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Abstract

Interpreting medical images such as chest X-ray images and retina images is

an essential step for diagnosing and treating relevant diseases. Proposing au-

tomatic and reliable medical report generation systems can reduce the time-

consuming workload, improve efficiencies of clinical workflows, and decrease

practical variations between different clinical professionals. Many recent ap-

proaches based on image-encoder and language-decoder structure have been

proposed to tackle this task. However, some technical challenges remain to

be solved, including the fusion efficacy between the language and visual cues
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and the difficulty of obtaining an effective pre-trained image feature extractor

for medical-specific tasks. In this work, we proposed the weighted query-key

interacting attention module, including both the second-order and first-order

interactions. Compared with the conventional scaled dot-product attention,

this design generates a strong fusion mechanism between language and vi-

sual signals. In addition, we also proposed the contrastive pre-training step

to reduce the domain gap between the image encoder and the target dataset.

To test the generalisability of our learning scheme, we collected and verified

our model on the world-first multi-modality retina report generation dataset

referred to as Retina ImBank and another large-scale retina Chinese-based

report dataset referred to as Retina Chinese. These two datasets will be made

publicly available and serve as benchmarks to encourage further research ex-

ploration in this field. From our experimental results, we demonstrate that

our proposed method has outperformed multiple state-of-the-art image cap-

tioning and medical report generation methods on IU X-RAY, MIMIC-CXR,

Retina ImBank, and Retina Chinese datasets.

Keywords: Medical report generation, Vision and language.

1. Introduction

Writing medical reports is one of the major routine works for radiologists

and ophthalmologists. These medical reports describe observations and diag-

nostic findings based on the knowledge of medical professionals. However, it

is challenging to control the reports’ qualities due to the experience variations5

of medical professionals. Therefore, generating medical reports in a unified

standard is an essential process for disease diagnosis and treatment. Besides,
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proposing reliable and accurate medical report generation methods helps re-

duce labor-intensive workload [1, 2]. To be more specific, the tedious process

of examining medical images and typing findings of diseases and lesions into10

the computer system can be replaced.

MIMIC-CXR

FINDINGS: Frontal and lateral chest radiographs demonstrate bilateral pleural

effusions, which make evaluation of the cardiomediastinal silhouette difficulty.

These effusions are large on the right and small on the left. There is no definite

focal consolidation, although evaluation is limited secondary to these effusions. No

pneumothorax is appreciated. The visualized upper abdomen is unremarkable.

IMPRESSION: Bilateral pleural effusions, large on the right and small on the

left. No definite focal consolidation identified, although evaluation is limited sec-

ondary to these effusions.

Retina-Chinese

Medical Report in Chinese: 视盘颞下方局限性脉络膜毛细血管闭塞，局部可见

粗大脉络膜血管，黄斑区鼻侧脉络膜血管局限性扩张通.

Translated Report: Localized choroidal capillary occlusion in the subtemporal

area of the optic disc, with large choroidal vessels visible, and localized dilation

of the choroidal vessels with increased permeability on the nasal side of the mac-

ulterior multifocal placoid pigment epitheliopathy.

Figure 1: Examples of images and corresponding reports from MIMIC [3] and Retina

Chinese datasets.

The image captioning task appeared earlier than the medical report gen-

eration task, and both of them have built interaction between vision and

language. Inspired by the image captioning tasks [4] in deep learning re-

search, many medical report generation tasks [5, 6, 7] have been proposed.15

Compared with conventional image captioning tasks, the medical report gen-

eration task has unique challenges and difficulties. Firstly, unlike the descrip-
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tive sentences for natural images, the diagnostic medical reports, which might

consist of Impression and Findings sections shown in Fig. 1, are more diverse.

Both sections can include sentences with varying lengths. Secondly, object20

location variations in natural images result in a notable region of interest,

while majorities of diseases and lesions occupy relatively small regions. The

challenges mentioned above increase the difficulty in understanding medical

images. Thirdly, the abnormal findings in the medical images are quite rare

compared to the normal findings [8]. Low-frequent rare diseases introduce25

the problem of imbalanced samples.

Due to the significance of proposing automatic medical report genera-

tion methods and the challenges mentioned above, some approaches focus

on medical reports generation for different medical image modalities, includ-

ing pathology images [9], diffusion-weighted imaging [10], retinal images [7],30

X-ray images [8, 11, 12, 13, 14, 2]. Those approaches are generally within

a skeleton of encoder-decoder that encodes the input image into a context

vector and then decodes the context vector to a sentence.

In a previous research [13], it has been discovered that pre-training the

image encoder with large-scale data from the same domain can improve35

the performance compared with loading ImageNet [15] pre-trained models

or randomly initializing. However, it is difficult to obtain both large-scale

and labeled data in the medical domain. Some methods select the domain-

inconsistent ImageNet pre-trained model as their image encoder [2, 7], and

other approaches acquire extra classification labels [1, 8] to pre-train the im-40

age encoder. Notably, the unlabeled images in the medical domain are not

inaccessible and also contain beneficial information. The medical report gen-
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eration datasets have already contained a large number of images, and the

history records in the healthcare system can also provide unlabeled medi-

cal images as auxiliary data. Taking advantage of the unlabeled data is a45

potential solution for image encoder pre-training.

Based on the above analysis, we propose a contrastive pre-training pro-

cedure to enhance the image encoder. By applying contrastive pre-training,

there is no domain gap between the image encoder and the evaluated dataset.

In contrastive pre-training, a pretext task enables conventional image clas-50

sification training without the actual image labels. The medical images are

processed into queries, positive keys, and negative keys. The model is ex-

pected to discriminate the positive keys from the mixed keys set according

to the queries. The resulting parameters of the pre-trained encoder are saved

and loaded into the initialized weight of the visual extractor in the medical55

report generation framework.

