
Springer Nature 2021 LATEX template

Novel Multiscale Models in a Multicontinuum

Approach to Divide and Conquer Strategies
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Abstract

This contribution presents a comprehensive, in-depth analysis of the
solution of the mechanical equilibrium problem for a generic solid
with microstructure. The exact solution to this problem, referred to
here as the reference solution, corresponds to the full-scale model
of the problem that takes into account the kinematics and constitu-
tive behavior of its entire microstructure. The analysis is carried out
based on the Principle of Multiscale Virtual Power (PMVP) previ-
ously proposed by the authors. The PMVP provides a robust theoretical
setting whereby the strong links between the reference solution and
solutions of the mechanical equilibrium obtained using coarser scale
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models are brought to light. In this context, some fundamental prop-
erties of coarser scale solutions are identified by means of variational
arguments. These findings unveil a new homogenization landscape for
Representative Volume Element (RVE) multiscale theories, leading to
the construction of new Minimal Kinematical Restriction (MKR)-based
models where either displacements or tractions may be prescribed on
the RVE boundary. A careful observation of the aforementioned land-
scape leads naturally to the proposal of a new, multicontinuum strategy
(a generalized continuum counterpart of multigrid strategies) to approx-
imate the reference solution at low computational cost. In the proposed
strategy, the mechanical interactions among neighboring microcells are
accounted for in an iterative fashion by means of suitably chosen bound-
ary conditions enforced alternately on the new MKR-based models.
The proposed developments are presented assuming a classical con-
tinuum at all scales, but the results are equally valid when different
kinematical and constitutive assumptions are made at different scales.

Keywords: Multiscale Modeling, Virtual Power, Boundary Conditions,
Multigrid Approach, Direct Numerical Solution

1 Introduction

The bridging between physical scales was initiated by the landmark con-
tributions of Kirkwood and collaborators, which set the fundamental bases
for the governing equations of transport phenomena in continuum media, by
departing from statistical mechanics arguments [1–4]. In the field of solid
mechanics, the major developments were motivated by the estimation of emer-
gent (macroscopic) properties of heterogeneous materials [5–12]. In parallel,
the use of asymptotic analysis of partial differential equations with periodic
coefficients enabled the modeling of continua with periodic microstructure [13–
15]. Notably, an aspect shared by all these theories is the fact that variables
at the macroscopic level, usually called homogenized variables, are invariably
related to some kind of averaging process of the fields defined at the microscopic
level.

In more recent times, research on multiscale modeling approaches have
bloomed in the context of computational mechanics, triggered by the avail-
ability of increasing computational power. Most of these approaches rely on
the concept of Representative Volume Element (RVE) to model the microscale
phenomena. Thus, stresses and strains at the macroscale level are character-
ized through volumetric averages of the corresponding fields at the RVE scale.
Importantly, the mechanical model adopted to describe the physical phenom-
ena at micro level may be different from that adopted at macro level. The
conventional approach taken in the literature exploits computational homog-
enization techniques and finite element strategies to find the approximate
solution to the problem [16–29]. Current applications in the field of solid
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mechanics include plasticity, thermomechanical coupling, dynamics and vibra-
tions and problems involving material damage and failure [30]. Moreover,
multiscale models have also addressed the construction of high order constitu-
tive models [18, 19, 31–33]. These are examples where the multiscale approach
can properly handle the interaction between scales even when scale separation
does not hold.

A comprehensive review of the multiscale modeling approach and its appli-
cations is beyond the scope of the present work. The interested reader is
referred to [34–50]. In these contributions, specific reference is made to the
different areas of application of multiscale modeling.

The ever-increasing popularity of RVE-based multiscale strategies has been
driven by the need to address increasingly complex problems featuring smaller
scale phenomena whose full scale characterization remains beyond the reach
of available computing power. Even though the solution of full-scale problems
has remained elusive, multiscale models managed to deliver essential insight
into the underlying mechanisms taking place at the microscopic realm, and
the way in which these phenomena emerge at the macroscale (observable) level
[51, 52]. Multiscale solutions have been crucial to optimize the use of existing
materials, as well as to design new materials in a rational and scientific manner.

The overwhelming presence of RVE-based multiscale models in mechani-
cal applications is historically related to the study of constitutive behavior of
materials that featured a certain microstructural arquitecture at smaller scales.
Currently, extensions and modifications of the multiscale theories have enabled
the incorporation of more ellaborate small scale interactions. Therefore, purely
constitutive multiscale modeling was transformed into an all-embracing frame-
work capable of accounting for all sorts of physical effects, and whose impact
on the observable scale of the object of study is accounted for by bridging
hypotheses and homogenization rules.

