
 

Journal Pre-proof

Dynamics of spinning pipes conveying flow with internal elliptical
cross-section surrounded by an external annular fluid by considering
rotary inertia effects

Ali Ebrahimi-Mamaghani , Omid Koochakianfard , Navid Mostoufi ,
Hamed Haddad Khodaparast

PII: S0307-904X(23)00140-3
DOI: https://doi.org/10.1016/j.apm.2023.03.043
Reference: APM 14977

To appear in: Applied Mathematical Modelling

Received date: 4 November 2022
Revised date: 17 February 2023
Accepted date: 30 March 2023

Please cite this article as: Ali Ebrahimi-Mamaghani , Omid Koochakianfard , Navid Mostoufi ,
Hamed Haddad Khodaparast , Dynamics of spinning pipes conveying flow with internal elliptical
cross-section surrounded by an external annular fluid by considering rotary inertia effects, Applied
Mathematical Modelling (2023), doi: https://doi.org/10.1016/j.apm.2023.03.043

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Inc.

https://doi.org/10.1016/j.apm.2023.03.043
https://doi.org/10.1016/j.apm.2023.03.043


1 

  

Highlights 

 Vibration of spinning pipes conveying flow submerged in an external annular fluid 

 Non-uniformity of internal flow velocity distribution and rotary inertia effects  

 Impacts of geometry, environment, stabilizer, gravity, external fluid mass ratio 

 Divergence and flutter instabilities of the system with an asymmetric cross-section 

 Campbell diagram, stability maps, and frequency analysis 

 

 

  

                  



2 

  

 

Dynamics of spinning pipes conveying flow with internal elliptical cross-section 

surrounded by an external annular fluid by considering rotary inertia effects 

Ali Ebrahimi-Mamaghani 
a
, Omid Koochakianfard

 b
, Navid Mostoufi

 a,*
 , Hamed Haddad Khodaparast

 c
 

a
 Multiphase Systems Research Lab, School of Chemical Engineering, College of Engineering, University of 

Tehran, Tehran 11155/4563, Iran 

b
 Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran 

c
 College of Engineering, Swansea University, Bay Campus, Fabian Way, Crymlyn Burrows, Swansea SA1 8EN, 

United Kingdom 

 

*
Corresponding author. Tel.: +98 21 6696-7781; fax: +98 21 6645-7784. 

E-mail addresses: a.ebrahimimamaghani@gmail.com, koochakianfardomid@modares.ac.ir, mostoufi@ut.ac.ir, 

h.haddadkhodaparast@swansea.ac.uk 

 

Abstract 

In this work, the vibration and stability of spinning pipes with an internal elliptical cross-section 

concurrently subjected to internal flow and external annular fluid are analyzed by considering 

rotary inertia effects and the non-uniformity of internal flow velocity distribution. To model the 

system, axial force, internal pressure, hygro-thermal loads, viscoelastic properties, and 

gravitational effects were incorporated. The coupled dynamic equations of transverse motions of 

the pipe were derived by exploiting the extended Hamilton’s principle. With the aid of the 

Laplace transform and Galerkin discretization method, eigenvalues and stability conditions of the 

system were determined. Moreover, the divergence instability conditions of the system were 

acquired analytically. Then, the current investigation results were compared and verified with 

existing experimental and theoretical data in open literature. The impacts of key parameters, such 

as stabilizer characteristics, boundary conditions, geometrical features, and external fluid mass 

ratio, on the vibration frequencies and instability thresholds, were evaluated. It was concluded 

that, contrary to the internal circular cross-section case, the divergence instability region can be 

observed in the stability evaluation of the system with the internal elliptical cross-section. It was 

found that considering the rotary inertia effects reduces the critical velocities of the system. Also, 

the results showed that by increasing the stabilizer damping, the detached stable region is 
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detected in the stability map of cantilevered pipes. The present research results can be beneficial 

for the optimal design of industrial equipment such as drill string pipes. 

 

Keywords: Vibration and stability, pipe with internal elliptical cross-section, flow velocity 

modification factor, rotary inertia effects, stabilizer 

 

1. Introduction 

Flow-conveying pipes with unique dynamic characteristics have attracted the attention of 

multitudinous researchers in the last century [1-3]. In this regard, numerous scientific studies 

have been dedicated to identifying the fluid-structure interaction (FSI) in these engineering 

systems [4-7]. Comprehensive reviews on mathematical simulation and vibration analysis of 

flow-carrying pipes can be found in [8, 9]. Theoretical and experimental investigations have 

proved that due to the internal flow movement, divergence and flutter instabilities are perceived 

in the stability evaluation of pipes with diverse boundary conditions [10]. Also, due to the 

extensive capabilities of piping systems in the industry, engineers utilize them in complex 

environmental conditions such as humid and thermal fields [11, 12]. Within this context, Qian et 

al. [13] focused on the stability behavior of simply supported pipes transporting flow exposed to 

thermal loads by considering linear and nonlinear thermo-elastic relations. They used the 

differential quadrature method to estimate the stability margins of the pipe. Reddy et al. [14] 

modeled the nonlinear vibration of inclined functionally graded pipes containing pulsating hot 

flow. They surveyed the effects of temperature rise, flow velocity, and pipe inclination on the 

dynamic characteristics of the system. Esfahani et al. [15] developed a novel 3D-numerical 

model to analyze the vibration frequency of micropillars by considering the viscoelastic effects, 

hydrodynamic forces, and acoustic pressures. The effect of flow inertia on the vibration 

frequency was analyzed by Ji et al. [16] utilizing a microfluidic embedded quartz crystal 

microbalance device. Another common operating condition of pipes is when these practical 

structures are subjected to an external fluid [17, 18]. For this reason, several efforts have been 

devoted to the hydro-elastic simulation of these applicable systems in the presence of an external 

fluid. For instance, Ni et al. [19] performed the frequency analysis of axially moving pipes 

carrying flow embedded in an external fluid. With the help of the Galerkin discretization method, 
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they inspected the effects of internal flow and external fluid mass ratios on the stability regions 

of supported systems. Huang et al. [20] addressed the vibration control of a pipe simultaneously 

subjected to axial internal and sinusoidal external flows by applying a nonlinear absorber. They 

investigated the effect of absorber characteristics on hydrodynamics, vibration reduction, and 

