
On a class of distribution dependent stochastic
differential equations driven by time-changed Brownian

motions

Guangjun Shen, Tingting Zhang, Jie Song, Jiang-Lun Wu∗

February 19, 2023

Abstract

In this paper, a class of distribution dependent stochastic differential equations driven
by time-changed Brownian motion is studied. The existence and uniqueness theorem
of strong solutions for the distribution dependent stochastic differential equations is
established. Then, sufficient conditions are provided to guarantee the solutions to be
stable in several different senses in terms of Lyapunov function. Finally, we show that
the solutions of the distribution dependent stochastic differential equations can be
approximated by solutions of the associated averaged stochastic differential equations
in mean square convergence.
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1 Introduction

Inspired by the seminal work [21] of Kac, McKean in [31] studied nonlinear Fokker-Planck
equations using stochastic differential equations with distribution dependent drifts. There-
after, distribution dependent stochastic differential equations (DDSDEs, for short) of the
following form

dX(t) = b(t,X(t),L (X(t)))dt+ σ(t,X(t),L (X(t)))dBt, (1.1)

have received vast attention, where L (X(t)) stands for the distribution (i.e., the law) of the
random variable X(t). These equations have also been named as McKean-Vlasov stochastic
differential equations or mean-field stochastic differential equations in the literature. A dis-
tinct feature of such stochastic differential equations is the appearance of probability laws in
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the coefficients of the equations. Owing to the investigation of mean-field control, mean-field
games and complex networked systems (see, for example, Bensoussan et al. [3], Huang et al.
[16], Lasry et al. [25]), there are many papers devoted to the study of distribution dependent
systems and the relevant theories have been well developed. A thorough illustration of the
general theory of DDSDEs and their particle approximations can be found in [43], and the
survey article [18] by Huang et al. summarises recent progresses on DDSDEs. There are
many interesting investigations on existence and uniqueness for solutions of DDSDEs under
various conditions, we would like to mention a few here. Wang [45] established strong well-
posedness of DDSDEs with one-sided Lipschitz continuous drifts and Lipschitz-continuous
dispersion coefficients. Li et al. [26] obtained existence and uniqueness for McKean-Vlasov
stochastic differential equations under local Lipschitz conditions of state variables. Fur-
ther studies of DDSDEs can be found in Bao et al. [2], Huang and Wang [17], Ren and
Wang [37], Röckner and Zhang [40], Mishura and Veretennikov [32], Chaudru de Raynal [6],
Hammersley et al [13], Ding and Qiao [8], Fan et al [10], Hong et al [14] just mention a few.

For stochastic differential equations, based on the existence and uniqueness of their so-
lutions, stability of the solutions is an important topic. It means that the trajectories do
not change too much under small perturbations. The stability has been studied widely in
various different senses, such as stochastically stable, stochastically asymptotically stable,
moment exponentially stable, almost surely stable, mean square polynomial stable and so on
(see for example Mao [30] for systematic introduction of stabilities). Recently, Bahlali et al.
[1] derived various stability properties of McKean-Vlasov stochastic differential equations
with respect to initial data, coefficients and driving processes. Ding and Qiao [9] consid-
ered the exponential stability of second moments, almost surely asymptotic stability for a
type of stochastic McKean-Vlasov equations. Gong and Qiao [11] investigated the stability
and path-independence of additive functionals for a type of multivalued McKean-Vlasov
stochastic differential equations under non-Lipschitz conditions.

On the other hand, time-changed semimartingales have attracted considerable atten-
tion, and their various generalisations have been widely used to model anomalous diffu-
sions arising in physics, finance, hydrology, and cell biology (see recent monograph Umarov,
Hahn and Kobayashi [44] and references therein). In [23], Kobayashi introduced the dual-
ity theorem between time-changed stochastic differential equations and the corresponding
non-time-changed SDEs, and established the Itô formula for time-changed stochastic differ-
ential equations. When the original semimartingale is a standard Brownian motion, then
it is well known that the transition probability density of the time-changed Brownian mo-
tion satisfies a time-fractional partial differential equation (Nane and Ni [35]). Deng and
Liu [7] approximated a class of time-changed stochastic differential equations using semi-
implicit Euler-Maruyama method and discussed the convergence rate. Liu et al [28] used
Truncated Euler-Maruyama method to study time-changed nonautonomous stochastic dif-
ferential equations. Wu [46] considered stabilities in different senses for SDEs driven by
time-changed Brownian motion. Li and Ren [27] studied the practical stability with regard
to a part of the variables for DDSDEs driven by time-changed Brownian motion. For the
stabilities and related results when the driven process is a time-changed Lévy process, we
can see Nane and Yi [33, 34], Shen et al. [42].

Inspired by the aforementioned works, in this paper for arbitrarily fixed d,m ∈ N, we are
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concerned with the following class of DDSDEs driven by time-changed Brownian motions:

dX(t) = b(t, Et, X(t),L (X(t)))dEt + σ(t, Et, X(t),L (X(t)))dBEt (1.2)

on a given complete, filtered probability space (Ω,F , {Ft}t≥0,P) with a standard filtration
{Ft}t≥0 satisfying the usual conditions, where the coefficients b : [0, T ] × [0,∞) × Rd ×
P(Rd) 7→ Rd and σ : [0, T ]× [0,∞)× Rd × P(Rd) 7→ Rd×m are Borel measurable functions,
L (X(t)) stands for the probability law or distribution of the random variable X(t) and
P(Rd) denotes the space of all probability measures on the Borel measurable space Rd

equipped with the weak topology, the initial value X0 is an F0-measurable random variable
satisfying E|X0|2 < ∞, B(t), t ≥ 0, is an m-dimensional {Ft}t≥0-Brownian motion, Et is a
random time-change denoting a new clock and it is defined as

Et := inf{s > 0 : D(s) > t},

the generalised inverse of an increasing, α-stable {Ft}t≥0-adapted Lévy process D(t), t ≥ 0,
with Lévy stable index α ∈ (1, 2). The process {D(t), t ≥ 0} is also named as a subordinator
starting from 0 with the Laplace transform

E(e−λD(t)) = e−tφ(λ), λ > 0,

for the Laplace exponent

φ(λ) :=

∫ ∞
0

(1− e−λx)µ(dx)

associated with a given σ-finite measure µ on (0,∞) such that
∫∞

0
(1 ∧ x)µ(dx) < ∞.

We assume that µ is infinite, i.e., v(0,∞) = ∞. The time change Et is continuous and
nondecreasing, however, it is not Markovian. In this paper, we assume that Bt is independent
of Dt. Without loss of generality, we further specify that the filtration {Ft}t≥0 is defined
(determined) by

Ft :=
⋂
s>t

{
σ1[Br : 0≤r≤s] ∨ σ2[Er : r ≥ 0]

}
, (1.3)

where the notation σ1∨σ2 denotes the σ-algebra generated by the union of the two σ-algebras
σ1 and σ2. Magdziarz [29] named the composition B◦E = (BEt)t≥0 as a time-changed
Brownian motion, it is a square integrable martingale with respect to the filtration {Gt}t≥0

where Gt := FEt , t ≥ 0. Without loss of generality, we simply assume that b(t, Et, 0, δ0) = 0
and σ(t, Et, 0, δ0) = 0 for all t ≥ 0 and Et ∈ [0,∞), where δ0 denotes the Dirac measure
at 0. Thus, Equation (1.2) has the trivial solution X(t) = 0 corresponding to the initial
condition X(0) = 0.

The primary objectives of this paper is to establish the existence and uniqueness theorem
of strong solutions for (1.2), and then to investigate stability of the solutions in several
different senses in terms of Lyapunov functions. Our final objective is to derive an averaging
principle to show that the solutions of (1.2) can be efficiently approximated by solutions of
the associated averaged stochastic differential equations in mean square convergence.

The rest of the paper is organized as follows. In Section 2, we present some preliminaries
for this paper. In Section 3, we prove that there is a unique strong solution of Eq.(1.2)
under some conditions. In addition, we extend the classical Itô’s formula from stochastic
differential equations to DDSDEs driven by time-changed Brownian motions, which is a
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powerful tool for our stability research. Based on the generalised Itô formula, in Section
4, we give sufficient conditions to ensure that the solutions of time-changed DDSDEs (1.2)
is stable in several different senses, including stochastic stability, stochastically asymptotic
stability and globally stochastically asymptotic stability, we also provide an example to
illustrate the obtained results. As a related problem, in Section 5, under certain averaging
condition, we show that the solutions of DDSDEs can be approximated by the solutions of
the associated averaged DDSDEs in the sense of the mean square convergence.

2 Preliminaries

In this section, we briefly give preliminaries which will be used in the sequel. For technical
reasons, we will work on the following subspace of P(Rd) for any fixed θ ∈ [2,∞)

Pθ(Rd) :=

{
µ ∈ P(Rd) : µ(| · |θ) :=

∫
Rd
|x|θµ(dx) <∞

}
which is a Polish space under the Lθ-Wasserstein distance

Wθ(µ1, µ2) := inf
π∈C (µ1,µ2)

( ∫
Rd×Rd

|x− y|θπ(dx, dy)
) 1
θ , µ1, µ2 ∈ Pθ(Rd),

where C (µ1, µ2) is the set of all couplings for µ1 and µ2.

Note that for any x ∈ Rd, the Dirac measure δx belongs to Pθ(Rd) for any θ ∈ [2,∞) and
if µ1 = L (X), µ2 = L (Y ) are the corresponding distributions of random variables X and
Y respectively, then

Wθ(µ1, µ2)θ ≤
∫
Rd×Rd

|x− y|θL ((X, Y ))(dx, dy) = E|X − Y |θ, (2.1)

in which L ((X, Y )) represents the joint distribution of the random pair (X, Y ). For any
T > 0, let C([0, T ];Rd) be the collection of all Rd-valued continuous functions on [0, T ],
endowing with the supremum norm. Furthermore, we let Sθ(Ω;C([0, T ];Rd)) be the total-
ity of C([0, T ];Rd)-valued random variables X satisfying E[sup0≤t≤T |X(t)|θ] < ∞. Then,
Sθ(Ω;C([0, T ];Rd)) is a Banach space under the norm

||X||Sθ := (E[ sup
0≤t≤T

|X(t)|θ])
1
θ .

