
Vol.:(0123456789)

Minds and Machines
https://doi.org/10.1007/s11023-023-09632-2

1 3

From Monitors to Monitors: A Primitive History

Troy K. Astarte1 

Received: 11 July 2022 / Accepted: 9 March 2023
© The Author(s) 2023

Abstract
As computers became multi-component systems in the 1950s, handling the speed
differentials efficiently was identified as a major challenge. The desire for better
understanding and control of ‘concurrency’ spread into hardware, software, and
formalism. This paper examines the way in which the problem emerged and was
handled across various computing cultures from 1955 to 1985. In the machinic cul-
ture of the late 1950s, system programs called ‘monitors’ were used for directly
managing synchronisation. Attempts to reframe synchronisation in the subsequent
algorithmic culture pushed the problem to a higher level of abstraction; Dijkstra’s
semaphores were a reaction to the algorithms’ complexity. Towards the end of the
1960s, the culture of ‘structured programming’ created a milieu in which Dijkstra,
Hoare, and Brinch Hansen (among others) aimed for a concurrency primitive which
embodied the new view of programming. Via conditional critical regions and Dijk-
stra’s ‘secretaries’, the co-produced ‘monitor’ appeared to provide the desired encap-
sulation. The construct received embodiment in a few programming languages; this
paper ends by considering Modula and Concurrent Pascal.

Keywords  History of computing · History of computer science · Programming
languages · Concurrency

1  Introduction

Studies on the nature of computer science tend towards the grand and overarching.
Eden (2007) and Wegner (1976) discuss paradigms of computer science from philo-
sophical and historical perspectives; Tedre (2014) explores the formation of com-
puter science as a distinct discipline forged from multiple traditions and Mahoney
(2002) uses the lens of communities and their agendas. Abbate (2017) finds more
specificity through the context of the USA funding landscape and Astarte (2022)
examines the role of one particular aspect of theoretical computer science, formal

 *	 Troy K. Astarte
	 t.k.astarte@swansea.ac.uk

1	 Department of Computer Science, Swansea University, Swansea, UK

http://orcid.org/0000-0002-5582-4096
http://crossmark.crossref.org/dialog/?doi=10.1007/s11023-023-09632-2&domain=pdf

	 T. K. Astarte

1 3

semantics, in establishing European disciplinary identity. The approach taken in this
paper is to develop a particular narrative by exploring the emergence of a specific
technical problem across disparate computing cultures.

Concurrency, here loosely defined as the practice of getting a computer to do mul-
tiple things at the same time,1 promises benefits of efficiency and speed, at the cost
of significant conceptual and practical complexity. It is one of these challenges, that
of mutual exclusion, which is traced through various contexts in this paper. We con-
sider how the problem presents itself, and how the researchers involved attempted
to address it. By examining these various approaches, and the descriptions used to
illustrate them, we can understand more about the particular computing culture:
while computer science, especially theoretical computer science, appears to con-
cern itself with very abstract entities, the use of culturally-laden anthropomorphic
metaphor and analogy frequently undermine this supposed neutrality. Starting with
early machinic culture, through the emergence of algorithms as a core component in
computer science, and finally examining the doctrine of structured programming, we
look at the difficulties of apportioning credit in a community that values individual
work while promoting co-operation, and finish by considering what this story tells
us about the changing nature of computer science.

This paper contains some description of technical concepts but, hopefully, gen-
tly. Terms used to describe these concepts will tend to be those used in the relevant
historical context since these provide insight into the ways their users viewed the
concepts involved.

2 � The Dawn of Concurrency

In the machine-focused culture of the 1950s, the effective use of expensive hardware
was a significant concern. By this time a standard computer installation comprised a
central control unit and a series of peripherals, such as tape readers and printers. As
Strachey (1959) noted, faster hardware was more expensive and consequently con-
fined to the central computer. While this could result in cost-effectiveness if continu-
ally utilised, peripherals operated considerably slower, and forcing the computer to
wait for lengthy delays such as tape reads resulted in unacceptable idle time. Roch-
ester (1955) wrote an early survey on this problem, identifying ‘multiprogramming’
as the solution: dividing the operations of the central unit between gathering data
from input, processing it, and providing output. Part of this could be done in paral-
lel, with a printer being passed some data for output while the computer continued
to perform the next stage of calculation. By the end of the decade, it was understood
by others, such as Gill (1958), that the problem of managing multiple programs was

1  Many different terms have been used for this and similar concepts, including ‘multiprogramming’,
‘time-sharing’, and ‘parallel programming’. Some of those are discussed within this article. ‘Concur-
rency’, which is now the most common term, appears to be due to Carl Adam Petri (Brauer & Reisig,
2009) though his graphical approach to modelling concurrency is not discussed here. Exploring the
associations inherent in particular terms and the reasons for their use is an interesting area for further
research.

1 3

From Monitors to Monitors: A Primitive History﻿	

conceptually equivalent to ‘parallel programming’, where the functionality of one
program could be spread across multiple processing units to improve the speed of its
operations—typically still couched in terms of avoiding waiting for peripherals. The
challenge became one of synchronisation, so that time any component spent idly
waiting for another could be minimised.

Strachey’s solution to this problem, which he referred to as ‘time sharing’,2 was
to write a ‘Director’ program running constantly on the computer, which had access
to special instructions for controlling interrupts—pausing one program at a signal
from another (Strachey, 1959). The Director also allocated separate memory to differ-
ent program control components operating concurrently to prevent them overwriting
information needed by others, something Strachey observed was essential to prevent
badly-written programs ‘running wild’ and consuming the entire system’s resources.
By framing the Director (with a carefully-allocated capital letter, the only concept in
his paper to receive this privilege) as the one in charge, Strachey invoked respect for
the gatekeeper of his machine, with its dedicated resources presented like an office
manager who needs their own room to operate effectively. This idea of a supervisory
program is the germ of large class of programs later referred to as ‘operating systems’.

Following a survey of advances in the area of multiprogramming, one such oper-
ating system was presented by Codd (1962) from the IBM Data Systems Division.
In this system, implemented on IBM’s STRETCH machine, programs could run
‘concurrently’, share data in memory, and manage synchronisation and interference
on this data using BLOCK and UNBLOCK instructions. Any arbitration needed
between programs was managed by a central supervising program.

A better-known pair of machine-level instructions comes from Conway (1963),
who had been working with United States Air Force procurement and was worried
by the conflation of process with processor among programmers (Nyman & Laakso,
2016). Conway described a system which could store the states of processes to sus-
pend and resume them effectively using instructions FORK and JOIN. The former
branched off a new parallel process while the latter synchronised by waiting until all
specified processes had reached a particular ready point, when data could be unified,
and extraneous processes could be killed.

FORK and JOIN, though not unique—as acknowledged by Conway—became the
standard for such instructions and were implemented in many operating systems.
One influential example was in Berkeley’s Project Genie, started in 1963, where an
operating system component called a ‘monitor’ managed synchronisation between
user programs (Nyman & Laakso, 2016). This name caught on as the common
name for such a supervisor (Brinch Hansen, 1996), perhaps because of the success
of Project Genie: the resulting computer system was sold as the SDS 940 and the
Genie operating system, was bought by a company called Tymshare and marketed
as the ‘Tymshare Monitor’. Tymshare subsequently became the model for concur-
rency control in the UNIX kernel (Nyman & Laakso, 2016). Observe that the term

2  This is not to be confused with the ‘time-sharing’ of McCarthy and others (Fano & Corbató, 1966),
which was a way to allow multiple users to work simultaneously on the same central computer, perhaps
through peripheral terminals. As McCarthy (1983) later wrote, Strachey not only hadn’t meant this, but
didn’t even like the idea when he heard it.

	 T. K. Astarte

1 3

‘monitor’ has less agency than Strachey’s ‘Director’, and perhaps seems less intimi-
dating—but the Tymshare monitor was no less controlling than the Director: user
programs could do nothing to control synchronisation beyond removing themselves
from contention.