instability thresholds of the system by analyzing frequency-response curves, bifurcation 

diagrams, and phase plane trajectories. One of the interesting topics that has received less 

attention in the technical literature is the effects of the cross-section shape on the dynamic 

response and stability behavior of piping systems. From the engineering design point of view, 

pipes with non-circular sections, such as rectangular, elliptical, and triangular, could lead to 

performance improvement and an appealing appearance. Specifically, the elliptical cross-section 

has better local strength against impact loads than the typical circular cross-section due to its 

torsional rigidity [21]. Also, owning different bending stiffness about its principal axes, the 

elliptical cross-section has a higher bending capacity in various loading conditions than the 

conventional circular cross-section. In this field, Wang et al. [22] analyzed the lateral vibration 

of flow-carrying microscale pipes with different cross-sections. They disclosed that the 

centrifugal force of the system with a rectangular cross-section is less than that of the system 

with a square cross-section. Heshmati et al. [23] scrutinized the flow-induced oscillation of 

functionally graded pipes with an elliptical cross-section. They interpreted the effects of material 

gradation and geometric properties on the system dynamics. 

 

Spinning pipes transporting flow have several applications in engineering industries such as 

ocean mining, turbomachinery, and heat exchangers. The combination of the gyroscopic effects 

of spinning motion and the FSI in these structures results in a novel paradigm of bi-gyroscopic 

systems [24]. Therefore, scientists have been encouraged to report the stability and dynamic 

essence of these structures in recent years. In this sense, Liang et al. [25] analyzed the nonlinear 

dynamics of flexible viscoelastic flow-carrying pipes with a spinning motion by applying 

analytical and numerical approaches. They explored the effects of variations in internal flow 

velocity and spin speed on the vibration behavior of the structure. Bahaldini and Saidi [26] 

discussed the thermo-mechanical behavior of spinning pipes reinforced with carbon nanotubes. 

They studied the effect of various carbon nanotube distributions on the critical flow velocity of 

the system. Liang et al. [27] considered the free vibration of vertical spinning pipes carrying flow 
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with axial deployment. They calculated the time-dependent vibration frequencies and dynamic 

response of the system. Eftekhari and Hosseini [28] concentrated on the stability of spinning 

thin-walled graded flow-conveying pipes in thermal conditions. They reported the contributions 

of the volume fraction of graded materials and axial compressive force in the stability borders of 

the system. Liang et al. [29] developed a three-dimensional mathematical model for the 

dynamics of spinning fluid-filled pipes surrounded by an external annular flow. They reflected 

the effects of external viscous flow and gravity on the dynamic response and vibration 

frequencies of the system. According to the technical literature, it can be found that the majority 

of the available studies in this field are based on the Euler-Bernoulli theory assumptions. In this 

theory, only transverse deflection is considered for the system, and the cross-section rotation of 

the system after the deformation (i.e., rotary inertia effects for the pipe and internal flow) is 

ignored. 

 

In the present investigation, a detailed mathematical model is established for spinning 

viscoelastic pipes conveying internal flow with an internal elliptical cross-section (asymmetric 

but axisymmetric cross-section) immersed in an annular external fluid domain, including the 

rotary inertia effects and non-uniformity of the internal flow velocity profile. Also, parametric 

studies are accomplished to explain the impacts of gravity, internal pressure, axial tensile force, 

stabilizer, boundary conditions, external fluid mass ratio, hygro-thermal environments, and 

geometric characteristics on the vibration and stability of the system. The main novelties of the 

current research can be summarized as follows: 

a) Examination of the effects of the asymmetric cross-section on the dynamics of bi-gyroscopic 

systems 

b) Investigation of the impacts of the non-uniformity of internal flow velocity distribution on the 

vibration characteristics and stability threshold of spinning pipes 

c) Consideration of the rotary inertia effects in mathematical modeling of doubly gyroscopic 

structures 

 

In the following, first, the governing equations of the system motion are acquired based on 

Hamilton’s principle. Then, vibration frequencies and instability thresholds of the system are 

computed by implementing the Laplace transform and Galerkin discretization procedure. Also, 
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an analytical approach is proposed to recognize the static instability of the submerged pipe 

containing flow. Finally, the effects of different system parameters on the system dynamics are 

assessed and revealed. 

 

2. Problem formulation 

Figure 1(a) depicts the geometric configuration of a flexible spinning cantilevered pipe 

conveying incompressible flow. The cross-section of the considered system is also shown in 

Figure 1 (b). The major and minor semi-axes of the internal elliptical cross-section of the pipe 

are denoted by b and a, respectively. The length of the pipe is L, and the diameter of the external 

cross-section of the pipe is DP. It is assumed that the pipe rotates with constant spin speed Ω and 

transmits the internal flow with the constant axial velocity U. The considered pipe is immersed in 

an annular fluid medium. The diameter of the surrounding fluid domain is Dch. Also, it is 

supposed that a concentrated stabilizer consists of a spring with the stiffness of Kstab, and a 

damper with a damping coefficient of Cstab is installed at the distance xstab from the upstream end. 

 

(a) (b) 

Fig. 1. Schematic view of a spinning cantilevered pipe containing flow immersed in an external annular 

medium attached to the stabilizer (b) cross-section of the considered system 

 

The position vector of an arbitrary point of the deformed pipe is expressed as follows [30]: 

  (           )  (   )  (   )  (1) 
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in which i, j, and k are the unit vectors in the x, y, and z directions, respectively. Also, u, v, and w 

are the lateral displacements along the x, y, and z directions. In addition, the prime notation 

demonstrates the derivative with respect to x. It should be mentioned that in the present model, 

transverse motion and cross-section rotation of the pipe are considered. As a result, this model 

presents a better approximation of the vibration frequencies of the system than the Euler-

Bernoulli model. Also, compared with the Timoshenko model, this model does not consider the 

shear deformation effects in the system. 

 

The lateral coordinates, i.e., y and z, are time-dependent functions, and their temporal derivatives 

are given by 
  

  
     and 

  

  
   . As a result, the velocity vector of the pipe can be computed 

as follows [31, 32]: 

    ̇      ( ̇         ̇         ̇ )  ( ̇    )  ( ̇    )  (2) 

where the dot notation denotes the temporal derivative. 