Throughout this paper, the letter C will denote a positive constant whose value may
change in different occasions. We will write the dependence of constant on parameters
explicitly if it is essential. For convenience, we shall use | · | and || · || for norms of vectors
and matrices, respectively. Let C1,1,2([0, T ]× [0,∞)×Rd) denote the family of all functions
V (t1, t2, x) from [0, T ]×R+×Rd 7→ R which are continuously once differentiable in t1 and t2
as well as continuously twice differentiable in x. Let K denote the family of all nondecreasing
functions ϕ : R+ → R+ such that ϕ(r) > 0 for all r > 0. Also let Sh := {x ∈ Rd : |x| < h}
and S̄h := {x ∈ Rd : |x| ≤ h} for any h > 0.

Now we recall the definition of L-derivative for functions (we can see Ren and Wang [38]).
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Definition 2.1 (1) Let functional V : P2(Rd) 7→ R and µ ∈P2(Rd). If the functional

L2(Rd, µ;Rd) 3 φ7→V (µ ◦ (I + φ)−1),

is Fréchet differentiable at 0∈L2(Rd, µ;Rd), that is, there is a unique ψ∈L2(Rd, µ;Rd)
such that

lim
µ(|φ|2)→0

V (µ ◦ (I + φ)−1)− V (µ)− µ(〈ψ, φ〉)√
µ(|φ|2)

= 0,

where µ(φ) :=
∫
Rd φ(x)µ(dx). Then V is L-differentiable at µ ∈ P2(Rd). Denote

∂µV (µ) := ψ, which is termed the L-derivative of V at µ.

(2) Suppose that V : P2(Rd) 7→ R. If the L-derivative ∂µV (µ) exists for every µ ∈
P2(Rd), then we say that V is L-differentiable on P2(Rd).

Definition 2.2 (1) A function V : P2(Rd) 7→ R is said to be in the space C2(P2(Rd)),
if V is L-differentiable on P2(Rd), and its derivative ∂µV (y) : P2(Rd)× Rd 7→ Rd is
continuous at every (µ, y) for y∈supp(µ). ∂µV (y) is differentiable in y and ∂y∂µV :
P2(Rd) × Rd 7→ Rd×d is continuous at all (µ, y) satisfying y∈supp(µ). In addition,
∂2
µV : P2(Rd)× Rd × Rd 7→ Rd×d exists and is continuous.

(2) Assume that V : [0, T ]× [0,∞)× Rd × P2(Rd) 7→ R. If V (·, ·, ·, µ) is in C1,1,2([0, T ]×
[0,∞) × Rd) for any µ, and V (t, E,X, ·) ∈ C2(P2(Rd)) for every (t, E,X), and all
partial derivatives ∂t1V (t, E,X, µ), ∂t2V (t, E,X, µ), ∂xV (t, E,X, µ), ∂2

xV (t, E,X, µ),
∂µV (t, E,X, µ)(y), ∂y∂µV (t, E,X, µ)(y) and ∂2

µV (t, E,X, µ)(y, y′) are continuous with
respect to (t, E,X, µ), (t, E,X, µ, y) or (t, E,X, µ, y, y′). Then, V is said to be in the
set C1,1,2,(2)([0, T ]× [0,∞)× Rd × P2(Rd)).

(3) A function V : [0, T ]× [0,∞)×Rd ×P2(Rd) 7→ R is said to be in Cb([0, T ]× [0,∞)×
Rd×P2(Rd)), if V ∈ C1,1,2,(2)([0, T ]× [0,∞)×Rd×P2(Rd)) and all its derivatives are
uniformly bounded on [0, T ] × [0,∞) × Rd × P2(Rd). In addition, if V ∈ Cb([0, T ] ×
[0,∞)×Rd×P2(Rd)) and V ≥ 0, we say that V ∈ Cb,+([0, T ]× [0,∞)×Rd×P2(Rd)).

Definition 2.3 (1) The trivial solution of Eq. (1.2) is said to be stochastically stable or
stable in probability if for every pair of ε ∈ (0, 1) and r > 0, there exists a δ = δ(ε, r) >
0 such that

P{|X(t, x0)| < r for all t ≥ 0} ≥ 1− ε,
whenever |x0| < δ.

(2) The trivial solution of Eq. (1.2) is said to be stochastically asymptotically stable if it
is stochastically stable and, moreover, for every ε ∈ (0, 1), there exists a δ0 = δ0(ε) > 0
such that

P{ lim
t→∞

X(t, x0) = 0} ≥ 1− ε,

whenever |x0| < δ0.

(3) The trivial solution of Eq. (1.2) is said to be globally stochastically asymptotically
stable or stochastically asymptotically stable in the large if it is stochastically stable
and for all x0 ∈ Rd,

P{ lim
t→∞

X(t, x0) = 0} = 1.
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3 The generalised Itô formula for DDSDEs driven by

time-changed Brownian motions

In this section, we establish the existence and uniqueness of strong solutions to Eq.(1.2) un-
der monotonicity condition. In addition, we extend the classical Itô formula from stochastic
differential equations to DDSDEs driven by time-changed Brownian motions. Moreover,
the Lyapunov functions not only contain state of the solution but also the distributions of
the solution, which is the essential difference from the classical Lyapunov functions. It is a
powerful tool for our study of stability.

In order to derive the main results of this section, we require that the coefficients
b(t1, t2, x, µ) and σ(t1, t2, x, µ) satisfy the following assumptions.

Assumption 3.1 (H1) The function b, σ satisfy for t1 ∈ [0, T ], t2 ∈ [0,∞) and (x, µ),
(y, v) ∈ Rd × P2(Rd)

2 〈x− y, b(t1, t2, x, µ)− b(t1, t2, y, ν)〉+||σ(t1, t2, x, µ)−σ(t1, t2, y, ν)||2 ≤ K1(|x−y|2+W2(µ, v)2),

where K1 > 0 is a positive constant.
(H2) The function b is bounded on bounded sets in [0, T ] × [0,∞) × Rd × P2(Rd) and for
every t ≥ 0, b(t, Et, x, µ) is continuous on Rd × P2(Rd). Moreover, there exist a constant
K2 > 0 such that

|b(t1, t2, x, µ)|2 + ||σ(t1, t2, x, µ)||2 ≤ K2(1 + |x|2 + W2(µ, δ0)2),

where δ0 denotes the Dirac measure at 0.
(H3)(Technical condition) If a stochastic process X(t) is right continuous with left limits
and Gt-adapted, then

b(t, Et, X(t),L (X(t))), σ(t, Et, X(t),L (X(t))) ∈ L(Gt),

where L(Gt) denotes the totality of càglàd (i.e., sample paths which are left continuous with
right limits) and Gt-adapted processes.

According to Jin and Kobayashi [20], we know that since the Brownian motion B and
the subordinator D are assumed independent, it is possible to set up B and D on a product
space with product measure P = PB×PD with obvious notations. Let EB,ED and E denote
the expectations under the probability PB, PD and P, respectively.

Theorem 3.2 Suppose that Assumption 3.1 holds. Then, for any initial value X0 satisfying
E|X0|2 < ∞, there is a unique solution X(t), t ∈ [0, T ] of Equation (1.2). Moreover, this
solution satisfies

E
[

sup
0≤t≤T

|X(t)|2
]
≤ C.

Proof. We will split the proof in the following three steps.
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(I) Existence.

We set the following iteration sequence: Let X0(t) = X0, Xn(0) = X0, for all n ≥ 0,
(Xn+1(t))t∈[0,T ] solve the DDSDE

Xn+1(t) = X0 +

∫ t

0

b(s, Es, X
n+1(s),L (Xn(s)))dEs+

∫ t

0

σ(s, Es, X
n+1(s),L (Xn(s)))dBEs ,

(3.1)
for all t ∈ [0, T ], where Xn+1(0) = X0.
First, we show Xn+1(t) is bounded.

By Itô’s formula, we have

d|Xn+1(t)|2 = 2
〈
Xn+1(t), b(t, Et, X

n+1(t),L (Xn(t)))
〉
dEt

+
∥∥σ(t, Et, X

n+1(t),L (Xn(t)))
∥∥2
dEt

+ 2
〈
Xn+1(t), σ(t, Et, X

n+1(t),L (Xn(t)))dBEt

〉
,

(3.2)

then we get

EB
(

sup
s∈[0,t]

|Xn+1(s)|2
)

≤ EB|X0|2 + 2EB
(

sup
s∈[0,t]

∫ s

0

〈
Xn+1(u), b(u,Eu, X

n+1(u),L (Xn(u)))
〉
dEu

)
+ EB

(∫ t

0

∥∥σ(s, Es, X
n+1(s),L (Xn(s)))

∥∥2
dEs

)
+ 2EB

(
sup
s∈[0,t]

[ ∫ s

0

〈
Xn+1(u), σ(u,Eu, X

n+1(u),L (Xn(u)))dBEu

〉 ])
=: EB|X0|2 + I1 + I2 + I3.

For term I1, by Assumption 3.1 and Hölder inequality, we obtain

I1 ≤ 2EB
[(∫ t

0

|Xn+1(u)|2dEu
)(∫ t

0

|b(u,Eu, Xn+1(u),L (Xn(u)))|2dEu
)] 1

2

≤ EB
(∫ t

0

|Xn+1(u)|2dEu
)

+ EB
(∫ t

0

|b(u,Eu, Xn+1(u),L (Xn(u)))|2dEu
)

≤ EB
(∫ t

0

|Xn+1(u)|2dEu
)

+K2EB
(∫ t

0

(1 + |Xn+1(u)|2 + W2(L (Xn(u)), δ0)2)dEu

)
≤ K2EBEt + (1 +K2)EB

(∫ t

0

sup
u∈[0,s]

|Xn+1(u)|2dEs
)

+K2EB
(∫ t

0

E[ sup
u∈[0,s]

|Xn(u)|2]dEs

)
≤ K2ET + (1 +K2)

∫ t

0

EB
(

sup
u∈[0,s]

|Xn+1(u)|2
)
dEs +K2EtE( sup

s∈[0,t]

|Xn(s)|2),

where we use the independence between B and E, meanwhile we apply (2.1) in the last
inequality.
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Next, for term I2, by Assumption 3.1, (2.1) and the independence between B and E, we
have

I2 ≤ K2

∫ t

0

EB(1 + |Xn+1(s)|2 + W2(L (Xn(s)), δ0)2)dEs

≤ K2ET +K2

∫ t

0

EB
(

sup
u∈[0,s]

|Xn+1(u)|2
)
dEs +K2EtE( sup

s∈[0,t]

|Xn(s)|2).