The operating system monitor had drawbacks. As a black-box, applications pro-
grammers had little control over the concurrency management, making it difficult to
predict the system’s behaviour, or to use concurrency effectively within programs.
By the early 1960s, there was a growing desire for a more sophisticated synchronisa-
tion mechanism available to the programmer. This was obvious already to Conway
(1963) who suggested that the new ‘high-level’ programming languages could have
built-in concurrency support to make it easier to write parallel programs. It is this
trajectory which is explored in the current paper—though operating system manage-
ment continues to play a key role in concurrency and underlies the implementation
of most of the abstractions discussed.

3 � The Algorithmic Age

The early 1960s was a period of diversification in computing as various existing
cultures adopted and mutated the calculating machine, presented by Haigh and
Ceruzzi (2021) as a series of becomings. While Project Genie enjoyed a period of
commercial success as a business service, the nascent—and still self-reifying—field
of computer science latched onto the term ‘algorithm’. Indeed, as argued by Ens-
menger (2010, Chap. 5), it was the algorithm that computer science instilled as its
fundamental object of study. Ensmenger notes that the centring of the algorithm in
Knuth’s (1968) carefully curated history of computing was a key aspect in cement-
ing a Kuhnian ‘normal science’ of computers (Kuhn, 1962).

Algorithmic culture was reflected in the publication of first IAL and then ALGOL
60 (Backus, 1960; Backus et al., 1960): while the former was the International Alge-
braic Language, the latter was the ALGOrithmic Language. The algorithm repre-
sented a new way to arrange problems for machine operation, and suggested inscrip-
tion at a higher level of abstraction in a way that corresponded more closely with
how a programmer thought (De Mol & Bullynck, 2022).3 In 1960, a new section
was created in Communications of the ACM (Vol. 3, No. 2) in which algorithms
were published. The machine-independent ALGOL 60 was the perfect vehicle: any-
one could write and share these proto-programs; any machine could implement them
if it had an ALGOL compiler; and problems in computation could be discussed at
this higher level of abstraction.

Although ALGOL 60 had no formal support for concurrency, it was nevertheless the
notation of choice for algorithms about this. In an algorithm, the intricacies of control-
ling concurrency could be addressed directly by the programmer. The focus was often
on the problem of mutual exclusion (what Strachey had called ‘locking out’): ensuring

3  A retrospective on concurrency published by Lamport (2015) following his Turing Award emphasises
the importance of an algorithmic view.

1 3

From Monitors to Monitors: A Primitive History﻿	

that some critical resource, such as a hardware component or a portion of memory,
was not accessed by multiple concurrent routines simultaneously, since unpredictable
behaviour could occur when one process depended on the value of a variable that had
been changed by another.

An early algorithmic solution is owed to T. J. Dekker, working at Mathematisch
Centrum in Amsterdam alongside Edsger Dijkstra, who reported the result (Dijkstra,
1962). This algorithm provided mutual exclusion for two processes, P1 and P2, pre-
venting them accessing a critical resource simultaneously. Each process has a flag vari-
able which it sets to true prior to entering its ‘critical section’; P2 must check P1’s flag
is false before continuing. In the case of both flags being true, stalling is prevented by
an additional Boolean arbitrator which alternates priority between processes.

As Dijkstra (1962) notes, the algorithm works well for two processes but gener-
alises poorly to n. Each process has to check priority against every other process,
introducing new possibilities for interference, and the checking phase gets longer
with every new process. A more sophisticated priority system was given by Dijk-
stra (1968a, Sect. 2.2), and later by the Bakery algorithm of Lamport (1974). This
latter invokes the metaphor of a ticketing system at a bakery. Each process takes a
ticket upon being ready for its critical section, and the ticket number increases each
time, with the lowest-numbered ticket being allowed to proceed. This permits every
thread to get a turn eventually and scales well to many processes, but involves a lot
of time for each process to check its progression criteria, often to no avail, a phe-
nomenon referred to as ‘busy waiting’. As explained by Dijkstra (1971), this means
that a process must continually check whether it can proceed with its critical sec-
tion, taking up computer resources in doing so. An alternative is to put the process
to sleep, only waking it up when needed. Lamport’s metaphor of a fair and orderly
system like polite patrons at a bakery comes with the cachet of simplicity through
familiarity, as well as avoiding the assumption of an underlying mutual exclusion
mechanism (Lamport, 2015), though the technical details are quite complex.

This complexity, and the problem of busy waiting, hint at the difficulties of
algorithmic solutions to concurrency, though plenty of research continued at least
into the 1980s (for example Peterson, 1981; Raynal, 1986). Algorithms retain an
important role for teaching the concepts of concurrency; Ben-Ari (1990) builds the
problem of mutual exclusion using a series of algorithms which reflect the historical
development.

4 � Primitive Programming

The textual complexity of algorithms to manage synchronisation tended to mirror
runtime inefficiency; and while machine and OS operations underlay the implemen-
tation of many concurrent systems,4 a key problem in the 1960s was the develop-
ment of a concurrency primitive at the programming language level. This could

4  For example, the ‘test and set’ operation in IBM’s System/360 was present since the mid 1960s (IBM,
1968).

	 T. K. Astarte

1 3

allow a programmer to utilise concurrency without caring about the implementa-
tion; and facilitated reasoning about concurrent programs at a higher level (as dis-
cussed later, program reasoning was a growing concern in this period). Such primi-
tives could also scale better to larger problems than could algorithms.

The classic primitive is the ‘semaphore’, an early work of Edsger Wybe Dijsk-
tra. His PhD at Mathematisch Centrum concerned the assembly language for the
Electrologica X1 computer, which meant grappling with the problems of hardware
management and the interrupt (Dijkstra, 1959). By 1962, he had moved to Technis-
che Hogeschoole Eindhoven, where he began working on a multiprogramming sys-
tem for the Electrologica X8 Dijkstra (1968c). Dijkstra’s attitude was characterised
by Daylight (2011) as ‘generalist’, meaning he was interested in moving away from
making computing decisions based on the structure of any one machine or system
and instead aiming for concepts which were sufficiently abstract as to be portable.

The semaphore’s introductory publication has already been mentioned since it
introduced Dekker’s algorithm, in fact as a kind of straw figure against which to pit
his superior ideas (Dijkstra, 1962). ‘Over de sequetialiteit van procesbeschrijvingen
[On the sequentiality of process descriptions]’ was unpublished and privately cir-
culated, as with many of his works.5 After dismissing some algorithmic solutions
to synchronisation, Dijkstra invoked the metaphor of a railway signalling system to
name the ‘semaphore’. These wooden posts had movable arms which could be raised
or lowered to indicate to train drivers which tracks to use: just like in concurrent pro-
grams, collisions could be avoided. Though the semaphores provide organisation,
they have no agency, providing instead a structure for simplistic communication.

Technically, a semaphore is a special purpose variable, initially a Boolean value,
which indicates the availability of a resource. Dijkstra (1963) reported on the incor-
poration of semaphores into programs for the X8, which convinced him that a more
general solution was to use integers. A semaphore then provides a counter of the
available resources up for contention, and in the case of simple mutual exclusion,
can range from 0 to 1. The semaphore is accessible only through two operations
P and V. These stood for various words: initially passering [passing] and vrijgave
[release], both nouns; later Dijkstra would present them as verbs: prolaag [a neolo-
gism meaning try-lower] and verhoog [raise].6 Observe that the use of the railway
metaphor loses some of its utility as the program semaphore becomes reified and
Dijkstra is forced into awkward neologism to properly express his concept.

P checks whether the semaphore is positive; if so, it decrements the semaphore
and proceeds, otherwise the process begins waiting. V increases the value of a sema-
phore by 1 and, to use the term from Dijkstra (1962), notifies a “central alarm clock”
which wakes any waiting processes and allows them to try P again.