In addition to the contrastive pre-training on medical report generation,

there are potential improvements by encouraging vision and language fusion

via the advanced attention mechanism. The conventional scaled-dot prod-

uct attention in the Transformer maps three input vectors: query, key, and60

value to the weighted sum of values. The weighted coefficient of value is

obtained by comparing each query-key pair and implemented as the matrix

multiplication of query and key. This conventional design ignored higher-

order interactions between the query and key-value pairs. In other words,

the representative capability of intermediate feature maps generated in the65

conventional mechanism can still be improved. Therefore, we proposed the

linear interaction attention module to introduce second-order interaction be-
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tween query and key while it reserves the first-order interaction attention.

The complex multi-modal relationship between the hidden language features

(query) and visual features (key) can be further and better exploited. There-70

fore, the relationship between low frequent imaging cues such as abnormal

regions and medical terms is strengthened with this feature interacting at-

tention module.

To explore the report generation task in the field of ophthalmology, we

collected and processed two ophthalmic image-text datasets. The accurate75

diagnostics of retina diseases, e.g., macular edema, involve different imag-

ing modalities, including fundus photograph (FP) and optical coherence to-

mography (OCT). The previous ophthalmic image-text dataset [7] is usu-

ally based on one or two modalities. We propose the first large-scale and

multi-modality ophthalmic image-text dataset Retina ImBank, and image80

modalities include FP, OCT, fundus fluorescein angiography (FFA), fundus

autofluorescence (FAF), Indocyanine Green Chorioangiography (ICG), red-

free filtered fundus images. We also collected the Retina Chinese with

620,215 images and 10,979 Chinese clinical reports from real clinical cases.

In addition, we proposed and implemented a practical pipeline for processing85

sequential FFA images and medical reports in Chinese.

Our contribution can be summarized as follows:

(1) We proposed the novel weighted query-key interacting linear atten-

tion module to increase the capability of expressing a complex multi-modal

relationship between the visual feature space and the semantic feature space.90

(2) We are the first to introduce contrastive pre-training to the medi-

cal report generation. We provide a solution to obtain a domain-consistent
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image encoder by exploiting the latent information of the dataset itself,

which enables the proposed method to be generalized to datasets with multi-

modalities.95

(3) We collected and processed Retina ImBank and Retina Chinese,

which will be released to serve as benchmarking datasets to encourage further

research on generating reports with retina images.

(4) Evaluated on two retina datasets and two Chest X-Ray datasets,

the proposed method achieved state-of-the-art performances in majorities100

of natural language evaluation metrics. Our ablation study shows that the

proposed individual module is effective, and the proposed module can im-

prove the performance of the baseline Transformer significantly, e.g., with

contrastive pre-training, the BLEU-1 score improved from 0.396 to 0.462 on

IU X-RAY.105

2. Related Work

Most medical report generation approaches [1, 9, 10, 7, 8, 12, 13, 14, 2]

consist of an image encoder and a language decoder. In this section, we first

review the existing methods for the image encoder component. Then we

further elaborate on the contrastive learning approaches for self-supervised110

pre-training. Lastly, we review the language decoders in the medical report

generation task.

2.1. Image Encoder

Depending on the format of the context vector generated by the encoder,

current encoding approaches can be categorized into two types. Some ap-115

proaches [12, 16, 14] explicitly classify the images and obtain abnormalities or

7



predicted diseases. This strategy is suitable for the template-retrieval-based

approaches. On the other hand, some approaches [2, 8, 7, 17, 18] encode the

images by extracting image features, which are suitable input for RNN-based

model [8, 7, 17, 18] and Transformer-based models [2]. They usually use the120

output of the last pooling layer in CNNs as the image features. There are

also works [1, 13] integrating both the two-image-encoding mode to obtain a

more comprehensive image feature representation.

Pre-training the image encoder is a general strategy to improve perfor-

mance. Some works [2, 7] choose to load the ImageNet [15] pre-trained125

model, which is publicly available and widely used in image captioning, VQA,

and transfer learning. However, Raghu et al. [19] showed that transferring

from ImageNet pre-trained benefits little to performance in the medical im-

age classification tasks. The alternative option is pre-training the image

encoder with the target dataset. To perform general CNN training with130

the cross-entropy loss, some works [7, 1] extract the labels from the tar-

get dataset’s reports automatically or manually. Another option is using

auxiliary datasets. For chest X-ray modality, there are already several clas-

sification datasets [20, 21] focusing on extracting labels from reports. Thus

some approaches [12, 8, 13, 16] select those datasets to pre-train their image135

encoders.

However, all previous studies are based on the supervised-learning tech-

nique requiring annotated labels to train the image encoder and can not

be applied directly to newly collected datasets. Thus, self-supervised learn-

ing is a potential solution to provide a domain-consistent image encoder for140

datasets whose labels are difficult to acquire.
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2.2. Contrastive Learning

Contrastive learning is a rapidly growing field in self-supervised image

representation learning. The SimCLR [22] is a typical contrastive learning

framework in which images are prepared into similar (positive) and dissim-145

ilar (negative) pairs, and the model is trained to discriminate the negative

pairs against the positive pairs. The Momentum Contrast (MoCo) [23] in-

troduces a momentum mechanism that maintains the negative keys in a

queue. Grill et al. [24] proposed a BYOL (Bootstrap Your Own Latent)

approach, achieving state-of-the-art performance without using any negative150

pairs. Chen et al. [25] proposed SimSiam learning image representation with-

out negative sample pairs, large batches, and momentum encoders. Zhou et

al. [26] proposed the C2L (comparing to learn) method, which outperforms

the previous state-of-the-art approach to the chest X-ray image classification

task.155

Chen et al. [27] compare MoCo and SimCLR in computing cost. The

SimCLR needs a large batch size of 4096 to provide sufficient negative pairs

and achieve its best performance. It costs 93.0G GPU memory in the esti-

mate. In contrast, the MoCo gets its best performance with a batch size of

256, which requires about 5.0G GPU memory. Also, the difference in the160

encoder updating mechanism makes MoCo less costly in terms of training

time. Therefore, since the MoCo framework is resource-efficient, we choose

MoCo to pre-train the medical image encoder.