The velocity vector of the center of an internal flow element can be expressed as follows [33, 

34]: 

         (3) 

in which τ is the unit vector tangential to the pipe and is computed as follows: 

     (              )          (4) 

It should be noted that according to Eq. (3), it can be found that the radial velocity of the internal 

flow is equal to the instantaneous velocity of the pipe, which this situation satisfies the 

impermeability boundary conditions of the pipe wall [35]. 

 

The total kinetic energy of the system, including the kinetic energies of the pipe and the internal 

flow, can be formulated as follows: 

           
 

 
∫   (     )    

 

 

 
 

 
∫   

 (     )    
 

 

 (5) 

where ρP and   
  are the density of the pipe and internal flow, respectively. Besides, AP and Af are 

the external and internal cross-sections of the pipe. It should be mentioned that based on Eq. (5), 

it is assumed that at an arbitrary cross-section of the pipe, the internal flow velocity has a 

constant value, and the effect of the non-uniformity of the internal flow velocity distribution over 

the inner cross-sectional area of the pipe will be considered later. 
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By inserting Eqs. (2-4) into Eq. (5) and ignoring the nonlinear terms, the kinetic energy relations 

of the pipe and the internal flow are rewritten, respectively, as follows: 
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(7) 

in which   
  and   

  are the lateral area moments of the pipe,   
  and   

  are lateral area moments of 

inertial flow and can be defined by the following relations: 

{  
    

 }    ∫ {     }   
  

 (8) 

{  
    

 }    
 ∫ {     }   

  

 (9) 

It is necessary to mention that during the derivation of dynamic equations of the motion, the 

axial deformation of the pipe is ignored. This point can be justified by the feature that the axial 

displacement is negligible compared to the transverse displacements. 

 

The bending strain potential energy of the system can be calculated according to the following 

expression [36, 37]: 

   
 

 
∫         

 

 

 (10) 

where σx is the axial stress of the pipe. 

 

It is noteworthy to consider the dissipation effects on the system dynamics. It is assumed that the 

internal dissipation of the system is appraised with the viscoelastic property of pipe materials. 

The Kelvin-Voigt viscoelastic model, which is a reliable two-parameter rheological model of 
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material, is adopted to assess the energy dissipation mechanism for the system as follows [38, 

39]: 

    (   
 

  
)    (11) 

in which E and μ are the elastic modulus and viscoelastic damping coefficient of the pipe, 

respectively. Also, εx is the axial strain of the pipe, and by ignoring the nonlinear effects, it can 

be stated for spinning systems as follows [40]: 

              (12) 

The strain energy induced by the hygro-thermal fields is also calculated as follows [41]: 

    
 

 
∫  (         )[(  )  (  ) ]    

 

 

 (13) 

where  H and  T are the moisture and thermal expansion coefficients, ∆H and ∆T are the 

moisture and temperature gradients. 

 

The potential energy generated by the stabilizer can be specified as follows [42]: 

      
 

 
[     ( 

    )       ( ̇
   ̇ )]    (       ) (14) 

where δdir is the Dirac delta function. 

 

The gravitational potential energy of the system can be determined from the following relation 

[43]: 

   
 

 
(       

   ) ∫ (   )((  )  (  ) )  
 

 

 (15) 

where g is the gravitational acceleration. 

 

The external work done by the axial tensile force, internal pressure, and the load exerted by the 

external fluid on the pipe can be acquired as follows [44-46]: 

      ∫ ([(      )      ]  )  
 

 

 ∫ ([(      )        ]  )  
 

 

 (16) 

in which Pi is the internal flow pressure, and T is the applied tensile force to the pipe. Also, Fv 

and Fw are the transverse loads exerted on the pipe by the external fluid. 
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It is supposed that the external flow is continuously in contact with the pipe wall, and as a result, 

the cavitation and wake effects are neglected. Also, the amplitude oscillations of the pipe are 

small enough to be precisely modeled by linear formulations. Such small lateral deflections 

induce perturbations in the external fluid loading, and such perturbed loading can be determined 

by linearizing the Navier-Stokes equations. Abdollahi et al. [47] determined the steady-state 

external fluid loading according to the following relations: 

    
 

 
  

   
 ( ̈      ̇     ) (17) 

    
 

 
  

   
 ( ̈      ̇     ) (18) 

where   
 

    
. Also,   

   

  
 is external to internal diameter ratio and   

  is the external fluid 

density. It should be mentioned that the viscosity effect is supposed to exist only in the steady-

state equations, which leads to a steady rotation of the external fluid. 

 

The extended Hamilton’s principle is utilized to achieve the governing equations of the motion 

of the pipe according to the following relation [48, 49]: 

    ∫ (                           
 
    ( ̇     )      )  

  

  

   (19) 

in which the index L refers to corresponding quantities at the end condition of the pipe. 

 

By inserting the relations of kinetic and potential energies as well as the external work into Eq. 

(19), the partial differential equations of lateral motions are obtained as follows: 

   
 (        ̇    )  (                       (       

   ) (   ))    
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(21) 

 

Similar to the majority of available studies in the field of mathematical modeling of pipes 

conveying fluid, the derived structural dynamic equations are based on the assumptions of plug 

flow (ideal flow). In this situation, it is supposed that the internal flow has a uniform velocity 

distribution over the internal cross-section of the pipe. It should be mentioned that this condition 

differs from fully developed turbulent flow (with a high Reynolds number) or laminar flow (with 

a low Reynolds number) [50]. As a result, the assumption of the plug flow condition for the 

internal flow of pipes is not realistic. In practice, if a non-uniform velocity distribution for the 

internal flow is considered, the resultant flow-related terms due to the internal flow should be 

recalculated. Flow velocity profiles for circular and elliptical cross-sections are considered 

according to the following relations, respectively [23]: 

 ( )    ̅ (  (
 

 
)
 

) (22) 

 (   )    ̅ (  (
 

 
)
 

 (
 

 
)
 

) (23) 

where   is the mean flow velocity across the pipe cross-section. Also, r and R are the distance 

from the cross-section center of the circular pipe and the radius of the internal cross-section of 

the pipe, respectively. 

