Vid

formulate video frame generation as a conditional generation task, that is, given a set of

previous video frames and semantic maps, the generator is expected to synthesize an RGB

video frame for current time step. Unlike Pix2Pix, RGB images are not the only output

of Vid2Vid’s generator. Vid2Vid also estimates an optical flow that warps the previous

video frame. The final output of Vid2Vid is a composition of the warped video frame and a

video frame synthesized by the generator. The process of estimating an optical flow and then

warping the image to yield the final outcome shares many similarities with face reenactment.

As discussed in Chapter 2.1, the general idea of image warping based methods [2, 15–19] is

to estimate an optical flow based on the source and the driving image, then the source image
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(or its feature maps) is warped to generate the reenacted face. For instance, the authors

of [17,18] estimated key points from input images, their model would then predict an optical

flow based these key points to warp the feature maps of input images. The authors of [15,16]

estimated the optical flow from landmark feature maps and 3D meshes respectively, whereas

the estimated optical flow would also be used to warp the feature maps of the source image.

GAN feature matching loss [31] proposed by the authors of Vid2Vid is another great

contribution to face reenactment. This loss can be seen in [15, 19], and [15] is the present

state-of-the-art face reenactment method. GAN feature matching loss forces the synthesized

images’ features in the discriminator to be identical to their corresponding groundtruths

images, providing a more direct feedback compared to the min-max loss in Equation 2.1.

The use of GAN feature matching loss improves the speed of GAN training convergence and

stability.

To summarise, GAN has undoubtedly become an indispensable component in face reen-

actment methods. Certain strategies proposed for training image generation GANs are also

beneficial for face reenactment. In terms of our method, we introduce a GAN to estimate

landmark coordinates, and our image generator is also trained with the GAN formulation.

Details of GAN in our method are given in Chapter 3.

2.3 Vision Transformer

The original transformer [32] is an attention-based neural network designed to learn from

sequential data for natural language processing. The key operation in the transformer archi-

tecture is the self-attention mechanism, which enables transformers to actively attend to all

elements in the sequence, thus significantly boosting performance in a range of natural lan-

guage processing tasks. Nowadays the state-of-the-art language models such as BERT [33]

and GPT-3 [34] are all based on transformer.

The authors of Vision Transformer [35] brought the benefit of the original transformer

to computer vision tasks. The most noticeable difference between Vision Transformer and

the original transformer is how Vision Transformers process the input. Since transformer is

designed to work on sequential data, the authors of Vision Transformer evenly crop input

images into small image patches, these patches are projected into embedding vectors, then

embedded vectors are stacked together to form the input sequence to the Vision Transformer.

Details of Vision Transformer is introduced in Chapter 3.1. Unlike convolutional neural

networks (CNNs) that are characterised by weight sharing and locality, Vision Transformer

has less inductive bias [36], attention weights are dynamically computed depending on the
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input and features are aggregated from all elements in the input sequence instead of an

neighbouring area. This feature inspired us to apply Vision Transformer to optical flow

estimation in our baseline method, as the model can directly aggregate features from all face

regions to make the estimation. Many Vision Transformer variants [37–39] has been proposed

since the publication of [35], these methods focus on introduce beneficial properties of CNNs

into the architecture designs of Vision Transformers, such as transforming sequential features

into 2D to leverage the locality of features. To verify the above idea that the attention over

the entire input is beneficial for optical flow estimation, our baseline model keep the original

design of Vision Transformer instead of using its more recent variants. Experiments in [35]

show that Vision Transformer would require much more parameters and tens of millions

training examples to reach the same level of performance as CNNs, we show that a shallow

Vision Transformer is also a good optical flow estimator for face reenactment. Details of

how Vision Transformer operates in our method is given in Chapter 3.

2.4 Federated Learning

Federated learning is first proposed by Google to train machine learning models in the

distributed setting, thus data leakage can be avoided [40]. In contrast to conventional deep

learning paradigm, federated learning does not require all the data and models to be on

the same machine. Multiple client models are trained in parallel without transferring local

data to other machines. A global model is often required to aggregate client models and

make predictions for the desired task. The neural network architectures in federated learning

are not much different from that of the centralized learning, however, research in federated

learning faces unique challenges. The statistical heterogeneity in data is one of the most

outstanding issues of federated learning. Since data is now owned by different clients, data

from different sources may no longer follow the same distribution. For instance, images of

clothing can vary widely around the world [41]. Statistical heterogeneity in data violates

the assumption in conventional machine learning that all the training data are independent

and identically distributed, client models trained on such data may have different or even

contradicting views on the task in question. Therefore, research on aggregation strategies in

federated learning is still an active area.

Federated Averaging (FedAvg) [42] is a pioneering method for aggregating client models

in federated learning. Client models ci are first initialized with identical parameters as the

global model x. In each round of the global model update, a few client models are random

selected and fed with local data to conduct local update. When selected clients are updated,
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the global model aggregate the weights of client models in the following way,

wx =
K∑
i=1

ni

n
wi (2.2)

where wx is the weights of the global model, K is the number of randomly selected client

models, wi is the weight of a chosen client model i, n is the total number of training samples

combined, and ni is the number of training samples on the client machine i. Authors of

FedAvg assumed that randomly selecting client models in each training round is analogous

to the dropout operation in neural networks, acting as a regularization while allowing for

faster training [43].

Regarding federated learning for image generation, there are relatively few literature on

this topic, recent research focuses more on image classification to validate the performance

of proposed algorithms. The work of FedGAN [44] extended FedAvg to the realm of image

generation through GAN. FedGAN is very similar to the strategy of FedAvg, it distributes

client generators and client discriminators, and aggregates the global generator and global

discriminator through FedAvg. In this paper, we take the same approach as FedGAN to

evaluate our method in the federated learning setting. Details of FedGAN in our face reen-

actment method is introduced in Chapter 4.

2.5 Summary

In Chapter 2.1.1, we described the general pipeline of rendering-based face reenactment

methods and showed typical examples of this type. These methods often require a large

number of input, making it difficult to train and apply such methods, recent research focuses

on image warping-based methods for better solution.

In Chapter 2.1.2, we explained the pipeline and self-supervised strategy of X2Face [2].