2.3. Language Generation

Based on the methodology, the language decoders can be divided into165

template retrieval-based [12, 14], RNN-based [1, 13, 10], and Transformer-
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based [2]. The template-retrieval-based methods require building the tem-

plate database for different datasets with massive manual work involved. On

the contrary, the RNN-based or Transformer-based methods can be directly

applied to image-text datasets.170

The RNN-based approaches are based on the Show&Tell [28] model. As

an extension to Show&Tell [28], Xu et al. [29] first introduced an attention

mechanism to image captioning. More recently, a collection of works in-

troduced diverse attention mechanisms, including Adaptive Attention [30],

Up-down [31], and Attention on Attention [32], X-Linear [33]. These ap-175

proaches are with an RNN core (LSTM, GRU, e.t.c.) and predict the next

word recursively. In the medical domain, both Jing et al. [1] and Liu et

al. [18] propose a hierarchical LSTM including a sentence LSTM generating

the topic vector and a word LSTM generating individual words.

The Transformer-based approaches do not rely on sequential input. The180

Transformer encodes the word positions and feeds them into a multi-attention

mechanism module. Based on the Transformer, further modifications include

extra memory [34, 2], layer connection [34], attention mechanism [33, 35],

e.t.c. In recent research, the Transformer-based approaches have reached

state-of-the-art in several image captioning and medical report generation185

tasks, e.g. mesh-memory transformer [34] on MS-COCO captioning [4] and

memory-driven transformer [2] on IU X-RAY [5]. R2Gen [2] tackles the med-

ical report generation with the relational memory module and the memory-

driven conditional layer normalization. Considering the great efficiency and

performance, we select Transformer as our baseline language decoder.190
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3. Methods

The medical report generation system generates multiple sentences in a

certain order, which describe findings and impressions of medical diseases.

Each sentence is represented by a set of tokens.

Our proposed method has two steps, the contrastive pre-training and195

the medical report generation as illustrated in Fig. 2. The contrastive pre-

training trains a CNN model to learn image representation from the images

training set I = {I1, I2, ..., Ir}. The pre-trained model parameter θCP is

stored for the following steps.

The report generation follows standard encoder-decoder structure [36].200

The input is a single image or multiple images I, and the output is the

corresponding report S = {y1, y2, ..., yo}, y ∈ T, where y denotes the single

word, o represents the total number of words in the report S, and T is the

token set.

The report generation process can be formatted as X = fθcp(I) and

Y = fθd(X). Here X = {x1, x2, ..., xs}, x ∈ R refers to the extracted im-

age features where the x is patch-based image feature. The fθcp is the image

encoder loading the weights of θCP from contrastive pre-training and fθd is

the language decoder. The probability of generating the medical report by

combining multiple sentences into complete and single targeting sequences is

computed as:

p(S|I, θCP , θd) =
O∏

o=1

p(yo|y1, y2, ..., yo−1) (1)

The objective of the medical report generation task is to produce the medical
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report maximizing the negative conditional log-likelihood of S:

θ = argmax
θ

O∑
o=1

log p(yo|y1, y2, ..., yo−1, I; θ) (2)

where S = {y1, y2, ..., yo} represents the targeting sequence and o is the max-205

imum number of tokens of a single report.

Extracted Visual Features
Encoder Layer

Encoder Layer

Linear Layer

Softmax

Next Word 

Probability

Contrastive 

Pre-training
…

N

Decoder Layer

Decoder Layer

…

N

Word 

Embedding

1

Positional 

Encoding

2 3 4 5 6 7
Generated Word 

Sequence (Report)

Figure 2: Illustration of the overall architecture. + denotes the add operation, and posi-

tional encoding [36] introduces relative location information of the individual feature token

in the whole sequence.

3.1. Contrastive Pre-training

As discussed in Section 2.2, the MoCo [23] has advantages in computing

and performance. Hence in this paper, we choose the MoCo v2 [27] as our
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contrastive learning method2. The Fig. 3 illustrates the overall framework of210

MoCo [23].

Data
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Figure 3: The detailed MoCo (v2) [23] framework. The Augm. stands for augmentation.

The Concat. stands for concatenation. The solid arrow lines mean the forward operations,

and the dashed arrow lines mean the backward operations.

The MoCo treats contrastive learning as a dictionary look-up problem.

In the forward direction, the input image I is processed by two random

data augmentations and outputs two ”views” Iq and Ik
+

. Then Iq and

Ik
+

are respectively encoded by queries encoder (fq) and keys encoder (fk)

into a query (q) and a positive key (k+) and followed by the normalization

operation. The encoders mentioned above can be any CNN but have to be

in the same architecture. The positive key is concatenated with the negative

2MoCo v2 is an upgraded edition of MoCo and keeps the same framework, so we still

refer to it as MoCo
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keys maintained by a queue containing the previous keys. With the query (q)

and the keys (k), the InfoNCE loss [37] can be computed as:

Lq,k+,{k−} = − log
exp (q · k+/τ)

exp (q · k+/τ) +
∑
k−

exp(q · k−/τ))
(3)

where q is a query representation, k+ is positive (similar) key representa-

tion, {k−} are a set of negative (dissimilar) key representations and τ is a

hyperparameter of temperature.