 

To determine the modification factors for the induced forces by the internal flow, including the 

Coriolis force, centrifugal load, and bi-gyroscopic effects due to FSI, by considering the non-
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uniform velocity distribution profile for each differential element of the internal flow and 

integrating over the pipe cross-section, one can write: 

 

For Coriolis forces: 

   
∫         

     ̅
   (24) 

   
∫           

   ̅  
  

∫           

     ̅ 
 
  

 

 
 

(25) 

 

For centrifugal loads: 

   
∫    
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∫    
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(27) 

 

For bi-gyroscopic effects: 

   
∫          

    ̅  

   (28) 

   
∫           

   ̅  
  

∫            

    ̅    
  

 

 
 

(29) 

 

It should be noted that although the flow velocity profiles of circular and elliptical cross-sections 

are different, their modification factors are the same. Also, according to the results of Ref. [50], 

it can be deduced that the variations of the Reynolds number in the turbulent flow regime have a 

small effect on the modification factors. As a result, the aforementioned modification factors also 

give acceptable accuracy for the turbulent flow regime. 
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Also, the following dimensionless parameters are introduced to extract the non-dimensional 

dynamic equations: 

(              
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(30) 

in which γ is the gravity parameter, Γ is the dimensionless internal pressure, ε is the ratio of 

lateral area moments, and η is the rotary inertia factor of the system. Also,   
 and   

  represent the 

external and internal flow mass ratios, respectively. 

 

By inserting the dimensionless parameters into the governing equations of the transverse motions 

of the pipe, using the flow velocity modification factors, and eliminating the asterisk from the 

dimensionless parameters, the non-dimensional modified equations of the system are obtained as 

follows by some mathematical manipulation: 
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3. Solution methodology 

The Laplace transform and the Galerkin discretization scheme are employed for frequency 

analysis and determination of system stability conditions. The Laplace transform of the temporal 

derivative can be expressed according to the following relation [51]: 

 [ ( )( )]     ( )       ( )       ( )( )       ( )( )      (   )( )   (   )( ) (33) 

Consequently, by considering the zero initial conditions for the pipe, the dynamic equations of 

the system in the Laplace domain are rewritten as follows: 
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(35) 

The above-mentioned dimensionless equations can be discretized via the Galerkin approach. 

According to this method, the lateral displacements of the pipe are estimated by the following 

approximated series [52]: 

 (   )  ∑  ( )  ( )

 

   

 (36) 

 (   )  ∑  ( )  ( )

 

   

 (37) 

Here p and q are the generalized coordinates of the system along y- and z- directions, 

respectively. Also, ϕ is the dimensionless spatial shape function of the system, which is 

dependent on the boundary conditions and can be specified according to the following relations 

[53]: 

 

For simply supported boundary conditions: 

  ( )     (   ) (38) 

 

For cantilevered boundary conditions: 

  ( )      (   )     (   )  
    (  )     (  )

    (  )     (  )
(    (   )     (   )) (39) 

The values of λj in Eq. (39) can be obtained from the characteristic equation     (  )   (  )  

  . 
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For doubly clamped boundary conditions: 

  ( )      (   )     (   )  
    (  )     (  )

    (  )     (  )
(    (   )     (   )) (40) 

The values of λj in Eq. (40) can be computed from the characteristic equation     (  )   (  )  

 . 

For clamped-pinned boundary conditions: 
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The values of λj in Eq. (41) can be calculated from the characteristic equation     (  )  

   (  ). In the subsequent section, the number of necessary mode shapes to determine the 

vibration characteristics of the system is determined. 

 

By designating the appropriate vibration mode shape and inserting the considered approximated 

series for the lateral displacements into the governing equations and then integrating over the 

length of the pipe, the dynamic equations of the system can be illustrated in the matrix form as 

follows: 
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4. Frequency analysis and stability criteria 

Based on the linear algebra theory, the determinant of the coefficients matrix should be equal to 

zero to determine the non-trivial solution [54]. 

   [ ( )]    (51) 

The system eigenvalues are the complex-valued roots of the characteristic equation of Eq. (51). 

The real and imaginary parts of the roots are the modal damping (δ) and vibration frequency (𝜔) 

of the system, respectively. It should be noted that static instability (divergence) happens when 

the real and imaginary components of one of the roots are positive and zero, respectively. 

Meanwhile, if the real and imaginary components of roots have positive values, dynamic 

instability (flutter) occurs [55]. By computing the eigenvalues in terms of system parameters, it is 

possible to determine the effects of key factors on the vibration frequencies and stability of the 

system. 
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5. Analytical approach 

At the static instability threshold, the lowest vibration frequency of the pipe becomes zero. The 

pipe loses its effective stiffness for the fundamental vibration mode in this situation. Based on 

the stability theory of linear gyroscopic structures [36, 56], it has been proven that when the 

determinant of the stiffness matrix becomes zero, the fundamental vibration frequency of the 

system also becomes zero. Therefore, to determine the static instability condition of the pipe, one 

can write for the first vibration mode: 

(  )  (  )   (  )  
    (52) 

 

6. Results and discussion 

This section contains comparative studies with experimental and theoretical investigations to 

verify the presented model and solution approach. Then, the impacts of system parameters, i.e., 

flow velocity modification factor, viscoelastic coefficient, environmental conditions, geometrical 

properties, rotary inertia factor, boundary conditions, internal pressure, and stabilizer 

characteristics, on the vibration behavior and instability thresholds of the system are discovered. 

In the following, the dimensionless results are discussed to generalize the research outcomes 

better. 

 

6.1. Comparative studies 

In this subsection, firstly, a convergence examination is performed. Afterward, several 

comparative studies for pipes conveying fluid with symmetric cross-sections (i.e., Figures (2-5)) 

and spinning structures with asymmetric cross-sections (i.e., Figure 6) are presented. Before 

comparison studies, a convergence test is conducted to choose the suitable number of shape 

functions for the calculation of the vibration frequencies of the system. The accuracy of the 

acquired results of the Galerkin discretization technique is greatly dependent on the appropriate 

number of shape functions. Table 1 indicates the convergence study for the two lowest backward 

and forward vibration frequencies. As shown, when the number of shape functions increases, all 

the vibration frequencies of the system converge to a specific value. It can be observed that when 

eight vibration modes are considered, the converged vibration frequencies can be acquired. 
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Hence, eight basis functions are sufficient to obtain reasonable outcomes for further 

computations in the current study. 