The strategy proposed by authors of X2Face greatly evolved the training of face reenactment

models and gave rise to a range of image warping-based methods, among which we emphasizes

two state-of-the-art methods, MeshGCN [15] and MarioNETte [16]. We discussed in detail

how these methods reenact landmark coordinates to achieve more accurate reenactment. We

are convinced that landmark coordinates are rather useful for face reenactment and we argue

if the landmark coordinates are reenacted with high precision, we can more directly leverage

them to guide the reenactment process. We compared our landmark reenactment method

with MeshGCN and MarioNet in Table 2.1.

In Chapter 2.2.1, we showed the definition of the vanilla generative adversarial networks
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(GAN) and its conditional variant. In Chapter 2.2.2, we reviewed how researchers extended

the framework of GAN to two image generation tasks: image-to-image translation and video

generation. Research on these two tasks greatly benefit the development of face reenactment,

because findings on how to generate realistic images in these tasks are also applicable to face

reenactment and have been verified by existing research [15,16].

In Chapter 2.3, we introduced Vision Transformer. The original transformer is a neural

network designed for natural language processing. The self-attention module in a transform

grants the model exceptional capability to dynamically process input data. Authors of

Vision Transformer adapted this network to computer vision tasks and Vision Transformer

has outperformed classic convolutional neural networks such as ResNet. We intend to bring

Vision Transformer to our method because we believe the attention mechanism in Vision

Transformer is also beneficial for face reenactment.

In Chapter 2.4, we briefly reviewed federated learning and explained the FedAvg algo-

rithm, the indisputable foundation of federated learning. However, FedAvg is not designed

for generative tasks, we therefore resort to FedGAN, an extention of FedAvg to conduct

experiments on federated face reenactment.
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3 Face Reenactment with Generative Landmark Guid-

ance

In this chapter, we present our face reenactment method. We are motivated by the intuition

that accurate landmark coordinates may lead to accurate reenactment. In addition to esti-

mating optical flow that warps the input’s feature maps, we individually reenact the eyes,

nose and the mouth and align them with desired landmark coordinates to guide our image

generator.

Optical  Flow EstimationSource Image

Driving Image

Landmark Conditional GAN Style Transfer 

Image Generator

Individual Landmark Reenactment

Generated Image

Optical  Flow Estimation

Image Generator

Source Image

Driving Image

Groundtruth
Landmark Heatmap

Individual Landmark Reenactment

Generated

Landmark Heatmap

Generated Image

L1 Loss

L1 Loss

Perceptual Loss


GAN Feature Matching Loss

Adversarial Loss

Adversarial Loss

Optical Flow Optical Flow

(a) Self-reenactment (b) Reenacting Different Identity

Figure 3.1: Overview of proposed method for self-reenactment and reenacting different

identities. Dashed boxes show loss functions that are responsible for the corresponding

module.

If the source and driving images share the same identity, landmark coordinates in the

driving images provide the groudtruth-level coordinates for alignment. However, when the

source and driving images have different identities, aligning landmarks with coordinates in

the driving image can cause severe identity preserving problems discussed in Chapter 1. This

is why we need to find a way to estimate landmark coordinates for this situation. Existing

methods take the 3DMM formulation to reenact landmark coordinates, we instead considers

two crucial aspects of face reenactment: head poses and facial expressions. Head poses can

be quantified by the rotation angles while facial expressions can be constructed with the help

of facial action units. We therefore propose a GAN conditioned on the driving image’s head

pose angles and facial action units to estimate landmark coordinates.

Figure 3.1 shows the overall framework of our face reenactment model. In general, we

first estimate an optical flow based on input images. Then the eyes, nose and mouth in the

source image are individually reenacted and aligned with corresponding landmark coordi-

nates. Lastly, we warp the feature maps of the source image with estimated optical flow,

and use aligned landmarks to guide the subsequent image generation process. Figure 3.1.
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(a) shows the self-reenactment scenario, in which landmark coordinates does not need to be

estimated. Figure 3.1. (b) shows the process of reenacting different identities. Landmark

coordinates are estimated by the proposed conditional GAN and we further add a style

transfer branch to improve the realism of generated faces.

3.1 Optical Flow Estimation
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Figure 3.2: Architecture of Facial Feature Extraction Module. (a) Extracting features from

input images; (b) Estimating the optical flow based on extracted features.

Facial feature extractor is responsible for extracting and aggregate image features for

optical flow estimation. The extractor is comprised of a Vision Transformer with three

layers. The architecture of this module is shown in Figure 3.1. An input image i with size

224× 224 is evenly divided into 256 patches with size 14× 14. Each image patch is flattened

into a 1× 196 vector, then embedded into a 1× 768 vector through a fully-connected layer,

resulting in a 256× 768 tensor vi for the input image. In addition, a tensor t ∈ R3×768 with

learn-able initial values are concatenated to vi, the first two rows of t store features for the

optical flow estimation, and the third row of t contains features for landmark coordinate

regression, which acts as an auxiliary task that helps the model perceive human faces. After
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an input image being embedded into vi ∈ R259×768, it further goes through three self-attention

layers. The self-attention process is given as follows.

Q = viWq, K = viWk, V = viWv (3.1)

α = softmax(QKT/
√
dk), v∗i = αV (3.2)

where Wq ∈ R768×dq , Wk ∈ R768×dk and Wv ∈ R768×dv are learn-able parameters, dq =

dk = dv = 768, α ∈ R259×259 is the attention score given the input tensor vi, and v∗i ∈
R259×768 is the output of the self-attention operation, it further goes through a multi-layer

perceptron (MLP) to yield the final result of a transformer block. In Equation 3.1, Q,

K and V respectively stands for the query, key and value matrix. The intuition behind

this formulation is that Q raises queries about the input features, K holds the addresses

to retrievable information, while V stores the information to be retrieved. By doing a

multiplication betweenQ andK in Equation 3.2, the attention score α indicates the relevance

of each feature in V regarding the query Q. Features in V are then aggregated based on the

estimated attention score.

