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A B S T R A C T

Most process control algorithms need a predetermined target value as an input for a process variable so that
the deviation is observed and minimized. In this paper, a novel machine learning algorithm is proposed that
has an ability to not only suggest new target values for both categorical and continuous variables to minimize
process output variation but also predict the extent to which the variation can be minimized.

In foundry processes, an average rejection rate of 3%–5% within batches of castings produced is considered
as acceptable and is considered as an effect of the common cause variation. As a result, the operating range
for process input values is often not changed during the root cause analysis. The relevant available historical
process data is normally limited with missing values and it combines both categorical and continuous variables
(mixed dataset). However, technological advancements manufacturing processes provide opportunities to
further refine process inputs in order to minimize undesired variation in process outputs.

A new linear regression based algorithm is proposed to achieve lower prediction error in comparison to
the commonly used linear factor analysis for mixed data (FAMD) method. This algorithm is further coupled
with a novel missing data algorithm to predict the process response values corresponding to a given set of
values for process inputs. This enabled the novel imputation based predictive algorithm to quantify the effect
of a confirmation trial based on the proposed changes in the operating ranges of one or more process inputs. A
set of values for optimal process inputs is generated from operating ranges discovered by a recently proposed
quality correlation algorithm (QCA) using a Bootstrap sampling method. The odds ratio, which represents a
ratio between the probability of occurrence of desired and undesired process output values, is used to quantify
the effect of a confirmation trial.

The limitations of the underlying PCA based linear model have been discussed and the future research
areas have been identified.
1. Introduction

A manufacturing process produces products with consistent quality
when it is capable of operating with acceptable variability around the
desired process response or key product characteristic values (KPCs).
The variation around a target process output is a natural process and is
inherently present in any manufacturing processes. This natural varia-
tion is referred to as background noise, which results from unavoidable
or unknown causes known as common causes (Montgomery, 2009).
The other kind of variation that leads to undesired output is defined
as special or assignable cause variation. The common cause variation
is an allowable variation and hence the process response values remain
within the process upper and lower specification limits (𝑈𝑆𝐿) and
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(𝐿𝑆𝐿) respectively, whereas the assignable causes generate process
response outside the specification limits. In other words, in the presence
of assignable causes the process does not remain capable of operating
within the desired specification limits. Both of these variation types are
illustrated in Fig. 1. In the statistical process control (SPC) terminol-
ogy (Montgomery, 2009), the process operating with assignable causes
is referred to as out of control process. The process is in control when it
is operating in the presence of common causes. The corrective actions
are normally taken to remove special cause variation. The variation in
the response values is usually associated with the variation of one or
more process input or factor values. As a result, often a reduction in
the variation of inputs contributes to the reduction in the variation of
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Nomenclature

𝑥# missing part of 𝑥
𝑥∗ observed part of 𝑥
𝛺 Odds ratio of optimal response
𝛷 Odds ratio of confirmation trial plan
𝜋𝑣 Probability of avoid response values
𝜋𝑝 Probability of optimal response values
𝑡𝑖 Projection of score 𝑖 on a variable
𝑋̄ Data matrix after pre-treatment
𝐵 Number of bootstraps
𝐶𝑚𝑖𝑠𝑠 Number of missing categorical values
𝐷𝑒 Diagonal matrix containing the square roots of

eigenvalues
𝐷𝑠 Diagonal matrix containing the standard devia-

tions of the columns of
𝐸 Error matrix
𝑖𝑞𝑟𝑗 Interquartile of variable 𝑗
𝐿 Loading matrix
𝐿𝑖𝑚𝑗 Vector of values of variable 𝑗 that lay in the

optimal or avoid plain
𝐿𝐿𝑗 Lower (minimum) value of 𝐿𝑖𝑚𝑗
𝐿𝑠 The standardized loading matrix
𝐿𝑠,𝑝 The standardized loading matrix for the first 𝑝

principal components
𝑀 Mean matrix
𝑛1 Number of quantitative variables
𝑛2 Number of original categorical variables
𝑛𝑐 Number of correlated parameters resulted from

applying CLI
𝑛𝑗𝑥 Length of vector 𝐿𝑖𝑚
𝑝 The first significant principal components
𝑃𝑂𝑗 Percentage of occurrences of dummy variable 𝑗
̂̄𝑋 Reconstruct matrix 𝑋 from PCA model parame-

ters
𝑠𝑗 Standard deviation of factor 𝑗
𝑇 ℎ𝑚𝑎𝑥 Maximum penalty matrix threshold
𝑇ℎ𝑚𝑖𝑛 Minimum penalty matrix threshold
𝑇ℎ𝑜𝑝 Optimal threshold
𝑇𝐿𝑖 Tolerance limits of factor 𝑖
𝑇𝑝 Score matrix for the first 𝑝 principal component
𝑈𝐿𝑗 Upper (maximum) value of 𝐿𝑖𝑚𝑗
𝑉 Matrix of eigenvectors
𝑋 Original data matrix

the response values (Steiner & MacKay, 2004). The statistical process
control (SPC) methods (George et al., 2005; Montgomery, 2009) are
normally employed to discover the existence of special cause variation.
Fig. 2 illustrates a schematic relationship between process input varia-
tion A to process output variation B. The input variation A is referred
to as special cause variation as it produces a much wider spectrum of
variation B on the output. The corresponding variations C and D are
within process specifications and represent common cause variation.
With the technological enhancement of machines, advanced feedback
controls and sensors, it is proposed that it may be possible to further
reduce variation D by adjusting variation C in Fig. 2.

A foundry process is a complex process with many sub-processes
such as pattern making, mould and core making, melting and pour-
ing process. There are number of casting processes but an example
of investment casting process has been discussed in this research.
2

For an investment casting process, the mould (or shell) making pro-
cess is further divided into sub-processes such as coating and drying
processes. Investment casting foundries produce complex shaped and
super-alloyed components such as turbine blades for aerospace and
power industries and turbocharger wheels for automotive industries.
Sometimes, it takes weeks to produce a turbine blade from the initial
wax processing stage to the final casting. A typical continual process
improvement study may have over hundred measurable process inputs
that govern the quality of the final turbine blade.

On average precision foundries lose about 3%–5% of their revenue
in rejected or reworked castings. In a foundry environment such a
process is referred to as a stable and capable process and is approved
by the customer during the product validation stage. Many foundries
have higher internal rejection rate. The challenge for foundry process
engineers is to be able to make changes to several process parameters
(e.g. slight adjustments to the operating ranges of various parameters
such as alloy compositions at various stages of melting and pouring
process, pouring temperature, and moulding parameters etc.) Under-
taking one change at a time is not sufficient. Even for experts, it is
not easy to choose critical process variables that can be shown as
being responsible for causing the 3%–5% rejection rate which is a rep-
resentative of common cause variation. The aforementioned rejection
rate is a cumulative rate which gives a general indication about the
process, which is usually constant. In order to understand the variation
of process defects detailed statistics on rejection rates is needed.