Mutual exclusion is very easy to implement with this binary semaphore: 1 indi-
cates that the resource (which could simply be the opportunity to enter a critical
section) is free and 0 that it is not. Any number of processes works; each must wait

5  While there is no date on this manuscript, Dijkstra’s personal numbering system in which nearly every-
thing he wrote is given an ‘EWD-x’ label puts it in 1962 or 1963.
6  A useful English mnemonic is procure and vacate.

1 3

From Monitors to Monitors: A Primitive History﻿	

to succeed P before continuing to its critical section, then signal with V when it
has finished, freeing up the semaphore to allow another process to pass P. Multiple
identical resources can be contended with an integer-valued semaphore, or a single
variable surrounded by a binary semaphore.

Clearly a major part of the semaphore’s proper operation is the sleeping and
waking; a further important detail is the ‘atomicity’ of V and of P’s non-waiting
aspect—the check and change to the value of the semaphore must happen without
any other process interfering while the operation is underway. While Dijkstra’s early
publications simply assumed an implementation would provide such mechanisms,
by 1968 he reported on the programming of semaphores in the THE multiprogram-
ming system using machine code primitives and an interrupt mechanism (Dijkstra,
1968d).

The key publication, and usual citation, on semaphores was less implementation
focused. Dijkstra (1968a), first distributed in 1965 and later republished in 2013,
was pedagogical in nature. This work grew from the lecture notes for Dijkstra’s 1965
programming course and presented many basic concepts in concurrency, including
the term ‘critical section’ used in the present article, and a phenomenon Dijkstra
called ‘the deadly embrace’. First addressed (in Dutch) a few years earlier, Dijkstra
(1964) uses this term to describe a situation in which one process can only continue
if another is ‘killed’. This is a class of problems now called ‘deadlocks’—continu-
ing the fatal theme—in which no process can proceed because each is waiting for
another.

This risky possibility is introduced by the conditional waiting in the P operation:
if the proper conditions to raise the semaphore are never met, every process could be
stuck forever waiting on a P that will never become valid. The classic illustration of
this problem appeared as an exam question on Dijkstra’s 1965 programming course,
where it was called the ‘Dining Quintuple’, although its popular formation is as
‘Dining Philosophers’ (Dijkstra, 1971). In this scenario, five philosophers sit around
a central bowl of spaghetti, with one fork between each. A philosopher needs two
forks to begin eating and must pick them up one at a time; but if each philosopher
takes the fork to their left, no forks remain on the table to be picked up in the right
hand. In this situation, no-one can eat; and there is no way to use semaphores to
prevent this. Of course, this metaphor seems rather artificial; and as Ben-Ari (1990)
notes “it is part of the folklore of computer science to point out that the story would
be more believable if the bowl contained rice and the utensils were chopsticks”. Per-
haps spaghetti and philosophy stick closer together in the minds of European com-
puter scientists thanks to the Enlightenment—the discussion by Hoare (1972b) spe-
cifically identifies the philosophers with Benthamism—rather than permitting the
more apposite, but less Western, metaphor.

As the Dining Philosophers example illustrates, semaphores can’t prevent every
problem in concurrency. Indeed, poorly-ordered semaphore operations can even
introduce them. With the use and challenge of concurrency only increasing through-
out the late 1960s and into the 1970s, motivation arose for a more sophisticated
primitive. Once again we turn to Dijkstra to seek its roots. His 1968a treatise origi-
nated in the lecture notes for a programming course, but this didactic style was typi-
cal of him. The work is full of mantras about good programming, and specifically

	 T. K. Astarte

1 3

did not include a “fully worked-out theory”, but instead showed the first develop-
ments of a new culture which would soon take over programming.

5 � Structuring Programming

From the early 1970s the search was on to find an improved programming construct
for concurrency: Dijkstra in particular was very strong in his “constant encourage-
ment in the search for a concept to ‘replace’ the semaphore in a high-level program-
ming language” (Hoare, 1972b). Let us focus on three researchers whose interac-
tions during the first years of the decades shaped the following story: Dijkstra, Tony
Hoare, and Per Brinch Hansen. A chronology is provided by Brinch Hansen (1996),
which tends to agree with the sequence of events discussed by Hoare (in Jones,
2016). However, single-author retrospectives are notorious for unreliability; and in
this case, it becomes quite clear that there is no single-person story here.

The three met at a summer school in Marktoberdorf in 1971 and shared their
ideas about managing concurrency, finding they had been thinking along similar
lines (Brinch Hansen, 2004). A follow-up seminar was organised by Hoare in Bel-
fast on operating system techniques, which Brinch Hansen attended, though Dijk-
stra did not, fearing terrorist attack. A further important venue for the discussion,
sharing, and improving of these ideas, according to Hoare (1974), was IFIP’s Work-
ing Group 2.3. This “elite member’s club” (Haigh, 2019) was formed in 1969 when
a group of dissenters (including Dijkstra and Hoare) broke away from Working
Group 2.1 in protest at the ALGOL 68 definition. WG 2.3, formed as ‘Programming
Methodology’, reflected a new priority in computer science: moving away from pro-
gramming language definition, by now beginning to seem a little old-hat, and toward
application of ideas taken from that older paradigm to the programming level (Asta-
rte, 2022).

We have met Dijkstra and set a little of the context. We meet Brinch Hansen later
in this section; now let’s meet Hoare.

Charles Anthony Richard Hoare, known as Tony, had joined the English com-
puter company Elliott Brothers in 1960 following an interest in automatic translation
between Russian and English picked up during his national service (Jones, 2016).
Hoare’s background in logic stretched to his university days studying ‘Greats’ (Clas-
sics) but reading Quine and others for fun—though he admits he did not fully grasp
all the logic concepts (Daylight, 2013). At Elliott, Hoare worked on an ALGOL 60
compiler and systems development, but became increasingly interested in the theory
of programming, taking a chair at Queen’s University Belfast in the late 1960s to sat-
isfy this desire.7 To Hoare, this theory included programming language semantics,
program proof, and concurrency; the latter two he spoke about at the 1971 meetings.

The first publication of Hoare’s thoughts on concurrency appeared a year later.
The paper shows him trying to find a theory for new programming language features

7  Hoare interviewed at a number of universities, rather speculatively, and was somewhat surprised that
he was offered the post (Jones, 2016).

1 3

From Monitors to Monitors: A Primitive History﻿	

which would follow certain principles: freedom from error, run-time efficiency, con-
ceptual simplicity, and generality of application (Hoare, 1972b). Note the concerns
shared with Dijkstra. Hoare observed that programming systems with concurrency
made all of these much harder to achieve due to contention over shared resources.

Hoare proposed to isolate these areas of contention, which he called ‘critical
regions’, using a simple program construct:

where r is shared resource and C a critical region—a series of program statements.
The syntactic isolation and obvious linking of the program segment with the

resource facilitated reasoning in the Hoare-style, which worked well for resources
like I/O hardware, but didn’t provide an obvious way to cope with retaining values
when the resource was programmatic.

As Strachey had observed over ten years previously, sharing variables across pro-
cesses caused challenges, but since many key problems required sharing, Hoare sug-
gested a conditional entry mechanism governed by a Boolean condition B alongside
the critical region:

A process would first have to acquire mutual exclusion on r and then test B; only
when true could the process proceed, otherwise being placed on a queue to wait.
Upon completing C, the process which had been waiting longest would be allowed
to contend for the critical region again—now called a ‘conditional critical region’
(CCR). Hoare showed how to implement this system using semaphores, demonstrat-
ing both his familiarity with Dijkstra’s concept, and the semaphore’s own penetra-
tion into the computer science literature.