Besides, for term I3, by Assumption 3.1, the Burkholder-Davis-Gundy inequality (Jin and
Kobayashi [20]) and Hölder inequality we have

I3 ≤ 2
√

32EB
(∫ t

0

|Xn+1(u)|2||σ(u,Eu, X
n+1(u),L (Xn(u)))||2dEu

) 1
2

≤ 1

2
EB
(

sup
s∈[0,t]

|Xn+1(s)|2
)

+ 64EB
(∫ t

0

||σ(u,Eu, X
n+1(u),L (Xn(u)))||2dEu

)
≤ 1

2
EB
(

sup
s∈[0,t]

|Xn+1(s)|2
)

+ 64K2EB
(∫ t

0

(
1 + |Xn+1(u)|2 + W2(L (Xn(u)), δ0)2

)
dEu

)
≤ 1

2
EB
(

sup
s∈[0,t]

|Xn+1(s)|2
)

+ 64K2ET

+ 64K2

∫ t

0

EB( sup
u∈[0,s]

|Xn+1(u)|2)dEs + 64K2ETE( sup
s∈[0,t]

|Xn(u)|2).

Thus we obtain

EB( sup
s∈[0,t]

|Xn+1(s)|2) ≤ CK2,X0ET + CK2

∫ t

0

EB( sup
u∈[0,s]

|Xn+1(u)|2)dEs

+ CK2ETE( sup
s∈[0,t]

|Xn(s)|2).

For n = 0, by the time-changed Gronwall’s inequality [19] and E|X0|2 <∞ we have

EB
(

sup
s∈[0,t]

|X1(s)|2
)
≤
(
CK2,X0 + CK2E(|X0|2)

)
ET e

CK2
ET .

Taking ED on both sides, we have

E
(

sup
s∈[0,t]

|X1(s)|2
)
≤
(
CK2,X0 + CK2E(|X0|2)

)
E(ET e

CK2
ET ).

The condition µ(0,∞) = ∞ guarantees that the inverse E of D has a finite exponential
moment, i.e, for all λ ∈ R, t > 0

E(eλEt) <∞.
For any t ≥ 0 and x > 0, by Markov’s inequality, we have

P (Et > s) ≤ P (D(s) < t) = P (e−xD(s) ≥ e−xt) ≤ extE(e−xD(s)) = exte−sφ(x),

it follows that

E(Et)
2 = 2

∫ ∞
0

P (Et > s)sds ≤ 2ext
∫ ∞

0

e−sφ(x)sds = 2ext
1

φ2(x)
<∞,
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then by Hölder inequality we have

E[ sup
s∈[0,t]

|X1(s)|2] ≤ (CK2,X0 + CK2E|X0|2)(E[ET ]2)
1
2 [Ee2CK2

ET ]
1
2

<∞.

Assume that the case of n = k is right, we can prove that the assertion holds for n = k + 1
by the same way. Therefore, we know that

E
[

sup
0≤t≤T

|Xn(t)|2
]
≤ C. (3.3)

Next, we show the sequence {Xn+1(t), t ∈ [0, T ]}n≥0 is Cauchy.

By Itô’s formula we obtain

d|Xn+1(t)−Xn(t)|2

= 2
〈
Xn+1(t)−Xn(t), b(t, Et, X

n+1(t),L (Xn(t)))− b(t, Et, Xn(t),L (Xn−1(t)))
〉
dEt

+ ||σ(t, Et, X
n+1(t),L (Xn(t)))− σ(t, Et, X

n(t),L (Xn−1(t)))||2dEt
+ 2
〈
Xn+1(t)−Xn(t), σ(t, Et, X

n+1(t),L (Xn(t)))− σ(t, Et, X
n(t),L (Xn−1(t)))dBEt

〉
,

by Itô’s formula, Assumption 3.1, Burkholder-Davis-Gundy inequality (Jin and Kobayashi
[20]) and (2.1) , we have

EB
(

sup
s∈[0,t]

|Xn+1(s)−Xn(s)|2
)

≤ K1

∫ t

0

EB
[
|Xn+1(s)−Xn(s)|2 + W2(L (Xn(s)),L (Xn−1(s)))2

]
dEs

+ 2
√

32EB
(∫ t

0

|Xn+1(s)−Xn(s)|2
∥∥σ(s, Es, X

n+1(s),L (Xn(s))

− σ(s, Es, X
n(s),L (Xn−1(s)))

∥∥2
dEs

) 1
2

≤ K1

∫ t

0

EB
(

sup
u∈[0,s]

|Xn+1(u)−Xn(u)|2
)
dEs

+K1

∫ t

0

EB
(
E
(

sup
u∈[0,s]

|Xn(u)−Xn−1(u)|2
))
dEs

+
1

2
EB
(

sup
s∈[0,t]

|Xn+1(s)−Xn(s)|2
)

+ 64EB
(∫ t

0

∥∥σ(s, Es, X
n+1(s),L (Xn(s)))− σ(s, Es, X

n(s),L (Xn−1(s)))
∥∥2
dEs

)
≤ 1

2
EB
(

sup
s∈[0,t]

|Xn+1(s)−Xn(s)|2
)

+ 65K1

∫ t

0

EB
(

sup
u∈[0,s]

|Xn+1(u)−Xn(u)|2
)
dEs

+ 65K1EtE
(

sup
s∈[0,t]

|Xn(s)−Xn−1(s)|2
)
.
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Hence, we have

EB
(

sup
s∈[0,t]

|Xn+1(s)−Xn(s)|2
)
≤ CK1

∫ t

0

EB
(

sup
u∈[0,s]

|Xn+1(u)−Xn(u)|2
)
dEs

+ CK1EtE
(

sup
s∈[0,t]

|Xn(s)−Xn−1(s)|2
)
,

therefore, by the time-changed Gronwall’s inequality [19], it holds that

EB
(

sup
s∈[0,t]

|Xn+1(s)−Xn(s)|2
)
≤ CK1Ete

EtCK1E
(

sup
s∈[0,t]

|Xn(s)−Xn−1(s)|2
)
.

Taking ED on both sides, using (3.3) and Hölder inequality we have

E
(

sup
s∈[0,t]

|Xn+1(s)−Xn(s)|2
)
≤ CK1E[Ete

ETCK1 ]E
(

sup
s∈[0,t]

|Xn(s)−Xn−1(s)|2
)
.

By Monotone convergence theorem we obtain

lim
t→0

E(Et)
2 = 2 lim

t→0

∫ ∞
0

sP (Et > s)ds

= 2

∫ ∞
0

lim
t→0

sP (Et > s)ds

= 0.

Then we can take t0 > 0 such that CK1EEteETCK1 ≤ CK1(E[Et]
2)

1
2 (E[e2ETCK1 ])

1
2 ≤ e−1, we

arrive at

E
(

sup
s∈[0,t0]

|Xn+1(s)−Xn(s)|2
)
≤ e−nE

(
sup
s∈[0,t0]

|X1(s)−X0|2
)

≤ 2e−nE
(

sup
s∈[0,t0]

|X1(s)|2
)

+ 2e−nE|X0|2

≤ 4e−nE
(

sup
s∈[0,t0]

|X1(s)|2
)
,

then we have

lim
n→∞

E
(

sup
s∈[0,t0]

|Xn+1(s)−Xn(s)|2
)

= 0.

Thus {Xn+1(t)}t∈[0,t0] is a Cauchy sequence in S2(Ω;C([0, t0];Rd)) and then the limit, de-
noted by X(t). By (2.1) we obtain

lim
n→∞

sup
t∈[0,t0]

W2(L (Xn(t)),L (X(t)))2 ≤ lim
n→∞

E
(

sup
t∈[0,t0]

|Xn(t)−X(t)|2
)

= 0.

It follows from Assumption 3.1 and the dominated convergence theorem imply that P− a.s.

X(t) = X0 +

∫ t

0

b(s, Es, X(s),L (X(s)))dEs +

∫ t

0

σ(s, Es, X(s),L (X(s)))dBEs , t ∈ [0, t0].

10



Therefore, {X(t)}t∈[0,t0] is a solution to (1.1). Since t0 > 0 is independent of X0, we conclude
that (1.1) has a solution {X(t)}t∈[0,T ] with

E
(

sup
s∈[0,T ]

|X(s)|2
)
<∞.

(II) Uniqueness.

Assume that (X(t))t∈[0,T ] and (Y (t))t∈[0,T ] are two solutions of Eq.(1.2) with X(0) =
Y (0) = X0, that is,

X(t) = X0 +

∫ t

0

b(s, Es, X(s),L (X(s)))dEs +

∫ t

0

σ(s, Es, X(s),L (X(s)))dBEs ,

and

Y (t) = X0 +

∫ t

0

b(s, Es, Y (s),L (Y (s)))dEs +

∫ t

0

σ(s, Es, Y (s),L (Y (s)))dBEs .

By Itô’s formula, we have

d|X(t)− Y (t)|2 = 2 〈X(t)− Y (t), b(t, Et, X(t),L (X(t)))− b(t, Et, Y (t),L (Y (t)))〉 dEt
+ ‖σ(t, Et, X(t),L (X(t)))− σ(t, Et, Y (t),L (Y (t)))‖2 dEt

+ 2 〈X(t)− Y (t), σ(t, Et, X(t),L (X(t)))− σ(t, Et, Y (t),L (Y (t)))dBEt〉 .