Recently, many methods have been developed to interpret pre-
diction from available data of manufacturing process. A data based
prediction model is presented for casting surface related defects (Chen
& Kaufmann, 2022), where six regression methods are used. A Ex-
tremely Randomized Trees Regression model showed the best predic-
tion performance in comparison to remaining five methods, whereas
the maximum prediction error is obtained when the ridge regression
method is used. The effect of data features (factors) on metal pene-
tration of an iron casting is studied. Three factors from 282 factors
showed a significant impact on the output (Uyan et al., 2022). A cloud-
based process variable measurement system is developed to extract
data. The work included the use of supervised machine learning model
to predict the porosity defects in an aluminum low-pressure die casting
process. The extreme boosted decision tree (XGBoost) model is used.
The obtained results indicate that the model accuracy for predicting
the good parts is 87 percent and is equal to 74 percent for defective
parts (Sika & Ignaszak, 2020). A knowledge discovery based approach
is introduced to reduce the defects of selected iron castings. The data
acquisition and data mining methods are used to manage production
parameters and to discover parameters that lead to increase or decrease
the occurrence of defects. The objective was to use results to discover
process knowledge. For surface monitoring and control applications, a
novel 3D point cloud surface monitoring method is proposed. It uses
an Earth Mover’s distance (EMD) based control chart to measure the
deviation of the cloud sample from the nominal sample. This helps
to locate process shifts when data is collected with laser point cloud
technique during an inspection process (Zhao, Lui, Du, Di, & Shao,
2023).

There are many applications of machine learning methods for pro-
cess control applications. In these applications, a target value for pro-
cess variables is generally known and the control method is used to
bring the process variable value as close to the target value as possible.
What if the target value aimed by the process control algorithms is
sub-optimal? Can machine learning algorithms detect this situation
by observing in-process data and suggests optimal target values and
their tolerance limits for multiple process variables? This challenge is
addressed in this paper. The major difference of the proposed algorithm
is that it is designed to discover optimal target values with corre-
sponding limits for multiple continuous and categorical variables using
small observational data sets with missing values and it can predict the

combined effect of optimal values on the process response.
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Fig. 1. Visualization of variation in factor values with reference to control limits in a Manufacturing process.
Fig. 2. The influence of input variation on the process output with reference to special
(A&B) and common (C&D) cause variations.

After discussions with foundry process engineers, it was discovered
that they do try to reduce the common cause variation by further fine
tuning the process manually using their experience and expertise. A
quality correlation algorithm has been developed recently (Batbooti,
Ransing, & Ransing, 2017; Ransing, Batbooti, Giannetti, & Ransing,
2016) to fine tune the process inputs to reduce a deviation from the
desired process response (output) values. The developed algorithm is
based using the co-linearity index (Giannetti et al., 2014; Ransing,
Giannetti, Ransing, & James, 2013) as a measure to discover correlated
variables. The principal component analysis (PCA) scores are projected
on all variables and responses. The corresponding scores for correlated
variable are collected based on direction of variable and response.
These scores relate to either optimal or avoid settings with reference to
3

Fig. 3. Minimizing common cause variation to improve process outcome.

the correlated variable. The observations corresponding to the collected
scores generate a new operating range, which is considered as optimal
or avoid based on the factor correlation direction. The obtained range
is considered as an optimal range if the variable is correlated positively
with low penalty values for the response vector. The range is considered
as avoid if the variable is correlated positively with high penalty values
for the response vector. The new operating ranges obtained by the QCA
is equivalent to range E in Fig. 3. One of the objectives of this work is
to develop a data based model to predict the corresponding response to
the range E discovered by the QCA for all input factors. The schematic
presentation of this problem is shown in Fig. 3.

In this work a typical example of an investment casting foundry
manufacturing Nickel based superalloy castings is used. The variation
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Fig. 4. The variation in rejection rate and the variation in values for an input factor %C for a Nickel based alloy for a dataset with 60 batches.
Fig. 5. Data set partition induced by observation 𝑥𝑇 (Folch-fortuny, Arteaga, & Ferrer,
2015).

in number of castings rejected due to shrinkage related defects per
melt is observed and noted as process response (i.e. castings produced
per fixed amount of molten metal and the rejection rate and system
parameters observed for each melt or batch).

The variation in the rejection rate with reference to the variation
of one process input e.g. factor (%C) is shown in Fig. 4 with lower
and upper operating range limits of (𝐿𝐿) and (𝑈𝐿). With reference to
ig. 2, the variation in the rejection rate corresponds to the variation
and the variation in %C in the middle corresponds to variation C.

n the other hand, the upper and lower limit in the left corresponds to
ariation E in Fig. 3.

The overall aim of this work is to develop a data based predictive
odel to quantify the response corresponding to the operating ranges
iscovered by the QCA and estimate the QCA operating ranges in
resence of missing data. This includes the following objectives:

1. Development of a missing data algorithm to impute missing
values for mixed and small manufacturing dataset.

2. Prediction of the process response for any given choice of oper-
ating limits on selected input factors of mixed data types.

This paper is structured as follows. Section 2 reviews the missing
ata machine learning methods. Section 3 describes two PCA based
ethods, iterative based PCA algorithms and regression based PCA
4

lgorithms. This is followed by the proposed new algorithm for mixed
datasets in Section 4. Section 5 discusses the use of the proposed
missing data algorithm as a predictive tool to estimate the effect of
operating limits on the response values on mixed datasets. The paper
is concluded in Section 6.

2. Missing data imputation methods

The occurrence of missing data is a common problem in many
industrial data sets. This may be due to many reasons, such as data
collection errors, incorrect measurements and measuring instruments
errors or any other reason can lead to miss the information. Several
methods have been proposed in the literature to deal with the missing
data. Mean imputation is a very common method based on replacing
the missing entry by the attribute or variable mean. This method is
very simple, but its limitation is that it underestimates the real variance
of the variable (Little & Rubin, 2003). Laaksonen (2000) introduced
an imputation method based nearest neighbour algorithm referred to
as regression-based nearest neighbour hot decking. A measure of the
distance among observations is used to group the data into clusters
and the missing observation is replaced with the mean of the nearest
neighbour cluster. A family of K-nearest neighbour algorithms has been
developed based K-nearest neighbour imputation (Batista & Monard,
2003), weighted K-nearest neighbour imputation (Troyanskaya et al.,
2001) and fuzzy K-means clustering imputation (Li, Deogun, Spaulding,
& Shuart, 2004).

