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Supraglacial lakes play a central role in storing melt water, enhancing surface melt, and9

ultimately in driving ice flow and ice shelf melt through injecting water into the subglacial10

environment and through facilitating fracturing. Here, we develop a model for the drainage11

of supraglacial lakes through the dissipation-driven incision of a surface channel. The model12

consists of the St Venant equations for flow in the channel, fed by an upstream lake reservoir,13

coupled with an equation for the evolution of channel elevation due to advection, uplift, and14

downward melting. After reduction to a ‘stream power’-type hyperbolic model, we show that15

lake drainage occurs above a critical rate of water supply to the lake due to the backward16

migration of a shock that incises the lake seal. The critical water supply rate depends on17

advection velocity and uplift (or more precisely, drawdown downstream of the lake) as18

well as model parameters such as channel wall roughness and the parameters defining the19

relationship between channel cross-section and wetted perimeter. Once lake drainage does20

occur, it can either continue until the lake is empty, or terminate early, leading to oscillatory21

cycles of lake filling and draining, with the latter favoured by large lake volumes and relatively22

small water supply rates.23

1. Introduction24

Large areas of the Greenland ice sheet experience surface melt water drainage25

(Poinar & Andrews2021), while surface drainage is confined to lower elevations in Antarctica26

(Lenaerts et al. 2016; Kingslake et al. 2017; Stokes et al. 2019). Surface melt drives the27

evolution of subglacial drainage systems in Greenland (Das et al. 2008; Cowton et al. 2013;28

Chandler et al. 2013), which in turn controls sliding speed (Shepherd et al. 2009; Schoof29

2010; Palmer et al. 2011; Tedesco et al. 2013). Accumulation of surface water can also30

enhance surface melting by reducing albedo (Lüthje et al. 2006; Tedesco et al. 2012) and31

cause the break-up of floating ice shelves (Scambos et al. 2004, 2009; Banwell et al. 2013;32

Lai et al. 2021), while the injection of surface melt under a floating ice tongue can drive33

convection in fjords (Straneo et al. 2011; Mortensen et al. 2020), and enhance as well as34

localize melting at the base of the ice tongue (Dallaston et al. 2015; Washam et al. 2019).35

Lakes situated in local depressions on the ice surface are common features of drainage36
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systems in both, Greenland and Antarctica. These lakes store water, enhance surface melt37

and, in the case of Greenland, can cause short-lived acceleration of ice flow through38

abrupt drainage to the bed by hydrofracturing (Shepherd et al. 2009; van der Veen 2007;39

Stevens et al. 2015; Christoffersen et al. 2018). Much research has focused on the latter40

effect, even though a significant fraction of surface lakes in Greenland either drain slowly or41

not at all (Koenig et al. 2015; Lampkin et al. 2020; Law et al. 2020; Benedek & Willis 2021;42

Dunmire et al. 2021; Poinar & Andrews 2021), while there are no known surface lakes on43

the grounded part of the Antarctic ice sheet that drain to the bed (Bell et al. 2018).44

Motivated by field observations made in Antarctica, we consider the case of lakes draining45

purely through channels incised into the surface of a grounded ice sheet (as opposed to46

a floating ice shelf). On a grounded ice sheet, the surface depression occupied by a lake47

is usually generated by ice flow over suitably uneven bed topography under the ice sheet,48

and lakes are often observed to occupy the same position for long periods of time (that49

is, over many summer melt seasons). However, a combination of remote sensing imagery50

and ground-based radar (Schaap et al. 2020) suggests that such surface lakes can also drain51

relatively quickly through near-surface channels, and can do so after a lengthy periods of52

apparently steady lake levels. The same observations also suggest that drainage can occur53

in winter, when there is presumably little to no water input over winter. The question that54

arises is: what controls lake drainage through such a channel? Similar overland drainage may55

also be relevant to higher elevations in Greenland (Benedek & Willis 2021), where few lakes56

drain through hydrofracture (Poinar & Andrews 2021). However, we neglect seepage into a57

firn aquifer in our work (Forster et al. 2013; Meyer & Hewitt 2017), which may be relevant58

for some of these Greenlandic lakes.59

There have only been a handful of attempts to model lake drainage along glacier and ice60

sheet surfaces through thermal erosion of a channel through an ice dam (Walder & Costa61

1996; Raymond & Nolan 2000; Mayer & Schuler 2005; Vincent et al. 2010; Kingslake et al.62

2015; Ancey et al. 2019). Most of these consider drainage along more steeply-angled glacier63

surfaces, where flow is likely to be Froude supercritical. In all of these previous studies except64

Kingslake et al. (2015), surface lakes are considered as natural hazards, with the ultimate65

aim of computing hydrographs for rapid surface drainage. In addition, and by contrast with66

models for drainage along the glacier bed (Nye 1976; Spring & Hutter 1981; Clarke 1982;67

Ng 2000; Kingslake & Ng 2013; Stubblefield et al. 2019; Schoof 2020) none of the surface68

drainage models listed resolve channel incision (and therefore channel slope) as a function69

of position along the flow path, but instead take the form of ‘lumped’ models intended to70

describe conditions near the channel intake only.71

Although the model we develop is in principle applicable to the outburst floods studied72

previously, our main goal differs substantially from these prior studies. We are interested73

primarily in whether water input to a lake, causing the lake to overflow, necessarily leads to74

lake drainage by channel incision, and whether drainage can be partial or must continue until75

the lake basin is completely empty. In a lake with a water supply, it is natural to assume that76

channel incision on its own should drain the lake completely, since the water input should77

ensure there is discharge in the channel and therefore continued erosion of the ice dam.78

On a moving ice sheet, however, advection will also carry the channel downstream and can79

potentially re-build the seal of the lake.80

As a result, we focus on systems in which incision of the channel is quite slow, and81

competes with horizontal advection and vertical uplift of the ice surface due to the flow of82

the ice sheet over bed topography. As pointed out, these latter two processes are responsible83

for shaping the surface depression occupied by the lake to begin with (Schoof 2002), but they84

have rarely been considered in the context of surface lake dynamics (Darnell et al. 2013) and85

are not incorporated in the existing models for rapid lake drainage.86
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Among other consequences, the incorporation of advection forces us to employ a partial87

differential equation-based model, resolving position along the channel as well as time.88

The model we derive bears close resemblance to so-called stream power models for fluvial89

landscape evolution in non-glacial contexts (Luke 1972). The latter typically incorporate90

uplift (e.g. Whipple & Tucker 1999; Royden & Perron 2007; Kwang & Parker 2017), but91

the additional effect of horizontal advection is not commonly considered as part of fluvial92

landscape evolution.93

The paper is organized as follows: In §2.1 we define a basic model consisting of the St94

Venant equations for a surface stream coupled with an evolution equation for channel depth,95

based on local dissipation driving channel incision. In §2.2–2.4, the model is reduced based96

on a small ratio of water depth in the channel to lake depth, and water velocities being much97

larger than ice velocities, while local Froude number is assumed to remain subcritical. This98

results in a nonlinear hyperbolic evolution equation for channel evolution, coupled to an99

evolution equation for lake volume (§3.1). The formation of shocks in the model and how100

they control discharge from the lake is studied in §3.2–3.5, with boundary layer solutions of101

the full model around the shocks relegated to appendices A–B. Numerical solutions by the102

method of characteristics (appendix E) are given in §4, where we show that lake drainage103

occurs above a critical value of water supply to the lake (§5), which can result either in104

complete lake drainage, or in oscillatory cycles of lake drainage and refilling (§6).105

2. Model106

2.1. Model Formulation107

We consider a surface melt water stream with cross-sectional area (, with the base of the108

stream channel at an elevation 1, and denote the mean velocity in a given cross-section of109

the stream by D. Let G be distance along the stream and C time, and let (, D and 1 depend on110

G and C (figure 1). Assuming a Darcy-Weisbach law governing shear stress at the walls of the111

channel, we express conservation of mass and momentum using a St Venant model as (e.g.112

Fowler 2011, chapter 4)113

dw [(C + (D()G] =d8<, (2.1a)114

dw((DC + DDG) = −
dw 5 D2%(()

8
− dw6( [1G + ℎ(()G] (2.1b)115

116

where subscripts G and C denote partial derivatives, < is melt rate at the channel wall,117

expressed as an area of ice melted per unit time and unit length of channel, %(() is the wetted118

perimeter of the channel and ℎ(() is the elevation of the water surface above the bottom of119

the channel. di and dw are the densities of ice and water, respectively, and 5 is a friction120

coefficient depending on wall roughness in the channel. Note that by equating the source121

term < with melt rate, we ignore seepage into or out of a firn aquifer, or substantial water122

input from tributary streams.123

To simplify matters, we assume that the cross-sectional area can grow or shrink but retains124

a shape determined by its size alone. Our main interest is in downward incision of the channel,125

which we assume to be a slow process compared with the adjustment of channel shape, since126

we will assume below that water depth is much less than the typical amplitude of channel127

elevation 1. Consequently, we treat % and ℎ as non-decreasing functions of (, whose form128

depends on the geometry of the cross-section. At a minimum, we know that water depth must129

vanish when cross-sectional area does, so ℎ(0) = 0.130

The simplest way to parameterize the cross-sectional shape of the channel is to treat it as131
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Figure 1: Geometry of the problem: water surface in blue, channel / lake bottom in black,
ice surface as dashed black line. Some of the symbols used here (1m, Gm Gs and Gp) are

defined in the context of a leading-order model in sections 2.2–3)

a) b) c)

Figure 2: Cross-section shapes: a) semi-circle (U = V = 1/2), b) triangular (U = V = 1/2)
and c) fixed-width slot (U = 0, V = 1). Water with cross-sectional area ( is shown in blue,

wetted perimeter in heavy black. The qualitative nature of solution computed in §4
depends on whether U = 0.

a semi-circle (figure 2). In that case, the radius A of the cross-section is A = (2c−1()1/2 and132

%(() = cA = (2c()1/2, ℎ(() = A = (2c−1()1/2. (2.1c)133

Alternatives would be to assume the channel is triangular with a fixed angle \ between the134

channel sides and the vertical135

%(() =
2(1/2

sin(2\)1/2
, ℎ(() =

(1/2 cos(\)

sin(2\)1/2
(2.1d)136

or to fix a width , that is much greater than water depth, and to put (as is done in Fowler137

2011)138

%(() = ,, ℎ(() =
(

,
. (2.1e)139

Generically, this suggests we consider140

%(() = 21(
U, ℎ(() = 22(

V (2.1f )141

with 21, 22 > 0, U > 0, V > 0 (we admit that width and therefore wetted perimeter may142

not depend on (, but water depth must, so V cannot vanish while U can): (2.1c)–(2.1d) have143

U = V = 1/2 while (2.1e) puts U = 0, V = 1. In fact, the examples above suggest that the144

product of wetted perimeter and water depth scale as the cross-sectional area, in which case145

U+ V = 1, and that the exponents are not only positive but also satisfy 0 6 U < 1, 0 < V 6 1.146

We assume that energy dissipated by the flow is instantly transferred to the wall of the147

channel and turned into latent heat, and that this is the dominant mechanism of channel148

incision. A more sophisticated model could track the temperature of the water and use a149

heat transfer model (see also the discussion in Evatt et al. 2006; Ogier et al. 2021); here we150

Focus on Fluids articles must not exceed this page length
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assume that heat transfer is highly efficient at the length scales under consideration. Letting151

L be the latent heat of fusion per unit mass of water, we put152

diL< =
dw 5 D3%(()

8
, (2.1g)153

the right-hand side being the rate at which work is done per unit length of channel by water154

moving at velocity D against the friction force d 5 D2%(()/8 on the channel wall. In order155

to model how fast the channel cuts into the ice, we assume that downward incision can156

be estimated by distributing melt equally over the wetted perimeter, leading to an incision157

rate of </%. Future work will need to address both the channel shape parameterizations158

and the distribution of melt over the channel wall: related work on englacial channels159

(Dallaston & Hewitt 2014) may serve as a template.160

In addition, we assume that the ice surface is moving horizontally at a velocity * and is161

subject to localized uplift or drawdown at a prescribed rate F(G) due to flow of the glacier or162

ice sheet over bed topography (e.g. Schoof 2002), where we will later assume for simplicity163

that * is constant in space as well as time, as is appropriate for instance for rapidly sliding164

ice. Then165

1C +*1G = F −
<

%(()
. (2.1h)166

We assume that the base of the channel is incised into an ice surface at elevation B, with 1 6 B.167

In assuming thatF is constant in time, we are assuming not only that we can ignore localized,168

enhanced ‘creep closure’ around a deeply incised channel (Jarosch & Gudmundsson 2012)169

as well as snow accumulation at the base of the channel during winter, but also that B is in170

steady state (Schoof 2002), and itself satisfies171

*BG = F. (2.1i)172

We will generally use 1(G, 0) = B(G) as an initial condition, representing a channel that is173

only just beginning to incise into the ice surface. A modification of the present model to a174

dynamically evolving ice surface B will be presented elsewhere.175

We envisage the channel draining a reservoir at its upstream end. For simplicity, we assume176

that the seal point of the lake (the maximum in 1) is some distance downstream of G = 0, and177

that we can relate lake volume directly to water level ℎ at G = 0, and put178

¤+ = @0 (C) − (D() |G=0 , + (C) = +! (ℎ(((0, C))), (2.1j)179

with the dot on ¤+ denoting an ordinary time derivative, @0 being a prescribed rate of inflow180

to the lake due to surface melting in some larger upstream catchment. +! is an increasing181

function of ℎ, dictated by the bathymetry of the lake. The bathymetry in turn is presumably182

determined by * and F, but we do not consider that in detail here, nor do we consider the183

possibility that surface loading due to the lake could affect the motion of the ice. As with an184

evolving ice surface B, the latter complication will be studied in a separate paper.185

