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Abstract

In this paper, we are concerned with stochastic averaging principle for multi-valued McKean-Vlasov stochastic
differential equations. Under certain averaging conditions, we show that solutions of multi-valued McKean-Vlasov
stochastic differential equations can be approximated by solutions of the associated averaged multi-valued McKean-
Vlasov stochastic differential equations in the sense of the mean square convergence.
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1. INTRODUCTION

Stochastic differential equations (SDEs) play a significant role in modelling evolutions of dynamical systems
when taking into account uncertainty features along time in diverse fields ranging from biology, chemistry, and
physics, as well as economics and finance, etc. Recently, there has been an increasing interest to study multi-valued
SDEs. There have been many fundamental studies addressing the existence and uniqueness, asymptotic behaviors
of solutions ( [1], [8], [2] and references therein). There are also increasing interest to investigate McKean-Vlasov
SDEs (also known as distribution dependent SDEs or mean field SDEs), as the profound nonlinear Fokker-Planck
equations can be characterised by McKean-Vlasov SDEs. A distinct feature of such systems is the appearance of
probability laws in the coefficients of the resulting equations, due to this, usual and standard techniques developed
for SDEs are no longer applicable to McKean-Vlasov SDEs. One has to utilise iteration in distributions in a proper
manner to overcome the difficulties and to remedy challenge problems. More recently, Gong and Qiao [3] studied
multi-valued McKean-Vlasov SDEs with non-Lipschitz coefficients by showing the existence and uniqueness of
strong solutions. On the other hand, the averaging principle, initiated by Khasminskii in [5], is a very efficient and
important tool in study of SDEs for modelling problems arising in many practical research areas. The averaging
principle enables one to study complex equations with related averaged (yet comparably simpler) equations, which
paves a convenient and easy way to study many important properties. To the best of our knowledge, the literature
involving averaging principles for multi-valued SDEs is rather rare. In the distribution independent case, averaging
principles for multi-valued SDEs driven by Brownian motion was obtained by Ngoran and Modeste [7], Xu and Liu
[9]. Guo and Pei [4], Mao et al. [6] considered averaging principles for multi-valued SDEs driven by Poisson point
processes. However, averaging principles for multi-valued McKean-Vlasov SDEs have yet not been considered.
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The objective of the present paper is to establish a stochastic averaging principle for the following multi-valued
McKean-Vlasov SDEs with non-Lipschitz coefficients

dXt ∈ −A(Xt)dt+ b(t,Xt,LXt)dt+ σ(t,Xt,LXt)dBt, (1.1)

where LXt stands for the probability distribution of Xt, A : Rd → 2R
d

is a multi-valued maximal monotone
operator, the coefficients b : [0, T ] × Rd ×M2(Rd) → Rd and σ : [0, T ] × Rd ×M2(Rd) → Rd×m are Borel
measurable, and {Bt}t≥0 is an m-dimensional Brownian motion defined on a filtered probability space. Compared
with the usual McKean-Vlasov SDEs, i.e., A = 0, most of difficulties towards (1.1) come from the high singularity
of multi-valued maximal monotone operator A which is neither bounded nor continuous.

The rest of the paper is organised as follows. Section 2 recalls basic notations and introduces maximal monotone
operators. Section 3 is denoted to the proof of our stochastic averaging principle which states that the solution of
the averaged equation will converge to that of the concerned equation in the sense of the mean square.

2. PRELIMINARIES

We use | · | and ‖ · ‖ for norms of vectors and matrices, respectively. Let 〈·, ·〉 denote the scalar product in Rd

and let C(Rd) be the collection of continuous functions on Rd and C2(Rd) be the space of continuous functions
on Rd which have continuous partial derivatives of order up to 2. Define the Banach space

Cρ(Rd) :=
{
ϕ ∈ C(Rd), ‖ϕ‖Cρ(Rd) := sup

x∈Rd

|ϕ(x)|
(1 + |x|)2

+ sup
x 6=y

|ϕ(x)− ϕ(y)|
|x− y|

<∞
}
.

Let B(Rd) be the Borel σ-algebra on Rd and P(Rd) be the space of all probability measures defined on B(Rd)
carrying the usual topology of weak convergence. Let M2(Rd) be the set of probability measures on B(Rd) with
finite second order moments. That is,

M2(Rd) :=
{
µ ∈ P(Rd) : ‖µ‖22 :=

∫
Rd
|x|2µ(dx) <∞

}
.

