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Summary

Let X = R? and let V be a finite-dimensional complex inner product space. Let
C : X? - L(V#®?) be a continuous function such that, for each (z,y) € X2, C(z,y)
is a unitary operator in V®2 C*(x,y) = C(y,z), and the functional Yang-Baxter equa-
tion is satisfied. The dissertation deals with the multicomponent commutation relations
governed by the function C, see [A. Liguori, M. Mintchev, Comm. Math. Phys. 169
(1995) 635-652]. We introduce the x-algebra of the C-multicomponent commutation re-
lations (C-MCR algebra). We propose definitions of a gauge-invariant quasi-free state and
of a strongly quasi-free state on the C-MCR algebra, A. Under restrictive assumptions
on the function C', we construct a class of gauge-invariant quasi-free states on A, which,
for some functions C', are also strongly quasi-free. We show that, when dimV =1 (i.e.,
when we deal with the anyon commutation relations), among all gauge-invariant quasi-
free states on A, only the Fock state is strongly quasi-free. In the case dimV = 2 (i.e.,
when we deal with two-component systems), we present a non-trivial class of examples of
function C to which our theory is applicable, and hence, we can construct gauge-invariant

quasi-free states, or even strongly quasi-free states on A.
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Chapter 1

Introduction

Multicomponent commutations relations (MCR) describe plektons, i.e., multicomponent
quantum systems with a generalized statistics. In such systems, particle exchange is
governed by a unitary matrix that depends on the position of particles. For such an ex-
change to be possible, the matrix must satisfy several conditions, including the functional
Yang—-Baxter equation.

The aim of the dissertation is to give an appropriate definition of a quasi-free state on
an MCR algebra and to construct a class of such states on some MCR algebras.

Let us first recall the Araki-Woods [1] and Araki-Wyss [2] construction of gauge-
invariant quasi-free states on the algebras of the canonical commutation relations (CCR)
and the algebra of the canonical anticommutation relation (CAR), see also [8, Section
5.2].

Let ‘H be a complex separable Hilbert space with an antilinear involution J (typically
the complex conjugation in a complex L?-space H). Let a™(f), a=(f) (f € H) be linear
operators in a complex separable Hilbert space § defined on a dense subset ® C §, and
mapping © into itself. (In the case of the CAR, the operators at(f), a™(f) are actually
bounded, hence ® = §). Assume that the maps H > f — a™(f), H > f— a (f) are
linear and a=(f) = a™(Jf)* [0, i.e., a”(f) is the restriction to D of the adjoint operator
of at(Jf).

We assume that the operators a™(f), a™(f), called creation operators and annihilation



operators, respectively, satisfy the commutation relations:

a (f)a*(g) =+a"(g)a” (f) + (9. T f)n- (1.1)

The choice of the plus in (1.1) gives the CCR, describing bosons, and the choice of the
minus gives the CAR, describing fermions.

Let X = RP with p € N (in the dissertation, we actually allow X to be a more general
space) and let H = L?(X,dz). One introduces creation and annihilation operators at

point, a™(z) and a™ (z) (x € X), by
() = [ st s,
a (f) :/Xf(x)a_(x)da:, feH. (1.2)

The a™(x) and a=(z) are a kind of ‘operator-valued distributions’. In terms of these

operators, the commutation relations (1.1) become

a”(z)a’(y) = £a' (y)a"(z) +d(z —y). (1.3)

Here

/XZ 0(z —y) f(z)g(y)dr dy = /Xf(ﬂf)g(fv)da:.

Let A be the complex *-algebra generated by the operators a*(f), a=(f) (f € H),
satisfying either the CCR or CAR. Then A is called the CCR algebra or CAR algebra,

respectively.

Define, for f € H, field (or Segal-type) operators

b(f) =a™(f)+a"(Jf). (1.4)

Note that



a (f) =5 (b(Jf) +ib(i]f)).

MI}—‘

Hence, the algebra A is generated by b(f) (f € H).

Let 7 be a state on A. The state 7 is called quasi-free if, for all n € N,

7(b(f)b(f2) -+ b(fan-1)) =0, (1.5)
and
T(0(f0)b(f2) -+ b(fon)) Z sgn(€) ] 7(0(/b(s). (1.6)
{ij}ee
1<)
Here, the summation is over all partitions £ of the set {1,2,...,2n} into n two-point sets,

sgn(§) =1 for bosons and

sn©) = [[ (-1 (L7)
{ig} {k1}eg
<k<j<l
for fermions. Note that, in (1.7), sgn(§) is just one to the number of crossings in the
partition £. We note also that, in the case of bosons, one may allow a slightly more
general definition of a quasi-free state when the odd moments in (1.1) are not necessarily
equal to zero.

A state 7 is called gauge-invariant if, for any ¢ € C, |¢| = 1, the state 7 remains

invariant under the transformation
a*(f) = a*(qf) = qa* (f),
a” (f) = a”(qf) = qa”(f).

This requirement can be written as follows:

T(b(f1)---b(f) = 7(b(gf) - -~ blafn))

for all n.
Note that, due to (1.1), any state 7 is completely characterized by the so-called n-point

functions,

S (fiyoy Frs Gty Gn) = T(aT(f1) - at (Fn)a (g1) - a” (ga))- (1.8)



As easily seen, a state 7 is gauge-invariant if and only if S = 0 if m # n. In fact, a

state 7 is gauge-invariant quasi-free if and only if S = 0 if m # n and
S(n,n)(fm oo 11y -5 gn) = DET [S(l,l)(fijgjﬂ .

= > I8V (fi =) (1.9)
TESy =1
for bosons and

S(n,n)(fm L 7f17 g1y -- ,gn) = det [S(l’l)(fi7 g])} e

n

- Z sgn () H SEV(fi, grii)) (1.10)

TE€Sn i=1
for fermions. Here S, is the symmetric group of order n, and for © € S,,, sgn(m) denotes
the sign of the permutation 7.

Gauge-invariant quasi-free states can be easily constructed by ‘doubling’ the under-
lying space. Let us consider this construction for fermions. Let § = F (H @ H) be the
antisymmetric Fock space over H & H. For (f,g) € H & H, let a™(f,g) and a (f,g)
denote the standard creation and annihilation operators in F (H & #H). Fix an arbitrary
operator K in H satisfying 0 < K < 1, and define K; = VK, Ky = /1 — K. For each
f € H, define operators

AT(f) = a™(0, Kaf) + a” (K1.f,0),
AT(f) = a (0, Kb f) + a* (K} £,0). (1.11)

Here K| = JK,J, the transposed of K;. The operators AT(f), A~ (f) (f € H) satisfy
the CAR. Let 7 be the vacuum state on the corresponding CAR algebra A. Then 7 is a

gauge-invariant quasi-free state with
SUY(f,9) = T(AT(NA(9) = (Kf. Jg)u.
Furthermore, for the corresponding field operators B(f) = AT(f) + A= (Jf), we have
7(B(f)B(9)) = (9, f)u +2Re(K f, g)x .

Let us now briefly discuss generalized statistics. In physics, in the case X = R?, inter-

mediate statistics have been discussed since Leinass and Myrheim (1977) [20] conjectured
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their existence. The first mathematically rigorous prediction of intermediate statistics
was done by Goldin, Menikoff and Sharp (1980, 1981) [12, 13]. The name anyon was
given to such statistics by Wilczek (1982) [29, 30].

We also refer to Bozejko, Speicher (1991) [6] for an alternative deformation of the
CCR/CAR.

Liguori and Mintchev (1995) [21] and Goldin and Sharp (1996) [15] showed that anyon
statistics can be described by certain generalized commutation relations. More precisely,

let now X = R? and consider a continuous function @ : X? — C satisfying

Q(xay) = Q(y,:v), |Q($ay)| =1.

Furthermore, we assume (with a slight abuse of of notation) that

Q(z,y) = Q(z1, 22,91, 12) = Q(x1,%1),

i.e., the value of the function Q(z,y) is completely determined by the first coordinates
and y;.

Heuristically, we are interested in creation operators a™*(z) and annihilation operators
a”(z) at points x € X such that a=(z) is the adjoint of a™(x) and these operators satisfy

the following @-anyon commutation relations (Q-ACR):

S
+
—~
8
~—
S
+
—~
<
~—
I
O
—~
=
8
~—
S
+
—~
<
~—
s
+
—~
8
~

compare with (1.3). Liguori, Mintchev [21] (see also Goldin, Majid [11]) derived a rigorous
representation of the -ACR in the Fock space of Q)-symmetric functions.
More precisely, let as before H = L?*(X,dz). A function f™ : X" — C is called

Q-symmetric if, for any i € {1,...,n — 1} and (zy,...,z,) € X",

f(n)(.ilfl, Ce ,iL‘n) = Q(l’l, xiJrl)f(n)(xl, s L1, Lj 15 Ly Ljg 25 - - - ,xn).

We denote by H*®™ the subspace of H®" that consists of all -symmetric functions from

HE™. We call H*" the n-th Q-symmetric tensor power of H. We define the Q-Fock space

>



over H by
F(H) =@ H*n!.
n=0

(The factor n! means that the square of the F(#H)-norm of g™ € H®" is equal to the
square of the H®"-norm of ¢™ times n!.) For f € H, we define a creation operator a*(f)

in F(H) by
a*(f)g™ = f@ g™ = Pup(f2g™), ¢™ eHm

Here P, is the Q-symmetrization in H®™ 1) i.e., the orthogonal projection of H®+1)

onto H®™+1)_ Respectively, we define an annihilation operator a~(f) in F(H) by

(a_(f>g(n)) (xla s 7xn—l> - TL/ f(y)g(n)(yvxla s 7$n—1>dy7 g(n) € H®n'
X

Note that a*(f) and a™(f) are, generally speaking, unbounded operators and they are
defined on the subspace Fg,(H) of all finite vectors from F(H). Then a=(f) is the
adjoint operator of at(Jf), restricted to Fan(H), and the corresponding operator-valued
distributions a™(z), a”(z) (x € X), defined as in (1.2), satisfy the Q-ACR.

Let A be the complex *-algebra generated by the operators a*(f), a=(f) (f € H),
satisfying the Q-ACR. The A is then called the Q-ACR algebra!.

Lytvynov [22] constructed a class of gauge-invariant quasi-free states on the Q-ACR
algebra A. The main idea of the construction was again a doubling of the space H. Thus,
one considers

H@H:L2(X1|_]X2,dl’)7

where X; and X, are two copies of X. Let a function Q : (X; LU X5)* — C be defined by

Qz,y), ifzyeXiorayeXy,
Q(z,y) = (1.12)
Qy,z), ifreX,ye Xoorz e Xy, ye€ Xj.
Note that Q(z,y) = Q(y,x), |Q(x,y)| = 1. One then considers the corresponding Fock
space over L* (X; U Xy, dx), i.e., the space F (L? (X; U X5, dz)) constructed by using the

function Q.

'To be more precise, the Q-ACR algebra should contain not only products of the operators a™t(f),
a” (f) with f € H but also special multiple integrals of a* () and o™ (2) with € X. See [22] for detail.
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Note that in [22], the function Q(z,y) was not assumed to be continuous, in order to

include the anyon statistics with

q ifx <y,
Qx,y) = (1.13)

q if xr1 > Y,
where ¢ € C is a fixed constant of modulus 1. Hence, one had to postulate a value of
Q(z,y) on the diagonal {(z,y) € X? | z = y}.
Assume, for example, Q(z,z) = —1. Consider an operator K in L? (R,dx) satisfying

0 < K < 1. Let us preserve the notation K for the operator 1 ® K in
H=L"R%dz) = L*(R)® L* (R).

Similarly to the case of fermions, define K; = VK, K, = /1 — K, and for f € H define
operators AT(f), A=(f) just as in (1.11). These operators act in F (L? (X; U X5, dz))
and satisfy the (-ACR. Furthermore, the vacuum state 7 on the corresponding Q-ACR

algebra is gauge-invariant quasi-free, in the sense that, for any ¢, ¢, f, g € L*(R), we have

StV (e® fp@g) =T(AN (e ® A (¥ ©g))
~ [ ele)o@) L. gltaa),
with
YIf, glde) = (Kg, Jf) o) dx

and

St =0 if m #n,
ST (0 @ for w1 @ 1,01 @ Grs- s © Gn)
= T(AT(pn ® fu) - AT (01 @ f)A (1 @ g1) - A (b @ g0))

- Z /Rn (H %(%Wﬂ(z’) (%)) Qn(T1,..., 1) ®7(2) [fi, gﬂ'(i)](dxi), (1.14)

TESh
with
Qnlzr,. .. ozn) = [ Qai,ay). (1.15)

1<i<j<n
w(1)>m(j)

7



This dissertation deals with multicomponent quantum systems. Such systems are
also called plektons, see e.g [11]. Plektons are generalized statistics (quasiparticles) over
an underlying space of dimension 2, that are associated with higher-dimensional (non-
abelian) unitary representation of the braid group. More recently, similar statistics have
been actively studied in topological quantum computation under the name non-abelian
anyons?, see e.g. [24, 27].

The first paper pointing out the possibility of a multicomponent quantum system was
the comment by Menikoff, Sharp and Goldin (1985) [14]. Such systems were rigorously
derived and studied by Liguori, Mintchev (1995) [21], and later by Goldin, Majid (2004)
[11].

The paper by Daletskii, Kalyuzhny, Lytvynov and Proskurin (2020) [9] gave an overview
of multicomponent quantum systems with concrete examples when the number of compo-
nents of a quantum system is two. That paper actually treated a more general case than
the one considered in [21] and [11]. For other results that are related to multicomponent
quantum systems, see e.g. Bozejko, Speicher (1994) [7] and Jgrgensen, Schmitt, Werner
(1995) [17].

Let us briefly explain in more detail what we mean under a multicomponent system.
Let X = R? and let V be a finite-dimensional complex inner product space, with a
real orthonormal basis {e1,...,e;}. We fix a map C' : X? — £ (V®?) that satisfies the

following conditions:

o C(x,y) = C(x1, 11,22, 92) = C(z1,1);

For each (z,y) € X?, C(z,y) is a unitary operator in V®2;

For each (z,y) € X?, C*(z,y) = C(y, 2);

The functional Yang-Baxter equation is satisfied point-wise in V®3,

Ci(x,y)Cs(z, 2)Cy(y, 2) = Ca(y, 2)Ci(x, 2)Co(z, y).

2Tt is actually an interesting open problem to find a direct relation between non-abelian anyons as

discussed in topological quantum computation and multicomponent quantum systems as discussed in this

dissertation.



Here and below, C;(-,-) acts in the i-th and (i + 1)-th components of V3.
Additionally, in this dissertation we will always assume that the map C/(-, ) is contin-
uous.

We are interested in vectors of ‘operator-valued distributions’

f(x) =" filx)es e, fix)=(f(x) e)v
d

at(f) = Z Xf,(x)aj(x)dx,

(=3 [ Hwar (i

with a=(f) being the (restriction) of the adjoint of a™(Jf). Here J is the complex conju-
gation in V' i.e., the antilinear operator in V satisfying Je; = ¢; (i =1,...,d).

Denote, for u,v € V| {(u,v)y = (u, Jv)y. Then we will use the heuristic notation

We will similarly write, for a product,

(Nate) = [ 109 9000 @) 9 0 0))yon oy

We say that these operators satisfy the C-multicomponent commutation relations (C-

MCR) if
[ (@ @ gty (@) 90" () yes dody
=/, (Cly,2) f(x) @ gy),a* (y) @ a™(2)),0. dx dy,
/X (@) @ 9(y),07 (@) @0 (1)) yoa dr dy
=/, (Clz,9)f(2) @ g(y),a” (y) ® a” (7)), 0, dz dy,

9



/X2 <f($) @ g(y), a_<$> ® a+(y)>v®2 dx dy = /)((f($)79(x)>v dr
. (Cla,y) (@) @ g(y),a* (y) ® a™(2))q, dz dy. (1.16)

The operator-valued integrals on the right hand side of formulas (1.16) are assumed to be
well defined. Furthermore,

C(a,y) =SC(x,y)S,

where the antilinear operator S in V®? is given by
S(u®@v) = (Jv) ® (Ju),
and C(z,y) satisfies
<5(m, y)e ® ej, e ® €l>v®2 = <C’(m, y)er ® €, e ® ej>v®2' (1.17)

Note that the C-MCR (1.16) can be written in the following shorthand form:

at(z)®@a’(y) = Cly,z)a" (y) ® a* (),
Clz,y)a (y) @ a (),

6(x = y) Te(-) + Cla,y)a* (y) ®a (x). (1.18)

a () ®a (y)

a (x) ®a’(y)

Here, for A € L£(V®2), A’ := JAJ is the transposed of A; for v® € V%2 Tr(v?) :=
S0 (0@, e @ ex)yen is the trace® of v,

Let A be the complex *-algebra generated by the operators a*(f), a=(f) (f € H),
satisfying the C-MCR. Then A is called the C-MCR algebra

Note that, for V = C and C(z,y) = Q(z,y), we get C(z,y) = Q(y,z) and C(z,y) =
Q(z,y). Hence, in this case, the C-MCR algebra becomes the Q-ACR algebra.

Let us now recall the Fock representation of the C-MCR [21]. We have H®" =
L*(X™ — V" dx ...dx,). We say that a function f™ € H®" is C-symmetric if

f(n)(flfl, ce 7~Tn) = C’z(xz, Ii+1)f(n)(l'1, ey Lj 1y L 15 Ly Ljg-245 -+ - ,In).

3Note that, in the standard way, V®? can be identified with £(V'), and then Tr(v(®)) becomes the

usual trace of the linear operator v(?).
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We denote by H*®™ the subspace of H®" that consists of all C-symmetric functions from

H®™. We define the C-Fock space over H by
F(H) =P Hn!.
n=0
For each f € H, we define a creation operator a™(f) by

at(f)g™ =f®g™ = P (f@9™) (1.19)

and an annihilation operator a=(f) by

(a’(f)g(”)) (X1, ., &pq) = n/X <g(”)(y, L1y Tpt), f(y)>v dy. (1.20)

In (1.19), P, is the orthogonal projection of H®" onto H*", and in formula (1.20) we

used the following notation: for uy, ..., u,,v € V,
(U1 @+ ® Uy, )y = (U, W)y Uy ® -+ @ uy, € VEITD,

The operators a™ (f) and a™ (f) are defined on Fg,(H), the subspace of F(H) consisting
of all finite sequences. Then a~(f) is the restriction to Fg,(#H) of the adjoint of the
operator a®(Jf). The operators a*(f), a=(f) satisfy the C-MCR.

The aim of the dissertation is to develop basics of a theory of quasi-free states for mul-
ticomponent quantum systems. The hope is that the construction of the gauge-invariant
quasi-free states for the -ACR can be extended to the case of a multicomponent system.
We show that this can be indeed achieved, however under very restrictive assumptions
on the operator-valued function C(z,y). It should be stressed that these assumptions are
essentially necessary for the C-MCR to hold for our non-Fock representation.

So a natural question arises whether there exists any non-trivial class of examples of
C(z,y) to which our theory is applicable. We show that the answer to this question is
positive: we present a non-trivial class of examples in the case where the dimension of
the space V' is two, i.e., when the quantum system has two components. More precisely,

these C-MCR can be written as follows:

af (z)a (y) = Qu(y, ib‘)aj(i) (y)az(i) (),

11



a; (v)aj (y) = d(x — y) + Qa(z, y)a:.f(,-) (y)a;(i)(x)7
a; (z)aj, (y) = Qi(z,y)a; (y)a, () (1.21)
for i = 1,2. Here, Qi(z,y) and Q(z,y) are continuous functions on X? satisfying

Qi(z,y) = Qi(y,x), |Qi(x,y)| = 1, and the permutation ¢ € S, is given by ¢(1) = 2,
©(2) = 1. Note that, under the exchange (1.21), each operator ai(-) changes its type to
the opposite one, ai(i)(').

Another problem that we discuss is related to the very definition of a quasi-free state.
In the case of a state on the C-MCR algebra, we derive equations that could seemingly
serve as a definition of a quasi-free state. These equations extend formulas (1.5)—(1.6)
similarly to how formulas (1.14), (1.15) extend (1.8)—(1.10). It appears, however, that the
gauge-invariant quasi-free states on the Q-ACR algebra constructed in [22] do not satisfy
these equations. The reason for this is the definition (1.12) of the function Q(z,y). When
one evaluates the n-point functions S™™ for such a system, only the terms with all points
from X3 do not vanish. But for such points, =,y € X;, we have Q(z,y) = Q(z,y). Hence,
one comes up with formula (1.14) in which the function Q. (z1, ..., x,) is given by (1.15).
However, when one evaluates 7(b(f1)---b(f2n)) (with b(f) defined as in (1.4)), one has
to deal with terms containing points from both parts, X; and X;. Because of this, one
is unable to come up with the function Q,(xy,...,x,), unless Q(z,y) = Q(y,x). But the
latter formula means that Q(z,y) is either identically equal to 1 (bosons), or identically
equal to —1 (fermions).

Thus, instead of using the term a ‘quasi-free state on the C-MCR algebra,” we use
the term a ‘strongly quasi-free state on the C-MCR algebra’ if a counterpart of formulas
(1.5), (1.6) holds for a state 7 on the C-MCR algebra. As a result, the gauge-invariant
quasi-free states constructed on the Q-ACR algebra in [22] are not strongly quasi-free.

We prove that, for a C-MCR algebra, a gauge-invariant quasi-free state is strongly

12



quasi-free if

Cly,x) = C(z,y) (1.22)

where C(y, z) is defined by (1.17).
It appears that the class of the C-MCR (1.21) contains a non-trivial subclass for

which condition (1.22) is satisfied. More precisely, assume additionally that Q(x,y) =
Q2(z,y) = Q(z,y), then the M-MCR (1.21) become

aj(x)a;'(y) = Q(y, x)a;(i)(y)a:(j) (z),

a; (z)a; (y) = Q(y, x)a;(i) (3/)%;@) (@),

a; (z)aj (y) = 6(x = y)oi; + Qa,y)ajy (Y)agy(x), i, € {12}, (1.23)

Then (1.22) holds and so a gauge-invariant quasi-free state on the corresponding C-MCR
algebra is strongly quasi-free. So, in a sense, such a state has better properties than a
gauge-invariant quasi-free state on the Q-ACR algebra.

Let us briefly discuss the structure of the dissertation.

In Chapter 2, we discuss mostly known results related to abelian anyons (gener-
alised statistics) and multicomponent quantum systems. For the reader’s convenience,
we present most of the key results with complete proofs. Unlike many other available
sources, in this chapter we are dealing only with the situation where there is a unitary
representation of the symmetric group, hence the corresponding ‘symmetrization opera-
tor’ is an orthogonal projection. This makes our proof sometimes different or easier than
those available in the literature.

Chapter 3 deals with quasi-free states on the ()-ACR algebra. Recall that gauge-
invariant quasi-free states on such an algebra were constructed in [22]. In order to include
the case where @ is given by (1.13), the function @) was allowed in [22] to be discontinuous
on the diagonal {z; = y;}. In the case of gauge-invariant quasi-free representations of
the @Q-ACR, this made it necessary to postulate a (real) value of the function @ on the
diagonal.

The aim of Chapter 3 is two-fold. First, we discuss a construction of gauge-invariant

quasi-free states on the )-ACR algebra in the case where the function () is assumed to
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be continuous. This allows us to simplify the construction from [22], and make it more
similar to the situation with bosons and fermions, see e.g. [8, Sections 5.2.1-5.2.3] and
[10, Chapter 17].

Second, by analogy with bosons and fermions, we present a definition of a quasi-free
state on the -ACR algebra. This definition mimics the behaviour of the Fock state
applied to a product of field operators. In the classical setting, each gauge-invariant
quasi-free state is automatically quasi-free. However, this is not true for the Q-ACR
algebra. Hence, we call such states strongly quasi-free. We show that a gauge-invariant
quasi-free state on the ()-ACR algebra is strongly quasi-free only if either the function
Q(z,y) is identically equal to 1 or —1 (i.e., for bosons and fermions) or the state is Fock.

The main results of the dissertation are in Chapter 4, which deals with quasi-free
states on the C-MCR algebra.

In Section 4.1, we define the C-MCR algebra A as a complex *x-algebra. Note that A
contains not only product of operators a™(f), a~(f) satisfying the commutation relations
(1.16) but also multiple integrals containing a™(x) and a~(x). We prove that the algebra
A is of Wick type, i.e., it allows Wick ordering (Proposition 4.5). Also we show in
Proposition 4.6 that, under an additional assumption on C(z,y), we can also exchange
the order in the product a*(z) ® a™(y), which is important for construction of quasi-free
representations of the C-MCR.

In Section 4.2, we briefly discuss generic states on the C-MCR algebra and introduce
a certain continuity of such states.

In Section 4.3, we consider the Fock state on the C-MCR algebra, i.e., the vacuum
state 7 on the usual Fock representation of the C-MCR. The main result of this section,
Corollary 4.16, is the formula for the moments of the field operators for the Fock state 7
on the C-MCR algebra A.

In Section 4.4, we present the definition of a strongly quasi-free state on the C-MCR
algebra. This definition is inspired by Corollary 4.16. In particular, the Fock state is
automatically strongly quasi-free. We also define a gauge-invariant quasi-free state on the
C-MCR algebra.

Under very restrictive conditions (Assumtpions 4.21 and 4.22), we construct a class of
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gauge-invariant quasi-free states on the C-MRC algebra (Theorem 4.25). If additionally
the condition (1.22) is satisfied, then such a state is strongly quasi-free (Theorem 4.26).

Finally, in Section 4.5, we consider examples of function C(z,y) satisfying Assump-
tions 4.21, 4.22 and (1.22). More precisely, we consider two classes of examples. The first
class of examples (Subsection 4.5.1) is obtained by a ‘lifting’ of gauge-invariant quasi-free
states on the Q-ACR algebra. It should, however, be noted that such quasi-free states
could have been constructed within the framework of the Q-ACR algebras by property
modifying the underlying space X . Finally, the second class of examples (Subsection 4.5.2)
concerns the C-MCR (1.21) for gauge-invariant quasi-free states and (1.23) for strongly

quasi-free states.
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Chapter 2

Symmetrization and commutation

relations

The key references for this review chapter are [5, 7, 9, 11, 21]. For further reading on the
topic, we refer to [12, 13, 14, 15, 16, 17, 18, 19, 28].

2.1 Symmetric group

Definition 2.1. Let n € N. A bijective mapping 7 : {1,2,...,n} — {1,2,...,n} is called

a permutation. The set of all such permutations is denoted by .S,,.

Definition 2.2. The identity mapping e : {1,2,...,n} — {1,2,... n} given by e(i) =i is
called the identity permutation.

I exists and

Remark 2.3. Since a mapping m € S, is bijective, the inverse mapping 7~
rtes,.
Remark 2.4. The product of two permutations m, v € S, is defined as the composition of

the mappings 7 and v, i.e., mv = wov. It is clear that 7v € S,, and 7v # v7 in general.

Definition 2.5. The set S,, with product of two permutations forms a group with identity

element e and inverse of 7 being 7—!. This group is called a symmetric group.
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Definition 2.6. For ¢ € {1,2,...,n — 1}, define m; € S,, by

7, if j£iand j£i+1,

mi(j) = qi+1, ifj=1,

7, itj=14+1.
The 7; is called an adjacent transposition.

Proposition 2.7. The adjacent transpositions m; satisfy the following equations:

T = T mimier if 0 € {1,2,...,n — 2}, (2.1)
T = T4 Zf ‘Z — ]| Z 2, (22)
m=e ifi€{l,2,...,n—1}. (2.3)

Proposition 2.8. Fach permutation m € S,, can be represented as a product of adjacent
transpositions, i.e.,
T =Ty Ty =+ * T

(2.4)

k
for some iy, s, ... i € {1,2,...,n— 1}.

Remark 2.9. The representation (2.4) of a permutation as a product of adjacent transpo-
sitions is not unique.

Remark 2.10. Equation (2.4) shows that the group S, is generated by the adjacent trans-

positions m, To, ..., Tph_1.

Theorem 2.11 (The Coxeter representation of the symmetric group). The symmetric
group S, 1s isomorphic to an abstract group generated by elements m,mo, ..., T,_1 that

satisfy equations (2.1), (2.2), (2.3) with e being the identity element of the group.

17



2.2 Symmetric functions and symmetrization opera-

tors

2.2.1 The projection P,

Let n € N, n > 2. Let H be a separable complex Hilbert space. Let Uy, Us,...,U, be

unitary operators acting on H that satisfy the following equations:

UiUfL'JrlUi = Ui+1UiUi+1 if 4 € {1, 2, e, — 1}, (25)
UU; = U0, if fi— | > 2, (2.6)
U?=1 ifie{l,2,...,n}. (2.7)

Here 1 denotes the identity operator. The equation (2.5) is called Yang—Baxter equation.

Remark 2.12. Since Uj is unitary operator, we get U; * = U?. On the other hand, formula
(2.7) implies that Ui_1 = U,. Therefore U; = U/, i.e., each Uj is also a self-adjoint operator.
Since the spectrum of a self-adjoint operator is a subset of R and the spectrum of a unitary
operator is a subset of the circle in C centered at 0 and of radius 1, the spectrum of each
U; is a subset of {—1,1}. The latter implies that, for each i = 1,2,...,n, the Hilbert
space H can be represented as an orthogonal sum of closed subspaces Hi(l) and HZ.(2), ie.,
H = Hi(l) & HZ@), and the operator U; acts as the identity on Hi(l) and as the minus
identity on Hi@).

Definition 2.13. Let m € S,, be an arbitrary permutation. Represent 7 in the form (2.4)

and define a unitary operator U, by

U, =U,U, U,

(27N

(2.8)

Proposition 2.14.

(i) For each m € S, the definition (2.8) of U, does not depend on the choice of the repre-
sentation (2.4), i.e., two different representations of w in the form of a product of adjacent
transpositions give the same operator U.

(ii) The map

Sp o7 Uy (2.9)
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18 a unitary representation of the group S,.