By Assumption 3.1 and Burkholder-Davis-Gundy inequality (Jin and Kobayashi [20]), we
obtain

EB
(

sup
0≤s≤t

|X(s)− Y (s)|2
)

≤ K1EB
(∫ t

0

(
|X(s)− Y (s)|2 + W2(L (X(s)),L (Y (s)))2

)
dEs

)

+ 2
√

32EB
(∫ t

0

|X(s)− Y (s)|2||σ(s, Es, X(s),L (X(s)))− σ(ts, Es, Y (s),L (Y (s)))||2dEs

) 1
2

≤ 65K1

∫ t

0

EB
(

sup
0≤u≤s

|X(u)− Y (u)|2
)
dEs + 65K1EB

(∫ t

0

E
(

sup
0≤u≤s

|X(u)− Y (u)|2
)
dEs

)
+

1

2
EB
(

sup
0≤s≤t

|X(s)− Y (s)|2
)

≤ 65K1

∫ t

0

EB
(

sup
0≤u≤s

|X(u)− Y (u)|2
)
dEs + 65K1EtE

(
sup

0≤s≤t
|X(s)− Y (s)|2

)
+

1

2
EB
(

sup
0≤s≤t

|X(s)− Y (s)|2
)
,

by the time-changed Gronwall’s inequality, it holds that

EB
(

sup
0≤s≤t

|X(s)− Y (s)|2
)
≤ CK1EtE

(
sup

0≤s≤t
|X(s)− Y (s)|2

)
eCK1

Et .
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Taking ED on both sides, we obtain

E
(

sup
0≤s≤t

|X(s)− Y (s)|2
)
≤ CK1E

(
sup

0≤s≤t
|X(s)− Y (s)|2

)
EEteCK1

Et ,

since limt→0 EEteCK1
Et = 0, we can take a t0 > 0 such that CK1EEteCK1

Et < 1, then we have

E
(

sup
0≤t≤t0

|X(t)− Y (t)|2
)

= 0.

By the same steps we obtain

EB
(

sup
t0≤s≤t

|X(s)− Y (s)|2
)

≤ 65K1

∫ t

t0

EB
(

sup
t0≤u≤s

|X(u)− Y (u)|2
)
dEs + 65K1(Et − Et0)E

(
sup
t0≤s≤t

|X(s)− Y (s)|2
)

+
1

2
EB
(

sup
t0≤s≤t

|X(s)− Y (s)|2
)
,

by the time-changed Gronwall’s inequality, it holds that

EB
(

sup
t0≤s≤t

|X(s)− Y (s)|2
)
≤ CK1(Et − Et0)E

(
sup
t0≤s≤t

|X(s)− Y (s)|2
)
eCK1

(Et−Et0 ).

Taking ED on both sides, we obtain

E
(

sup
t0≤s≤t

|X(s)− Y (s)|2
)
≤ CK1E

[
(Et − Et0)eCK1

(Et−Et0 )
]
E
(

sup
t0≤s≤t

|X(s)− Y (s)|2
)
.

Since limt→t0 CK1E[(Et − Et0)eCK1
(Et−Et0 )] = 0, we can take a t1 > t0 such that

CK1E[(Et − Et0)eCK1
(Et−Et0 )] < 1,

then we have
E
(

sup
t0≤t≤t1

|X(t)− Y (t)|2
)

= 0.

Thus, repeat the above steps, we have

E
(

sup
0≤t≤T

|X(t)− Y (t)|2
)

= 0.

Wu [46] provided an Itô formula for stochastic differential equations driven by time-
changed Brownian motions. In the rest of this section, we will extend the Itô formula from
SDEs to DDSDEs driven by time-changed Brownian motions. First of all, we strengthen
the condition (H1) to the following assumption:
(H1

′
)The function b, σ satisfy for t1 ∈ [0, T ], t2 ∈ [0,∞) and (x, µ), (y, v) ∈ Rd × P2(Rd)

|b(t1, t2, x, µ)− b(t1, t2, y, ν)|2 + ||σ(t1, t2, x, µ)− σ(t1, t2, y, ν)||2 ≤ K1(|x− y|2 + W2(µ, ν)2).

An interesting problem coming from the work is whether Itô formula can be further improved
in the sense of allowing the coefficient b to satisfy the condition (H1). Our techniques are
currently not enough to give an affirmative answer. We will leave this topic for future work.
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Proposition 3.3 (The generalised Itô formula). Let us denote µt := L (X(t)). Suppose
that the function V : [0,∞) × Rd ×P2(Rd) 7→ R belongs to Cb([0,∞) × Rd ×P2(Rd)).
Then, under conditions (H1

′
), (H2) and (H3), for any F0-measurable random variable x0

with E|x0|2 <∞, the following Itô formula holds

V (Et, X(t), µt)− V (0, x0, µ0)

=

∫ t

0

[
∂t2V (Es, X(s), µ0) + Vx(Es, X(s), µ0)b(s, Es, X(s),L (X(s)))

+
1

2
trace[Vxx(Es, X(s), µ0)(σσT )(s, Es, X(s),L (X(s)))]

]
dEs

+ E
[ ∫ t

0

∂µV (Et, X(t), µs)(X(s))b(s, Es, X(s),L (X(s)))

+
1

2
trace[∂u∂µV (Et, X(t), µs)(X(s))(σσT )(s, Es, X(s),L (X(s)))]dEs

]
+

∫ t

0

Vx(Es, X(s), µ0)σ(s, Es, X(s),L (X(s)))dBEs .

(3.4)

Proof. Step I. Suppose that both b and σ are bounded. Fix (E,X) ∈ [0,∞) × Rd and
define v(µ) := V (E,X, µ). Now, we prove the Itô formula for v(L (X(t))).
For any integer N ≥ 1, the empirical projection of v onto Rd was defined as the function:

vN : (Rd)N 3 (X1(t), · · · , XN(t)) 7→ v

(
1

N

N∑
i=1

ηXi(t)

)
= v(µ̄Nt ),

where we use the notation ηx to denote the unit mass at the point x ∈ Rd.
It follows from Proposition 3.1 in [5], we know that vN is C2 on Rd×N and

∂Xiv
N(X1, · · · , XN) =

1

N
∂µv

(
1

N

N∑
l=1

ηXl

)
(Xi),

∂2
XiXj

vN(X1, · · · , XN) =
1

N
∂u

[
∂µv

(
1

N

N∑
l=1

ηXl

)]
(Xi)δi,j +

1

N2
∂2
µv

(
1

N

N∑
l=1

ηXl

)
(Xi, Xj).

(3.5)

Denote by {X`(t)}t∈[0,T ] a sequence of independent identically distributed (i.i.d. for short)
copies of {X(t)}t∈[0,T ]. That is, for any ` ≥ 1,

dX`(t) = b(t, Et, X
`(t),L (X`(t)))dEt + σ(t, Et, X

`(t),L (X`(t)))dB`
Et , t ∈ [0, T ],

where B`(·), ` = 1, 2, · · · , N are i.i.d. copies of B(·).
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The Itô formula [[46], Lemma 3.2, Page 4], together with (3.5) yields, ∀t ∈ [0, T ],P-a.s.

vN(X1(t), · · · , XN(t)) = vN(X1(0), · · · , XN(0))

+
1

N

N∑
`=1

∫ t

0

∂µv(µ̄Ns )(X`(s))b(s, Es, X
`(s),L (X`(s)))dEs

+
1

N

N∑
`=1

∫ t

0

∂µv(µ̄Ns )(X`(s))σ(s, Es, X
`(s),L (X`(s)))dB`

Es

+
1

2N

N∑
`=1

∫ t

0

trace[∂u∂µv(µ̄Ns )(X`(s))(σσT )(s, Es, X
`(s),L (X`(s)))]dEs

+
1

2N2

N∑
`=1

∫ t

0

trace[∂2
µv(µ̄Ns )(X`(s), X`(s))(σσT )(s, Es, X

`(s),L (X`(s)))]dEs.

Taking the expectation on both sides of this equality, we obtain that for t ∈ [0, T ]

E[vN(X1(t), · · · , XN(t))] = E[vN(X1(0), · · · , XN(0))]

+
1

N

N∑
`=1

E
[ ∫ t

0

∂µv(µ̄Ns )(X`(s))b(s, Es, X
`(s),L (X`(s)))dEs

]

+
1

2N

N∑
`=1

E
[ ∫ t

0

trace[∂u∂µv(µ̄Ns )(X`(s))(σσT )(s, Es, X
`(s),L (X`(s)))]dEs

]

+
1

2N2

N∑
`=1

E
[ ∫ t

0

trace[∂2
µv(µ̄Ns )(X`(s), X`(s))(σσT )(s, Es, X

`(s),L (X`(s)))]dEs

]
.

Using the fact that the processes {(X`(t))t∈[0,T ]}`∈{1,··· ,N} are i.i.d., we deduce that

E[vN(X1(t), · · · , XN(t))] = E[vN(X1(0), · · · , XN(0))]

+ E
[ ∫ t

0

∂µv(µ̄Ns )(X1(s))b(s, Es, X
1(s),L (X1(s)))dEs

]
+

1

2
E
[ ∫ t

0

trace[∂u∂µv(µ̄Ns )(X1(s))(σσT )(s, Es, X
1(s),L (X1(s)))]dEs

]
+

1

2N
E
[ ∫ t

0

trace[∂2
µv(µ̄Ns )(X1(s), X1(s))(σσT )(s, Es, X

1(s),L (X1(s)))]dEs

]
.

Next, we take the limit on both sides of the above equality. Note that for any t ∈ [0, T ],

P
[

lim
N→∞

W2(µ̄Nt , µt)
2 = 0

]
= 1.

Then as N →∞, by continuity and boundedness of v, ∂µv, ∂u∂µv, and boundedness of ∂2
µv,

b and σ, it follows from the dominated convergence theorem that

v(L (X(t))) = v(L (X(0)))

+ E
[ ∫ t

0

∂µv(L (X(s)))(X1(s))b(s, Es, X
1(s),L (X1(s)))dEs

]
+

1

2
E
[ ∫ t

0

trace[∂u∂µv(L (X(s)))(X1(s))(σσT )(s, Es, X
1(s),L (X1(s)))]dEs

]
.

(3.6)
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Step II. Supposed that (H1
′
), (H2) and (H3) hold. We will derive the Itô formula for

v(L (X(t))).

For each n ∈ N, we take a smooth function φn : Rd 7→ Rd fulfilling{
φn(x) = x, |x| ≤ n,

φn(x) = 0, |x| > 2n,

such that
|φn(x)| ≤ C, |∂φn(x)| ≤ C

for some constant C > 0. Set

b(n)(t, r, x, µ) := b(t, r, φn(x), µ), σ(n)(t, r, x, µ) := σ(t, r, φn(x), µ).

Then as n→∞,

b(n)(t, r, x, µ)→b(t, r, x, µ), σ(n)(t, r, x, µ)→σ(t, r, x, µ).