Note that (2.1j) places the upstream boundary of the model at a fixed position G = 0186

rather than the moving seal location G = G< indicated by figure 1. The latter would certainly187

be appropriate, but a fixed upstream domain boundary G = 0 causes no inconsistencies188

here: we will find shortly that melt rate < = 0 upstream of the lake seal at leading order,189

so that the channel bed elevation 1 predicted by (2.1h) simply follows the unincised ice190

surface B up to the seal, and in addition, water flux D( is independent of position at leading191

order, so (D() |G=G< = (D() |G=0. Extending the domain upstream of G< allows for a simpler192

presentation of the physics of seal migration in the leading order version of the model that193

we will derive next, since those physics are simply those of a shock (or slope discontinuity)194

that can equally form further downstream in the channel.195
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Before we continue, we note some important limitations of the model. First, by assuming196

a fixed flow path and not modelling tortuosity, we are not considering the effect of meanders197

on flow and channel incision, even though meandering is known to be a common feature of198

glacier surface streams (e.g. Karlstrom et al. 2013; Fernández & Parker 2021). Second, the199

one-dimensional nature of the model implies not only that there is a single outflow from the200

lake, which is ultimately likely as two competing outflow channels are presumably prone to201

instability, with the larger channel persisting while the smaller is abandoned. It also implies202

that, if flow in the channel were to cease temporarily due for instance to seasonal variations203

in water supply @0, the same channel will be re-occupied when flow recommences. We return204

to this in §7.205

In addition, we also neglect surface lowering due to melt driven by insolation or a warm206

atmosphere, or freezing due to heat fluxes into the ice. This may be reasonable for the incision207

of the channel relative to the rest of the ice surface B, but is more questionable for the lake208

itself. Here, enhanced absorption of incoming radiation in the lake water is likely to lead to209

preferential melting of the deeper portions of the lake (see also Buzzard et al. 2018). By the210

same token, we also neglect the possibility that the lake water could be warmed relative to211

the melting point by incoming solar radiation (see also Raymond & Nolan 2000). That said,212

by omitting externally-driven melting, our model allows us to focus purely on the coupled213

effects of ice and water flow in the erosion of the channel and its effect on lake drainage.214

2.2. Non-dimensionalization and a reduced model215

We assume that a length scale [G] can be determined from the uplift field F(G), and that216

scales for vertical and horizontal ice velocities [F] and [*] are also known. In terms of217

these, we define scales [C], [(], [D] and [1] through218

dw6[1] [(]

[G]
=

dw 5 [D]2%([(])

8
,

dw 5 [D]3

8diL
= [F] =

[*] [1]

[G]
, [*] [C] = [G]. (2.2)219

Our choice of scales here reflects the following: we are interested in significant channel220

incision over a single advective time scale [C] = [G]/[*] for the ice surface, so that uplift,221

advection and incision of the channel naturally compete with each other. Given a natural222

surface topography scale [1] = [F] [G]/[*], the advective time scale sets a dissipation rate223

and therefore a water flux scale [D] [(] (effectively, as a distinguished limit). Setting the224

dissipation rate based on the advective time scale may seem contrived, since it should really225

be set by surface slope and water flow rates. The latter are controlled by water supple, and226

are not physically controlled by surface advection. We assume that we are in a parameter227

regime in which water supply produces a melt-driven incision rate that is comparable to228

uplift and advection. The alternative would be a much faster melt rate (which the model we229

construct can still caputre if we prescribe a large dimensionless water supply). In that case,230

however, lakes generally cannot persist as the uplift that is necessary to create a lake seal231

cannot compete with the incision rate of the channel.232

It is possible to construct the same problem as below for a much shorter channel incision233

time scale, corresponding to greater dissipation and therefore water fluxes; that however234

precludes the generation of a lake, which requires the lake seal to be generated through uplift235

of the ice surface.236

From these scales we obtain the dimensionless groups237

a =
ℎ([(])

[1]
, �A2

=
[D]2

6ℎ([(])
, Y =

6[1]

L
, X =

[*]

[D]
. (2.3)238

These have straightforward interpretations: a is the ratio of water depth to ice surface239
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topography, the Froude number �A is the usual square root of the ratio of kinetic to240

gravitational energy, Y is the ratio of gravitational potential energy to latent heat, and X241

is the ratio of ice to water velocity. With the possible exception of �A, we expect all of these242

parameters to be small: if water moved at speeds comparable to the ice, then surface drainage243

would presumably be of no interest, while the surface topography scale would have to be244

around 30 km with a terrestrial gravitational field 6 ≈ 10 m s−2 in order for gravitational245

potential energy and latent heat L ≈ 3.35 × 105 J kg−1 to be comparable. We also expect246

the water depth in a glacially-dammed lake to be larger than the flow depth in the stream247

draining it, except possibly during a very rapid outburst flood or for shallow lakes.248

In fact, for realistic values of [*] = 100 m a−1, [1] = 10 m, [G] = 1 km, 6 = 9.8 m s−2,

5 = 0.05, we obtain, with ℎ(() and %(() given by (2.1c)

[D] = 1.2 m s−1, [(] = 0.47 m2,

values that are realistic for surface streams with gentle [1]/[G] ≈ 0.01 slopes. With the249

choice of scales defined through (2.3), we define dimensionless variables through250

G = [G]G∗, C = [C]C∗, D = [D]D∗, ( = [(](∗, 1 = [1]1∗, (2.4)251

and define252

%∗((∗) =
%(()

%([(])
, ℎ∗((∗) =

ℎ(()

ℎ([(])
, (2.5)253

and also put * = [*]*∗, F = [F]F∗. Then, in dimensionless form, dropping the asterisks254

on the dimensionless variables immediately, the model becomes255

X(C + (D()G =YD3%((), (2.6a)256

a�A2((XDC + DDG) = − D2%(() − (1G − a(ℎ(()G , (2.6b)257

1C +*1G =F − D3. (2.6c)258259

with %(() = (U and ℎ(() = (V.260

Following the discussion above, we assume that X ≪ 1, a ≪ 1 and Y ≪ 1. At leading261

order in these small parameters, we obtain from (2.6)262

(D()G = 0, D2%(() = −(1G , 1C +*1G = F − D3. (2.7)263

Water flux along the channel is constant in space, velocity is controlled by a balance of264

friction at the channel wall and the downslope component of gravity acting on the water in265

the channel, and the channel bottom evolves due to advection, uplift, and melting driven by266

local dissipation of heat in the flow of water.267

The reduced model is subject to the caveat that the local Froude number �A;>2 =268

�A D/(V(V)1/2 remain less than unity. Where �A;>2 > 1, the channel becomes unstable269

to bedform formation at short wavelength, while for �A;>2 > 2/(1 − U), roll waves form270

in the flow (see §3 of the supplementary material, also sections 4.4.4–4.5.2 and chapter 5271

of Fowler (2011)). A reduced model that does not explicitly resolve these phenomena but272

focuses on channel incision at the larger scale may still be possible, but would presumably273

require a multiple scales expansion (Holmes 1995). We leave this to future work.274

Persisting with (2.7), we find that @ = D( is independent of position, and we will assume275

below that @ > 0, so the lake at the upstream end of the domain drains through the channel,276

but is not filled through a reverse flow. With fixed @, D depends on flux @ and slope −1G277

through (2.7)2 as278

D3@−1%(D−1@) = −1G , (2.8)279

where we assume that 1G < 0 and @ > 0. With channel geometry given by (2.1f), specifically280
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a) b)

Figure 3: Melt rate " (−1G, @) against 1G for @ = 0, 0.25, 0.5, 0.75, 1 for a) U = 0.5, b)
U = 0. " = 0 when 1G > 0. Note that, although the two panels look similar, " in panel is
strictly convex for 1G < 0 and continuously differentiable at 1G = 0, which has significant

implications for shock formation in the model (2.10).

%(() = (U in dimensionless form, we obtain a dimensionless melt rate281

" (−1G , @) := D3
=

(

−@1−U1G

)3/(3−U)

. (2.9)282

The function " here is a monotonically increasing and convex function of −1G for U > 0,283

strictly so if U > 0, and a monotonically increasing function of @ for U < 1 (see also figure 3).284

Our assumptions about channel geometry can be relaxed significantly while allowing these285

properties to be preserved: as shown in §2 of the supplementary material, monotonicity is286

assured if hydraulic radius (/%(() is an increasing function that vanishes when ( = 0, while287

(strict) convexity follows if % is (strictly) concave.288

At face value, substituting in (2.7)3 yields the single evolution equation for 1,289

1C = F −*1G − " (−1G , @). (2.10)290

Note that this is effectively the stream power equation for landscape evolution in (Luke 1972;291

Kwang & Parker 2017; Fowler et al. 2007).292

Our assumption that 1G < 0 is however not always satisfied. Where such reverse slopes293

occur, the reduced model breaks down: water depths become large, flow velocities become294

small and melt rates vanish at leading order, and we therefore more generally put " = 0295

when 1G > 0, replacing (2.9) by296

" (−1G , @) = @3(1−U)/(3−U) [max (−1G , 0)]
3/(3−U) . (2.11)297

to account for this. That in itself does not however suffice, since local maxima in the stream298

bed can induce ponding even on downward slopes further upstream. We deal with this next.299

2.3. Ponding300

Ponding occurs at a point G when there is a downstream point G ′ > G at which the base of the301

channel is higher than at G, 1(G ′) > 1(G) The appropriate modification of (2.10) to account302

for ponding is therefore via a ‘ponding function’ 2,303

1C =F −*1G − 2(G, C)" (−1G , @), (2.12a)304

2(G, C) =

{

1 if 1(G, C) > supG′>G 1(G
′, C),

0 otherwise.
(2.12b)305

306

Note once more that the introduction of the ponding function is redundant where 1G > 0 in307

ponded sections, since in that case " (−1G , @) = 0 by definition. It is also worth pointing308

out that, if there is no flow (@ = 0), the ‘ponded’ sections of the bed (given by the set309

{G : 1(G, C) < supG′>G 1(G
′, C)}) may not be fully submerged by stagnant water, but this does310
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not alter the evolution problem (2.12a) further since the absence of flow already ensures that311

" = 0.312

We assume additonally that ponded sections of channel store negligible quantities of313

water, so that we can continue to treat @ as independent of position G. Formally, we can use314

a rescaling as described in appendix A to show that negligible storage corresponds to the315

parameter regime X ≪ a1/V. In that case, the lake generally stores much more water than316

the ponded sections, since drainage of the lake affects flux @, while drainage of a ponded317

section does not. Physically, this occurs because the lake is much wider than the channel, as318

it occupies a depression in the unincised ice surface B (figure 1). Since we assume B to be319

in steady state, the lake basin shape is unaffected by the evolution of 1, although the water320

level within that basin does depend on channel evolution as we describe immediately below321

in section 2.4. To make the model self-consistent, we also avoid the possibility of multiple322

such lakes by insisting that the uplift function F have a single root at some location Ḡ<,323

with F < 0 downstream of that. The only depression in the unincised ice surface given by324

*BG = F is then upstream of Ḡ<.325

We still need to deal with mass conservation equation (2.1j) for the lake to determine the326

flux @(C), which is constant along the channel, but can change over time. Note that we have327

not rendered (2.1j) in a leading-order, dimensionless form yet. We do so next.328

2.4. Outflow at the lake329

As we have to revisit the non-dimensionalization of the problem, we temporarily reintroduce330

asterisks on dimensionless variables. We assume that the lake at G∗ = 0 is contained in a331

depression in the unincised ice surface, with the water level in the lake controlled by ponding332

at the upstream end of the channel (that is, by the highest point in the channel bed). Water333

level in the lake therefore scales with ice surface topography [1]. To account for this, define334

a dimensionless water depth scaled with [1] as335

ℎ̂∗ = a−1ℎ∗((∗) = ℎ(()/[1] (2.13)336

as is appropriate for ponded sections, see appendix A; note that this differs from the scaling337

for water depth in channel further downstream. Then338

ℎ∗0 = ℎ̂∗(0, C∗) + 1∗(0, C∗) (2.14)339

is the dimensionless water level of the lake, relative to the same datum as channel bottom340

elevation 1∗. We define a dimensionless lake volume function and a dimensionless water341

supply function through342

+̂ (ℎ0(C
∗)) =

+! (ℎ(((0, C)))

[D] [(] [C]
, &∗(C∗) =

@0(C)

[D] [(]
. (2.15)343

where the variables on the right-hand sides of both equalities are dimensional. We assume344

formally that +̂ and & are $ (1) functions. By this, we mean that lake volume is comparable345

to (or less than) the volume [D] [(] [C] typically carried by the channel in a single channel346

evolution time scale [C], and inflow into the lake is comparable with or less than the flux347

scale [D] [(] that causes significant channel incision over the advective time scale of the ice.348

We immediately revert to dropping asterisks on dimensionless variables. As in the previous349

section, water surface elevation 1 + ℎ̂ must be constant up to the lake seal (the end of the350

ponded section that extends downstream from the domain boundary at G = 0, the latter being351

upstream of the lake seal unless the lake drains completely). Water surface elevation also352

cannot exceed seal height at leading order (appendices A and B.2). Consequently, we find353

that water level at the upstream end of the domain is either at the height of the seal point if354
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water is flowing, or below that seal height, in which case no water is flowing. We denote the355

seal height by 1m(C), so that356

ℎ0 6 1m(C) := sup
G>0

1(G, C). (2.16a)357

Similarly, we will use Gm to denote the seal location, defined such that 1m(C) = 1(Gm(C), C).358