In performing such homogenization, naturally, the full-scale problem is
being described as a loose interconnection of different scales, typically a micro
and a macro scale. The segregation of these scales is due to the fact that tack-
ling the full-scale problem is unfeasible given the computational resources that
would be required for a proper characterization of the fine scale mechanical
interactions in a monolithic manner. Thus, through the segregation of micro-
scopic physical domains (the RVEs) it is possible to set up a loosely coupled
full-scale problem, where the RVEs weakly interact through the homogeniza-
tion process integrated with the mechanical equilibrium configured at the
macroscopic scale. Although the transfer of information between the scales
provides a sense of locality at each RVEs, which is important to keep the prob-
lem decoupled, at the same time it precludes the RVEs from proper interaction
with neighboring physical domains through their boundaries.

Consequently, despite the wide range of situations addressed in the cur-
rent literature, there is still a gap concerning the non-local interactions among
neighboring RVEs for the simple reason that they are obtained using a micro-
cell (RVE) that is considered to be completely decoupled (isolated) from the
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rest of the body domain. Therefore, the finer interactions between the microcell
(formerly called RVE) and its neighbors are neglected, or inadequately incor-
porated, due to the incorrect prescription of boundary conditions enforced at
the RVE level in the formulation of these multiscale models. For example, in
the traditional Taylor multiscale model, an affine displacement is prescribed
all over the entire RVE, which generally is far from the actual behavior of the
microcell. In the Linear Boundary Multiscale Model, a linear displacement is
prescribed on the microcell boundary, something which is also generally far
from the actual behavior of the microcell. A conventional multiscale model
with periodic boundary conditions has little meaning in the case of arbitrar-
ily heterogeneous material (for example, including voids), or in problems with
evolving interfaces and discontinuities. In turn, the so-called Minimal Kinemat-
ical Restriction Multiscale (MKR) model, which includes only the minimum
set of kinematic constraints required to satisfy the Principle of Multiscale Kine-
matic Admissibility [37, 38, 47], induces a piecewise uniform traction field on
the solid part of the microcell boundary – something that, again, does not
generally reflect the true mechanical state of the material at the micro level.
We can see that isolating microcells from the rest of the body generally brings
inconsistencies between neighboring domains, and this is one of the main chal-
lenges addressed in this work: how to bring neighboring information into the
formulation of the microscale equilibrium problem of each microcell so as to
reduce or eliminate such inconsistencies.

A proper characterization, not only of the homogenized mechanics at the
coarse scale, but also of the micromechanics, requires the correct characteri-
zation of the mechanical environment in each microcell. This goal is attained
only if the exact solution of the full-scale equilibrium problem is known. The
solution of the single- full-scale problem that accounts for all the fine scale
interactions in the entire domain shall be referred to here as the reference solu-
tion. By zooming into the reference solution within a certain microcell, we will
see that its physical fields are the result of its interactions with neighboring
microcells. Nevertheless, the characterization of this solution is not generally
attainable, even with the use of high performance computers.

At this point, it is important to mention two adjoining fields of research
whose main goal is to find such a reference solution by creating, or accelerating,
a sequence of iterates that eventually converge to the sought solution. In this
manner, these methods propose a divide and conquer approach to circumvent
solving the full problem all at once.

On one hand, we have domain decomposition techniques, whose aim is to
partition the domain of analysis into (overlapping or non-overlapping) subdo-
mains for which local problems are formulated. Local problems receive local
boundary conditions according to certain criteria that are responsible for defin-
ing boundary data at neighboring subdomains. Through the iterative process,
the lack of continuity of the solution at the boundaries between adjacent sub-
domains is expected to be progressively reduced until a certain convergence
threshold is achieved. Domain decomposition approaches can be formulated
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either at the algebraic level [53], or at the continuum level [54]. In the former
case, the resulting algebraic structure of the problem is manipulated so the full
algebraic problem is broken into subproblems that interchange information.
In the latter approach, the formulation of boundary value problems (includ-
ing Dirichlet, Neumann, or even Robin boundary data), the Stéklov-Poincaré
operators plays a fundamental role to understand the theoretical concepts and
ensure mathematical/energetic consistency. Domain decomposition methods
are typically proposed for a set of partial differential equations, and the local
problems represent such an original set of equations. Alternatively, domain
decomposition formulations were proposed to work with heterogeneous models
occupying non-overlapping regions within a certain domain of analysis. Exam-
ples are the coupling of surface and groundwater flows [55], the coupling of
Darcy and Stokes models [56], the coupling of Biot and Navier-Stokes models
[57], the classical fluid-structure interaction problem [58], and even models of
different dimensions [59, 60].

On the other hand, we have multigrid methods (a class of multiresolu-
tion method) as a way to resolve the different scales featured by the problem
through a family of problem discretizations performed hierarchically [61, 62].
This family of methods lies closer to the multiscale paradigm, as the fundamen-
tal idea is to coarsen the original problem, solve it and then go back to the finer
model with coarse scale information, and iterate this procedure until a con-
vergence criterion is achieved. The goal in this case is to progressively reduce
the error in the finer model through the coarse-fine iterations. To achieve
this, proper restriction and prolongation (also known as interpolation) opera-
tors are required, so information can be transferred between two hierarchically
connected approximations. Connection between multigrid solvers and homog-
enization techniques is not new, and can be found in [63], where variational
upscaling was applied to porous media flow simulations, and in [64] for solid
mechanics. Alternative numerical strategies were also proposed using mixed
approaches. For instance, in [65, 66] a multigrid approach was employed at the
continuum level, which enforced the coupling conditions between beighboring
subdomains in a weak manner.