Moreover, by condition (H2), we know that b(n) and σ(n) are bounded, and both b(n) and
σ(n) satisfy (H1

′
), (H3). Therefore, the following equation

dX(n)(t) = b(n)(t, Et, X
(n)(t),L (X(n)(t)))dEt + σ(n)(t, Et, X

(n)(t),L (X(n)(t)))dBEt , (3.7)

has a unique solution X(n)(t), where Xn(0) = X(0). Then by Step I, it holds that for
t ∈ [0, T ],

v(L (X(n)(t))) = v(L (X(n)(0)))

+ E
[ ∫ t

0

∂µv(L (X(n)(s)))(X(n)(s))b(s, Es, X
(n)(s),L (X(n)(s)))dEs

]
+

1

2
E
[ ∫ t

0

trace[∂u∂µv(L (X(n)(s)))(X(n)(s))(σσT )(s, Es, X
(n)(s),L (X(n)(s)))]dEs

]
.

(3.8)

Applying the Itô formula and Burkholder-Davis-Gundy inequality (Jin and Kobayashi [20])
we have

EB
(

sup
0≤s≤t

|X(n)(s)−X(s)|2
)

≤ 2EB
(

sup
0≤s≤t

∫ s

0

〈
Xn(r)−X(r), b(n)(r, Er, X

(n)(r),L (X(n)(r)))

− b(r, Er, X(r),L (X(r)))
〉
dEr

)
+ 2EB

(
sup

0≤s≤t

∫ s

0

〈
Xn(r)−X(r), σ(n)(r, Er, X

(n)(r),L (X(n)(r)))

− σ(r, Er, X(r),L (X(r)))dBEr

〉)
+ EB

(∫ t

0

||σ(n)(r, Er, X
(n)(r),L (X(n)(r)))− σ(r, Er, X

(n)(r),L (X(n)(r)))||2dEr
)
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≤
(
EB
∫ t

0

|b(n)(r, Er, X
(n)(r),L (X(n)(r)))− b(r, Er, X(r),L (X(r)))|2dEr

)
+ EB

(∫ t

0

||σ(n)(r, Er, X
(n)(r),L (X(n)(r)))− σ(r, Er, X(r),L (X(r)))||2dEr

)
+ 2
√

32EB
(∫ t

0

|X(n)(r)−X(r)|2||σ(n)(r, Er, X
(n)(r),L (X(n)(r)))

− σ(r, Er, X(r),L (X(r)))||2dEr
) 1

2

+ EB
(∫ t

0

|X(n)(r)−X(r)|2dEr
)

≤ CK1EB
(∫ t

0

|φn(X(n)(s))−X(s)|2dEs
)

+ CK1EtE
(

sup
0≤s≤t

|X(n)(s)−X(s)|2
)

+

∫ t

0

EB
(

sup
0≤r≤s

|X(n)(r)−X(r)|2
)
dEs +

1

2
EB
(

sup
0≤s≤t

|X(n)(s)−X(s)|2
)
,

by Gronwall inequality we have

EB
(

sup
0≤s≤t

|X(n)(t)−X(t)|2
)
≤
(
CK1EB

( ∫ t

0

|φn(X(n)(s))−X(s)|2dEs
)

+ CK1EtE
(

sup
0≤s≤t

|X(n)(s)−X(s)|2
))
eEt .

Using φn(X)→X for X ∈ Rd, and the estimate E
(

sup0≤t≤T |X(t)|2
)
< +∞, it comes from

the dominated convergence theorem that

lim
n→∞

∫ t

0

EB
(
|φn(X(s))−X(s)|2

)
dEs = 0.

Then by Fatou lemma we obtain

lim
n→∞

E
(

sup
0≤s≤t

|X(n)(s)−X(s)|2
)
≤ ED lim

n→∞
EB
(

sup
0≤s≤t

|X(n)(s)−X(s)|2
)

≤ CK1EEteEt lim
n→∞

E
(

sup
0≤s≤t

|X(n)(s)−X(s)|2
)
.

Using the method of uniqueness proof, we get

lim
n→∞

E
(

sup
0≤s≤t

|X(n)(s)−X(s)|2
)

= 0.

Moreover, we obtain that

W2(L (X(n)(t)),L (X(t)))2 ≤ E|X(n)(t)−X(t)|2 = 0.

Taking the limit on two sides of (3.8), by the dominated convergence theorem, one can
conclude (3.6).
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Step III. We prove the Itô formula (3.4). By the Itô formula [[46], Lemma 3.2, Page4] and
(3.6), it holds that

V (Et, X(t), µt)− V (0, x0, µ0)

= V (Et, X(t), µt)− V (Et, X(t), µ0) + V (Et, X(t), µ0)− V (0, x0, µ0)

=

∫ t

0

[
∂t2V (Es, X(s), µ0) + Vx(Es, X(s), µ0)b(s, Es, X(s),L (X(s)))

+
1

2
trace[Vxx(Es, X(s), µ0)(σσT )(s, Es, X(s),L (X(s)))]

]
dEs

+ E
[ ∫ t

0

∂µV (Et, X(t), µs)(X(s))b(s, Es, X(s),L (X(s)))

+
1

2
trace[∂u∂µV (Et, X(t), µs)(X(s))(σσT )(s, Es, X(s),L (X(s)))]dEs

]
+

∫ t

0

Vx(Es, X(s), µ0)σ(s, Es, X(s),L (X(s)))dBEs .

Remark 3.1 (1) When the time-change Et degenerates into time t, the generalised Itô
formula becomes the Itô formula for distribution-dependent functions provided by [[4],
Proposition 5.102, p.485] and [[13], Proposition A.8].

(2) If V is independent of the measure µ, then V ∈ Cb([0,∞)×Rd×P2(Rd)) is simplified
to C1,2([0,∞) × Rd) and revelent Itô formula is reduced to the standard Itô formula
provided by [46].

4 Stability results

As we know, the stability of solutions of stochastic differential equations has always been a
very important problem. Lyapunov method can help us study various stability of solutions,
but it often needs the help of Itô formula. In the previous section, we have already addressed
generalisation of relevant Itô formula, so in this section, we will study the stability of the
solutions of the time-changed DDSDEs (1.2). Using the Lyapunov method, some sufficient
criteria are proposed to derive stochastic stability, stochastically asymptotical stability and
globally stochastically asymptotical stability of the solutions, respectively. Without loss of
generality, we consider the initial value to be a deterministic constant X(0) = x0 ∈ Rd. The
initial value being a random variable seems more general but in effect it is equivalent to
having a deterministic constant initial value.

Theorem 4.1 Suppose that there exist a function V (t2, x, µ) ∈ Cb,+([0,∞)×Sh×P2(Rd))
and another function ϕ ∈ K such that for all (t2, x, µ) ∈ [0,∞)× Sh ×P2(Rd) :

(1)V (t2, 0, δ0) = 0,

(2)ϕ(|x|)≤V (t2, x, µ) for all (t2, x, µ) ∈ [0,∞)× Sh ×P2(Rd),

(3)LµV (t2, x, µ) ≤ 0.

(4.1)
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Then the trivial solution of Equ.(1.2) is stochastically stable or stable in probability, where
LµV is defined as follows:

LµV (t2, x, µ)

:= ∂t2V (t2, x, µ0) + Vx(t2, x, µ0)b(t, t2, x, µ)

+
1

2
trace[Vxx(t2, x, µ0)(σσT )(t, t2, x, µ)]

+ ∂µV (Et1 , X(Et1), µ)(x)b(t, t2, x, µ)

+
1

2
trace[∂u∂µV (Et1 , X(Et1), µ)(x)(σσT )(t, t2, x, µ)].

Proof. Choose ε ∈ (0, 1) and 0 < r < h arbitrary. Owing to the continuity of V (t2, x, µ) on
[0,∞)× Sh ×P2(Rd) and V (t2, 0, δ0) = 0, there exists a θ = θ(ε, r) > 0 such that

1

ε
sup
x0∈Sθ

V (0, x0, µ0) ≤ ϕ(r). (4.2)

From (4.2) and the condition (2), we get

θ < r.

Fix any initial value x0 ∈ Sθ and define the following stopping time

τr := inf{t ≥ 0 : |X(t, x0)| ≥ r} (4.3)

and

Uk := k ∧ inf{t ≥ 0 : |
∫ τr∧t

0

Vx(Es, X(s), µ0)σ(s, Es, X(s),L (X(s)))dBEs| ≥ k} (4.4)

for k = 1, 2, · · · . Obviously, Uk → ∞ as k → ∞. Applying the generalised Itô formula in
Proposition 3.3 to Eq.(1.2) yields

V (Eτr∧Uk , X(τr∧Uk), µτr∧Uk)− V (0, x0, µ0)

=

∫ τr∧Uk

0

[
∂t2V (Es, X(s), µ0) + Vx(Es, X(s), µ0)b(s, Es, X(s),L (X(s)))

+
1

2
trace[Vxx(Es, X(s), µ0)(σσT )(s, Es, X(s),L (X(s)))]

]
dEs

+ E
[ ∫ τr∧Uk

0

∂µV (Eτr∧Uk , X(τr∧Uk), µs)(X(s))b(s, Es, X(s),L (X(s)))

+
1

2
trace[∂u∂µV (Eτr∧Uk , X(τr∧Uk), µs)(X(s))(σσT )(s, Es, X(s),L (X(s)))]dEs

]
+

∫ τr∧Uk

0

Vx(Es, X(s), µ0)σ(s, Es, X(s),L (X(s)))dBEs .

(4.5)

By Kuo [24] and Magdziarz [29], we conclude that∫ t

0

Vx(Es, X(s), µ0)σ(s, Es, X(s),L (X(s)))dBEs , t ≥ 0
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is a mean 0, square integrable martingale with respect the filtration Gt = FEt . With the
condition (3) and taking expectations on both sides of Eq.(4.5), we have

EV (Eτr∧Uk , X(τr∧Uk), µτr∧Uk)≤V (0, x0, µ0). (4.6)

Let k →∞, then
EV (Eτr , X(τr), µτr)≤V (0, x0, µ0).