With D( = @ constant throughout the domain, water balance of the lake ¤̂+ = & − (D() |G=0359

can therefore be written as360

W ¤ℎ0 =&(C) − @, (2.16b)361

@ =

{

0 if ℎ0 < 1m,

max
(

& − W ¤1m, 0
)

if ℎ0 = 1m,
(2.16c)362

363

where W(ℎ0) = d+̂/dℎ0 is storage capacity in the lake (given by its surface area), and overdots364

again denote time derivatives. Flux @ in the channel is the difference between inflow into the365

lake and the rate at which water is retained in the lake, and the latter is controlled by how the366

high point in the channel itself evolves due to uplift, advection, and incision.367

3. Characteristics, shocks, and the dynamics of the lake seal368

3.1. Characteristics369

If we treat 2(G, C) and @(C) momentarily as known, then (2.12a) can be recognized as being370

of Hamilton-Jacobi form (Luke 1972),371

1C = −H(G, C, 1G , @), (3.1)372

where the Hamiltonian H is given by373

H(G, C, ?, @) = *? + 2(G, C)" (−?, @) − F(G), (3.2)374

replacing 1G (itself a function of G and C) with ? for clarity in the meaning of derivatives of375

H .376

The method of characteristics (Courant & Hilbert. 1989, §3) allows us to write the problem377

(3.1) in the form of Charpit’s equations as follows: we define characteristics as curves of378

constant f in the transformation (f, g) ↦→ (G, C) given by379

Gg = H? = * − 2"−? (−?, @), C (f, g) = g, (3.3)380

where H? (G, C, ?, @) is the partial derivative of H with regard to its third argument, with G,381

C and ? all treated as functions of f and g, while "−? (−?, @) is the partial derivative of "382

with respect to its first argument. Equation (3.3) underlines a key difference with classical383

stream power models: here characteristics can travel downstream as well as upstream, with384

major implications for breaching the lake seal and controlling flux @.385

Along a given characteristic, 1(f, g) and ?(f, g) = 1G evolve as386

1g = −H +H? ? = F − 2["−? (−?, @)? + " (−?, @)], ?g = −HG = FG (3.4)387

subject to the given initial and boundary conditions. We take these to be 1(G, 0) = 1in(G)388

at C = 0 and 1(0, C) = 1in(0) at G = 0, so elevation at the upstream end of the domain389

remains constant throughout. Prescribed 1 at the upstream end of the domain is appropriate390

for characteristics entering the domain there (as is always the case when there is a ponded391

section at that upstream boundary, in which case the characteristic velocity Gg = * there).392

There are also situations in which the characteristic velocity Gg can become negative393

at the downstream end of a fixed domain, requiring additional boundary conditions there.394

Rapids articles must not exceed this page length
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In practice, surface channels either terminate abruptly at near-vertical cracks (or moulins)395

in the ice, or at the downstream margin of the ice sheet. Neither situation is adequately396

described by our model, and we use the following, somewhat unsatisfactory device instead:397

we fix a downstream domain boundary at some G = ! with suitably large !, and truncate398

any characteristic that reaches that location from upstream. Conversely, if the characteristic399

velocity at G = ! becomes negative, we do not introduce new characteristics at G = ! but400

allow the domain to shrink at the characteristic velocity. Implicitly, we are assuming that401

none of the ‘missing’ characteristics are able to reach the lake seal, and that the omitted402

physics at the downstream end of the domain does not change the ponding function 2 by403

creating a local maximum in 1 somewhere downstream.404

As already pointed out, the problem (3.1)–(3.2) is a modification of ‘stream power models’405

for landscape evolution (Luke 1972). The main differences are the control of water flux @406

through lake drainage rather than simply a prescribed precipitation rate, the inclusion of the407

ponding function 2, and the presence of the advection term *?. The latter leads to a convex408

but non-monotone Hamiltonian, which allows characteristics to propagate downstream as409

well as upstream. As we will see in §3.3, this feature of the model is key to understanding410

whether the seal of a lake is breached by incision of the channel or not.411

Before we proceed further, there are a couple of technical points to make. First, note412

that we do not attempt to differentiate the piecewise constant function 2 when forming the413

derivative HG in equation (3.4). Instead, we treat discontinuities in 2 separately as described414

in detail in §3.3 and appendix D. Of these, only the discontinuity at the upstream end of a415

ponded section described in appendix D poses any real difficulties: near the downstream end416

of a ponded section (§3.3), 2 is obsolete because " and 2 both vanish when bed slope 1G is417

positive.418

Formally, the inclusion of 2 actually turns the model into a hyperbolic system not only in419

terms of 1, but also of a second variable 1̆(G, C) = supG′>G 1(G
′, C). Assuming that 1 has an420

integrable derivative, 1̆ satisfies†421

1̆G = min(1G , 0)� (1̆ − 1) (3.5)422

where � is the usual Heaviside function (with � (0) = 1), with 1̆ = 1 at the downstream end423

of the domain. The characteristics of 1̆ are then lines of constant C, and in terms of 1 and 1̃,424

2 = � (1 − 1̆). (3.6)425

The auxiliary variable 1̆ however only affects the solution through discontinuities in 2, and426

on either side of such a discontinuity, (3.1) and hence (3.3)–(3.4) hold with constant 2 = 0427

or 2 = 1.428

Second, it is worth pointing out that the Hamiltonian structure of the problem furnishes a429

simple evolution equation of H along characteristics:430

Hg = HGGg + H? ?g + H@@g = HGH? −H?HG + H@@g = H@@g ; (3.7)431

the only situation where this fails is when 2" and hence H change discontinuously.432

With our choice of constant upstream boundary conditions (so 1C = −H = 0 at the433

upstream end of the domain), an important corollary of equation (3.7) is that 1 always434

remains in steady state upstream of the seal of the lake, since H@ = 2"@ = 0 in a ponded435

section with 2 = 0, and hence 1C = −H remains zero along characteristics entering the436

domain from upstream, at least before they reach the seal of the lake. As we will see later,437

the ability of such characteristics to fill the entire domain ultimately determines much of the438

dynamics of the system.439

† we are grateful to one of the referees for pointing this out
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Figure 4: Different flavours of shocks and discontinuities in 2: a) ‘knickpoint’ shocks in
flowing sections (§3.2), b) seal shocks (§3.3), c) smooth seals (§3.3) and d) upstream ends
of ponded sections, which can correspond to expansion fans but not to shocks (appendix

D).

Next, we give a comprehensive account of shocks (that is, discontinuities in slope 1G along440

which characteristics intersect), and of discontinuities in 2 (which need not correspond to441

shocks). Figure 4 provides an overview of the different possibilities. We treat cases (a–c) in442

the figure in sections 3.2–3.3 and derive formulae for flux @ in terms of shock geometry at the443

lake seal in §3.4. We relegate the analysis of the upstream end of ponded sections as shown444

in figure 4(d) to appendix D, where we show that the discontinuity in 2 at such a location445

cannot generate a shock but may give rise to an expansion fan. The material below is fairly446

dense and, at this stage, abstract. On a first reading, it may be preferable to skip to §4 to447

understand the zoology of features of the solution before filling in the theoretical background448

in sections 3.2–3.4 and appendix D.449

3.2. Knickpoint shocks450

Equation (3.1) breaks down when characteristics intersect at shocks. Intersections require451

characteristics to travel faster upstream of the shock than downstream. The melt rate " is452

convex in slope ?, and for 2 = 1 on either side of a shock in a flowing section, so is the453

Hamiltonian H . Denoting by superscripts + and − limits taken from above and below the454

shock at G = G2 (C), respectively, we must have 1+G < 1−G < 0 for a shock in a flowing section455

(figure 4(a)). These shocks represent ‘knickpoints’ in standard geomorphological parlance456

(Luke 1972; Royden & Perron 2007).457

We require that 1 remain continuous across any shock or discontinuity in 2 (see appendix458

B for the boundary layer structure of the full model around the different types of shock).459

Differentiating both sides of 1−(G2 (C), C) = 1+(G2 (C), C) with respect to C, we obtain 1−C +460

1−G ¤G2 = 1+C + 1
+
G ¤G2, where the overdot denotes differentiation with respect to time. Solving for461

shock velocity ¤G2, using (3.1) to substitute for 1−C and 1+C , we obtain (see also Royden & Perron462

(2007))463

¤G2 =
H(G2 , C, 1

+
G , @) − H(G2 , C, 1

−
G , @)

1+G − 1−G
= * +

2+" (−1+G , @) − 2−" (−1−G , @)

1+G − 1−G
, (3.8)464

where of course 2+ = 2− = 1 for a shock in a flowing section; we retain 2+ and 2− for later465

convenience. By the mean value theorem, a strictly convex H corresponds to ¤G2 somewhere466

between the characteristic velocities on either side, with characteristics terminating at the467

shock from both sides as expected. In fact, knickpoint shocks between two parts of a flowing468

section can occur only if U > 0 in (2.11), so H is strictly convex for ? < 0. For U = 0,469

the characteristic velocity H? = * − @ in a flowing section is independent of slope and470

characteristics do not cross.471

3.3. The downstream end of a ponded section472

Shocks between a ponded section upstream and a flowing section downstream (2− = 0,473

2+ = 1, 1−G > 0, 1+G < 0, see figure 4(b)) are equivalent to knickpoint-type shocks. Equation474
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(3.8) still holds, where now 2−" (−1−G , @) = 0 (as pointed out before, the discontinuity in 2 is475

a red herring here since " (−1−G , @) = 0 for 1−G > 0 anyway). The important distinction with476

the knickpoint shocks of §3.2 is that shocks between ponded and flowing sections can form477

even if " is not strictly convex (that is, for U = 0), since the characteristic velocity G−g = *478

upstream of the shock is larger than its counterpart G+g = * −"−? (−1
+
G , @) downstream, and479

characteristics terminate at the shock from both sides.480

The seal of the lake may take the form of a knickpoint between ponded and flowing, and481

its motion then controls the flux @ as described in §3.4 below. We refer to ‘breaching’ of the482

seal as incision into a seal that was previously in steady state, leading flux @ to increase and483

the lake to drain, and this requires a shock to pass the steady seal location as we will show in484

§4.485

The transition from ponded to flowing need not correspond to a shock, however. A486

continuous slope with 1−G = 1+G = 0 is possible if the transition point Gs(C) is a local maximum487

of 1 such that characteristics enter from one side and exit on the other, with no jump in 1 or488

1G = ?, and with a continuous melt rate 2" and HamiltonianH (figure 4(c)). We refer to this489

as a smooth seal. The simplest situation in which to understand this is that of a steady state490

upstream of the seal (which we generally expect to be the case for the lake seal as discussed491

after equation (3.7)), in which case a smooth seal will also be stationary. Characteristics will492

then pass through the seal provided the characteristic velocity downstream remains positive:493

G+g = * − "−? (0
−, @) > 0. (3.9)494

For U > 0, "−? (0
−, @) = 0, and (3.9) is always satisfied: in order to breach the lake seal in495

that case, a knickpoint must form downstream and migrate to the seal location. Conversely,496

for U = 0, such knickpoints cannot form, but (3.9) is violated if @ > *. In that case, a shock497

forms at the seal itself, causing the lake seal to be breached.498

Note that the argument above can be generalized to the case of non-steady smooth seals499

by differentiating both sides of 1+G (GB (C), C) = 1−G (GB (C), C) with respect to time, and using the500

fact that 1GG < 0 on either side of GB (C). Details are provided in appendix C.501

3.4. The lake drainage flux @502

Key to the model is to understand how the flux @ evolves, which requires the evolution of503

the seal point height ¤1m in (2.16c). There are two scenarios. First, the seal point Gm can be a504

shock (note that this differs from figure 1, which shows a smooth seal). Differentiate 1< =505

1(G<(C), C) and use the fact that the shock velocity ¤G< is given by (3.8) with 2−" (−1−G , @) = 0,506

while 1−C = F(G<) −*1−G . We obtain507

¤1m = 1−C + 1−G ¤Gm = F(Gm) +
1−G" (−1+G , @)

1+G − 1−G
. (3.10)508

Assuming lake level is equal to seal height with ℎ0 = 1m, (2.16c) then leads to the equation509

@ = max

(

& − WF(Gm) − W
1−G" (−1+G , @)

1+G − 1−G
, 0

)

, (3.11)510

The flux @ is the sum of water supply to the lake &, and of water discharged due to lowering511

of the lake seal by uplift −WF(G<) and melt-driven incision into the lake −W"/(1+G − 1−G).512

If that sum is negative, there is no outflow @ from the lake, and the seal of the lake will513

in fact temporarily rise above the level of the lake. Importantly, (3.11) determines the flux514

implicitly, since @ appears on the right-hand side as a result of the melt rate being dependent515

on flux, and that melt rate in turn dictates the rate at which the lake seal is lowered.516
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Figure 5: Values of base outflow rate & − WF(Gm) corresponding to a given flux @ as
determined by (3.11), for W = 2, 1+G = −1 and 1−G = 0, 0.25, 0.5 . . . , 2 (the end member

cases 1−G = 0 and 1−G = 2 being labelled with arrows) for U = 0.5 (a) and U = 0 (b). Stable
solutions are shown as solid lines, unstable as dashed lines. In panel (a), stable @ can be

multivalued for given & − WF(Gm), while in panel (b), there are combinations of
& − WF(Gm) and 1−G for which no solution for @ exists (take for instance & − WF(Gm) > 0

and 1−G = .2)

Alternatively, the seal can be a smooth transition point, with 1−G = 1+G = 0. Then517