Proof. Consider the set GG of all finite products of operators Uy, ..., U, in any order. By
(2.7), we have 1 € G.
Again, by (2.7), U; ' = U; for all i. Hence, for any iy,...,ix € {1,...,n},

Uy U, - U )t =Us, -+ U, Uy,

Therefore, G is a group with respect to product of operators, and this group G is generated
by Ui, ...,U,. By (2.5)—(2.7) and Theorem 2.11, the group G is isomorphic to S,,, where
the isomorphism I : G — 5, is defined through the equality IU; = m;. From here both

statements of the proposition follow. O

Remark 2.15. For the unitary representation (2.9) of S, to be faithful, one should have
U, # 1 for each permutation 7w € .S, that is not the identity permutation. Obviously, this
is not always the case. For example, by choosing all operators U; to be 1, we get U, =1
for all 7 € S,,. We advise the reader to compare this observation with the construction
of the free Fock space in Section 2.7. Nevertheless, one can easily check that, in all the

other examples of operators Uy, ..., U, considered in this dissertation, the representation

(2.9) is indeed faithful.

Definition 2.16. We define
Py=— > U (2.10)

Proposition 2.17. For each n > 2, P, is an orthogonal projection, i.e., Py = P, and

P2=p,.
Proof. Let m € S,, be represented in the form (2.4). By Remark 2.12 and (2.8),

Urp=UyUs,---Uy,)"

=U, U, , U
= Uﬂ‘_17
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since

Hence, by (2.10),

* 1 *
PRZEZUW

" 7ES,
1
— E Z Uﬂ-fl
TESR
1
TESR
Next,
P? = (%) Y Y v,
TES, VES,
1
-(3) Zx v
TESL VES
1
() Zxw
TESH EES
:%}2@_a

Here we used the fact that, for a fixed 7 € 5, each £ € S,, can be represented, in a unique

way, as £ = mv. O
Proposition 2.18. For each n > 2,

ran(P,) = {fEH | U;f = f for each i = 1,2,...n—1}.
Here ran(P,) denotes the range of P,.

Proof. Let f € H be such that U;f = f for alli = 1,2,...,n — 1. By (2.8), for each
m €S, we have U, f = f, hence by (2.10),

P.f=f. (2.11)

Since P, is an orthogonal projection, formula (2.11) means that f € ran(P,).
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Now assume that f € ran(P,). We have to prove that, for each ¢ = 1,2,...,n — 1,
U;f = f. Since f € ran(P,), formula (2.11) holds. Hence

1

" weSy

DA

TES

1
:EZUJ

" ¢ESn

2.2.2 Tensor product corresponding to a Yang—Baxter operator

Let H be a separable complex Hilbert space. Let U € L(H®?) be a self-adjoint, unitary

operator satisfying the Yang—Baxter equation
U,U,U; = UsUpUs, (2.12)
where the operators Uy, U € L(H®?) are defined by
U =U®1y, U;:=14U.

Here and below, for a Hilbert space G, we denote by 1 the identity operator on G.
Let us fix n € N, n > 2. Similarly to the above, we define for each i =1,2,...,n — 1,
operators U; € L(H®™) by

UZ' = 1'H®(i—1) & U &® 1H(n—i—1) .

The operators U; are obviously unitary and self-adjoint on H®". The Yang—Baxter equa-
tion (2.12) implies (2.5). Obviously, if |¢ — j| > 2, the operators U; and U; commute, so
that (2.6) holds. Finally, since the operators U; are unitary and self-adjoint, they satisfy
(2.7). Hence, the results of Subsection 2.2.1 are applicable to the operators U;, and we

get the corresponding projection operator P,.
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We denote H®™ the range of P,. By Proposition 2.18,
HE = {f™) e HE | U f™ = f™ for each i =1,2,...n — 1}.
Also, for f1, fa, ..., fn € H, we denote

Proposition 2.19. Letn > 2, m € N. Then

Priin = Poin [P @ 1pgen] (2.13)
= Ppin [1yen @ P (2.14)
= [1yen ® Pr] Prtn (2.15)
= [P, ® 1yen] Poin - (2.16)

Proof. We have

Prin [P @ 1yen] = Z o —~ > U, @ Lyen.

neSm+,L " vES,
We have S,, C S,,., in the sense that we may identify v € S,, with the element of S, .,
that acts as v for i = 1,...,n and as the identity fort =n+1,n+2,...,m + n. Then,

Poin [P ® 1pon] = ————— m+n|n, > Y U,

TI'ESm+n I/GSn

- m—irn'n'Z Z Unw

vESy TESm+n

- m+n'n'z Z Us

vESH TE€ESm+n

:mzpm—i-n

’ l/eSTL

m-+n- O

Thus, (2.13) is proven. The proof of (2.14), (2.15) and (2.16) is similar.

Corollary 2.20. The tensor product ® is associative, i.e.,
(feg)®h=f®(g®h)

forall f,g,h € H.
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Proof. Immediate. |

Proposition 2.21. We have

1
Con+1

1

Ay P)1+U +U Uy + -+ U Uy - Uy, (2.17)

PnJrl

Proof. From formula (2.10),

Py = Z U,.

WES +1

For each k € {1,2,...,n+ 1}, define v, € S,,41 by
vy =e, Up=mTy - T Tfork=2...,n+1. (2.19)
Note that
v(1) =k, p(2) =1,...,(k) =k —1, and (i) =i fori=k+1,...,n+ 1.

Each permutation v € S, 41 can be uniquely represented as the product v = mr, where
7T € Sp41 is such that w(1) = 1. Therefore,

n+1

Sp1 = U{WVk|7T€Sn+17 1)=1},

k=1
which implies
P Z U,

V€S7L+l
n+1

- n+1lz Z U’””V

k=1 n€Sp41,m(1)=1

:nH'Z > U,

k=1 weSp41,7(1)=1

1 1 n+1
T+l (E 2(1)—1 UW) > U,

TESn41, T k=1
1 n+1
=—(1 P, U,
n-+1 (In @ ); .

23



1

n+1
:n—H(1H®P")(1+ZU”’“)

k=2

1 n
- (1x®P) (1 ,
o) (140

_ (1H®P)(1+§:U1U2---Uk>.

n+1 k=1
This implies (2.17). Formula (2.18) follows immediately from (2.17) by taking the adjoint

operator. 0

We will now consider several special cases of the tensor product .

2.3 Symmetric tensor product

Let U € L(H®?) be defined as follows
Uf®g=g® f. (2.20)
Lemma 2.22. U defined in (2.20) is self-adjoint and unitary operator.

Proof. We have

=(9® f,u®v)
= (g9, u)(f,v)
= (
= (

f®g,v®u)

This proves that U in (2.20) is self-adjoint.
Our aim is to show that U is unitary. Let (e;);en be an orthonormal basis in H, then
(e; ® €;)ijen is orthonormal in H®2. Therefore every f® can be written as
=y fPei@e, (2.21)
ij>1

f( . Then

and ||f(2)”2 - Zzy>1

= Z fl(f)ej ® e;

i,j>1
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- Z fJ(iQ)ei ® €4,

i,52>1
and so

[or@IF =3 152P = 1150

ij>1
It is clear that ker(U) = {0}. Since U is self-adjoint and the range of U is closed, this

implies ran(U) = H®?, which proves that U is unitary. O
Lemma 2.23. U defined in (2.20) satisfies the Yang—Bazter equation.

Proof. We have, for any f,g,h € H,

U1U2U1f®g®h= U1U29®f®h

=U1g@h®f
=h®g® f.
Similarly,
U2U1U2f ®gR h = U2U1f & h®g
=Uh®@ f®yg
=h®g® f.
This proves that U1U2U1 = UQUlUQ. ]

Definition 2.24. The corresponding tensor product ® in this case is denoted by ® is called

the symmetric tensor product. Thus,
HOm = {f™ e 1o | U f™ = fM Vi=1,...,n—1}.
Remark 2.25. If H = L*(X,0), then

HOM — {f(”) e L? (X”,U®") | Uf(") (1, e Ty, Tiy e o vy Ty)
= ™) (21,...,1,) Vi=1,...,n—1}
= {f(n) € LQ (Xn,(T@n) ‘ f(n)(xﬂ(l), - ,xw(n)) = f(n)(.iljl, - ,xn) V7 e Sn}
This implies that, for each 7 € S,,, fr1) O O fam)y =L O O fa.
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2.4 Antisymmetric tensor product
Let U € L(H®?) be defined as follows

Uf®g=—-9g® f. (2.22)
The fact that U defined in (2.22) is self-adjoint, unitary and satisfies the Yang—Baxter

equation follows immediately from Lemmas 2.22, 2.23.

Definition 2.26. The corresponding tensor product ® in this case is denoted by A is called

the antisymmetric tensor product. Thus,
H =L e HO | U™ = fM Vi =1,... n—1}.
Remark 2.27. If H = L*(X,0), then

H = {f € L2 (X", o) | U™ (21, ..., Tig1, Tiy -, )

= {f(n) crL? (Xn70'®n) | f(n)(xW(l)v e axw(n)) = Sgnﬂ-f(n)(xlu ce 7xn) NS S”}

This implies that, for each 7 € Sy, fra) A+ A fam) =sgnm fi A+ A fu.

2.5 (@-symmetric tensor product. Anyons

Let us recall some standard definitions.

Definition 2.28. A separable, completely mertizable topological space X is called a Polish
space.

Definition 2.29. A topological space X is called locally compact if every point x € X has

a compact neighbourhood.

Definition 2.30. Let X be a locally compact Polish space and let B(X) be the Borel o-
algebra on X. A measure o on (X, B(X)) is called a Radon measure if for each compact
set K C X, o(K) < oo. Furthermore, if for any z € X, o({z}) = 0, then o is called a

non-atomic measure.
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Ezample 2.31. Let X = R? which is a locally compact Polish space, and let B(R?) be the
Borel o-algebra on RY. Let o(dx) = dx be the Lebesgue measure on RY. It is well known

that the Lebesgue measure is non-atomic.

Let X be a locally compact Polish space and let ¢ be a non-atomic Radon measure
on (X, B(X)).

We define

0% = {(z,y) € X* |z # y},

ie,0® =X2\D, where D = {(z,2) € X? |z € X}. (D is the set of diagonal elements
in X2 and O@ is the set of off-diagonal elements in X?).
Lemma 2.32. We have 0%%(D) = 0, so that %% can be considered as a measure on O2).

Proof. By Fubini’s theorem,

(D) = [ xp(z.y)o(dx)o(dy)

| /X volz. y) o(dy) o(dz)
[ et otae)
o({z}) o(da)

0o(dx) = 0. O

I
—— S

We similarly define, for n > 3,
on = {(z1,...,20) € X" |w; £ xj il i #£ 5}

By Lemma 2.32, ¢®"(X"™\ O™) = 0, so that ¢®" can be considered as a measure on O™,

For each n > 2, we fix a symmetric set X € B(X") such that
XMW com oo xm\ XM =o. (2.23)

In particular, one can choose X ™ = O™,
Letting H = L?(X,0) (the L*space of complex-valued o-square integrable functions

on X), we have

H@n — L2(X(n),0_®n).
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Consider a measurable function Q : X® — C that satisfies, for all (z,y) € X®),

Qz,y) = Qy, z), (2.24)
Q(z,y)| = 1. (2.25)

Define U € £ (L* (X®,5%%)) by
(U (x,9) = Qz,y) [P (y, 2). (2.26)

Lemma 2.33. The linear operator U defined by (2.26) is self-adjoint and unitary.

Proof. We have, by (2.24),
(UF®,9%) 12 gony = /X o (UF9) (@,9)g®) @, y) o(dw) o(dy)
= | Qz.y)fP(y,2)g®(z,y) o(dz) o (dy)

X (2)

= Qy, z) [P (x,y)g? (y, ) o(dy) o (dx)

X2

= FO(2,9)Q(x, )9 (y, ) o(dy) o (dx)

X(©2)

= FO (2, y)Ug®(x,y) o(dy) o(dz)

X (2)

— (f(2)7 Ug(2))L2(X(2)70®2) )

Hence, U is self-adjoint. By (2.25),
10 oy = | 1@ P (w.0)F otdo) o)
_ / £, 2 o (dw) o (dy)
X(2)
~ [ Oyl o) oty
X (2)

- Hf HL?(X(Z ) ,0®2)

and
ker(U) = {f® € L* (X®,0%%) | Q(z,y) [P (y,2) = 0 0®-ac.}
={f® e > (X®,0%) | fO(y,2) =0 c%a.c.}
={f® e L?(X®,0%%) | fO(z,y) =0 0%%ae.} = {0}.
Hence, U is unitary. O
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Lemma 2.34. The operator U defined by (2.26) satisfies the Yang—Bazter equation (2.12).
Proof. Let f®) € L? (X®),6®%), then
(ULfP) (2,y,2) = Q(z,9) [Py, z, 2).

(UQUlf(3)) ($, Y, Z) = Q(ya Z)Q(f, Z)f(S)(Za ZL‘,y).
(UIUQUlf(3)) (C(],y, Z) = Q(C(I,y)@(l’, Z)Q(yv z)f(g)(zv y,ZE).

Similarly,
(U2fD) (2,9, 2) = Qy, 2) [Pz, 2, y).
(U2 f) (2,9, 2) = Qz,y)Q(x, 2) [P (y, 2, ).
(Ut Us f9)) (2,9, 2) = Qy, 2)Q(, 2)Q(z, y) fP) (2, y, ).
Therefore,
(LU D) (2,9, 2) = (UoUh U fP) (2,9, 2).
and this proves the lemma. O

Hence, using the operator U defined by (2.26), we can construct the corresponding

spaces H®™. We have

Yo — {f(n) c HEn | Uf(n) (T4, ey T, Ty T 1y -+ 5 Tp)
= Q(IEZ, .CIZ'iJrl)f(n)(.ﬁI?l, s L1, Ly 15, Ly Ljg25 - - - ,l‘n) VZ = 1, e — 1}
The following proposition is proved in [23].

Proposition 2.35 (Q-symmetrization formula). For each f™ € H®" n > 2, we have

1
Pnf(n) - E Z Qﬂ'(xla s 7:En)f(n)<x7r71(1)7 T ’xﬂ'il(n))’ (227)

" rES,

where for T € S,

Qr(x1,. .. ) = 11 Q(xi, ;). (2.28)

1<i<j<n, w(i)>m(j)

In particular, for any fi,..., f. € Hc, we have:

(i@ @ )@, m0) = % Y Qnlrs s xa) (fr) © - @ frim) (@150 ).

" TES,
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Let now X = R2. Consider

X ={(z,y) € X* |21 # i}, (2.29)

where 7 = (71, 73). Obviously, X® c O®. Let o(dx) = dz be the Lebesgue measure
on R%. Since dz = dz; dxs and the Lebesgue measure dz; on R is non-atomic, we have

fXQ\X(Q) drdy = 0. Fix ¢ € C such that |¢| = 1. Define

q, if T < Y1,
Qz,y) == (2.30)

67 if r1 > -

Such a choice of the function ) corresponds to the (Abelian) anyons.

2.6 Multicomponent quantum systems

Just as in Subsection 2.5, let X be a locally compact Polish space and let ¢ be a non-
atomic Radon measure on (X, B(X)). Let V be a separable complex Hilbert space, and let
B(V) be the Borel o-algebra on V. Let H = L? (X — V,0) be the L*space of V-valued
functions on X.

Note that this space is unitarily isomorphic to the tensor product L?(X,0) ® V. The
corresponding unitary isomorphism I : L? (X — V,0) — L*(X,0) ® V satisfies, for each
fel*X,o)and v € V, I(fv) = f ® v, where (fv)(z) = f(x)v. Below we will use both
realizations of H, depending on which one is more convenient for our current purpose.

For each n > 2, let X™ € B(X™) be as in (2.23). Then

HO = LX) — ver o) = L2(X™ 0¥ @ Vo

We fix a map C' : X@ — £(V®2) that satisfies

(i) for each (z,y) € X, C(x,y) is a unitary operator on V%2;
(ii) for each (z,y) € X@ C*(x,y) = O(y, ).
(iii) for each measurable function f® : X® — V®2 the map

X 3 (z,y) = Clz,y) fP(x,y) € V&2 (2.31)
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is measurable.
We define U € L(H®?) by
(UFD)(@,y) = Cla,y) [Py, x) for [P € H (2:32)

Remark 2.36. If V = C, then any linear operator on C®? = C is just an operator of
multiplication by a complex number, i.e., L(V®?) = £ (C). Hence in this case C is just
a measurable complex-valued function on X that satisfies |C(z,y)| = 1 and C(z,y) =

C(y,x). Hence, U is the operator from Subsection 2.5.
Lemma 2.37. The operator U defined by (2.32) is unitary and self-adjoint.

Proof. We prove first that U is an isometry. We have

10 s = [ 1€ £ )]} 0 )
= [ 1) oy
= [ b oo dy
= 1/ e

Furthermore, for each g® € H%®?, we have ¢® = Uf® where

fO@,y) = Clz,y)g? (y,2) = (Ug?)(z,y). (2.33)

Hence ran(U) = H®2. Thus, U is a unitary operator.
Furthermore, by (2.33), we have U~! = U. Since U is unitary, U* = U~!. Therefore,

U=U",ie., U is a self-adjoint operator. O]

Lemma 2.38. The operator U defined by (2.32) satisfies the Yang—Baxter equation (2.12)
if and only if the following equation holds on V3 for a.a (x,y,z) € X®):

Ci(z,y)Co(z, 2)C1(y, 2) = Ca(y, 2)Ci(x, 2)Co(x, y). (2.34)

)th

Here C;(-,-) denotes the operator C(-,-) acting on the i"™ and (i +1)" components of the

tensor product V3.
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Remark 2.39. Formula (2.34) is called the functional Yang—Baxter equation.

Proof. For any ¢® € L*(X®),6%%) and v® € V3, we have

Ui (9% @ o) (2,9, 2) = ¢¥(y, 2, 2)Cy (2, y) v,

UsUs (9% @ v®) (2,9, 2) = ¢P (2,2, y) Ca(y, 2) Ci (2, 2 )0,

U, U, Uy (g(B) ® 0(3)) (z,y,2) = ¢ (2, y,2)C1(z,y)Co(x, 2)Cy (y, 2)v,
Us (9% @ v®) (2,9, 2) = ¢ (z, 2,4)Cs (y, 2) v,

UUz (9% @ o) (2,9, 2) = g™ (y, 2, 2)Ci(2,y) Cs (w, 2) 0¥

UxUrUs (9% @ o) (2,9, 2) = g (2,9, 2)Caly, 2)Ci(x, 2)Ca (, y) v O

Now we will discuss two special cases of the operator U which is defined by (2.32).

2.6.1 Constant C

Let us assume that C'(z,y) = C is a constant operator. Hence, the operator C' must

satisfy C'= C* = C71, i.e.,, C is self-adjoint and unitary. Formula (2.34) now becomes
C1CyC1 = CyC1Cy, (2.35)

i.e., the operator C must satisfy the Yang-Baxter equation in V®3.

2.6.2 Non-Abelian Anyon Quantum Systems

Just as in the end of Section 2.5, we set X = R? and X? to be defined by (2.29). We will
now discuss a choice of the operator-valued function C' that determines a non-Abelian
anyon quantum system.

Let C be a unitary operator in V2 and define C' : X® — £(V®2) by the formula

Ca if T < Y1,
C(z,y) = (2.36)

Cc*, if x>y

Obviously C*(z,y) = C(y,z) and for each measurable function f® : X® — V&2 the

map (2.31) is measurable.
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Lemma 2.40. Let C : X® — L(V®2) be defined by (2.36). Then the functional Yang-
Baxter equation (2.34) is satisfied if and only if the operator C' satisfies the Yang—Bazter
equation (2.35) on V&3,

Proof. We need to consider 6 cases, taking (2.36) into account.
Case 1: ' < y' < z'. Equation (2.34) becomes (2.35).

Case 2: y' < ' < z'. Equation (2.34) becomes

Recall that, since C'is unitary, C* = C~!. Multiplying equality (2.37) by C; from the left
and by Cy from the right, we get CoC1Cy = C1C,C, which is (2.35).

Case 3: ' < 2! < y'. The equation (2.34) becomes
C1C,CF = C5CCs. (2.38)

Since since C is unitary, C* = C~!. Multiplying equality (2.38) by C} from the right and
by Cy from the left, we get CoCCy = C1C2CY, which is (2.35).

Case 4: y' < 2! < 2'. The equation (2.34) becomes
CiC5C1 = CLCCs. (2.39)

Multiplying equality (2.39) by C2C} from the left and by CyC} from the right, we get
010201 = 020102, which is (235)

Case 5: 2 < y' < x'. The equation (2.34) becomes
CrCICT = CLCICE. (2.40)

Take the adjoint of both sides of (2.40), we get C1CoCy = CyC1Cy, which is (2.35).

Case 6: z' < x' < y'. The equation (2.34) becomes
C1C5C7 = C5C1 O, (2.41)

Multiplying equality (2.41) by C1Cy from the right and by C,C5 from the left, we get
C1C'201 = 026102, which is (235) O
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Definition 2.41. For n € N, n > 2. A braid group B,, is defined as the group generated

by elements o1, 09, ..., 0, that satisfy the braid relations
0;0;410; = 0410041 if 4 € {1,2,...,71- ]_}, (242)
0,05 = 0,05 if ’Z —j| Z 2. (243)

Let V = C and recall Remark 2.36. As any operators of multiplication by a constant
on Vem+) — C20+l) — C commute, any constant ¢ € C with |¢q| = 1 determines an
Abelian anyon statistics.

Next assume that the Hilbert space V' is arbitrary, ¢ € C with |¢| = 1, and let C' = ¢id,
where id is the identity operator. It is clear that C' is a unitary operator. Furthermore,
we obviously have

_ 2
0i0;+1 = 0i+10; = (¢ id.

Therefore C' determines an Abelian anyon statistics.
We will now consider several examples of C' that determines a non-Abelian anyon

statistics.

2.6.3 Examples

We first consider the simplest case where non-Abelian anyon statistics are possible: V' =

C?. We assume that (ey, e3) is an orthonormal basis of V. Then V®? = C* and
(61 ®er,er ®eg, e ®er, ey ® 62)

is an orthonormal basis of V®2. In this basis, we will identify linear operators on V%4

with 4 X 4 matrices acting on column vectors.

FExample 2.42. Consider the operator C' given by the matrix

@ 0 0 0
o 0 e 0
o e o0 o0
00 0 g
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Here, ¢; € Cand |¢;| = 1,7 = 1,2,3,4. It is equivalent to

Cey ®er = qieg @ ey,
Cer ® ey = qzea D ey,
Cey @ e1 = qre1 ® ea,

Cey ® ey = quea ® eg.

It is obvious that C' is unitary.

Now we show that C' satisfies the Yang—Baxter equation (2.35). We see that
(€1®€1®€1, e1®e1®er, e1®exer, ea¥e1®er, ea®es®er, ea®e;®er, ea¥eser, €2®62®62)
is an orthonormal basis in V¥ = (C?)®. We obviously have

01020161 X €1 & €1 = 02010261 & €1 & €1 = q%el X €1 X €1,

01020162 X e ey = 02010262 ReRQe = qieg X e eq.
Furthermore,

Ci10:Ce1 ®ea ®ep = C10hq3e0 @ e @ e
= Ci3q1e2 ® €1 ® €
= (1G2q3€1 @ €2 @ e;.
CoC1Che; ® e @ 1 = CrC1gue; @ e ® ey
= Coq1q261 ® €1 @ €3
= q1q2q3€1 Q@ €2 ® e1 = C1CoC1€1 ® €3 ® €.
C105C ey ® 61 ® ey = C105q0e1 ® €9 Q ey
= C1qsq261 @ €2 @ €9
= (243q4€2 ¥ €1 & €.
CyC1Csey ® €1 ® e3 = CoC1g3e2 @ €a ® €
= C2quqzea ® €3 ® €3

= Q2@3que2 @ 61 ® ea = C1CC 169 ® €1 ® eq,
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and so forth.

The matrix C' determines a non-Abelian anyon statistics, i.e., C1Cy # C5C1. Indeed,

C10%e ey ®e; = C1qee; ® e ® ey = 1q2e1 D e @ e,

020161 (059 ()] X €1 = ng;gez X €1 X €1 = (143€2 X €1 X €1.

Let us now consider the special case where ¢; = k; € {—1,1}, q4 = ko € {—1,1},

g3 =q € (Ca |Q| = 17 and g2 = (ja i'e‘a

ki 0 0 0
0 0gq O
O — q
0 g0 0
000 k

In this case, we additionally have C' = C*. Hence, the operator U is determined by the

constant matrix C.

FExample 2.43. Consider the operator C' given by the matrix

0 0 0 g
|0 @00
0 0 ¢ 0
@ 0 0 0

Here, ¢; € C and |¢;| = 1, i = 1,2. It is equivalent to

Cep ® e = gaea @ e,
Cei ®ey = qre1 ® eg,
Cey ®ep = qieg ® ey,

Cey ® ey = goer @ ey.

Similarly to Example 2.42; C' is unitary and satisfies the Yang—Baxter equation (2.35).

Furthermore, the matrix C' determines a non-Abelian anyon statistics, i.e., C1Cy # CyC.
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Let us consider the special case where g =q € C, || =1 and k = ¢, € {—1,1}, i.e,,

o o O

0
k
0
0

o O O Qv

0
0
k
0
In this case, we additionally have C' = C*. Hence, the operator U is determined by the

constant matrix C.

FExample 2.44. This example will be crucial for the dissertation. It generalizes Exam-
ple 2.42 as follows. Let V' be a separable complex Hilbert space and let (e;);>1 be an
orthonormal basis in V. Then (e; ® €;);;>1 is an orthonormal basis in V®2. Fix an

arbitrary sequence of ¢;; € C such that |¢;;| = 1. Define C' € L(V®?) by
C@Z' & €; = i€y X e;. (244)

It is clear that C' is unitary. We state that C satisfies the Yang—Baxter equation (2.35).

Indeed, for any 7, j, k > 1, we have

C1CyCe; ®ej @ e = qi;C102¢; R €; @ ey,
= q;;qiCre; ® e, ® ¢;
= Qij%ikqjker Q € & €,

CyC1C%¢; ® e ® e, = qjrC2C1e; R e @ €
= qjkqinCaer ® €; D €;
= qjkqikqijer @ €j & €;.

If ¢;; = Gji, in particular ¢; = k; € {—1,1}, then C = C*.
Next,

Cngei & €; X e = q5kqikCrk R e; K €5,

CyChe; ® e; @ e = ¢ijqire; X ex @ €.
Hence, C' is non-Abelian for any choice of ¢;; if the dimension of V' is > 2.
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FExample 2.45. Let S be a locally compact Polish space and let v be a Radon measure

on S. Define V = L?(S,v). Consider a function ¢ : S* — C such that |¢(s,t)] = 1 and

q(s,t) = q(t, s) for all (s,t) € S?. Define C': V¥ — V2 by

(Co) (s,t) = q(s, t)e(t, 5). (2.45)
By Lemma 2.34, the operator C satisfies the Yang—Baxter equation (2.35). Moreover

C1Csp(s,t,u) = Cq(t, u)p(s, u,t)
— 4(s, D)als, u)p(t,u s),
CoChp(s,t,u) = Caq(s, t)p(t, s,u)
= q(t,u)q(s, u)e(u, s,t).
Hence, if the measure v is not concentrated at a single point (i.e., if V is not one-
dimensional), we obtain C1Cy # C5C, and so C' is non-Abelian.

Consider the special case where the set S is discrete, i.e., S = {s;};>1 and v is the

counting measure, i.e., v ({s;});5, = 1 for all i. Define

1, ift:Si,

€Z(t> =
0, otherwise .

Then (e;);>1 is an orthonormal basis of V. If we denote
qij = q(ss, Sj),

then this example becomes Example 2.44.

2.7 Creation operators on the U-deformed Fock space

Let H be complex separable Hilbert space and let an operator U € L(H®?) be as in
Subsection 2.2.2, i.e., U is unitary, self-adjoint and satisfies the Yang—Baxter equation

(2.12).
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Definition 2.46. We define the U-deformed Fock space over H by
F(H) = Fu(H). (2.46)
n=0

Here Fyo(H) := C and for n € N, F,(H) := H*"nl, i.e., F,(H) coinsides with H*" as a
set and Hf(")Hgsn(H) = || f™|13,6. n! for each f™ € H*".

The vector 2 = (1,0,0,...) is called the vacuum.

Definition 2.47. We denote by Fg,(H) the subspace of F(#H) that consists of all finite
sequences f = (f(o),f(l),...,f("),0,0,0,...) with f@ € Fi(H) and n € N. We equip
Fin(H) with the topology of the topological direct sum of the F™(H) spaces.

Thus, the convergence of a sequence in Fg,(H) means a uniform finiteness of the
elements of the sequence and the coordinate-wise convergence of non-zero coordinates.

We denote by L (Fan(H)) the space of all continuous linear operators on Fgy, (H).

Definition 2.48. Let h € H. We define a creation operator a™(h) as the linear operator
on Fun(H) given by

at(h)Q) = h,
at(h)f™ =he f, e F(H). (2.47)
Lemma 2.49. For each h € H, at(h) € L(Fun(H)).

Proof. Since a*(h) maps each F,,(#H) into F,,+1(H) it is sufficient to prove that a™(h) is

bounded as a linear operator from F,(#) into F,,+1(#). For n = 0, we obviously have
la* (h) f PNl 760 = 1Bl | fOl, - f© € Fo(H) =C,
and for each f™ € F,(H), n € N,

™ (B) f | 30y = [la™ (R) F]
= HPn+1(h ® f(n))HH®(n+1> (n + 1)!
<[h® f(n)||y®(n+1> (n+1)!

= [|Allll f ™ lpeen /(0 + 1)!