Schneider (2001) adapted the expectation and maximization (EM)
algorithm (Dempster et al., 1977) to analyse an incomplete climate
data. The missing values imputed from a conditional probability model.
The mean and the covariance matrix (Expectation step) was determined
followed by an estimate of the mean and the covariance matrix from
observed and imputed observations (Maximization step). The Maxi-
mization step was taken into account the conditional estimate of the
covariance matrix on imputation error. The iterative solution between
the two steps continued until the convergence occurred. Nelwamondo,
Mohamed, and Marwala (2007) compared the EM algorithm with an
algorithm based on neural networks and genetic algorithms that has
been developed by Mussa and Tshilidzi (2005). The difference between
the target and actual output used as an objective function and the
genetic algorithm used to estimate the missing values by minimizing
the introduced objective function. The input in the objective function
is represented by both the missing and observed values. The combined
input derived from the imputed and observed values is supplied to an
auto-encoder neural network. The genetic algorithm used in this work
based on a population of string chromosomes, which corresponds to a
point in the search space. The Multi-layer perceptron (MLP) network is
used to construct an auto-encoder neural network and is trained with
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Fig. 6. Comparison of continuous data imputation algorithms.
Fig. 7. Model based simulation errors: the plots on the left show quantitative variables error (NRMSE) and the PFC error with different values of 𝜎 is shown on the right.
back-propagation algorithm. The comparison of results from four his-
torical data sets showed that the EM algorithm has better performance
when there is little or no interdependency between the variables. The
auto-associative neural network and genetic algorithm combination is
used in cases where there is non-linear relationship between some of
the given variables. However, genetic algorithms typically require large
datasets.

Many missing value imputation methods in the literature are based
on the Principal Component Analysis (PCA) for continuous data. The
principal components on the complete dataset provide a new low
5

t

rank subspace that achieves the maximization of variability of the
projected data. The new projection aims to find two matrices 𝑇𝑚×𝑝
(the score matrix)and 𝐿𝑛×𝑝 (the loading matrix) such that the following
reconstruction error is minimized (Diamantaras & Kung, 1996):

𝐶 = ‖𝑋 −𝑀 − 𝑇𝐿𝑇
‖

2 =
𝑚
∑

𝑖=1

𝑛
∑

𝑗=1

(

𝑥𝑖𝑗 − 𝑚𝑗 −
𝑝
∑

𝑘=1
𝑡𝑖𝑘𝑙𝑗𝑘

)2
(1)

Where:
𝑋𝑚×𝑛: is the data matrix with rows represents the observations and

he columns corresponding to the variables.
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Fig. 8. Quantitative error for a non linear variable imputed as a continuous variable.

𝑀𝑚×𝑛: the mean matrix that has the means of each columns of the
data matrix 𝑋𝑚×𝑛 in each row.

In seventies, Christoffersson (1970) presented a procedure for miss-
ing data based on optimizing a least square problem for one component
PCA. The loading matrix 𝐿 was held constant while the score matrix 𝑇
was optimized. Then the score matrix was fixed to optimize the loading
matrix. The optimization target was to minimize a cost function as
given in Eq. (1) for observed data. This resulted in an update rule for
principal components (or loading matrix) 𝐿 and mapping (or score)
matrix 𝑇 . This procedure was extended by Grung and Manne (1998) to
include more than one principal component for missing data problems.
The obtained results were further improved by Ilin and Raiko (2010)
by updating the bias term in updating rules.

It should be noted that the alternating algorithm procedure is not
efficient for a large number of principal components (Roweis, 1998)
and is shown to have convergence properties only on a limited number
of principal components (Ilin & Raiko, 2010). The computational cost
of alternating algorithm can be improved by using gradient descent
algorithm and Newton’s method for optimization (Ilin & Raiko, 2010;
Raiko, Ilin, & Karhunen, 2008).

A PCA imputation method that is widely used to impute missing
values is referred to as an iterative PCA algorithm. It is based on
minimization of the cost function. It introduces a weighted matrix
with matrix element value of zero if there is missing value in the
original dataset or one otherwise. The missing values are initialized
with a mean, or any other value, followed by performing PCA on
the complete data and then the missing values are reconstructed from
the PCA projection space in an iterative procedure (Husson & Josse,
2013; Josse & Husson, 2012a). The iterative PCA is equivalent to an
expectation maximization algorithm associated to the PCA model (Ilin
& Raiko, 2010; Josse & Husson, 2012a), it has been called as EM-PCA
algorithm (Josse & Husson, 2012a). Ilin and Raiko (2010) showed that
the reconstruction step of imputation algorithm is corresponding to
the E-step of the EM algorithm and the M-step of the EM algorithm
is equivalent to performing the PCA on the complete dataset. It is also
shown that the minimization of cost function with respect to the vari-
ation of the noise, as assumed in the probabilistic PCA (PPCA) model,
has no effect on the imputation algorithm steps. The PPCA provides a
Bayesian treatment of PCA that can be combined with EM algorithm to
estimate the PCA model parameters iteratively. A Factorial Variational
Approximations solution based PPCA, called as VBPCA, is introduced
to deal with high-dimensional sparse data sets with high percent of
missing values. The VBPCA showed better performance compared to
the standard EM-PCA and iterative algorithm, but it computationally
6

expensive. On the other hand, the iterative algorithm has ability to
adapt with different missing data methods, such as regression based
methods.

Regression based methods substitute the missing values by regress-
ing the unknown data from observed data. Regression based methods
have been developed, compared and studied in the prescience of miss-
ing data multivariate problems (Arteaga & Ferrer, 2002, 2005). The
study included the standard imputation algorithm and other algo-
rithms. Recently, Folch-fortuny et al. (2015) compared PCA regression
based methods namely the trimmed score regression method (TSR)
and the known data regression method (KDR) with other iterative
algorithms (IA). The study built PCA models based on iterative al-
gorithms and applied the developed algorithms for real case studies
from literature. The regression based methods (TSR and KDR) showed
fast and better performance in comparison to other methods such as
standard iterative imputation algorithm.

Another point to note is that the PCA iterative algorithm has a
mixed data version developed recently, which can be used to input
missing values by using methods based on the factorial analysis for
mixed data (FAMD) (Audigier, Husson, & Josse, 2016). FAMD is based
on principal components method to describe and visualize multidimen-
sional mixed data matrix by studying the similarities between each
variables, the relationships between mixed variables and to study the
contribution of each variable. Similar to PCA imputation methods, an
iterative FAMD procedure developed by Josse and Husson (Audigier
et al., 2016) imputes missing values for mixed data sets. The FAMD
algorithm is similar to iterative algorithms for continuous data. For
categorical variables, it has a scale step to convert categorical variables
to continuous variables. This gives the algorithm an ability to impute
mixed data. The proposed method has been compared to a random
forest based method (Stekhoven & Bühlmann, 2012) and it showed an
enhanced ability to impute mixed missing observations.