Define the following metric on M2(Rd):

ρ(µ, ν) := sup
‖ϕ‖Cρ(Rd)≤1

∣∣∣ ∫
Rd
ϕ(x)µ(dx)−

∫
Rd
ϕ(x)ν(dx)

∣∣∣, µ, ν ∈M2(Rd).

It is clear that (M2(Rd), ρ) is a complete metric space and ρ(LX ,LY ) ≤ (E|X − Y |2)
1

2 , and further that the
convergence with respect to the metric ρ is equivalent to the weak convergence (see e.g. [3]). Denote by 2R

d

the
set of all subsets of Rd, a map A : Rd → 2R

d

is called a multi-valued operator on Rd. Given such a multi-valued
operator A, we define

D(A) = {x ∈ Rd : A(x) 6= ∅}, Gr(A) = {(x, y) ∈ R2d : x ∈ D(A), y ∈ A(x)}.

A−1 is defined by y ∈ A−1(x)⇔ x ∈ A(y).

Definition 2.1. (i) A multi-valued operator A is called monotone if

〈x1 − x2, y1 − y2〉 ≥ 0, ∀(x1, y1), (x2, y2) ∈ Gr(A).

(ii) A monotone operator A is called maximal monotone if and only if

(x1, y1) ∈ Gr(A)⇔ 〈y1 − y2, x1 − x2〉 ≥ 0, ∀(x2, y2) ∈ Gr(A).
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Given T > 0. Let V0 be the set of all continuous functions K : [0, T ]→ Rd with finite variations and K0 = 0.
For K ∈ V0 and s ∈ [0, T ], we shall use |K|s0 to denote the variation of K on [0, s]. Set

A :=
{

(X,K) : X ∈ C([0, T ], D(A)),K ∈ V0 and 〈Xt − x, dKt − ydt〉 ≥ 0 for any (x, y) ∈ Gr(A)
}
.

For more details about the maximal monotone operator, we refer to ( [1], [10])

Lemma 2.2. For X ∈ C([0, T ], D(A)) and K ∈ V0, the following statements are equivalent:

(i) (X,K) ∈ A ;
(ii) For any (x, y) ∈ C([0, T ],Rd), (xt, yt) ∈ Gr(A), it holds that 〈Xt − xt, dKt − ytdt〉 ≥ 0;

(iii) For any (X
′
,K

′
) ∈ A , it holds that 〈Xt −X

′

t , dKt − dK
′

t〉 ≥ 0.

Lemma 2.3. Assume that Int(D(A)) 6= ∅, where Int(D(A)) denotes the interior of the set D(A). For any
a ∈ Int(D(A)), there exists constants γ1 > 0, and γ2, γ2 ≥ 0 such that for any (X,K) ∈ A and 0 ≤ s < t ≤ T ,∫ t
s 〈Xr − a, dKr〉 ≥ γ1|K|ts − γ2

∫ t
s |Xr − a|dr − γ3(t− s).

Lemma 2.4. Assume that {Kn, n ∈ N} ⊂ V0 converges to some K in C([0, T ];Rd) and supn∈N |Kn|T0 < ∞.
Then K ∈ V0, and limn→∞

∫ T
0 〈X

n
s , dK

n
s 〉 =

∫ T
0 〈Xs, dKs〉, where the sequence {Xn} ⊂ C([0, T ],Rd) converges

to some X in C([0, T ],Rd).

Definition 2.5. We say that Eq.(1.1) admits a strong solution with the initial value ξ if there exists a pair of adapted
processes (X.,K.) on a filtered probability space (Ω,F , {Ft}t∈[0,T ],P) such that

(i) P(X0 = ξ) = 1, (ii) Xt ∈ Ft, where Ft stands for the σ-field filtration generated by(Bs)s≤t and ξ,
(iii) (X.(ω),K.(ω)) ∈ A a.s. P,
(iv) it holds that P

{∫ T
0 (|b(s,Xs,LXs)|+ ‖σ(s,Xs,LXs)‖2)ds < +∞

}
= 1, and

Xt = ξ −Kt +

∫ t

0
b(s,Xs,LXs)ds+

∫ t

0
σ(s,Xs,LXs)dBs, t ∈ [0, T ].

Utilising the Carathéodory approximation technique and Bihari’s inequality, one can establish the existence and
uniqueness theorem for the solution of multi-valued McKean-Vlasov SDEs (1.1) under the following Assumption.