HE(n+1) (n + 1)'
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= [|Rll3ll £ s/ (0 + 1)!
= [1ellacllf 7 )V + T

Therefore,

la* (M)l 2mu) Fur)) < NIAllVn+1. O

Definition 2.50. Let ¢® € H®2. We define a double creation operator at*(g®) as the

linear operator on Fyg,(H) given by

T (g?) Q= Pyg®, (2.48)
a™t (g?) [ = Pois (9P @ f) = (Pg®) @ f™, ™ € Fo(H), neN. (2.49)

Lemma 2.51. For each ¢ € H®? , at*(¢?) € L(Fau(H)).

Proof. Similar to the proof of Lemma 2.49. We only note that

& (G ezt Frsary) < [ P2gP|lgs2y/(n + 1) (n +2) . (2.50)

If g, h € H, we obviously have
at(g)at(h) =a*(g®h). (2.51)

Furthermore, we have the following

Lemma 2.52. Let (e;);>1 be an orthonormal basis in H. Then, for any g? € H®?,
att (9@) = Y (9P, e ® e e a*(er)a (e)). (2.52)
ij>1

For each n > 0, the series on the right-hand side of formula (2.52) converges in the norm

of the space L(F,(H), Frni2(H)).

Proof. We first note that formula (2.50) implies

la** (D) er, 007200y < 9P llae2 /(0 + 1) (0 +2).
From here and (2.51), the statement follows. O
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Proposition 2.53. (i) Let ¢® € H®%. We have a™(¢g¥) = 0 if and only if Ug® =

—g?, i.e., the function ¢® is —U-symmetric.

(ii) For each g'¥ € H®2,
a*(g?) = a*t (Ug?). (2.53)
In particular, for any g, h € H we obtain
at(g)at(h) =a*tT (Ug®h), (2.54)
which is called the commutation relation between creation operators.

Proof. (i) We first state that a*+(g®) = 0 if and only if P,g® = 0. Indeed, if P,g® =0,
then, by (2.48) and (2.49), a™(¢g®) = 0. If P,g® # 0, then, by (2.48), a**(¢®)Q =
Pyg® # 0.

Since P, = 1(1 4 U), we have P»g® = 0 if and only if Ug® = —g¢®.

(ii) Consider Ry := (1 —U), which is the orthogonal projection of H®? onto the space
of —U-symmetric functions. Then, by part (i), for each ¢ € H®2, at*(Ry9®) = 0. By
linearity, this implies (2.53). From here and (2.51), formula (2.54) follows. O

FExample 2.54. Let U = 1 be the identity operator. In this case, ® is the usual tensor
product ®, and the corresponding Fock space is the full Fock space. For future purposes,
it will be convenient for us to denote this space by F(H) = @, F,.(H), where F,,(H) :=
H®"n!l. The subspace of F(H) consisting of ‘finite vectors’ will be denoted by Fg,(H).
The corresponding creation operators are called free creation operators. We will denote
these operators by af (k). In particular, af (k) maps Fg,(H) into itself. Equality

(2.53) becomes now trivial, so there are no commutation relations between free creation

operators.

FEzxample 2.55. In the case of the symmetric tensor product, we get Ug®h = h®g. Hence,
by (2.54),

Example 2.56. In the case of the antisymmetric tensor product, we get Ug @ h = —h® g.
Hence, by (2.54),



FExample 2.57. Recall the Q)-symmetric tensor product discussed in Section 2.5. In par-

ticular, H = L*(X,0), Q : X® — C and
(UF?) (z,y) = Qz,y) fP(y, ).
We formally introduce creation operators a™*(z) at points x € X that satisfy
at(h) = /X h(z)a™(z)o(dx), heH. (2.55)
In view of Lemma 2.52, we then formally write

a*tt(g?) = / 9% (@, y)a* (@)a* (y)o(dz)o(dy), g% € H*. (2.56)
X2
Our aim is to find the commutation relation between a™*(z) and a*(y). We have

att (9(2)) _ (Ug(z)) 7

(Ug?) (z,y)a* (x)a" (y)o(dx)o(dy),

2

Q(z,9)g® (y, x)a™ (x)a™ (y)o(dx)o(dy),

2

9P(z,y)Qy, x)a™ (y)a™ (x)o(dz)o(dy). (2.57)

2

|
S

I
—

Hence, by (2.56) and (2.57), we get the formal commutation relation

a*(z)a™(y) = Qy, x)a™ (y)a™ (z). (2.58)

FExample 2.58. Let S be a locally compact Polish space and let v be a Radon measure
on S. Let V = L*(S,v) be the complex L2-space on S with respect to the measure
v. In particular, V' is a separable Hilbert space. With this space V let us consider
the multicomponent quantum systems discussed in Subsection 2.6. In particular, X is a

locally compact Polish space, o is a non-atomic Radon measure on X and
H=L*X—=V,0)=L*X,0)®V =L*(X,0)® L*(S,v) = L*(X x S,0 ®v).

Hence,

7_[®2 — L2((X x 5)2’ (O’ ® y)®2) — L2(X(2) > 5270®2 ® V®2)_
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Recall the map C : X® — £(V®2) from Subsection 2.6. In particular, for each (x,y) €
X®  C(x,y) is a unitary operator in V®? = L2(52 v®2). We will assume that C(x,y) is
an integral operator with integral kernel C'(z,y, s, t, u, v),
(Clz,9)®) (s,t) = | Cla,y,5,t,u,0) P (u, v) v(du) v(dv) (2.59)
S2
for 2 € L?(S? v®?).
Remark 2.59. We note that the above assumptions on the structure of the vector space
V" and the form of the operators C(x,y) do not essentially lead us to a loss of generality.
Indeed, let V' be a general separable Hilbert space. If V' is finite-dimensional, choose
S ={1,2,...,n}, where n is the dimension of V', and if V is infinite dimensional, choose
V' = N. Let v be the counting measure on S. Fix an arbitrary orthonormal basis (e;);cs
in V. Construct the unitary operator I : V' — L?(S, v) that satisfies Ie; = §;, where
1, ifu=1,
0i(u) =
0, otherwise.

Let C € L(V®?%). Define € € L(L*(S,v)) by € = [®2C(I®?)~!. Then & is an integral
operator with integral kernel €(s, ¢, u,v), where €(s,t,u,v) is the matrix of the operator
C' in the orthonormal basis (e; ® €;); jes-

However, sometimes one can use V = L?(S,v) where S is a continuum, for example,
S = R and v(ds) = ds. In that case, one typically can only think of (2.59) only as an
informal equality. Still such an informal interpretation of the operators C(z,y) would be

useful.

By (2.32) and (2.59), for ¢» € H®? we have

(Ug?) (z,y,5.t) = (C(x,1) 9P (y,x,-,-)) (s,1)

— | Clw,y,s,t,u,0) 9 (.2, u,0) v(du) v(dv). (2.60)
S2

Similarly to Example 2.57, formula (2.55), we define creation operators a™(z,s) at

points (x,s) € X x S so that, for each h € H,
at(h) = / h(z,s)a*(z,s)o(dx) v(ds).
XxS
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Then, similarly to (2.56), for each g € H®?,

att (9(2)) = /X2 . g(Q)(a:,y, s,t)a"(z,s)a’ (y,t) o(dz) o(dy) v(ds) v(dt). (2.61)

Now, we aim to find out the commutation relation between a™(z,s) and a*t(y,t).

Indeed, we have
att (9(2)) — gt (Ug(z))

= (Ug?) (z,y,8,t)a"(z,5) a™(y,t) o(dx) o (dy) v(ds) v(dt),

X2xS82

/ (g, 5,60, 0)gP (g, 7, u,0) a* (x, 5) a* (1)
X2x54

x o(dx) o(dy) v(du) v(dv) v(ds) v(dt).
Swapping the variables x <+ y, s <> u, t <> v, we get
att (g(z)) :/ Cly,z,u,v,5,t)gP (x,y,s,t) a™(y,u) a™(x,v)
X2x54
x o(dz) o(dy) v(du) v(dv) v(ds) v(dt)
— / gD (z,y,s,1) < Cly,z,u,v,s,t)a” (y,u) a*(x,v) v(du) V(dv))
X2x$? 52
x o(dz) o(dy) v(ds) v(dt). (2.62)
By (2.61) and (2.62),
at(z,s)at(y,t) = /52 Cly,z,u,v,s,t)at (y,u)at (z,v) v(du) v(dv). (2.63)

For a fixed z € X, let us formally think of a™(z) = a™(x,-) as an operator-valued

function on S. Furthermore, we formally denote, for fixed x,y € X,

(a+(x) ® a+(y)) (s,t) == a™(x,s)a™(y,1).

Thus, a*(z) ® a™(y) is an operator-valued function on S%. By (2.63),
(af(z)®a*(y)) (s,t) = /52 Cly,z,u,v,5,t) (a*(y) ® a*(z)) (u,v) v(du) v(dv). (2.64)
If K € L(V®?), then the transposed operator of K, denoted by K7, is defined by
/S (o) (s, 0005, 1) v(ds) () = /5 (s, 1) (KT (5,) v{ds) ().
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for any @ 2 € V®2 If K is an integral operator with integral kernel K(s,t,u,v),
then K7 is an integral operator with integral kernel K (u,v, s, ).

Then, we formally have

(C’T(y,x)a+(y) ® a+(a:)) (s,t) = / C(y,x,u,v,s,t) (a+(w) ® a+(y)) (u,v) v(du) v(dv).

S2
(2.65)
Now, by (2.64) and (2.65), we obtain the formal commutation relation
at(z) @ a*(y) = C" (y,2)a* (y) @ a* (). (2.66)

In the case of Abelian anyons, the space V' is one dimensional, equivalently, V' = {x},
v({z}) = 1. Then Q" (y,z) = Q(y,z) and so the commutation relation (2.66) becomes
the commutation relation (2.58).

In the case of non-Abelian anyons, the operators C(x,y) are given by (2.36). We
formally think of C' as an integral operator with integral kernel C'(s,t,u,v). Then C* has

an integral kernel m Therefore, if 1 > y;, we obtain
a* () @a’(y) = (C") a*(y) @ a™(x).
The operator (C*)” has integral kernel C(s, ¢, u,v). This implies
a*(z,s)a"(y,t) = / C(s.t,u,v)a* (y,u) a* (z,0) v(du) v(dv).

SQ

Similarly, if x1 < y;,

at(z,s)a’ (y,t) = / Clu,v,s,t)at(y,u)a®(z,v) v(du) v(dv).
5‘2

2.8 Annihilation operators on the U-deformed Fock
space

We make the same assumptions as in Section 2.7.

We now fix an operator J : H — H that satisfies the following assumptions:

e J is antilinear, i.e., for any f,g € H and a,b € C, J(af +bg) = aJf + bJg;
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e J is an involution, i.e., J? = 1;

e for any f,g € H,

For each h € H, we define an annihilation operator a™ (h) : Fun(H) — Fan(H) by

a”(h) = a" (Jh)" [ 7,00 - (2.67)

Here a™(Jh)* is the adjoint of the operator a®(Jh) in F(H).

Let us now show that the above definition indeed makes sense and find the explicit
form of the action of the annihilation operator a~(h). We start with the easy case where
U = 1 and the corresponding Fock space is the full (also called free) Fock space, F(H), see
Example 2.54. Analogously to free creation operators, we now call annihilation operators

free annihilation operators and denote them by ag. (h).

For any f"=V ¢»=b ¢ #®M=1 and h,u € H, we have

(oM™ u @ f " Npay = (@ "V, u@ fOD)yen n!
= (h,Wu(g" ", f" ) pemn 0l
= n(h,w)(g" ", FO Dray

= (g" ", n(u, Jh)w f" ey
Hence the operator ag . (h) : Fan(H) — Fan(#H) is well defined and
e (M) (u @ fO7D) = n(u, Thyy fO7. (2.68)

We now consider the case of a general operator U and the corresponding U-deformed

Fock space F(H). For any h € H, g~V € H®=Y and f™ € 1,

h@ g™V, M) enn!

(a*(h)g™ Y, f™) 20 = (
= (Pu(h® g V), f™)yennl
= (
=

h@ gD, fM)enn!

a’free( ) (= 1)7f(n))7'l®"n'
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= (9", e (JR) )00 (n = 1)L (2.69)

We state that ap, (Jh)f™ € H®"D. Indeed, let u®V € HEC=D and gn-Y =

P,_1u™ Y. Then, similarly to (2.69), we calculate, by using Proposition 2.19,

(a*(n)g™ Y, f™) 20y =

= (", e (JR) F) o0 (n = 1)L (2.70)
By (2.69) and (2.70)

(g(n71)7 af;ee(Jh)f(n))H®("_1) = (P”—lu(n71)7 af;ee<Jh)f(n))H®(”_1)
= ("™ P, yago, (Jh) F™) g0m-1. (2.71)

Since (2.71) holds for all u"=1 € HE"=1 we get
af_ree(Jh)f(n) = n—lagee(‘]h)f(n)’

and so ag,,(Jh)f™ € HEm=D,
Now, by (2.69),

(@ (h)g™ ™, F™) ran = (97, agee (JR) £ ) g0 (0 — 1))
= (9", e (JR) F7) 720y

Proposition 2.60. (i) For each h € H, the annihilation operator a~(h) : Fun(H) —
Fin(H) is well-defined and acts as follows: for each f™ € H*®,

a” (W) f"™ = ag. (h) f", (2.72)

where the free annihilation operator ag  (h) : Fan(H) — Fan(H) is given by (2.68).

(ii) For each u™ € H®",
1
a” (h)Pu'™ = - oo (D) Ay @ Py )1+ Uy + U Uy + -+ + U Us -+ Uy oy u™  (2.73)
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1
= E n—1 af_ree(h) [1 + U1 + U1U2 4+ U1U2 cee Unfl] U(n) (274)

In particular, for any fi,..., f. € H,

a(h)(fi®---® f)

1
:ﬁnﬂggmu+m+m%+m+mw~ﬂmﬁﬁ®m®h) (2.75)

Proof. Statement (i) is already proved. Formula (2.73) follows from (i) and Proposi-
tion 2.21. Formula (2.74) follows from (2.73) and the obvious formula

af;ee(h> (17{ X Pn—l) = Pn—laf;ee(h) on H@n'

We show now examples.

FExample 2.61. Recall that in the symmetric tensor product, U is given by
Uf©g=g®f (2.76)

We have

U0z Upa(1®@ fo@ @ fa) =i ® i@ 2@+ ® fim1 @ i1 @ -+ @ fin.
Then

1P, 1) 1+Ui+U U+ +UUy - Uyt iR 2R @ [

=h®fH@ @f)+LOHOL® @ f)+ +fu® (1@ ® fa).

Thus, by formula (2.75),
a~(hfi®f®-- @ f

=(f,Jh)ufo®fs® - @ fo+ (fo,/ W) ufr® fs3@---® f,
+ - (fm‘]h)?{fl ®f2 ®--® fnfl

n

=Y (fudh)y i@ @ ®f; @ ® fo,
i=1

where f; denotes the absence of f;.
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FExample 2.62. Recall that, for the antisymmetric tensor product, U is given by
Uf®g=-g® /[ (2.77)

Similar to the Example 2.61, by using Proposition 2.60, we obtain

n

W@ fo®®fo=) (V)T (fi )y @ fo@®-® i@ ® f

i=1
Ezample 2.63. Let H = L?(X,0) where X and o are as in Section 2.5. Recall that, for
the @-symmetric tensor product, the operator U is given by

(UfP) (z,y) = Qz,y) fP(y, 2).

Now, we need to find the formula for a=(h). For k € {1,2...,n — 1}, we have

(Uef™) (w1, w0) = Qak, 1) f (@1, Tht, Thgt, Ty Tz -5 Tn)
(Up—1 Ui f™) (21, ..., 2)

= Q(wp_1, 71)Q (211, Ik+1)f(n)(x1, e T2y Thy T 1y The1, Thy2, - - - > Tn)s
(kaZkalka(n) (5171, cen ,5Un) = Q(l’kq, 901671)@(1’1{72, xk)Q(-kak $k+1)

X f(n)(%, ey T3y L1, Thy Tha1s T2y Tht 2y -+ - )-

Continuing similarly, we obtain
(UhUy--- ka(n)) (@1, wn) = Q21, 22)Q(21, 23) - Q(21, Tpet1)
X f(n)<x27 X3y oo s Tht1y L1y T2y - - - 7xn>,
which we may write in the form
(U Uy -+ Uef™) (y, 1, - wn1) = Q(y, 20)Q(y, w2) -+ - Q(y, )
X f(n)<I17"'7'rk7yaxk+17"‘7xn—l)7 (278)
Therefore, by formula (2.74), we have
(a_<h)f(n)) (xlwx?a e axn71>

= I'pn—1 (/ U(dy) h(y) |:f(n) (ya L1, L2y ... 7xn—1)
X
n—1
+ Z Q(y7 ZEl)Q(y, IQ) e Q(ya xk)f(n)(xh ey Ty Yy Tt 1y - - 7xn—1):| ) (279)
k=1
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We next consider a multicomponent quantum system.

Theorem 2.64. Consider a multicomponent quantum system as in FExample 2.58, and
(at least formally) we think think of C(z,y) as an integral operator with integral kernel
C(z,y,s,t,u,v), see (2.59). Then, for each h € H,

G_(h)f(n)<$1, w3 Tp—1,81y -+ Sn—l)

_ n_l(/xa(dy)/sy(dt)h(y,t) [fm)(y,xl,...,xn_l,t,sl,...,sn_1>
+Z/

52k 3

k+1 k—1 k

/ !/ !/
HV duz V )C(yaxlvta Slaulau2)(Hc<y7‘rlaulasl7ulaul+1))
=2 1—2

n
X f( )(:L‘h sy Ty Yy Thet1s - - - s Tn—1,1, U1, Usg, . .. y Uk+1y Sk+15 Sk+25 -+ - Sn—l):|)-

Proof. We first consider the simplified setting. So we consider the Hilbert space G =
L*(S,v), and let U be an operator in G®* = L* (52 1v®?) defined by

(L{g@)) (s,t) = / C(s,t,u,v) g (u,v) v(du) v(dv). (2.80)
S2
Lemma 2.65. For any g™ € G®" and k € {1,2,. — 1}, we have

Uty - Upg™) (51,82, .., 50)

k+1 k

v(du;) | | v(du))
-/ [[ v [Tt
S2k j=2

k
/ / / n
x C(s1, S, U1, ub) (HC(ul, sl+1,ul,ul+1))g( wy, U, - o U1, Skt2y - - -5 Sn)-
1=2

(2.81)
Proof. We have
(ukg(n)) (817 892, Sn)
= / v(dug)v(dugy1)C (S Skt Uiy Uar1) 9™ (815 -+ Sk 1y Wey Upet 15 Skr2s - - - 5 Sn)
5‘2

(uk—lz/{kg(n)) (817 59, .. 7Sn)
= / v(dug_1)v(dug)v(dug 1 )v(duy,)C(Sk_1, Sk, Ug—1, Uy )C (U, Ska1, Uk, Ups1)
S4
X g(n) (51, ey SE—2, Uk—1, Uk, Uky1,y Sk4+2,y - - - ,Sn) ,

20



(uk—2uk—1ukg(n)) (51,52, ..,5n)

= /56 v(dug—o)v(dug_1)v(dug)v(dugq )v(duy,_ )v(duy,)

X C(Sk—Qa Sk—1, Uk—2, u;c—l)0<u;g—1v Sk, Uk—1, U;)C(U;C, Sk+1, Uk, uk+1)

X g(n) (817 vy SEp—3, Uk—2, Uk—1, Uk, Uk+1, Sk+2y - - - 78n) .
Continuing similarly, we get (2.82). O

We now rewrite formula (2.82) as follows:

k+1 k
Uhlly - -Ug™) (£, 51, 50r) = / T vt [T i)
) j=2

k
X C(t7 51, U1, Ué) (H C(uga Si, Ui, U;+1))g(n)<u1’ U2y e vy Ukt 1y Sk+15y - - - 7871—1)- (282)
=2

Lemma 2.66. For any f™ € H®™ and k € {1,2,...,n — 1}, we have
(U1U2 cee ka(n)> (y,iCl, ey L1, t, S1y... ,Snfl)
k
= C(yaxluta Sl,ul,’u,g)(HC(y,CCl,UE,Sl,Ul,UEJrl))

=2

n
x ft )(:131,...,xk,y,xk+1,...,xn_l,t,ul,ug,...,uk+1,sk+1,sk+2,...,sn_l). (2.83)

Proof. Formula (2.83) is obtained by combining the arguments used to prove formula
(2.79) in the case of the @-symmetric tensor product and the arguments used to prove

formula (2.82). O

Finally, the statement of the Theorem 2.64 follows from Proposition 2.60 and Lemma 2.66.
O

Similarly to Definition 2.50, we will now introduce a double annihilation operator. We
start with the free case, where U = 1. Then we have the free Fock space F(#) and the
subspace of F(#) consisting of finite vectors, Fg, (H).

Let J be antilinear involution in H such that (Jf, Jg)y = (g, f) for any f,g € H.

Then J can be extended to an antilinear involution in H®? such that

J(feg) =) e(Jg)
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Next, we define a continuous antilinear operator S : H®? — H®? satisfying

Sfeg=Jgef)=(Jg)&(Jf) (2.84)

Note that S is an involution on H®?, i.e., S? = 1.
Definition 2.67. Let g» € H®2. The free double annihilation operator a;. (g'?) €

L(Fgn(H)) is defined by

af_re_e (9(2)) = afree (Sg ) r]Fﬁn(""t) ' (285)

Remark 2.68. The fact that formula (2.85) indeed defines an operator from L(Fg,(H))

follows immediately from Lemma 2.51.

Proposition 2.69. For any g,h € H, we have

Ugree(9 @ D) = pye(9) Apyee (B)- (2.86)

Proof. By (2.51), (2.84), and (2.85), we get

Upee(9 ® 1) = ail, (S (g ® 1) Teg,0)

= oo (JR) @ (J9))" T#gnir)
= (aee(T1)a5ee(9)) " Tog 0
= Appee(J9) e (TR)" Trgn (30

= af_ree (g)af_ree(h’)‘ D

Proposition 2.70. For any u®,g® € H®? and f™ € H®", we have

Orree (9%) (u® @ F) = (n+2)(n +1) (u®,Sg) 0, S (2.87)

Proof. Let h™ € H®". Then

(a;:g (g( )) ™ u® f(n))F( 0= 2 KM 4@ g f(n))H®(n+2) (n+2)!
9‘2% ) pyen (B, F) o (0 +2)(n+ 1
9%, u®) 0 (B, F )y (0 +2)(n+ 1)

h(”), (n+2)(n+1) (u( ),9( ))He@z f n))F(H) :

Af\f\/‘\
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This implies that

atd (9P) (W@ @ f™) = (n+2)(n +1) (u®, g@), ., .

Thus,

Ufroe (9(2)) (u(2) ® f(")) =n+2)(n+1) (u@), Sg(Q))M@)2 ), 0

Proposition 2.71. Let (e;);>1 be an orthonormal basis in H. Then, for any g? e H®?,
Giee (97) = D (9, €1 @ € e2 g (€0) e ). (2.:88)
ij>1
For each n > 0, the series on the right-hand side of formula (2.106) converges in the
norm of the space L (F1o(H), Fp(H)).

Proof. Let u® € H®2 and f™ € H®". By Propositions 2.69 and 2.70, we have

Z (9(2)7 € & ej)H‘X’Q a’f_ree(ei)af_ree(ej)(u(z) ® f(n))

i,j>1

- Z 6’ ® eJ H®2 afree(ez ® 6])(U(2) ® f(n))

7,7>1
=(n+2)(n+1) Z (9%, ei ®€j),00 (U, Se; @ €)) 0 [T
4,7>1
=(n+2)(n+1) ( @8> (9P ei@¢ H®2€i®€j> A
i,7>1 H®2

= (n+2)(n+1) (u?,5¢?), ., f

= Qe (9(2)) (U(Q) ® f(")) )

The statement of the proposition about the convergence follows immediately from the

observation

e @) | 2 iamai) = V(0 +2) (0 + 1) [|gPe2. O

We now proceed to consider the general case.

Definition 2.72. In the general case, we define, for each ¢ € H®?,

**(9(2)) —att (Sg(z))* | Fan () -
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Proposition 2.73. For any f™ € H®*" and ¢® € H®?,

o™ (9%) f7 = agee (97) £ (2.89)
Proof. By (2.49) and (2.85), we have for h("=2) ¢ H#("=2),

(a™* (Sg?) hln=2 ftv)y P, ((8g®) @ A=) f™), .. n!
(8) © 00, 7).
agt (Sg(g)) (n=2) f )

=
=
=
= (ofec (8 9(2)) P e
= (!
= (1
= (1

F(H)

Thus
T (9P) 17 = Passagg (97) 1. (2.90)

Now, our aim is to get rid of P,_5. By Proposition 2.60. (i) and by Proposition 2.71,

af_re_e (9(2)) f(n) = Z (g(Q)’ € & ej)H®2 af_ree(ei)af_ree<€j)f(n)

ij>1
= Z (9%, e; @ ej)ne2 a(e;)a(e;) f™. (2.91)
ij>1
Since a”(e;)a™(e;) f™ € H®™=2) | then the whole expression on the right hand-side of
the equality (2.91) is in H®"~2?). Therefore,

Upoe (9(2)) f(") =P, sa;., (9(2)) f(")7
and this proves (2.89). O

Below, for an operator A € L(H®?), we define an operator Ac L(H®?) by

A= SAS.
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Proposition 2.74. (i) Let g® € H®2. We have a=~ (¢?) = 0 if and only if —Ug® =
9@, i.e., the function ¢® is —U symmetric.

(ii) For each g® € H®2,
a (9(2)) =a (ﬁg(2)> : (2.92)
Proof. (i) By Proposition 2.53 (i), we have

a ~ (g(2)) =at" (Sg@))* =0 < a™* (89(2)) =0 & —US¢g? =S¢?

o —SUSI? = ¢@ o [y = ¢,
(ii) By Proposition 2.53 (ii), we have

o (9P) =a™ (S¢®) Ir.00

=a = ((//\'g(2)> . O

Example 2.75. Consider the ()-symmetric tensor product discussed in Section 2.5. In

particular, H = L*(X,0), Q : X® — C and
(UF?) (2.y) = Q) [P (y, ).
In this case, the operator S acts as follows:
(SN (x,y) = fO(y,x), [P eH™ (2.93)

Hence,
(USf)(z,y) = Qz,y) fP(x,y),

and so

(UfD)(z,y) = (SUSF?)(z,y) = Qy, ) fP(y, )
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Therefore U = U.
Hence, similarly to (2.58), we get

a (v)a (y) = Q(y, x)a” (y)a (z). (2.94)

FExample 2.76. Consider the multicomponent quantum system discussed in Section 2.6. In
particular, the operator U is given by formula (2.32). Let us find the operator U = SUS.
For any f,g € H=L?(X — V,0), we have

(f®@g)(z,y) = f(r) @ g(y).

By (2.84),

(Sf®g)(z,y) = ((Jg) @ (Jf)) (z,y)

= (Jg(x)) @ (Jf(y))- (2.95)

Define an antilinear operator Sys2 : V&2 — V®2 by
Sye2u®@v = (Jv)® (Ju), wu,veV. (2.96)

Further, we define a linear operator E : H®? — H®? by
ES?) (2,9) = fPy2),  [@eH. (2.97)

Then, by (2.95)-(2.97), we have
S — ESye» = Syes E.

Therefore,
U = Sye: EUESye:.
Note that
(Uf®) (z,y) = Cla,y) E fO(z,y). (2.98)
Hence, for f?) e H®?

~

(TFP)(2,y) = Sve2 EC(a,y) EE Syez [P (x,y)
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= Sye2 EC(z,y) Syez fP(z,y)
= Sv®2 C(y, Q?) Sv®2 f(2) (y, :C) (299)

For a linear operator A € £ (V®?), we define A = Syes ASyes. Then, by (2.99)
(TfD)(2,y) = Cly, x) Dy, z). (2.100)

Let now V = £?(S,v) and the operator C(z,y) be as in Example 2.58, in particular,
(2.59) holds. Let us find the operator U in this case.

To this end, let us assume that A € £ (V®?) is an integral operator, i.e.,

(A 90(2)) (s,t) = /52 A(s, t,u,0)p® (u, v)v(du)v(dv).

Since
(SV®2 QO(2)) (87 t) = 90(2) (tu 8)7
we have
(ASyez o) (s,1) = /52 A(s, t,u,0)0@ (v, u)v(du)v(dv).
Hence,

~

(Ap®)(s,t) = [ A(t, s,u,0)p@ (v, u)v(du)v(dv)

2

A(t, s, u,0)p@ (v, u)v(du)v(dv)

2

A(t, s, v, 1) (u, v)v(du)v(dv).

2

I
— — o

Thus, the integral kernel of Alis
A(s,t,u,v) = A(t, s, v, u). (2.101)
By (2.100) and (2.101),

(Uf( {L‘ Y, Sat y: L, S, t,U,U)f(Q)(y,l', u7v)y(du)y(dv)

2

Cly,x,t,5,0,u) fP(y, z,u,v)v(du)v(dv). (2.102)

2

m\m\
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Remark 2.77. Since C(y,z) = C*(z,y), formula (2.102) implies that

(ﬁf(”(y,x,s,t)) —/ Clx,y,v,u,t,s) [Py, z,u,v)v(du)v(dv). (2.103)
SQ

Now, we will derive the commutation relation between o~ (z,s) and a~(y,t) analo-

gously to the commutation relation between a™(z,s) and a™(y,t). We have

a (f(2)) _ /X2X52 f(2)(x7y)a_(m) ® a” (y)o(dz)o(dy), (2.104)

and by (2.100),

a”(z) ®a(y) = C"(z,y)a” (y) © a (). (2.105)

2.9 Commutation between creation and annihilation
operators

We will now find the commutation relations between a~(h) and a™(g).