In general all PCA iterative methods consist of an ’initiate step’ fol-
lowed by the scale step for FAMD, to perform PCA step and reconstruct
step. The regression based methods have better and fast performance
in comparison to standard iterative algorithms (IA), however, these
methods are yet to be shown to be able to impute on mixed data
examples. FAMD is the PCA iterative algorithm for mixed data, which
has shown inferior performance against PCA regression based methods
for continuous data. In order to introduce a new mixed data imputation
algorithm with a better performance, a new procedures based on FAMD
and regression based methods (TSR and KDR) is needed to impute the
missing data in mixed matrices. A new procedure has been developed in
this work without taking the effect of outliers on imputation methods.

3. PCA iterative and regression based methods

3.1. PCA iterative methods

In the PCA imputation algorithm, the minimization of least squares
criteria (Eq. (2)) achieved by introducing a weighted matrix (the
weighted matrix W, whose elements take either zero if the original
dataset value is missing or one otherwise), resulted in the following
cost function.

𝐶 =
𝑚
∑

𝑖=1

𝑛
∑

𝑗=1
𝑤𝑖𝑗

(

𝑥𝑖𝑗 − 𝑚𝑗 −
𝑝
∑

𝑘=1
𝑡𝑖𝑘𝑙𝑗𝑘

)2
(2)

The iterative PCA algorithm procedure consists of following steps
(Husson & Josse, 2013; Josse & Husson, 2012a): impute initial values
for missing observations cells to complete the data and update the
missing values from PCA reconstruction of resulted full data matrix.
The iteration between the update and reconstruct step continues until
the desired convergence is achieved.

For mixed data, Audigier et al. (2016) adapted alternative algorithm
by converting each categorical variable into dummy variables by taking
a unit value if the corresponding category was occurring and zero
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Fig. 9. Probability plot for normal distribution for four variables, two of them are linear(in the top of the figure) and the other two (the bottom two figures) are nonlinear.
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Fig. 10. Categorical error for non linear variables imputed by dividing each variable
into three categories.

otherwise. Each continuous variable was then standardized by dividing
by its standard deviation and each dummy variable is divided by the
root square of the proportion of the variable. This iterative FAMD can
be implemented as follows (Audigier et al., 2016):

1. Step 0: impute an initial value for each missing values (mean
for quantitative and the proportion of the category for each
category). Calculate scale and mean matrices: 𝐷0

𝛴 scale matrix
and 𝑀0 mean matrix.

2. For step i:

(a) Apply SVD on the global matrix (𝑋𝑖−1 − 𝑀 𝑖−1)(𝐷𝑖−1
𝛴 )−1∕2

to obtain the matrices 𝑇 𝑖 (left singular vector, score ma-
trix), 𝐿𝑖 (right singular vector, loading matrix) as well as
(𝛬𝑖)1∕2.

(b) Reconstruct 𝑋𝑖 from the fitted model:

𝑋̂𝑖 = (𝑇 𝑖(𝛬𝑖)1∕2(𝐿𝑖)𝑇 )(𝐷𝑖−1
𝛴 )1∕2 +𝑀 𝑖−1 (3)

the imputed data set become:

𝑋𝑖 = 𝑊𝑋 + (1 −𝑊 )𝑋̂𝑖 (4)
7

Fig. 11. PFC error for two categorical variables imputed with two quantitative linear
variables.

(c) from resulted complete data set update, 𝐷𝑖
𝛴 and 𝑀 𝑖.

3. Repeat steps 2a, 2b and 2c until convergence occurs between the
imputed and original observed values.

here:
𝐷𝛴 is a diagonal matrix that contains the square of standard devia-

ion for each continuous variable and the proportion of the category for
ach category of categorical variable, 𝐷𝛴 = diag (𝑠21,… .𝑠2𝑛1 , 𝑝𝑛1+1,…… ..
𝑛),

𝑀𝑚×𝑛 ∶ the mean matrix that has the means of each columns of the
ata matrix 𝑋𝑚×𝑛 in each row,
𝑛1: number of quantitative variables,
𝑛 : total number of columns in matrix 𝑋, 𝑛 = 𝑛1 +

∑𝑛2
𝑖=1 𝑔𝑖, 𝑔𝑖 is the

umber of categories in variable 𝑖, and 𝑛2 is the number of categorical
ariables,
𝑚 : the number of observation, which represent the number of rows

f the data matrix 𝑋,
𝑋̂ : the reconstructed data matrix.
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Fig. 12. Comparison of the Quantitative error for a Casting process dataset with 20733
observations.

Fig. 13. Comparison of the Categorical error for Casting process dataset with 20733
bservations.

Fig. 14. Rule for selecting the number of PC’s from odds ratio. The test is repeated
00 times and the most frequent number selected.
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3.2. PCA regression based methods

The PCA regression based methods for missing data partition the
attributes with missing values into two parts: the missing part and the
observed part. Suppose the observation 𝑥𝑇 has some missing values,
these will take as first 𝑟 elements of the row vector, without loss of
generality. This partitions the vector 𝑥𝑇 into 𝑥𝑇 = [𝑥#𝑇 𝑥∗𝑇 ]. As a result,
the data matrix becomes 𝑋 = [𝑋# 𝑋∗], and the loading matrix 𝐿 can

be written as
[

𝐿#

𝐿∗

]

Where:
𝑥#𝑇 : denotes the missing elements.
𝑥∗𝑇 : the observed elements.
𝑋#: is the submatrix containing the first 𝑟 columns of 𝑋 (correspond-

ing to the missing variables in 𝑥𝑇 ).
𝑋∗: contains the remaining columns corresponding to the observed

values in 𝑥𝑇

𝐿#: is the submatrix with 𝑟 rows of 𝐿.
𝐿∗: contains the rest of 𝐿(𝑛 − 𝑟) rows.
The partition strategy is shown in Fig. 5.
Arteaga and Ferrer (2002, 2005), Folch-fortuny et al. (2015) pre-

sented two new regression-based methods for estimating incomplete
observations.