Since V (t2, x, µ) is a nonnegative function,

E
{
V (Eτr , X(τr), µτr)1{τr<∞}

}
≤EV (Eτr , X(τr), µτr)≤V (0, x0, µ0). (4.7)

By the condition (2), we have

E
{
ϕ(|X(τr|)1{τr<∞}

}
≤E
{
V (Eτr , X(τr), µτr)1{τr<∞}

}
. (4.8)

Also since the function ϕ is nondecreasing, by (4.3) and (4.8) we have

|X(τr)|≥r

and

ϕ(r)P
{
τr <∞

}
≤E
{
V (Eτr , X(τr), µτr)1{τr<∞}

}
. (4.9)

Combine (4.2), (4.7) and (4.9), we have

P
{
τr <∞

}
≤ε,

which implies

P
{
τr =∞

}
≥1− ε.

Equivalently,
P{|X(t, x0)| < r for all t ≥ 0} ≥ 1− ε,

so X(t, x0) is stochastically stable. This completes the proof.

Theorem 4.2 Suppose that there exist a function V (t2, x, µ) ∈ Cb,+([0,∞)×Sh×P2(Rd))
and another function ϕ ∈ K such that

(1)V (t2, 0, δ0) = 0,

(2)ϕ(|x|)≤V (t2, x, µ) for all (t2, x, µ) ∈ [0,∞)× Sh ×P2(Rd),

(3)for any α ∈ (0, h), x ∈ Sh − S̄α, LµV (t2, x, µ) ≤ −γ(α) a.s.,

(4.10)

where γ(α) ≥ 0, and γ(α) 6= 0 when α 6= 0. Then the trivial solution of Eq.(1.2) is
stochastically asymptotically stable.
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Proof. According to Theorem 4.1, the trivial solution of Eq.(1.2) is stochastically stable.
Thus, for any fixed ε ∈ (0, 1), there exists a θ = θ(ε) > 0 such that

P{|X(t, x0)| < h for all t ≥ 0} ≥ 1− ε

5
, (4.11)

when x0 ∈ Sθ. Fix x0 ∈ Sθ and put 0 < α < β < |x0| arbitrarily. And we define the stopping
times as follows:

τh := inf{t ≥ 0 : |X(t, x0)| ≥ h},
τα := inf{t ≥ 0 : |X(t, x0)| ≤ α},

Uk := k ∧ inf{t ≥ 0 : |
∫ τh∧τα∧t

0

Vx(Es, X(s), µ0)σ(s, Es, X(s),L (X(s)))dBEs | ≥ k}
(4.12)

for k = 1, 2, · · · . Uk → ∞ as k → ∞, obviously. Applying the generalised Itô formula in
Proposition 3.3 to Eq.(1.2) yields

0 ≤ EV (Et∧τh∧τα∧Uk , X(t∧τh∧τα∧Uk), µt∧τh∧τα∧Uk)

= V (0, x0, µ0) + E
∫ t∧τh∧τα∧Uk

0

LµV (Es, X(s), µs)dEs

≤ V (0, x0, µ0)− γ(α)EEt∧τh∧τα∧Uk ,

while for the last inequality we use the condition (3). Let k →∞ and t→∞, we have

γ(α)EEτh∧τα≤V (0, x0, µ0).

Since Et →∞ as t→∞ and γ(α) 6= 0,

P
{
τh∧τα <∞

}
= 1. (4.13)

From (4.11) and (4.12)

P
{
τh <∞

}
≤ ε

5
. (4.14)

Thus, we have

1 = P
{
τh∧τα <∞

}
≤P
{
τh <∞

}
+ P

{
τα <∞

}
≤ P

{
τα <∞

}
+
ε

5
.

Consequently,

P
{
τα <∞

}
≥ 1− ε

5
.

So we can find a positive constant θ̄ = θ̄(α) such that

P
{
τα < θ̄

}
≥ 1− 2ε

5
.
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Besides,

P
{
τα < τh ∧ θ̄

}
≥P
{
{τα < θ̄}

⋂
{τh =∞}

}
= P

{
τα < θ̄

}
− P

{
{τα < θ̄}

⋂
{τh <∞}

}
≥P
{
τα < θ̄

}
− P

{
τh <∞

}
≥ 1− 3ε

5
.

(4.15)

Next, we define stopping times as following

π :=

{
τα, if τα < τh ∧ θ̄,
∞, otherwise.

(4.16)

τβ := inf{t ≥ π : |X(t, x0)| ≥ β},

τi := inf{t ≥ π : |
∫ τβ∧t

π

Vx(Es, X(s), µ0)σ(s, Es, X(s),L (X(s)))dBEs| ≥ i}
(4.17)

for i = 1, 2, · · · . Similarly, we have τi → ∞ as i → ∞. With condition (3) we use the
generalised Itô formula again

EV (Eπ∧τh∧t, X(π ∧ τh ∧ t), µπ∧τh∧t) ≥ EV (Eτβ∧τi∧τh∧t, X(τβ ∧ τi ∧ τh ∧ t), µτβ∧τi∧τh∧t)

for all i = 1, 2, · · · , and t ≥ 0. Let i→∞ and then t→∞,

EV (Eπ∧τh , X(π ∧ τh), µπ∧τh) ≥ EV (Eτβ∧τh , X(τβ ∧ τh), µτβ∧τh). (4.18)

Combine (4.16), (4.17) and (4.18),

E
{
V (Eπ∧τh , X(π ∧ τh), µπ∧τh)1{π<∞}

}
≥ E

{
V (Eτβ∧τh , X(τβ ∧ τh), µτβ∧τh)1{τβ<∞}

}
,

(4.19)
which indicates from (4.15) that

E
{
V (Eτα , X(τα), µτα)1{τα<τh∧θ̄}

}
≥ E

{
V (Eτβ , X(τβ), µτβ)1{τβ<∞}∩{τh=∞}

}
. (4.20)

Furthermore, we define

Bα := sup

{
V (t2, x, µ) : (t2, x, µ) ∈ [0,∞)× S̄α ×P2(Rd)

}
. (4.21)

By condition (1) we have limα→0Bα = 0. Thus, we can find a small α such that

Bα

µ(β)
<
ε

5
. (4.22)

From (4.20), (4.21) and (4.22)

P
{
{τβ <∞} ∩ {τh =∞}

}
≤ Bα

µ(β)
<
ε

5
. (4.23)
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With the same as (4.15), we can derive

P
{
{τβ <∞} ∩ {τh =∞}

}
≥ P

{
τβ <∞

}
− P

{
τh <∞

}
≥ P

{
τβ <∞

}
− ε

5
.

(4.24)

From (4.23) and (4.24) we have

P
{
τβ <∞

}
<

2ε

5
. (4.25)

Furthermore, combine (4.15) and (4.25) we can derive

P
{
π <∞ and τβ =∞

}
≥ P

{
π <∞

}
− P

{
τβ <∞

}
≥ P

{
τα < τh ∧ θ̄

}
− 2ε

5

> 1− ε,

which implies

P
{
ω : lim supt→∞|X(t, x0)| ≤ β

}
> 1− ε.

Finally, since β is arbitrary, let β → 0 to arrive the following

P
{
ω : lim

t→∞
|X(t, x0)| = 0

}
≥ 1− ε.

This completes the proof.

Theorem 4.3 Suppose that there exist a function V (t2, x, µ) ∈ Cb,+([0,∞)×Rd×P2(Rd))
and another function ϕ ∈ K such that

(1) V (t2, 0, δ0) = 0,

(2) ϕ(|x|)≤V (t2, x, µ) for all (t2, x, µ) ∈ [0,∞)× Rd ×P2(Rd),

(3) for all (t2, x, µ) ∈ [0,∞)× Rd ×P2(Rd),

lim
|x|→∞

inf
t2≥0,µ∈P2(Rd)

V (t2, x, µ) =∞,

(4) for all (t2, x, µ) ∈ [0,∞)× Rd ×P2(Rd),

LµV (t2, x, µ) ≤ −γ(x) a.s.,

where γ(x) ≥ 0, and γ(x) 6= 0 when x 6= 0. Then the trivial solution of Equation(1.2) is
globally stochastically asymptotically stable.
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Proof. From Theorem 4.1, we know that the trivial solution of Eq.(1.2) is stochastically
stable. To show it is globally stochastically asymptotically stable, we only need to prove

P{ lim
t→∞

X(t, x0) = 0} = 1,

for all x0 ∈ Rd. In fact, for any x0 ∈ Rd and arbitrary ε ∈ (0, 1), from the condition (3),
there exists a sufficiently large h such that

inf
|x|≥h,t2≥0,µ∈P2(Rd)

V (t2, x, µ) ≥ 5V (0, x0, µ0)

ε
. (4.26)

Define the following stopping time

τh := inf{t ≥ 0 : |X(t, x0)| ≥ h}.

With Condition (4), we can use the generalised Itô formula to yield the following

EV (Eτh∧t, X(τh ∧ t), µτh∧t) ≤ V (0, x0, µ0). (4.27)

By (4.26),

EV (Eτh∧t, X(τh ∧ t), µτh∧t) ≥
5V (0, x0, µ0)

ε
P{τh < t}. (4.28)

From (4.27) and (4.28) we have

P{τh < t} ≤ ε

5
.

Let t→∞
P{τh <∞} ≤

ε

5
,

which implies

P{|X(t, x0)| < h for all t ≥ 0} ≥ 1− ε

5
. (4.29)

According to the proof of Theorem 4.2, (4.29) implies,

P{ lim
t→∞

X(t, x0) = 0} ≥ 1− ε.

Since ε is arbitrary,
P{ lim

t→∞
X(t, x0) = 0} = 1

for all x0 ∈ Rd. The proof is complete.

To end this section, we give an example to explicate our results.

Example 4.4 Let us consider the following one-dimensional McKean-Vlasov stochastic dif-
ferential equation driven by the time-changed Brownian motion

dX(t) = b(t, Et, X(t),L (X(t)))dEt + σ(t, Et, X(t),L (X(t)))dBEt , (4.30)

where

b(t, Et, X(t), µt) = −f(t, Et) cos(

∫
R
yµt(dy))|X(t)|, σ(t, Et, X(t), µt) = g(t, Et)X(t),

23



with initial value X(0) = x0, where f(t1, t2) and g(t1, t2) are real-valued functions on R+×R+

satisfying the following condition

0 ≤ f(t1, t2), g(t1, t2) ≤ L for all t1, t2 ∈ R+,

with positive constant L. Also, assume f(t1, t2) and g(t1, t2) are measurable with respect to
the filtration Gt = FEt. Let us consider V (Et, X(t), µt) = (2 + sin(

∫
R yµt(dy)))|X(t)|α for

some α ∈ (0, 1), we have

Vx(Et, X(t), µt) = α(2 + sin(

∫
R
yµt(dy)))|X(t)|α−1,

Vxx(Et, X(t), µt) = α(α− 1)(2 + sin(

∫
R
yµt(dy)))|X(t)|α−2,

∂µV (Et, X(t), µt)(z) = cos(

∫
R
yµt(dy))|X(t)|α, ∂z∂µV (Et, X(t), µt)(z) = 0.