Definition 2.78. Let (e;);>1 be an orthonormal basis in . Then, for any ¢ € H®? we
define af . (9®) on Fg,(H) by

Ao (97) =D (9% 6 ® €5) 02 Ao (€1) e (€5)- (2.106)

ij>1
Remark 2.79. As we will see from Proposition 2.80 below, the definition of a; (9(2)) does

not depend on the choice of an orthonormal basis (e;);>;.
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Proposition 2.80. For each n > 1, the series on the right-hand side of formula (2.106)
converges in the norm of the space L (F,(H)). Furthermore, for any g,h € H

a’;e_e (g ® h) = a?ljee(g)af_ree<h)' (2107)

Proof. We initially prove the first statement of the proposition for n = 1. Let M, N € N
and u € H, we have

M
Z Z (2) , €5 X 6] HO2 a?;ee(el) afree<63)u
i= 1

N
1 j=
M

Z (Z € ® 6])H®2 (u, Jej)H> e .

=1

By Cauchy’s inequality,

M N
Z (Z € Q@ eﬂ H®2 (u, Jej)y) €

2

H
M N 2
- Z Z e’ ® 6] H®2 (uv Jej)q.[
i=1 |j=1
M N 2 N
gz Z‘(g@),ei@)e] H@Q Z| (u, Jel
=1 j=1 =1
Mj N )
<ZZ|(Q ;€ Q€ 7.[@2‘) (u, Jer) |2
i=1 j=1

= |95 w32 llull?,

where

gj(\fj)N - ZZ €z®e] 24 ®2 ez®€3

=1 j=1

From here the statement follows, and furthermore we obtain

lafee (9%) ullze < llg™ Iz llull.

Therefore,

lafe (92) e oy < g™ e
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For n > 2, similar calculations give, for u(™ € H®",

atee (9°) NicE, 0 < nllg™? o2

Next, for g,h € H,

age; (g ® h’) = Z (g ® h” € & ej)’;—[®2 ajftee(ei> af;ee(ej)

ij>1
= (g e)3 fee(e1) D (1, €5), Ae(e))

i>1 i>1
= a?l:ee(g)af_ree(h/>' D

Definition 2.81. For any ¢ € H*®?, we define a™~ (¢¥) on Fg,(H) by
(g ™ = Pyaf, (9P) ™, f™ e Fu(H). (2.108)
Proposition 2.82. If (e;);>1 is an orthonormal basis in H, then
at (gP) =D (9P, e @ ej)per at (ei)a (e). (2.109)
ij>1

Furthermore, for each n € N, the series on the right-hand side of (2.109) is strongly
convergent in L (F,(H)).

Proof. By Proposition 2.60 (i), for any ¢® € H®? and f™ € F,(H),

at™ <g(2)) f(n) =P, age—e (9(2)) f(n)

- P Z €Z ® 6] HO2 a?r—ee(el)afree<ej)f(n)

1,7>1

= (99, € ® €j)yen Paaf,(€i)age(e;) f)

1,51

=Y (9%, i @ e)aer (Patie(€i)) tpee(es) f™

ij>1

=3 (9% e @ ej)uer at(es) a” (),

1,521

where the series converges in F,,(H). 0.
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In order to determine a commutation relation between the creation and annihilation

operators, we first calculate a™(h)a™(g) applied to a vector u € F;(H). We have

a (9)at(h)u =a (g)h ®u
=a (9)P2(h ®@u)
= tal0) Po(h @)
= tr0)5 (14 D)@

1. _ _
= 5 [afrcc(g)h’ @ U+ afroe<g>Uh ® Uj|

1
=(h,Jg)nu+ §af_ree(g)Uh ® u. (2.110)

Let U € £ (H®2). Then

— Z (Ug®h, €i®6j>H®2 (u, Je;)y €;. (2.111)
Let f € H. Then

(%af_ree(g)Uh'@u’ f) - % (Uh@u,a?;ee(Jg)f)Fz(H)
= (Uh®wu,(Jg) ® f)us2, (2.112)

and, by (2.111),

(Cﬁ*(ﬁg ® h)u, f>7{ = <(79 Q@h,e® €j>H®2 (u, Jej)n (e fu

»J

IV
A4

(ﬁg ® h,e; ® ej)H®2 (e, Ju)u(es, fu

-
&,
vV

—_

(ﬁg ®h,e; ® @j>H®2 (ei®ej, f @ (Ju))

Y
—-

Il
T o

ﬁg@h, Z(f@ (Ju),e; ® ej)e; ®ej>
H®2

1,521

(2.113)

RS

ﬁg@h,f@(Ju))

e
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Assume that
(U(h® ), (Jg) ® Flyer = (Tg @ hy f @ (Ju))e (2.114)
Then by (2.110) and (2.112)—(2.114), we obtain
a=(g)a*t (h)u = (h, Jg)nyu +a*~(Ug @ h)u (2.115)

We will now see that the above calculations can be generalised to the case where

u € F1(H) can be replaced with ™ € F,(H) for any n.

Theorem 2.83. Assume that there exists an operator UecL (H®?) that satisfies, for all
Uy, Uz, Uz, Uy € H such that Ju; =u; (i=1,2,3,4),

(Uuy @ ug, Uz @ Ug)gyee = ((7u3 ® Uy, Uy @ U)o . (2.116)
Then, for any g,h € H, we have
a~(g)at(h) = (h, Jg),, +a*~ (Ug @ h). (2.117)

Remark 2.84. If U exists, then it is unique.

Remark 2.85. Formula (2.116) is equivalent to requiring that, for any u;, us, us, us € H,

(Uur @ ug, uz @ Ug)yee = (U(Jus) @ uy, us @ (Jug)). (2.118)

Remark 2.86. The operator U satisfying (2.116) or (2.118) always exists if the Hilbert
space H is finite-dimensional. In the case of an infinite dimensional Hilbert space H, we

shall see that this formula is satisfied in all special cases we are interested in.

Proof of Theorem 2.83. We divide the proof into several steps.
Step 1. Let f € F,(H). By Proposition 2.60, (i), we have

a=(9)a* () f" = a™(9)Pass [h® [™] = age(9) Pasr [h® f™] .
By Proposition 2.21, formula (2.18),

a (g)a*(h)f™
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1
:af_ree<g)n—_'_1[1+U1+U2Ul++UnUnflU1](1H®Pn)h®f(n)

1
= Oee(9) g LA U1+ DoUi oo 4 Unlna - Th] R @ £ (2.119)
Step 2. We note that

1

Oeel9) o TH ® F = (h, Jg)y £, (2.120)

Step 3. We will now prove the following lemma.

Lemma 2.87. Letn >3 andi=2,3,...,n—1. Then

af;ee<g)Ui = Uifla’firee(g) (2121>
on HE™.

Proof. Due to the continuity, we only need to check the equality

U DUif1 @ f2 @ f3® - @ fro = U105, (9) 1 @ @ fs@ - @ f (2.122)

for any f1,..., fn, € H. We have

U Ui L1 @ @ [; @ finn @+ @ f
= a5 (N[O @U@ fi1) @@ fo
=n(f1,J9)y o @ @ Ufi® fix1) @ @ fa
=n(f1,J9)yUir1fo®@ @ f; @ fi11 Q@ fa
=Uian(fi,J9)y fo® @ fi® fin @ ® fy

=Uin1040(9) 1 Q- Q@ fi® fi1 @ ® fn.
This proves (2.122). O

Step 4. By Lemma 2.87,

1
af_ree(g)n—_H Uy +UUy + -+ UyUp g --- Ui R @ f™

1
B n——i—l [af_ree(g)Ul + Ula’f_ree(g)Ul +eee Un—l e Ula’f_ree(g)Ul}h ® f(n)
= A+ U+ UU 4+ Uy Uy Ui ag (9)Urh @ £
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Step 5. Without loss the generality, we next look at the case when

f(n):f1®f2®"‘®fn-

In this case,
af;ee(g)Ulh ® f(n) = af;ee(g)Ul h ® fl X f2 R ® fn
= agee(g) (Uh® fl) X f2 R ® fn

:”T“( e DUR® 1) ® fo @ - @ fo.

afree

By formulas (2.112)—(2.113)—(2.114)

1 N N
3 G UR ® fi = a™ (Ug@h)fi =al (Ug® h)fr.

Therefore,

e (U1 @ f = (n+ 1) (af o (Ug @ M) 1) @ fo@ - @ f
=" T o A ® e e b

ree

Step 6. By Steps 4 and 5, Proposition 2.21, formula (2.18), and formula (2.109),

1
afjee(g)n | (U + UsUy + -+ UpUpy - -- Uy R @ f
1 -
=~ 1+ U+ DUi+ 4 UpaUna - U] 0 (Ug @ h) f
1 ~
= 1+U14+UU + -+ Up1Upz - U1 (1y @ Pyoy) af L (Ug @ h)f(n)

= Pnafte’e(fjg @ h)f™
— ot (Ug®h)f™. (2.123)

By (2.119), (2.120), and (2.123), the theorem follows. O

Example 2.88. Recall that, for the symmetric tensor product, U is given by U f®g = g& f.

Therefore, for any wuy, us, us, uy € H such that Ju; = u;,

(Uug @ g, u3 ® Us)gyee = (Uz @ Ur, uz @ Uyg)ye2

= (Ug, u3)7—[ (uh u4)7~[>
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(Uuz @ up,usy ® U2)H®2 = (u1 ® u3, Uy ® Up)pe>

= (Ub U4)H (U37 Uz)H-

This implies that U = U.
By Proposition 2.53 (ii), Proposition 2.74 (ii), and Theorem 2.83.

FExample 2.89. Recall that, for the antisymmetric tensor product, U is given by Uf ® g =
—g ® f. Similarly to Example 2.88, we conclude that U = U.

Example 2.90. Recall the Q-symmetric tensor product discussed in Section 2.5. In par-
ticular, H = L*(X,0), @ : X® — C and

(U (x,9) = Qz,y) [P (y, 2).

We shall find the formula of U. Let f® € H®2. Then, for any uy, us, us, us € H such
that Juz = Uy,

(Uuy @ ug, Uz @ Usg)gyee = /X2 (Uuy @ ug) (x,y) (ug @ ug) (z,y)o(dz)o(dy)

= /. Qx, y)(ur @ ug)(y, ¥)us(x)ua(y)o(dr)o(dy)

= [ Qx,y)ui(y)ua(z)us(x)us(y)o(dr)o(dy).

X2

Swapping the variables x <+ y,

(Ui @ w03 9 ) = [ Qo )s (o)) dn)or(d)
- /X QU )us (0)us (1)) waly)us (@) (dw)r(dy)
= [ (@) ) 3. 0)) (14 © ), ) )
= [ (B @ w).2) (11 & w) )t d)od)
_ (ﬁu3 ® up, Uy @ u2>H®2 :

where

U (x,y) = Qy,z) f?(y,x). (2.124)
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FExample 2.91. We consider the case of a multicomponent quantum system as discussed
in Section 2.6. In particular, H = L? (X — V,0) and the operator U is given by (2.32).
Then, for any uy, us, us, us € H such that Ju; = u;,

(Ut @ 00 © )y = [ (U © wa)(a.9). (0 00)(02) o (e )or(ly)

:/X<2> (Cla, y)ur(y) ® uz(x), us(x) @ us(y)) e o(dz)o(dy).

Swapping the variables = <+ y, we obtain

(Vs © 12,13 © whyen = [ (Clova)ine) © 0a(9). () © @)y ooy,
X

(2.125)
For an operator C' € L(V®?), we denote by C the operator from L£(V®?) satisfying

(Cv1 ® V2,03 @ Vg)yg2 = (5113 ® V1, V4 ® Va)ye2

for all vy,ve,v3,v4 € V such that Juv; = v; (i = 1,2,3,4). (We have assumed that C
exists.)

Assuming that C(z,y) exists for all (z,y) € X®, we obtain from (2.125)

(Uuy ® ug,us ® U4)H®2 = /X(2) (O(f% T)uz(y) @ ui(x), us(r) ® u2(y))v®2 o(dz)o(dy)

= ((7U3 ® Uy, Uy @ Ug)yo2 ,

where

(U (z,y) = Cly,2)fP(y.x), [P € H?, (2.126)

compare with (2.124).

Next, similarly to Example 2.58, let us assume that V = L? (S,v) and let us think (at
least informally) of an operator C' € L(V®?) as an integral operator with integral kernel
C(s,t,u,v). Let us find the operator C. Let 91, 92, 93, g4 € V be real-valued. Then

(Cgl ® g2, 33 ® g4)V®2 = / O(Sa t? u, U)gl (U)QQ(U)gg(5)94(t)V(du)V(dU)V(dS)I/(dt)

S4
Changing the variables

t—s, s—u, u—v, v—>1,
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we get

(Cg1 ® 92,93 ® ga)y e

— /54 C(u, s,v,t)g1(v)g2(t)gs(w)ga(s)v(du)v(dv)v(ds)v(dt)
B / (/ Clu, ., t)QB(U)gl(U)V(dU)V(dU)>94(3)92(t)1/(d8)u(dt)
— /52 (/52 C(u,s,v,t)(g3 @ g1)(u, v)u(du)y(dv)) (91 ® g2) (s, t)v(ds)v(dt)

= (593 ® 91,94 & Qz)v

®2
Here, for ¢®® € V%2,
<5g(2)) (s,t) = [ C(s,t,u,v)g? (u,v)v(du)v(dv), (2.127)
S2
where

C(s,t,u,v) = C(u,s,v,t). (2.128)

Let us now think (at least informally) of C(x,y) as an integral operator with integral

kernel C(x,y,s,t,u,v). Then, by (2.126)(2.128), for any f? ¢ H®?,

(U (w,y,s.t) = / Oy, z,u, 5,0,8) Oy, 2, u, v)v(du)v(dv). (2.129)

S2

2.10 Conclusions

We aim in this section to briefly sum up the main results we discussed regarding the

commutation of creation and annihilation operators.

Corollary 2.92 (The general case). Let H be a separable complex Hilbert space, and
let U € L(H®?) be a self-adjoint, unitary operator satisfying the Yang—Baxter equation
(2.12). Furthermore, assume that there exists an operator U e L (H®?) that satisfies
(2.118) for any uy,us, uz,uqs € H. Then the creation and annihilation operators in the
U-deformed Fock space F(H) satisfy the following commutation relations.

(i) For any g¥ € H®2, we have

att (g(z)) — gt (Ug(z)) _
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In particular, for any g, h € H,
a*(g)a*(h) =a™ (Ug@h).
(ii) For any g® € H®?, we have
a (9(2)) =a (ﬁg(2)> .
In particular, for any g,h € H,
a (g)a”(h) =a " (f]\g ® h> :

Here U = SUS, where Sf @ g = (Jg) ® (Jf).
(i11) For any g,h € H,

a=(g)a*(h) = (h, Jg)y +a*~ (ﬁg ® h) .

Corollary 2.93 (@Q-symmetric tensor product, Abelian anyons). Let X be a locally com-
pact Polish space, and let o be a non-atomic Radon measure on X. Let H = L*(X, o).
Let X be a symmetric subset of X? such that, for any (z,y) € X?> = # y, and
o®2(X2\ X@) = 0. Let Q : X® — C satisfy (2.24), (2.25), and let U € L(H®?)
be given by

(Uf®) (2,y) = Qz,9) [P (y, ).

Then the creation and annihilation operators in the U-deformed Fock space F(H) satisfy
the following commutation relations.

(i) For g® € H®?,

[ P @at tatin)atin = [ g nQ. 2" (" (@)o(de)a(dy).

X(2)

[P @a Glatdn)atin = [ a¥ Q. 20 (a (@o(de)(dy).

X2
and for any g,h € H

| s @t odiotdy) = [ gholds)

X

T o Q(z,y)g(x)h(y)a™ (y)a™ (z)o(dz)o(dy).
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These relations can be formally written as
a(z)a’(y) = Qy, x)a" (y)a’ (x),
a”(z)a” (y) = Qy,x)a” (y)a” (x),
a”(x)a*(y) = d(z,y) + Qz,y)a* (y)a™ (x). (2.130)

Here, 6(x,y) satisfies, for g,h € H,

/X(Q)g(:c)h(y)d(x,y)a(dm)o—(dy):/ g(x)h(z)o(d). (2.131)

b
(it) In particular, in the case of Abelian anyons, X = R?, o(dz) = dx = dz; dx,,
H = L*(R?,dx), X® is given by (2.29), Q(x,y) is given by (2.30) with ¢ € C, |q| = 1,

for any z,y € R? with 1 <

a”(z)a”(y) = qa” (y)a” (x),

q
a”(x)a™(y) = 6(x,y) + ga™ (y)a™ ().

Corollary 2.94 (Multicomponent system, non-Abelian anyons). Let X, o, and X® be as
in Corollary 2.93. Let S be a locally compact Polish space and let v be a Radon measure on
S. Let V.= L*(S,v) and denote (v,w)y = [;v(s)w(s)v(ds) for v,w € V, and similarly
(W, w®)per = [ v (s, )wP (s, t)v(ds)v(dt) for v, w? € V2 = [2(S?,1%2).

Let H = L*(X — V,0) = L*(X x S,0 ®@v), hence H®? = L}(X?) — V®2 59%) =
L2(X® x 82,092 @ v®?). Let C : X® — L(V®2) be such that, for each (x,y) € X,
C(z,y) is unitary, C*(z,y) = C(y,x), and (2.31) holds. We also assume that each C(x,y)
is an integral operator in V% with integral kernel C(x,y, s, t,u,v).

Let U € L(H®?) be given by

UFP) (@, y) = Clz,y) fPy, x).
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Consider the creation and annihilation operators in the corresponding U-deformed Fock

space F(H). We will formally write
a*(9) = [ ola).a" @)y olda),
@ ()= [ a0 @)y olda)
for g € H. Similarly, for ¢® € H®?, we will formally write
(o) = [Pt (@) @0 () ves old)adn)

and similarly for a==(g®) and a*=(g®?).
(i) For g € H®?,

/X(Q) (9% (2, y), 0" (x) ® a*(y))ve: o(dx)o(dy)

= /X ()9 (@, y),a* (9) @ a* (@) ver o (dn)o (dy),
/X N (gP(z,y),a"(x) @ a~(y))yez o(dz)o(dy)

- /X (Cla,9)g (z,y),a™(y) @ a~ (x))ve2 o (dr)o(dy).

Here for v® € V®2,

C(x,y,t,s,0,u) v® (u,v)v(du)v(dv)

2

(a(x, y)v@)) (s,t) =

Cly, z,v,u,t, )0 (u, v)v(du)v(dv).

2

T~

Next, for any g, h € H,

X

/X@ (9(2) ® h(y),a™(z) ® a* (y))vsz o(dz)o(dy) = / (g(x), h(z))v o(dz)
+ /X(Z> (C(z,y)g(z) ® h(y), a* (y) ® a (z))ye: o(dz)o(dy).

Here, for v® € V&2,

(é(x,y)v@))(s,t) = /s? C(x,y,t,s,0,u) v? (u,v)v(du)v(dv)

:/ Cly, z,u, 5,0, )0 (u, v)v(du)v(dv).
S2
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These relations can be formally written as

at(z) ® a*(y) = CT(y,x)a (y) ® a* (),
a(2) @ a(y) = CT(x,y)a"(y) ® a”(2),
a (z)@at(y) = Az, y) + G’T(x, y)at(y) @ a (x). (2.132)

Here, A(x,y) satisfies, for g,h € H,

/X(2)<g(fv)®h(y),A(x,y»ma(dx)a(dy):/X<g(:c),h(x)>va(dx), (2.133)

and for v® € V%2 we have

(CT(z,y)v S2C Yy, x,u,v, 8, 1) (u, v)v(du)v(dv),
= z,y,v,u,t, 5)0? (u, v)v(du)v(d

(6" /ycy £ )0 (u, 0)(du)v(dv)
= /32 Cly, x,t,5,0,u)0? (u,v)v(du)v(dv)

(CT(z, y)u?)(s,t) = g C(z,y, s, u,t, )0 (u, v)v(du)v(dv).

(ii) In particular, in the case of non-Abelian anyons, X = R?, o(dz) = dz = dx| dx,,
X@ s given by (2.29), C(x,y) is given by (2.36) in which C is a unitary operator in V
satisfying the Yang—Bazter equation (2.35) in V3. Let also C' be an integral operator in
V' with integral kernel C(s,t,u,v). Then, for any x,y € R? with z1 < y,

(@) @ a* @)(s,0) = | Tl o) (%)  a* () (w0} (du)w(do),
5’2
(@) @) 50 = [ Tt (a(5) © () (s o)(duo(ae),
(a (z) ®a*(y))(s,t) = Az, y)A(s, t) + / C(s,u,t,v)(a’(y) ® a (2)) (u, v)v(du)v(dv),
SQ

and for x,y € R? with y; >
(a+(w) ® a+(y))(s,t) = /52 C(u,v, s,t)(a+(y) ® a+(:c))(u,v)l/(du)u(dv),
(@ @0 )0 = [ Clt,sv,u) (@ () @0 (@), v)(du)o(do),

SQ

(a™(z) @ a™(y))(s,t) = Az, y)A(s, t) + /52 C(t,v,s,u) (a¥(y) ® a”(2)) (u, v)r(du)v(dv).
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Chapter 3

Quasi-free states on the Wick
algebra of the ()-anyon commutation

relations

3.1 The ()-ACR algebra

Assume that Y and Z are locally compact Polish spaces and consider X =Y x Z. Let v
and p be Radon measures on Y and Z, respectively. We define a Radon measure o on X

by 0 = v ® pu. We fix a function @ : Y? — C which is continuous and satisfies

Q(yr.y2)l =1, Q1. 92) = Qy2, 1), forall (y1,42) € Y.

With an abuse of notation, we will also consider @ as a (continuous) function on X?
defined by
Q(x1,72) = Qy1,v2), @i = (Yi, %), i =1,2. (3.1)

Thus, we also have
1Q(z1,22)| =1, Q(z1,72) = Q(x2,71), for all (a1, 29) € X2

We obviously have Q(y,y) = 1 or —1 for all y € Y. We will assume that Q(y,y) is
constant for all y € Y. This assumption is always satisfied if Y is a connected space (like

R).
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Ezample 3.1. Let Y =R, Z = R4 (d > 2), v(dy) = dy, p(dz) = dz. Then X = R% and
o(dr) = dz. Fix an arbitrary a € R, and define Q : Y? — C by

Q(yh y2) — etaly2—y1)

Such a function @ satisfies the above assumptions and Q(y,y) = 1 for all y € Y. Alter-

natively, we may choose
Q(yla y2) = _eia(yzfyﬁ,
in which case Q(y,y) = —1 forall y € Y.

Example 3.2. Let X, Y, Z, o, v, i, and «a be as in Example 3.1. Fix an arbitrary € > 0.
Define Q : Y? — C by
.

eia(yg—yﬂ, if ’yQ - yl’ < g,

Qy1,42) = 4 ¢, if y <o —e,

q, ify12y2+57

\
where ¢ = €. Thus, this function is equal to the Q-function in the case of the abelian
anyons if the distance between y; and ys is > . Clearly, Q(y,y) = 1 for all y € Y.

Alternatively, we may chose

_eia(w—yl)a 1f ‘yZ - yl’ < g,
Qy1,42) = 4 q, if y; <o —e,

q, ify12y2+5a

\

where ¢ = —¢' in which case Q(y,y) = —1 forall y € Y.

We denote by Cy (Y™) the space of all continuous functions ™ : Y — C with

compact support.

Denote G = L? (Z, 1) and define
Got =15 {1 ® g ® - ®gnl g1, 00 € G}

Here 1. s. denotes the linear span.
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Now, we define

F(X™) =Co (V") @ayg G287
=Ls{f™(z1,...,2) = 6" (Y1, Yn)gi(z1) - Gul2n) |
go(") eCo(Y™), g1,92,---,9n € G}. (3.2)

Remark 3.3. If f™ € §(X™), then f® € §(X"). Furthermore, if f™ € F(X™), then
o (xg(l), . ,fﬂg(n)) € §(X™) for each permutation £ € S,,.

Remark 3.4. If f™ € F(X™), then
Q('xia Zlfi_;,_l)f(n)(l'l, s 7xn)7 Q($i+17$i)f(n)($lv s 7xn) S ‘S(Xn) .

Remark 3.5. Let f (x1,...,2,) = o™ (y1, ..., yn)g1(21) - -~ gn(2) € F(X™). Then

/X o(dx) f™ (1, Ti1, 2,2, 24, . .., Tns)
:/YV(dy)SD(n) (Y1, Y, Yo U Yis - -+ Yn2) 91(21) - - - gim1(2i-1)
S R CTCIIE) PIE Ao
Therefore, for each f™ € F(X"),

/ o(dx)f™ (1, Tii1, 2, 2,24, ..., Tn_s) €T (X”’z) )
X

Intuitively, elements of the algebra of the ()-anyon commutation relations (Q-ACR

algebra) can be represented by operator-valued integrals
F(zy, o zn)adf (@) - - aP () o (day) - - - o(dxy), (3.3)
Xn

where f)(zy,...,2,) € F(X") and #1,...,4, € {+,—}. These operator-valued inte-
grals must be subject to the commutation relations (2.130) which hold ‘pointwise.” More
precisely, if i € {1,...,n — 1} and #; = #;;1, then

(@, zn)d (@) - - aP (w0 (day) - - - o(dxy,)

Xn

= f(n)<$17 s ) Q (@i, m)af (1) - - dF T (g )aF () - - aP ()
Xn
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X o(dxy)---o(dr,)
= Q(x;, :BZ-H)f(")(:vl, e X1y Ty 1, Ty e ,xn))aﬂl(:vl) gl (xn)o(dxy) - - o(dzy,).
Xn

If i = —, #iy1 = +, then

F (. xy)a (@) - - afr (2o (day) - - - o (dey)

xXn
= [ [ 2) Qs wi)at (1) - 6 (wp40)ab () - - aP ()
X’I’L
x o(dxy)---o(dz,) + / </ F ™y, w, s ,xnz)a(daj)>
xn-2 \Jx

X a* (x1) - - - a1 (wi_q)aF 2 (2) - - - @F (2p_o)o(day) - - - o (dap_y)
= Q(@igr, ) f ™ (@1, Tigr, Ty Tn)af (@) - - dP () a¥ (2i) - - - aP ()
xXn
X o(dxy)...o(dx,) + / (/ F™N . xy, @@, ,an_g)a'(dl’))
Xn—2 X
x a® (1) - - - @ (w1 )ab 2 (2) - - - a" (2_2) o (day) - - - 0 (d,_s).
We note that the adjoint of
F .. ay)d® (@) - - df (zp)o(day) - - - o(day,)
Xn

should be (at least formally)

/ T w) a @) 0 (@)o(dan) - o(da)

= fO) (... 2)a " (zy) - a " (2,)0(dry) - - - o(day,),
xn

where

) lfﬂ:+a
_ﬁ:
T

Next, we have, for any f(™ € §(X™) and g™ € F(X"),
/ F (2, .. am)af (1) - - - P (2o (day) - - - o (day,)
X /ng(") (Tt - s T )P (1) - - @ (g ) (A1) -+ - O (A )
= /X e g) (o mmin)a (21) @ (@) o (dr) - 0 (dmgn),
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where f(™ @ g™ € F(X™") is defined by

F™ @ g™ (21, Toen) = F™ (@1, 20) 0™ (Tt - - - s Tongn)-
To define the Q-ACR algebra, we will write &™) (f(”); f1,... ,ﬁn) for

FM (.. x)adf () - - - afr ()0 (day) - - - o (day).
xXn

We will sometimes also write & (f(") (X1, ey Tp)i By e ey ﬁn) .
Recall that a unital x-algebra A is an algebra with identity element for multiplication

and a x-operation *x : A — A satisfying the standard axioms.

Definition 3.6. The Q-ACR algebra is defined as the unital x-algebra that is generated
by elements of the form & (f(”);jjl, . ,ﬁn) for f™ € F(X") (n € N) and fy,...,8, €

{+,—}. These elements satisfy the following relations:
o Ifi e {1,...,71,— 1} and ﬂz = ﬂiJrl; then

(b(n) (f(n)a ﬂla s ?ﬂn) = q)(n) (Q(xla x’i+1)f(n)(x17 s Tig1s Ty v e 7:Cn>; ﬂla s ?ﬂn) :
(3.4)

e lfie{l,....n—1}and ; = —, #;11 = +, then
B (£ 4, 1)
= ¢ (Q(mi+17$i)f(n)($la Ty Ty )5 B i B 7ﬂn)
+ p(n=2) </X F @y, i, 2, Ty Tpg)o (A5 B B By s jjn> .
(3.5)
The multiplication in the Q-ACR algebra is given by
U (FU ) O (6" b, ) = @Y (S @ g™ ) -
The addition in the Q-ACR algebra satisfies, for any A, € C and £, g™ € F(X™),
AT (F ity )+ ™ (g™t ) = @S 4 g™ ).

The x-operation in the ()-ACR algebra is defined by

QO(Fitr, ) = ) (FO (o a0)i o) (36)
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We define P, : §(X™) — F(X™) by formulas (2.27) and (2.28), which now hold point-

wise. For each n > 2, we denote
SF (X") = {f™ e F(X") | Puf™ = f™3,
and for any m,n > 1,

Gg(m,n) (Xm+n) _ {f(m-i—n) €F (Xm+n) | P, ® Pnf(m—l—n) _ f(m+n)}

It easily follows from (3.4) that, if §; = - - - = #,,, then for any f(™) ¢ F(X™+"),
QUmam) (FImtm) iy ) = @ (B @ Lo fU T L ) (3.7)
and if fi,,01 = -+ = #,4n, then
DO () = B (L, @ Puf b ), (38)

where the operators 1,, ® P, and P,, ® 1,, have the obvious meaning.
Due to the commutation relation (3.5), each element of the )-ACR algebra can be

represented as a finite sum of c¢1, ¢ € C, and elements of the form
W (man) (f(m+n)) — plm+n) (f(m+n); 1, ..., ﬁern) ,
where m,n € No, m +n > 1, f0»™ € F(X™+") and

le:"':jjm:—i_a Ijm+1:"':ﬁm+n:_-

We call W (mn) (f(m+”)) Wick-ordered elements of the Q-ACR algebra. By (3.7) and
(3.8),

where P, = 1. Thus, we have proved the following proposition.