A trend is observable now of these concurrency primitives becoming increasingly
abstract, with less concern paid to implementation. While Dijkstra did not have a
“fully worked-out theory”, Hoare was already concerned with placing this concur-
rent programming within his growing theoretical body, and included some first steps
towards ‘Hoare Logic’ rules for concurrency.8

Per Brinch Hansen was less interested in the theory side. He was an electri-
cal engineering graduate (1963) from the Technical University of Denmark who
became engaged in computing during his Master’s degree because he wanted to
make fundamental contributions and computing seemed a field ripe with potential
novelties (Brinch Hansen, 2004). After interning with IBM Hursley, in England,
Brinch Hansen started working at the computer manufacturer Regnecentralen in
Copenhagen under Peter Naur following graduation. After developing a COBOL
compiler, Brinch Hansen was tasked with creating an operating system for the
RC4000 machine. This had been commissioned to help manage a Polish fertiliser
plant, and the serious real-time data handling requirements forced Brinch Hansen to
confront the challenges of concurrency. Like many others, this systems culture was

with r do C

with r when B do C

8  For more on this line of the story, see Jones (2023).

	 T. K. Astarte

1 3

his first view of the area (Brinch Hansen, 1970) and led to him writing a textbook
on the experience, one of the earliest of its kind (Brinch Hansen, 1973). During the
1971 meetings with Hoare, Dijkstra, and others, Brinch Hansen spoke about operat-
ing system principles and the RC4000 experience.

Now focusing specifically on concurrency as a challenge for a programming
language, Brinch Hansen (1972a) wrote an analysis of semaphores and CCRs. He
looked at a challenge problem, that of ‘readers and writers’ as presented by Courtois
et al. (1971). Brinch Hansen compared how semaphores and CCRs managed the
task, and proposed his own solution to the problem. He concluded that semaphores
are advantageous only when synchronisation is the major goal; data access control
benefited from the additional mechanisms of the CCR which made the program text
more intuitive—but at the cost of increased busy waiting.

The original authors did not care for Brinch Hansen’s approach and wrote a
robust reply (Courtois et al., 1972). Even for this small (but fundamental) problem in
concurrency, differing views of ideals like ‘simplicity’, ‘efficiency’, and ‘elegance’
led to different readings of the problem and different writings of solutions. Indeed,
Courtois and colleagues objected to some of the apparent aesthetic value Brinch
Hansen had brought, writing “It seems to have been the insistence on a symmetric
solution to an asymmetric problem which prevented a really satisfactory solution
from being found”.

Working towards a better primitive, Brinch Hansen (1972b) identified a prob-
lematic situation for CCRs: when many conflicting requests on shared resources
occurred simultaneously, they could only be resolved through the intervention of the
operating system. Why could the programmer not do this instead? Brinch Hansen
suggested that each shared resource within a CCR should have an explicit associ-
ated ‘event queue’. If a process failed the condition test, an await primitive would be
used to add the process to this event queue and take it from the CCR. A paired com-
mand, cause, would wake up every process in the event queue and allow them all
again to try to enter the CCR. This is very similar to Hoare’s approach, with a little
more naming of the concepts involved, and the awakening resulting in competition
between processes rather than the priority going to the longest waiting.

Brinch Hansen began to demonstrate concern for correctness in this paper,
describing concepts as having “simple axiomatic properties” (in the Hoare style)
which permit “extensive compile time checking”; as well as growing aesthetic con-
cerns about the structuring of the program text itself. Here we see the convergence
of a number of priorities in programming culture at the time embodied in the con-
structs for concurrency—which Brinch Hansen hoped could implement the OS
control features present in his earlier work (Brinch Hansen, 1970) called ‘monitor
procedures’.

The pieces are nearly in place to examine the emergence of the monitor as pro-
gram construct; but first we must consider what Dijkstra had presented at the 1971
meetings. Dijkstra (1971) wrote about the implementation of operating systems
through varying “layers” of programs, each preparing a machine to make the pro-
gramming easier in the next layer. He saw semaphores as a way to address some of
the challenges, and also got involved with correctness, writing an (informal) proof
demonstrating the solution of mutual exclusion with semaphores. Much of this was

1 3

From Monitors to Monitors: A Primitive History﻿	

material he had already written. But Dijkstra then began to look at more complex
problems such as readers and writers which revealed deficiencies in solutions using
only semaphores.

Inspired by 1970s management culture, and perhaps also the repeated use of the
‘sleep’ metaphor for processes, Dijkstra imagines a secretary assisting a group of
directors. Although he does not explicitly gender them on first introduction, from
the pronouns it is clear the directors are all male and the secretary female.9 He notes
“We have used the metaphor of directors and a common secretary because in the
director-secretary relation in real-life organisation its [sic] also unclear who is the
master and who is the slave!”. Invoking this now-problematised metaphor (Eglash,
2007) as a source of humour justifying another challenging dynamic reveals that
even apparently abstract computer science could embody problematic cultural
values.10

The technical details of how Dijkstra’s secretaries managed concurrency are
rather brief in the 1971 paper and tend not to be referenced much elsewhere, but the
basic idea is as follows. The directors represent processes and the secretary guards
their shared critical resources. Entering a critical section is achieved by calling the
secretary: if the resource is free, it is granted, and the director proceeds, with the
secretary noting which director has the resource. If not, she writes down his request
and tells him to go back to sleep until the appropriate resource is free, at which point
she calls the director to wake him up.

This idea is not dissimilar to the centralised OS model of concurrency control;
the difference is that the programmer can write the routines for waking and sleeping
and can control the conditions—unlike Strachey’s Director which was strictly out
of the programmer’s hands. Additionally, secretaries could be nested hierarchically,
allowing a secretary to be director to a number of sub-secretaries, for more complex
tasks. Dijkstra’s idea was in fact also rather similar to the formulation that ended
up entering the canon of computer science, just framed differently; but first let us
briefly examine a little more of the intellectual context.

6 � Monitors Return

Towards the end of the 1960s, there was perceived by some to be a growing “soft-
ware crisis”. Histories argue about the reality of the crisis (see e.g. Astarte, 2022;
Haigh, 2019; Peláez Valdez, 1988), but undeniably the narrative was useful for a
particular culture of computer scientists to push their own research agendas. Dijkstra
and Hoare are clear cases—the term ‘software crisis’ is all over Dijkstra’s Turing
Award acceptance (Dijkstra, 1972). Dijkstra was, as already mentioned, something

9  The paper’s title invokes ‘hierarchical ordering’ which refers to the layers of operating system, but
could just as well reflect the cultural hierarchies being reflected in computing.
10  The literature on history of computing and technology contains plenty of stories about the treatment
of feminised labour and its removal from the computing industry as it professionalised (Ensmenger,
2010; Hicks, 2017)—though Misa (2019, 2021) has challenged this narrative as insufficiently rich.

	 T. K. Astarte

1 3

of a ‘generalist’ in his attitude to programming and had argued against the go-to
statement in a famous letter (Dijkstra, 1968b). By the end of the 1960s, this had
turned into a whole dogma: ‘structured programming’. This attitude emphasised
code readability and predictable control flow and opposed abnormal exits and trick-
based programming. Perhaps an entire book could be written on the programming
cultures of this period, with structured programming and its high-minded ideals and
aesthetics playing a central role. So far, however, the topic has received historical
treatment only in retrospectives by computer scientists, such as Mills (1986) and
Dijkstra (2001).

Presented at the first meeting of WG 2.3 (Woodger, 1978), which took place at
Brinch Hansen’s workplace Regnecentralen, the structured programming doctrine
was laid out in a book by Dahl et al. (1972). Hoare’s interest in structured program-
ming also influenced his work on proof of data representations (Hoare, 1972a).
Brinch Hansen, too, extolled the paradigm’s virtues (recall that his readers/writers
solution was accused of being unnecessarily symmetric—that being one of the cul-
tural values of structured programming) and framed his own work as ‘structured
multiprogramming’ (Brinch Hansen, 1972b). In this same paper Brinch Hansen
praised Dijkstra’s use of cobegin and coend as a “restricted form of concurrency”
contrasted with “unstructured fork and join primitives”. Aside from the fact that
Dijkstra actually used parbegin and parend, the only major difference is that Dijk-
stra wrote in terms of a high-level programming language and Conway machine
code—the description of the terms are otherwise remarkably similar. Nevertheless,
the clothes of structured programming were enough to convince Brinch Hansen of
Dijkstra’s superiority.