During the encoder updating procedure, the queries encoder is updated

in the conventional back-propagation while the keys encoder is updated by

the momentum updating principle as:

θk ← mθk + (1−m)θq (4)

where θk and θq are the parameters of keys encoder and queries encoder,215

and m ∈ [0, 1) is a hyperparameter momentum coefficient. At last, the

positive key (k+) is pushed into the queue and replaced with the earliest

key in a FIFO (first-in, first-out) manner. After the contrastive pre-training

procedure, parameters of the queue encoder θq are stored to be the initial

weights of the image encoder in the report generation system.220

3.2. Transformer Structure

The Transformer structure consists of encoder layers and decoder lay-

ers. The encoder layer is composed of Linear Interaction Multi-Head Atten-

tion Layer (LIMHA), Add & Norm Layer (ANL), Linear Layer, and another

ANL. The purpose of the Linear Interaction Multi-Head Attention Layer is

to improve the representative capability of intermediate features by provid-

ing second-order or higher-order interactions between the query, key, and

14



value matrices. At the decoder layer, the report is generated in a “shifted

right” manner, which uses the known output to predict the next word and

is denoted as:

yt = fθd(H, (y1, y2, ..., yt−1)) (5)

where the H is the hidden feature from the immediate layer. The known

output is added with the positional encoding, which embeds the positional

information of the sequence. It is calculated by sine and cosine function with

word position (pos), model dimension (dmodel) and embedding dimension (i):

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(6)

The decoder layer is composed of Masked LIMHA, ANL, Linear Layer, and

LIMHA as shown in Fig. 4.
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Figure 4: Detailed illustration of the proposed encoder and decoder.
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3.3. Linear Interaction Attention Mechanism and Linear Interaction Multi-

Head Attention225

There are feature dimension differences between medical images and di-

agnostic reports. It is difficult to associate regions of interest in the medi-

cal images with feature maps of corresponding reports. Thus, the weighted

query-key interaction Linear Interaction Attention (LIA) mechanism is de-

signed and shown in Fig. 5. The inputs of the attention module include

keys (K), values (V), and queries (Q). In the encoder-decoder attention lay-

ers, the keys and values are from the output of the encoder, and the queries

are from the previous decoder layer. In the self-attention layer, the keys,

values, and queries are all from the previous layer. The Linear Interaction

Attention mechanism, which describes the mapping relationship between the

query matrix and key-value matrices, is defined as follows:

K1, V 1, Q1 = NN1(K), NN2(V ), NN3(Q)

K2, V 2, Q2 = NN4(K
1), NN5(V

1), NN6(Q
1)

Scores = fmask(α(K2 ⊗Q2) + β(K1 ⊗Q1))

LIA(K,Q, V ) = fsoftmax(Scores)⊗ V 2

(7)

where LIA, K, Q, V, NN, and ⊗ represent Linear Interaction Attention, key

matrix, query matrix, value matrix, linear layer, and element-wise matrix

multiplication, respectively; fmask fills 1.0×10−9 where the mask template is

True; α and β are coefficients to balance the contribution of second-order in-

teracting attention and first-order attention. The design of Linear Interaction230

Multi-Head Attention is to improve the feature representation capability in

the subspace. The computation of Linear Interaction Multi-Head Attention

(LIMHA) is defined as:
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Output
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Figure 5: Detailed illustration of linear interaction attention. Q, K, V represent the query

matrix, key matrix, and value matrix.

3.4. Beam Searching

Beam searching [38] is also implemented to boost the standardization and235

quality of generated medical reports. Predicted outputs are sequences rather

than simple classification results. The sequence of probabilities computed by

multiplying the candidate probability together should be maximized. The

Beam searching algorithm defines the beam size, the number of beams for

parallel searching. The greedy search algorithm is a special case of the beam240

searching algorithm, which only selects the best candidate at each step, which

might result in a locally optimal choice rather than the optimal global choice.

The beam size is bs, and beam searching can be categorized into the following

steps. Firstly, the top bs words with the highest probabilities are chosen as

bs parallel beams. Secondly, the best bs pairs, including the first and second245
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words, are computed by comparing the conditional probability set. Finally,

this process is repeated until a stopping token appears.

4. Experiment and Result

4.1. Datasets Preparation and Description

Figure 6: An example of fundus fluorescein angiography image sequences containing similar

and repetitive images from the original image dataset without DHash thresholding.

4.1.1. IU X-RAY and MIMIC-CXR250

The IU X-RAY [5] and the MIMIC-CXR [3] contain chest X-RAY images

and clinical reports. Chest radiography is routinely applied to examine the

chest, such as identifying acute and chronic cardiopulmonary medical dis-

eases or conditions. For the IU X-RAY dataset, all the images have frontal

and lateral views, and this dataset consists of 6471 images and 3336 reports.255

MIMIC-CXR is the largest available dataset of chest radiographs with diag-

nostic reports, which includes 368,960 images and 206,563 reports. For IU

X-RAY and MIMIC-CXR dataset experiments, the splits of training, valida-

tion, and test follow the R2Gen [2].
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4.1.2. Retina ImBank and Retina Chinese260

The Retina ImBank dataset has 18,788 retinal images from Retina Im-

age Bank3 and text captions obtained by us. The modalities of the Retina

ImBank dataset include but are not limited to FP, OCT, FFA, FAF, ICG,

and red-free filtered fundus images. Each image is associated with one corre-

sponding medical report. The reports basically include information regard-265

ing image modalities and the main type of ophthalmic diseases. In addition,

some reports include the subtype and detailed findings related to lesions or

interesting regions. The reports are verified by three ophthalmologists. The

dataset is split into 13146 training images, 1,876 validating images, and 3,755

test images. The maximum and average lengths of reports in the Retina Im-270

Bank dataset are 45 and 8.6 tokens, respectively.

The Retina Chinese dataset was collected from real patient cases. Follow-

ing the MIMIC-CXR dataset, all protected health information of the Retina

Chinese dataset was removed before the experiments were conducted. The

image modalities of the retina dataset consist of FP, FFA, and ICG. The275

whole retina dataset is collected by FF450 plus camera (Carl Zeiss Meditec,

North America). The original retina dataset without sampling contains many

repetitive and similar sequential FFA images shown in Fig. 6. In order to

select representative images in the dataset, the hash difference threshold (us-

ing 0.6) is performed. After the DHash thresholding strategy, 620215 images280

were reduced to 57498 images. The word and sentence blocklists are manually

created to remove sentences with time descriptions, left/right descriptions,

3https://imagebank.asrs.org/
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and modality information. Jieba Chinese4 text segmentation is used to group

a few adjacent Chinese characters with medical meanings together. Exam-

ples of top frequent words are “retina”, “surroundings”, “macular area”, and285

“capillaries”. The max length in raw Chinese medical reports is 119.