Proposition 3.7. Fach element of the Q-ACR algebra can be represented in the form

A+ > W (femm) (3.9)

m,n€Ng, m+n>1

where ¢ € C, fmm) € GFm™) (X™1) | the sum in (3.9) being finite.
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Remark 3.8. In view of Proposition 3.7, we may think of the Q-ACR algebra as a *-algebra

allowing the Wick (or normal) ordering, compare with [17].

From (2.130), we formally have

a*(x)a”(y) = Qz,y)a” (y)a™ (z) — 3(x,y), (3.10)
where s = Q(x,x) = +1or —1. The following crucial proposition is a rigorous formulation

of (3.10).
Proposition 3.9. If f™W € F(X"),n>2,ic{l,...,n— 1}, t; = +, i1 = —, then
o (f(n);ﬂh e 7ﬁn) = o™ (Q(%H,xi)f(n)(xh e T, Ty e T e i s - ->1jn)
— 2 ®(2) (/X f(")(:lrl, T, T X Ty e Tpo)0 (dX) B, i1, B, ,ﬁn) ,
where » = Q(z,x) forx € X.
Proof. Choose
g(”)(ml, o) = Qi ) (T, Ty, Tis e ).

Then by formula (3.5), we get

(I)(TL) (g(n)(xlv s 71:71)7 ﬁl? ) in—l-la ina R Ijn)

— ™ (Q(Q;Hhxi)g(")(xl, e Ty Ty e T )5 B ,ljn)
+ p(n—2) (/X g(”)(g;l,,,,,xi1,x,x,xi,...,xn)a(dx);ﬂ1,-..,ﬁi1,ﬂi+2,---,ﬁn>
= &) (Q(ai 1, 2)Q (s, i) F (w1, )i by )
1 pn-2) (/X Qx,x) f™ (xq, ... ,a:i1,33,35,.76@-,---,%2)0(d95);ﬂ1,---,ﬂ¢1,ﬂ¢+2,---,ﬂn>
=0 (fmig )
+ 3 p2) (/ F™ . wy,x, Ty Tgo)o(dT)s B, ,ﬁil,ﬁi+27~--7ﬂn> .
X

3.2 Complex-valued Radon measures

To discuss states on the Q-ACR algebra, we will now briefly recall some key facts related
to complex-valued Radon measures. For more detail, we refer the reader to Chapter IV

of [3] or Chapter 7 of [26].
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Let X be a locally compact Polish space, let B(X) be the Borel o- algebra on X, and
let By(X) be the collection of all sets from By(X) that have compact closure.

Recall that a (positive) Radon measure on X is a measure m on (X, B(X)) that has
the property m(K) < oo for each compact set K in X.

A complex-valued Radon measure m on X is a map of the form
By(X) > A— m(A) € C, (3.11)
where m admits a representation
m=my —mg + i(mg — my) (3.12)

in which mq, mg, m3, my are positive Radon measures. We denote by M(X) the set of
all complex-valued Radon measures on X, and by M, (X) the set of all positive Radon
measures.

Denote by Cy(X) the space of all continuous complex-valued functions on X with
compact support. For each f € Cy(X) and each m € M(X), using representation (3.11),

we define

[ somtao) = [ sawmitan) ~ [ somatan) +i ([ sepmaian) - [ seman).
(3.13)

Thus, each m € M(X) determines, through formula (3.13), a complex-valued linear
functional on Cy(X).

A linear functional L : Cy(X) — C is called positive if, for each f € Cy(X), f > 0, we
have Lf > 0. Obviously, each positive Radon measure m € M, (X) determines a positive
linear functional on Cy(X).

In fact, M (X) can be identified with the set of all continuous positive functionals on

Co(X), and M(X) can be identified with the dual space of Cy(%).

[e.9]

To this end, we introduce a topology in Cy(X) as follows. Choose any sequence (K,,)% ;

of compact sets K,, in X such that

KiCKyCcKsc--, |JK.=x%
n=1
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Denote by B, the space of all f € Cy(X) that satisfy f(x) = 0 for all ¢ K,,. We
equip B, with the topology of the supremum norm,
[flln = sup [f(x)] = sup|f(x)],
zeK, zeX
then B, becomes a Banach space.

Obviously, each B, is a subset of B, 1 and for each f, € B,

1 lln = [/l (3.14)

Since Cy(X) = U, By, we equip Co(X) with the inductive limit topology of the
spaces By, i.e., the finest locally convex topology on Cy(X) for which each embedding of
B,, into Cy(X) is continuous. Furthermore, by (3.14), this inductive limit is strict, see e.g.
page 57 in [25].

By Section 6.6 of [25], Cy(X) is a complete locally convex topological vector space. In
particular, the inductive limit topology on Cy(X) is finer than the topology of convergence
in the supremum norm. (Note that the completion of Cp(X) in the supremum norm
| £l = supgex | f(z)] is Cb(X), the space of all bounded continuous functions on X.)

In fact, a sequence (fx)72, converges to f in Cy(X) if and only if there exists n € N
such that f, € B, forall k e N, f € B,,, and f — f in B,,.

A linear functional F': Cy(X) — C is continuous if and only if the restriction of F' to
each B, is continuous on B, e.g. see Section 6.1 of [25].

Obviously, each m € M (X) defines through (3.13) a continuous linear functional on
Co(%X), and for each m € M, (X) this continuous linear functional is positive.

In fact, My (X) coincides with the set of all positive continuous linear functionals on
Co(X), see e.g. Section 2.9 in [3] or Section 2.2 of Chapter III in [4].

Every continuous linear functional F' : Cy(X) — C can be represented in the form
F - F1 - F2 + Z(Fg - F4),

where F, F,, F3, F; are continuous linear positive functionals on Cy(X). Hence, the space
of all continuous linear functionals on Cy(X) can be identified with M (%), see e.g. Chap-
ter 7 in [26].
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3.3 States on the ()-ACR algebra

We first recall the definition of a state on a unital x-algebra.

Definition 3.10. Let A be a unital x-algebra. A state on A is a map 7 : A — C that

satisfies

(i) 7(aa*) > 0 for each a € A;
(ii) 7(1) = 1, where 1 is the identity element in A.

Let A be the Q-ACR algebra and let 7 : A — C be a state on A. Then, for any
f1,..., 80 € {+, —}, we define a linear functional Tu(”) 5, Co(Y") x G" — C by

Lyees

™ g1,y gn) =7 (@@ (Y1, yn)g1(21) - gn(2n)i b, o)) - (3.15)

Obviously these linear functionals uniquely identify the state .

(n)

From now on, we assume that each functional Ty .4, 1s continuous on Co(Y™) x g™

,,,,,,
n)

We note that, for any fixed f#;,...,4, € {+,—} and ¢1,...,9, € G, Tn(l 4, determines a

-----

continuous linear functional

CO<Yn) > So(n) = Tﬁ(ln) fin (QO(n),gl, s agn) € C.

.....