¤1m = 1C + 1G ¤Gm = 1C +*1G = F(Gm). (3.12)518

In that case, (2.16c) leads to the explicit formula519

@ = max(& − WF(Gm), 0) (3.13)520

In what follows, we refer to & − WF(Gm) as the ‘base outflow rate’ that results if there is no521

incision into the seal due to melting (that is, if we simply put " = 0 at the seal in (3.11)). A522

negative base outflow rate signifies that uplift at the seal occurs faster than the refilling of the523

lake, and must be compensated by a positive incision rate of the seal in order for any outflow524

to occur at all.525

Only the case (3.11) of a shock at the seal is non-trivial, precisely because @ appears on526

both sides of the equation. Since " > 0 for all @ and " = 0 if @ = 0, we can equivalently527

write528

& − WF(Gm) = @ + W1−G" (−1+G , @)/(1
+
G − 1−G) if @ > 0

& − WF(Gm) 6 0 if @ = 0.
(3.14)529

At this point, we have to distinguish between the cases U = 0 and U > 0, which give530

qualitatively different results.531

3.5. Flux for the variable channel width case U > 0532

For U > 0 and ? < 0, the function " (−?, @) defined in equation (2.11) is an increasing,533

concave function of @ with "@ (−?, 0) = ∞. The right-hand side of (3.14)1 therefore vanishes534

at @ = 0, decreases for small @, reaches a global minimum and then increases thereafter (recall535

that 1−G > 0 and 1+G < 0 for a shock at the seal). The right-hand side of (3.14)1 is shown as536

a function of @ in figure 5(a) for fixed 1+G and a variety of values of 1−I as dashed and solid537

curves. The solution for @ can be read off the graph by identifying where the height of the538

curve reaches the prescribed value of base outflow rate & − WF(G<).539

If the base outflow rate & − WF(Gm) is positive, there is therefore a single positive root540

for @ (a single value of @ for which the curve attains the prescribed value of & − WF(G<)).541

That root @ increases with base outflow rate & − WF(Gm) and with storage capacity W (for542

fixed base outflow rate). By contrast, the solution for @ can become multivalued for negative543

& − WF(Gm) 6 0: no flow with @ = 0 is then a valid solution of the original problem (3.11),544

since no flow implies the absence of dissipation-driven seal incision, and seal height will545

increase at or above the rate of lake filling. That does not mean that there cannot be any546
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flow, however. In addition, there are two non-zero solutions if the negative base outflow547

& − WF(Gm) < 0 remains above a critical value (figure 5(a)). Incision of the seal by flowing548

water can then cause drainage of the lake at the right rate to maintain that rate of incision.549

For the melt rate " given by (2.11), that situation is possible when550

& − WF(Gm) > −
2U

3 − U

(

3(1 − U)W1−G
(3 − U)(1−G − 1+G)

) (3−U)/(2U)

(−1+G )
3/(2U) . (3.15)551

where the critical value is the minimum of the right-hand side of (3.14)2 with respect to @.552

For even more negative & − WF(Gm), @ = 0 is the only solution.553

A multi-valued solution for flux @ begs the question how outflow from the lake should554

be computed: how does the lake choose which solution branch to follow? In common with555

similar situations such as a glacier selecting a branch of a multi-valued sliding law during556

a surge cycle (Fowler 1987, 1989), or the behaviour of the van der Pol oscillator in the557

relaxation oscillation limit (Holmes 1995), we argue that multivaluedness is simply the558

result of a process that occurs on a fast time scale having evolved to equilibrium, and the559

dynamics of that process need to be resolved to pick the equilibrium that is reached.560

An obvious fast time scale process is the adjustment of lake level. If @ > 0, then lake level561

attains seal height at leading order (appendix A), but more accurately, there is a small $ (a)562

difference between the two: the bigger the flux @, the more lake level exceeds the seal height563

by, even if that amount remains small compared with the $ (1) height of the seal itself. More564

specifically, solving a boundary layer problem around the seal (appendix B.2 or, in more565

detail, in sections 1.5–1.6 of the supplementary material) allows us to compute (although not566

in closed form) flux @ in terms of the difference between lake water level ℎ0 and seal height567

1m, and in terms of the slopes 1+G and 1−G up- and downstream of the seal. That relationship568

can be expressed in the form569

@ = QB (a
−1 (ℎ0 − 1m), 1

−
G , 1

+
G) (3.16)570

where QB is non-negative, vanishes when its first argument is negative or zero (meaning,571

water level is at or below seal height), and is otherwise $ (1) when its arguments are $ (1)572

(see appendix B.2, figure 15(b)).573

When applied to the mass balance of the lake, this prescription for flux leads to a regularized574

version of (2.16)575

Wℎ0,C = &(C) − @, @ = QB (a
−1 (ℎ0 − 1m), 1

−
G , 1

+
G). (3.17)576

Note that this replaces the cruder but structurally similar ordinary differential equation577

models for lake surface lowering in Raymond & Nolan (2000), Kingslake et al. (2015) and578

Ancey et al. (2019).579

Let ℎ0 = 1m + aℎ1, so ℎ1 is the appropriately rescaled water level elevation above the seal.580

Then, using (3.10) to re-write ℎ0,C =
¤1m + aℎ1,C , we obtain from (3.17)581

aWℎ1,C = & − WF −
W1−G" (−1−G ,QB (ℎ1, 1

−
G , 1

+
G))

1+G − 1−G
− QB (ℎ1, 1

−
G , 1

+
G) (3.18)582

Reassuringly, we recover (3.14) for @ = QB (ℎ1, 1
−
G , 1

+
G)) at leading order in a. The flux @583

implicitly defines the correction ℎ1, but this still does not resolve the maltivaluedness of the584

solution. Omitting the time derivative aℎ1,C is however a singular perturbation that neglects585

transient behaviour on the faster $ (a) time scale: rescaling time as ) = a−1C in (3.17) yields586

an ordinary differential equation for ℎ1 with 1−G and 1+G constant on that fast time scale. ℎ1587

will evolve to a stable steady state in ) that satisfies either case in (3.14).588

(There is a slight inconsistency here: (3.17)2 is the result of the steady state boundary589
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a)

-1 0 1 2

b)

-1 0 1 2

Figure 6: Contour plots of @ as a function of (1+G , 1
−
G ) for steady state upstream conditions

F(Gm) = 1−G/*. Logarithmically spaced contour intervals with five contours per decade,
contour levels as indicated by the colour bars. The dashed contour in each case

corresponds to @ = &, at which the shock is stationary, migrating forward for @ < & and
backward for @ > &. The solid black curve indicates the boundary of the region in which
only the zero solution exists. Panel a): * = 1, W = 1, & = 1 U = 0.5, red dot-dashed line is

the lower boundary of the region in which @ = 0 is a solution. Panel b): * = 1, W = 4,
& = 2, U = 0; the solid red curve is the boundary of the region in which no stable solution

for @ exists.

layer problem in appendix B.2. When rescaling to the fast time scale ) , that boundary layer590

problem actually becomes non-steady, so that @ is determined by (B 2) with an additional591

term �) added to the left-hand side of (B 2b), meaning the boundary layer is no longer592

necessarily in steady state, in which case flux cannot necessarily be expressed as a function593

of ℎ1 and the slopes 1−G and 1+G only. We leave an analysis of that situation to future work.)594

Assuming that flux increases with water level above the seal, we have mQB/mℎ1 > 0 as595

indicated by the numerical solutions in figure 15(b). The stability of steady state solutions596

to (3.18) is then easy to determine: when there are three solutions to (3.14), only the largest597

solution (for which @ increases with base outflow rate & − WF(Gm)) and the zero solution are598

stable as indicated by solid lines in figure 5(a).599

In common with analogous problems such as glacier surges or ohter relaxation oscillators,600

the relevant, stable solution branch of the original leading-order model (2.16) is chosen by601

continuity of @ in the original, slow time variable C whenever such continuity is possible.602

(This is true at least provided there are no significant variations in water supply & on the603

short ∼ $ (a) time scale over which the lake level correction ℎ1 adjusts. In practice, this could604

be a real consideration with diurnal water input fluctuations. Presumably these are generally605

insufficient in practice to lead to ℎ1 changing significantly, and do not affect the outflow rate606

@, but a more sophisticated approach is necessary if they do.)607

For the commonly encountered situation of the upstream side of the lake seal being in608

steady state, F(Gm) = *1−G , we can use the stability result to visualize flux @ as a multi-valued609

function of 1+G and 1−G in the limit of small a (figure 6(a)). Here a zero solution @ = 0 is610

possible everywhere above the red dash-dotted line 1−G = &/(W*), and becomes the only611

solution in the area demarcated by a solid black curve. Flux @ is not continuous across either612

of those boundaries when transitioning between solution branches. Note also the region613

bounded to the left by the dashed black contour: here the non-zero flux @ is less than the614

inflow &, with the seal advancing and rising in height, but water still flowing out of the lake.615

3.6. Flux for the constant channel width case U = 0616

For U = 0, the situation is qualitatively different: we have " (−?, @) = −?@ and hence (3.14)617

reads618

@(1+G − 1−G − W1−G1
+
G)/(1

+
G − 1−G ) = & − WF(Gm). (3.19)619
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if @ > 0, and&−WF(G<) 6 0 if @ = 0. Stability again requires @ to increase with&−WF(Gm),620

so the coefficient of @ on the left of (3.19) must be positive when a stable non-zero solution621

exists. As a result, there is no multi-valuedness: @ vanishes if and only if the base outflow622

rate & − WF(Gm) < 0. Instead of multi-valuedness, there may however be no solution at all.623

This occurs when624

& − WF(Gm) > 0 and (1+G − 1−G − W1−G1
+
G) < 0 (3.20)625

We can again visualize the flux solution situation, plotting @ against 1+G and 1−G under626

the assumption that F(Gm) = *1−G (figure 6(b)). Unlike the case U > 0, @ is indeed not627

multivalued, but instead undefined in a ‘forbidden’ part of the (1+G , 1
−
G ) plane if & > * as628

shown, reflecting the solvability condition (3.20).629

As a result, breakdown of the model is a very real possibility if U = 0. If the seal migrates630

backwards with a steepening upstream slope, 1−G can approach the critical value at which the631

coefficient in (3.19) vanishes, and @ undergoes runaway growth (as the red boundary of the632

forbidden region is approached from below in figure 6(b)). We will show in §4.2 below that633

this runaway growth correspond to abrupt lake drainage, with a short-lived but finite jump634

in water height across the seal that cannot be captured fully by our reduced model.635

4. Results636

We solve (2.12)–(2.16) numerically using the method of characteristics with a backward Euler637

step as described in appendix E. We use the regularized flux prescription (3.17) for U > 0, and638

at times for U = 0 in order to explore what happens ‘beyond’ the model failure identified at639

the end of the last subsection. When we do use (3.17), we treat QB simply as a regularization640

rather than trying to emulate the function shown in figure 15(b). Consequently we drop the641

slopes 1−G and 1+G as arguments from QB . In practice, we use QB (ℎ1) = [max(ℎ1, 0)]
2, and642

put a = 10−3.643

Figures 7–10 illustrate the behaviour of lakes that are initially empty with 1(G, 0) = B(G),644

where B is the unincised ice surface, satisfying *BG = F. This initial profile is a steady state645

solution in the absence of flowing water, and the profile 1 therefore remains unchanged until646

the lake is full: only then does water begin to flow and the channel becomes incised on the647

downstream side of the lake seal. We compute results for an uplift velocity of the form648

F(G) = *
{

1G − 211_(G − G0) exp
[

−_ (G − G0)
2
]

}

(4.1)649

with G0 = 1.5960, 11 = _ = 1, 1G = −0.25 and* = 1; this results in a steady state surface B(G)650

in the form of a Gaussian 11 exp(−_(G − G0)
2) superimposed on a uniform downward slope651

−1GG (see e.g. the top profile in figure 7(a1–a2)). The choice of G0 ensures that*BG = F = 0652

at G = 0, so that the upstream end of the domain is the bottom of the lake. The steady state653

surface is shown as a dashed black line in figure 8(a2), or as one of the black curves in figure654

7, panels a1 and a2.655

We use two different choices of shape exponent, U = 1/2 (the semicircles and triangles656

of equations (2.1c) and (2.1d), with wetted perimeter increasing monotonically with channel657

cross-section), and U = 0 (the fixed wetted-perimeter slot of equation (2.1e)). For each of658

these, we compute solutions for different constant values of water input & and of storage659

capacity W, treating the latter as independent of water level (see also Clarke 1982, for660

a discussion of lake hypsometries). Both of these assumptions are simplistic, but help661

understand the dynamics of surface lakes more clearly.662
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Figure 7: Solutions for U = 0.5: W = 1, & = 0.1962 (column 1) and W = 4, & = 1.570
(column 2). Panels b1, b2: contour plots of 1(G, C), with C on the horizontal and G on the
vertical axis, contour intervals of 0.1 and levels given by the colour bar. Blue lines show
water level in the lake and boundaries of ponded sections, black lines show the smooth
lake seal, magenta the closest shock to the seal, excluding the seals of ponded sections
downstream. Inset in b2 shows detail of shock migration: note that the shock first forms

downstream of seal, and then migrates upstream to incise the seal as predicted for U > 0 in
§3.3. Panels a1, a2: the profiles indicated by black dashed lines in in b1) and b2),

respectively, with blue indicating water surface in the lake or a ponded section. Panels c1
and c2: time series of Gm (C) (blue) and @(C) (black), using the same C-axis as b1) and b2).