Assumption 2.6. For any x, y ∈ Rd, µ, ν ∈ M2(Rd) and t ∈ [0, T ], there exists an increasing bounded function
L : [0,∞)→ (0,∞) such that

|b(t, x, µ)− b(t, y, ν)|2 + ‖σ(t, x, µ)− σ(t, y, ν)‖2 ≤ L(t)κ(|x− y|2 + ρ2(µ, ν)),

and |b(t, 0, δ0)|2 + ‖σ(t, 0, δ0)‖2 ≤ L(t), where κ : R+ → R+ is a concave non-decreasing function such that
κ(0) = 0,

∫
0+

1
κ(u)du = +∞.

Remark 2.7. By Assumption 2.6, it holds that for t ∈ [0, T ], x ∈ Rd, µ ∈M2(Rd)

|b(t, x, µ)|2 + ‖σ(t, x, µ)‖2 ≤ 2L(t)[κ(|x|2 + ρ2(µ, δ0)) + 1].

3. STOCHASTIC AVERAGING PRINCIPLE

We aim to derive a stochastic averaging principle for the following multi-valued McKean-Vlasov SDE

Xε
t = ξ − εKt + ε

∫ t

0
b(s,Xε

s,LXε
s
)ds+

√
ε

∫ t

0
σ(s,Xε

s,LXε
s
)dBs (3.1)

with the initial value Xε
0 = ξ. Here the coefficients b and σ have the same conditions as in Assumption 2.6 and

ε ∈ [0, ε0] is a positive small parameter with ε0 is a fixed number. Thus, (3.1) has a unique solution (Xε
t ,Kt), t ∈
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[0, T ]. Moreover, this solution satisfies E(sup0≤t≤T |Xε
t |2) ≤ Cε, and E|Xε

t − Xε
s|2 ≤ Cε(t − s), where Cε is a

positive constant depend on ε.
Our objective is to show that the solution (Xε

t ,Kt), t ∈ [0, T ] could be approximated in certain sense by the
solution (Y ε

t , K̄t), t ∈ [0, T ] of the following averaged equation

Y ε
t = ξ − εK̄t + ε

∫ t

0
b̄(Y ε

s ,LY εs )ds+
√
ε

∫ t

0
σ̄(Y ε

s ,LY εs )dBs, (3.2)

where b̄ : Rd ×M2(Rd)→ Rd and σ̄ : Rd ×M2(Rd)→ Rd×m are Borel measurable functions.

Assumption 3.1. (Averaging condition) For any x ∈ Rd, µ ∈M2(Rd) and T1 > 0, there exist two positive bounded
functions ψi : (0,∞)→ (0,∞), i = 1, 2 with limT1→∞ ψi(T1) = 0, such that

1

T1

∫ T1

0
|b(s, x, µ)− b̄(x, µ)|2ds ≤ ψ1(T1)(1 + |x|2 + ρ2(µ, δ0)),

1

T1

∫ T1

0
‖σ(s, x, µ)− σ̄(x, µ)‖2ds ≤ ψ2(T1)(1 + |x|2 + ρ2(µ, δ0)).

Remark 3.2. For any x, y ∈ Rd, µ, ν ∈M2(Rd) and T1 > 0, we have

|b̄(x, µ)− b̄(y, ν)|2 + ‖σ̄(x, µ)− σ̄(y, ν)‖2

≤ 3(ψ1(T1) + ψ2(T1))(2 + |x|2 + |y|2 + ρ2(µ, δ0) + ρ2(ν, δ0)) + 3L(T1)κ(|x− y|2 + ρ2(µ, ν)),

|b̄(0, δ0)|2 + ‖σ̄(0, δ0)‖2 ≤ 2(ψ1(T1) + ψ2(T1)) + 2L(T1).

Taking T1 →∞, because L(t) is bounded, there exists a constant M, such that

|b̄(x, µ)− b̄(y, ν)|2 + ‖σ̄(x, µ)− σ̄(y, ν)‖2 ≤Mκ(|x− y|2 + ρ2(µ, ν)), |b̄(0, δ0)|2 + ‖σ̄(0, δ0)‖2 ≤M.

Thus, the coefficients b̄, σ̄ satisfy the Assumptions 2.6. Therefore, there is a unique solution (Y ε
. , K̄

ε
. ) to the averaged

equation (3.2). Moreover, this solution satisfies E(sup0≤t≤T |Y ε
t |2) ≤ Cε.