 

Table 1. Convergence study of dimensionless vibration frequencies of the system with internal 

circular cross-section when ε=1, U=1, Ω=5,   
 =0.2

2
, η=γ=T=μ=Γ=0 

Number of vibration modes 𝜔 
  𝜔 

  𝜔 
  𝜔 

  

N=2 4.35253 14.35253 33.99069 43.99069 

N=4 4.35250 14.35250 33.97925 43.97925 

N=6 4.35250 14.35250 33.97906 43.97906 

N=8 4.35250 14.35250 33.97904 43.97904 

N=10 4.35250 14.35250 33.97904 43.97904 

The bold numbers are suitable approximations for the dimensionless vibration frequencies of the system. 

 

In Figure 2, the critical flow velocities of a simply supported pipe under an axial tensile force are 

displayed. The corresponding flow velocities to divergence and flutter instabilities are known as 

divergence flow velocity (Ud) and flutter flow velocity (Uf), respectively. According to the 

figure, as the axial tensile force enhances, the divergence and flutter flow velocities improve. In 

addition, as is clear, the results of the present study are in good agreement with the theoretical 

and experimental results presented by Jiang et al. [57]. It should be mentioned that eight 

vibration modes are considered in the Galerkin discretization scheme to calculate the system 

eigenvalues. 
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Fig. 2. Dimensionless critical flow velocities of a simply supported pipe against the dimensionless 

axial tension force without the effects of stabilizer, external fluid, and environmental loads when 

Ω=η=γ=μ=Γ=0 

 

In Figure 3, the stability map of an upward cantilevered pipe (γ<0) in the γ-U plane is drawn and 

compared with the published theoretical and experimental results. According to this diagram, the 

stable/flutter region of the pipe shrinks/expands by reducing the gravity parameter. Also, at small 

values of the gravity parameter, the system undergoes divergence instability. In addition, as can 

be observed, the results of the present investigation are consistent with the experimental and 

numerical data reported by Paidoussis [58]. 
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Fig. 3. Stability map of a cantilevered pipe in the γ-U plane without the effects of stabilizer, external 

fluid, and environmental loads when Ω=η=T=μ=Γ=0 

 

In Figures 4 (a, b), the Campbell diagram and modal damping versus the spin speed are 

presented for a spinning simply supported beam surrounded by an annular fluid medium, 

respectively. In this figure, the first two vibration frequencies of the system are plotted against 

the spin speed. According to this figure, the backward (lower branch) and forward (upper 

branch) frequency decreases and increases, respectively, by sweeping the spin speed. When the 

first vibration frequency of the pipe becomes zero, the system undergoes divergence instability, 

and the corresponding spin speed is called the divergence spin speed (Ωd). Also, when the 

backward and forward frequency branches coalesce, the system experiences flutter instability, 

and the corresponding spin speed is called the flutter spin speed (Ωf). As can be seen, the 

numerical results of the present research are compared with the analytical results presented by 

Abdollahi et al. [47], and a close agreement is observed. 
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(a) 

 

(b) 

Fig. 4. (a) Dimensionless vibration frequencies and (b) modal damping of a simply supported beam 

immersed in an annular fluid medium against the dimensionless spin speed without the effects of 

stabilizer and environmental loads when ε=1,   
 =0.4, U=η=γ=T=μ=Γ=0 
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In Figure 5 (a, b), the first four vibration frequencies and modal damping of a spinning simply 

supported pipe are depicted in terms of the flow velocity. According to the diagram, the 

backward and forward frequencies descend as the flow velocity ascends. When the fundamental 

backward frequency of the system becomes zero, the pipe undergoes static instability. The 

forward and backward frequency branches merge by further ascending the flow velocity, and the 

pipe experiences dynamic instability. It should be mentioned that a similar pattern can also be 

observed for higher vibration modes. Also, as is apparent, the current research outcomes 

demonstrate an excellent correlation with those obtained by Liang et al. [59]. 

 

(a) 
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(b) 

Fig. 5. (a) Dimensionless vibration frequencies and (b) modal damping of a spinning simply supported 

pipe against the dimensionless flow velocity without the effects of stabilizer, external fluid, and 

environmental loads when ε=1, Ω=5,   
 =0.2

2
, η=γ=T=μ=Γ=0 

 

In Figures 6 (a, b), the first four vibration frequencies and modal damping of a spinning 

cantilevered beam with an asymmetric (rectangular) cross-section are shown versus the spin 

speed, respectively. Based on the figure, the instability in the system has a static nature 

(divergence), and the maximum difference between the instability margins of the present method 

and those attained by the dynamic stiffness method in [60] is 1.4 %. 

                  



25 

  

 

(a) 

 

(b) 

Fig. 6. (a) Dimensionless vibration frequencies and (b) modal damping of a cantilevered beam with 

rectangular cross-section against the dimensionless spin speed and without the effects of stabilizer, 

external fluid, and environmental loads when ε=0.01, U=η=γ=T=μ=Γ=0 
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6.2. Parametric studies 

In the following, to determine the influence of critical parameters on the structural stability and 

vibration behavior, the geometric and material properties of the system are considered according 

to Table 2 unless otherwise mentioned. 

Table 2: Geometry and material properties of the system [13, 41, 61] 

Property Value 

EI 8.9782 Nm
2 

DP 0.05 m 

a=b 0.02 m 

ρP 2766 kg/m
3 

L 2 m 

ρf 1000 kg/m
3 

αH 0.44 (wt%H2O)
-1

 

αT 11 × 10
-6

 K
-1

 

 

Figure 7 shows the importance of the flow velocity modification factor in the dynamic behavior 

of a cantilevered pipe. In this figure, the first three vibration frequencies of the system are plotted 

versus the flow velocity. It can be affirmed that when the effect of the flow velocity modification 

factor is ignored, the system first becomes unstable by increasing the flow velocity at U=10.75. 

Then, the pipe regains stability by further increasing the flow velocity at U=11.62. Finally, at 

U=12.62, it becomes unstable again and retains instability for higher flow velocities. This 

remarkable dynamic feature, known as the sequence of instability-restabilization-instability 

transitions, occurs for non-conservative systems conveying flow [33]. As can be observed, by 

considering the flow velocity modification effect, contrary to the first mode, the vibration 

frequencies of higher modes increase with the increment of the flow velocity. Also, as is evident, 

the effect of the flow velocity modification on the frequency branches of the system becomes 

more evident by ascending the flow velocity. It is visible that the higher vibration modes are 

more sensitive to the non-uniformity of the flow velocity profile. Besides, by considering the 

flow velocity modification effect, the system experiences the flutter phenomenon at a lower flow 

velocity (i.e., U=8.1). Based on this diagram, the system experiences the mode-exchange 

phenomenon (intersection of frequency branches), a unique characteristic of cantilevered flow-
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conveying pipes [58]. It is worth stating that, unlike non-conservative cantilevered pipes, 

supported pipes experience instability conditions via the divergence and couple-mode flutter 

phenomena (see Figure 5). 