Optical flow features for the source and the driving image are denoted by us, ud ∈ R2×768

respectively. us and ud are first compressed to R2×128 then reshaped to R1×256. As shown

in Figure 3.2 (b), these two features are concatenated to obtain a feature of shape R1×512

and sent to an MLP, resulting in f ∈ R1×6272, f is reshaped to R7×7×128 and after going

through a series of transpose convolutional layers, the estimated optical flow f ∗ ∈ R2×224×224

is obtained.

3.2 Individual Landmark Reenactment

To explicitly guide the reenactment process with landmark locations, the eyes, the nose,

and the mouth of the source are individually reenacted and placed at the same location

as their corresponding landmark coordinates. We use four convolutional neural networks

with an identical architecture, and each of them is dedicated to reenacting a different part

of the face, namely the left eye, the right eye, the nose, and the mouth. Figure 3.3(a)

shows we concurrently reenact selected landmarks; Figure 3.3(b) gives an example of the

crop of the mouth from the source image, along with its counterpart from the landmark

heatmap of the driving image are first sent to convolution layers, with the size of feature

maps reduced by max pooling, then feature maps of the RGB mouth crop and that of
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Figure 3.3: Individual landmark reenactment and examples of landmark generation.

(a) Individual landmarks are concurrently reenacted with models that share the same ar-

chitecture. (b) Example of mouth reenactment showing the architecture of the landmark

reenactment model. (c) Landmark coordinates estimated by style transfer significantly

sacrifice head pose accuracy for identity preserving, whereas landmark conditional GAN

better balances this trade off.

the landmark heatmap are added element-wise and sent to transpose convolution layers to

generate reenacted landmarks. All crops are fixed-sized and they are cropped around the

centre point of corresponding landmark coordinates. The size of a landmark crop takes the

value of the average size of corresponding landmark in the dataset. The landmark heatmap

is obtained by first drawing 68 facial landmark points on a 224 × 224 image with black

background, then points are connected by fitting B-spline curves, drawing the outlines of the

face, eyes, eye brows, nose and mouth. When all landmarks are reenacted, they are directly

placed on another blank 224× 224 image Ip, and their centre point all align with the centre

point of corresponding parts in the landmark heatmap.
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3.3 Landmark Estimation

Although our landmark reenactment module relies on the face sketch generated by driving

landmark coordinates, no modification on landmark coordinates is needed during training

as source images and driving images share the same identity. When we reenact faces with

different identities, this leads to the identity preserving problems described in Chapter 1 due

to the identity mismatch between the source image and the driving sketch.

3.3.1 Landmark Style Transfer

To remedy this, we modify driving landmark coordinates by treating it as a style transfer

problem. Inspired by [45], to adapt the driving person’s landmark coordinates to the land-

mark style of the source person, we align the mean and variance of the driving coordinates

Ldriving with those of the source coordinates Lsource,

Lreen =
Ldriving − µdriving

σdriving

× σsource + µsource (3.3)

µsource, σsource, µdriving, σdriving can be obtained by computing the mean and variance of each

person’s landmark coordinates in the dataset, and Lreen is derived from modulating Ldriving

with the computed statistics. We also shift Lreenact such that its centre point is at the same

location as Ldriving. Figure 3.3(b) shows an example the driving face sketch generated by

the original landmark coordinates and the one generated by style-transferred coordinates.

3.3.2 Landmark Conditional GAN

One major problem with the above landmark style transfer is that Equation 3.3 pushes

landmark coordinates towards the average head pose in the dataset instead of truthfully

acting as the desired pose. As shown in Figure 3.3(b), landmark coordinates modified by

style transfer To remedy this problem, we propose the landmark conditional GAN as a more

reliable estimator.

The input to our conditional GAN is inspired by the evaluation metrics of face reen-

actment methods, specifically, we feed the source’s identity, the driving’s head pose, and

facial action units [46] appeared on the driving’s face into the generator to obtain 68 2-D

landmark coordinates. Facial action units(AUs) are predefined basic muscle movements on

human faces. Figure 3.4 shows selected AUs in our method, these AUs are also used for face

reenactment evaluation.
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Figure 3.4: Facial action units (AUs) for estimating landmarks and evaluating perfor-

mance.
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Figure 3.5: The architecture of landmark coordinate conditional GAN.

The convention of AU study is that a complex expression can be expressed by the addition

of many different facial action units. For instance, an unhappy mouth can be expressed as

AU15+AU17. We then took a similar approach to process AUs in the conditional GAN.

Embedding vectors of facial action units appeared in the driving image are first selected,

then these vectors are summed up to yield the overall expression feature for the input.

Proposed landmark conditional GAN can be formulated as,

Lreen = g(IDs, (α, β, γ),
18∑
i=1

1AUi) (3.4)

where g(·) is the generator of landmark conditional GAN, IDs is the identity of the source
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image, α, β, and γ are normalized angles of the driving’s head pose, the value 1 is 1 if an

AU appears in the driving image, otherwise it is 0, AUi is the embedding vector of the i-th

AU. We consider 18 AUs shown in Figure 3.4 as these AUs are commonly used for face

reenactment evaluation. The overall architecture of landmark conditional GAN is shown in

Figure 3.5.

3.4 Image Generator

The face reenactment module is a U-Net-like convolutional neural network with one inter-

mediate skip-connection. Figure 3.6 shows its overall architecture. The source image is first

sent to three convolutional layers with the size of its feature map r being reduced to 58×58,

then the estimated optical flow map f ∗ (Chapter 3.1) with size 224×224 is resized to match

the size of r and warps r, yielding the warped feature map r∗. The image Ip with reenacted

landmark parts from the landmark reenactment module (Chapter 3.2) is also resized to

58× 58 and concatenated to r∗. The concatenated feature map r∗cat. continues to go through

intermediate convolutional layers with no change in feature map size, then r∗ is concatenated

to r∗cat. through the skip connection, the resulting feature map is further upsampled through

bilinear interpolation and processed by convolution layers to generate the final reenacted

image. The use of bilinear upsampling is aiming for alleviating the checkerboard artifact in

images generated by convolutional neural networks [47].
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Figure 3.6: The style transfer branch and the image generator.