Theorem 3.3. Suppose that Int(D(A)) 6= ∅ and E|ξ|2 < +∞. Then under Assumption 2.6 and 3.1, the averaging
principle holds limε→0 E(sup0≤t≤T |Xε

t − Y ε
t |2) = 0.

Proof. From (3.1) and (3.2), we have

Xε
t − Y ε

t = −ε[Kt − K̄t] + ε

∫ t

0
[b(s,Xε

s,LXε
s
)− b̄(Y ε

s ,LY εs )]ds

+
√
ε

∫ t

0
[σ(s,Xε

s,LXε
s
)− σ̄(Y ε

s ,LY εs )]dBs.

By Itô formula, we have

|Xε
t − Y ε

t |2 = −2ε

∫ t

0
〈Xε

s − Y ε
s , dKs − dK̄s〉+ 2ε

∫ t

0
〈Xε

s − Y ε
s , b(s,X

ε
s,LXε

s
)− b̄(Y ε

s ,LY εs )〉ds

+ 2
√
ε

∫ t

0
〈Xε

s − Y ε
s , (σ(s,Xε

s,LXε
s
)− σ̄(Y ε

s ,LY εs ))dBs〉+ ε

∫ t

0
‖σ(s,Xε

s,LXε
s
)− σ̄(Y ε

s ,LY εs )‖2ds.

Then, according to Definition 2.5 and Lemma 2.2, it is immediate to conclude that
∫ t
0 〈X

ε
s − Y ε

s , dKs − dK̄s〉 ≥ 0.
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Taking the expectation on both sides, it follows that for any t ∈ [0, T ],

E
(

sup
0≤s≤t

|Xε
s − Y ε

s |2
)
≤ 2εE

∫ t

0
|Xε

s − Y ε
s ||b(s,Xε

s,LXε
s
)− b̄(Y ε

s ,LY εs )|ds

+ εE
∫ t

0
‖σ(s,Xε

s,LXε
s
)− σ̄(Y ε

s ,LY εs )‖2ds

+ 2
√
εE
(

sup
0≤s≤t

∫ s

0
〈Xε

r − Y ε
r , (σ(r,Xε

r ,LXε
r
)− σ̄(Y ε

r ,LY εr ))dBr〉
)
.

(3.3)

By the basic inequality 2|a||b| ≤ |a|2 + |b|2, we can obtain

2εE
∫ t

0
|Xε

s − Y ε
s ||b(s,Xε

s,LXε
s
)− b̄(Y ε

s ,LY εs )|ds

≤ εE
∫ t

0
|Xε

s − Y ε
s |2ds+ εE

∫ t

0
|b(s,Xε

s,LXε
s
)− b̄(Y ε

s ,LY εs )|2ds.
(3.4)

Burkholder-Davis-Gundy’s inequality implies that

2
√
εE
(

sup
0≤s≤t

∫ s

0
〈Xε

r − Y ε
r , (σ(r,Xε

r ,LXε
r
)− σ̄(Y ε

r ,LY εr ))dBr〉
)

≤ C
√
εE
[ ∫ t

0
|Xε

s − Y ε
s |2‖σ(s,Xε

s,LXε
s
)− σ̄(Y ε

s ,LY εs )‖2ds
] 1

2

≤ 1

2
E
(

sup
0≤s≤t

|Xε
s − Y ε

s |2
)

+ CεE
∫ t

0
‖σ(s,Xε

s,LXε
s
)− σ̄(Y ε

s ,LY εs )‖2ds.

(3.5)

Combing with (3.3)-(3.5), we obtain

E
(

sup
0≤s≤t

|Xε
s − Y ε

s |2
)
≤ 2εE

∫ t

0
|Xε

s − Y ε
s |2ds+ 2εE

∫ t

0
|b(s,Xε

s,LXε
s
)− b̄(Y ε

s ,LY εs )|2ds

+ CεE
∫ t

0
‖σ(s,Xε

s,LXε
s
)− σ̄(Y ε

s ,LY εs )‖2ds. (3.6)