Then

LµV (Et, X(t), µt)

= −α cos(

∫
R
yµt(dy))(2 + sin(

∫
R
yµ0(dy)))f(t, Et)|X(t)|α

+
α(α− 1)

2
(2 + sin(

∫
R
yµ0(dy)))g2(t, Et)|X(t)|α

− cos2(

∫
R
yµt(dy))f(t, Et)

∫
R
|y|µt(dy)|X(T )|α|X(t)|.

Therefore, if

α(2 + sin(

∫
R
yµ0(dy)))

[
α− 1

2
g2(t, Et)− cos(

∫
R
yµt(dy))f(t, Et)

]
≤ 0

and

− cos2(

∫
R
yµt(dy))f(t, Et)

∫
R
|y|µt(dy) ≤ 0

hold a.s. for all t, Et ∈ R+, from Theorem 4.1 we know that the trivial solution of Eq.(4.30)
is stochastically stable. If the above inequalities hold strictly, Theorem 4.3 indicates that the
trivial solution of Eq.(4.30) is globally stochastically asymptotically stable.

5 Averaging principle for time-changed DDSDEs

Averaging principle is a powerful and efficient tool in studying of the qualitative properties of
dynamical systems. It has a very rich theory on both deterministic and stochastic differential
equations. Indeed, averaging principle is an effective method for studying dynamical systems
with highly oscillating components. Under certain suitable conditions, the highly oscillating
components can be “averaged out” to produce an averaged system. The averaged system is
easier for analysis which governs the evolution of the original system over long time scales.
The fundamental idea of the stochastic averaging principle is to study complex stochastic
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equations with related averaging stochastic equations, which paves a convenient and easy
way to study many important properties. The theory of stochastic averaging principle
started since the seminal work [22] of Khasminskii who established the averaging principle
for stochastic differential equations driven by Gaussian white noise in a weak sense. There
are many works devoted to extending Khasminski’s classical result to various stochastic
(partial) differential equations (Guo et al [12], Röckner and Xie [39], Röckner et al [41], Xu
et al [47], Hong et al [15], Pei et al [36] just mention a few). Along this line, in this final
section, we want to study averaging principle for DDSDEs driven by time-changed Brownian
motions. Comparing to the classical SDEs driven by Brownian motion, Lévy processes, the
DDSDEs driven by time-changed Brownian motions are much more complex, therefore, a
stochastic averaging principle for such SDEs is naturally interesting and would also be very
useful. The integral formulation of Equation (1.2) involving parameter ε ∈ (0, ε0] is as
follows:

Xε(t) = Xε(0) +

∫ t

0

b(
s

ε
, E s

ε
, Xε(s),L (Xε(s)))dEs +

∫ t

0

σ(
s

ε
, E s

ε
, Xε(s),L (Xε(s)))dBEs ,

(5.1)
with the initial value Xε(0) = x0 satisfying E|x0|2 <∞, where ε0 > 0 is a fixed real number.

According to Khasminskii type averaging principle ([22]), we consider the following av-
eraged DDSDEs associated with the integral formulation (5.1)

X̂(t) = Xε(0) +

∫ t

0

b̄(X̂(s),L (X̂(s)))dEs +

∫ t

0

σ̄(X̂(s),L (X̂(s)))dBEs , (5.2)

where the both coefficients b̄ : Rd × P2(Rd) 7→ Rd and σ̄ : Rd × P2(Rd) 7→ Rd×m are Borel
measurable functions. The DDSDEs (5.2) enjoys a unique solution X̂(t) under (H1

′
), (H2)

and (H3). In addition, we assume that the following holds.

Assumption 5.1 (Averaging condition): For h ∈ [0, T ], x ∈ Rd, µ ∈ P2(Rd), there exist
positive bounded functions ϕi(h) ≤ Ci, i = 1, 2 such that

1

h

∫ h

0

|b(s, Es, x, µ)− b̄(x, µ)|2dEs ≤ ϕ1(h)(|x|2 + W2(µ, δ0)2),

and
1

h

∫ h

0

||σ(s, Es, x, µ)− σ̄(x, µ)||2dEs ≤ ϕ2(h)(|x|2 + W2(µ, δ0)2),

where limh→∞ ϕi(h) = 0, i = 1, 2, and the both b̄ : Rd × P2(Rd) 7→ Rd, σ̄ : Rd × P2(Rd) 7→
Rd×m are Borel measurable functions.

Our main result of this section is

Theorem 5.2 Suppose that (H1
′
), (H2) and (H3) and Assumptions 5.1 hold. Then for a

given arbitrarily small number δ1 > 0, there exist L > 0, ε1 ∈ (0, ε0] and β ∈ (0, α− 1), such
that for any ε ∈ (0, ε1],

E( sup
t∈[0,Lε−β ]

|Xε(t)− X̂(t)|2) ≤ δ1.
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Proof. For any t′ ∈ [0, T ], we have

Xε(t′)− X̂(t′)

=

∫ t′

0

[b(
s′

ε
, E s′

ε
, Xε(s′),L (Xε(s′)))− b̄(X̂(s′),L (X̂(s′)))]dEs′

+

∫ t′

0

[σ(
s′

ε
, E s′

ε
, Xε(s′),L (Xε(s′)))− σ̄(X̂(s′),L (X̂(s′)))]dBEs′

.

(5.3)

Let s = s′

ε
, t = t′

ε
, (5.3) can be rewritten

Xε(εt)− X̂(εt)

= εα
∫ t

0

[b(s, Es, X
ε(sε),L (Xε(sε)))− b̄(X̂(sε),L (X̂(sε)))]dEs

+ ε
α
2

∫ t

0

[σ(s, Es, X
ε(sε),L (Xε(sε)))− σ̄(X̂(sε),L (X̂(sε)))]dBEs ,

where we use α-self-similarity of Et and α
2
-self-similarity of BEt . By Jensen’s inequality, we

have for any 0 < u < T the following

EB( sup
0≤tε≤u

|Xε(εt)− X̂(εt)|2)

≤ 2ε2αEB
(

sup
0≤tε≤u

∣∣ ∫ t

0

[b(s, Es, X
ε(sε),L (Xε(sε)))− b̄(X̂(sε),L (X̂(sε)))]dEs

∣∣2)
+ 2εαEB

(
sup

0≤tε≤u
|
∫ t

0

[σ(s, Es, X
ε(sε),L (Xε(sε)))− σ̄(X̂(sε),L (X̂(sε)))]dBEs|2

)
=: I1 + I2.

Next, we estimations Ii, i = 1, 2, respectively. For the term I1,

I1 ≤ 4ε2αEB
(

sup
0≤tε≤u

|
∫ t

0

[b(s, Es, X
ε(sε),L (Xε(sε)))− b(s, Es, X̂(sε),L (X̂(sε)))]dEs|2

)
+ 4ε2αEB

(
sup

0≤tε≤u
|
∫ t

0

[b(s, Es, X̂(sε),L (X̂(sε)))− b̄(X̂(sε),L (X̂(sε)))]dEs|2
)

=: I11 + I12.
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By (H1
′
), (H2) and (H3), Jensen’s inequality and Cauchy-Schwarz inequality, we have

I11 = 4ε2αEB
(

sup
0≤tε≤u

|
∫ t

0

[b(s, Es, X
ε(sε),L (Xε(sε)))− b(s, Es, X̂(sε),L (X̂(sε)))]dEs|2

)
≤ 4ε2αETEB

(
sup

0≤tε≤u

∫ t

0

K1(|Xε(sε)− X̂(sε)|2 + W2(L (Xε(sε)),L (X̂(sε)))2)dEs

)
≤ 4ε2αK1ETEB

(
sup

0≤tε≤u
(

∫ t

0

|Xε(sε)− X̂(sε)|2dEs)

+ sup
0≤tε≤u

( ∫ t

0

W2(L (Xε(sε)),L (X̂(sε)))2dEs
))

≤ 4ε2αK1ET

(∫ u
ε

0

EB( sup
0≤r≤s

|Xε(rε)− X̂(rε)|2)dEs

)
+ 4ε2αK1ETEB

(∫ u
ε

0

E
(

sup
0≤r≤s

|Xε(rε)− X̂(rε)|2
)
dEs

)
,

where the last inequality uses the following fact

W2(L (Xε(rε)),L (X̂(rε)))2 ≤ E|Xε(rε)− X̂(rε)|2.

By Hölder formula and Assumption 5.1, we can get

I12 = 4ε2αEB
(

sup
0≤tε≤u

|
∫ t

0

[b(s, Es, X̂(sε),L (X̂(sε)))− b̄(X̂(sε),L (X̂(sε)))]dEs|2
)

≤ 4ε2αETEB
(

sup
0≤tε≤u

∫ t

0

|b(s, Es, X̂(sε),L (X̂(sε)))− b̄(X̂(sε),L (X̂(sε)))|2dEs
)

≤ 4C1ε
2α−1ETu

(
EB( sup

0≤s≤u
ε

|X̂(sε)|2) + E( sup
0≤s≤u

ε

|X̂(sε)|2)

)
,

where we use the fact that W2(L (X̂(sε)), δ0) ≤ E|X̂(sε)|2. Next, for the term I2, we have

I2 = 2εαEB
(

sup
0≤tε≤u

|
∫ t

0

[(σ(s, Es, X
ε(sε),L (Xε(sε)))− σ(s, Es, X̂(sε),L (X̂(sε))))

+ (σ(s, Es, X̂(sε),L (X̂(sε)))− σ̄(X̂(sε),L (X̂(sε))))]dBEs|2
)

≤ 4εαEB
(

sup
0≤tε≤u

|
∫ t

0

(σ(s, Es, X
ε(sε),L (Xε(sε)))− σ(s, Es, X̂(sε),L (X̂(sε))))dBEs|2

)
+ 4εαEB

(
sup

0≤tε≤u
|
∫ t

0

(σ(s, Es, X̂(sε),L (X̂(sε)))− σ̄(X̂(sε),L (X̂(sε))))dBEs|2
)

=: I21 + I22.