In the case of reenacting different identities, although our landmark estimation methods

greatly alleviated the identity preserving problem, unnatural face deformations exist as a

result of inaccurate optical flow estimation. To rectify this issue, we further introduce a

style transfer branch to the generator. The architecture of the style transfer branch is

inspired by StyleGAN2 [48]. Instead of estimating style transfer parameters from random
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inputs, our model takes 1-channel landmark heatmaps as input. These landmark heatmaps

are generated by first estimating the landmark coordinates using the conditional GAN in

Chapter 3.3.2, then b-spline curves are fitted between adjacent landmark points that belong

to the same landmark part, namely drawing out the contours of the face, eyes, eyebrows,

nose, and mouth. The use of heatmaps avoids the identity leak which is destined to happen

if RGB driving images were used. Furthermore, since the heatmaps are generated based

on coordinates estimated by our landmark condtional GAN, the identity information of the

driving person is excluded as much as possible. The architecture of the style transfer branch

is show in Figure 3.5.

3.5 Loss Function

Overall we use the weighted sum of four types of loss function to train our face reenactment

model, namely,

L = λlL1 + λgLAdv + λfLFM + λpLP (3.5)

Each term in Equation 3.5 are defined as follows, the loss weights λ are chosen based on our

observation during experiments.

• L1 Loss: L1 loss is responsible for supervising the pixel values in generated images.

During training, driving images Id are also the groundtruths for generated images Ig,

L1 loss is computed between these images through Equation 3.6. The weight labmdal

on this loss is set to 20 for the entire image, and 5 for individually reenacted landmarks.

H and W are the height and the width of the image respectively. I ij stands for the

pixel value at (i, j) in an image. We find that putting more weight on the L1 loss

prevents the model from generating unexpected artifacts.

L1 =
1

HW

H∑
i=1

W∑
j=1

|I ijd − I ijg | (3.6)

• Adversarial Loss: The adversarial loss we used for training is the same as [49]. Driving

images are treated as ”real samples” while reenacted images are labeled as ”fake”. We

set the weight λg for this loss to 1.

LAdv = [EId∼pId
[logD(Id)] + EIg∼pIg

[log(1−D(Ig))]] (3.7)
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• GAN Feature Matching Loss [31]: GAN feature matching loss requires the discrim-

inator to return intermediate features of real and generative samples, forcing these

features to be the same. In Equation 3.8, K is the number of neural network layers

in the discriminator, Dk(I) denotes the feature maps extracted from the k-th layer of

the discriminator given an input I, and ∥·∥1 stands for the L1 loss. The weight λf for

this loss is also set to 1. For generative tasks with groundtruth samples, GAN feature

matching loss makes the training more stable and converge faster.

LFM =
K∑
k=1

∥Dk(Id)−Dk(Ig)∥1 (3.8)

• Perceptual Loss [50]: Perceptual loss relies on a pretrained VGG model to extract

shallow visual features for real and generative samples. Pushing these features to be

close ensures that low level features in the generated image, such as the shape of the

face and shoulder, to be more realistic. In Equation 3.9, we choose the first 30 layers

of the VGG model pretrained on the ImageNet dataset. These layers are divided

into the following 5 groups, {(1, 2), (3, 7), (8, 12), (13, 21), (22, 30)}, where each group

is denoted by the sequential orders of its starting and ending layers. For instance, the

second group (3, 7) starts at the 3rd layer in the VGG model and ends with the 7th

layer of the VGG model. J is the number of groups and in this case we have J = 5.

V j(I) stands for the output feature maps from layers of the j-th group given an input

I. The weight λp for this loss is set to 10.

LP =
J∑

j=1

∥V j(Id)− V j(Ig)∥1 (3.9)

3.6 Application: Federated Face Reenactment

In previous sections of this chapter, we present the pipeline of proposed face reenactment

method, in this section we show how we apply it to federated learning. Currently there

are only a few studies on generative tasks in federated learning and little research has been

conducted on federated face reenactment. We therefore adapt the CelebV dataset and apply

the FedGAN algorithm, which is the generative version of the classic FedAvg algorithm.
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3.6.1 Federated Learning Configurations

Figure 3.7 shows the federated learning configuration for our face reenactment method. To

facilitate federated learning with existing face reenactment datasets, we evenly assign images

of a specific identity in the CelebV dataset [7] to one of the clients, each client can only access

images of appointed identity. We assume that face images of different people are sampled

from different distributions, thus, dividing datasets based on people’s identities simulates

the statistical heterogeneity in federated learning.

client generator 

client discriminator 

global generator 

global discriminator 

client generator 

client discriminator 

client generator 

client discriminator 

client generator 

client discriminator 

client generator 

client discriminator 

Client Machine

Central Server

Figure 3.7: Configuration of Federated Face Reenactment.
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Figure 3.8: Architecture of Client Models.

Given a client ci, it maintains the local training of two models, the local generator gi and

local discriminator di. For a client generator gi. Figure 3.8 shows the architecture of client
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models. The architecture of the client generator is identical to the model in Figure 3.1 (b),

the only difference is that the model can now only access images of one specific person as

federated learning forbids local clients to access remote data. The global generator and the

global discriminator share the same architecture as their client counterparts. Notice that

clients do not communicate between each other, they send locally updated models to and

receive aggregated models from the central server. Lastly, loss functions are the same as the

ones discussed in Section 3.

3.6.2 Model Aggregation

We directly apply FedGAN [44] shown in Algorithm 1 for our federated face reenactment.

Hyperparamters such as the learning rate and the termination threshold are chosen based

on our experience. FedGAN is the an adaptation of FedAvg [42] for GAN. It deploys a

generator and a dicsriminator on each client, then update these models the same way as

FedAvg, namely aggregating client models by taking the average of their weights.

Algorithm 1: Federated Face Reenactment. LG is the generator loss, LD is the

discriminator loss, b is a mini-batch of local data.

Initialization: Initialize the global generator and discriminator G, D with

parameters ωG and θD respectively. Set the learning rate ηg for

client generators and ηd for discriminators as 0.0001. Set the

threshold τ as 3, and the local update step E as 100.