 

(a) 

 

(b) 

Fig. 7. (a) Dimensionless vibration frequencies and (b) modal damping of a cantilevered pipe against 

the dimensionless flow velocity without the effects of stabilizer, external fluid, and environmental 
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loads when   
 =0.68, Ω=γ=η=T=μ=Γ=0 

 

In Figure 8, the stability map of a cantilevered pipe is portrayed in the γ-U plane, and the 

necessity of considering the flow velocity profile modification is revealed. According to this 

figure, flutter instability happens in the system under the operating conditions inside the depicted 

region. The instability boundaries consist of the s-shaped segments associated with the 

instability-restabilization-instability sequence [33]. It is seen that the higher the gravity 

parameter, the wider the stable operational region becomes. This point can be justified by the 

fact that the gravity parameter has a stiffening effect on the pipe. Also, it is observable that when 

the flow velocity modification effect is considered for the dynamic equations of the pipe, the 

stability of the system is reduced, especially for higher values of the gravity parameter. 

Furthermore, the s-shaped segments of the flutter boundaries are shifted toward higher gravity 

parameters by considering the flow velocity modification effect, and the restabilization 

phenomenon occurs in a wider range of gravity parameters. According to the dynamic equations 

of the system, considering a non-uniform velocity distribution for the internal flow has 

considerable impacts on the Coriolis and centrifugal forces. In general, the Coriolis force 

weakens and the centrifugal force magnifies by considering the flow velocity modification 

effect. Since Coriolis and centrifugal forces induce stabilizing and destabilizing effects on the 

pipe, one can infer that the flow velocity modification effect leads to stability degradation in the 

pipe. Based on Figures 7 and 8, it can be concluded that the consideration of the flow velocity 

modification effect is of great importance for the accurate characterization of dynamic behavior 

and vibration stability of flow-carrying systems. 
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Fig. 8. Dimensionless flutter flow velocity of a cantilevered pipe versus the gravity parameter without 

the effects of stabilizer, external fluid, and environmental loads when   
 =0.55, Ω=η=T=μ=Γ=0 

 

Figure 9 presents the Campbell diagram for a doubly clamped beam with an asymmetric cross-

section submerged in a fluid-filled annular medium. According to the figure, when the system 

has a symmetric cross-section, the divergence instability occurs only at a specific spin speed. 

Also, forward and backward vibration frequencies have the same value at Ω=0 for the system 

with a symmetric cross-section. While the system with an asymmetric cross-section experiences 

static instability for a range of spin speeds. It should be noted that as the ratio of the lateral area 

moments approaches the unity value, the divergence spin speed range becomes narrower. Also, 

when the lateral area moments of the system are unequal, the forward and backward vibration 

frequencies have different values at Ω=0. In addition, it is observed that when the system is 

surrounded by an external annular fluid medium, after the divergence instability occurrence, the 

system becomes stable again. As the spin speed enhances further, the forward vibration 

frequency decreases, and at higher spin speeds, the system loses its stability again via the 

coupled-mode flutter bifurcation. As is obvious, compared with the system with an asymmetric 

cross-section, the system with a symmetric cross-section has a higher/lower backward/forward 

vibration frequency and a smaller flutter spin speed. 
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Fig. 9. Campbell diagram of a doubly clamped beam without the effects of stabilizer and 

environmental loads when κ=5,   
 =0.4, Ω=U=η=T=μ=Γ=0 

 

In Figure 10, the effect of rotary inertia on the Campbell diagram of a pipe containing flow with 

both ends clamped is examined. Based on this figure, when the rotary inertia effects are not 

considered for the system, the variations of the vibration frequencies are linear with the spin 

speed variations. So, in the pre-buckling state, by increasing the spin speed, the 

backward/forward frequency of the system decreases/increases linearly, respectively. Also, in the 

post-buckling state, frequency branches become parallel and exhibit an increasing trend with 

ascending spin speed. While by considering the rotary inertia effects, frequency branches are not 

parallel in the post-buckling state and display a nonlinear pattern with spin speed variations. In 

addition, when the rotary inertia effects are considered negligible, the frequency branches 

intersect at infinity, and flutter instability is not observed in the stability evolution of the system. 

While if the rotary inertia parameter has a non-zero value, the system experiences the flutter 

phenomenon. Additionally, enhancing the rotary inertia parameter diminishes the divergence and 

flutter spin speeds. In simple words, the system is more prone to instability for high rotary inertia 

parameters. To better comprehend the rotary inertia effect on the dynamic behavior of spinning 

pipes, the vibration frequencies and modal damping of a cantilevered pipe conveying flow in 
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terms of the spin speed are plotted in Figures 11 (a, b), respectively. It can be seen that the non-

conservative pipes conveying flow lose their stability via a Hopf bifurcation (i.e., a single-mode 

flutter). By comparing Figures 10 and 11, it can be understood that for supported systems in the 

post-buckling state, by considering rotary inertia effects, the backward/forward frequency branch 

is above/below the case without rotary inertia effects. Whereas this trend is reversed for the 

cantilevered system. 

 

Fig. 10. Campbell diagram of a simply supported pipe without the effects of stabilizer, external fluid, 

and environmental loads when U=1, γ=T=μ=Γ=0 

 

                  



32 

  

 

(a) 

 

(b) 

Fig. 11. (a) Dimensionless vibration frequency and (b) modal damping of the cantilevered pipe against 

the dimensionless spin speed without the effects of stabilizer, external fluid, and environmental loads 

when U=1, γ=T=μ=Γ=0 

 

Figure 12 depicts the effect of hygro-thermal environments on the Campbell diagram of a 

clamped-pinned flow-conveying pipe. Based on this figure, when the system operates in moist 
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and thermal fields, its vibration frequencies decline. Also, the inclusion of moisture and thermal 

effects leads to the decrement of divergence and flutter spin speeds and induces destabilizing 

effects on the system. Indeed, thermal loads generate compressive stresses in supported systems. 