In known data regression method (KDR), the missing parts for each
row are estimated by the following regression model:

𝑋# = 𝑋∗𝐵 + 𝑈 (5)

The least square estimation yielding

𝐵 = (𝑋∗𝑇𝑋∗)−1𝑋∗𝑇𝑋# (6)

Now missing part is estimated from: 𝑥# = 𝑋#𝑇𝑋∗(𝑋∗𝑇𝑋∗)−1𝑥∗. This
is written as,

𝑥# = 𝑆#∗(𝑆∗∗)−1𝑥∗ (7)

Where: 𝑆∗∗ = 𝑋∗𝑇𝑋∗∕(𝑚 − 1) and 𝑆#∗ = 𝑋#𝑇𝑋∗∕(𝑚 − 1).
The second method is trimmed scores regression (TSR), which based

on the following regression model:

𝑋# = (𝑋∗𝐿∗)𝐵 + 𝑈 (8)

Where 𝑋∗𝐿∗ represent the scores matrix corresponding to observed
values 𝑇 = 𝑋∗𝐿∗ +𝑋#𝐿#, yielding

𝐵 = (𝐿∗𝑇𝑋∗𝑇𝑋∗𝐿∗)−1𝐿∗𝑇𝑋∗𝑇𝑋# (9)

Similar to KDR method, the missing part is estimated from:
𝑥# = 𝑋#𝑇𝑋∗𝐿∗(𝐿∗𝑇𝑋∗𝑇𝑋∗𝐿∗)−1𝐿∗𝑇 𝑥∗ that is,

𝑥# = 𝑆#∗𝐿∗(𝐿∗𝑇𝑆∗∗𝐿∗)−1𝐿∗𝑇 𝑥∗ (10)

Folch-fortuny et al. (2015) adapted iterative method for continuous
data based on KDR and TSR as follows:

1. Assume initial values for missing elements such as mean value
of each variable resulted in complete data matrix 𝑋0.

2. Step i:

(a) Perform PCA on the whole data matrix
(

𝑋𝑖−1 −𝑀 𝑖−1) via
SVD to estimate the matrices 𝐿𝑖−1 (right singular vector
or loading matrix) and 𝑆 𝑖−1 is the covariance matrix of
𝑋𝑖−1.

(b) Update the whole data matrix by replacing missing values
with the fitted values from a regression formula. For TSR
use:

𝑥̂#𝑖 = 𝑆#∗(𝑖−1)𝐿∗(𝑖−1)(𝐿∗(𝑖−1)𝑇𝑆∗∗(𝑖−1)𝐿∗(𝑖−1))−1𝐿∗(𝑖−1)𝑇 𝑥∗(𝑖−1)

(11)

and for KDR use:

𝑥̂#𝑖 = 𝑆#∗(𝑖−1)(𝑆∗∗(𝑖−1))−1𝑥∗(𝑖−1) (12)
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For both methods, observed values are not changed.
The imputed data matrix is:

𝑋𝑖 = 𝑊𝑋 + (1 −𝑊 )𝑋̂𝑖 (13)

(c) Update mean from the imputed data set from step (2-b).

3. Repeat steps (2-a), (2-b) and (2-c) until convergence occurs.

Fig. 6 shows the comparison of regression based algorithms (TSR
nd KDR) with iterative and alternating algorithms for four standard
eviation 𝜎 values (0.25, 5, 0.75 and 1). Regression based meth-
ds showed a better performance in comparison to other iterative
lgorithms such as PCA iterative algorithm and the alternating algo-
ithm. A percentage of missing values were randomly generated from
% to 30%. The methodology used for generating data used in this
omparison is explained in Section 4.1.1.

. A PCA regression based imputation algorithm for mixed data

All PCA based missing data algorithms discussed above, the iterative
AMD and regression based iterative algorithms TSR and KDR have two
ain steps: perform PCA step and update from reconstruction step. The

econstruction step implemented in different manner for each case. The
AMD algorithm has scale step, which gives the algorithm an ability
o impute mixed data (quantitative and categorical data), whereas the
egression based methods impute missing quantitative values without
he scale step that used in FAMD to adapt the categorical values for
mputation.

In the present work, the regression based methods TSR and KDR
ethods are adapted to impute mixed data by adding a scale step

imilar to the one used in FAMD. In other words, the reconstruction step
n iterative FAMD algorithm is changed. The FAMD reconstruction step
s step 2-b (Eq. (3)) as shown in the iterative FAMD algorithm above

̂ = (𝑇 (𝛬)1∕2(𝐿)𝑇 )(𝐷𝛴 )1∕2 +𝑀

he TSR and KDR reconstruction step is achieved by updating the
issing values based on the following formula (Eqs. (7) and (10))

̂# = 𝑆#∗𝐿(𝐿𝑇𝑆∗∗𝐿∗)−1𝐿∗𝑇 𝑥∗

here 𝐿 is the loading matrix for TSR and is equal to identity matrix in
DR. In order to use the TSR and KDR for mixed data, the reconstruc-
9

ion step (step 2-b in FAMD algorithm) is changed to coincide with the
SR and KDR requirements, so the missing part for the mixed data is
pdated from the following equation:
# = 𝑆#∗𝐿∗(𝐿∗𝑇𝑆∗∗𝐿∗)−1𝐿∗𝑇 𝑧∗ (14)

here: 𝑍 = (𝑋 −𝑀)(𝐷𝛴 )−1∕2, 𝑧# and 𝑧∗ are related to 𝑍 similar to the
ay 𝑥# and 𝑥∗ are related to 𝑋 as shown in Fig. 5 and 𝑀 is the mean
atrix of 𝑋 as defined in Eq. (3).

The steps for the proposed algorithm are described below:

1. Step 0: impute an initial value for each missing values (mean
for quantitative and the proportion of the category for each
category). Calculate matrices 𝐷0

𝛴 , 𝑀0, the mean of 𝑋0, and
calculate 𝑍0 = (𝑋0 −𝑀0)(𝐷0

𝛴 )
−1∕2.

2. For step i:

(a) 𝑆𝑖−1 = covariance of matrix (𝑋𝑖−1 −𝑀 𝑖−1), apply SVD on
the global matrix (𝑍 𝑖−1), to find a loading vector, which
represents the right singular vector (𝐿𝑖−1).

(b) For each row that has missing values, estimate the missing
part from the following regression equations. For TSR
method use:

𝑧̂#𝑖 = 𝑆#∗(𝑖−1)𝐿∗(𝑖−1)(𝐿∗𝑇 (𝑖−1)𝑆∗∗(𝑖−1)𝐿∗(𝑖−1))−1𝐿∗𝑇 (𝑖−1)𝑧∗(𝑖−1)

(15)

and for KDR method use:

𝑧̂#𝑖 = 𝑆#∗(𝑖−1)(𝑆∗∗(𝑖−1))−1𝑧∗(𝑖−1) (16)

For both methods, observed values are not changed.
The reconstructed 𝑍̂ 𝑖 matrix becomes:

𝑍𝑖 = 𝑊𝑍 + (1 −𝑊 )𝑍̂ 𝑖 (17)

The imputed data matrix is:

𝑋𝑖 = 𝑍 𝑖(𝐷𝑖−1
𝛴 )1∕2 +𝑀 𝑖−1 (18)

(c) from resulted complete data set, update 𝐷𝑖
𝛴 and 𝑀 𝑖.