1 while round ≤ 5 or V ar(LG) ≥ τ do

2 for client i ∈ {1, 2, ..., 5} in parallel do

3 ωi ← ωG ; // synchronize with global generator

4 θi ← θD ; // synchronize with global discriminator

5 for local update step e = 1, 2, ..., E do

6 ωi = ωi − ηg∇LG(ωi; b) ; // update local generator

7 θi = θi − ηd∇LD(θi; b) ; // update local discriminator

8 ωG =
∑5

i=1
1
5
ωi ; // aggregate global generator

9 θD =
∑5

i=1
1
5
θi ; // aggregate global discriminator

Given the fact that we have only 5 clients, we do not have to randomly choose clients to

speed up the training process, therefore no client model is left out when the global model

aggregates parameters from clients. Also, because the data is evenly distributed among

clients, all client models share the same weight in the aggregation stage. Instead of training

the model for predefined epochs, when the variance of the generator loss V ar(LG) from the
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last 5 rounds is less than a given threshold τ , the training is terminated and global models are

assumed to be converged. Algorithm 1 shows the procedures of federated face reenactment

discussed in this chapter.

3.7 Summary

In this chapter, we showed each module of our proposed method and loss functions we used

to train our model. Our method has three major stages: optical flow estimation, individual

landmark reenactment and image generation.

In the optical flow estimation stage, we feed the input source and driving image to a

neural network to extract their respective features, and we combine extracted features to

estimate an optical flow which operate on the feature maps of the source image.

When reenacting individual landmarks, we require the RGB landmarks cropped from the

source image and corresponding crops from the landmark heatmap generated from landmark

coordinates. Since it is necessary to reenact landmark coordinates when the source and the

driving have different identities, we first propose a coordinate style transfer method, then we

introduce a landmark conditional GAN to better estimate reenacted landmark coordinates.

Reenacted landmarks are copied to a blank image and aligned with the driving landmark

coordinates or estimated coordinates, depending on whether the source and the driving image

share the same identity or not.

In the final stage of our method, we combine outputs from last two stages to synthe-

size reenacted face images. The source image is first fed to the image generator, then the

estimated optical flow is used to warp the feature maps of the source image. We further

concatenate reenacted landmarks to warped feature maps and use transpose convolution to

generate the final output. Also, if the source and the driving images have different identity,

we adopt a style transfer branch to help synthesize more realistic images.

We detail the configuration for federated face reenactment with the proposed method.

We split the CelebV dataset based on people’s identities as we assume that face images of

different people are sampled from different distributions. By splitting the dataset in this way,

we are simulating the data heterogeneity in federated learning. We assign a client generator

and a client discriminator to each client end, and we also maintain a global generator and

global discriminator. We follow Algorithm 1 to update client model and aggregate parameters

for the global model.

Experimental results on conventional and federated face reenactment are shown in Chap-

ter 4. Ablation studies on proposed landmark style transfer, landmark conditional GAN and
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the style transfer branch are also included in Chapter 4.
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Figure 3.9: Qualitative results of proposed models on CelebV dataset.
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Figure 3.10: Qualitative results of proposed models on CelebV dataset.
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4 Experiments

4.1 Datasets and Experimental Settings

We evaluated our methods on the VoxCeleb1 dataset for self-reenactment, and the CelebV

dataset for reenacting different identities and federated face reenactment. VoxCeleb1 is a

dataset with 22,496 video clips extracted from YouTube. It contains 1,251 identities, and

people’s faces have been cropped into 256× 256 images. CelebV has around 40,000 images

for each of the five people in the dataset. For each person, their images are sampled from

the same video and has also been cropped into 256× 256 images.

The training and test sets for evaluating our method are shown in Table 4.1. For self-

reenactment, we follow the protocol in [15, 16] and trained our model on the VoxCeleb1

dataset. The test set for evaluation consists of 100 videos from the test split given by

authors of the dataset, 2,083 source-driving image pairs are sampled from these videos for

evaluation. For reenacting different identities, since our conditional landmark GAN and style

transfer module require the information of known identities, we evaluated our method in two

scenarios. The first scenario follows [15,16] and aims at reenacting unseen identities. Models

are only trained on the VoxCeleb1 dataset, however, the test set are image pairs sampled

from the CelebV dataset. For each person in CelebV, 2,000 source-driving image pairs are

randomly sampled. In the second scenario, models are only trained on the CelebV dataset.

Test set in this case also comprises 2,000 source-driving image pairs randomly sampled for

each person. For federated learning, the test set is the same as the above test sets on CelebV.

The remaining data of CelebV is evenly divided based on the five identities in the dataset,

then distributed to each client.

Table 4.1: Details of datasets for evaluated tasks.
Reenactment Task Training Set Test Set

self-reenactment VoxCeleb 2,083 pairs (VoxCeleb)

different and unknown identities VoxCeleb 10,000 pairs (CelebV)

different but known identities CelebV 10,000 pairs (CelebV)

federated learning CelebV 10,000 pairs (CelebV)

We evaluated two model variants, denoted by their backbone network for optical flow

estimation, namely ViT and ResNet. Further ablation studies were also conducted to validate

our proposed methods. The ViT model has three Vision Transformer layers for optical flow

estimation, for the ResNet variant, transformer layers are replaced by ResNet-34. In the
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work of [35], a modified ResNet-50 (25 million parameters) outperforms the base 12-layer

Vision Transformer (86 million parameters) on ImageNet top-1 accuracy by 10% with a

pre-training dataset of 10M images. Given that there are three Vision Transformer layers

(19M parameters) in our baseline model, we hence choose ResNet-34 (21M parameters)

for comparison, which is shallower than ResNet-50. Additionally, we applied landmark

style transfer described in Chapter 3.3.1 to both models and evaluated their performance

accordingly. Models with landmark style transfer are denoted by ViT+LSt and ResNet-

34+LSt.

4.2 Metrics

Performance on self-reenactment was evaluated through the following metrics, cosine sim-

ilarity (CSIM), structural similarity (SSIM) [51], peak signal-to-noise ratio (PSNR), root

mean square error of head pose angles (PRMSE), and the ratio of correct facial action units

(AUCON). CSIM measures the model’s capability on identity preserving. It is derived from

the cosine similarity between embedding vectors of the source and generated images, these

vectors are extracted by a pretrained face recognition model ArcFace [52], namely,

CSIM =
ArcFace(Is)ArcFace(Ig)

∥ArcFace(Is)∥∥ArcFace(Ig)∥
(4.1)

where ArcFace(·) yields the embedding vector of input face image, Is is the source image,

and Ig is the generated image.