4.1. Lake drainage modes for steady water supply: U > 0663

Depending on the values of U, & and W, different outcomes are possible, differentiated at664

the coarsest level by whether the lake drains or not. Figure 7 illustrates two possible end665

members for U = 1/2. In both cases, outflow from the lake commences once water level666

(blue curve in panel b) reaches the smooth seal (black line in panel b). For the low-inflow667

example in column 1, with & = 0.196, the smooth seal (the maximum in the unincised ice668

surface at G = Ḡ< = 1.468) remains in place, and hence (with F = 0 at the steady seal),669

@ = & from the paragraph following equation (3.11). The channel steepens downstream, but670

no backward-migrating shock forms. The steepened flowing section terminates in a ponded671

section that migrates downstream, eventually leaving the entire domain in a new steady state.672

Column 2 shows a high-inflow counterexample to the steady state of column 1, with673

& = 1.570 and W = 4. Here a shock forms quickly: the inset in panel b2 shows that the shock674

(magenta) forms downstream of the smooth seal (black) as predicted at the end of §3.3, and675

subsequently migrates upstream to breach the lake. This causes flux @ to increase as stored676

lake water is released. The downstream side of the shock steepens and a ponded section again677

forms further downstream. Although the steepening on the downstream side of the seal is678

eventually reversed (panel a2), the backward migration of the shock continues until the lake679

is fully drained.680
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Note that we may naively attribute the steepening of slopes near the smooth seal location Ḡ<681

in both columns of figure 7 to melting after outflow from the lake commences. Characteristics682

offer a different perspective that will be important later: slope evolves as ?g = FG along683

characteristics, that is, as the result of differential uplift. Melt enters into the evolution of684

slope by determining how fast a given characteristic propagates, with Gg = * − 2"−? by685

(3.3). Larger fluxes @ lead to increased "−? and hence to reduced characteristic velocities.686

The steepest downward slopes result when Gg is near zero where the uplift rate derivative687

FG is most negative (which is indeed near the smooth seal location), causing characteristics688

to linger. That does not occur at the largest fluxes @, however, since Gg then becomes689

progressively more negative. The latter effect, of large discharge @ flattening slopes, is690

evident in column 2 of figure 7, where slopes downstream of the shock become less steep as691

the shock approaches the upstream end of the domain. This flattening of downstream slopes692

will play a key role in §6 below.693

Depending on storage capacity W, more complex behaviour can occur at intermediate694

values of water supply & as illustrated in figure 8. The left-hand column shows a higher695

storage (W = 4, & = 0.7850) example, the right a lower storage (W = 2, same &) case.696

For the former, we see periodic oscillations being generated. As in column 2 of figure 7,697

a shock forms downstream of the smooth seal, steepening initially and breaching the lake.698

Lake drainage does not continue to completion, however. The seal stops migrating upstream699

before reaching the low point of the lake, with slopes downstream of the seal again flattening700

some time after the lake seal has been breached (panel a1). Outflow @ stops and the shock701

is advected downstream, allowing the initial @ = 0 steady state surface profile to re-establish702

itself and re-forming a smooth lake seal. The shock that caused the original drainage event703

migrates some distance downstream before the lake refills and outflow starts afresh (panel704

b1). Panel d1 shows that a new shock (break in the magenta curve) forms and repeats the705

drainage of the lake, with the channel profile in the entire domain undergoing periodic706

oscillations after several cycles of lake drainage and refilling (panels c1, e1).707

For the lower storage case of column 2 in figure 8, we again see a shock breaching the seal,708

partially draining the lake and then stopping, with slopes downslope of the shock initially709

steepening and then flattening. The shock is again advected downstream and a smooth seal710

re-forms, but the refilling of the lake occurs more rapidly. The same shock that originally711

breached the lake is reactivated and breaches the seal again, this time migrating further712

upstream. The lake fully drains during the third such drainage cycle. We return in §6 to a713

more detailed analysis of the mechanism by which lake drainage becomes oscillatory, and of714

the differences between the two cases in figure 8.715

A more systematic exploration of the parameter dependence of lake drainage styles is716

shown in figure 9, with each column corresponding to a fixed value of & and each row to a717

fixed value of W. The figure indicates that inflow rate & alone determines whether the seal is718

breached: a critical value of & appears to separate solutions that experience at least partial719

lake drainage from those that leave the seal intact. The fact that the initial seal breach does720

not depend on storage capacity W is trivial: until a backward-migrating shock has formed and721

breached the seal, the intact, steady-state smooth seal leads to outflow balancing inflow once722

the lake has filled, with @ = &, and the shock that breaches the seal must form at that value723

of flux @.724

Once the seal is breached, the outcome of lake drainage depends on both & and W. As725

already indicated above, for U = 0.5, moderate & and larger W favour oscillatory drainage of726

the lake, with smaller & and larger W ultimately also leading to periodic oscillations rather727

than divergent oscillations eventually leading to lake drainage.728
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Figure 8: Solutions for U = 0.5: W = 4, & = 0.7850 (column 1) and W = 2, & = 0, 7850
(column 2). Same plotting scheme as figure 7, panels a–c now show profiles at equal time

steps during the intervals between the vertical dashed lines in panels d1 and d2, those
intervals being marked with the appropriate panel label a1–c1 and a2–c2. The black

dashed curve in panel a2 is the unincised ice surface B(G).

4.2. Lake drainage modes for steady water supply: U = 0729

The range of drainage styles observed for U = 0 is more limited. At low water input730

& < * = 1, the channel develops into a steady state in much the same way as shown731

in figure 7, column 1. At larger & > *, a shock once more forms, although this time at the732

seal in agreement with sections 3.2–3.3. The outcome of that shock migrating backwards733

into the lake leads to flux @ increasing and one of two outcomes, shown in figure 10.734

Column 1 shows a case with more moderate water input & = 1.1 and W = 2. Panel c1735

shows results for discharge @(C) and seal position Gm(C) from two computations: one without736

the regularization advocated in equation (3.17) (magenta and red), and one that is regularized737

(black and blue). The unregularized model has a singularity in finite time, as expected from738

the results in §3.4 (see in particular figure 6(b)): this manifests itself in a very rapid rate of739

increase d@/dC followed by the Newton solver used to compute backward Euler steps failing740

to find a solution.741

The regularized solution instead undergoes very rapid drainage at a slightly later time742
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Figure 9: Solutions for U = 0.5: Time series of @(C) (black) and Gm (C) (blue) (as shown in
e.g., panels c of figure 7) for different combinations of W and &. W = 0.5 (row a), 1 (row b),

2 (row c) 4 (row d) and & = 0.1962 (column 1) 0.3525 (column 2) 0.4371 (column 3)
0.7850 (column 4) and 1.570 (column 5). The solutions in figures 7, columns 1 and 2, and

8, columns 1 and 2, are shown in panels b1, d5, d4 and c4 respectively. Note that the
critical water input for seal breaching predicted by equation (5.7) is &2 = 0.3917, between
columns 2 and 3 here. This also marks the transition from steady outflow @ to outflow @

increasing after a seal breach in this figure.

(C ≈ 4.97), the timing being different because the regularization in question involves water743

level in the lake having to rise further to reach the same flux. The singularity in flux in744

the unregularized model is averted because the regularized model allows water level ℎ0 to745

differ significantly from seal height 1m: consequently lake drainage can lag behind the rapid746

lowering of the seal that occurs for U = 0. That being said, seal incision continues after the747

very rapid drainage, and lake drainage continues to completion as in column 2 of figure 7.748

Column 2 of figure 10, at a larger inflow rate & = 2 than column 1, shows a much more749

straightforward analogue to column 2 of figure 7, with seal incision leading to a peak in flux750

and continued seal incision until lake drainage is complete, without a (near-) singular peak751

flux. Importantly, we did not find any instances of oscillatory lake drainage for U = 0, as752

detailed in the more systematic exploration of the effect of changing storage capacity W and753

water input & in §5.1 of the supplementary material.754

5. Criteria for lake drainage755

For constant water input to the lake & with 1 in steady state upstream of the seal, there756

appears to be a critical value of & above which a shock either forms at the seal (if U = 0) or757

below the seal (if 1 > U > 0, see figure 9). The shock migrates backwards, leading to at least758

partial lake drainage.759

Below, we identify situations in which such shocks must form with parameter combinations760

for which there is no steady state solution to (2.12)–(2.16) (see also §4 of the supplementary761

material). Steady states are the natural consequence of the seal remaining intact: as discussed762

after equation (3.7), the constant upstream boundary condition 1(0, C) = 1in(0) ensures that763

1C = −H = 0 (5.1)764
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Figure 10: Solutions for U = 0: W = 2, & = 1.1 using (3.17) with a = 5 × 10−3 (column 1)
and W = 2, & = 2 (column 2). Same plotting scheme a figure 7. In panel c1, we show two

solutions, one using (3.17) as in panels a1–b1 (@ in black, Gm in blue), and the other
without using that regularization, (@ in red, Gm in magenta). The latter solution fails to

converge numerically after C = 4.764.

on any characteristic originating at the upstream end of the boundary. This remains true if765

that characteristic passes a steady state smooth lake seal at Ḡ<, across which H is continuous766

(§3.3), and below which Hg = H@@g = 0 if the seal is steady and hence @g = 0. The767

formation of steady states by characteristics entering the domain from above is evident in768

column 1 of figure 7, where steady state conditions are established progressively down-flow769

as characteristics that cross the seal after lake outflow has commenced propagate downstream770

across the domain. In other words, a global steady state results if the characteristics crossing771

a steady seal can fill the entire domain, while non-existence of steady states implies that such772

characteristics cannot propagate through the entire domain.773

A critical flux & beyond which steady states fail to exist is easy to identify. To simplify774

matters, recall that we assume the uplift function to have a single root F(Ḡm) = 0 at the775

steady seal location, with F < 0 for G > Ḡm (as is indeed the case for the uplift function in776

equation (4.1)). In steady state, there is then a single ponded section with 1G > 0 upstream of777

Ḡm, so we can omit the ponding function 2 from the definition of the Hamiltonian in steady778

state.779

The fixed-width channel case U = 0 of figure 10 differs qualitatively in terms of shock780

formation from the variable-width case U > 0 of figures 7–9, and we have to treat the two781

separately. First, consider U = 0. Then " (−1G , @) = −� (−1G )1G@ where � is the usual782

Heaviside function. In steady state, (2.16) demands that @ = &, while the steady state (5.1)783

becomes (figure 11(b))784

H = (* −&� (−1G ))1G − F = 0. (5.2)785

We can solve for 1G everywhere when & < *. By contrast, H cannot be zero in regions786
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Figure 11: The reduced Hamiltonian HA = H + F for a) U = 0.5 and b) U = 0, with * = 1,
shown for @ = 0.5, 0.75, 1, 2. The red dots in panel a correspond to ? = ?2 , HA = H2 .

Steady states satisfy HA = F, with negative F found downstream of the seal.
Combinations of ? and HA shown as dotted curves correspond to backward-propagating
characteristics. We expect steady states to remain purely on the dashed / solid branches of

the curves: backward-propagating characteristics in steady state require steady state
boundary conditions at the downstream end of the domain, and must meet

forward-propagating characteristics at a stationary shock, an unlikely scenario.

where F < 0 (that is, downstream of the seal) if787

& > *. (5.3)788

This is the criterion for lake drainage when U = 0, and is consistent with the observation in789

§3.3 that a smooth lake seal cannot persist if (5.3) holds.790

Second, consider the variable-width channel case with 0 < U < 1. In that case, we can791

define a reduced Hamiltonian HA through792

HA (G, C, ?, @) = *? + " (−?, @), (5.4)793

so H = HA −F. The reduced Hamiltonian (see figure 11(a)) has a global minimum H2 with794

respect to ? at a value ? = ?2 given by795

?2 (@) = −
[(3 − U)*/3] (3−U)/U

@3(1−U)/U
, H2 (@) = −

U(3 − U) (3−U)/U*3/U

33/U@3(1−U)/U
(5.5)796

(More generally, such a minimum H2 can always be identified for generic melt rate functions797

" (−?, @) that are strictly convex functions of slope −? for downward slopes ? < 0, with798

" (0, @) = "−? (0, @) = 0.)799

A steady state with H = HA − F ≡ 0 exists if and only if inf(F) > H2 , or equally, we800

infer that lake drainage occurs if801

inf (F) < H2 (&). (5.6)802

If (5.6) is satisfied, the combined effect of downward motionF of the ice and channel incision803

" (−1G , @) must overwhelm downstream advection*1G , no matter the channel slope 1G , and804

a steady state cannot be established. For the melt rate function given by (2.11), the criterion805

(5.6) can be re-written in the form806

& >
UU/[3(1−U) ] (3 − U) (3−U)/[3(1−U) ]

31/(1−U)
[− inf(F)]]−U/[3(1−U) ]*1/(1−U) , (5.7)807

which gives the desired critical flux for breaching the seal. While this differs from the criterion808

(5.3) for U = 0, note that (5.7) reassuringly does reduce to & > * in the limit U → 0. Note809

also that (5.7) is consistent with our numerical results: the critical flux is & = 0.3917 for the810

calculations in figure 9 and & = 1 for the results reported in §4.2 as well as in §5.1 of the811

supplementary material.812
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Figure 12: ‘Orbits’ of (1+G , 1
−
G ) at the shock that breaches the seal, superimposed on

corresponding versions of the flux contour plot in figure 5(a), with contour lines for flux
rendered in grey, These orbits are shown for the solutions in a) figure 8, column 1, showing

one of the periodic drainage cycles b) figure 8, column 2 and c) figure 7, column 2,
showing the full solution for the latter two. The curves are colour-coded by time as shown
in each colour bar. The ‘orbit’ penetrates perceptibly into the zero flux (@ = 0) region at

the top right of panel a) because of the regularization (3.17) used in the computation of the
time-dependent solution. The orbits terminating at 1+G < 0, 1−G = 0 in panels (b) and (c)

correspond to the shock reaching the bottom of the lake at the upstream end of the domain.