3. Repeat steps 2a, 2b and 2c until convergence occurs.

For convergence test, the following two criteria are used: for con-
inuous variables:
∑𝑛1

𝑗=1
∑𝑚

𝑘=1(𝑥𝑘𝑗 − 𝑥𝑜𝑙𝑑𝑘𝑗 )
2

∑𝑛1 ∑𝑚 2
≤ 𝜖1 (19)
𝑗=1 𝑘=1 𝑥𝑘𝑗
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for categorical variables:
∑𝑛2

𝑗=1
∑𝑚

𝑘=1 𝑥𝑘𝑗 ≠ 𝑥𝑜𝑙𝑑𝑘𝑗

𝐶𝑚𝑖𝑠𝑠
≤ 𝜖2 (20)

with 𝜖1 equals to 10−6 and 𝜖2 equals to 10−10 for example. The
algorithm with all details depicted in Table below is referred to as
Algorithm 1.

Algorithm 1: A PCA regression based imputation algorithm.
𝑖 ← 0;
if 𝑥𝑖𝑗 = missing then

if 𝑗 ≤ 𝑛1 then
𝑥0𝑖𝑗 ← 𝑚𝑒𝑎𝑛(𝑥𝑗 ) ;

else
𝑥0𝑖𝑗 ← 1∕𝑔𝑗 ;

end
nd
hile 𝜖1 ≥ 𝜖1,𝑡ℎ & 𝜖2 ≥ 𝜖2,𝑡ℎ do
𝑖 ← 𝑖 + 1;
𝑋𝑜𝑙𝑑 ← 𝑋𝑖−1;
𝐷𝑖−1

𝛴 ← 𝑑𝑖𝑎𝑔(𝑠21, ....., 𝑠
2
𝑛1
, 𝑝𝑛1+1, ...., 𝑝𝐽 );

𝑀 𝑖−1, each row of 𝑀 𝑖−1 ← 𝑚𝑒𝑎𝑛(𝑋𝑖−1);
𝑍 𝑖−1 ← (𝑋𝑖−1 −𝑀 𝑖−1)(𝐷𝑖−1

𝛴 )−1∕2;
𝑆 𝑖−1 ← 𝑐𝑜𝑣(𝑋𝑖−1 −𝑀 𝑖−1) ;
[𝑇 𝑖−1 𝛬𝑖−1 𝐿𝑖−1] ← 𝑆𝑉 𝐷(𝑍 𝑖−1) (Perform PCA via SVD);
Update 𝑍 ;
𝑧̂#𝑖 ← 𝑆#∗(𝑖−1)𝐿∗(𝑖−1)(𝐿∗𝑇 (𝑖−1)𝑆∗∗(𝑖−1)𝐿∗(𝑖−1))−1𝐿∗𝑇 (𝑖−1)𝑧∗(𝑖−1)(TSR);
𝑧̂#𝑖 ← 𝑆#∗(𝑖−1)(𝑆∗∗(𝑖−1))−1𝑧∗(𝑖−1) (KDR) ;
𝑧∗𝑖 ← 𝑧∗𝑖−1 ;
𝑍 𝑖 = 𝑊𝑍 + (1 −𝑊 )𝑍̂ 𝑖 ;
Update 𝑋 : 𝑋𝑖 ← (𝑍 𝑖(𝐷𝑖−1

𝛴 )1∕2 +𝑀 𝑖−1) ;
Convergence Test;

𝜖1 =
∑𝑛1

𝑗=1
∑𝑚

𝑘=1(𝑥𝑘𝑗−𝑥
𝑜𝑙𝑑
𝑘𝑗 )2

∑𝑛1
𝑗=1

∑𝑚
𝑘=1 𝑥

2
𝑘𝑗

, 𝜖2 =
∑𝑛2

𝑗=1
∑𝑚

𝑘=1 𝑥𝑘𝑗≠𝑥
𝑜𝑙𝑑
𝑘𝑗

𝐶𝑚𝑖𝑠𝑠
;

end

4.1. Missing data simulations

Two simulations are conducted to compare the proposed algorithms
with FAMD algorithm. The strategy is to generate the missing data
from a complete dataset by considering the following incremental levels
in the first simulation (5%, 10%, 15%, 20%, 25%, 30%) and extend
it to 40% with 10% incremental step for the second simulation. For
each level, the missing data is generated randomly. The performance of
the present work is assessed by calculating the normalized root mean
squared error (NRMSE) for continuous variables and the proportion of
falsely classified (PFC) for categorical variables. NRMSE values consider
the variance of each variable. The imputed values should correlate with
original values if the NRMSE value is equal to zero. They will correlate
with the initial values (if the initial value is assumed as the mean) when
the NRMSE value is equal to one.

𝑁𝑅𝑀𝑆𝐸 =

√

√

√

√

√

∑𝑛1
𝑗=1

∑𝑚
𝑖=1(

𝑥𝑖𝑗−𝑥̂𝑖𝑗
𝜎̂𝑗

)2

𝑚 × 𝑛1
(21)

𝐹𝐶 =

∑𝑛2
𝑗=1

∑𝑚
𝑖=1 𝑥𝑖𝑗 ≠ 𝑥̂𝑖𝑗
𝐶𝑚𝑖𝑠𝑠

(22)

where: 𝐶𝑚𝑖𝑠𝑠 is the number of missing categorical values.

4.1.1. Model based simulation
In this section, more than one data sets are generated according to

the model based procedure proposed by Josse and Husson (2012b):

𝑋 = 𝑀 + 𝑇 (𝐿 )𝑇 + 𝜖 (23)
10

𝑖𝑘 𝑖𝑝 𝑘𝑝 𝑖𝑘
Where, the matrices 𝑇 and 𝐿 are generated from a standard normal
distribution with zero mean and variance equal to the identity matrix.

Each column of the product matrix 𝑇𝑖𝑝(𝐿𝑘𝑝)𝑇 is divided by its
standard deviation. The noise is added by drawing 𝜖𝑖𝑘 from a normal
distribution with mean equal to zero and variance equal to 𝜎2. The
alues in matrix 𝑀 are assumed to be zero. Signal to noise ratio is
efined as 1∕𝜎. In the current work, four data sets are generated to
ompare the performance of the proposed algorithm with the FAMD
lgorithm. The generated data sets consist of two quantitative variables
nd two categorical variables with four categories for each variable.
he categories are generated from continuous data by dividing each
ariable into four segments. The number of observations is 100 and
wo principal components are selected to reconstruct the data. Four
alues of 𝜎 tested (0.25, 0.5, 0.75, 1) and the results displayed in
ig. 7. The obtained results showed a very good performance for KDR
or the mixed data method for all categorical variables with small PFC
rror. Moreover, it showed a good imputation ability with quantitative
ariables as well. For all 𝜎 values, TSR method for mixed data and
AMD showed slightly different NRMSE and PFC errors, but TSR for
ixed data gives better performance with NRMSE and PFC values

maller than that for the FAMD method.
In order to check the ability of algorithm to impute non-linear

ata, two non-linear variables were generated by adding non-linear
unctions 𝑥2 and 3𝐶𝑜𝑠(𝑥) to the two variables generated from model
n Eq. (23) with 𝜎 = 1. First, the variables were assumed as continuous.
he imputation of missing data is depicted in Fig. 8, which shows a
ery high MSPE error value close to 1 for 10% or more missing data.
o improve the performance of imputation, each variable is divided

nto categories based on the probability plot Fig. 9, which is usually
sed to check the linearity of distribution of the data. As it can seen
rom the plot that each variable can be divided into three categories.
s a result, the imputation of the missing values performed for two
ategorical variables with three categories for each variable. The results
f imputation are shown in Fig. 10, which gives a better prediction than
ontinuous variable assumption.