By (H1
′
), (H2) and (H3) and the Burkholder-Davis-Gundy inequality (Jin and Kobayashi
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[20]), we get

I21 = 4εαEB
(

sup
0≤tε≤u

|
∫ t

0

(σ(s, Es, X
ε(sε),L (Xε(sε)))− σ(s, Es, X̂(sε),L (X̂(sε))))dBEs|2

)
≤ 4εαK1b2EB

(∫ u
ε

0

(|Xε(sε)− X̂(sε)|2 + W2(L (Xε(sε)),L (X̂(sε)))2)dEs

)
≤ 4εαK1b2

(∫ u
ε

0

EB( sup
0≤r≤s

|Xε(rε)− X̂(rε)|2) + sup
0≤r≤s

W2(L (Xε(rε)),L (X̂(rε)))2dEs

)
≤ 4εαK1b2

∫ u
ε

0

EB( sup
0≤r≤s

|Xε(rε)− X̂(rε)|2)dEs + 4εαK1b2ETE
(

sup
0≤t≤u

ε

|Xε(tε)− X̂(tε)|2
)
,

where the positive constant b2 comes from [20]. According to Assumption 5.1 and the
Burkholder-Davis-Gundy inequality, we derive

I22 = 4εαEB
(

sup
0≤tε≤u

|
∫ t

0

(σ(s, Es, X̂(sε),L (X̂(sε)))− σ̄(X̂(sε),L (X̂(sε))))dBEs|2
)

≤ 4εαb2EB
(∫ u

ε

0

||σ(s, Es, X̂(sε),L (X̂(sε)))− σ̄(X̂(sε),L (X̂(sε)))||2dEs
)

≤ 4εα−1b2C2uEB
(

sup
0≤s≤u

ε

|X̂(sε)|2 + sup
0≤s≤u

ε

W2(L (X̂(sε)), δ0)2

)
≤ 4C2ε

α−1b2u

(
EB( sup

0≤s≤u
ε

|X̂(sε)|2) + E( sup
0≤s≤u

ε

|X̂(sε)|2)

)
.

Then we have

EB
(

sup
0≤tε≤u

|Xε(εt)− X̂(εt)|2
)

≤
(
4ε2αK1ET + 4εαK1b2

)(∫ u
ε

0

EB( sup
0≤r≤s

|Xε(rε)− X̂(rε)|2)dEs

)
+ (4ε2αK1ET

2 + 4εαK1b2ET )E
(

sup
0≤tε≤u

|Xε(tε)− X̂(tε)|2
)

+ (4C1ε
2α−1ETu+ 4C2ε

α−1b2u)EB
(

sup
0≤s≤u

ε

|X̂(sε)|2
)

+ (4C1ε
2α−1ETu+ 4C2ε

α−1b2u)E
(

sup
0≤s≤u

ε

|X̂(sε)|2
)
,

by Gronwall inequality we have

EB( sup
0≤tε≤u

|Xε(εt)− X̂(εt)|2)

≤ e4ε2αK1ET
2+4εαK1b2ET

(
{8ε2αK1ET

2 + 8εαK1b2ET}[E sup
0≤t≤T

|Xε(t)|2 + E sup
0≤t≤T

X̂(t)|2]

+ {4C1ε
2α−1ETu+ 4C2ε

α−1b2u}EB( sup
0≤t≤T

|X̂(t)|2)

+ {4C1ε
2α−1ETu+ 4C2ε

α−1b2u}E( sup
0≤t≤T

|X̂(t)|2)

)
.
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Selecting β ∈ (0, α − 1) and L > 0 such that for any t ∈ [0, Lε−β−1] ⊆ [0, T
ε
] and taking

ED on both we have

E( sup
0≤tε≤u

|Xε(εt)− X̂(εt)|2)

≤ εα−β−1ED
[
e4ε2αK1ET

2+4εαK1b2ET

(
{8εα+β+1K1ET

2 + 8εβ+1K1b2ET}

× [E sup
0≤t≤T

|Xε(t)|2 + E sup
0≤t≤T

X̂(t)|2] + L{4C1ε
αET + 4C2b2}EB( sup

0≤t≤T
|X̂(t)|2)

+ L{4C1ε
αET + 4C2b2}E( sup

0≤t≤T
|X̂(t)|2)

)]
≤ εα−β−1

(
E(e8ε2α0 K1ET

2+8εα0K1b2ET )

) 1
2
[
ED
(
{8εα+β+1

0 K1ET
2 + 8εβ+1

0 K1b2ET}

× [E sup
0≤t≤T

|Xε(t)|2 + E sup
0≤t≤T

X̂(t)|2] + L{4C1ε
α
0ET + 4C2b2}EB( sup

0≤t≤T
|X̂(t)|2)

+ L{4C1ε
α
0ET + 4C2b2}E( sup

0≤t≤T
|X̂(t)|2)

)2] 1
2

≤ εα−β−1

(
E{e8ε2α0 K1ET

2+8εα0K1b2ET }
) 1

2
[
2E
(
{8εα+β+1

0 K1ET
2 + 8εβ+1

0 K1b2ET}

× [E sup
0≤t≤T

|Xε(t)|2 + E sup
0≤t≤T

X̂(t)|2] + L{4C1ε
α
0ET + 4C2b2}E( sup

0≤t≤T
|X̂(t)|2)

)2

+ 2ED
(
L{4C1ε

α
0ET + 4C2b2}EB( sup

0≤t≤T
|X̂(t)|2)

)2] 1
2

≤ ξεα−β−1,

the constant

ξ :=

(
E{e8ε2α0 K1ET

2+8εα0K1b2ET }
) 1

2
[
2E
(
{8εα+β+1

0 K1ET
2 + 8εβ+1

0 K1b2ET}

× [E sup
0≤t≤T

|Xε(t)|2 + E sup
0≤t≤T

X̂(t)|2] + L{4C1ε
α
0ET + 4C2b2}E( sup

0≤t≤T
|X̂(t)|2)

)2

+ 2ED
(
L{4C1ε

α
0ET + 4C2b2}EB( sup

0≤t≤T
|X̂(t)|2)

)2] 1
2

.

Consequently, for any given δ1 > 0, there exists a ε1 ∈ (0, ε0] such that for each ε ∈ (0, ε1]
and t ∈ [0, Lε−β],

E( sup
t∈[0,Lε−β ]

|Xε(t)− X̂(t)|2) ≤ δ1.

This completes the proof.

Corollary 5.3 Suppose that (H1
′
), (H2) and (H3) and 5.1 hold. Then for a given number

δ2 > 0, there exist L > 0, ε1 ∈ (0, ε0] and β ∈ (0, α− 1), such that for any ε ∈ (0, ε1],

lim
ε→0

P
(

sup
t∈[0,Lε−β ]

|Xε(t)− X̂(t)| > δ2

)
= 0.
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Proof. This result can be verified by Chebyshev’s inequality and the result of Theorem 5.2.

Example 5.4 We consider the following distribution dependent stochastic differential equa-
tions driven by time-changed Brownian motions:

dxε(t) =

∫ t

0

[xε cos2(E s
ε
) + sin(

∫
R
yµ(dy))]dEs +

∫ t

0

λdBEs , t ∈ [0, T ]

with initial value xε(0) = 0 and λ ∈ R being a constant. For this equation, we have

f(
t

ε
, E t

ε
, xε(t), µ) = xε cos2(E t

ε
) + sin(

∫
R
yµ(dy)),

g(
t

ε
, E t

ε
, xε(t), µ) = λ.

Let

f̄(x̂(s), ν) =

∫ 1

0

f(s, Es, x
ε(s), µ)dEs

= (
1

2
E1 +

sin 2E1

4
)xε + E1 sin(

∫
R
yµ(dy)),

and
ḡ(x̂(s), ν) = λ.

We have the following corresponding distribution dependent averaged stochastic differential
equations driven by time-changed Brownian motions:

dx̂(t) = εα
∫ t

0

[
(
1

2
E1 +

sin 2E1

4
)x̂+ E1 sin(

∫
R
yν(dy))

]
dEs + ε

α
2

∫ t

0

λdBEs .

Clearly, Assumptions 3.1 and 5.1 are satisfied, therefore, Theorem 5.2 and Corollary 5.3
hold for this example.
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[13] Hammersley H, S̆ĭska D, Szpruch L. McKean-Vlasov SDEs under measure dependent
Lyapunov conditions. Ann. Inst. H. Poincaré Probab. Statist. 57(2) (2021) 1032–1057.

[14] Hong W, Li S, Liu W. Large Deviation Principle for McKean-Vlasov Quasilinear
Stochastic Evolution Equations. Appl. Math. Optim. 84 (Suppl 1): (2021) S1119-
S1147.

[15] Hong W, Li S, Liu W. Strong convergence rates in averaging principle for slow-fast
McKean-Vlasov SPDEs. J. Differential Equations 316 (2022) 94-135.

[16] Huang M, Malhamé R P, Caines P E. Large population stochastic dynamic games:
Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle.
Comm. Information Syst. 6 (2006) 221–252.

[17] Huang X, Wang F-Y. Distribution dependent SDEs with singular coefficients. Stochastic
Process. Appl. 129 (2019) 4747–4770.

[18] Huang X, Ren P, Wang F-Y. Distribution dependent stochastic differential equations.
Front. Math. China. 16 (2021) 257–301.

[19] Jacod J, Shiryaev A. Limit Theorems for Stochastic Processes, volume 288 of
Grundlehren der mathematischen Wissenschaften. Springer, Berlin, 2003.

[20] Jin S, Kobayashi K. Strong approximation of stochastic differential equations driven
by a time-changed Brownian motion with time-space-dependent coefficients. J. Math.
Anal. Appl. 476 (2019) 619–636.

31



[21] Kac M. Foundations of kinetic theory. In: Proceedings of the Third Berkeley Sympo-
sium on Mathematical Statistics and Probability. 1954-1955. Vol. III. Berkeley: Uni-
versity of California Press. 1956, 171-197.

[22] Khasminskii R. On the principle of averaging the Itô stochastic differential equations.
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