6. Oscillatory lake drainage813

Breaching of the seal need not lead to complete emptying of the lake: the lake can re-seal and814

re-fill temporarily instead (figure 8). Re-sealing results from changes in upstream slopes 1−G815

and 1+G at the seal during lake drainage, whose effect on @ is shown generically in figure 5. We816

have observed partial lake drainage only for U > 0, as shown in figure 5(a). We superimpose817

‘orbits’ of (1+G , 1
−
G ) during different lake drainage events in figure 12 to track the effect of818

slopes and their role in re-sealing the lake.819

A steeper downstream slope 1+G < 0 leads to faster incision into the seal, and therefore to820

a greater rate of backward migration of the seal and hence of lake drainage at fixed upstream821

slope,so @ increases with decreasing 1+G . The upstream slope 1−G has two conflicting effects:822

larger 1−G on the one hand slows the backward migration of the seal (through the denominator823

on the left of (3.14)) and corresponds to a greater rate of uplift, trying to re-seal the lake.824

On the other, for a given backward migration rate of the seal, a steeper upstream slope also825

corresponds to a greater rate of surface lowering and therefore volume loss from the lake826

at a given rate of seal migration. The latter effect dominates for steeper (more negative)827

downstream slopes 1+G , the former for shallower 1+G .828

In the solutions we have reported above, termination of flow before the lake is fully empty829

generally hinges on two effects. First, while 1−G initially steepens after incision into the smooth830

seal, the upstream slope eventually flattens again after an inflection point in the unincised831

surface B(G) is passed, and approaches zero as the seal point Gm(C) approaches the bottom of832

the lake at G = 0, causing @ to decrease again (figure 12(a–b)).833

Second, following an initial decrease, the downstream slope 1+G < 0 eventually increases834

(becoming less negative) during lake drainage, as already mentioned in §4. The mechanism835

involved is the following: as incision into the seal occurs, @ initially increases. The increase836

in flux causes characteristic velocities downstream of the seal to become more negative by837

(3.3), so characteristics propagate upstream faster. As described in §4, faster propagation838

of characteristics can cause a reduction in slopes: Slope evolves as ?g = FG along839

characteristics, and FG is typically most negative around the original smooth seal location840

Ḡ<.The faster that characteristics move through this region of steepening because flux @ has841

increased, the less ? = 1G will steepen. As a result, characteristics that reach the shock at the842

seal Gm(C) later during lake drainage do so with a less steep (that is, less negative) slope 1+G .843

Figure 12 shows that the increase in downstream slope 1+G (that is, reduction in magnitude844
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Figure 13: The solution in figure 8, column 1, and figure 12(a). Panel a: slope against
position. The solid black curve is slope 1G (G, C) against G at C = 41.1, when lake level

reaches the height of the smooth seal and lake discharge recommences. The dashed black
line, partially obscured by the solid curve, is the slope BG of the unincised ice surface.

Purple and red curves (solid and dashed) show the trajectory taken by downstream slope
1+G on the new shock that forms after flow commences (the upstream slope is 1−G = BG), the

red arrow indicating the direction in which the shock traverses the curve as time C
increases. Purple indicates that the shock is downstream of the smooth seal at Ḡ< (dotted
vertical line), red indicates the shock has incised into the seal. Dashes (between points �
and (2) indicate that there is zero flux @, while the solid portion of the curve between �
and � corresponds to positive flux. The multi-coloured curves are characteristics that
arrive at the shock at intervals of XC = 0.1125 while the seal is breached and water is
flowing, coloured shading indicates time. Panel b: same information but plotted as

position against time, with coloured shading indicating the slope 1G on the characteristics.
The blue curve shows flux @ against time, plotted using the right-hand vertical axis tick

marks. (1 marks the smooth seal where F(Ḡ<) = *BG (Ḡ<) = 0 as indicated by the
horizontal dotted line. (2 marks the shock left by the previous drainage cycle. The point
labels �–� mark changes in the shock, from formation at � to breaching the smooth seal
at �, flow ceasing at � to a new smooth seal forming as the shock passes the smooth seal
location G = Ḡ< at point �. Note that the dashed portion of the curve from � to (2 is a

translated version of part of the black initial profile curve on which points (1 and (2 lie;
this is no accident since both are characteristics with the same characteristic velocity

Gg = * and evolution equation ?g = FG .

|1+G |) is key in ensuring that flux is not only reduced in the later stages of lake drainage (as a845

flattening of 1−G already ensures), but actually vanishes entirely on reaching the boundary of846

the blank region of zero flux (marked @ = 0 in the equivalent figure 6): compare panels a–b847

of figure 12 with panel c, which shows the equivalent orbit for a lake that drains completely848

after the inital seal incision. Reaching that boundary in figure 12 implies that flow ceases849

abruptly, and the lake re-seals.850

The case shown in figure 12(a) is additionally visualized in figure 13, where we show851

characteristics that reach the shock from downstream as multicoloured curves, the colouring852

indicating time (panel a) or slope ? = 1G along the characteristic (panel b). The increasingly853

rapid transit of characteristics past the point G = Ḡ< (vertical dotted line marked (1 in panel854

a) and the reduced steepening at later times during lake drainage is evident in panels a (later855

characteristics do not dip to larger negative values of 1G , and the colouring indicates only a856

short amount of time spent near Ḡ<) and b (later characteristics are steeper near Ḡ< = 1.468,857

indicating a faster passage, and retain a lighter blue colour indicating less steep slopes).858

The effect of downstream flattening during seal incision becomes stronger if storage volume859

W is large or the inflow & is smaller (but still above the critical value for the initiation of860

drainage as discussed in §5). Both larger W or smaller & lead to a bigger relative increase861

in flux @ during lake drainage, and hence to a stronger relative flattening of the downstream862

slope. This accounts for oscillatory drainage occurring at such parameter combinations in863

figure 9.864
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Spontaneous termination of lake drainage however need not lead to periodically recurring865

lake drainage, see for instance figure 8(d2) and 12(b): consecutive filling and drainage866

cycles may have an increasing amplitude, leading to complete lake emptying eventually. This867

appears to be linked to rapid re-filling of the lake and re-activation of the same shock that868

caused the initial incision. Once the reactivated shock incises the smooth seal again, it may869

do so with a steeper downstream slope and incise further upstream (figure 12(b)).870

Reactivation of the same shock is favoured by small lake storage capacity and larger fluxes871

&, which allow the lake to refill rapidly. As a result, the shock that originally incised the872

smooth seal is not advected far enough downstream, and on reactivation reaches the re-873

formed smooth seal again. Periodic lake drainage by contrast results most easily if W is larger874

and inflow rates & are small but above the critical value for drainage.875

In that case, lake re-filling takes longer and the shock that incised the seal on the previous876

drainage cycle is advected far enough downstream between cycles for it not to return to incise877

the seal again. This is illustrated in figure 13. The ice surface rebuilds to a local steady state878

solution *1G = F everywhere upstream of the advected shock by the time the lake refills879

and outflow of water recommences (the black curve in 13(a), with the advected shock being880

marked by (2; the dashed black curve continues the steady state solution *1G = F past the881

advected shock, where it now represents the unincised ice surface B(G)). When flow of water882

recommences, a new channel is incised and a new shock is formed in this previously steady883

part of the ice surface (the pink red line originating at point A in 13(a), see also the pink884

line in figure 8(d)1). This new shock migrates upstream, intersecting the rebuilt smooth seal885

(1 at point B in figure 13(a). Crucially, all characteristics that reach the new shock from886

downstream during the drainage cycle also originate upstream of the old shock (the coloured887

lines in figure 13(a), all of which start upstream of (2). Once flow terminates again (point888

C), the new shock is in turn advected downstream, with a new smooth seal forming at point889

D. The new shock reaches the position (2 of the previous shock at the start of the next cycle,890

which repeats the previous one exactly.891

It is worth emphasizing that the flood termination mechanism described above involves a892

surface shape B(G) that flattens upstream of the seal, as is likely to be generically the case893

for surface lakes on ice sheets that form due to a smooth local uplift anomaly. Lakes whose894

bottom does not flatten out do occur on mountain glaciers, for instance at glacier confluences895

(Werder et al. 2009). We investigate this situation in §5.3 of the supplementary material,896

prescribing an uplift velocity F(G) such that 1G tends to a positive constant far upstream of897

the smooth lake seal (that is, the lake surface does not flatten). Repeated floods with constant898

lake supply& are much less common, and follow a somewhat different mechanism: the same899

shock reactivates in each cycle but does not steepen from cycle to cycle in such a way as to900

cause complete lake drainage.901

7. Discussion and Conclusions902

In this paper, we have derived and solved a reduced, ‘stream power’-type model903

(Whipple & Tucker 1999) for supraglacial stream incision (equations (2.12)), coupled904

to a model for lake drainage to determine the water flux @ (equations (2.16)), whose value905

depends on whether and how fast the stream is cutting into the lake seal. Note that, for906

completeness, the model is stated in dimensional form in §1 of the supplementary material.907

At the most basic level, the model predicts that a lake drains if water input to the lake is908

sufficiently large to overcome the effect of forward advection of the channel by the flow of909

the ice: if the inflow criterion (5.7) is satisfied (again stated in dimensional form in §1 of910

the supplementary material), then the incision of the outflow channel will cause the lake911

seal to be breached eventually by a backward-propagating shock. The criterion demonstrates912
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that sufficiently large water supply, steep downward slopes on the far side of the seal (large913

− inf (F), where F is the uplift velocity of the ice) and slow advection (small values of the914

horizontal velocity*) is key to lake drainage. In particular, forward advection of the channel915

is the critical difference between the supraglacial lake drainage case and other dam burst916

phenomena (e.g. Balmforth et al. 2009). Qualitatively, our lake drainage criterion (5.7) is at917

least consistent with the observation (Poinar & Andrews 2021) that non-draining lakes in918

Greenland are located at higher elevations (where water supply rates will be smaller, as are919

vertical velocities F) compared with ‘slowly draining lakes’, which may conceivably drain920

through surface channels rather than hydrofracture. Our model also suggests that, as surface921

melt rates and therefore rates of water supply & continue to increase, more lakes should922

eventually drain.923

The model also predicts that initial incision into the seal need not lead to complete lake924

drainage. Instead, a flattening of both upstream and downstream slopes at the shock at the925

downstream end of the lake can lead to the lake re-sealing, with forward advection of the shock926

subsequently causing the original lake basin to re-form. The flattening of the downstream927

slope is facilitated not only by relatively slow water inflow rates to the lake but also, and928

perhaps counterintuitively, by a large lake storage capacity, with both facilitating a large929

relative increase in discharge during lake drainage and rapid retreat of the lake-terminating930

shock that ultimately causes the slopes downstream of the shock to flatten again (§6).931

The dynamics of supraglacial lakes in our model ultimately permit four different outcomes:932

no incision of the seal (at inflow rates below the critical value given by condition (5.7)), a933

periodic cycle of the lake being breached and draining, followed by refilling (at large storage934

capacity and small above-critical water inflow), a sequence of lake drainage episodes of935

growing amplitude that progress until the lake fully empties (at intermediate storage volumes936

and water supply rates), and complete lake drainage at small storage volumes and large937

water supply rates. The possibility of oscillatory lake behaviour by overland drainage in938

particular has implications for the interpretation of lake observations by remote sensing,939

where the drainage mechanism may not be immediately apparent: it permits lakes to drain940

‘unexpectedly’, that is, provided that seal incision is already underway, they may drain941

outside the melt season (e.g. Schaap et al. 2020; Benedek & Willis 2021), and for lakes to942

remain filled for multiple melt seasons until the seal is breached again (see also §5.2 of943

the supplementary material). However, unlike the condition (5.7) for seal breaching, we944

are unable to give simple criteria for complete versus partial, oscillatory lake drainage;945

presumably, the boundaries between these phenomena in parameter space depends on the946

specifics of the uplift velocity F(G).947

Importantly, the results we have presented assume steady water supply, while real ice sheet948

surface lakes are subject to time-dependent forcing due to seasonal and shorter melt cycles.949

In many cases, that forcing is quite rapidly varying, since the time scale [C] for ice to traverse950

the length scale of the seal may be quite long: with * = 100 m yr−‘ and [G] = 1 km, one951

unit of dimensionless time here corresponds to ten annual melt cycles. We explore the effect952

of rapidly varying water input in §5.2 of the supplementary material, where we find that it953

leaves the qualitative behaviour of the system largely unchanged.954

One shortcoming of our model relevant to the different drainage styles above is its one-955

dimensional nature. Implicit here is that, even if drainage terminates and the lake re-seals,956

subsequent overflowing of the reconstituted lake will re-activate the same channel as before.957

This is key to the drainage cycles with growing amplitude, leading to the lake emptying fully958

(column 2 of figure 8): the re-activation of the previous channel leads to subsequent drainage959

of the lake progressing further. If instead the previous channel is advected laterally as well as960

down-slope (Darnell et al. 2013), then a new channel may be formed each time and periodic961

drainage cycles may in fact be more common than our results indicate.962
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More broadly, it is worth revisiting the construction of our model. The glacial case is963

perhaps the simplest in which a ‘stream power’ model for channel incision can be justified964

from first principles: the product of ‘erosion’ by flowing water is simply more water, rather965

than sediment whose transport must then be accounted for (Fowler et al. 2007). Our results966

however do indicate that the model as stated is incomplete: the predictions of the model967

depend strongly on the choice of the exponent U that parameterizes the cross-sectional shape968

of the channel in our model (§2.1). For instance, for channels of fixed width (independently969

of their cross-sectional area) we have U = 0. Unlike the case of channels with variable width970