Finally, another test is conducted to check the effect of imputation
f non linear variables with linear ones. The same two non-linear
imulated variables were merged with two linear variables to constitute

four variable data set. Fig. 11 shows the PFC error of the two
on linear variables in the last simulation, which indicates a smaller
mputation error compared to the imputation in Fig. 10 where only
on-linear variables were used.

.1.2. Manufacturing data set
A data set consists of 37 factors affecting the defect of a casting

rocess, 21 of the factors are categorical factors such as percent of
n with categories 0.002, less than 0.001 and between 0.002 and

.001. Other factors are continuous factors like the percent of Co.
he observed examples are 20733 observations, the results of the
omparison of the proposed algorithm with FAMD algorithm is shown
n Figs. 12 and 13

. A novel imputation based predictive algorithm for mixed data

The main aim of prediction is to estimate the process response for a
ew batch for given values of input factors. In other words, the aim is
o determine the 𝑖th response value 𝑅𝑖 corresponding to factors vector
𝑖𝑗 (j = 1,. . . . . . ,n). In the PCA context, this is similar to projection of
new observation with missing value (missing response) into a lower

ub plane predefined by PCA loading matrix, which is known as new
bservations with missing data. This new observation with missing
alues can be obtained by finding its scores from the original loadings.
t is obtained by an iterative procedure introduced by Arteaga and
errer (2002) for continuous data which alternates between estimating
cores of missing values from Eq. (24) and reconstruct the missing
alues from Eq. (25), knowing that the first step includes initializing
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Fig. 16. Odds ratio for original ranges, QCA limits and QCA limits with uncertainty estimation.
Fig. 17. Odds ratio for interaction of three factors with 0.2 penalty threshold for optimal response values, where the data is generated from QCA optimal limits.
a value for each missing value. These two steps are repeated until
convergence occurs.

𝑡 = 𝐿𝑇 𝑥 = 𝐿#𝑇 𝑥# + 𝐿∗𝑇 𝑥∗ (24)

̂# = 𝐿#𝑇 𝑡 (25)

Arteaga and Ferrer (2002) showed that the obtained scores at conver-
gence can be expressed as:

𝑡 = (𝐿∗𝑇𝐿∗)−1𝐿∗𝑇 𝑥∗ (26)

For the case of mixed dataset, the same concept is used with the
following modification:

1- Add the scale step before perform PCA on the original data
matrix.

2- Reconstruction step will be in terms of 𝑧 instead of 𝑥 :

̂# = 𝐿#𝑇 𝑡 (27)
11
3-Estimate the missing value from the below equation:

𝑥# = 𝑧̂#(𝐷𝛴 )1∕2 +𝐦# (28)

Where 𝐦# is the mean vector of elements in 𝑥#.
The score of new observation is obtained from Eq. (26) instead of

the iterative procedure. Full steps of this algorithm are depicted in the
table below.

The above procedure can be used in the quality correlation al-
gorithm (QCA) to check the behaviour of the discovered operating
limits range by estimating the corresponding responses values. After
estimating the response of operating limits, this tool can be used to
compare the performance of the process before and after applying
operating limits. In other words, it allows to estimate the probability
of occurrence of the desired (optimal) and undesired (avoid) response
values for a confirmation trial plan and the original plan.

The comparison of two proportions of occurring, such as success
and failure, can be conducted by calculating odds of probabilities
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Fig. 18. Odds ratio for interaction of three factors with 0.2 threshold for optimal response values, where the data generated from QCA with uncertainty optimal limits.
Fig. 19. The histogram and box plot of factors %C and %Co.

Algorithm 2: A novel imputation based predictive algorithm for
mixed data
Full data Matrix ;
m← 𝑚𝑒𝑎𝑛(𝑋𝑓𝑢𝑙𝑙) ;
𝑀, each row of 𝑀 ← 𝑚𝑒𝑎𝑛(𝑋𝑓𝑢𝑙𝑙) ;
𝐷𝛬 ← 𝑑𝑖𝑎𝑔(𝑠21, ....., 𝑠

2
𝑛1
, 𝑝𝑛1+1, ...., 𝑝𝐽 );

𝑍 ← (𝑋 −𝑀)(𝐷𝛴 )−1∕2;
[𝑇 𝛬 𝐿] ← 𝑆𝑉 𝐷(𝑍) (Perform PCA via SVD);
New observation with missing values x𝑇 = [x#𝑇 x∗𝑇 ] ;
𝑡 = (𝐿∗𝑇𝐿∗)−1𝐿∗𝑇 𝑧∗ ;
𝑧̂# = 𝐿#𝑇 𝑡 ;
𝑥̂# = 𝑧̂#(𝐷𝛴 )1∕2 +m# ;

of proportions; another test method used is the likelihood ratio test
(see Giannetti & Ransing, 2016). The odds of success is defined as
12
the ratio between probability of success divided by the probability of
failure (Agresti, 2002; Liberman, 2005):

𝛺 =
𝜋𝑠
𝜋𝑓

(29)

Where:
𝛺: the odds of success,
𝜋𝑠: the probability of success(odds of success), and
𝜋𝑓 : the probability of failure(odds of failure).
In terms of manufacturing defects, the success represents the occur-

rence of desired response values such as lower percentage of defects
in batches (optimal response values), while the higher percentage of
defects, or the occurrence of undesired response values (avoid response
values), refers to the failure. As a result, 𝛺 will be the odds ratio
respresenting odds of optimal response and probabilities of success
(odds of success) and failure (odds of failure) will be replaced by the
probability of optimal response values (𝜋𝑝) and the probability of avoid
response values (𝜋𝑣) respectively. The Odds ratio equation above is
rewritten as follows:

𝛺 =
𝜋𝑝
𝜋𝑣

(30)

Where:
𝜋𝑝 = 𝑃 (𝑅 ≤ 𝑇ℎ𝑜𝑝)
𝜋𝑣 = 𝑃 (𝑅 > 𝑇ℎ𝑜𝑝)
𝑇ℎ𝑜𝑝 = Optimal threshold.
Also, a relative odds ratio can also be defined between any two odds

ratio, such as the odds ratio of confirmation trial plan and the original
plan as:

𝛷 =
𝛺𝑐𝑝

𝛺𝑜𝑝
=

( 𝜋𝑝𝜋𝑣
)𝑐𝑝

( 𝜋𝑝𝜋𝑣
)𝑜𝑝

(31)

In general the proposed missing data algorithm can be applied as
a prior to complete the data matrix followed by applying QCA to
estimate the optimal operating limits. The next step creates a set of
new examples from the obtained operating limits range to study the
influence of the factors. The new example is generated by using the
Bootstrap by replacement method from the optimal range for each
factor. Finally, the odds ratio of the optimal range is compared with
the odds ratio of the original range.
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Fig. 20. Penalty matrices for %C and %Co (Ransing et al., 2013).
5.1. Discussion of results

A Nickel based alloy data set used by Ransing et al. (2016) and Bat-
booti et al. (2017) to estimate the optimal limits is discussed here. In
the current simulation, the QCA algorithm with six principal compo-
nents is used. This resulted in nine correlated factors for which optimal
operating limits were identified. The bootstrap method is used to
generate 1000 examples from combination of optimal operating limits
of factors and compared with the original range by estimating the odds
ratios for the original nine factors and odds ratio based on operating
limits. The prediction of odds ratio is dependent on the number of
principal components chosen for the dataset defined by optimal factors
(e.g. nine correlated factors in this case). The actual odds ratio, based
on the original dataset, is 2.125 (Fig. 14). 100 bootstrapped examples
were created to test the dependence of the predictive analytic ability
of the algorithm on the number of principal components chosen. The
real odds ratio of the data is compared with the predicted ones. Each
bootstrap example gave slightly different Odds ratio value for the
same chosen number of principal components. The most frequently
occurring value is chosen and compared with the actual odds ratio
value in Fig. 14. The number of principal components for which the
most frequently occurring odds ratio value is closest to the actual
one is chosen for the analysis. The response histogram and odds ratio
values displayed for original range and bootstraped operating limits are
shown in Figs. 15 and 16 respectively. The histogram of response to
the left in Fig. 15 similar to the response histogram in Fig. 4, but the
current one is based penalty value method used by the QCA and the
Bootstrap sampling instead the original rejection rate in Fig. 4 and its
original range. This approach can be extended to study the effect of
interaction between factors, for example, by bootstrapping three factors
with suggested optimal range and bootstrapped values for remaining
factors taken from the original range. This procedure is repeated for all
factors. The calculated odd ratio values are displayed in Figs. 17 and
18 for the QCA limits and QCA with uncertainty limits respectively. An
optimal value threshold for penalty values chosen as 0.2 to classify an
optimal process response is used. The high values of odds ratio resulting
from each combination of factors indicate existence of an interaction
among the factors. The value of odds ratio in the aforementioned two
Figures is shown in a cell for factor names shown in the corresponding
row and column for the given table associated with the corresponding
factor name. For example, in the table for factor %C (top left table in
Fig. 17), the odds ratio value of 1.32 represents the effect interaction
among %C, %Ti and %Co. In other words, for bootstrapping, the values
for these factors are chosen from the optimal limits where as the values
for remaining factors are chosen from their original range. It can be also
seen that if the values for factor %C are used from its optimal range,
the resulting odds ratio is 0.75, whereas the %Co factor shows a much
higher odds ratio value at 1.35. Both %C and %Co have similar strength
co-linearity indices as determined by the QCA, however, the corre-
sponding odds ratio values are significantly different. This is probably
because of the linear assumption of prediction model. The predictive
algorithm has underestimated odds ratio values for %C. The histogram
13
for %C showed a skewness to the left where as the distribution of
%Co showed behaviour close to the Gaussian distribution as shown in
Fig. 19. The lower and upper optimal limits are shown as red lines. The
measure of the skewness in the data is also observed in the box plot in
the same Figure and the penalty matrices in Fig. 20. The first quartile of
%C in the penalty matrix has 13 observations with high penalty values
where as only three observations with lower penalty values. This range
needs to be avoided. However, the performance of the process when
%C is in quartile ranges 2, 3 and 4 remains similar. The skewness, or
non-linearity, is defined by this step change in the process performance
when %C is in quartile 1 as compared to quartiles 2, 3 and 4. Whereas,
for %Co quartiles 1 and 2 are optimal (correlated with lower penalty
values) with quartile 3 values associated with higher penalty values and
quartile 4 with worst performance demonstrating strong correlation
with higher penalty values. The variation in the association with low
penalty values to high penalty values is linear as %Co range varies
from the minimum to maximum value. It may also be possible that the
low odds ratio of %C factor may come from the contribution of other
factors.

6. Conclusions

A single imputation procedure to predict process response by se-
lecting input factor values from any given range has been described.
The procedure is designed to work for mixed datasets comprising quan-
titative and categorical variables with missing values. The proposed
procedure is also required to work on mixed data sets where the
number of observations are either smaller, or similar, than the number
of input factors. It uses a dimensionality reduction method based on
FAMD and investigates relationships between pairs of variables with
an improved PCA regression based method. The proposed algorithm is
used to impute real and model generated data. The generated data in-
cluded linear and non-linear simulations. The imputation of non-linear
data was improved by dividing the variable range into categories and
convert quantitative (or continuous) variables as categorical variables.
Also, it is shown that the imputation of non-linear variables with linear
ones improves the performance of the algorithm. The obtained results
showed a good performance, where the error of the proposed algorithm
PCA regression based methods for mixed data (KDR and TSR for mixed
data) was less than the error of FAMD based PCA imputation. The
imputation of new observation missing values based on FAMD method
conducted and used to estimate the response of in process data with
known factors. The prediction simulation methodology is based on
bootstrapping from original data to predict the behaviour of process
when the operating limits discovered by QCA (or any other equivalent
method). The odds ratio values are used as a reference to quantify the
ratio of the desired to the undesired response values and to compare
the behaviour of the process with the original range and the optimal
range. The odds ratio values for a real Nickel Based alloy data set
were estimated by bootstrapping from the original and optimal ranges
respectively. The limitations of the linearity assumptions in potentially
underestimating odds ratio values are discussed.
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Further interdisciplinary research is needed to enhance and boost
the ability of present algorithm for predict the behaviour of the process
to reach the optimal process settings. The research efforts to extend the
current research can include:

• Adaptation the PPCA to analyse mixed data and development of
the quality correlation algorithm based PPCA.

• Development of a multiple imputation method for mixed missing
data problem instead of the developed single imputation method
in this work. A continuous data procedure based Markov Chain
Monte Carlo algorithm used in Folch-fortuny et al. (2015) may
be used as a starting point.

• Experimental study to test the optimal limits that obtained from
QCA algorithm by building a hardware based system to embed
the developed work.

• Incorporate the effect of non-linear factor–response relationships
by either using non-linear PCA or Random Forest algorithms.

ata availability

The data used is shared as data in brief.
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