") # [.gl? s 7gn] on Y™ that sat-

Hence, there exists a complex-valued Radon measure my,

~~~~~~

isfies

----------

For f € §(X) and £ € {+, -}, we denote A*(f) = ®W(f;1).

n)

Proposition 3.11. Assume that, for any #;...,4, € {+,—}, the functional Tﬁ(l ..... g, 18
continuous on Cy (Y™) x G". Then the following statements hold:

(i) The state T is completely determined by its values on A (fy)--- Afmtn(f, ), where
fr = or @ gr with o, € Co(Y) and gy € G (k=1,....m+mn), and $; = --- = t,, = +,

1 =+ = fmsn = —, where m,n >0, m +n > 1.
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(ii) Define
B(f) = AT (f)+A~(f), [f€F(X). (3.17)
The state T is completely determined by its values on B(f1)--- B(f,), where fi = pr @ g
with ¢ € Co(Y = R) and g, € G, k=1,...,n. Here Cy(Y — R) denotes the subspace

of Co(Y') consisting of all real-valued continuous functions on'Y with compact support.

Proof. By (3.16),

T(AF (o1 @ g1) - - - A (0 © gn)) =/ o1(y1) - euyn) mi” g1, gal(dyr - dyn).

.....

(n)

where ¢, € Co(Y) and g, € G. Since the measure my~’ , [g1,...,9gn] is completely

determined by its values on functions of the form ¢1(y1) -+ ©n(yn), with ¢ € Co(Y), we
conclude that the state 7 is completely determined by its values on A% (f;)--- A¥(f,),
where fr, = ¢ ® g, with ¢, € Co(Y) and gx € G. From here and Proposition 3.7,
statement (i) follows.

As for statement (ii), let us first prove it in the case where each ¢y is allowed to be
taken from the space Cp(Y') rather than Cy(Y — R). But then this statement follows

from statement (i) and the formulas
(B(f) —iB(if)),
A™(f) == (B(f) +iB(if)) . (3.18)
Now assume that ¢1,...,¢9, € Co(Y — R). For each k € {1,...,n},
[=0®Gy Gr€G,
ifie =ipr ® gk = ¢ ® (igr), igr €G.

Hence, by (3.18), for any fi,...,4, € {+,—} and fr with ¢1,...,¢, € Co(Y — R), we
know 7 (A*(f1)--- A*(f,)). But for each ¢ € Co(Y), we have ¢ = @1 + ipy, where
1,92 € Co(Y — R), hence, for each g € G, we have

POg=(p1+ip)Rg=p1®g+ip g,
and by linearity, for § € {4+, —}, we get
Ap®g) = A(p1 ® g) +iA (2 @ g).
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From this and the statement (i), the statement (ii) follows. O

Lemma 3.12. Let a state T satisfy the assumption of Proposition 3.11.
(i) For any g1, g2 € G, there exists a complez-valued Radon measure v?[gy, go] on Y?

that satisfies

T (AT (1 ® g1)A (92 ® g2)) = / e1(y1)p2(y2)7? g1, g2 (dyn dy), (3.19)

Y
for all o1, ps € Coy(Y).
(i3) For any g1, g2 € G, there exists a complez-valued Radon measure A?)[gy, go] on Y?

that satisfies

7 (B(p1 ® 1) B2 @ g2)) = /Y2 01(y1)pa(y2) AP [g1, go] (dys dy2), (3.20)
for all p1,p2 € Co(Y — R).

Proof. (i) This statement is obvious. Indeed, by (3.16), 7 (g1, g2] = mf?_ [91, 92].
(ii)) We define, for each g1, g2 € G,

A@[gy, go] = m P, g1, ga] + m P (g1, 75] + m P, (g1, 0] + mP[g,, 7o) (3.21)

Then (3.20) folllows from (3.16) and the observation that
B(pr @ gr) = AT (or @ g) + A (01 @ 7y,)

for any 1, 2 € Co(Y — R). O

3.4 Fock state on the ()-ACR algebra

We will now see that our considerations in Chapter 2 allow us to construct the so-called
Fock state on the Q-ACR algebra.
For ¢ € Cy (V) and g € G denote

At(p@g)=a(p®yg), A (p®g)=a (p®yg), (3.22)

where the operators a™(p ® g) and a (¢ ® g) are defined as the usual creation and
annihilation operators in the @Q-symmetric Fock space F (H). In particular, A% (¢ ® g)
and A~ (¢ ® g) act continuously on Fg, (H).
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Recall that the linear span of functions of the form ¢; ® s ®- - -®p, with @1,...,p, €
Co(Y) is dense in Cy (Y™). It is easy to see from Chapter 2 that, for arbitrary #;,...,4, €
{+,—}, the map

Co(Y") X G" 3 (#1,. -, ¢n gs - gn) = AP (1 @ g1) -+ A (00 @ gn) € L (Fiin(H))

can be uniquely extended to the map

Co(Y")xG" > (gp(”),gl,...,gn) —

o (<P(n)(y1, e ayn)gl(21> e 'gn(zn)§ B0, ﬁn) €L (]:ﬁn(H))
such that
(1) if @™ (g1, yn) = ©1(41) - - - @n(yn) with @; € Co(Y'), then

O (0™ (y1, . yn)gi(21)  Gnl(zn)i b tn) = AP (1 @ g1) - A (00 @ ga);
(ii) for each F' € Fgn(H), the map

CO (Yn) X g > (So(n)’ g1, - - - 7gn) = q)(n) (¢(n)<y1a s 7yn)91<21) o gn(zn)) Fe fﬁn(%)

1S continuous.

In particular, by Proposition 2.60, we have, for any ¢1,...,¢min € Co(Y) and

9155 9m+n € g’

<a+(901 ® 91) T a+(90m ® gm)a_(gpm—i—l ® gm—i—l) o 'a_(¢m+n ® gm-i-n)u(k)) (9317 s ,:Ul)

=P l(e1®g1)(x1) - (om ® gm)(xm)/ o (dat - - - da’)

n

(@m—i-l ® gm+1)($;)(ﬂpm+2 ® gm+2)($;z—1) T (@m-kn ® gm-l-n)(x/l)

k / !
x ul )(l'l,...7$n7$m+1,...,xl):|,

where u®) € Fi.(H), k > n, and | = k — n +m. Hence, for f("*") ¢ F(X™*"), we have

(WOmm (£t )y (g ) = (@D (o 4 By, )
———— ——
m times n times
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=B [/ @ (day - dal ) fT (a2l 2 2))

xub(xh, o al Tmg, 1) ] (3.23)

9 n’

This gives a representation of the ()-ACR algebra.

Definition 3.13. Let A be the Q-ACR algebra as described above. The state 7 on A
defined by
7(a) = (af, ) 4, for each a € A (3.24)

is called the Fock state.

Lemma 3.14. Let 7 be the Fock state on the Q-ACR algebra A. For any #1,...,8, €

.....

Proof. Assume #; = -+ =t,, = +, i1 = -+ = fen = — and m +n > 1. Then
= 0. Indeed, if n > 1, then the annihilation operators map the vacuum vector

to zero, therefore

Hmn) (f(ern); B, ﬂern) 0O=0.
If n =0 and m > 1, then

(M. 4 )= ™ e FL(H).
——

m times

This implies that
(@ (£ 4 )2, Q) pay = 0.

——
m times
In the case, where f#,...,4, € {—,+} are not Wick ordered, i.e, for some i €
{1,...,n—1} we have ff; = —, #;11 = +, we apply formula (3.5) to bring #3,...,4, € {—,+}

to a Wick order. From here we easily conclude that the functional Tﬁ(ﬁ?_ﬂﬁn :Co (Y™)xG" —

C is indeed continuous. O
Remark 3.15. Tt follows from the proof of Lemma 3.14 that, for the Fock state 7, we have

T(AT(f) - AT (fn) A (fins1) - A (frnin)) =0 (3.25)

if m4mn > 1. Here f1,..., frin € F(X™). In particular, the measure v?[gy, go] from

Lemma 3.12 (i) is equal to zero.

85



Remark 3.16. For the Fock state 7, the measure A gy, gy] from Lemma 3.12 (ii) is
determined by

[ #0053, gl ) = [ el [ 5ioeIncaz)

:L¢(2)(y,y)u(dy)(g2,g1)g,

ie.,
A2 (g1, go](dys dyo) = (g2, g1)g v (dyy dys), (3.26)

where v is the measure on Y2 given by
/ PP (Y1, y2)v? (dy, dyz) = / Py, y)v(dy). (3.27)
y?2 Y
Our next aim is to calculate 7 (B(f1)--- B(f,)) for a general n. It is obvious that if
n is odd, then 7 (B(f1) -+ B(fn)) = 0, therefore we only need to deal with the case of an
even n.
For each even n € N, we denote by Pz(") the collection of all partitions of the set

{1,...,n} into n parts, each of which has exactly two elements.

Proposition 3.17. Let 7 be the Fock state on the Q-ACR algebra A. Then, for any
fi,- o, fn € F(X), we have, for an odd n,

T(B(f1)--- B(fn)) =0,

and for an even n,

T(B(f) B(f)) = > / ( 024 a@)(d:@dmmfj(xj))cz(s;xl,...,a:n>,
cep 7 X" Migyeg i<y
(3.28)

(2

where 0 is the measure on X? given by

f(2)(x1,m2)0(2)(da:1 dl’g)z/ f(2)(x,x)a(dx)
X2 X

and

Q&ar.cw) = []  Qaway).

{i,g}, {k,1}e€
i<k<j<l
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Remark 3.18. In the case where the functions fi,..., f, are real-valued, the statement of

Proposition 3.17 follows from Corollary 4.8 in [23].

Proof. For each f € F(X), we define continuous linear operators At (f), A~ (f) on Fg,(H)
as follows: AY(f) = af..(f) and A~ (f) acts as follows:

(.Af(f)g(”)) (X1, Tp1) :/ o(dz") f(x) [g(”)(a:/,acl,...,xn_l)

X
n—1
+ Z Q({El, l’l)Q(ﬂfl, xQ) e Q(ZE,7 xk)g(n)(xlu vy Ty Il? LThtly - 7xn—1)} ) (329)
k=1

where g™ € HE™,
Lemma 3.19. For any f1,..., [, € §(X) and t1,...,4, € {+,—}, we have
(AR () A5 ()0,0) 1 = (A (F) - A (£,)0.0)
Proof. For each u(™ € H®", formula (2.14) implies
at(H)Poul™ = Py (f@u™) = Py (AT(f)ul™) . (3.30)
By Proposition 2.60 (ii),
a” (f)Poul™ = %af_m(f) (I ®@ Pocy) [+ U + U1Us + -+ UiUs - Upg Ju™. (3.31)
We observe that, for u(™ € H®",
o £) (1 ® Pa)u® = Py sz (Fu. (3:2)
Hence, formula (3.31) becomes
a” (f)Pyul™ = Pn_%aﬁee(f) 1+ U+ U Uy + -+ UUp - Uy Ju ™.
Hence, by (2.78), we get
a (f)Poul™ = P,y A= (f)u™. (3.33)

By (3.30) and (3.33), the lemma follows. O
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For f € F(X), we define
B(f) = A" (f) + A~(f).
Then, by Lemma 3.19,

T(B(f1) -~ B(fn)) = (B(f1) -+ B(fn)$2, Qgqyy - (3.34)

Recall formula (3.29) and set ¢/ = fi @ fo®@ -+ ® fn, fi € F(X). We will say that

the term

/X o(da’) Q(z', x1) -+ Qs ) (") forn (@) fr(wr) - - fi(w) Frva(Thin) - fu(wnn)

describes how the operator A~ (f) annihilates the function fr.;. Note that the term
Q(z',x1) - - Q(2', xy) corresponds to the vectors fi, ..., fr that appear on the left of f,q
in the tensor product fi @ fo® - @ fi @ fr11 ® - ® f,. Thus, the annihilation operator
A~(f) crosses all living vectors fi,..., fr when it annihilates f; 1, and each time when
A= (f) crosses a living vector f;, this contributes the factor Q(z’', ;).

It immediately follows that, when evaluating the right-hand side of formula (3.34), one
can describe the obtained result by using partitions £ from 772("). Indeed, each {k,l} € ¢,
k < I, says that, in the respective term, the operator A~ (ﬁ) annihilates the vector f.

Let {k,l} € & k < I, and consider any {i,j} € &, i < j, such that 1 < k < 7 < L.
Then the operator A~ (f;) annihilates f; and later on the operator A~(f;) annihilates f;.
Therefore, at the time when the operator A~ (f;) annihilates f;, f; is a living vector and

this contributes the factor ¢)(xy,x;). This proves the proposition. ]

Corollary 3.20. For any g1,9: € G, let the measure X2 [gy, go] (dy1 dy2) on Y? be given
by (3.26), (3.27). Let T be the Fock state on the Q-ACR algebra A. Let pq,...,p, €
CoY = R) and g1,...,9, €G. Then

T(B(p1 @ g1) - B(pn @ gn))

- Z/ ® AP g“gj dyzdyy)%(yl) o (Yn) Q& Y15 - -5 Yn),

gep(™ Y™ figee, i<y

where

Q&y,-w) = I Q) (3.35)

{i.g}, (k.1 g
i<k<j<l
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Proof. The statement follows immediately from Proposition 3.17 and formulas (3.1),

(3.26), (3.27). 0

Remark 3.21. As easily seen from the proof of Proposition 3.17, its statement allows for

the following generalization: For any er,. .. en, f1, ..., fa € F(X), we have, for an odd n,
T((AT(H) + A7 (1)) - (AT (fa) + A7 (en))) =0,
and for an even n,
T ((AT(f1) + A7 (er)) - (AT (fa) + A7 (en)))

= > / Q) oD (dwiday)ei(w:) fi(z;) | Q& . xn). (3.36)

cepi T X" \lidyeciici

In particular, for any ¢q,..., 99, € Co (Y — R) and g1, ..., g2, € G, we have

T (AT (1@ 1) A7 (00 ® gn) AT (Pn11 ® Gnyr) - AT (P20 © gn))

> [ @ rnin) [ s

1<i<n
nt+i<j<2n
X ©1(y1) -+ P2n(Y2n) Q& Y1, -+ 5 Y2n), (3.37)

where the function Q(&; v, . .., Ya,) is defined by (3.35).

3.5 Quasi-free states on the ()-ACR algebra

In the classical case of bose and fermi statistics, one defines a quasi-free state on the
CCR/CAR algebra by generalizing formula (3.28) with ) = £1, which is valid for the
Fock state. An important subclass of quasi-free states is given by gauge-invariant quasi-
free states. In the case of anyon statistics, gauge-invariant quasi-free states were studied
in [22]. However, we will see below that, in the anyon setting, gauge-invariant quasi-free
states do not satisfy a reasonable generalization of the definition of a quasi-free state,

hence the class of gauge-invariant quasi-free states is smaller than the class of what we
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will call strongly quasi-free states.

In view of our results from Sections 3.1 and 3.4 we now give the following

Definition 3.22. Let A be a Q-ACR algebra and let 7 be a state on it. Assume that the
state 7 satisfies the assumption of Proposition 3.11. For each g1, g2 € G, let the complex-
valued measure A? [g1, go] on Y2 be determined by formula (3.20). We say that 7 is a
strongly quasi-free state if for any ¢1,...,0, € Co(Y — R) and ¢1,...,9, € G, we have,

for an odd n,
7(Blpr @ g1) -+ Blpn @ gn)) =0 (3.38)

and for an even n,

T(Be1® g1) B0 ® gn))

= Z/ Q) A [gi, g5 (dyi dy;)er (1) - n(n)QE v, ym). (3.39)

cep(® V" {igheg i<i
Here Q(&; vy, - - ., yn) is given by (3.35). In particular, the state T is completely determined

by the measures A\? [g1, g2] (91,92 € G) and the function Q(y1,y2).

Corollary 3.20 implies:

Proposition 3.23. The Fock state on the Q-ACR algebra is strongly quasi-free, and in
this case the measure X2 [g1, go] on Y2 is given by (3.26), (3.27).

Consider a -ACR algebra A. Let us fix a constant ¢ € C, |¢| = 1, and let us define

the operators
AT(f) = A¥(ef), A(f)=A(ef),
As easily seen, these operators also satisfy the ()-ACR. Furthermore,

(A(f)" = (AT(cf))" = A(ef) = A (D).

Hence, we can define a new Q-ACR algebra A by setting, for any 1, ..., f, € {+,—} and
fi e FXm),

S(F ™t ) = BTt ), (3.40)
where k is the number of pluses among f1,...,, and [ is the number of minuses among

1, ., 8-
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Next, we note that A and A coincide as sets (A = 1&) Furthermore, the x-operations
in the algebras A and A coincide. Therefore, we can consider the state 7 on A as the

mapping 7 : A — C and this map determines a state 7 on A.

Definition 3.24. We will say that the state 7 on the Q-ACR algebra A is gauge-invariant

if, for each constant ¢ as above, the states 7 and 7 coincide.

In view of Proposition 3.11 (i), the state 7 being gauge-invariant means that
F (A1 @) A (o © ) A (Pt @ Gtr) -+ A (Prntn @ Gt
=T (AJF(SOl ® gl) U A+(¢m ® gm)A_(()Om-‘rl ® gm—i—l) U A_<90m+n ® gm-‘rn)) .
But formula (3.40) implies
F(A (1 ®91) - A (P ® g A (Pt @ gms) -+ A (G © G
=c" " (A+(901 & 91) T A+(30m ® gm)Ai (@erl ® gm+1) AT (me+n ® 9m+n)) .

For m = n, ™" = ¥ = 1, whereas if m # n, ¢ # 1 and ¢™ " # 0 for some ¢ € C,

lc| = 1. Hence, the state 7 is gauge-invariant if and only if, for all m # n,

T (A+(901 ® 91) o 'A+(90m ® gm}A_(SOm-H ® gm—i-l) T A_(‘Pm-i-n ® gm+n)) =0.

Definition 3.25. Let A be the Q-ACR algebra and let 7 be a state on it. Assume that
the state 7 satisfies the assumption of Proposition 3.11. For any g¢i,9. € G, let the
complex-valued measure v [g;, go] on Y? be determined by (3.19). We say that the
state 7 is gauge-invariant quasi-free if for any m,n € Ng, ©1,..., @min € Co(Y) and

gi,-- -y 9m+n - g, we have

T (AT (1@ g1) - AT (om @ gm) A (Pmi1 @ Gmr1) - A (Pintn © Gmin))

= 5m,n Z ® 7(2) [917 93](d.% dy]) @1 (yl) Tt @Qn(an)Q(ga Y1, 7y2n)'
cepn) Y2 G Yee 1<i<n
2 n+1<5<2n
(3.41)

Here Q(&; 1, -+, Yan) is defined by (3.35). In particular, the state 7 is completely deter-
mined by the measure Y [g1, go] (g1, 92 € G) and the function Q(&;y1, ..., Yan).
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By analogy with [22], we will now construct a class of gauge-invariant quasi-free states

on the Q-ACR algebra. To this end, we will
e construct the vacuum state on a certain Q-ACR algebra over a larger space X;

e consider a properly chosen sub-algebra of the Q-ACR algebra, which will be iden-
tified with the -ACR algebra, and the vacuum state on the Q-ACR algebra will
yield a quasi-free state on the sub-Q-ACR algebra of the Q-ACR algebra.

Denote by X7 = Y] x Z;, X9 = Y5 X Z5 two copies of the set X, and consider their
disjoint union
X - X1 L XQ.
Note that
X% = (X] x X)) U(X] x Xo) U (Xy x X1) U (Xs x Xo).

Let B(X) be the o-algebra on X such that, for each A € B(X), AN X; € B(X;) and
ANX, € B(Xy).

We consider the measure on (X, B(X)) that satisfies that its restriction to (X, B(X;)),
i = 1,2, coincides with the measure o, considered as a measure on (X;, B(X;)). We will

keep the notation o for this measure on X. Then we obviously have
L*(X,do) = L* (X,,do) ® L? (X, do) .

We denote H = L? (X, do).
We define a (continuous) function Q : X? — C by
Q(x1,22), if x1,29 € X or 71,19 € Xo,
Q(z1,22) = (3.42)
Q(l’g,l’l), if xr1 € Xl, To € XQ or rj| € XQ, To € Xl-
Note that |Q(z1,z2)| = 1 and Q(z2,21) = Q(z1, x2) for all (zy,15) € X2,
We denote by A the Q-ACR algebra corresponding to the function Q. Let 7 denote
the Fock state on Q-ACR A.

Remark 3.26. Denote
Y:YIUE, Z:le_lZg.
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We obviously do not have the representation of X as Y x Z, instead X is a subset of
Y x Z. So strictly speaking we cannot apply the results of Sections 3.3, 3.4 to this case.
Nevertheless these results still hold in the current setting after one has done a trivial
modification. In particular, the counterpart of formula (3.2) should be read as follows.

We define §(X") as the linear span of functions f( : X" — C such that, for each

----- in )

fz(ln) in(xh s 7xn) = w(n)(yl’ cee 7yn)gl(zl) c '.gn(zn)>

.....

(n)

where o™ € Cy(Y™), g1,...,9, € G and the choice of functions ¢, g1,..., g, depends
on (i, ..., 1)
In accordance with the intuitive formula (3.3), we will denote elements of the Q-ACR

algebra by
/ £ (@1, w)at (31) - - 2 (w,)o(dan) - o (day) (3.43)

for f™ € §(X") and #1,...,4, € {+, —}.
Let (i1,...,i,) € {1,2}" and assume that

f(n)<$1, R 7(L'n)7 if (.Tl, R ,Q?n) € Xz X XZ X X X’in7
£ (2, ... @) = L (3.44)

0, if(l’l,...,l'n)¢Xi1XXZ‘2X"'XXZ'7L.
where (™ € F(X™). In this case, we will denote the corresponding element (3.43) of the
Q-ACR algebra A by

[ aa (e - o (dn) - o(dr,). (3.45)

So, informally, for § € {4+, —}, i € {1,2}, and = € X, a’(z) is equal to a*(z), where z is
identified with an element of Xj.

Recall that »r € {—1,+1} is the value of the @ function on the diagonal, i.e., Q(y,y) =
s for all y € Y. In view of (2.130), (3.10) and (3.42), the operators a’(z) with i € {1,2}

and § € {4, —} satisfy the following formal commutation relations:

al(v1)al(22) = Q(aa, 1)al (w2)al (21), i€ {1,2}, f€{+ -}
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al(xy)al(22) = Q(a1, 12)al (z2)al(zy), 0,5 € {1,2}, i #j, 4 € {+ 1},

a; (z1)a] (v2) = 0(z1,22) + Q(z1, 72)a] (22)a; (z1), i€ {1,2},

a; (r1)aj (z2) = Q(a2, 11)af (x2)a; (v1), 1,5 € {1,2}, i # ],

a; (z1)a; (w2) = —50(z1,22) + Q(z1, 22)a; (w2)af (1), i€ {1,2},

af (z1)a; (13) = Q(xz,xl)a;(xg)aj(xl), i,7 €{1,2},i# . (3.46)

Note that, for z; € X; and x5 € X; with i # j, the term 0(zy, x2) vanishes.
Let us fix a bounded linear operator K € £(G). In the case s = 1, we assume that

K >0, and in the case » = —1, we assume that 0 < K < 1. Let
K, =VEK, Ky=+1+xK.

For a bounded linear operator B € L(G), we denote by B’ its complex conjugate
operator, i.e.,

B' = JBJ, (3.47)

where (Jg)(2) = g(z) is the complex conjugation in G.
Let f =@ ® g with ¢ € Cyp(Y) and g € G. We define

A*(f) = /X o) (Kag) (2)a (2)o(dx) + / o) (Kng) (2)aj (2)o(d),

X

A(f) = /X o) (Ks9)(2)ag (2)o(dz) + / o) (Kig)(2)at ()o(dz).  (3.48)

X
Remark 3.27. Note that the representation f = ¢ ® ¢ is not unique. Indeed, choose an
arbitrary constant ¢ € C, ¢ # 0. Then f = (cp) ® (1 g), where cp € Co(Y), 2 g € G. But,
for each operator B € L£(G), we have (cp) ® (B g) = ¢ ® (Bg). Hence, the definition of
A*(f) and A~ (f) does not depend on the representation of f as ¢ ® g.

Proposition 3.28. We have (A*(f))" = A=(Jf) and the operators A*(f), A=(f) defined
by (3.48) satisfy the Q-ACR.

Proof. The statement easily follows from the commutation relations (3.46). We only need

to note that for any p1 ® g1, Y2 ® go with 1, s € Co(Y) and g1, 92 € G, we have

/X p1(y) (K591)(2)a(y) (Kaga) (2)o (dx) — 5 /X ©1(y) (K191)(2)@2(y) (K192)(2)o (dx)
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= (02 ® (K292), 71 ® (Kzﬁ))Lz(X,U) — #(p2 ® (K192), 71 @ (Klﬁ))Lz(Xﬂ)

= (p2 ® (K3g2), 21 ®91)L2( o) — (2 ® (K1292)7W®E)L2(X70)

= (P2 ® 1+%K)92,Jf1)L2(XJ)— (902®(K92)a<]f1)L2(X70)

~ (I o) = [ ila) fla)oldo) a

We formally introduce operators A*(z), A~ (x), x € X, such that, for each f = p®g

_ / f(@)A* ()0 (dx),
/ " i), (3.49)

where AT(f), A=(f) are given by (3.48).

By Proposition 3.28, A (x), A~ (x) satisfy the Q-ACR, i.e., formulas (2.130) and (3.10)
hold with a*(-) a~(-) being replaced with A*(-), A=(-).

Let ™ € Co(Y™) and g1,. .., 9, € G and let

with ¢ € Cy(Y) and g € G,

f(n)(xla ey Ty) = Sp(n)(yh e Un)gi(21)  gnl(2n) € F (X))

We now want to define, for #;,...,4, € {—, +},

PO @, ) AR (1) - A ()0 (day) -+ o(d).
Xn
To do this, we define the operators
K(+,1) =Ky, K(+,2)=K,,
K(—,1)=K;, K(—2)=K,.
We also define
7<+7 1) = 7(—’_72) = +7
7(_7 1) =+, 7(_72) = -
Note that, using these notations, we can re-write formulas (3.48), as follows:

A (f) = /X o) (K(+,1)g) (2)a] (@) (dz) + /X o) (K(+,2)g) (2)a] "2 (@)o(dz),
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A(f) = /X o) (K (= Do) (2)al ™ (@) (dz) + / oK (= 2)9)(2)a) " (@)o (dz).

(3.50)

Then, in view of formulas (3.49) and (3.50), we define

< (K ($1,0)01) (21) - (K (B, i) gn) (za)al ™™ (1) -2l ¥) (2,) o (21) - - o (day).
(3.51)

In particular, if 0™ (y1, ..., yn) = @1(41) -~ u(yn) With @1,... ¢, € Co(Y), we have

F (. an) AR (@) - AP ()0 (day) - - - o(day) = AR (fy) - A (f,),  (3.52)

X’ﬂ

where fi(z) = ¢i(y)gi(2).

Next, we extend our definition of

FM (. xy) AR () - AP (2,)o(dy) - - - o (day), (3.53)
Xn

by linearity to the case where f(™ is an arbitrary element of § (X™).

Obviously, each element of the form (3.53) belongs to the Q-ACR algebra A. Let A be
the unital *-algebra generated by elements of the form (3.53). Thus, A is a sub-x-algebra
of A. Hence, the restriction to A of the Fock state 7 on A is a state on A. We will keep

the notation 7 for this state on A.

Theorem 3.29. Forty,...,t, € {—,+} and f™ € F(X"), denote

Xn
Then the ®™ (f™;ty,... #,) satisfy conditions (3.4), (3.5), and (3.6). Hence, the
x-algebra A can be considered as a Q-ACR algebra. Furthermore, the state T on A is

gauge-invariant quasi-free, and the corresponding measure ) (91, 92] is given by

YD1, go) (dyrdys) = v (dys, dys) /Z (Kg1)(2)g2(2)p(dz). (3.55)
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Proof. 1t follows from formulas (3.50), (3.51), (3.52), (3.54) and our considerations in Sec-
tion 3.4 that Proposition 3.28 implies that conditions (3.4), (3.5), and (3.6) are satisfied.
Thus, A can be considered as a ()-ACR algebra. O

Lemma 3.30. For anyn € N and t,...,4, € {—,+}, the functional

Tﬁl ..... fn (Sp(n)7 g1 - .- >gn) =T ((D(n)(w(n)(yl? s ,yn)g1(21) e gn(’zn); ﬂla SR ﬂn))
is continuous on Co(Y™) x G".

Proof. Let us fix arbitrary f,...,8, € {—,+} and 4y,...,4, € {1,2}. Consider the

functional

.....

T;i """ ;’; (@(n)agla---,gn) = T</ ey, yn)g1(z1) - gn(za)

11 in

X ay(ﬂl,il)(xl) .. .afy(ﬂ”’i")(xn)a(xl) T U(d$n>>

on Co(Y™) x G". It follows from Lemma 3.14 that this functional is continuous.

Since the operators K, K», K1, K} act continuously on G, the functional

CO(Yn> X gn > (gp(n)v g1, ... agn) — 7_;11 ..... ’QZ (SO(N)’ K(ﬂly ’il)gla oo 7K(ﬁny Zn)gn)

.....

1s continuous.

By formulas (3.51) and (3.54), we have

Tﬁ? ..... fn (Qo(n)a g1, - - 7gn) = Z T;i ..... gz ((p(n)a K(Jﬁb il)glv BRI K(Jjn7 Zn).gn) :

(21,00 )€{1,2}™

Hence, Té?) 4, is continuous on Co(Y™) x G". O

.....

For any @1, p2 € Co(Y) and g1, 92 € G, we have, by (3.48),

T (At (g1 ® 91) A (92 @ o))

=T (/X 901(y1)(K191)(21)a1(xl)a(dl‘l)/X<P2(3/2)(Kigz)(@)af(l'z)ff(dfﬂz))
~ [ eenvidn) [ (K@) Kig @l
:/Y801(3/1)<P2<Z/2)V(2)(dy1d3/2)(KlgbK1J92)L2(Z,du)
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:/Y801(91)902<y2)V(2)(dyldQQ)(KQMJQQ)LQ(Z,du)
= [ ertmeatun®dnd) [ () Ghaa(huta)
= /Y 01(y1)e2(y2)7? g1, 92) (dyr dy), (3.56)

where the measure 7 |[g1, go] is given by (3.55).
Similarly, we have for ¢1,- -+, @min € Co(Y) and g1, ..., gmin € G,

T (AT (1 ® 1) - - AT (0m © gm) A™(Pmr1 @ Gmt1) - A (Pmtn @ Ginn))

- 6m,nr( /X o1 (1) (g (21)ai () (dey) - /X o) (Erga) ()0 ()0 (d,)
x /X et 1) B ) (2 )@ (1) (i)

o [ ) (Ko o )af (oo,

= nn D Q) vl gi)(dyidy;)pr (11) - - Pon(Y20)Q(E yrs - - - 2m),
cepSm) Y2 (i jee, 1<i<n
’ n+1<j<2n

where the last equality follows from (3.37) and (3.42).

Theorem 3.31. (i) Let the function Q be not real-valued. If K # 0 and for » = —1, if
additionally K # 1, the state T is not strongly quasi-free.
(i1) Let the function Q be real-valued, i.e., Q(y1,y2) = 3¢ for all y1,y2 € Y. Then the

state T is strongly quasi-free and the corresponding measure X2 [gy, gs] is given by

A2 (g1, 95) (dyn, dya) = v (dyy, dyo) ((92791)9(2#) + (K91, 92) 1207, + %<K91792)L2(Z,#)> '
(3.57)

In particular, for » =1, we have

AP (g1, o] (dyr, dya) = v @ (dyy, dys) ((gg,gl)LQ(z#) +2Re (Kgl,gz)LQ(Zvu)> . (3.58)
and for » = —1,

A®) [91, 92] (d?h, dy2) = V(Z)(dyl, dy2) ((92, gl)LQ(Z,;L) + 2iIm (th 92)132(2#)) . (3-59)

Remark 3.32. As mentioned above, part (ii) of Proposition 3.31 is of course well-known.
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Proof. For any ¢ € Cyp(Y — R) and g € G, we have, by (3.17),

Ble®g) =AM (e®g)+ A (¢® (Jg)). (3.60)

apeg) = [ el @oldn) + [ ow)(TKig)()ai (@)o(d)

X

where

(K79)(2) = Xz, (2)(JK19)(2) + X2 (2) (K29) (),

(K™9)(2) = x2,(2)(K19)(2) + X2, (2)(JK29)(2). (3.62)
Then, by (3.48), (3.60) and (3.61),
Ble®g)=A"(p®g9) + A (p®g). (3.63)

Let us now prove part (i). For any ¢q,..., vy € Co(Y — R) and ¢y, ..., g1 € G,

consider

T(B(p1 @ 1)+ Blpa ® g4))
=7((A" (1 ®g1) + A (L1 ®91)) (A (2 ® 2) + A (02 ® g2))

X (A*(ps @ g3) + A (93 ® g3)) (AT (02 @ ga) + A" (01 ® g4))). (3.64)

To calculate the right-hand side of (3.64), we use formula (3.36). Consider the term
corresponding to the partition & = {{1, 31,42, 4}} e PW:

/X4 o (dzy ds)o® (dws drs)er (y1) 2 (y2) s (ys)oa(ya)

x (K7g1)(21) (K™ g2)(22) (K" g3) (23) (K" 94) (24) Q(y2, y3)-
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Note that, for yo,y3 € Y;, i € {1,2}, we indeed have

Q(y2,y3) = Qv2, y3)

but for y» € Y;, y3 € Y; with @ # j,

Q(y2, y3) = Q(y2, y3)-

But to have a strongly quasi-free state, we must only have Q(ys, y3) for this term. Hence,
unless the function @) is real-valued or one of the operators, K; or K, is equal to zero,
the state 7 is not strongly quasi-free.

We now prove part (ii). By (3.36), (3.60), (3.61) and (3.63), the state 7T is strongly

quasi-free and the corresponding measure A [g;, gs] is given by

AD(gy, g2](dyy dyz) = v (dy, dys») /Z (K1) (2) (K" g2) (2)(dz).

By (3.62),

| oK ) (nta)
- [ B UK ) + [ (TKa) ) Fag) ()

Z

= (K191, K192)g + (K292, Kag1)g
= (Kg1,92)g + (1 + 2K)g2, 91)g

= (92, 1)g + (K g1, 92)g + (92, Kg1)g- (3.65)
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Chapter 4

Gauge-invariant and strongly
quasi-free states on the Wick algebra
of multicomponent commutation

relations

The aim of this chapter is to define and study gauge-invariant quasi-free and strongly
quasi-free free states on the Wick algebra of multicomponent commutation relations.
Unlike the case of the Q-ACR, our construction will be done under additional, rather