4.2. Evaluation Metrics

In terms of evaluation metrics, the classic natural language metrics, in-

cluding BLEU [39], METEOR [40], ROUGE-L [41] are selected to assess the

performances. Those scores were originally designed for machine translation290

and machine summarization tasks which are similar to the report generation

task.

The BLEU [39] evaluates the position-independent sequential matching

and compares the n-grams candidate and the n-grams reference. The BLEU

score is computed as

BLEU = BP ∗ exp

(
n∑

q=1

wqlog(pq)

)

BP = emin((1− len(ref)
len(pred)

),0)

(8)

where q is the number of n-grams, and wq is the weight of each n-gram

class. The brevity penalty (BP) is a multiplicative factor to penalize the

length difference between the two sentences. In this paper, BLEU-1, BLEU-295

2, BLEU-3, and BLEU-4 are used to evaluate the predicted report on the

corpus level. The BLEU-3 and BLEU-4 are important for our task, because

medical terms are often phrases of 3 or 4 words.

4https://github.com/fxsjy/jieba
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Different from BLEU, METEOR [40] focuses on the computation of sentence-

level similarity and evaluates several hypotheses. It is computed as

P =
h

wt

, R =
h

wr

, Fmean =
10PR

R + 9P
, ρ = 0.5(

c

uh

)3,

METEOR = Fmean(1− ρ)

(9)

where P and R represent unigram precision and unigram recall; wt is the

number of unigrams in the candidate sentence; wr is the number of uni-300

grams in the reference sentence; uh represents mapped unigrams; c is a set

of unigrams adjacent in the hypothesis and the ground truth. In this paper,

METEOR is used to evaluate the predicted report on the sentence level and

semantic similarity.

ROUGE-L [41] measures the longest common sequence between the can-

didate sentence X and reference sentence Y , defined as:

RLCS =
LCS(X, Y )

m
,PLCS =

LCS(X, Y )

n
,

ROUGEL =
(1 + γ2) ∗RLCSPLCS

RLCS + γ2PLCS

(10)

where m and n represent the length of X and Y ; LCS represents the process305

of finding the longest common sequence between candidate and reference; γ

is a hyperparameter controlling the relative weight of RLCS and PLCS. In this

paper, ROUGE-L is also used to evaluate the report on the sentence level.

The difference to METEOR is that ROUGE-L only considers the recall than

precision.310

4.3. Experiment Setting

The input images of the IU X-RAY are preprocessed to 512 × 512. For

the MIMIC-CXR, Retina ImBank dataset, and Retina Chinese dataset, the
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image resolutions in preprocessing are 256 × 256. For the reports in the IU

X-RAY and MIMIC-CXR dataset, the max sequence length is 60 and 100,315

depending on the average report length. For the IU X-RAY dataset, the

word with a lower frequency (WLF) of less than three occurrences is marked

as unk (Unknown). The final vocabulary (FV) for the IU X-RAY dataset

has a size of 727 tokens. Similarly, for MIMIC-CXR, WLF and FV are set

to 10 and 3471. For Retina ImBank, WLF and FV are set to 3 and 247. For320

Retina Chinese, WLF and FV are set to 5 and 2001.

For the image encoders in both the contrastive pre-training and feature

medical report generation tasks, the ResNet-101 is selected as its visual-

feature extractor. In the visual extractor of medical report generation, the

final average output size after the pooling operation is adjusted to output325

image features with 14 × 14 by removing the fully connected layer.

For the contrastive learning procedure, the random augmentation setting

follows the MoCo v2 and includes Random Resized Crop (to 224×224 size),

Color Jitter, Random Grayscale, Gaussian Blur, and Random Horizontal

Flip. The learning rate schedule is a cosine learning rate schedule. The330

optimizer is SGD with weight decay 0.0001 and momentum 0.9. The softmax

temperature is set to 0.07. In all our contrastive learning studies, we use the

training and validate split from the dataset to pre-train the image encoders.

In terms of the IU X-ray, the MIMIC-CXR, the Retina ImBank, and the

Retina Chinese datasets, the numbers of the image used in pre-training are335

4726, 272918, 16899, and 50423, respectively.

The head number of linear interaction multi-head attention and masked

bi-linear multi-headed is set to 8. The number of training epochs is 60 for
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the MIMIC-CXR dataset and 100 for other datasets. The input and output

channel numbers of NN1, NN2, and NN3 are 64. We also apply a beam-340

searching technique [38] with a beam size of 3 to explore the subsequence

with the highest probability. The training optimizer is Adam optimizer with

0.00005 weight decay. The initial learning rates are 0.0001 for the proposed

encoder-decoder structure and 0.00005 for the visual feature extractor. The

α and β are both set to 0.5 for the ablation study.345

4.4. Encoder Pre-training Hyperparameter Analysis

This study is conducted on the IU X-ray dataset to investigate the hy-

perparameters in the image encoder pre-training procedure. The experi-

ment selects the MoCo key discrimination task accuracy as the benchmark.

The hyperparameters include batch size, momentum coefficient, queue size,350

and temperature. The other hyperparameters follow the default setting of

MoCo v2 [27].

Table. 1 shows the key-discrimination task accuracy under the hyperpa-

rameter grid-searching. We observe that the accuracy increases with decreas-

ing in the batch size. For small batch sizes, the accuracy increases to over355

85%. We selected a large batch size (128) and a small one (8) for the rest of

the experiments. We also observe that the decreasing momentum coefficient

can cause a 100% accuracy for in whole training period (marked as “fail”

in Table. 1). According to Eq. (4), the (1 − m) can be thought of as the

“learning rate of keys encoder”. When this “learning rate” is high (small360

m), the keys encoder can “catch up” with queries encoder (the keys encoder

is updated each batch). Therefore, the over-similar encoders can lead to ex-

tremely high top-1 accuracy under a small momentum coefficient. For the
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Table 1: MoCo hyperparameter experiments of key discrimination task accuracy. The

Acc.1 and Acc.5 are top-1 accuracy and top-5 accuracy of the key discrimination task.