The other important problem leading to the programming monitor was to deal
with the spreading of critical regions throughout programs. As Jones (in Hoare &
Jones, 1989, p. 171) pointed out, this made the task of comprehending and reasoning
about concurrent programs difficult. The insight for dealing with this problem came
from another trend in programming: encapsulation, a core concept from the Simula
family of simulation programming languages (Dahl & Nygaard, 1966).11 Note that
Dahl was the third author of the book on structured programming; these two ideas
are deeply entwined. Encapsulation was achieved by limiting access to data allowing
only specified means, such as named procedures. This provided such benefits as the
prevention of accidental writing to key variables—a challenge for concurrency since
Strachey’s day.

Dahl spoke about Simula and its ‘class’-based approach to structuring data at the
first meeting of WG 2.3 as well—with Brinch Hansen, Dijkstra, and Hoare in attend-
ance, this could well have been their introduction to the concept (Woodger, 1978).
Brinch Hansen used the ideas in his work on operating systems and was the driv-
ing force behind applying it to concurrency (Brinch Hansen, 1996). According to
Hoare (in Jones, 2016), Brinch Hansen had “picked up on this idea that the updates
to shared data should be all written and understood in a single place rather than

11  For a retrospective history, see Nygaard and Dahl (1978).

1 3

From Monitors to Monitors: A Primitive History﻿	

being scattered around, which was the case in my previous proposal for conditional
critical regions”.

The first publication to use the term ‘monitor’ to refer to a specific program
construct is somewhat tricky to determine. Hoare (1973) uses it without reference;
Brinch Hansen (1972b) discussed ‘monitor procedures’ referring back to an earlier
work (Brinch Hansen, 1970), although the term does not actually appear in that pub-
lication. It’s safest to assume that it emerged as a name for the new concept that
the trio were discussing during 1971 and was adopted by both Brinch Hansen and
Hoare. According to Brinch Hansen (1996) the use is in reference to the relation
with the earlier, monolithic, OS monitor—because the new construct also central-
ised shared resources.

The key reference on monitors was written by Hoare (1974). This paper frames
the monitor as an operating systems concept; a program that controls other (paral-
lel) programs. Hoare was careful to acknowledge the work of others, writing that his
approach “develops Brinch Hansen’s concept of a monitor as a method of structur-
ing an operating system” and “the development of the monitor concept is due to
frequent discussions and communications with E.W. Dijkstra and P. Brinch-Hansen.
A monitor corresponds to the ‘secretary’ described in Dijkstra (1971), and is also
described in Brinch Hansen (1972b, 1973)”.

Hoare presents a monitor as a gatekeeper for shared data resources bundled
together with a collection of allowable operations on each resource. Like in Sim-
ula (and later object-oriented programming), defined procedures are the only way
to access the data inside the monitor—and these procedures are guaranteed to have
mutual exclusion since only one procedure can be active in a monitor at a given
time. The significant point is that critical sections are gathered into the procedures,
rather than being scattered across the many different processes around the code.

To prevent programs ‘running wild’ and causing problems, Strachey’s Director
locked access to the shared memory space. In the same way, monitors protect the
system from poorly-formed individual processes, such as those with badly-ordered
acquisition and release of mutual exclusion, by refusing to grant their requests to
access data. However, despite the responsibility being centralised, more control rests
with the programmer who can write the monitor procedures. Written by Hoare in a
pseudo-Simula notation, the monitor framework could be implemented in any high-
level programming language for further applications beyond operating systems.

Monitors control synchronisation through special operations on a particular
kind of variable local to the monitor called a ‘condition’, which is a queue of pro-
cesses. Each monitor might have multiple such conditions, potentially tied to mul-
tiple resources. Conditions have three associated commands: wait, signal, and non-
empty. Wait is used to suspend a calling process when the resource is unavailable
and puts it at the end of the queue, releasing the mutual exclusion; signal wakes the
process at the head of the queue; and non-empty checks whether processes are wait-
ing. Clearly, there is an obvious relation here to the event queues of Brinch Hansen

	 T. K. Astarte

1 3

(1972b)—although only one process is awakened to reduce busy waiting—and the
name comes from Hoare’s own CCRs.12

Implementing monitors would prove to be a challenge due to the potential inef-
ficiencies of conditions; some ideas are presented by Brinch Hansen (1996). One
such, written by Hoare, is intriguing: should it be allowed for a monitor entry to
complete some computation postponed by a different monitor entry? This does not
break the centralised aspect of the monitor, but did form the germ of Hoare’s later
work on ‘communicating sequential processes’ (Hoare, 1978). Multiple conditions
in the same monitor increased their utility but made working with them trickier;
another extension used priority queueing for more sophisticated scheduling at the
risk of starvation for lower priority processes. Queue jumping, where a rogue pro-
cess gets hold of the monitor mutual exclusion between a signal command sleeping
one process and the queue leader awakening, is prevented thanks to a suggestion
from Dahl that signal should come only at the very end of a procedure.

Following his own ideals about bringing correctness to concurrency, Hoare
attempted to provide some proof rules for monitors. The mutual exclusion of moni-
tors meant that procedure calls could be considered sequentially and their results
could be somewhat predictable. With the non-local data access restrictions from the
structured programming paradigm, invariants could be written for monitor local data
and conditions, and proof rules could be somewhat symmetrical. Hoare (1973) was
able to use this approach to reason about a system for paging, a key OS concept of
significant complexity.

However, Hoare’s ‘ideal’ view of proof (as seen in Hoare, 1976) wasn’t fully
achievable by monitors, and deadlock still couldn’t be prevented. Hoare began to
move away from the monitor and towards viewing the competition between pro-
cesses as the key aspect: “the declaration is a better way of dealing with competi-
tion than the resource”. He began building a theory of communication, leading to a
concurrency approach called ‘process algebra’. Dijkstra remained interested in pro-
gramming concepts, working on proof approaches and guarded commands. Brinch
Hansen, though, took most interest in monitors and actually implemented them in
some programming languages. A consideration of these makes up the final part of
this article.

7 � Programming Languages

The programming language Pascal began life as a sequel to ALGOL 60 devel-
oped by Hoare and a fellow ALGOL committee member, Niklaus Wirth.13 but
evolved through ALGOL-W to being a sole creation of Wirth (1971). Designed to
embody the principles of structured programming, it saw frequent use as a teaching

12  This reuse of names for different concepts is somewhat typical of Hoare; he changed his paper ‘Proof
of a program: FIND’ to be a construction following referee reviews, but kept the title the same. He also
published multiple different things called CCS.
13  For a hagiography, see The School of Niklaus Wirth (2000).

1 3

From Monitors to Monitors: A Primitive History﻿	

language (Wirth, 2007). Brinch Hansen in particular liked Pascal, and took it as a
starting point when he began developing an inherently concurrent programming
language.

Brinch Hansen had given a talk on his ideas about queueing variable at Caltech in
February 1972, and took a faculty position there in the summer of that year. He had
the opportunity to develop an operating system for the laboratory’s new PDP 11/45
computer, and decided to create a high-level systems programming language for this
purpose. Later, Brinch Hansen (1996) wrote that his ambition for the language was
to facilitate for operating systems programming what Pascal had done for compil-
ers: reduce the level of effort (compared to writing in machine code) while retaining
efficiency.