restrictive assumptions on the function C(zy,x,) taking values in £(V®?). Nevertheless,
when the dimension of V' is two (i.e., for a two-component quantum system), we will show
that the class of functions C(z1, z5), that was proposed in [9, Example 4.9], does satisfy
our assumptions. Hence, we are able to construct a gauge-invariant quasi-free state on
the corresponding Wick algebra. Furthermore, for a non-trivial subclass of this class, the
corresponding states appear to be strongly quasi-free. This happens in stark difference
with the case of the Q-ACR, where we could not find non-trivial examples of strongly

quasi-free states.
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4.1 The algebra of multicomponent commutation re-

lations (C-MCR)

Just as in Chapter 3, we assume that X =Y x Z and 0 = v ® p. Let V be a complex
Hilbert space, and this chapter we will assume that V is finite-dimensional. We will

denote by d the dimension of V.

Remark 4.1. Let us explain why we now need V' to be finite-dimensional. As well-known,
if V is a separable Hilbert space, then the space V®? can be identified with Hilbert—
Schmidt operators in V. Indeed, let us fix an arbitrary orthonormal basis (e,),>1 in V.

Then each f) € V®2 is of the form

FO = 5" (2, e ® en)ves em © e,

m,n>1

and
1FONF ez = D 17 em @ en)].
m,n>1

Then we can identify f® with the Hilbert-Schmidt operator A in V whose matrix in

the (e,)n>1 basis is A = [( f? e, ® en)} and every Hilbert—Schmidt operator in V'

m,n>1
is of this form. If we additionally assume that V' is finite-dimensional, then each linear
operator A in V is of trace class, and the trace of A is given by

d

d
TrA= Z(Aenv en)V = Z(f(2)7 en @ en)V®2'

n=1 n=1

Here we identified A with ) € V®2. Hence, we can define the linear functional

d
VO3 O s T fO =3 (f@ e, ®e,)yee € C

n=1

and this definition does not depend on the choice of a basis (e,)n=1...4 in V. Note that,

.....

for any vy,v9 € V,

Tr(v; ® vg) = (v1,Va)y -
Here (vy, va)y = (v1, Jug)y.

We fix a map C': Y? — £ (V®?) that satisfies the following
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Assumption 4.2. (i) The map C' : Y? — L (V®?) is continuous;
(i) For each (y1,42) € Y2, C(y1,¥2) is a unitary operator in V®?;
(iii) For each (y1,2) € Y, C*(y1,92) = C(y2,%1);

(iv) The functional Yang—Baxter equation is satisfied point-wise, i.e.,

C1(y1,y2)Ca(y1, y3)C1 (Y2, y3) = Ca(y2, y3)Cr (Y1, y3)Co(y1, 42), (1, 92,93) € Y. (4.1)

We will also consider C' as a function on X? by setting C(y1, 21, y2, 22) = C(y1, y2).
We have

H=13(X = V,o)=L*(X,0) @V = L*(Y,0) ® L*(Z. 1) ® V.
Hence, we can interpret H as
H=L*Y = V,v)® L*(Z,u).

Just as in Section 3.1, we denote G = L?(Z, u1). Next we define Co(Y™ — V") to be
the space of all continuous maps ¢™ : Y™ — V& with compact support.

Similarly to (3.2), we define

X" = VI = Co(Y™ = V) Qg GF"

=Lls. {f(n)(xlv s 7In) = gp(n)(yh s 7yn)gl(zl)7 s 7.g’rL(Zn) |
e e Co(Y" = V), g1,..., 9, €G ).

We fix a complex conjugation J : V' — V| which determines the complex conjugation

J V& — Ve This can be done by fixing an orthonormal basis (e;);—1.. 4 in V, and

-----

setting Je; = e; for all i. For u™ v € V& we denote
<u(n)’v(n)>v®n — (u(n)’ JU("))V@L
Forn >2and i€ {1,...,n— 1}, we define
Tr; : VO — V®("72), Tr, =11 @ Tr®1,,_1_;.
Lemma 4.3. For f™ € (X" = V&), n>2 andic {1,...,n— 1}, define
pn=2 X2 Y e
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by
pn=2) (X1, .., Tpg) = / Tr; £ (T4, Ti1, T, X, Ty ooy Tp_o)O(d).
X

Then h"=2 € F(X"2 — Ver-2),
Proof. By linearity, it suffices to check that the statement holds for f of the form
FO 1) = @y g (z1) - gal(za),
with o™ € Co(Y™ — V) and g1,...,g, € G. But then
RO (2, .. dyg) = /YTri O (Y, Yty U Ys Vi -+ - > Y2 )V (dY)
X (/Z 9i(2)9i+1(2)ﬂ(d2)) 91(21) -+ - gio1(2im1)gira(zi) -~ gn(2n-2),

which obviously belongs to (X2 — V&r=2),

]

Intuitively, elements of the C-MCR algebra can be represented by operator-valued

integrals

/n<f(”)(x1, ), d (1) ® - ® aP (x,))ven o(day) - - - o (dxy)

(4.2)

where f™ € F(X™ — V") and fi1,...,4, € {+, —}. These operator-valued integrals are

subject to the commutation relation of Corollary 2.94. More precisely, ifi € {1,...,n—1}

and f; = f;11 = +, then

/n<f(")(x1, ), d (1) ® - @ dP () ven o(day) - - o(dxy)

- / <C¢(iﬂi,$i+1)f(n)($1, e i1y B 1, Tis T2, - - -, Tn), (Iﬁl(l'l) SO aﬁ"(l'n))V@"

X o(dxy) - o(dzy,).
Similarly, for #; = ;11 = —, we get

/n<f(")<:c1, ), @ (1) ® - @ P (20) yen 0 (dy) - - o (day)

= / @(@H, xi)f(n) (xh ey L1, T 1, Ty Tjg 2y - - - 7$n)7 aﬁl(ﬂh) Q- Q& aﬁ”(In»V@n

X o(dxy)---o(dzy,).
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If 4, = —, £ = +, then

/n<f(n)<$1a ), d (1) ® - ® aP () ) ven o(day) - - - o(day)
= /n@i(%xm)f(n)(xh @), @ () ® @ (3m) ® P (244) @ P ()
® aF+2(2449) ® - - ® ™ (2,))yeno(day) - - - o(day,)
+ /Xn? </XTri @y, .z, @, @, Tiga, - )0 (d),

A (11) @ - aF 7 (5m1) @ @AF (2442) @ -+ © aﬁ"(“’n)>v®n

X o(dxy) - o(dr;_1)o(driie) - o(dxy,)

= /n<5,;(xl-+1,xi)f(”)(x1, T 1, a1, Tiy Tig2, ),
A" (21) ®@ - @ a1 (2;) ® a¥ (1141) @ - @ @ (3))yem-n o(dTy) - o(dzy,)
+ / < /XTri FON @y, wy, @@, x Tpg)o(d),

A (21) @ @ a1 () ® (1) @ - @ a7 (T _2) ) pem-2)
X O'(dl'l) cee U(d$i,1)0<d$i+2) s O'(dl'n)

We also note that the adjoint of
/n<f(”)(x1, ), B (@) © - ® AP () yen o(day) -+ - 0(dy)
should be
/H<S(”)f(”) (21,..., %), a7 (2,) @ - @ a ¥ (21))yen o(day) - - - o(dxy)
= /n<S(”)f(")(:vn, L r)a T (1) ®@ - @ a M (1,) yen o(dpy) - o(dy,). (4.3)

Here similarly to (2.84), we used the continuous antilinear operator St . yen _ yen
that is defined by
Sy @ - Qv = (Jup) @ - ® (Juy). (4.4)

Defining the operator

G F(X™ = VE) = F(X" — V)
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(G(”)f(")) (21, ... @) =S (g, ay).
Therefore, formula (4.3) becomes
/n<(G(”)f(”))(x1, e et (@) @ ® 4 (1) )yen o(day) - - - o(d).
Similarly to the Q-ACR case, we will denote the integrals
/n<f(")(x1, ), @ (1) @ - @ AP () e o (day) - - o (d)

by @) (0, ) -
Definition 4.4. The C-MCR algebra is defined as the unital x-algebra that is generated
by elements of the form ®™ (f™):t; ... ,) for [ € F(X" — V®") and f1,...,4, €

{+, —}. These elements satisfy the following relations:
(i) fie{l,...,n—1} and #; = ;41 = +, then

W (fU5t1,. )

= (I)(n) (Cl($7,, QZ'H_l)f(n) (171, ey L1, Ly 15, Ly Ljt25 - - - ,an); ﬁl, c ,ﬁn) . (45)
(i) fee{l,...,n—1} and §; = ;41 = —, then

= o <@($z’+1,$i)f(n)($17 sy Li—15 Lit 1, Ty L2, - - - 71‘n); B, 7Hn> . (4-6)

(ii) Ifi € {1,...,n — 1} and §; = —, f;+1 = +, then

W (fM k1, )

= (I)(n) (52-(@“,1:1-)]”(")(1:1, e L1, X1, gy Ljg 2y - - - ,an), ﬂl; RN 7ﬂi+17 ﬁi? cey ﬂn)

+ q)(n—2) (/ TI'»L‘ f(")(xl, e i1, T, T, T4, . . ,In_2> O'(dlL’);ljl,. . ~7ni—17ﬁi+27 Ce ,ﬁn) .
X

(4.7)
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The multiplication in the C-MCR algebra is given by
B (£ ) B (5 s ) = B (£ g0 g
where f(™ € F(X™ — VE™) ¢ € F(X™ — V®) and
(f(m) ® g(”)) (21, - s Tman) = F (@1, T) @ ™ (Tt - - s L) (4.8)

(On the right-hand side of (4.8), the symbol ® denotes the tensor product in V®m+m))
The addition in the C-MCR algebra satisfies, for any A, u € C and f™, g™ € (X" —
Ven),

A(I)(n)(f(n)’ Hh sy ﬂn) + M(I)(n)(g(n)7 ﬁh ey ﬁn) = q)(n)()‘f(n) + :ug(n)a Hh ey ﬂn)
The *- operation in the C-MCR algebra is defined by
S (f )" = O (G, —t) (4.9)

We define
P,:F(X" = Vo) = F(X" = V)

by formulas (2.4), (2.8), (2.10) with
(sz(n)) (LUl, oo ,In> = Cz(l’z, I‘H_l)f(n)(Il, ey L1, L1y Ly Tjg2,y -+ - - 71‘”)7

for all (xy,...,2,) € X™. It follows from our previous considerations that the image of
P,, i.e., the set P, §(X™ — V&), consists of all functions f € F(X" — V") that

satisfy
f(n)(xlv s 7xn) = Cz(xla :L‘i—f—l)f(n)(xl) sy Li—15 Tit1, Ty T2, - - - axn)a

for all (z1,...,2,) € X" andi e {1,...,n —1}.
We define

P, F(X" 5 VO S5 F(X" = Ve, P, =G™P,GM.

It is easy to see that the operator 13n can be constructed similarly to the operator P,,

by starting with the operators (71 instead of U;. Here the operators 171 are defined by
(sz(N)> ('1:17 . axn) - Ci(xi-l—ly xz)f(n)(l'la vy L1, xi-i—la Zi, $i+27 ... ,l’n).
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The image of ]3n, i.e., the set P, F(X™ — V@) consists of all functions f™ € F(X" —
V@) that satisfy

f(n)<l’1, RN ,xn) = ai(l’lqu, xl)f(")(xl, s L1, L 15, Ly iy 25 - - - ,l’n)

for all (z1,...,2,) € X" andi e {1,...,n —1}.
We also define

SF) (X o VO = P @ P, F(X™ — i)

= {0 € FX" = VEY | By @ B fmtn) = flmim,

Thus, GF™™ (Xm+n — VEMEm) consists of all functions f"+7) € F(X ™ — V@(min)

that satisfy, for all (z1,...,2pn4,) € X™,

f(mm)(:ﬁ, ey Tmgn) = Ci(a, $i+1)f(m+n)(371> e Tt T 1, Tiy Tig2s - oy Tt
foralli e {1,...,m —1} and

f(mm)(xb ey Do) = @(%’H, xi)f(ern)(ﬂUla e i1, T 1, Tiy Tig2s -y Tongn)

forallie {m+1,....m+n—1}.

For m,n >0, m+n>1, fm) ¢ F(Xm+n 5 VeMmin)) we define
W(m,n)(f(ern)) — (I)(m+n) (f-(m+n)7 ﬁla o ﬁern) :

where 1 = ..., =t = 4+, fms1 = -+ = fmsn = — We call WM (f(m+1)) Wick-ordered
elements of the C-MCR algebra.

By the commutation relations, we have
W(m,n)(f(m+n)) _ W(m+n) (Pm ® ﬁnf(m—i-n)) ]
Thus, we have the following proposition.

Proposition 4.5. Fach element of the C-MCR algebra can be represented in the form

A+ Y wmn(fimm) (4.10)

m,n€ENg, m+n>1

where ¢ € C and f™ € GFmn) (X (mtn) — yemtn) - The sum in (4.10) is finite.
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Proposition 4.6. Assume that, for all (z1,25) € X2, the operator C(xy, x5) : V2 — V&2

1s tnwvertible. Furthermore, assume that there exists a constant »x € R such that, for all

r e X and v® e V2

Tr <5(:v,$)_1v(2)> = 3 Tro®. (4.11)
Then, for all f™ € F(X" — V) andi € {1,...,n—1}, if i = +, fi1 = —, then
= o™ (51'(1’1'7-1'#1)71]0(")(1’17 sy Tie1s L1, Ty Tijt-25 - - - ,iUn); 1, Bty iy e o ﬂn)

— %q)(n72) (/ TI',L‘ f(")(xl, e i1, T, T, Ty . 71'”,2)0'((137);]11,. . '7ﬁi*17ﬁi+27 . 7ﬂn> .
X

Proof. Choose

g(n)(l‘h s 7xn) = éz(mla xi—i—l)_lf(n)(xh sy L1y Ly e v e wrn)-
Then, by formula (4.7),
q)(n)(g(n)<x17 s 7xn)7 ﬁl? ER) ﬂi+17 ﬂi? EIR) Jjn)
= o™ <5i($i+1axi)a(ﬂfwl,fﬂi)_lf(")(wl, o T B, >ﬁn>
+ (I)(an) (/ Tr'i éi(xa‘m)ilf(n)(xl ey L1, T, X, T4y - - - 7xn72)0-(dx); ljla RIS ljifla Iji+27 tety ﬂn)
X
= o™ (f("); f1,..., ﬁn) + 2 ®(2) (/ Tr; f(")(xl, e T, By Xy Ty ey Tp_g)O(dT);
X
ﬁlu'”?ﬁi—laﬁi—&-%“wjjn)- O

Remark 4.7. Let (e;)i=1,..q be an orthonormal basis of V. Denote

-----

bijkl(ili) = <5(3§, .213)_161- Kej, e ® el>

ve?’

Then, for v € V&2,

M=

Tr (5@’ :1:)711)(2)> = (5’($, J:)flv(Q), er & €k) v

k=1

(5(93, z)~! Z (U(Q), e @ej)yeze; @ ej, e ® ek>
=1 1,j=1 Vv ®2

I
= i

E

109



= Z (v?,e; ® ej)yes Z (6’(x, z) e, ®ej, e @ ek>

d
vez’
ig=1,..d k=1

Hence, the condition (4.11) can be written in the following equivalent form: For any

/l:?je{l?"'?d}?i#j?

B

<5(:c, ) e ®ej, e ® ek> 0 =0 (4.12)
V®2

e
I

1

and for any i,7 € {1,...,d},i=1j

M=

(5’($, r) e @ e e ® ek>v = . (4.13)

®2

b
Il

1

4.2 States on the C-MCR algebra

Let A be a C-MCR algebra and let 7 : A — C be a state on A. For any #1,...,4, € {+,—},
we define a linear functional

Y G (Y= VI x Gn — C

------

by the formula (3.15) in which ¢™ € Cy (Y™ — V7). Obviously these linear functionals
uniquely identify the state 7.

We equip Cp (Y™ — V&) with the topology of the uniform convergence on compact
sets in Y. We will assume that each functional Tu(ﬁ?“’ﬁn is continuous on Cy (Y™ — V&™) x

G". Then, similarly to Proposition 3.16, we conclude that, for any ¢1,...,9, € G,

there exist V®"-valued measures mé?) 4,191,y gn] on Y™ such that, for all o™ €

-----

7 (6™ g, gn) = s " s yn)my L gn gl (dyr - dyn) )y e

v+ Ju v— Ju
m

so that
v = Re(v) + i Im(v).
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Denote
Ve={veV |Imw)=0}={veV|v=Juv}.
Note that, for each v € V| Re(v), Im(v) € Vg, hence

v = vy +1vy, where v1,vs € Vi. (4.14)

As easily seen the representation (4.14) of v € V' is unique.

For f € §(X — V) and § € {+,—}, we denote A*(f) = ®MW(f;#). Similarly to
Proposition 3.11, we prove the following
18

Proposition 4.8. Assume that, for any t1,...,8, € {+,—}, the functional Tu(n)

L1yeeey ﬁn

continuous on Co (Y™ — V&™) x G". Then the following statements hold:
(i) The state T is completely determined by its values on A¥(f1)--- Abm+n(fo 1), where
fr =k ® gr with p, € Co(Y = V) and g, €G (k=1,...,m+n), and ) =--- =

ij:"i_; ﬁm+1:"':ﬁm+n:—, wherem,nzo,m—i—nZl,

(i) Define
B(f) = A*(f) + A~(Jf), [EFX V).

Then the state T is completely determined by its values on B(f1)--- B(f,), where
fr =k @ gr with p, € Co(Y = Vg) and g € G (k=1,...,n).

Similarly to Lemma 3.12, we have:

Lemma 4.9. Let a state T satisfy the assumption of Proposition 4.8.
(i) For any g1,g2 € G, there exists a V®%-valued Radon measure v?[gy, go] on Y? that

satisfies

T (AT (p1 @ g1)A (92 @ ga)) = / (o1(31) ® 2(12), vP g1, g2 (dy1 digo) ), e, (4.15)

Y2
for all p1,p2 € Co(Y — V).
(1) For any g1,9, € G, there exists a V®*-valued measure a®[gy, gs] on Y? that

satisfies

7(B(p1 ® 1) B(p2 ® ga)) = / (p1(11) @ 2(y2), o [g1, g2 (dy1dy2)) o

Y2

for all 1, ps € Co(Y — VR).
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4.3 The Fock state on the C-MCR algebra

We consider the U-deformed Fock space F(H) with (Uf®) (z,y) = C(z,y) [P (y,z).
For f € F(X — V), we define

where a™(f) and a=(f) are the creation and annihilation operators in F(#). In particular,
a®(f) and a™ (f) act continuously on Fg,(H).

Note that the linear span of functions of the form ;(y1) ® ¢2(y2) ® - -+ ® v (y,) with
1,y on € Co(Y — V) is dense in Cp (Y™ — V&), Then, similarly to Section 3.4, we

will now define

‘D(n)(w(n) (yl, . 7yn)91(21)92(22) e gn(zn)) €L (]:ﬁn(H))

for ™ € Cy (Y™ = V®) and ¢1,...,9, € G.
For ©1,...,¢0min € Co(Y = V), g1, gmin € G and u® € F,(H), we have, with
l=k—n+m,

(@™ (1 ®g1) 0" (Pm @ )@ (Lot ® Gims1) 0 (Prnin ® Gnin)u™) (w1, .., 21)
= A1 © 9001 88 (o © ) 0]
X /n o @™ (day -+ - dl) {(Pmtn @ Gman) (@) @ -+ @ (Prmt1 @ Gms1) (@),
ub (x! o ah T, ,xm+n)>v®n . (4.16)

Here the pairing (-, )yen is taken in the first n ‘variables’ of V®* i.e., for any vy, ..., v,,

vy, ...,0, €V,
(1 @ @, 0y @ @ U )yen = (v1,0)y - (Un, v Uy @ -+ @ 0
We define a continuous linear functional T?" : V®") _ C by
TCY 9, @ -+ @ vgy, = (Un, Vny1)v (Up—1, Uny2) v« - - (U1, Vap )y (4.17)
Then we can write formula (4.16) as follows:

(Cﬁ((pl ®g1) 0" (Pm @ gm)a” (Pms1 @ Gms1) -+ 0 (Prmgn @ ngrn)u(k)) (T1,...,11)
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=P, [/n o¥™(day -+ dal) (1, @ TP @ 1;,-,) (91 ® 91)®
@ (Pmtn @ Gman) ) (T1, - ooy Ty, T, T, o, ) ® u®(x! T - ,ml)] .
Hence, similarly to (3.23), we get, for f(") € § (X™*" — V) and u¥) € Fi(H),
(W) (fmmy 48 (2, 2)) = Py { / o (dary - day) (L © TV @ 1)
O @y, w2l @uM (T ,iﬁl)} (4.18)

Thus we get a representation of the C-MCR algebra. Similarly to Definition 3.13, we
define the Fock state 7 on the C-MCR algebra as in (3.24).

Similarly to Lemma 3.14, we conclude that each corresponding functional Tﬁ(ﬁ.)”,ﬁn
Co (Y™ = V) x G" — C is continuous. Furthermore, for the Fock state 7, the mea-

sure 7?[gy, go] from Lemma 4.9 (i) is equal to zero, while the measure ®[g;, go] from

Lemma 4.9 (ii) is given by

d
a@g1, g2)(dyn dy) = (g2, 91)g v (dyr dyz) Y bije; @ e
ij=1

d
= A\@1gy, o] (dy1 dy») Z 0ij €; @ €;.

ij=1
Here v®)(dy, dy,) is the C-valued measure on Y2 defined by (3.27), the the C-valued mea-
basis of V' such that Je; = e; and ¢;; is the Kronecker delta.
For each f € F(X — V) we define continuous linear operators A*(f), A= (f) on
Fan(H) as follows: AT(f) = af,.(f) and A~ (f) acts as follows: for any u(™ € HE",
(Af(f)u(”)) (X1, Tpy) = / o(d")(f(x),u™ (', 21,. .., 20 1)

X
n—1

- Z Cu(a’, x1)Co(2, x3) - - - O’ wp)u™ (21, . .., Ty &, Thgts -+ s Tt v
k=1

Our next aim is to generalize Proposition 3.17 to the case of a multicomponent system.
We first need some preparation. Let n € N and fix a partition £ € PQ(QH). All the
definitions below depend on the choice of £, nevertheless for simplicity we will not show

this dependence in our notation.
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Let
§= {{il,jl}a---a{inajn}} (4.19)

with

I <J1, 19 <Joyeov, in<Jn and iy >ig>--->1, =1. (4.20)
We define the sets

I={iy,ia, .. yint,  J={J1,72, - dn}-
For k =1,2,...,n, we define the sets J*) and J® as follows. Let
JO={jedli<j<p}, IV={jel|i<j}

and for k=2,....,n

JE ={jedin<j<ju j#J §#bos JF Jr1}s (4.21)
k)_{j€J|2k<j, j#minJ®, j £ min J® ...,j#minJ(’“*l)}. (4.22)
We write

-(k -(k «(k .

with

(k) :(K)

«(k k
i < () k) _ (k)

< <G b <ls <<

mg

Remark 4.10. Note that jl(f) = jr and my > [, for all k.

Remark 4.11. Note that

= {0 0P (3 (4.23)
belongs to 772(2n). As easily seen, the partition £ has no crossings, i.e., there are no pairs
{ikngk)}, {Z'm,jgm)} in & such that

+(k)

i <im <P < 3™, (4.24)

Indeed, assume that (4.24) holds for some k and m. Since iy < i, by (4.20), we have
k > m. Hence, by (4.22),

i #mind® j 2 minJ@ ,jgk) # min JY),
Since we also have jg ) > Im, this implies jl ) € Jm), But jgm) = min J™) hence we must

have jg m) < J(k) which is a contradiction.
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Recall that, for a linear operator A : V®? — V®2 and i € {1,2,...,m — 1} we defined

a linear operator A; : V™ — V®m Ly
Ai - 1v®(i—1) ® A ® 1V®(m—i—1),

i.e., A; acts by the operator A on the i*" and (i + 1) ‘variables’ of the tensor product
V®m_ Now similarly, for 1 <i < j < m, we define a linear operator A[i, j] : V™ — V/®m
that acts as the operator A on the i*" and ;' ‘variables’ of V&,

Let us now fix an arbitrary (zi,79,...,72,) € X?>*. For k = 1,2,...,n, we define
a linear operator C™)(&: 1, 29,.. ., Tay) : VI — VO as follows. If J®) = {j.}, ie.,

Ip =1, then C®)(&; 21, 29, ..., 29,) is the identity operator. If [, > 1, then we define

C(k)(£> L1, L2y - 737211)

= C([Eik,l‘jgk})[ g ), ‘]g )] C(I’ik,xjék))[ g ), Jé )} s C<$Zk7xﬁflfl1)[ l(k)fl’ ']l(k)}' (4.25)
Next we define a linear operator

C(é;l’l,.il?g, e ,LEQn)
= CW (&, 9, . 29,)CE V(& 2y, 20, ) - CI &y, gy 20y). (4.26)

Recall Remark 4.11. similarly to (4.17), we define a linear functional

TCM(E) : Ve - C

T(2n) (f)vl RV R - @ Vo = <vi1,vj§1>>v<vi2, ng2)>V - <Uin7 Ujgn)>v. (427)

Theorem 4.12. Let 7 be the Fock state on the C-MCR algebra A. Let n € N and
f17gl oo 7f2n,g2n € .F(X — V) Then

T((AT(f1) + A (91) - (AT (fane1) + A7 (g20-1))) =0 (4.28)

and

T((AT(f1) + A7(91)) -+ (A (fan) + A" (g20)))
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Z / ® 2 (da; dz;)

(2n) i
gepl? tegise
X T(Qn)(f)c(f; T1, .., on)hi(21) ® ha(22) ® -+ - @ hop(22n), (4.29)
where
gk<$), ’I,fk c [,

fula), ifked

Proof. For each f € F(X — V), we define continuous linear operators A*(f), A~ (f) on
Fan(H) as follows: AT(f) = ai (f) and for any u™ € H®",

(A_(f)u(")) (X1, Tp1)
:/Xg(dx’)<f(x’),u(")(x’,x1,...,xn_l)

n—1

+ Z Ol(ZE,, ZEl)Cg(ZE,, 5(]2) ce Ck(xl, xk)u(n)(xl, vy Ty ZL',, Lht1y- - ,In_1)>v
k=1

= / o(dx) [Trl f@)@u™ (@ xy, ... 20q)
X
+ Z Try f(2') @ Cy (2!, 1) Co(a', xa) - - - Cp (2, xk)u(”)(xl, e Ty X Thgts - ,xn_l)]

= / o(dz") [Trl f@)@u™ (@ xy, ... 20y)
X

n—1
+ Z Trl CQ(x/7 Il)Cg(I/, x2) T Ck+1($/7 'Tk)f(x/) ® u(n)<x17 ceey Tk $/, MO TRE P 7:En71)j| .
k=1
(4.30)

Lemma 4.13. For any f1,...,fn € F(X = V) and &1,...,4, € {+, —} we have
(Aﬁl(ﬁ) . Aﬁ"(fn)Q, Q)}‘(H) — (Aﬁl(fl) .. '.Aﬁ”(fn)Q, Q)F(H)

Proof. The proof is similar to that of Lemma 3.19. We only need to note that, for each

u™ € HO™,

(U1U2 e Uku(”)) (2,21, Tpy)

= Oy (2, 21)Co(a! xg) -+ Cr(@ s zp)u™ (2, . gy @ Ty o, Tt O
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Formula (4.28) trivially holds, so we only need to prove (4.29). By Lemma 4.13,

T((A(F) + A (91) - (A (fan) + A (920)
((AF(F1) + A (g0) -+ (A (fan) + A (020))2.2) 1
((A*(R) + A (01) (A" (o) + A (920))2 D) 1. (431)

For each f € F(X — V) and k € N, we define the annihilation operator A, (f) as
follows: if u™ € F,(H) and n < k, then A, (f)u™ =0, and if n > k, then

(Al;(f)u(n)) (xlu cee 7‘1:7171)
= / o(dx") Try Co(2!, 1) Cs (2, 25) - - - Ch(a, xp_1)
X
f@) @u™ (@, ... ey, 2 Ty Tpy). (4.32)

Here, for k = 1, the operator Cy(x’,z1)Cs(2’, x2) - - - C(2', zx_1) is supposed to be the
identity operator. Hence, by (4.30),

AT(f) =D A (),

k>1
or equivalently, for each u™ € IF,,(H),
A™(Put™ =" A (fu™. (4.33)
k=1

Remark 4.14. We may equivalently write formula (4.32) as follows:
(.A,;(f)u(")) (.I’l, . ,ii‘k, c. ,xn)
= / o (dx' day) Try Co(2', 21)Cs(2, x3) - - - O’ Tp—y)
X2
F@) @u™(zy, .. Tpey, Thy Tigrs - - -, Tn). (4.34)

We will say that the operator A, (f) annihilates the x;, variable.

By (4.31) and (4.33), we get

T((AT(f1) + A7(91)) -+ (AT (fan) + A7 (920)))
= Y AL (hi )AT (hiyr) - AT (i, 1)

cepm)
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Al (i JAT (hiy 1) -+ - AT (hiy_yi1) - - - Ay (hiy ) A (R 1) - - - AT (h2n)Q. - (4.35)

n—1

In words, we interpret the partition (4.19) (see also (4.20)) so that the creation operators
are at places ji, ..., Jn, annihilation operators are at places i1, ..., ,, and the annihilation
operator at place 7, annihilates the variable created by the creation operator at place jg.
For a fixed ¢ € 772(2"), let us now calculate the value of the expression in the sum
appearing in (4.35).
To this end, we introduce the following notations. Assume R is a subset of {1,...,2n}

and for some k € {1,...,2n} let S={k,k+1,...,2n} \ R. We write

R={r;,ry...,1;}.

S = {Sl,SQ, e ,Sm},
with 81 < sy < --- <s,,. Then, for a function <p(m) : X™ — C, we will use the notation
go(m)(xk, Thily ooy Ton \ Tryy Trgs -« oy Tpy) 1= w(m)(xsl,xsw e X, )

Next let (1, (o, . . ., (y be different numbers from the set {k,k+1,...,2n}. Let

{k?7 E+1,... 7271} \ {C17C27 s <2z} = {71772, e 7’72n—k+1—2z}

with v, < 79 <+ < Yon_ks+1-21- We define a functional

TC D (ks G, G | Gy G| - | Gy o) 1 VERRED /@ @n=kt1=2)

TE D (ks Gy G | GooCa | -+ | Gary Gon) 0 ® U1 @ -+ - © v

- <UC1 ) UC2><UC37 UC4> T <U421—1 ) UCQZ) Uy ® Unya & & Van—k+1-21-

Recall that, for a linear operator A : V®% — V®2 and 1 <1 < j < m, we defined a
linear operator A[i,j] : V™ — V" Now, for k > land k <i<j<k+m—1, we
define an operator Alk; i,j] : V& — V™ by

Alk; i, jl = Ali—k+ 1,7 — k+1].
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This definition can be interpreted as follows. We enumerate the ‘variables’ of V& as
k,k+1,...,k+m—1 and the operator A[k; i, j] acts as the operator A on the variables
i and j. In particular, A;[i, j] = Ali, j].

We have

(A+(h7;1+1) e A+(h2n)Q) (Tiy 15+ -5 Ton) = Piy11(Tiy11) @ - -+ @ hon(w2,)
and by (4.34),

(Ah A+(h21+1>"4+<h2n)9) (xiu <o Ligy, \ Liys x]d)

o2 ala:21 dxj,) Try Cy(z;,, JO )Cg(.’L’“,.’IZ (1))

\

X2

O (g, 2, Sl )hil(%) ® hiy(T4y) @ -+ @ hop(T2n)

/X2 o (dx, dzj,) Ten it <i1; ihjgl))

C(%’uxﬁl)) [’il; jgl)ajél)} C(*Tiuxjél)) [217 i %Jéﬂ "'C(sz‘uﬂcjl(l)l) [il; jl(ll)—lajl(ll)}
0

hiy (Tiy) @ hiy(T4,) @ -+ @ hop(T20).
Next, we have
(A* (hiyga) - - AT (hiy 1) Ay, (hiy) AT (hiyia) - - AT (h2n)Q) (Tigg1, Tiga -5 Tan \ Ty, T5,)
— / oD (dxy, drj) ) Piyi1(Tigs1) @ -+ @ hyy 1 (4, 1) @ TE=0FD (il; il;.ﬁ”)
X2
C(:U’imxﬁl)) |:Zlv Jg )>ng):| C(xim l’jél)) [7/17 .]gl)a.]i(%l)] e C('rinle(l) ) [7’17 .]l(ll) 17Jl(11):|
-1
hiy(74,) @ iy (Tiy) ® -+ - @ Gon(T2n)
= / o (du;, dx;, )T (z@ +1; il,ﬁ”)
X2
C(‘ril: fL’jgl)) |:22 + ]- .]g )7.15 )] C(xinxjél)) |:22 + ]- J(21)7J§51)]
1) .1

: ‘C(%‘l@jl(l) 1) [Zé + 13,20 ] iy 1(Tiy41) @ Niyy2(Tipr2) @ -+ - @ hap(w2n).
o

From here, using the commutativity of the functionals, respectively operators acting

in different variables, we similarly get:
(AL (hip) AT (iyr) -+ - AT (hiy 1) A (hiy ) AT (i)
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. 'A+(h2n)§2) (Tiy, Tigt1, - - Ton \ Tiy, Tjy s Tiy, Tjy)

= /X4 0(2)(65%2 d$j2)0(2)(d$i1 diﬂjl)']r(zn_iﬁl) ( i1, J1 W | Zz,J(2)>
C(%g,fjf)) [2'2; J'?)ajgg)} C(%‘mxjéz)) [227 Jg %Jéﬂ ) C(xiavlef{l) [Zé; jz(f),pjl(j)}
C(iﬁmiﬂjgl)) [iz; jgl)ajgl)} C(-ripxjél)) [227 Jé )7‘]:(1,1)} ) C(%l,-’ﬂjl(ll)_l) [i% jl(f)_pjl(ll)}
iy (Tiy) @ hiy11 (Tig41) @ -+ @ han(T2n).

Continuing by analogy, we get at the k' step:

(A, (hi,)AY (hiys) - AT (hiy 1) A (R AT (Riy 1) - - AT (g _yi1)
- Ap (hip ) AT (R 1) - - AT (hiy 1) AL (i) AT (Riy ) -+ - AT () )
(Tigs Tipt1s -+ s Tan \ Tigs Tjy s Tigs Lo« - -5 Tipy s Tj,)
= /X% oD (dx;,dx;, ) oD (dwg,drs,) - - 0P (day, dxj,)
T D (i iy 31 i, 357 | - |, 39)

Ol ) [ 10, 5] Ol 133 09] -+ Clor o ) [,

k—1 k—1 k—1 k—1
C(‘rik—luq“j£k—1)) [lkng )7.]5 )} C(xik717l‘j§k_1)) [Zka.]g )7-]§> )}
k—1 k—1
C<xzk 1,1’(}}: 1)1> [lka.]l(k 1)1a.]l(k 1)
- i

o C<xi17 xjil)) |:Zk7j§1)7jgl):| C(:Eipxjél)) [Zkan )7Ji(’)1):| : C(xiple(l) 1) |:Zku]§1) 17J§11)i|
1=
hi (Tiy,) @ Ry, (Tig41) @ -+ @ han(22n).

Thus, after n steps, we get, by using the notations (4.25)-(4.27),

(A (ha, ) AT (hi 1) - - A (hay 1) AL (R VAT (B 1) - AT (hay 1)
AL (i) Ahig) - AT (ho)Q) (1, 20, ) (4.36)

= [ s dny )0 da doy) -0 s, d, )
X2n
x TC(E)C (& a1, o, - . ., Tap)h1 (11) @ ha(22) @ + -+ @ fon(Tan)- (4.37)

Formulas (4.35) and (4.37) imply (4.29). O
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Remark 4.15. We can unify formulas (4.28) and (4.29) into a single formula

T((AT(f1) + A (q1)) - (AT (fu) + A ( Z ® 2(dx; dz;)
gepi™ {’i7<}j€5
x TM(E)C (&, .oy 20)hi(71) ® h(22) @ -+ @ hi(2) (4.38)

that holds for all n € N. Indeed, if n is even then this formula becomes (4.29) and if n is

odd then the set 732(”) is empty, hence the right hand-side of (4.38) is equal to zero.
Recall that the operator C'(§; xq,. .., x,) was defined through ¢ € 772(") and operators
C(z,2"). But, for x = (y,2) and 2’ = (v, 2’), we have C(z,2") = C(y,y'). Therefore, we

can write the operator C(&;xq,...,x,) as C(§ Y1, -+, Yn)-

Corollary 4.16. Let 7 be the Fock state on the C-MCR algebra A. For any g1,92 € G,

we define a complez-valued measure X?[gy, go] on Y? by

A g1, go] (dyr dya) = (g2, 91)g v (dyr dys). (4.39)

Then, for any @1, ...,pn € Co(Y — V&) and g1,...,9, € G, we have

T(B(p1®g1) - Blon @ gn)) Z/ Q) A@(gi, g;1(dy: dy;)

Eep(") {Z ]}Gf
1<J

TO(EC(E Y, - Yn) 1) @ pa(Y2) @ -+ @ P(Yn)-

Proof. Since the functions ¢, ..., ¢, take on values in Vg, we get by (4.38)

T(Blp1 ®@g1) - B(pn @ gn))
=7((AY (1 © 1) + A (21 © (Jg1))) - - (AT (91 @ 1) + A (0 @ (Jgn))))

Z / ® ) (da; dx;)

Eep(") {’L ]}Ef
1<J

T (EC(& Y1, -, Yn)e1 (1) T1(21) ® @2(y2)G2(22) @ -+ @ 00 (Yn)Gn(2n) (4.40)
where

~ gk(z)ﬂ lf/{?EI,

gk(2) =
ge(2), ifkeJ
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Since the functions g1(21), ..., gn(2,) take on values in C, we continue (4.40) as follows:

T(Blpr@g1) - B(pn ®@gn)) = Y & o (da; da)) T (EC(E - - yn)
ceri /X" tisice

X g1(21)g2(22) -+ - Gn(2n) 1 (1) ® P2(y2) @ -+ @ P (Yn)-

(4.41)