(U > 0), we have found no oscillatory lake drainage (§4 and §6) when U = 0. Instead, the971

lake can drain ‘abruptly’ in the sense that flux becomes large, incision becomes rapid and972

water level in the lake does not remain close to the height of the seal as stipulated by (2.16);973

in the model consisting of (2.12)–(2.16), this phenomenon manifests itself as flux becoming974

singular unless (2.16) is regularized (§3.4–4).975

To determine even the qualitative behaviour of lake drainage unambiguously, a more976

sophisticated model for channel evolution is therefore necessary, capable of predicting the977

shape of cross-sections self-consistently instead of imposing it as a constitutive relation.978

There is currently no particularly good template, though the work in Dallaston & Hewitt979

(2014) may be a good starting point. Closely linked to cross-sectional shape evolution is the980

need to be able to predict meandering (Karlstrom et al. 2013; Fernández & Parker 2021),981

which ultimately should modify our large scale model (2.12) through the introduction of982

an evolving tortuosity. Not only is a model for cross-sectional shape now required, but the983

secondary flows involved in meandering instabilities also need to be accounted for, which984

also occur at wavelengths comparable to channel width (Karlstrom et al. 2013). (That being985

said, it is worth remembering that even the more sophisticated subglacial drainage models986

in existence (e.g. Werder et al. 2013) do not attempt to account for evolving tortuosity.)987

Lastly, the ability to account not only for lateral instabilities driving meandering, but also for988

bedform formation and roll waves at supercritical Froude numbers (Fowler 2011, see also989

§3.2 of the supplementary material) is also desirable, in order to be able to apply the model990

on steeper slopes or at large discharge rates.991

There are numerous other shortcomings to our model as described in §2.1, such as992

the neglect of melting due to heat exchange with the atmosphere and solar radiation,993

accumulation of snow in the channel, and exchange of water with an underground firn994

aquifer. We conclude by pointing out that, these issues notwithstanding, our model provides995

a template for improving previous surface drainage models due to Raymond & Nolan996

(2000) and Kingslake et al. (2015). As with the prior, though slightly different work in997

Walder & Costa (1996) (which considers the widening rather than deepening of a pre-existing998

breach through the full thickness of an ice dam), the models for downward incision of a999

channel in Raymond & Nolan (2000) and Kingslake et al. (2015) are heavily parameterized1000

and do not resolve position along the channel. In effect, they are ad hoc versions of the1001

boundary layer problem in our appendix B.2, aiming to compute the function QB of §3.41002

here: Raymond & Nolan (2000) equate the difference between lake level and seal height1003

(�F (−∞, C) in appendix B.2) with the far field water depth in the same boundary layer (our1004

Σ(∞, C)V in appendix B.2), while Kingslake et al. (2015) questionably impose Bernouilli’s1005

law (valid in the inertia-dominated upstream far field of the boundary layer) at the same time1006

as a balance between the downslope force of gravity and friction at the channel wall (valid1007

in the friction-dominated downstream far field). The details of those calculations aside, it is1008

unclear whether the precise form of the relationship between flux and water height above1009

the lake seal are key to modelling a supraglacial outburst flood: our work suggests that it1010

may often (except in the flux singularity case for fixed width channels illustrated in figure1011

10(a1–c1)) suffice to require that lake level remains approximately at the seal, and to focus1012
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instead on the incision of the channel over longer length scales, which allows the channel1013

slope at the shock-like lake seal to change as the outburst flood progresses, changing the rate1014

of backward migration of the seal and hence the rate of lake drainage.1015
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Appendix A. Asymptotics of the ponded region1028

We assume ℎ(() = (V as given by the dimensionless version of (2.1f); for more general forms1029

of ℎ, see the supplementary material. The rescaling of (2.6) relevant to a ponded section of1030

the channel becomes1031

( = a−1/V (̂, D = a1/VD̂, (A 1)1032

We also assume X ≪ 1/[ℎ−1(a−1)] = a1/V ≪ 1: The mass storage term, X(C in (2.6a), then1033

does not appear at leading order in the leading order model and flux @ remains constant as1034

assumed above in (2.12).1035

Specifically, at leading order, (2.6) becomes1036

(

D̂(̂
)

G
= 0,

(

1 + (̂V
)

G
=

(

1 + ℎ̂
)

G
= 0, 1C +*1G = F. (A 2)1037

Here ℎ̂ = a−1ℎ(() = (̂V is rescaled water depth. Equation (A 2)3 is indeed (2.12a) with1038

2 = 0; the only issue is making sure that 2 is correctly defined.1039

From (A 2)2, the surface elevation 1 + ℎ̂ remains constant. The boundary layers of1040

appendices B.2 and B.3 confirm that there is no leading order jump in ℎ̂ at the end of a1041

ponded section, and we have ℎ̂ → 0, (̂ → 0 at the ends of a ponded section in order to match1042

to the flowing sections. Hence 1 takes the same value at both ends of the ponded section, and1043

(since ℎ̂ > 0), 1 is below that value inside the ponded section. Since we must have 1G < 0 in1044

any flowing section then, with @ > 0, the ponded section must terminate at a local maximum1045

of 1. The definition {G : 1(G, C) < supG′>G 1(G
′, C)} for the union of ponded sections follows,1046

as does the ponding function 2 in equation (2.12).1047

Appendix B. Boundary layers1048

A shock forms where the bed slope changes discontinuously in equation (2.12). In the full1049

scaled model (2.6), that change in slope is not discontinuous but occurs over a short length1050

scale ∼ a. Assuming that the shock is at a moving location G = G2 (C), the appropriate1051

rescaling is1052

- =
G − G2 (C)

a
, � =

1(G, C) − 10 (G2 (C)
−, C)

a
, Σ = (, + = D, (B 1)1053
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where 10 is the outer solution satisfying (2.12), and the superscript ‘−’ denotes the limit1054

taken as G2 is approached from below. We will likewise use the superscript ‘+’ for the limit1055

taken from above. At leading order we find that (+Σ)- = 0. Matching with the upstream1056

far field, we deduce from (2.6a) that +Σ = @ and 1−
0C

= F(G2) − *1−
0G

− +3
−∞, where1057

+−∞ = lim-→−∞+ = D(G2 (C)
−, C).1058

We restrict ourselves to (2.1f) as constitutive relations here: the supplementary material1059

shows that the qualitative boundary layer results are unchanged under relatively mild1060

restrictions on wetted perimeter % and water depth ℎ. With the constitutive relations (2.1f),1061

the remainder of (2.6a) becomes, after some manipulation,1062

�A2@+- = − @U+2−U −
@

+
�- +

V@1+V

+2+V
+- (B 2a)1063

(* − ¤G2)�- =(* − ¤G2)1
−
0G − +3 + +3

−∞ (B 2b)10641065

or, as a single equation1066

+- =

(

V@V − �A2+2+V
)−1

+1+V

(

1−0G +
+3−U

@1−U
−
+3 −+3

−∞

* − ¤G2

)

. (B 3)1067

As we discuss further in section 2 of the supplementary material, we must assume both1068

far field velocities to be subcritical in order for our leading order model to hold: denoting1069

+∞ = lim-→∞+ , subcriticality requires V@V > �A2+
2+V
±∞ , and the right-hand side of (B 3)1070

remains bounded.1071

There are different types of shocks to consider, each corresponding to different far-field1072

conditions. We sketch each in turn.1073

B.1. The knickpoint boundary layer1074

For a shock connecting two flowing sections, +−∞ > 0 and +∞ > 0 satisfy the far field1075

equation (2.7)2, @U+2−U
±∞ = −@+−1

±∞1
±
0G

. +±∞ > 0 must be distinct equilibria of (B 3), which1076

requires1077

¤G2 = * −
@1−U

(

+3
∞ − +3

−∞

)

+3−U
∞ −+3−U

−∞

= * +
" (−1+

0G
, @) − " (−1−

0G
, @)

1+
0G

− 1−
0G

(B 4)1078

and U > 0 as discussed in §3.2 for shocks of this type. The solution then connects +−∞ to1079

+∞ as required provided+∞ is the stable equilbrium, and hence +∞ > +−∞ or 1+
0G

< 1−
0G

< 01080

(figure 14(a)). In common with the other boundary layers below, note also that the outer1081

solution is continuous at G = G2 as assumed in sections 3.2–3.3 and appendix D: � represents1082

only a small correction in channel base elevation (see again figure 14(a)).1083

B.2. The seal downstream of a ponded section1084

If the upstream far-field is ponded and satisfies (A 2), we have + → +−∞ = 0 and Σ → ∞1085

as - → −∞, and the bed slope 1−
0G

< 0 is no longer related to +−∞ through (2.7)2. The1086

solution must again connect +−∞ = 0 upstream to a finite +∞ > 0 downstream, satisfying1087

@U+2−0
∞ = −@+−1

∞ 1+
0G

once more. +∞ must again be subcritical, and an equlibrium of (B 3),1088

which implies1089

¤G2 = * +
+3
∞

1−
0G

+ @U−1+3−U
∞

= * +
" (−1+

0G
, @)

1+
0G

− 1−
0G

(B 5)1090

as in equation (3.8) with " (−1−
0G
, @) = 0. With 1−

0G
> 0, the fixed point + = +∞ is then1091

guaranteed to be stable, and there is a solution connecting 0 to+∞. Note that a seal solution is1092

possible even if U = 0 (which is not the case for the shock solution of the previous section).1093
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Figure 14: Boundary layer solutions with �A = 0.575, * = 1, U = 1/2, V = 1/2, @ = 1 for
a) the knickpoint boundary layer (appendix B.1) with 1+

0G
= −1 and 1−

0G
= −0.2 and b) the

pond entry boundary layer (appendix D) with 1−
0G

= −1, 1+
0G

= U1−
0G
/3. Black line shows

�, blue shows � + Σ
V . The dashed lines in panel a show the outer solution as explained in

§2.4 of the supplementary material.

Figure 15: Boundary layer solutions for the downstream end of a ponded section: a)
�A = 0.5, U = V = 1/2, @ = 1 1+

0G
= −1 and 1−

0G
= 1, c) U = V = 1/2, @ = 0.5,

FG = 1−
0GG

= −1 and d) same as c) but U = 0, V = 1. Same plotting scheme as in figure 14,

the dashed lines in panel a again show the outer solution, and �F (−∞) is water level
above the seal as defined by the outer solution. Panel b shows flux @ as a function of

�F (−∞) for 1−
0G

= 1, 1+
0G

= 2−8, 2−7, 2−6, . . . , 1, 1.98; 1+
0G

= 2 corresponds to a critical

local Froude number. The curves show realizations of the function QB defined in (3.17). In
each case, the dependence on ℎ1 = �F (−∞) closely follows QB ∝ ℎ1

2.5; note that
2.5 = (3 − U)/(2V), which one would obtain for the relationship between flux and water

depth if the down-slope component of gravity is balanced by friction as in the outer
solution (cf Raymond & Nolan 2000). This suggests it may be possible to derive the

dependence of & on �F analytically.

By matching with the upstream, ponded solution we can also show that surface elevation1094

in the ponded section exceeds the seal height 1−
0

by an amount of $ (a), assuming that there1095

is indeed flow with @ > 0: this is done by integrating the $ (a) water level correction �F1096

defined by �F.- = (ΣV + �)- = �- − V@V+-/+
1+V to −∞ with respect to - as explained in1097

further detail in the supplementary material. The finite value of �F (−∞, C) justifies equating1098

water level in the ponded region with the seal height at leading order as in appendix A.1099

Moreover, since the boundary layer solution is fully determined by the model parameters and1100

by far field forcing though 1−
0G

, 1+
0G

and @, we can establish a functional relationship between1101

the outer water level correction �F (−∞, C) and 1−
0G

, 1+
0G

and @ as assumed in equations1102

(3.17) and (3.18), where ℎ1 = �F (−∞, C). An example is shown in figure 15(b).1103

Note that the boundary layer description above does not cover the case of a ‘smooth’ seal,

where there is no shock. The corresponding reformulation of the boundary layer is based on

the alternative rescaling

�̃ =
1(G, C) − 10(Gs(C), C)

a (6−2U)/(6−2U+V)
, +̃ =

D

a1/(6−2U+V)
, Σ̃ = a1/(6−2U+V) (,
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1104

-̃ =
G − Gs(C)

a (3−U)/(6−2U+V)
, (B 6)1105

and assumes that 10G (Gs(C), C) = 0. The boundary layer model can be rewritten as a modified1106

version of (B 3)1107

+̃-̃ =
+̃1+V

V@V

(

+̃3−U

@1−U
+

FG

* − ¤Gs

-̃ − �U
+̃3

* − ¤Gs

)

, (B 7)1108

where �U = 1 if U = 0, �U = 0 otherwise. We need to match +̃ → 0 as -̃ → −∞ and1109

+ ∼ [−@1−UFG -̃/(* − ¤Gs − �U@
1−U)]1/(3−U) as -̃ → ∞. For 0 < U < 1, such a solution1110

always exists, while for U = 0, solutions only exist conditionally: if FG < 0, we must have1111

*− ¤Gs > @ > 0 orFG > 0,*− ¤Gs < 0 < @. Details may be found in §2.8 of the supplementary1112

material.1113

B.3. Upstream end of a ponded section1114

A flowing section entering a ponded section can also be treated using the boundary layer1115

model (B 3), with the upstream far field given by (2.7)2, @U+2−U
−∞ = −@+−1

−∞1
−
0G

and +∞ = 01116

downstream. Such a solution requires that+ = +−∞ be an unstable fixed point, or equivalently1117