SSIM and PSNR are exclusive to self-reenactment evaluation as they both require ground-

truth images to derive, which is not possible for reenacting different identities. PSNR eval-

uates low-level similarity between generated images and ground-truths, and is defined as

follows,

PSNR = 10 log(
2552

1
HW

∑H
i=0

∑W
j=0(I

ij
d − I ijg )2

) (4.2)

where 255 is the maximum pixel value in an image, H and W are the height and the width

of images respectively, Id is the driving image, I ij denotes the pixel value of image I at (i, j).

SSIM jointly evaluates the contrast, luminance, and structural similarity between images

in the following way,

SSIM = [l(Id, Ig)]
α · [c(Id, Ig)]β · [s(Id, Ig)]γ =

(2µdµg + C1)(2σdg + C2)

(µ2
d + µ2

g + C1)(σ2
d + σ2

g + C2)
(4.3)
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where l(·), c(·) and s(·) respectively measure the luminance, contrast and structural similarity

between input images. If α, β and γ are all set to 1, SSIM can then be simplified into the

form on the rightmost side of Equation 4.3. µd and µg are the mean pixel values of the

driving image and the generated image respectively, σd and σg are the standard deviations

of corresponding images, and σdg is the correlation coefficient of pixel values between the

driving and generated image. Both C1 and C2 are close-to-zero constants to ensure the

computational stability.

Head pose angels and facial action units are detected by OpenFace [24]. PRMSE is com-

puted by calculating the root mean square error of head pose angles angels of the generated

image compared against those of the driving image. For AUCON, both the driving and

generated image are sent to OpenFace, the returned results show if facial action units in

Figure 3.4 appear or not in the given image. AUCON is defined as follows,

AUCON =
TP + TN

# of Evaluated AUs
(4.4)

where TP stands for true positives, meaning the number of AUs that both appear in the

driving and generated image, TN stands for true negatives, namely the number of AUs that

do not appear in the driving and generated image. The denominator in Equation 4.4 is the

total number of evaluated facial action units, and it is set to 18.

4.3 Experimental Results and Analysis

Our experiments show that landmark coordinates of the driving image is a helpful heuristics

for preserving the source’s identity and achieving accurate head poses. By directly using

driving landmark coordinates to guide the alignment of individual landmarks in the generated

image, our model achieved better performance on identity preserving and head pose accuracy

on the VoxCeleb1 dataset, shown in Table 4.2.

Following evaluation protocols in [15, 16], we evaluate our baseline methods trained on

VoxCeleb1 for reenacting unseen people from the CelebV test set. Shown in Table 4.3, our

methods still have lower head pose error, however, the identity preserving capability is less

ideal compared to Mesh Guided GCN [15]. The main reason is that the driving’s identity

information was dismissed in the optical flow estimation stage of [15]. The landmark GAN

and style transfer module we proposed are aiming at alleviating the identity preserving prob-

lem. These methods are designed to leverage training data to improve the image quality,

hence their evaluation are shown in separate tables. In general, both landmark GAN and
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style transfer can improve the model’s identity preserving capability. When combined to-

gether, our method achieves better identity preserving capability while maintaining a lower

head pose error. Regarding the performance of federated model, we evaluate the model with

a ResNet backbone for optical flow estimation. Compared to the same model trained by

centralized learning, the federated model shows poorer performance on evaluated metrics.

4.3.1 Self-reenactment

Source
Driving


(Groundtruth)
ViT ResNet Source

Driving

(Groundtruth)

ViT ResNet

Figure 4.1: Self-reenactment on VoxCeleb1 dataset.

Table 4.2 shows models’ performance on the VoxCeleb1 dataset. Our method better pre-

serves identities (higher CSIM) and shows lower error on head pose angels (lower PRMSE).

This illustrates that coordinates of driving landmarks are a strong prior that can help models

perform better on these two metrics. SSIM takes the structural similarities into consider-

ation, which includes both the face and background of the image. Our method pays more

attention on the face region, backgrounds in reenacted images are often distorted, resulting

in a low score in SSIM. We believe the expression accuracy (AUCON) of our method is

related to the presumption made in terms of reenacting individual facial landmarks. In the

preprocessing stage, eyes and mouths for all people in the dataset are cropped into fixed

sizes to ensure that the landmark reenactment model can handle varying landmark and

camera movement in images. However, this also limits the model’s capability as there are
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Table 4.2: Evaluation of Self-reenactment on VoxCeleb1
Model CSIM↑ SSIM↑ PSNR↑ PRMSE↓ AUCON↑

Mesh Guided GCN [15] 0.822 0.739 30.394 3.20 0.887

MarioNETte [16] 0.755 0.744 23.244 3.13 0.825

Monkey-Net [18] 0.697 0.734 23.472 3.46 0.770

FirstOrder [17] 0.813 0.723 30.182 3.79 0.886

NeuralHead-FF [23] 0.229 0.635 20.818 3.76 0.791

X2face [2] 0.689 0.719 22.537 3.26 0.813

ViT 0.879 0.608 29.297 1.97 0.767

ResNet 0.878 0.650 29.606 1.58 0.793

Bold shows the best results, second bests are underlined. ↑ indicates the larger the value,

the better the performance, ↓ means otherwise.

Table 4.3: Evaluation of Reenacting Different Identities with Unseen Data on CelebV

Model CSIM↑ PRMSE↓ AUCON↑
MarioNETte [16] 0.520 3.41 0.710

Mesh Guided GCN [15] 0.635 3.41 0.709

Monkey-Net [18] 0.451 4.81 0.584

FirstOrder [17] 0.462 3.90 0.667

NeuralHead-FF [23] 0.108 3.30 0.722

X2face [2] 0.450 3.62 0.679

ViT 0.525 2.95 0.694

ResNet 0.515 2.35 0.708

cases where landmarks cannot fit in the cropped region. For instance, a wide open mouth

or a close-up camera can lead to a larger mouth region, the model may still try to fit the

entire mouth into region we cropped, resulting in less accurate expression reenactment. This

phenomenon is also observed when reenacting different identities.