Since C(&; 41, ... ,Yn) is a linear operator in V& and T (¢) is a linear functional on V&,
we continue (4.41) as follows:
T(B(p1 ® g1) -+ B(on ® gn))
-y / R o (das day)1 ()72 (22) -+ Gu20)
m X" g
¢ep {iﬂ<}j€5
EC(E Y1, - Yn) o1 (Y1) @ 2(y) @ -+ @ Pn(Yn)
dy% dy;)p (@ )(dzl dz;)gi(2i)g;(z5)
{13}65
1<j
EC(E Y1, - yn)e1(y1) © 2(y2) ® -+ @ 0n(Yn)
Uagdys) [ p(dzdz)g)05(2)
{z J}eg z
1<J
< TM(EC(&y, -, Yn)e1(y1) © 02(y2) ® -+ @ P (Yn)
2 (dy; dy;) (g5, 9i)
cePs "’ {% Jjteg
1<J
Cl& Y1, yn)p1(y1) @ @2(y2) @ -+ @ ©n(Yn)
_ Z /Y ® A®g., g;)(dys dy;)
cery {"%J%}jef
x TUOCE Y, -, Yn)e1 (Y1) @ @a(y2) ® -+ @ u(Yn)-
]

122



Below we will also need a formula for

T (A (f) - A (f) AT (fag) -+ AT (fan) (4.42)

where fi,..., fo, € F(X — V). This is, of course, a special case of formula (4.29), which
can be simplified in the case of (4.42).

For each permutation 7 € S,,, we define a partition £ € 732(2n) as follows:

{Ln+x)}{2n+72)},....{n,n+7(n)}}.

We denote by S™ the subset of 732(2”) consisting of all such partitions. Equivalently, S
consists of all partitions & € 732(2n) such that, for each & € S® and each {i, j} € £, with

t < j, we have 1 <n and 7 > n + 1. The following corollary is immediate.

Corollary 4.17. Let 7 be the Fock state on the C-MCR algebra A.

(i) For any fi,..., fan € F(X = V), we have

T(A(f) - A (f) At (fasr) - AT (fan))
Z / ® dxz dz;) T )(5) C(& a1,y on) [1(11) @ fo(xg) @ -+ @ fon(xan).

£esin) {i,j}€¢
1<J

Here TG . V2 C is the linear functional defined by (4.17) and the linear operator
C(&xy,. .., Tan) : VO — C is defined by (4.26) in which
W (& 21,0, w9n) = Cranlwi, $j§k>)0n+k+1(9€ik, %gk)) o Ottt —1 (i, Ijz(,fll)’
with
J® = {je J|ijk,j7éj1,...,j#jk_1},

(k) . (k (k (k (k
(ii) For any @1,...,0m € Co(Y = V) and g1, ..., gon € G, we have

T(A (1@ 1) A (00 @ gn) AT (Pns1 ® Gna1) -+ - AT (P20 @ gan))

= > / ) A@(gi. g;1(dy: dy;) T*C(E . - yan) 01 (1) @ @a(y2) @ -+ @ P (Yon)

£esin) {i,j}€¢
1<J

where the complez-valued measure N?[g;, g;] is defined by (4.39).
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4.4 Quasi-free states on an C-MCR algebra

In view of Corollary 4.16, we now give the following definition.

Definition 4.18. Let A be an C-MCR algebra and let 7 be a state on it. Assume that,
for any #1,...,4, € {+, —}, the functional Tﬁ(ﬁ?“’ﬁn is continuous on Cy(Y™ — V) x G".
Furthermore, assume that, for any g¢1,9o € G there exists a complex-valued measure
Mgy, g2] on Y2 such that, for all ¢y, 0y € Co(Y — Vi),
(Blor® ) B2 ® 92)) = [ Xlgn.gnl s ) o1 0n), i)
Y
We say that 7 is a strongly quasi-free state, if for any @1, ...,p, € Co(Y — Vi) and

g1, ---,9n € G, we have, for an odd n,

T(B(p1 ®g1) - B(pn ® gn)) = 0,

and for an even n,

T(Blpr1®g1) - B(pn ® gn)) = Z/ Q) APlgi, g)(dy; dy ) T (E)C(E s -, yn)
cepm 7" fi)es

X 1(y1) © pa(y2) @ -+ @ Pnlyn).
Corollary 4.16 implies to the following proposition.

Proposition 4.19. The Fock state on the C-MCR algebra is strongly quasi-free and the
corresponding measure X2 [gy, go](dyy dys) is given by formula (4.39).

Similarly to Section 3.5, we give the following

Definition 4.20. Let A be an C-MCR algebra and let 7 be a state on it. Assume that,
for any f1,...,4, € {+, —}, the functional Tﬁ(ﬁ?_.m is continuous on Cy(Y™ — V) x G".
Furthermore, assume that, for any ¢1,9> € G, there exists a complex-valued measure
pP|g1, g2] on Y2 such that, for all o1,y € Co(Y — Vi),

T (A (1 © 9)A (P2 ® g2)) = / PP g1, ga)(dys dys) (01 (1), 2(y2)) v

Y2

124



We say that 7 is a gauge-invariant quasi-free state if for any m,n € N, 1, ..., @min €

Co(Y = V) and g1, ..., gmin € G, we have, for m # n,

T (A+<Q01 X 91) e A+(§0m & gm)A_ (‘pm+1 & gm+1) s A_(Som—l-n & gm+n)) = 07

and for m = n,

T (A+(991 ®gp)- - A+(90n ® gn) A (Pni1 @ Gny1) - A (p2n @ g2n>>

-3 [, ® o)

gestn) {i.j}ed
<]

X TCVC(E y, -, y20) 01 (1) © @a(y2) @ -+ @ P20 (Yan).-

We will now construct a class of strongly quasi-free states and gauge-invariant quasi-
free states on the C-MCR algebra. We will be able to do this under strong assumptions
on the operator-valued function C(yi, ya).

Let us first recall the following definitions from Chapter 2.

We define an antilinear operator S : V&2 — V®2 by
Sv; ®vg = (Jug) ® (Juy), wvy,v9 € V. (4.43)
For a linear operator A € £ (V®2), we define A € £ (V®2) by
A=SAS. (4.44)
For a linear operator A € £ (V®2), we define A € £ (V®2) through the formula
(Avy ® 9,13 ® vy)yez = (11’(]3 ® vy, V4 ® Ug)yez, U1,V 03,04 € Vi. (4.45)
Note that the maps
LOVEY S A Ac L(VEY), LV 3 A Ae L(VE?)

are linear and continuous.
From now on, we assume that the operator-valued function C': Y? — £ (V®2) satisfies

the following additional
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Assumption 4.21. (i) For all (y;,y2) € Y2, é(yl, Y2) is unitary and
6(%,3/2)* = 5(y27?h)-

(ii) For all y1,2 € Y, C(yr.42) = C(y1,12)-
(iii) For all y;,y2 € Y, we have

(yla y2) = C(y27 yl)u

(y1,92) = C(y2, Y1)

Qy Q)

(iv) There exists a constant » € R such that, for all y € Y and v? € V®2,
Tr (6’(y, y)v(Q)) = 2 Tro®,

Similarly to Section 3.5, we denote by X; = Y] x Z; and X5, = Y5 X Z5 two copies of
the set X =Y x Z and consider their disjoint union X = X; LI Xs.

Let also, Y2 = Y, UY;. We also consider the measure ¢ on X, and denote H =
L*(X,do).

We define a (continuous) function C: Y2 — £ (V®?) by

Cly1,y2), ifyi,y2 € Y1 0or 41,92 € Yo,
Cly,y2) =9 _ (4.46)

Clyz,y1), ifyr €Y, yo€Yoory €Yo, yp €Y.

By Assumption (i), for any 41,52 € Y, C(y1,y2) is a unitary operator in V2 and

C*(y1,42) = Cly2, 1) (4.47)

We furthermore assume the following:
Assumption 4.22. The function C : Y — L (V®?) satisfies the functional Yang-Baxter
equation point-wise.

As usual, for any z1 = (y1, 21), 2 = (Y2, 22) € X, we denote C(x1,22) = C(y1, ya2).
Formula (4.47) and Assumption (iv) allow us to consider the C-MCR algebra A. Let

7 denote the Fock state on A.
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In accordance with the intuitive formula (4.2), we will denote elements of the C-MCR

algebra A by
[ )b @) @ @ (w)ver oldn) - oldz,), (4.48)

where £ € § (X" — V@) and t1,...,4, € {+, —}.
Similarly to (3.43) and (3.45), for £ as in (3.44) we will denote the corresponding
element (4.48) of the C-MCR algebra A by

/ <f(")(a:1, ), agi(az‘l) X ® a?:(:vn»v@na(d:vl) ceo(dry).

So, informally, for § € {+, —} and z € X, a’(z) is equal to a(z), where  is identified
with an element of Xj.
In view of Corollary 2.94, Proposition 4.6 and Assumptions (i)—(iv), the operators

a’(z) with i € {1,2} and # € {+, —} satisfy the following commutation relations.
Lemma 4.23. Let ¢ € H®2.
(i) Forie {1,2} and t € {+,—},
| (6 ran) ad() @ ai{aves otdor)oldas
= /X2<C(:c2,x1)g<2>(x1,x2),a?(xz) ® al(z1))yez o(day o (dxy).
(i) Fori,je{1,2}, i#j, and t € {+,—},
[ (6 ran) ad) @ adan))ves atdm)oldra)
= /X 2<5(x1,a:2)g(2’(x1,x2),aﬁ-(:z:g) ® al(z1))yer o(dry)o(drs).
(iii) Fori € {1,2},
/XQ(g(z) (z1,72), a; (71) ® a; (x2))ye: o(dzy)o(dze) = / Tr ¢ (x, )0 (dx)

X

+ /Xz<é($1>$2)9(2)($1,$2)7a;r(xg) ® a; (x1))vez o(dxy)o(dzs).
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(iv) Fori,j€{1,2},i%j, and t € {+,—},
[ (6 ram). a5 (@) @8] () ves (o))
= /X Oz, w1)g® (w1, 22), & (w2) © a7 (1) vez 0 (daa)o (das).
(v) Forie {1,2},
[ (6 a0 (@) @8 () ves o(dan)a(des) = —s¢ [ Tr (2. 0) ol
+ [ (Gl aa)g® (0,00 (22) © 8] (w0)yer oldar)(d).
(vi) Fori,j € {1,2}, i+, and § € {+, -},
[ 6,0 (2) @ a; (z2)ves oldar)o(de)

= /X?<C<x2’ 951)9(2)(351, T3),a; (T2) ® al (z1))ye: o(dry)o(dzs).

Let us fix a bounded linear operator K € L (g) In case » > 0, we assume that K > 0

and in the case s < 0, we assume 0 < K < —=. Let
=VK, Ky,=+V1+ =K.

For a bounded linear operator B € L(G), we recall the definition (3.47) of the complex

conjugate operator B’.

Let f=¢p® g with p € Co(Y — V) and g € G. We define
AF(f) = /X (o) (Kag) (2), af (2))v o (dx) + /X (o) (Krg)(2), a7 (@) o (de),
A(f) = /X (o) (Kbg) (=), a5 (2))v o (dx) + /X (o) (Klg)(2). af (2))y o(dz).  (4.49)

We denote
:/ VO' dl’)
b
= / Ny o(dx). (4.50)
X
Proposition 4.24. We have (AT(f))" = A=(Jf) and the operators AT(f), A=(f) defined

by (4.49) satisfy the C-MCR.
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Proof. We first show that (AT(f))" = A=(Jf). For f(y,z) = ©(y)g(z), we have

Jf(x,y) = (Jo)(y)(Jg)(2).

Hence

/ Y)(JKa9) (2 Ny o(dz) +/ ) (JK19)(2),af (x))y o(dx)

><
><

y) (K5 Jg)(z Ny o(dx) + y)(K1Jg)(2),a (z))y o(dr)

I
><
><\

A~ ().

Next, we check the C-MCR. For any f; = o1 ® g1, fo = p2 ® go, using Lemma 4.23,

we have:
AF (A (f)
= ([tatmteate.agteiotdn) + [ (mEim)e).a ey olde)
o ([ toatm)Fage) e, o o) + [ Goaton) (K)o (e o)
= [ or(0) © al0n) (Ko 2) K 2. 12) © 0 v o o)
b [ Gl @ ea(0) () (1) (K (). (02) © i aa)) s oo
b [ (ol @ eal) (i) (1) () ). (1) © i 5] s oo
+ [ o) palie) (Kagn) () () (). 25 (1) @8 (aa))ves ()
= /X2<C(yz,y1)(901(y1) ® ©2(y2)) (K1) (21) (K292) (22), a5 (v2) ® ay (21))ye:
X o(dxy)o(dxs)
+ L2<C(y2,y1)<¢1(y1) ® ©2(ya2)) (Kag1)(21)(K192) (22), a1 (w2) ® @y (1)) e
% o(dz1)o(dzs)
[ () (or) © a(00)) (Fo90) (o0) ) ). ) @ 2 )
« o (dy)o(dxs)

+/X2<C(y27y1)(901<y1)®902<y2))(Klgl>(Zl)<K192)(Z2)7al<x2)®al(x1)>V®2
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X o(dxy)o(dzs)
= /X2<C(yz, y1)(@1(1) @ @2(y2)) 91(21)92(22), AT (w2) @ AT (21))ver o(dwr)o(d2)

= /XQ<C(SC2, 131)(f1(l’1) ® f2(1?2)),z4+(x2) ® AT (x1))ye: o(dry)o(drs).

The proof of the commutation between A~(f;) and A~ (f3) is similar.

Next, we have

2)
(/}((901(91)(K§91)(21),az_(m))va(dxl)+/){(cp(yl)(K{gl)(zl),af(a:l))va(dxl))
o ([ (s

X(sﬁz Y2)(F2g2)(22), a5 (w2))v o (dazs) +/X<§0(y2)(K192)(Z2)>a1_($2)>V U(dafz))

AT(f)AT(f

(p1(y1) @ 0a(y2) (K591)(21) (K292)(22), a5 (1) @ a3 (2))ver o(dzr)o(das)

+ [ {e1(y1) @ @a(y2) (K591)(21)(K192) (22), a5 (1) @ a (22))ve2 0(dr1)o(dzs)

2

+ [ {e1(y1) ® @2(y2) (K191)(21)(Kag2)(22), a) (1) ® a3 (22))ve2 o(dry)o(drs)

2

+ [ {o1(y1) @ @2(y2) (K191)(21)(K192)(22), af (21) @ &y (22))ve2 o(dzy)o(dzs)

2

C(yl,yz)( (1) @ @a(y2)) (K591) (21) (Kag2)(22), a5 (22) ® ay (1)) ve

- ><\><\><\>5

< o(der)o(drs) + /X (K1) (=) (Fag2) (=)o ()
/ (Clyr,12) (01 (1) @ 02(2)) (K1) (21) (K192) (22), a7 (22) @ a5 (1)) e
x o(da1)o(dws)
+ /X (1) (#1(31) © 9ap2)) (K190) (21) (Kage) (). 2 () @ af (1)) e
x o(dzy)o(dzs)
+ /X2<5(y1,y2)(<p1(y1) ® @2(y2)) (K191)(21)(K192)(22), a7 (22) ® af (1)) ves
x o(diy)o(day) — 2 /X (1 (9). 2))v (K1) () (B2 92) (=)o (d)
— [ (€ o1(n) © ea(0m)) 1 (e1)gn (). A 2) © A () o(d o)

v [ <801(y)a902(y)>vV(dy)< | (Ko@)l
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o [ (Kl i) (It
_ /X2<5(1‘1,x2)(f1(x1) ® fol2s)), A" (22) ® A~ (21) ez o(der o (ds)
+ [ ).l vid) ((Kage, Kooz = Krge KnJon) )
= /X 2<5(:v1,xz>(f1(x1> ® folxs)), At (22) ® A~ (21))ye2 o(dry)o(dws)
+ /Y<901(y)7902(y)>vv(dy)((f<§ — #K7)92, T 01) 127,
= [ (e file) © fulaa) A (02) © A (e0)hyes older)oldas)
+ [ ) exly i) [ onle)an ot
= [ (o) (file) © flen). A"(@2) © A~(@)ves ol dmn)os)

n /X (1 (), fola))y o(de). m

Next, similarly to Section 3.5, we define operators

/n<f(")(w1, ), A (1) ® -+ @ AP (2) ) yen a(day) - - - o (dxy) (4.51)

for each f™ € F(X™ — V) and 4y,...,#, € {4+, —}. These operators belong to the
C-MCR algebra A. Let A be the unital x-algebra generated by the elements of the form
(4.51). Thus, A is a x-sub-algebra of A. We will keep the notation 7 for the restriction
to A of the Fock state 7 on A.

Theorem 4.25. For fy,...,4, € {+,—} and f™ € F (X" — V"), denote

O (fWit, . t) = /n<f(") (@1, 20), AP (21) @ - - @ A (2))yon 0 (dan) - o (dy).

Then the ®™(fM: 4, ... t,) satisfy conditions (4.5), (4.6), (4.7) and (4.9). Hence, the
x-algebra A can be considered as a C-MCR algebra.
Furthermore, the state T on A is gauge-invariant quasi-free and the corresponding

complex-valued measure p'® g1, ga] on Y? is given by

pPg1, g2) (dyrdyz) = v (dyrdys) /Z (Kg1)(2)g2(2)p(dz). (4.52)
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Proof. The fact that A is a C-MCR algebra easily follows from Proposition 4.24.
Next, similarly to Lemma 3.30, we conclude that for each n € N and f#y,...,4, €

{+, —}, the functional Té") 4, is continuous on Co(Y™ — V™) x G".

Lyees

Similarly to (3.56), we have, for any 1, s € Co(Y — V) and g1, ¢ € G,

T(A (1 ® g1)A™ (92 @ g2))
= ([t Kagn) ) w o(de) [ e (Riae) ). el ol )
= [terenv vty [ (i) (Kige) ula)
= [ (ol o ) [ (Kg)(@n(:)n(a2)

N /y2 (1), p2(y2))v P91, 92) (dyn, dya),

where the measure p(®[gy, go] is given by (4.52).
Now, by Corollary 4.17 (ii), we have, for any ¢1,...,0min € Co(Y — V) and
g1, 9m4n € g7

T (A+<901 ®01) AT (Om ® gm) A (Pmi1 @ Gmi1) - A7 (Pragn ® gm+n))
- r( /X (1 (1) (F1g0) (), 5 (1) o (day) - /X (o) 1) () 87 () 0 (i)
/X (ot s 1) (L gmnss) Gos)s 7 sty 0 (dms) -

[ Gmenltmen) Kl ). 5 (o)} a<dxm+n))

:6mn Z /2n ® p(Q)[gwg]](dylady])

Y

£esn) {i.j}e€
1<J
TCMC(&yr, - Yan) 21 (41) © 2(y2) @ -+ ® Pan (Yon)-
Hence, the state T is gauge-invariant quasi-free. O

Theorem 4.26. Assume additionally that, for all y,,y2 € Y,

C(y% ?/1) = C(yb ?/2)-

Then the state T on the C-MCR-algebra A is strongly quasi-free and the corresponding

complez-valued measure N ?[gy, g] on Y? is given by (3.57).
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Proof. For any ¢ € Cy(Y — Vi) and g € G, we define

Al 0.9) = [ (p)(FKag) ()t @y oldn) + [ () TKig)(e).a (@) old)
- [ )Gt @)y o(da),
A (e 29) = [ () EE).a @)y oldn) + [ (p)(TKa)(:). 25 @)y olda)
= [ g)(e).a” (@) o),
where K*¢ and K¢ are defined by (3.62). Then
Blp@g) =AM (pg) +A (p2y9).

Hence, by Theorem 4.12, we have, for any ¢1,...,ps, € Co(Y = R) and ¢1,..., 92, € G,

7(3(901 ®g1)- - Blpm-—1 ® 92n—1)) =0,

and

T(Bler@g) - Bl ®g)) = D [ Q) (o dda)) (K 90)(2)(K¥g,) (=)
ep@ X i ghes

1<j
< TEV(E)C(E Y1, - Yon)o1 (1) © - @ Pn ()

2/ @ () [ ) (B0 () K ) )

P Y vee

1<J
X TCNEC(& 1, -, yon)01(41) ® -+ @ P20 (Y2n)
= > | @ Ao gildys dyy) TEOCE v, yon) 21 (1) @ - © o (),
567)(2"7') {’L j}€§
1<J
where in the last equality we used (3.65). O

4.5 Examples

In this section we will consider two classes of gauge-invariant quasi-free and strongly

quasi-free states on the C-MCR algebra.
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4.5.1 First class of examples

This class of examples is obtained by a ‘lifting’ of gauge-invariant quasi-free states on a
Q-ACR algebra.

Let V be a space of dimension n (n € N, n > 2). Let us fix an orthonormal basis

(€i)i=1,. n of V that is real, i.e.,
Je; = e;, i=1,...,n. (4.53)
Assume that, for each i,7 € {1,...,n}, we fix a continuous function
Q- i,j): Y? = C

such that
|Q(y1,Y2,%,7)| =1, (y1,92) € Y2 (4.54)

Furthermore, we assume that
QY1 Y21, ) = Qy2, 1,.5,7). (4.55)
Remark 4.27. Formulas (4.54) and (4.55) mean that @) is a Hermitian function on
(Y x {1,2,...,n})

of modulus 1.

We also assume that theree exists s € {—1, 1} such that
Qy,y,i,i) = forallye Y andie {1,...,n}. (4.56)
For any (y1,42) € Y?, we define an operator C'(y,y2) € L (V®?) by
Clyr,y2) € ® e = Q(y1, Y2, 1, 7) € @ e, i,je{l,...,n}. (4.57)

Lemma 4.28. Let a map C : Y2 — L(V®?%) be defined by (4.57). Then C satisfies

Assumption 4.2.
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Proof. Since Q(-,-,14,j) is a continuous function on Y? for all i, j € {1,...,n}, the conti-
nuity of C' follows from (4.57). That C(y;,y2) is a unitary operator in V*? follows from
(4.54) and (4.57).

Next, by (4.57), we have for any i, 7, k,l € {1,...,n},

(Cyr,y2)ei @ e, e, @ e) = Q(Yr,Y2, 7, j)(e; @ €, e @ ;)

(yh Y2, i? j)(sjk(szl
(Y1, Y2, 1, k)00

e; @e;, Qyr,y2, 1, k)e ® €k>

O O

I
VRS

Hence, by (4.55),

Clyr,y2) er ® ep = Q(y1, Y2, 1, k)er @ ey,
= Q(y2,y1,k,l)e; @ ey

Finally, we check the functional Yang-Baxter equation (4.1). For any wy;,y2,y3 € Y

and 7, j,k € {1,...,n}, we have

C1(y1,42)C2(y1,y3)C1 (Y2, y3)es @ €5 @ ey,

= Q(Y2, 3,4, J)C1(y1, y2) Ca(y1, ys)ej @ e; ® ey

= QY2, 3,1, J)Q(Y1,y3, 1, k) C1(y1, y2)e; @ e, @ ¢

= QY2, 3,7, 7)Q(Y1, Y3, 1, k) Q(Y1, Y2, J, k)er @ € @ e,
Co(y2,y3)C1(y1,y3)Ca (Y1, 12)e; ® € @ ey

= QY1,Y2, J, k) Ca(ya,y3)C1(y1, y3)e; @ e @ e;

= QY1 Y2, 5, k)Q(y1,y3, 1, k) Ca(y2, ys)er @ €; @ e;

= Q(yb Y2, ja k)Q(yla Y3, ia k)Q(?Da Y3, i)j)ek & ej ® €;.
which proves the statement. O
Next, let us calculate the C(yy,y2) and C(y1, y2) operators.

Lemma 4.29. We have, for any i,j € {1,...,n},

C(yhyQ)ez’ ®Ke; = Q(yla Y2, 75 i)ej & €4, (4-58)
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~

C(yh y2)€z’ Ke; = Q(yza Y1, i,j)ej & €. (4-59)

Proof. By (4.45), we have, for any ¢, j, k,l € {1,...,n},

(Clyr, y2)ei @ ej,ex @ €r)yoe = QY1,Y2,1,7) (6 ® €5, e ® €)yee
= Q(y1,y2,i7j)5jk it
= Q(Z/hyz,i,k) 5jk il

= <5(y17y2)6k ® e, e & €j>v®2 :

Hence,

C(y1,y2)er @ €; = Q(y1, Y2, 1, k)e; @ ex, (4.60)

which implies (4.58).
Next, by (4.43),(4.44), (4.53) and (4.55), we have

~

Cly1,y2)ei @ ej = SC(y1,y2) Se; @ ey
=SC(y1,y2)€; @ ¢
=SQy1, Y2, J,1) € ® ¢;
= Qy1,12,7,1) ¢; D e

= Q(y27 Y1, 17.]) €; & €i,
which proves (4.59). O

Lemma 4.30. The map C : Y? — L (V®?) defined by (4.57) satisfies Assumptions 4.21
and 4.22.

Proof. Denote

Q(ylvy%i?j) = Q<y17y27j7i)' (461)

Then, by (4.58),

C(yl, yz)ei Ke; = Q(yla Y2, i,j)ej X €. (4~62)

We have, for all (y;,10) € Y2 and 4,5 € {1,...,n},

|Q(ylay27i7j>| =1
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and by, (4.55),

Q(y27y1aj7 Z) = Q(y%ylai?j)
= Q(yhy?:jvi)
= Q(yhy%i?j)'

Hence, part (i) of Assumption 4.21 follows from the proof of Lemma 4.28. Part (ii) of
Assumption 4.21 follows from (4.58) and (4.62). Formula C(y1,ys) = C(y2, 1) follows
from (4.55) and (4.59). Similarly, by using (4.61) and (4.62), we see that 5(y1,y2) =

C(y2, 1)
Next, for each y € Y and v® € V®2 We have, by (4.56),

Tr (é(y,y)v@)> = i (5’(:% y?, e @ ei)

=1

_ @ Gy 1) e @ e
> (v ,C(y,y) el®el>v®2

i=1

_ zn: (U@), Cly,y)e; @ €i> e

i=1
n

= Z (U(2)7 Q(y7 Y, (3 2)61 ® ei)v®2

i=1
= %Z (U(2)7 € & ei)v®2
i=1

= »Tr(v?).

Vo2

Hence, C(y;,y2) satisfies Assumption 4.21.
Next, to check that Assumption 4.22 is satisfied, we define C: Y? — £ (V®2) by

Cy,y2)e ®e; = Qy1, 92,1, 5)e; @ e,
where

Lo Q(yhy%i?j)? if ylvaEYl OT Y1, Y2 63/27
Q(y17y277'7]> =

Qy2,y1,74,19), fyeYi,peYoory €Yo, ppeY]
Obviously, for all 41,5, € Y? and 7,5 € {1,...,n}, we have
Q(yhy%i’j) = Q(y27y17j7 Z)
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Hence, Assumption 4.22 follows from the proof of Lemma 4.28. O]

Thus, Theorem 4.25 is applicable to this class of examples. Let us write down the
commutation relations in this C-MCR-algebra. To this end, take any ¢ € Cy(Y — V)

and write it in the form
oY) =Y eilye
i=1
where ; € Cop(Y — C) = Cy(Y). Let g € G and denote f = ¢ ® g. Then
f(x) = fi@)e;,
i=1
where f;(x) = ¢;(y)g(z). Then similarly, to (4.50), we write, for § € {+, —},

AY(f) = /X (f (), AH(@))vo(d)

= Z /X fi(2) A (x)o(dx).

In words, A*(x) is the ith coordinate of the operator A%(z) in the orthonormal basis

Then, by (2.132) and (4.57)—(4.59), we have the following proposition.

Proposition 4.31. Let the map C : Y? — L(V®?) be defined by (4.57). Then Theo-
rem 4.25 is applicable to this choice of C(y1,y2). Furthermore, the corresponding commau-

tation relations have the form

Af (1) Af (2) = Q(x2, 21,1, §) AT (22) AT (1),

Q(m27x17i7j)A]'_(x2)Ai_<x1)a
A;(l’l)AJr(IQ) = 51’3‘ 5($lax2) + Q<x17 I27j? Z)Aj(a’é)A;(‘Tl)

A7 (1) A (22)

fori,je{l,...,n} and x1,x5 € X. Here §(x1,x2) is defined by (2.133).

Finally, we note that, by Theorem 4.26, the state T is strongly quasi-free if C (y2,91) =
C(y1,v2). By (4.55), (4.57) and (4.58), this condition means that for all y;,y, € Y and

i,j €{1,....,n}, Qy1,y2,1,7) is real, i.e., for all 4,5 € {1,...,n},

Q(yhy%iaj) = {qij, (y17y2) S Y27
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where ¢;; € {—1,+1}. Thus, in such a case, the statistics is completely determined by

77777

i1 = " = Gpn = .

4.5.2 Second class of examples

Let V be a space of dimension 2. Let us fix a real orthonormal basis {ej,es} of V. Fix

two continuous functions

Qi:Y*=C, i=1,2
such that, for all (y,vs) € Y2,
Qi(y1,92)| = 1, (4.63)

Qi(y1,12) = Qi(y2,y1). (4.64)

We assume that, for some » € {—1,+1} and for ally € Y,

Q2(y,y) = ». (4.65)

(This assumption is automatically satisfied when Y is connected.) Define a permutation

p €Sy by (1) =2, p(2) = 1.
Following [9, Example 4.9], for any (yi,y2) € Y2, we define an operator C(y;,v2) €
L (V®2) by

Cly1, y2)e: ® e; = Q1(Y1,Y2)eu(i) @ epiy,
C(yr,y2)ei @ ey = Qa(y1,y2)ei @ egsy, i1=1,2. (4.66)
In V®2, fix the orthonormal basis
e1 e, e ey, ea e, €2 e

Then, by (4.66), the matrix of C(y1,y2) has the form

0 0 0 Q1(y1,92)
Clyr, o) = 0 Qw0 ! . (4.67)
0 0 Q2(y1,2) 0
Q1(y1,y2) 0 0 0



Lemma 4.32. Let a map C : Y? — L(Y?) be defined by (4.66). Then C satisfies
Assumption 4.2.

Proof. Since Qq(-,+) and Q»(-,-) are continuous functions on Y2, the continuity of C
follows from (4.66). That C(y1,%2) is a unitary operator in V®? follows from (4.63) and
(4.66). By (4.67), we have

0 0 0 Q1(y1,92)
X 0 Q2(y1,Y2) 0 0
¢ (3/1, y2) = -
0 0 Q2(y1,y2) 0
Q1(y1, y2) 0 0 0

Hence, by (4.64), C*(y1,vy2) = C(y2,71). The fact that C(yi,y2) satisfies the functional

Yang-Baxter equation (4.1) will follow from the proof of Lemma 4.35 below. O
Next, we find the 6’(y1, y2) and a(yl, Y2) operators.

Lemma 4.33. We have, fori=1,2,

C(?Jh y2)€i X e; = Qz(yh yz)%(i) @ ey(i), (4-68)
é(yla y2)€i & eypi) = Ql(ylvyZ)ei @ ey(i), 1=1,2, (4-69)
a(yh?h) = C(y%?h)- (4-70)

Proof. By (4.45), for any i, j, k,l € {1, 2},

<5(y1, Ya)e; @ ej, e @ 61) = (Cy1,12)e; @ e, e @ ep)yan - (4.71)

V&2

Hence, for : =1, 2,

<C(y1> Ya)ei @ €4, ey ® ecp(i))v®2 = (C(yb Y2)ei ® eysy, € @ e(p(i))v®2
= Q2(v1,92),
= (C(yb Ya) (i) @ €p(i)s € & ei)v®2

= Ql(y1,y2)a

®2

<C(y1> Y2)€i @ €p(s); € & ecp(i))v

and <C’(y1,y2)ei ® ej, e ® el> = 0 for all other choices of i, j, k, L.
1%
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Next, by (4.43) and (4.44), for i = 1, 2,

~

C(y1,y2)e; ® e; = SC(y1y2)e; @ e

= SQ1(y1, y2)ep) ® €pi)

= QY1, ¥2)ep(i) @ €p(i)

= Q1(y2, yl)%(i) @ ey(i),

Clyr, y2)e: ® ep(sy = SC (Y1, y2)en @ €

= SQa(y1, y2)ep) @ €

= mei & €y(3)

= Q2(y2, Y1) @ €p(s)s
which proves (4.70). O
Lemma 4.34. The map C : Y? — L (V®?) defined by (4.66) satisfies Assumption 4.21.

Proof. Part (i) of Assumption 4.21 follows from (4.68) and (4.69) and the proof of
Lemma 4.32. Parts (ii) and (iii) of Assumption 4.21 follows from Lemma 4.33. Finally,

we prove part (iv) of Assumption 4.21: for all y € Y and v® € V&2,

2

T (6@, y)v(2)> _ Z <6(y’ y)U(Q)’ e; ® 6i)
i=1
= 22: <v(2), 5(.% y)e ® ei) ye2
— Z <v(2), Cly, y)ei ® €i> Ve

2
= Z (U(2)7 QQ(y7 y)ego(l) & ego(i))v®2

V@2

= %Z (U(Q)’ (i) @ ew(i))\/@?

i=1
2

= %Z (U(2)7 e; 8 €i)V®2
i=1
=Tt (v(z)) . [l
Lemma 4.35. The map C : Y? — L (V®?) defined by (4.66) satisfies Assumption 4.22.
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Proof. By (4.46), (4.66), (4.68), and (4.69) we have, for i = 1,2 and (yi,y2) € Y?,

Clyr,y2)e; ® e; = Q(l)(yla Y2)€u(i) @ o)

C(y1,y2)e; ® ey = Q® (Y1, Y2)€i @ ey,

where

(

Qr1(y1,y2) iy, y2 €Y1 oryp,ye €Yo,
Q(1)<ylay2> ==
Q2(y2, 1) fyr e, ypeYoory, €Yy, yp €Yy,

\
(

Q2(y1,y2) iy, y2 €Y1 oryp,ys € Yo,
Q(Q)(y17y2> -

Qi(y2, 1) fyreYy, peYoory, €Yy, yo €Y.

\

Then, for any y;,y2,y3 € Y and 7 = 1, 2,

Ci(y1,¥2)Ca(y1, y3)C1(y2, y3)e: ® €; ® e

= C1(y1,52)Co(y1,y3) QM (42, y3) eui) @ (i) @ €

= C1(y1,¥2) QP (41, 3) QW (4, Y3) ey @ piy @ €

= Q(l)(yb yz)Q(Q) (Y1, ys)Q(l)(yz, Ys)e; @ e; @ e,
Ca(y2,y3)C1(y1, y3)Ca(y1, yo)ei ® €; @ €;

= Ca(y2, ¥3)C1(y1, y3) QM (y1, 12)e; ® ey ® €gpi)

= Ca (2, 43)Q™ (y1, 43) Q" (y1, )i ® ety ® e

= QW (12, 43)Q® (41, y3) QW (1, o )e; D €; ® ¢,
Ci(y1,¥2)Ca(y1, y3)Ci(y2, y3)e: @ € @ ey

= Ci(y1,52) Ca(y1, ¥3) Q™ (42, y3) i) @ €y © (i

= Ci (v, y2)Q(1)(y1; ys)Q(l)(?h, yS)ecp(i) X e; X €

= QP (y1,52) Q" (1, 53) QW (32, ys) ey ® €5 @ i,
Ca(y2,y3)C1(y1, ¥y3)Ca(y1, ¥2)e: @ € @ ey

= Cao(y2,43)C1(y1,43) QP (1, y2)ei ® €5 ® ey

= Ca(y2, ys)Q(l)(yl, ys)Q(2) (1, yz)%(z‘) @ €u(i) @ ep(i)

= QW (12, 45)QM (41, 15) QP (1, o) en) © € @ e,
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Ci(y1,y2)Ca(y1,y3)Ci(y2, y3)e: ® ey @ €;

= C1(y1,42)Ca(y1,53) QP (12, y3)€; ® () @ €

= C1(y1,92)Q (41, 53) QP (y2, ys)es @ ey ® €

= QP (y1,52)Q® (41, 45) QP (2, ys )es @ egiiy @ e,
Ca(y2,y3)Ci(y1,y3)Cayr, y2)€i ® ey @ €;

= Ca(y2,¥3)C1(y1, ¥3) QP (Y1, y2)ei @ (i) @ €

= Ca(y2,43) Q™ (41, 53) Q™ (41, y2) s @ ey ® €

= QP (12, 45)Q® (41, 45) QP (11, o)e: ® ey @ s,
Ci(y1,y2)Ca(y1, y3)Ci (Y2, Y3)epn) @ €; @ €;

= C1(y1,42)Ca(y1,y3) QP (y2, Ys3)€p(i) ® € @ €

= Cy (11, yQ)Q(l)(yla y3)Q( )(yz, Y3)€u(i) ® €p(i) @ Ey(i)

= Q(l)(yla y2)Q(1)(y17 y3)Q(2) (Y2, y3)e; @ €; ® €yu(i),
Ca(y2,y3)Ci(y1,y3)Ca(yr, y2) e @ €; ® €;

= Ca(ya, ¥3)C1(y1, y3) QW (1, Y2) eu(iy ® €piy @ €uii)

= Ca(y2,55) Q"M (41, 42) QW (41, 1) es © €5 © ey

= QW (Y2, y3)Q(1)(?J1; y3)Q(1)(y17 Y2)ei ® €; @ ey(s).- O
Thus, similarly to Subsection 4.5.1, formulas (4.66) and Lemma 4.33 imply

Proposition 4.36. Let the map C : Y? — L (V®?) be defined by (4.66). Then Theo-
rem 4.25 is applicable to this choice of C(y1,ya). Furthermore, the corresponding commu-

tation relations have the form:

Ty A_(i)(wz) Q2($2,$1)
T Aj(l’g) (5(1‘1, 1’2) + QQ(.Tl, x2>A:(z) (IQ)A;(Z) (Il),
21) AL (22) = Qi (@1, w2) AT (22) Ay (21),
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fori=1,2 and (z1,7) € X

Corollary 4.37. Let Q : Y? — C be a continuous function such that

Qyr,y2) = Qy2, 1), |Q(y1,12)| =1

for all (y1,y2) € Y2 Define C : Y? — L(V®?) by

Clyr,y2)ei @ €; = Q(Y1,Y2)ew(i) @ i)

C(y1,y2)ei @ ey = Q(Y2, Y1)ei @ ey

Then Theorem 4.25 is applicable to this choice of C(yy,y2). The corresponding commu-

tation relations have the form:

(1) A (22) = Q(wa, 21) AL ;) (22) AL (1),
Fw) Al (22) = Q1. 12) A (22) AL
(1) A (x2) = Q(w2,21) A (22) A,
i_(xl)A_(i)(I2> Q(z1, 12) A7 (22) AL,
(1) A
(1)

p(i

€

~
S

N

fori=1,2 and (z1,72) € X?. Furthermore, the corresponding state T is strongly quasi-

free.

Proof. By Theorem 4.26, formulas (4.66) and Lemma 4.33, the state 7 from Proposi-

tion 4.36 is strongly quasi-free when

Ql(ylayQ) = QQ(yzﬂh)'

Thus, setting Q(y1,v2) = Q1(y1,y2), we get Q2(y1,y2) = Q(y2, 11). O

Remark 4.38. 1t should be noted that, even in the case where the dimension of V' is 2, there
are plenty of examples of maps C': Y2 — £ (V®?) that satisfy Assumption 4.2 but do not

satisfy Assumption 4.21. For example, consider the trivial case where C(y;,y2) = 1 for
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all (y1,y2) € Y2 Tt is obvious this C(yy,y») satisfies Assumption 4.2. However, formula
(4.71) implies that

Cly1,y2)e1 ®@ep = e1 @ e + e @ ea.

Hence, the operator C (y1,y2) is not unitary.
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