Batch Size Learning Rate Momentum Queue Size Temperature Acc.1(%) Acc.5(%)

128 0.03 0.999 65536 0.07 17.6 34.6

64 0.01 0.999 65536 0.07 51.2 70.2

32 0.005 0.999 65536 0.07 73.9 87.7

16 0.003 0.999 65536 0.07 81.3 92.5

8 0.001 0.999 65536 0.07 86.8 95.4

128 0.03 0.99 65536 0.07 73.8 87.3

128 0.03 0.95 65536 0.07 Fail

8 0.001 0.99 65536 0.07 88.1 97.3

8 0.001 0.95 65536 0.07 Fail

128 0.03 0.999 16384 0.07 15.8 32.3

128 0.03 0.999 1024 0.07 38.7 68.3

8 0.001 0.999 16384 0.07 86.8 95.4

8 0.001 0.999 1024 0.07 89.8 98.0

128 0.03 0.999 65536 0.1 12.3 26.4

128 0.03 0.999 65536 0.4 2.9 3.5

128 0.03 0.999 65536 0.7 2.9 3.4

queue size, we find that the different batch sizes have different optimal queue

sizes. The queue size determined the number of saved keys in the MoCo365

framework. A large queue may contain too many keys encoded long ago (up

to 14 epochs ago when 65536 for IU X-ray), and a small queue maybe not

be diverse enough to represent the whole feature space of the dataset. Also,

the batch size will determine the queue updating frequency, affecting the re-

cency of the information in the queue. Therefore, the queue size and batch370

size have a combined effect on the accuracy. With the study on temperature,

we observe the accuracy drops with the increase of temperature τ in the loss

function.
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4.5. Language Decoder Hyperparameter Analysis

This study is conducted on the IU X-ray dataset to investigate the hy-375

perparameters selection in the language decoder. The experiment uses the

language benchmarks, and the hyperparameters include the α in linear in-

teraction attention and the beam size in the beam search technique.

Figure 7: Hyperparameter experiments of first-order and second-order attention. α and β

denote the first-order and the second-order attention, respectively.

As defined in Eq. (7), the α and β denote the coefficients of the second-

order attention and the first-order attention, respectively. We test the α380

from 0.1 to 0.9 in an interval of 0.1, with β = 1 − α, shown in Fig. 7.

The α = 0.5 shows the best score in BLEU-1, ROUGE-L, and METEOR.

Meanwhile, the α = 0.3 shows the best score in BLEU-2 and BLEU-3, and

the alpha = 0.1 shows the best score in BLEU-4. Overall, we can observe

that the medium α (0.3-0.5) has better performance than the smaller (0.1-385
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Figure 8: Hyperparameter experiments of the beam size.

0.2) or larger (0.6-0.9) in the language metrics. It indicates that second-order

attention and traditional first-order attention are both essential to achieve

the best performance compared with other methods, and first-order attention

has slightly more attribution. The beam size experiment results are shown

in Fig. 8. Results indicate that the smaller beam size is suitable for the IU390

X-ray task. The reason may be the phrases in the IU X-ray are usually short

but diverse making the smaller beam size advantageous.

4.6. Baseline Comparison

In order to demonstrate the effectiveness of the proposed linear interaction

attention mechanism and contrastive pre-training, ablation studies were per-395

formed and shown in Table. 2. By introducing the contrastive pre-training

module in all four datasets, all language evaluation metrics increased, re-

spectively, demonstrating the effectiveness of the contrastive pre-training. It

indicates contrastive pre-training achieves a better representative ability in
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Table 2: Ablation studies and comparison based on different datasets to demonstrate the

effectiveness of the proposed components.

Dataset Image Encoder Language Decoder BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR

Retina ImBank

RI Base 0.474 0.365 0.298 0.218 0.523 0.216

IN Base 0.497 0.389 0.319 0.237 0.527 0.223

CP Base 0.622 0.539 0.482 0.421 0.656 0.318

IN Base + LIMHA 0.627 0.544 0.486 0.426 0.666 0.320

CP Base + LIMHA 0.638 0.561 0.508 0.456 0.676 0.332

Retina Chinese

RI Base 0.352 0.225 0.155 0.116 0.296 0.157

IN Base 0.354 0.233 0.164 0.126 0.323 0.161

CP Base 0.369 0.240 0.168 0.127 0.312 0.163

IN Base + LIMHA 0.357 0.244 0.180 0.143 0.338 0.161

CP Base + LIMHA 0.371 0.249 0.181 0.142 0.336 0.168

IU X-RAY

RI Base 0.399 0.258 0.183 0.135 0.352 0.170

IN Base 0.396 0.254 0.179 0.135 0.342 0.164

CP Base 0.462 0.293 0.201 0.159 0.358 0.184

IN Base + LIMHA 0.430 0.276 0.198 0.151 0.349 0.176

CP Base + LIMHA 0.479 0.301 0.213 0.155 0.363 0.195

MIMIC-CXR

RI Base 0.326 0.204 0.138 0.100 0.277 0.130

IN Base 0.314 0.192 0.127 0.090 0.265 0.125

CP Base 0.348 0.218 0.149 0.109 0.281 0.140

IN Base + LIMHA 0.323 0.198 0.132 0.094 0.269 0.126

CP Base + LIMHA 0.362 0.227 0.155 0.113 0.283 0.142

RI = Random Initialized ResNet; IN = ImageNet pre-trained ResNet;

CP = Contrastive Pre-training; LIMHA = Linear Interaction Multi-Head Attention.

feature space and is more suitable for medical report generation than pre-400

training with ImageNet. Experiments are also conducted on every dataset

to verify the effectiveness of the linear interaction attention mechanism. The

proposed linear interaction attention mechanism improves the language score

in all groups.