4.3.2 Reenacting Different Identities

Table 4.3 shows the overall performance on the CelebV dataset for models trained only on

the VoxCeleb dataset. As mentioned above, Mesh Guided GCN [15] excludes the driving’s

identity information when reconstructing 3D face models, the optical flows are then estimated

based on these 3D models, leading to better identity preserving in generated images. With
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Table 4.4: Evaluation of Reenacting Different Identities with Models Trained on CelebV

Model CSIM↑ PRMSE↓ AUCON↑
X2Face [2] 0.467 8.12 0.611

ViT 0.568 2.77 0.692

ViT+LGAN+Style 0.653 2.66 0.675

ResNet 0.570 2.57 0.695

ResNet+LGAN+Style 0.661 2.68 0.672

Bold shows the best results, second bests are underlined. ↑ indicates the larger the value,

the better the performance, ↓ means otherwise.

the direct guidance of landmark locations, our method shows more accurate head poses.

However, due to the fact that these landmark locations do not reflect the identities of source

images, our method performs poorer than Mesh Guided GCN in terms of identity preserving.

The proposed landmark estimation and style transfer methods rely on learning from

training samples to assist the image generation process, we then trained these models on the

CelebV dataset. X2Face [2] is also trained from scratch on CelebV for comparison. Shown

in Table 4.4, X2Face’s identity preserving capability is slightly improved compared to its

performance in Table 4.3, however, the head pose error significantly increases. We find that

X2Face has difficulty converging when trained on a smaller dataset such as CelebV. Our

method achieves better identity preserving and lower head pose error with the help of the

proposed landmark GAN and style transfer module.

4.3.3 ViT vs ResNet

In general, the ResNet variant of our method performs slightly better than its ViT coun-

terpart. We believe this is because the optical flow estimated by either ResNet or ViT still

operates on feature maps extracted by a CNN, ResNet is more compatible with this fea-

ture representation as it is also a CNN based model. However, Vision Transformer is still

promising for face reenactment. When evaluated on ImageNet [35] with 10 million images

for training, a Vision Transformer with 86 million parameters is outperformed by ResNet-50

with only 25 million parameters. In our case, the ViT head for optical flow estimation has

19 million parameters while the ResNet head has 21 million parameters. Our results show

that the performance difference between these two models is negligible, a future study on

Vision Transformer based image generator for face reenactment is worth investigating.
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Model Trained on CelebV

Figure 4.2: Comparison of Reenacting Different Identities on CelebV.

4.3.4 Landmark Estimation and Style Transfer

Table 4.5 shows ablation study on proposed landmark estimation methods. Landmark Style

Transfer, denoted by LSt, is a crude way of estimating landmark coordinates, it achieves

the best identity preserving among our methods, but it also significantly hinders the pose

and expression accuracy. Landmark Conditional GAN (LGAN), on the other hand, better

balances these metrics.

Table 4.5: Evaluation of Landmark Estimation for Reenacting Different Identities on

CelebV
Model CSIM↑ PRMSE↓ AUCON↑
ViT 0.568 2.77 0.692

ViT+LSt 0.620 3.87 0.646

ViT+LGAN 0.619 2.60 0.682

ResNet 0.570 2.57 0.695

ResNet+LSt 0.616 3.78 0.650

ResNet+LGAN 0.614 2.49 0.687

Table 4.6 shows the ablation study on style transfer. The model named ”Style” is a baseline
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Table 4.6: Evaluation of Style Transfer for Reenacting Different Identities on CelebV

Model CSIM↑ PRMSE↓ AUCON↑
Style 0.647 4.75 0.646

ViT 0.568 2.77 0.692

ViT+Style 0.587 3.22 0.668

ResNet 0.570 2.57 0.695

ResNet+Style 0.606 2.97 0.670

Source Driving Style ResNet ResNet+Style

Figure 4.3: Optical flow combined with style transfer improved the quality of generated

images.

model without optical flow estimation, it’s reenactment process solely relies on the image

generator and style transfer branch in Figure 3.6. Although this model shows better identity

preserving capability, it generates images with the poorest quality. Facial textures in gen-

erated images are often a mixture of the source and driving image. Although we explicitly

exclude the RGB information from the style transfer input by using one-channel landmark

heatmaps instead, the model ”memorizes” the connection between landmark heatmaps and

their corresponding color images due to the self-supervised nature of the training stage.

Evaluation metrics also show that style transfer has a similar effect on our method, namely

promoting the identity preserving capability at the cost of head pose and expression accuracy.

However, this does not reflect the real contribution of style transfer. As shown in Figure 4.3,

faces generated by non-style-transfer methods are distorted because of the warp operation,

style transfer can help our model revert unnecessary distortion on faces, generating more

realistic images.
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Table 4.7: Evaluation of Federated Face Reenactment on CelebV
Model CSIM↑ PRMSE↓ AUCON↑

ResNet+Style (C) 0.606 2.97 0.670

ResNet+Style (F) 0.555 3.47 0.665

ResNet+Style+LGAN (C) 0.661 2.68 0.672

ResNet+Style+LGAN (F) 0.601 3.57 0.672

(C) denotes centralized learning, (F) is federated learning.

4.3.5 Federated Learning vs Centralized Learning

Overall, models trained through centralized learning perform better than federated learning.

Table 4.7 shows the evaluation results of federated learning on the CelebV dataset. We

compared models trained through different learning paradigm, we also evaluated how the

landmark conditional GAN performs in the federated setting. With the help of our landmark

conditional GAN, federated model’s performance on identity preserving has been improved,

however, unlike centralized models, the head pose error slightly increases.

Source Driving
ResNet+Style+LGAN

(F)
ResNet+Style+LGAN

(C)
Source Driving

ResNet+Style+LGAN
(F)

ResNet+Style+LGAN
(C)

Figure 4.4: Comparison between federated model and centralized model.