(3 − U)+2−U
−∞

@1−U
−

3+2
−∞

* − ¤G2
> 0. (B 8)1118

This is the case if either ¤G2 > * or ¤G2 6 * −3@1−U+ U
−∞/(3−U) = * −"−? (−1

−
G0
, @), which1119

also ensures that + = 0 is a stable fixed point as required. These conditions on ¤G2 justify1120

the analysis in appendix D below, and in particular justifies equation (D 4). We still obtain a1121

relationship between the jump in slope and the migration rate, since1122

�- = 1−0G +
+3
−∞ − +3

* − ¤G2
→ 1−0G +

+3
−∞

* − ¤G2
(B 9)1123

as - → ∞, so 1+
0G

− 1−
0G

= +3
−∞/(* − ¤G2) = " (1−

0G
, @)/(* − ¤G2) as in equation (D 2) below.1124

Appendix C. Dynamic smooth seals1125

In section 3.3, we investigated the conditions that make a smooth seal as shown in figure1126

4(d) possible in steady state. Here, we extend the analysis of such smooth seals in the outer1127

problem to the dynamic case, and show that we obtain the same results from the outer model1128

as we did in appendix B.2 from the corresponding boundary layer.1129

A smooth seal in general is a local maximum GB (C) where with 1G (GB (C), C) = 0, and 2 = 11130

downstream of GB. Characteristics must enter GB from upstream and exit downstream, with1131

no jump in 1 or 1G , and with a continuous melt rate 2" and Hamiltonian H . In other words1132

1−G (GB (C), C) = 1+G (GB (C), C) = 0 . Differentiate this with respect to time1133

1−GC + 1−GG ¤GB = 1+GC + 1+GG ¤GB (C 1)1134

and similarly differentiate (2.12a) with respect to G, so 1−GC +*1−GG = FG (GB) with 2− = 01135

and 1+GC + (* − "−? (0
−, @))1+GG = FG (GB) with 2+ = 1. Eliminating 1−GC and 1+GC from (C 1)1136

and rearranging yields1137

¤GB = * −
FG

1−GG
= * − "−? (0

−, @) −
FG

1+GG
. (C 2)1138

Since GB is a maximum of 1, we have 1−GG < 0 and 1+GG < 0. There are two cases, with FG1139
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negative and positive at the seal, respectively. Positive FG corresponds to rapid downslope1140

motion of the seal with ¤GB > *; this does not occur except for contrived initial conditions.1141

Assume therefore that FG < 0, so ¤GB < *. Characteristics upstream of GB travel at speed1142

G−g = * > ¤GB, so a smooth slope requires characeteristics to emerge on the downstream1143

side, where the characteristic speed is G+g = * − "−? (−?
+, @) = * − "−? (0

−, @), with 0−1144

indicating the limit taken as ? = 0 is approached from below. Requiring G+g > ¤GB so that1145

characteristics exit downstream, a smooth slope is possible provided1146

"−? (0
−, @) <

FG

1−GG
and FG < 0. (C 3)1147

A dynamic smooth seal cannot persist if (C 3) is violated. For " given by equation (2.11),1148

"−? (0
−, @) = 0 if U > 0, and (C 3) will not be violated when FG < 0 and 1−GG < 0. By1149

contrast, for U = 0, "−? (0
−, @) = @ and (C 3) can be violated for sufficiently large fluxes1150

@ > FG/1
−
GG = * − ¤GB , the second equality following from (C 2). This criterion agrees with1151

the solvability condition at the end of appendix B.2, and with the condition @ < * for a1152

steady smooth seal to exist when U = 0 (section 3.3).1153

Appendix D. Entry into a ponded section in the outer model1154

Appendix B.3 confirms that 1 remains continuous at the upstream end of a ponded section,1155

where 2+ = 0, 2− = 1. Next, we determine jump conditions on the outer model (2.12) at1156

such a location, which never corresponds to a shock, but can give rise to an expansion fan.1157

Characteristics upstream of the ponded section move more slowly, at G−g = *−"−? (−1
−
G , @),1158

than those downstream of the transition to ponded, at G+g = *. Consequently, characteristics1159

must emerge from at least one side of the transition, whose location we denote by Gp(C)1160

(figure 4(d)). The height 1p(C) = 1(Gp(C), C) is given by the seal at the (distant) downstream1161

end of the ponded section, which controls the migration rate ¤Gp. Again differentiating both1162

sides of 1(Gp(C), C) = 1p(C) and rearranging, ¤Gp is1163

¤Gp = * +
¤1p + " (−1−G , @) − F(Gp)

1−G
= * +

¤1p − F(Gp)

1+G
(D 1)1164

If ¤Gp > * (so ¤1p < F(Gp) = 1+g), then characteristics emerge upstream and enter Gp from1165

downstream, with no jump in 1 at Gp Conversely, if ¤Gp 6 G−g = * − "−? (−1
−
G , @) (so1166

¤1p > F(Gp) − " (−1−G , @) − 1−G"−? (−1
−
G , @) = −� (G, C, 1−G , @) − 1−G�−? (G, C, 1

−
G , @) = 1−g),1167

then characteristics emerge downstream with no jump in 1. Upstream, characteristics enter the1168

transition point, or are tangent to Gp. In either case, the requirement that 1 remain continuous1169

(equation (3.8)) is now a jump condition for the slope 1G ,1170

1+G = 1−G +
" (−1−G , @)

* − ¤Gp

, (D 2)1171

¤Gp being given through (D 1): equation (D 2) is the same as (B 9).1172

The two cases identified above leave a third possibility where, instantaneously,1173

F(Gp) − " (−1−G , @) − 1−G"−? (−1
−
G , @) >

¤1p > F(Gp). (D 3)1174

For 1−G < 0 and with " given by (2.11), this range is non-void if and only if 3 > U > 0 (or1175

more generally, if " is strictly convex in its first argument with " (0, @) = 0). Characteristics1176

now have to emerge on both sides as an expansion fan, whose behaviour is non-trivial. The1177

problem as stated is underdetermined, since the evolution of 1−G along the curve Gp(C) (and1178

therefore ¤Gp itself beyond the initial instant) is undetermined in the absence of characteristics1179

intersecting Gp(C).1180
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From (B 8), the migration rates * − "−? (−1
−
G , @) < ¤Gp < * implied by (D 3) cannot be1181

sustained for finite time spans: the expansion fan must adjust 1−G so that ¤Gp does not remain1182

in this forbidden range. From (D 1), ¤Gp = * cannot be attained by changing 1−G along the1183

transition curve if ¤1p > F(Gp). Hence 1−G must adjust to attain * − "−? (−1
−
G , @) = ¤Gp. In1184

other words, the expansion fan upstream of Gp must span all slopes between the initial 1−G1185

and a less steep slope 1−
5 G

at which the motion of Gp(C) is locally parallel to a characteristic1186

on which ? = 1−
5 G

, determined implicitly through1187

¤Gp = * +

¤1p + " (−1−
5 G
, @) − F(Gp)

1−
5 G

= G−g = * − "−? (−1
−
5 G , @). (D 4)1188

Equivalently,1189

¤1p = −" (−1−5 G , @) − F(Gp) − 1−5 G"−? (−1
−
5 G , @) = −H− + ?−H−

? = 1−g , (D 5)1190

where H−, H−
? and 1−g are evaluated at slope ?− = 1−

5 G
. Characteristics on the upstream side1191

of Gp emerge tangentially to the transition curve Gp(C), and the slope 1+G of characteristics1192

emerging on the downstream side is then related to 1−
5 G

through (D 2).1193

Appendix E. Numerical solution1194

We solve the problem consisting of (2.12) and (2.16) using the method of characteristics,1195

appropriately modified to handle ponding and the outflow from the lake that determines @.1196

Given a set of values (G8 , 18 , ?8), we define G8+1/2 = [18−18+1+?8G8−?8+1G8+1]/[?8+1−?8] as1197

the point at which the straight lines 1̃8 (G) = 18 + ?8 (G−G8) and 1̃8+1 (G) = 18+1 + ?8+1 (G−G8+1)1198

intersect, extrapolating linearly from G8 and G8+1. We put 18+1/2 = 1̃8 (G8+1/2) as the interpolant1199

for 1 that point. If there is a shock between points G8 and G8+1, its location is at G8+1/2, and 11200

at the shock is 18+1/2 to second order accuracy.1201

Let superscripts 9 denote solutions at time C 9 . Assume a lake level ℎ
9

0
and solution at1202

discrete points (G
9

8
, 1

9

8
, ?

9

8
) is given, with the G

9

8
being ordered so that G

9

8
< G

9

8+1
. For given 81203

and 9 , let (
9

8
= {: : : > 8, ?

9

:
> 0 and ?

9

:+1
< 0} be the set of seal points downstream of 8,1204

and let 1
9

2,8
= max(1

9

8
,max: ∈(

8 9
1:+1/2) be an estimate for the highest point in the channel1205

downstream of G
9

8
. Put 2

9

8
= 0 if 1

9

8
< 1

9

2,8
, 2

9

8
= 1 otherwise. Let 1

9
m = max8 (1

9

2,8
) be the1206

discrete seal point height for the lake, which is second order accurate regardless of whether1207

the seal is at a shock or not. We update (G
9

8
, 1

9

8
, ?

9

8
) by a backward Euler step1208

G
9+1

8
− G

9

8

C 9+1 − C 9
= H? (G

9+1

8
, C 9 , ?

9+1

8
, @ 9+1),

?
9+1

8
− ?

9

8

C 9+1 − C 9
= −HG (G

9+1

8
, C 9 , ?

9+1

8
, @ 9+1), (E 1a)1209

1
9+1

8
− 1

9

8

C 9+1 − C 9
= −H(G

9+1

8
, C 9 , ?

9+1

8
, @ 9+1) + H? (G

9+1

8
, C 9 , ?

9+1

8
, @ 9+1)?

9+1

8
.

Note that the lagged time variable C 9 indicates that we are using a fixed ponding function 2
9

8
,1210

computed from the last known solution. We use two methods of computing water level ℎ
9+1

0
1211

and flux @ 9+1. For U = 0, we use (2.16) as stated,1212

+̂ (ℎ
9+1

0
) − +̂ (ℎ

9

0
)

C 9+1 − C 9
= &(C 9+1) − @ 9+1, @ 9+1

= max

(

&
(

C 9+1
)

−
+̂ (1

9+1
m ) − +̂ (ℎ

9

0
)

C 9+1 − C 9
, 0

)

(E 1b)1213
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with +̂ and & being prescribed functions. For U > 0, (E 1b) may not have a unique solution1214

as described in §3.4, and we replace (E 1b) with (3.17), in the form1215

+̂ (ℎ
9+1

0
) − +̂ (ℎ

9

0
)

C 9+1 − C 9
= &(C 9+1) − @ 9+1, @ 9+1

= QB (a
−1 (ℎ

9+1

0
− 1

9+1
m )). (E 2)1216

We treat QB simply as a regularization rather than trying to emulate the function shown1217

in figure 15(b), and consequently we drop the slopes 1−G and 1+G as arguments from QB . In1218

practice, we use QB (ℎ1) = ℎ1
2 if ℎ1 > 0, 0 otherwise, and put a = 10−3. The system of1219

equations (E 1) for the updated variables is solved using a semi-smooth Newton solver. Time1220

step size C 9+1− C 9 is chosen so that no characteristic G8 moves further than the spacing between1221

adjacent characteristics in a single time step, and to ensure that C 9+1 − C 9 ≪ a. In practice, we1222

have typically used values between 10−5 and 10−4.1223

The updated solution is then post-processed for shocks, and to add characteristics where the1224

points G
9+1

8
have become too widely spaced and account for expansion fans. Any characteristic1225

8 with G
9+1

8
outside the domain (0, !) is deleted, and the remainder is relabelled. Next, we1226

compute the G
9+1

8+1/2
, 1

9+1

8+1/2
, and 2

9+1

8
, and identify any 8 for which G

9+1

8
> G

9+1

8+1/2
. For these 8, we1227

assume there is a shock that the 8th characteristic has crossed, and delete the 8th characteristic1228

from that time forward, and relabel the remaining characteristics. Likewise if G
9+1

8+1
> G

9+1

8+1/2
,1229

we delete the (8 + 1)th characteristic, repeating the entire postprocessing step (including1230

computation of G
9+1

8+1/2
and 1

9+1

8+1/2
) until there are no intervals (G

9+1

8
, G

9+1

8+1
) left such that G

9+1

8+1/2
1231

lies outside that interval. This also ensures the remaining points are ordered.1232

If subsequently any G
9+1

8+1
− G

9+1

8
are above a prescribed tolerance (typically 10−3–10−4, we1233

introduce new characteristics between them at a prescribed spacing. If 2
9+1

8
= 1 and 2

9+1

8+1
= 0,1234

we construct a piecewise linear interpolation 1̂ between G
9+1

8
and G

9+1

8+1
with constant slope1235

below and above a pond entry position G8+1
p (itself solved for as part of the construction of1236

the interpolation) chosen such that 1̂(G8+1
p ) = 1

9+1

2,8
, and such that the discontinuity in slope at1237

G8+1
p satisfies (D 2)–(D 1). Otherwise, we construct a linear interpolant between 1

9

8
and 1

9

8+1
1238

to initialize the new characteristics, provided the characteristics are indeed spreading with1239

H? (G
9+1

8
, C 9 , ?

9+1

8
, @ 9+1) < H? (G

9+1

8+1
, C 9 , ?

9+1

8+1
, @ 9+1). If the characteristics are not spreading,1240

new points are introduced by extrapolation from G
9+1

8
at slope ?

9+1

8
for any new points with1241

G < G
9

8+1/2
, and from G

9+1

8+1
at slope ?

9+1

8+1
otherwise.1242
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