To compare different contrastive pre-training methods, we conduct a com-405

parison study on the IU X-ray dataset. The compared methods include

BOYL [24], SimCLR [22], DenseCL [42], SimSiam [43], MoCo v3 [44], and

MoCo v2 [23]. Fig. 9 shows image encoders pre-trained with the MoCo v3

and MoCo v2 can lead to a better language score. 5 of 6 self-supervised ap-
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Figure 9: Comparison of report generation language score with different pre-trained image

encoder

proaches show better performance than the “Random Initialized” and “Im-410

ageNet Pre-trained” in Table. 2. It proves that the domain consistency be-

tween the image encoder pre-training procedure and the task domain is an

important factor in medical report generation. The contrastive pre-training

step can be applied in different contrastive learning schemes.

Especially, we compare a supervised learning encoder on the IU X-ray415

dataset. We choose the CheXpert labeler [20] to extract 14 labels from the

reports and pre-train the image encoder. As shown in Fig. 9, the perfor-

mance is higher than the ImageNet pre-trained encoder and lower than our

contrastive pre-trained encoder. The key problem is that the CheXpert la-

beler is not accurate enough on IU X-ray reports or not balanced enough to420
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(a) Supervised Pre-trained

(b) MoCo v2 Pre-trained

Figure 10: The t-SNE visualization on supervised pre-trained and MoCo v2 pre-trained

encoders. The orange and blue points represent positive and negative, respectively.
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support the pre-training. Moreover, this method is not directly applicable to

our Retina ImBank or Retina Chinese dataset because developing a report

labeler system for ophthalmology and the Chinese language is much more

challenging.

To investigate the encoder difference, we perform the t-SNE visualization425

of the supervised pre-trained, and the MoCo v2 pre-trained encoders on the

IU X-ray test split (the frontal view images only). As shown in Fig. 10, we

use the label from the CheXpert labeler to color individual cases represented

by discrete points. The MoCo v2 pre-trained encoder significantly separates

the points into two groups. However, all 14 labels fail to explain the point430

clustering, and the clustering may represent other image findings. In com-

parison, the supervised pre-trained encoder shows almost no separation. The

visualization shows that contrastive pre-training is able to improve the initial

image feature clustering. Meanwhile, the labels extracted by the CheXpert

labeler may not be informative enough to support supervised pre-training.435

4.7. Case Studies

To further investigate the quality and readability of generated reports,

we performed qualitative analysis on three case studies shown in Fig. 11. For

the IU X-RAY Case, the ground truth report describes three normalities

(pleural effusion, pneumothorax and cardiomediastinal silhouette) and three440

abnormalities (low lung volumes, bibasilar atelectasis, and thoracic spine).

On the other hand, the medical report generated by the Transformer has cor-

rect normal findings and three incorrect abnormalities (lung volume, bibasilar

atelectasis, and thoracic spine). The proposed method is able to provide all

three normalities and accurately locates all abnormalities showing the effects445
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Ground Truth: Low lung volumes with bibasilar subsegmental atelecta-

sis. No focal consolidations pleural effusions or pneumothoraces. Cardio-

mediastinal silhouette is within normal limits. Degenerative changes of

the thoracic spine.

ImageNet Pre-trained: Normal heart size. Bibasilar patchy opacities

left greater than right. No pneumothorax or large pleural effusion.

Contrastive Pre-trained: There are low lung volumes. The heart size is

mildly enlarged. There are low lung volumes with bronchovascular crowd-

ing. There is patchy basilar atelectasis in the left lung base. No large

pleural effusion or pneumothorax. Degenerative changes of the thoracic

spine.

Ground Truth: Optical coherence tomography showing white dot syn-

drome astrocytoma specifically acute posterior multifocal placoid pigment

epitheliopathy astrocytoma.

Baseline: Optical coherence tomography showing age-related macular

degeneration, specifically polypoidal choroidal vasculopathy.

Proposed: Optical coherence tomography showing white dot syndrome

specifically acute posterior multifocal placoid pigment epitheliopathy.

Ground Truth: Finding:视盘表面毛细血管扩张渗漏,界限尚清,颞侧、颞下

及下方毛细血管扩张,颞下周边部灶性RPE脱色素透见荧光,黄斑区未见明显异

常荧光.Impression:考虑葡萄膜炎.

Baseline: Finding:视盘未见明显异常荧光,视盘旁可见一圆形遮蔽英光区,轻

度渗漏,拱环内可见多个点片状低荧光. Impression:CNV.

Proposed: Finding:视盘表面及其上下方和颞上血管弓丛状视网膜新生血

管,视盘边界不清,弥漫性视网膜毛细血管扩张渗漏,视盘水肿,视盘以外视网膜

血管未见明显异常荧光.Impression:考虑葡萄膜炎.

Figure 11: Illustrations of reports from ground truth, baseline model (Transformer +

ImageNet pre-trained CNN), and proposed model for IU X-ray, Retina ImBank, and Retina

Chinese. The medical terms are highlighted in different colors.

of better-interpreted imaging features of abnormal regions.

The imaging modality of the Retina Image Bank Case is OCT. The

abnormalities of this case consist of white dot syndrome astrocytoma and

acute posterior multifocal placoid pigment epitheliopathy astrocytoma. The
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Figure 12: Visualizations of image-text attention mappings of a chest X-ray case from the

proposed model. The colors represent the weight strength.

proposed method correctly matchs the retina disease and retina sub-disease.450

Both the baseline model and the proposed model are able to generate the

correct predicted imaging modality. In terms of Retina Chinese Case,

the Finding section describes visual findings of the given retina image, such

as the condition of the optic disc, and the impression section relates to the

disease diagnostics. The Impression section in the medical report of both455

the ground truth and proposed method is the possible uveitis.