Figure 4.4 shows the comparison between federated and centralized models. Common

problem in images generated by federated models are shape distortion, color inaccuracy and

identity mismatch. These problems are reflected in Figure 4.4. The cause of these problems

are rooted in the model aggregation of federated learning. The algorithm introduced in

Chapter 3.6 aggregates client models by linearly combining model parameters. However, the

parameter space of the optimal model can be highly non-linear, therefore aggregating client

models through linear summation is equivalent to linearly approximating the optimal model,

resulting in errors mentioned above.
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5 Conclusion

We propose a novel face reenactment method guided by generative landmark coordinates.

We evaluate our method in the following reenactment scenarios:

• Self-reenactment. In this scenario, the source and the driving image are the taken

from the same person, which allows us to directly use landmark coordinates in the

driving image to guide reenactment as the driving image is also the groundtruth for the

generated image. We evaluated our method on the VoxCeleb1 dataset and compared

against exiting methods which are also evaluated through the same protocol. We show

that images generated by our method are more similar to the input image’s identity,

and our method has lower head pose error compared to others.

• Reenacting Different Identities. In this scenario, the identities of the source and

the driving image are different from each other. This scenario can be further divided

into two settings: 1. reenacting different and unseen identities; 2. reenacting different

but known identities. We follow the evaluation protocols of existing research and

evaluated our method on the CelebV dataset.

For reenacting different and unseen identities, since we should not learn from the

unseen data, we use our self-reenactment model trained on VoxCeleb1 for evaluation.

Our method shows competitive performance on identity preserving and expression

accuracy, and lower head pose error compared to existing methods, indicating that the

heuristic of using driving landmark coordinates to guide face reenactment is beneficial

for accurately reenacting head movement.

For reenacting different but known identities, we propose various modules to alleviate

the identity preserving problem in face reenactment, including landmark style transfer,

landmark conditional GAN, and style transfer in the image generator. We trained our

models on the CelebV dataset and evaluated them on a test set similar to the one

used for the above unseen scenario. By conducting ablation study on each module

we proposed, we show that each of them is capable of enhancing generated images.

When proposed modules are combined, we demonstrated that our models witnessed a

significant increase in identity preserving while maintaining a lower head pose error.

• Federated Face Reenactment. We adapted the CelebV dataset for federated learn-

ing and applied the FedGAN algorithm for this task. We show that our model can

still learn to perform face reenactment in the federated learning setting, however, the
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quality of generated images are not on par with those generated by models trained

through centralized learning.

5.1 Limitations

Given the experimental results in Chapter 5, we conclude major limitations of proposed

method as follows:

• Difficulty with Unseen Identities. When evaluated on unseen data from the

CelebV dataset, MeshGCN’s [15] performance on identity preserving significantly sur-

passes other methods including ours. Although we proposed landmark conditional

GAN to alleviate this problem, it can only inference landmark coordinates for known

identities. Which means that our landmark conditional GAN is inapplicable to the

scenarios of reenacting unseen faces.

• Difficulty with Different Videos of the Same Identity. This problem is unique

to the style transfer branch in the image generator. Given an identity included in

the VoxCeleb1 dataset, more than one video clip may be sampled for this person.

The person’s appearance is not necessarily the same in these videos due to changes in

environment lighting, accessories, and facial hair. For instance, the same person may

have beard in one video clip while being clean-shaven in another clip. The style transfer

branch tends to blend these two facial hair styles and generate faces with slightly

dark areas around the mouth regions. In order to improve the style transfer branch’s

awareness of varying facial features, we tried to incorporate the identity embedding

similar to our landmark GAN into the branch. However, unique appearance features

found in the input are still missing in generated images.

• Lack of Facial Action Unit Intensity. The landmark conditional GAN only con-

siders whether a facial action unit appears or not, it does not consider the intensity of

such AU, resulting in less expression accuracy in generated images when the driving

face has an intense expression.

• No Constraints on Eye Gaze. Our method does not consider the direction in

which the eyes in the driving image gaze, resulting in the phenomenon that eyes in

generated images may be looking at arbitrary directions. Accurately reenacting eye

gaze directions is not only beneficial for improving the realism of generated images, but

it is also crucial for real world application such of film making. Eye gaze constrains
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are often neglected in image warping-based methods, however, the authors of Deep

Video Portraits [11], a render-based method, did consider this problem and proposed

a solution by specifically feeding the eye gaze direction into the image generator.

• Sub-optimal Model Aggregation. As mentioned in Chapter 5.3.5, our method

aggregate client models by taking a linear combination of this, which may not reflect

the optimal update direction of parameters. Therefore the performance of federated

learning model is not as good as its centralized counterpart.

5.2 Future Work

Based on limitations discussed earlier, we argue that one possible future work is to extend

proposed method to unseen faces. This may require models trained for more general tasks

such as face recognition to provide useful features for unseen data. Specifically, our method

requires the model to learn identity embeddings from training data, which may be replaced

by a pretrained face recognition model which can generalize to arbitrary faces.

To tackle the problem with the style transfer branch, a more refined and subtler approach

is needed. Our method modifies the entire feature maps in the image generator. In contrast,

the authors of [53] investigated semantic regions in the GAN image generator and managed

to control the appearance in generated image. An approach like this may not only be the

solution to the problem with our style transfer branch, it could also achieve accurate eye

gaze reenactment as this method can precisely modify the eye regions in generated images.

Another topic worth further investigation is improving the expression accuracy of gen-

erated images. As discussed earlier, our landmark conditional GAN only considers whether

certain facial action units appeared or not in the driving image, but it does not take the

intensity of corresponding facial action units into consideration. The outcome of this is

that our model can not accurately reenact intense expressions such as one with a wide open

mouth. Our model tends to generate an image with an moderately opened mouth instead.

One solution to this could be that we only use landmark conditional GAN for alignment,

but behaviors of individual landmarks in the driving image are retained, thus the expression

intensity is intact.

Lastly, we need better aggregation strategy for federated face reenactment. Attention-

based and boosting methods are all promising ways to solve the problem. It also worth

mentioning that investigating Vision Transformer as an image generator for face reenactment

is also a possible task. Currently we rely on CNN as the image generator because the warping

43



operation is essential and it is not defined on image representations in a Vision Transformer.
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