Also, in wet environments, degradation conditions occur in the system by absorbing water 

molecules. This physically implies that the system operation in hygro-thermal fields leads to 

stiffness-reduction effects and the shrinkage of the stability region. As illustrative data indicated 

in Figures (9-12), it can be deduced that the doubly clamped system has a higher vibration 

frequency and better stability among the supported boundary conditions. 

 

Fig. 12. Campbell diagram of a clamped-pinned pipe without the effects of stabilizer and external fluid 

when U=1,   
 =0.5, η=0.02, γ=T=μ=Γ=0 

 

Figure 13 shows the dependency of the vibration behavior of a spinning simply supported pipe 

carrying flow on the viscoelastic coefficient. According to this figure, for the viscoelastically 

damped system, the divergence flow velocity does not change, but the system experiences a 

flutter condition instantly after the divergence state. Hence, one can infer that as the viscosity 

coefficient increases, the flutter flow velocity of the system decreases. In addition, by 

considering the pipe’s viscoelastic property, the modal damping values are non-zero at U=0. 

Also, the modal damping curves lose their symmetry to the abscissa. In addition, the 
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phenomenon of coupling between frequency branches is not observed by considering the 

viscoelastic properties of the pipe. 

 

(a) 

 

(b) 

Fig. 13. (a) Dimensionless vibration frequency and (b) modal damping of a spinning simply supported 

pipe against the dimensionless flow velocity without the effects of stabilizer, external fluid, and 
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environmental loads when Ω=8,   
 =0.5, γ=T=Γ=0 

 

In Figure 14, the stability map of a simply supported pipe conveying flow is drawn in the Γ-Ω 

plane. It is well-known that the equivalent stiffness of the system descends by ascending the 

pressure inside the pipe. Thus, when the rotary inertia effects are ignored in the system, it can be 

observed that at low spin speeds, by ascending the internal pressure, the pipe first experiences 

divergence instability at a certain spin speed. By continuing the increment of the internal 

pressure, the pipe becomes stable again, and at high internal pressure values, it undergoes flutter 

instability and becomes no longer stable. At high spin speeds, the pipe does not experience static 

instability by increasing the internal pressure, and at high internal pressure values, it only 

undergoes dynamic instability. Also, the system only experiences divergence instability at low 

internal pressure values by increasing the spin speed. While at high internal pressure values, it 

undergoes flutter instability for all spin speeds. In other words, when the internal pressure 

increases to such an extent that the divergence spin speed becomes zero, divergence instability is 

not observed in the stability evolution. When the rotary inertia effect is considered in the model, 

the instability region of the system expands, and the corresponding divergence spin speed also 

decreases. This destabilizing effect can be attributed to the mass addition effects of the rotary 

inertia parameter. It should be noted that at low internal pressure values, the pipe experiences 

both static and dynamic instability by considering the rotary inertia effect (see Figures 10 and 

11). Another noticeable point in this stability map is that the divergence instability only occurs 

on the depicted borders, and the divergence region does not exist in the stability map of the 

spinning pipe with an internal circular cross-section. 
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Fig. 14. Stability map of a simply supported pipe in the Γ-Ω plane without the effects of stabilizer, 

external fluid, and environmental loads when U=1,   
 =0.5, γ=T=μ=Γ=0 

 

Figure 15 demonstrates the stability map of a spinning simply supported pipe with an internal 

elliptical cross-section in the Γ-U plane. It should be mentioned that since the ratio of the lateral 

area moments of the system is not equal to unity, the divergence instability region exists in the 

stability map. In the case of an asymmetric cross-section, for low flow velocity or spin speed 

values, the stability evolution of the system is “stable - divergence - stable - flutter”. The system 

does not have an initial stable region for medium flow velocity or spin speed values. Also, for 

high flow velocity or spin speed values, the system undergoes flutter instability after initial stable 

working conditions. In addition, for very high values of flow velocity or spin speed, the system 

only experiences flutter instability conditions. 
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Fig. 15. Stability map of a spinning simply supported pipe in the Γ-U plane without the effects of 

stabilizer, external fluid, and environmental loads when Ω=8,   
 =0.5, b=2a=0.02, η=γ=T=μ=Γ=0 

 

In Figure 16, the effect of the rotary inertia parameter on the stability of simply supported flow-

conveying pipes submerged in an external fluid medium in the Ω-  
  plane is displayed. Because 

the considered system has a symmetric (circular) internal cross-section, in this case, the 

divergence instability border is observed in the stability map. As can be seen, the divergence spin 

speed and flutter instability threshold decrease by ascending the external mass ratio. This 

stability reduction feature originates from the added mass of the external fluid. Also, the critical 

spin speeds are reduced by considering the rotary inertia effects, and this decrement effect is 

more tangible for low values of the external mass ratio. 
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Fig. 16. Stability map of a simply supported pipe in the Γ-Ω plane without the effects of stabilizer and 

environmental loads when U=1,   
 =0.5, κ=2, γ=T=μ=Γ=0 

 

Figure 17 depicts the stable and unstable regions of a spinning simply supported pipe with an 

internal elliptical cross-section in the κ-U plane. Note that the existence of the divergence 

instability region in the stability map can be attributed to the asymmetric (elliptical) cross-section 

of the pipe. It is visible that the unstable flutter region enlarges by decreasing the external to 

internal diameter ratio. It is notable that the variation of the external to internal diameter ratio has 

a greater influence on the flutter instability threshold of the system for small values of κ. While 

the impact of the external to internal diameter ratio variation is less prominent on the flutter 

boundary for large values of κ. However, the boundaries of the divergence instability region do 

not depend on the external to internal diameter ratio variation. Figures 16 and 17 indicate that if 

the pipe operates in a narrower external fluid domain with a denser fluid, it has less stability. 
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Fig. 17. Stability map of a simply supported pipe in the Γ-Ω plane without the effects of stabilizer and 

environmental loads when Ω=5,   
 =0.5,   

 =0.2, b=2a=0.02, η=γ=T=μ=Γ=0 

 