To further investigate the model mechanism, we also visualized the atten-

tion map of the proposed model. The attention maps are collected from the

first cross-attention block where the text is querying the image feature. As

shown in Fig. 12, the corresponding image regions of the descriptive words460

are significantly different and approximately correct despite the limited reso-

lution. It proves that our model has acquired accurate image-text interaction

knowledge.
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Ground Truth: Cardiomediastinal silhouette is normal in size and contour.

Pulmonary vasculature is normal in caliber. Lungs are clear of focal airspace

disease pneumothorax or pleural effusion. There are no acute bony findings.

Proposed: The Cardiomediastinal silhouette and pulmonary vasculature are

within normal limits in size. The lungs are clear of focal airspace disease pneu-

mothorax or pleural effusion. There are no acute bony findings.

Xlinear: The cardiomediastinal silhouette is normal in size and contour. no

focal consolidation pneumothorax or large pleural effusion. normal xxxx.

BAN: The cardiomediastinal silhouette is within normal limits for size and

contour. The lungs are normally inflated without evidence of focal airspace

disease pleural effusion or pneumothorax. Osseous structures are within nor-

mal limits for the patient age.

Figure 13: Examples of case studies from IU X-RAY of generated medical reports. To fur-

ther investigate the effects of different attention mechanisms on generated medical reports,

qualitative comparison studies are performed. Different colors are chosen to highlight dif-

ferent medical terms.

4.8. Comparison Studies

In this section, we compare the proposed method with state-of-the-art465

image captioning methods [28, 45, 46, 33] and medical report generation

methods [1, 8, 2]. BAN [46] applies bi-linear attention to the object de-

tection feature matrix and hidden language-level information matrix, and X-

Linear [33] model attempts to increase feature map representative ability with

X-linear attention module implemented by bilinear attention and squeeze-470

and-excitation. Unlike BAN and X-Linear, the Linear interaction attention

mechanism reserves the first-order interaction feature map and removes the

over-engineering design of squeeze-excitation. Since the BAN method can

not be directly applied to the medical report generation task, we reimple-

ment the bilinear attention mechanism into the proposed Transformer-based475

framework for comparison. One qualitative example compared with different
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attention mechanisms is shown in Fig. 13. In this example, X-Linear fails

to describe bony findings, and BAN can not produce information regarding

pulmonary vasculature. The proposed method has correct predictions of all

normal findings.480

Table 3: Comparison study on IU X-RAY dataset.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR

ST [28] 0.216 0.124 0.087 0.066 0.306 -

ATT2IN [45] 0.224 0.129 0.089 0.068 0.308 -

ADAATT [30] 0.220 0.127 0.089 0.068 0.308 -

COATT [1] 0.455 0.288 0.205 0.068 0.369 -

HRGR [8] 0.438 0.298 0.208 0.151 0.322 -

BAN [46] 0.453 0.292 0.210 0.096 0.364 0.178

XLinear [33] 0.431 0.270 0.190 0.143 0.344 0.175

R2Gen [2] 0.453 0.288 0.211 0.165 0.361 0.182

Proposed 0.479 0.301 0.213 0.155 0.363 0.195

Table 4: Comparisons study on MIMIC-CXR dataset.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR

ST [28] 0.299 0.184 0.121 0.084 0.263 0.124

ATT2IN [45] 0.325 0.203 0.136 0.096 0.276 0.134

ADAATT [30] 0.299 0.185 0.124 0.088 0.266 0.118

TOPDOWN [31] 0.317 0.195 0.130 0.092 0.267 0.128

XLinear [33] 0.332 0.203 0.135 0.096 0.272 0.133

R2Gen [2] 0.353 0.218 0.145 0.103 0.277 0.142

Proposed 0.362 0.227 0.155 0.113 0.283 0.142

Table. 3 demonstrates that the proposed method achieved the best per-

formance in all language evaluation metrics on the IU X-RAY dataset except
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Table 5: Comparison study on the Retina Chinese dataset.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR

ATT2IN [45] 0.269 0.154 0.082 0.053 0.265 0.129

AOA [32] 0.276 0.174 0.117 0.085 0.281 0.139

M2 Transformer [34] 0.298 0.155 0.086 0.058 0.255 0.130

R2Gen [2] 0.309 0.166 0.094 0.063 0.252 0.140

Proposed 0.371 0.249 0.181 0.142 0.336 0.168

BLEU-4. Table. 4 shows the proposed method achieved state-of-the-art re-

sults on BLEU scores, and both the ROUGE-L score and METEOR score

rank second among seven methods on the MIMIC-CXR dataset.485

Since the Retina Chinese dataset is collected from real clinical reports

and not released to the public, no comparing methods were evaluated. We

selected strong baselines with codes available, including medical report gen-

eration method [2] and image captioning methods [45, 32, 34] to compare

with. Table. 5 demonstrates the state-of-the-art performance of the pro-490

posed method on the Retina Chinese dataset. The medical report generation

methods (R2Gen and the proposed) outperform image captioning methods

because they are designed for generating sentences with varying lengths. The

significant performance improvement of the proposed method is because the

image feature encoder obtained in contrastive learning is suitable for describ-495

ing retina image properties such as abnormal regions and texture.

5. Conclusion

There is no publicly available multi-modality dataset for retina image re-

port generation, so we collected the world-first multi-modality dataset and

another retina Chinese dataset to inspire further research on retina report500
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generation tasks. Experimental results also demonstrated that the proposed

method generated robust and meaningful medical imaging reports. The lin-

ear interaction attention module and contrastive pre-training module im-

proved intermediate feature map fusion capabilities of diseases (or abnor-

mal findings) with imaging cues shown in qualitative and quantitative stud-505

ies. The contrastive pre-training module was generalized to various datasets

without annotated labels. By evaluating with the collected datasets and pub-

lic chest X-Ray datasets, the proposed method outperformed all comparing

methods in majorities of language-matching metrics.
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