With Simula still providing inspiration, Brinch Hansen (1976a) made encapsu-
lation a central component of the Solo operating system: “The combination of a
data structure and the operations used to access it is called an abstract data type. It
is abstract because the rest of the system only needs to know what operations one
can perform on it but can ignore the details of how they are carried out.” Previ-
ously, Brinch Hansen had considered monitors as encapsulating one instance of a
shared resource; but with the inclusion of a class system, he noted a pattern could be
defined for many instances.

With the addition to Pascal of classes, concurrent processes, and monitors to
manage the mutual exclusion, Brinch Hansen created a new language he called Con-
current Pascal (Brinch Hansen, 1976b). Compared to Hoare’s monitors there were
subtle differences in the queueing mechanism intended to make it easier for the com-
piler to check for synch bugs; but one-process-per-monitor mutual exclusion was
copied, the information perhaps coming from Dahl via Hoare’s visit to Caltech in
1974 (Brinch Hansen, 1996). With no recursion and no garbage collection, Concur-
rent Pascal was deliberately simple, which Brinch Hansen found came at something
of a cost.

Brinch Hansen discovered crafting a series of operating systems, starting with
single-user and adding more layers of functionality, while also writing a book on
concurrent programming, to be more taxing than he had expected. While the results
never quite lived up to his hopes, he had managed to demonstrate that an operating
system could be written in a high-level programming language with only a small
recourse to machine language—and, indeed, that only 4% required the concurrency
features of the language.

A little later in the 1970s, another language, Modula-1, developed Pascal using
monitors, this time created by Pascal’s originator Wirth (1977). A real believer in
structured programming, Wirth felt that Pascal needed more features to be a fully
useful language. The key concept in Modula was the ‘module’: “a set of procedures,
data types, and variables, where the programmer has precise control over the names
that are imported from and exported to the environment”. These provided a way to
accept that systems programming might necessitate small components which did
not fit with nice abstraction principles, such as assembly code peripheral drivers, or
concurrency synchronisation. Modules could isolate these parts and carefully man-
age the interface: encapsulation for synchronisation. This was somewhat similar to
the class in Concurrent Pascal, which Wirth mentions in the text of his article, but

	 T. K. Astarte

1 3

without providing a citation to Brinch Hansen. For his part, Brinch Hansen talks
about Wirth’s work in his retrospective only a little; Wirth doesn’t mention Brinch
Hansen at all (Brinch Hansen, 1996; Wirth, 2007).

By the second version of Modula, Wirth (1980) had removed almost all concur-
rency due to a new interest in real-time programming, keeping only critical regions
and signals, for improved efficiency. Brinch Hansen, too, began to move away from
monitors, instead focusing on multicomputers without shared memory, and the
remote procedure call mechanism instead (Brinch Hansen, 1996). While a local
monitor still provided mutual exclusion, the days of the monitor as a core operating
system component were over. These remote procedure calls, though, served as “a
source of inspiration in the design of the Ada tasking facilities” (Roubine & Heliard,
1980). While there is no space in the present paper to discuss Ada, it is worth clos-
ing with a quotation about the fascinating history of this Department of Defense
programming language:

The “facts” of the history, the dates and names, “have nothing to do with what
was actually going on. There was a studied and logical progression, but the paper
trail was constructed after the fact to please those who needed boxes filled” (Whi-
taker, 1996).

8 � Conclusions

Standard historical narratives of the reification of (theoretical) computer science pre-
sent it as a story of increasing abstraction: on the one hand, an increasingly thorough
exploration of the most basic concepts in computation (Astarte, 2022; Mahoney,
2002); on the other, a deliberate distancing from the practical concerns of industrial
programming (Ensmenger, 2010, Chap. 5). As Dick (2015, p. 89) writes, “Theoreti-
cal computer science, in a sense, hinged on a disassociation of ‘computing’ from the
computer itself.” In some respects, the treatment of concurrency, as explored in part
here, fits with this—each successive section discusses a more abstract component.

However, concurrency forced its way into computing at all levels of abstraction,
from the economic concern of hardware differentials in early machines, to the man-
agement of operating systems, and as an intellectual challenge to the ideals of struc-
tured programming. Contrary to the desire of many computer scientists to distance
themselves from hardware concerns, exploitation of the valuable performance ben-
efits introduced by concurrency required engaging seriously with issues stemming
from basic physics.14

Studying how the concurrency challenge emerged and was treated in various
computing cultures grants insight into the key nature of the problem as well as illu-
minating those cultures. The monitor was a tool for oversight and control in operat-
ing systems but a primitive in the programming paradigm, and became a tool to
enforce the culture of structured programming upon the messiness of concurrency.

14  The difficulties of maintaining synchronisation in ever-larger electronic circuits was also the driver
for Petri (1962) to develop his model of concurrency based on small, asynchronous, autonomous agents.

1 3

From Monitors to Monitors: A Primitive History﻿	

It saw embodiment in programming languages, which persists today: in Java, every
object is automatically given its own monitor on creation, activated by the synchro-
nised keyword.

Monitors meant a few things to different people; as the middle ground between
theoretical concept and practical tool they received criticism from both directions:
too hard to implement, or too challenging to write proofs about. As such they add
extra nuance to historical narratives about the divergence of ‘theoretical’ and ‘prac-
tical’ in computing, and serve as a reminder that complex technical phenomena defy
easy categorisation as readily as they prevent neat technical solutions. This multi-
faceted nature of concurrency, and of monitors in particular, caused those involved
in their development to move on to other challenges, and Brinch Hansen (1996)
remained very mixed in his later assessment. But just as operating systems still man-
age concurrency, algorithms still are used to teach (e.g. in Ben–Ari, 1990), and sem-
aphores still persist, monitors remain in modern programming languages and taught
courses.

The case of monitors shows us an example of collaboration between Brinch
Hansen, Dijkstra, and Hoare, assisted by a growing culture of scientific communities
and working groups, like IFIP WG 2.3. Trying to apportion individual credit is thus
overly simplistic, and often very difficult. Dijkstra was notorious for failing to cite
others; his dogmatic book A Discipline of Programming contains the line “For the
absence of a bibliography I offer neither explanation nor apology” (Dijkstra, 1976).
The lack of reciprocal mention in Brinch Hansen and Wirth’s concurrent extensions
of Pascal—when the two were surely aware of each other—provides us only tanta-
lising hints at the relationship between them. And the final quote about the history of
Ada warns historians even from relying on the old standard of archival documents.

Examining the problem of concurrency provides evidence that theoretical com-
puter science is not only concerned with pure abstract thought-stuff. The examples
and metaphors used to describe concurrency tell us something about attitudes in
computer science cultures and how grounded these remain in broader cultural per-
spectives. Strachey’s Director embodied the centralised view of management into
a computing system; and, reacting against that, the desire for decentralisation and
programmer control led to the monitor, even as its name evoked surveillance and
oversight. The spaghetti eaten by the classic Dining Philosophers reveals the West-
ern-centric attitude to thought experiments, neatly preventing a more appropriate
rice-and-chopsticks metaphor. Finally, Dijkstra’s male Directors having the nomi-
nal power yet sleeping away any time they are not needed, while female Secretar-
ies manage all the complicated work in the background, forefronts 1970s attitudes
to office gender roles in an apparently theoretical situation. Dijkstra played this
dynamic for laughs by bringing in a racialised comparison to “master” and “slave”.

Critically examining the problematic aspects of gender, race, and embodiment
in computing is a key task for scholars, present in, for example, two recent collec-
tions of work (Abbate & Dick, 2022; Mullaney et al., 2021). However, the science of
computing is often absent from these discussions, perhaps due to a perception of its
abstract nature. Yet as shown in this article, the task of making computing abstract
seems to require creative redescription, which cannot be free from culturally-laden
aspects. By studying the use of metaphor and analogy, following the work of Eglash

	 T. K. Astarte

1 3

(2007) and Petrick (2022), we can turn a critical eye to the culture of computer sci-
ence, too.