Figures 18 (a, b) indicate the critical spin speeds of the simply supported fluid-conveying pipe in 

terms of the aspect ratio (e=a/b) of the system cross-section. In Figure 18(a), by neglecting the 

rotary inertia effects, the system only undergoes divergence instability by increasing the spin 

speed. As observed, when the internal cross-section is circular (i.e., a/b=1), it experiences static 

instability only at a specific spin speed. While for the system with an internal elliptical cross-

section (i.e., a≠b), divergence instability occurs over a range of spin speeds. So, the higher or 

lower the aspect ratio value than unity, the wider the divergence region. Figure 18 (b) shows that 

the divergence instability zone displaces toward lower spin speeds by considering the rotary 

inertia effects. Also, at high spin speeds, the pipe undergoes flutter instability. Notably, the 

flutter instability region expands by an increase in the aspect ratio. Generally, ascending the 

rotary inertia parameter tends to weaken the stability of the system. 
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(a) 

 

(b) 

Fig. 18. Stability map of a simply supported pipe in the e-Ω plane without the effects of stabilizer, 

external fluid, and environmental loads when U=1,   
 =0.5, b=0.02, γ=T=Γ=0 (a) η=0 (b) η=0.035 

 

The stabilizer is an essential component in the drilling tool assembly. To understand the 

stabilizer effects on the vibration behavior and stability of the system, Figures 19 and 20 are 
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presented for conservative and non-conservative systems, respectively. In Figure 19, the 

Campbell diagram is drawn for the clamped-pinned pipe with an internal elliptical cross-section 

attached to the stabilizer with different installation positions. As shown, by approaching the 

stabilizer installation position to the pipe middle, the system has higher critical spin speeds and is 

more stable. In addition, the system stability is improved by increasing the stabilizer stiffness. 

Generally, the attachment of a stiffer stabilizer to the mid-span of a supported pipe improves the 

system stability. 

 

Fig. 19. Campbell diagram of a clamped-pinned pipe without the environmental effects when U=1, 

  
 =0.5,   

 =0.2, κ=6, a=η=0.01, γ=T=μ=Γ=cstab=0 

 

In Figure 20 (a, b), the stability maps of the spinning and non-spinning cantilevered pipes are 

shown in the Kstab-U plane, respectively, when the stabilizer is installed at the free end. 

According to Figure 20 (a), by increasing the stabilizer stiffness, the non-spinning system 

experiences both static and dynamic instabilities. It should be noted that divergence instability 

happens for high stabilizer stiffness values. Also, the divergence instability boundaries do not 

depend on the stabilizer damping value. It can be observed that the flutter instability occurs for 

all stabilizer stiffness values by ascending the flow velocity. Besides, the flutter flow velocity 

increases/decreases by increasing the stabilizer stiffness/damping. As shown in Figure 20 (b), the 

divergence instability region is not observed in the stability map of the spinning system. Also, 

the flutter instability region of the system expands by increasing the stabilizer damping. Also, by 
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increasing the stabilizing damping and enlarging the flutter instability zone, a detached stable 

region is formed in the stability map of the system. The lower boundary of this detached stable 

region is related to the restabilization threshold [62]. 

 

(a) 

 

(b) 

Fig. 20. Stability map of a cantilevered pipe in the Kstab-U plane without the effects of external fluid 

and environmental loads when   
 =0.2, γ=T=Γ=0 (a) Ω=0 (b) Ω=5 
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In Figure 21, the divergence borders of the submerged pipe are depicted in the U-Ω plane. It can 

be seen that by ascending the internal flow velocity and spin speed, the static instability threshold 

of the system decreases. According to the figure, when the structure is subjected to a 

compressive/tensile force, the divergence threshold of the pipe decreases/increases. Also, the 

system stability is reduced by considering the mass-addition and stiffness-softening effects of the 

rotary inertia factor. Another important feature in this figure is the consistency of the deduced 

results from numerical and analytical approaches. It should be noted that the analytical method 

presented by Abdollahi and his colleagues [47] is suitable only when the external fluid is 

considered (i.e., the internal flow effects are neglected). The analytical approach of the current 

research is even applicable when internal flow effects are also taken into account. 

 

Fig. 21. Divergence borders of a submerged simply supported pipe in the U-Ω plane without the 

effects of stabilizer and environmental loads when   
 =0.5,   

 =0.4, κ=2, γ=μ=Γ=0 

 

7. Conclusions 

In this article, an in-depth investigation to identify the stability and dynamics of spinning 

viscoelastic flow-conveying pipes with an internal elliptical cross-section immersed in an 

external fluid annular medium is conducted. To derive the governing dynamic equations, the 

flow velocity modification factor for the Coriolis force, centrifugal load, and gyroscopic effects 

                  



44 

  

are taken into account. Also, the rotary inertia effects, hygro-thermal loads, and the internal 

pressure of the pipe are considered. The vibration frequencies and stability margins are 

determined. In addition, the static instability threshold of the pipe is computed using an 

analytical approach. Finally, the effects of the influential factors, such as stabilizer 

characteristics, boundary conditions, external fluid mass ratio, and geometric properties, on the 

vibration characteristics and unstable situations of the system are clarified. The main findings of 

the current research can be summarized as follows: 

 The vibration frequencies and stability of the cantilevered system are reduced by considering 

the flow velocity modification factor. 

 The greater the gravity parameter, the higher the system stability. 

 In the presence of hygro-thermal conditions, a lower spin speed leads to instability. 

 By considering the rotary inertia effects, the flutter instability is observed in the Campbell 

diagram, and the system stability is weakened. 

 In the stability evaluation of the viscoelastically damped system, the couple-mode flutter 

bifurcation does not occur. 

 The flutter instability zone expands by increasing the external fluid mass ratio and external to 

internal diameter ratio. Also, the external to internal diameter ratio does not affect the static 

instability boundary. 

 In the stability map of the system with dissimilar transverse area moments, a static instability 

region is observed instead of a divergence instability border. 

 When the spinning pipe is submerged in an external fluid, the divergence instability region 

condenses by approaching the aspect ratio value to unity. Also, by considering the rotary 

inertia effects, the flutter spin speed is reduced with an increase in the aspect ratio. 

 For conservative systems, the system stability is improved by increasing the stabilizer 

stiffness and approaching the installation location to the pipe middle. For non-conservative 

systems, the system stability decreases with an increase in the stabilizer damping value. 
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