By Assumption 2.6, Assumption 3.1 and Remark 3.2, we have

E
(

sup
0≤s≤t

|Xε
s − Y ε

s |2
)
≤ 2εE

∫ t

0
|Xε

s − Y ε
s |2ds+ 4εE

∫ t

0
|b(s,Xε

s,LXε
s
)− b(s, Y ε

s ,LY εs )|2ds

+ CεE
∫ t

0
‖σ(s,Xε

s,LXε
s
)− σ(s, Y ε

s ,LY εs )‖2ds+ 4εE
∫ t

0
|b(s, Y ε

s ,LY εs )− b̄(Y ε
s ,LY εs )|2ds

+ CεE
∫ t

0
‖σ(s, Y ε

s ,LY εs )− σ̄(Y ε
s ,LY εs )‖2ds

≤ 2εE
∫ t

0
|Xε

s − Y ε
s |2ds+ CεE

∫ t

0
L(s)κ(|Xε

s − Y ε
s |2 + ρ2(LXε

s
,LY εs ))ds

+12εE
∫ t

0
|b(s, Y ε

s ,LY εs )− b(s, 0, δ0)|2ds+ 12εE
∫ t

0
|b(s, 0, δ0)− b̄(0, δ0)|2ds

+12εE
∫ t

0
|b̄(Y ε

s ,LY εs )− b̄(0, δ0)|2ds+ CεE
∫ t

0
‖σ(s, Y ε

s ,LY εs )− σ(s, 0, δ0)‖2ds

+CεE
∫ t

0
‖σ(s, 0, δ0)− σ̄(0, δ0)‖2ds+ CεE

∫ t

0
‖σ̄(Y ε

s ,LY εs )− σ̄(0, δ0)‖2ds

≤ 2εE
∫ t

0
|Xε

s − Y ε
s |2ds+ Cε

∫ t

0
L(s)κ(2E|Xε

s − Y ε
s |2)ds+ Cε

∫ t

0
(L(s) +M)κ(2E|Y ε

s |2)ds

+Cεt(ψ1(t) + ψ2(t)).
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Letting γ(x) = κ(x) + x, we get

E
(

sup
0≤s≤t

|Xε
s − Y ε

s |2
)
≤ Cε

∫ t

0
(L(s) + 1)γ(2E( sup

0≤r≤s
|Xε

r − Y ε
r |2))ds

+Cε

∫ t

0
(L(s) +M)κ(2E( sup

0≤r≤s
|Y ε
r |2))ds+ Cεt(ψ1(t) + ψ2(t)).

(3.7)

Given that κ(·) is concave and increasing, there must exist a positive number a such that

κ(x) ≤ a(1 + x).

Hence, we have

E
(

sup
0≤s≤t

|Xε
s − Y ε

s |2
)
≤ Cε

∫ t

0
(L(s) + 1)γ(2E( sup

0≤r≤s
|Xε

r − Y ε
r |2))ds

+Cεt(L(T ) +M)(1 + 2E( sup
0≤r≤s

|Y ε
r |2)) + Cεt(ψ1(t) + ψ2(t)).

Remark 3.2 and the boundness of L(t), ψi(t), i = 1, 2 yield that

E
(

sup
0≤s≤t

|Xε
s − Y ε

s |2
)
≤ Cε

∫ t

0
(L(s) + 1)γ(2E( sup

0≤r≤s
|Xε

r − Y ε
r |2))ds+ Cεt.

Obviously, γ(x) is nondecreasing function on R+ and γ(0) = 0. Setting G(t) =
∫ t
1

ds
γ(s) , it follows from Bihari’s

inequality that E
(

sup0≤s≤t |Xε
s − Y ε

s |2
)
≤ 1

2G
−1(G(Cεt) + Cε(L(T ) + 1)T ). Noting that Cεt → 0 as ε → 0.

Recalling the condition
∫
0+

ds
γ(s) = +∞, we can conclude that G(Cεt) + Cε(L(T ) + 1)T → −∞, ε → 0. On

the other hand, because G is a strictly increasing function, then we obtain that G has an inverse function which is
strictly increasing and G−1(−∞) = 0. That is G−1(G(Cεt) + Cε(L(T ) + 1)T ) → 0, ε → 0. Consequently, we
have limε→0 E

(
sup0≤s≤t |Xε

s − Y ε
s |2
)

= 0. This completes the proof.

Note that we can obtain the order of convergence, that is, for any small number δ1 > 0, there exist L > 0,
β ∈ (0, 1) and ε1 ∈ (0, ε0] such that for all ε ∈ (0, ε1], E(sup

t∈[0,Lε 1
2
−β ]
|Xε

t −Y ε
t |2) ≤ δ1. Here we have established

our main result in the sense of L2 convergence. A very interesting question is that whether one can derive such
kind of result in the sense of Lp convergence for p > 2. We plan to address this problem in our forthcoming work.
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