Funding  The research leading to these results received funding from Leverhulme Trust Grant No. RPG-
2019-020. Thanks to attendees at HaPoC 2021, Cliff Jones, and the anonymous reviewers, for providing
useful comments. The author has no financial or proprietary interests in any material discussed in this
article.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Abbate, J. (2017). From handmaiden to “Proper intellectual discipline”: Creating a scientific identity for
computer science in 1960s America. In T. J. Misa (Ed.), Communities of computing. Association for
Computing Machinery and Morgan & Claypool.

Abbate, J., & Dick, S. (Eds.). (2022). Abstractions and embodiments: New histories of computing and
society. Johns Hopkins University Press.

Astarte, T. K. (2022). “Difficult things are difficult to describe”: The role of formal semantics in Euro-
pean computer science, 1960–1980. In J. Abbate & S. Dick (Eds.), Abstractions and embodiments:
New histories of computing and society. Johns Hopkins University Press.

Backus, J. W. (1960). The syntax and semantics of the proposed International Algebraic Language of the
Zurich ACM-GAMM conference. In Information processing: Proceedings of the international con-
ference on information processing (pp. 125–132). UNESCO.

Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Naur, P., et al. (1960). Report on the algo-
rithmic language ALGOL 60. Numerische Mathematik, 2(1), 106–136.

Ben-Ari, M. (1990). Principles of concurrent and distributed programming. Prentice Hall.
Böszörményi, L., Gutknecht, J., & Pomberger, G. (Eds.). (2000). The school of Niklaus Wirth: The art of

simplicity. dpunkt.verlag/Copublication with Morgan-Kaufmann.
Brauer, W., & Reisig, W. (2009). Carl Adam Petri and “Petri Nets’’. Fundamental Concepts in Computer

Science, 3(5), 129–139.
Brinch Hansen, P. (1970). The nucleus of a multiprogramming system. Communications of the ACM,

13(4), 238–241.
Brinch Hansen, P. (1972a). A comparison of two synchronizing concepts. Acta Informatica, 1(3),

190–199.
Brinch Hansen, P. (1972b). Structured multiprogramming. Communications of the ACM, 15(7), 574–578.
Brinch Hansen, P. (1973). Operating system principles. Prentice Hall.
Brinch Hansen, P. (1976a). The Solo operating system: A concurrent Pascal program. Software—Practice

and Experience, 6(2), 141–149.
Brinch Hansen, P. (1976b). The programming language concurrent Pascal. In F. L. Bauer & K. Samelson

(Eds.) Language Hierarchies and Interfaces, Part of Lecture Notes in Computer Science. (Vol. 46,
pp. 82–110). Springer.

Brinch Hansen, P. (1996). Monitors and concurrent Pascal: A personal history. In T. J. Bergin & R. G.
Gibson (Eds.), History of Programming Languages—II (pp. 121–172). ACM Press.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

From Monitors to Monitors: A Primitive History﻿	

Brinch Hansen, P. (2004). A programmer’s story: The life of a computer pioneer. http://​www.​brinch-​
hansen.​net/

Codd, E. (1962). Multiprogramming. In F. Alt & M. Rubinoff (Eds.), Advances in computers (Vol. 3, pp.
77–153). Elsevier.

Conway, M. E. (1963). A multiprocessor system design. In Proceedings of the November 12–14, 1963,
Fall Joint Computer Conference (pp. 139–146).

Courtois, P.-J., Heymans, F., & Parnas, D. L. (1971). Concurrent control with readers and writers. Com-
munications of the ACM, 14(10), 667–668.

Courtois, P.-J., Heymans, F., & Parnas, D. L. (1972). Comments on “A comparison of two synchronizing
concepts by PB Hansen’’. Acta Informatica, 1(4), 375–376.

Dahl, O.-J., Dijkstra, E. W., & Hoare, C. A. R. (Eds.). (1972). Structured programming. Academic Press.
Dahl, O.-J., & Nygaard, K. (1966). SIMULA: an ALGOL-based simulation language. Communications

of the ACM, 9(9), 671–678.
Daylight, E.G. (2011, 03). Dijkstra’s Rallying Cry for Generalization: The Advent of the Recursive Pro-

cedure, Late 1950s–Early 1960s. The Computer Journal, 54 (11), 1756-1772. https://​doi.​org/​10.​
1093/​comjnl/​bxr002

Daylight, E. G. (2013). From mathematical logic to programming-language semantics: A discussion with
Tony Hoare. Journal of Logic and Computation, 25(4), 1091–1110.

De Mol, L., & Bullynck, M. (2022). What’s in a name? Origins, transpositions and transformations of
the triptych Algorithm—Code—Program. In J. Abbate & S. Dick (Eds.), Abstractions and embodi-
ments: New histories of computing and society. Johns Hopkins University Press.

Dick, S. (2015). Computer science. In G. M. Montgomery & M. A. Largent (Eds.), A companion to the
history of American science (pp. 79–93). Wileys.

Dijkstra, E. W. (1959). Communication with an automatic computer. Doctoral dissertation. University of
Amsterdam.

Dijkstra, E. W. (1962). Over de sequetialiteit van procesbeschrijvingen [on the sequentiality of process
descriptions]. Circulated privately, available in Texas Archive. Retrieved from https://​www.​cs.​
utexas.​edu/​users/​EWD/​trans​latio​ns/​EWD35-​Engli​sh.​html (EWD35. Date inferred)

Dijkstra, E.W. (1963). Multiprogrammering en de X8 [multiprogramming in the X8]. Circulated pri-
vately, available in Texas Archive. Retrieved from http://​www.​cs.​utexas.​edu/​users/​EWD/​ewd00​xx/​
EWD51.​PDF (EWD51. Date inferred)

Dijkstra, E. W. (1964). Een algorithme ter voorkoming van de dodelijke omarming [An algorithm to pre-
vent the deadly embrace]. Circulated privately, available in Texas Archive. Retrieved from http://​
www.​cs.​utexas.​edu/​users/​EWD/​ewd01​xx/​EWD108.​PDF (EWD108. Date inferred)

Dijkstra, E.W. (1965). Cooperating sequential processes. EWD123, Texas Archive. Retrieved from http://​
www.​cs.​utexas.​edu/​users/​EWD/​ewd01​xx/​EWD123.​PDF (Published as Dijkstra (1968a))

Dijkstra, E. W. (1968a). Cooperating sequential processes. In F. Genuys (Ed.), Programming languages
(pp. 43–112). Academic Press.

Dijkstra, E. W. (1968b). Go to statement considered harmful. Communications of the ACM, 11(3),
147–148.

Dijkstra, E. W. (1968c). The structure of the “THE’’-multiprogramming system. Communications of the
ACM, 11(5), 341–346.

Dijkstra, E. W. (1968d). The structure of the “THE” multiprogramming system. In P.B. Hansen (Ed.), The
origin of concurrent programming (pp. 139–152). Springer.

Dijkstra, E. W. (1971). Hierarchical ordering of sequential processes. Acta Informatica, 1, 115–138.
Dijkstra, E. W. (1972). The humble programmer. Communications of the ACM, 15(10), 859–866.
Dijkstra, E. W. (1976). A discipline of programming. Prentice Hall.
Dijkstra, E. W. (2001). What led to “Notes on Structured Programming”. Held in the Dijkstra archive

online. Retrieved from http://​www.​cs.​utexas.​edu/​users/​EWD/​trans​cript​ions/​EWD13​xx/​EWD13​08.​
html (EWD 1308)

Dijkstra, E. W. (2013). Cooperating sequential processes. In P. Brinch Hansen (Ed.), The origin of con-
current programming: From semaphores to remote procedure calls (2nd ed., pp. 65–138). Springer.

Eden, A. H. (2007). Three paradigms of computer science. Minds and Machines, 17(2), 135–167. https://​
doi.​org/​10.​1007/​s11023-​007-​9060-8

Eglash, R. (2007). Broken metaphor: The master–slave analogy in technical literature. Technology and
Culture, 48(2), 360–369.

Ensmenger, N. L. (2010). The Computer Boys Take Over: Computers, Programmers, and the Politics of
Technical Expertise. MIT Press.

http://www.brinch-hansen.net/
http://www.brinch-hansen.net/
https://doi.org/10.1093/comjnl/bxr002
https://doi.org/10.1093/comjnl/bxr002
https://www.cs.utexas.edu/users/EWD/translations/EWD35-English.html
https://www.cs.utexas.edu/users/EWD/translations/EWD35-English.html
http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD51.PDF
http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD51.PDF
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD108.PDF
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD108.PDF
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1308.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD13xx/EWD1308.html
https://doi.org/10.1007/s11023-007-9060-8
https://doi.org/10.1007/s11023-007-9060-8

	 T. K. Astarte

1 3

Fano, R. M., & Corbató, F. J. (1966). Time-sharing on computers. Scientific American, 215(3), 128–143.
Gill, S. (1958). Parallel programming. The Computer Journal, 1(1), 2–10.
Haigh, T. (2019). Assembling a prehistory for formal methods: A personal view. Formal Aspects of Com-

puting, 31(6), 663–674.
Haigh, T., & Ceruzzi, P. E. (2021). A new history of modern computing. MIT Press.
Hicks, M. (2017). Programmed Inequality: How Britain discarded women technologists and lost its edge

in computing. MIT.
Hoare, C. A. R. (1972a). Proof of correctness of data representations. Acta Informatica, 1(4), 271–281.

Retrieved from https://​doi.​org/​10.​1007/​BF002​89507
Hoare, C. A. R. (1972b). Towards a theory of parallel programming. In C. A. R. Hoare & R. H. Per-

rott (Eds.), Operating system techniques (pp. 61–71). Academic Press (Proceedings of a Seminar at
Queen’s University, Belfast, August–September 1971)

Hoare, C. A. R. (1973). A structured paging system. BCS, Computer Journal, 16(3), 209–215.
Hoare, C. A. R. (1974). Monitors: An operating system structuring concept. Communications of the

ACM, 17(10), 549–557.
Hoare, C. A. R. (1976). Parallel programming: An axiomatic approach. In F. L. Bauer & K. Samelson

(Eds.), Language hierarchies and interfaces (pp. 11–42). Springer.
Hoare, C. A. R. (1978). Communicating sequential processes. Communications of the ACM, 21(8),

666–677.
Hoare, C. A. R., & Jones, C. B. (1989). Essays in computing science. Prentice Hall.
IBM. (1968). System/360 principles of operation (8th ed.) (Computer software manual No. A22-6821-7).
Jones, C. (2023). Three Early Formal Approaches to the Verification of Concurrent Programs. Minds &

Machines. https://doi.org/10.1007/s11023-023-09621-5
Jones, C. B. (2016). Professor Sir Tony Hoare: ACM Turing Award Winner 1980. Online (Interview)
Knuth, D. E. (1968). Fundamental algorithms (Vol. I). Addison-Wesley.
Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago Press.
Lamport, L. (1974). A new solution of Dijkstra’s concurrent programming problem. Communications of

the ACM, 17(8), 453–455. https://​doi.​org/​10.​1145/​361082.​361093
Lamport, L. (2015). Turing lecture. The computer science of concurrency: The early years. CACM, 58(6),

71–76. https://​doi.​org/​10.​1145/​27719​51
Mahoney, M. S. (2002). Software as science—science as software. In U. Hashagen, R. Keil-Slawik, & A.

Norberg (Eds.), History of Computing: Software Issues (pp. 25–48). Springer-Verlag.
McCarthy, J. (1983). Reminiscences on the theory of time-sharing. Retrieved December 6, 2022, from

http://​jmc.​stanf​ord.​edu/​compu​tings​cience/​times​haring.​html
Mills, H. D. (1986). Structured programming: Retrospect and prospect. IEEE Software, 3(06), 58–66.
Misa, T. J. (2019). Gender bias in computing. In W. Aspray (Ed.), Historical studies in computing, infor-

mation, and society: Insights from the Flatiron lectures (pp. 115–136). Springer.
Misa, T. J. (2021). Dynamics of gender bias in computing. Communications of the ACM, 64(6), 76–83.

https://​doi.​org/​10.​1145/​34175​17
Mullaney, T. S., Peters, B., Hicks, M., & Philip, K. (Eds.). (2021). Your computer is on fire. MIT Press.
Nygaard, K., & Dahl, O.-J. (1978). The development of the SIMULA languages. In R. L. Wexelblat

(Ed.), History of programming languages (pp. 439–480). Association for Computing Machinery.
https://​doi.​org/​10.​1145/​800025.​11983​92

Nyman, L., & Laakso, M. (2016). Notes on the history of fork and join. IEEE Annals of the History of
Computing, 38(3), 84–87.

Peláez Valdez, M. E. (1988). A gift from Pandora’s box: The software crisis. Doctoral dissertation. Uni-
versity of Edinburgh.

Peterson, G. (1981). Myths about the mutual exclusion problem. Information Processing Letters, 12(3),
115–116.

Petri, C. A. (1962). Fundamentals of a theory of asynchronous information flow. In IFIP Congress (pp.
386-390). North-Holland.

Petrick, E. (2022). The computer as prosthesis? Embodiment, augmentation, and disability. In J. Abbate
& S. Dick (Eds.), Abstractions and embodiments: New histories of computing and society. Johns
Hopkins University Press.

Raynal, M. (1986). Algorithms for mutual exclusion. MIT Press.
Rochester, N. (1955). The computer and its peripheral equipment. In Proceedings of the Eastern Joint

AIEE-IRE computer conference: Computers in business and industrial systems (pp. 64–69).

https://doi.org/10.1007/BF00289507
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/2771951
http://jmc.stanford.edu/computingscience/timesharing.html
https://doi.org/10.1145/3417517
https://doi.org/10.1145/800025.1198392

1 3

From Monitors to Monitors: A Primitive History﻿	

Roubine, O., & Heliard, J.-C. (1980). Parallel processing in Ada. On the construction of programs. Cam-
bridge University Press.

Strachey, C. (1959). Time sharing in large, fast computers. In Proceedings of the IFIP congress (pp.
336–341).

Tedre, M. (2014). The science of computing: Shaping a discipline. Chapman and Hall/CRC.
Wegner, P. (1976). Research paradigms in computer science. In Proceedings of the 2nd international con-

ference on software engineering (pp. 322–330).
Whitaker, W. A. (1996). ADA—the Project: The DoD High Order Language Working Group. In History

of programming languages—II (pp. 173–232). Association for Computing Machinery. https://​doi.​
org/​10.​1145/​234286.​10578​16

Wirth, N. (1971). The programming language Pascal. Acta informatica, 1(1), 35–63.
Wirth, N. (1977). Modula: A language for modular multiprogramming. Software: Practice and Experi-

ence, 7(1), 1–35.
Wirth, N. (1980). Modula-2 (Vol. 36). Tech. Rep. ETH Institut für Informatik.
Wirth, N. (2007). Modula-2 and Oberon. In Proceedings of the 3rd ACM SIGPLAN conference on history

of programming languages. https://​doi.​org/​10.​1145/​12388​44.​12388​47
Woodger, M. (1978). A history of IFIP WG 2.3: Programming methodology. In D. Gries (Ed.), Program-

ming methodology: A collection of articles by members of IFIP WG 2.3. Springer.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1145/234286.1057816
https://doi.org/10.1145/234286.1057816
https://doi.org/10.1145/1238844.1238847

	From Monitors to Monitors: A Primitive History
	Abstract
	1 Introduction
	2 The Dawn of Concurrency
	3 The Algorithmic Age
	4 Primitive Programming
	5 Structuring Programming
	6 Monitors Return
	7 Programming Languages
	8 Conclusions
	References