It is worth noting that, except for the problems where heterogeneous mod-
els are considered spanning non-overlapping spatial regions, all the previous
apporoaches address a certain problem defined by a set of partial differential
equations and stick to these equations in the application of the methodology.
That is, model equations are the same in the different subdomains in domain
decomposition techniques, and are the same in the different discretizations in
multigrid techniques. This is an example of a limitation which can be circum-
vented by exploiting the framework of the Method of Multiscale Virtual Power
(MMVP).

In the present work, we place the problem of characterizing the reference
solution for a mechanical system at the continuum level, that is, as a continuum
mechanics problem, before any discretization is introduced. More specifically,
we regard the RVE-based multiscale strategy as an excellent candidate to
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tackle the problem. The proposed developments rely on the Principle of Mul-
tiscale Virtual Power [37, 38, 47], which allows us to construct bridging rules
between the mechanical phenomena at the small scale and the corresponding
phenomena at any larger scale (including the macroscale), regardless of the
governing equations, which may well differ at different scales. In this context,
the theoretical variational basis of RVE-based methodologies is discussed in
detail and the foundations are laid for the development of a new strategy to
obtain the reference solution without the direct solution of the full-scale prob-
lem. By exploiting this variational basis, a novel insight emerges. In particular,
it becomes clear that variational formulations of new multiscale models can
be developed in which either generalized displacements or tractions may be
prescribed on the boundary of the microcell, making the incorporation of the
interactions with neighboring domains feasible. With the incorporation of the
interactions between the microcell and its surroundings, a strategy based on
the new multiscale models can be proposed as a multicontinuum approach (a
generalized continuum counterpart of multigrid strategies) for the determina-
tion of the reference solution at a lower computational cost than by solving
the full-scale problem monolithically.

The paper is structured as follows. In Section 2 we present the ingredients
that characterize the full-scale problem and the corresponding reference solu-
tion. In Section 3 we show the connection between the reference solution and
solutions obtained at coarser scales. In Sections 4 we present the properties of
the reference solution when restricted to an arbitrary isolated microcell. Then,
novel multiscale models where displacements or tractions may be prescribed
on the boundary of the microcell, and which are capable of capturing impor-
tant properties of the reference solution, are proposed in Section 5. The use
of the new multiscale models in a multicontinuum approach to determine the
reference solution is proposed in Section 6. Concluding remarks are then pre-
sented in Section 7. In addition, to make this contribution self-contained, in
Appendix A and Appendix B we present the fundamental aspects of the MKR
multiscale model and the Principle of Multiscale Virtual Power [37, 38, 47].

2 Full-scale problem

In this section we define the full-scale problem under consideration, and char-
acterize its solution – the reference solution. The full-scale problem comprises
a single scale where all heterogeneities and details of the continuum (at all
length scales) are accounted for.

In what follows, we denote by Ωµ the material configuration of the body
Bµ whose kinematics and constitutive behaviour may generally depend on the
chosen scale µ where the model is defined. For the sake of simplicity, we limit
the presentation here to the case of a classical continuum at scale µ, corre-
sponding to a body with microstructure which may include voids randomly
distributed in Ωµ that may or may not reach its boundary ∂Ωµ.
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Remark 1 Despite the limitation of this presentation to classical continuum mechan-
ics and specifically to solid mechanics, extensions of the fundamental concepts
exposed in this paper to different kinematical models (see for example [40]) can be
pursued.

For convenience, we list below some of the most important definitions and
notations adopted (refer to Figure 1):

• Ωµ: the entire domain including voids and solid material.
• y: coordinates in Ωµ.
• ∂Ωµ: boundary of Ωµ.
• Ωs

µ: solid part of Ωµ.
• Ωv

µ: space occupied by voids in Ωµ.
• Ωvi

µ : space occupied by fully internal voids in Ωµ.
• Ωvb

µ : space occupied by voids which reach the boundary of Ωµ.
• ∂Ωs,b

µ : boundary of Ωs
µ shared with ∂Ωµ.

• ∂Ωv,b
µ : boundary of Ωv

µ shared with ∂Ωµ.
• ∂Ωs,vi

µ : boundary of Ωs
µ shared with the boundary of Ωvi

µ .
• ∂Ωs,vb

µ : boundary of Ωs
µ shared with Ωvb

µ .

Similar notations are applied to any part Pµ of Ωµ (see Figure 1).

Let ∂Ωs,b
µ,D be the part of ∂Ωs,b

µ where the displacement is prescribed as a

given field uµ(y), y ∈ ∂Ωs,b
µ,D. Also, we assume that the constraints imposed on

the displacement field are such that if two displacement fields satisfy∇u1
µ(y) =

∇u2
µ(y),y ∈ Ωs

µ then u1
µ(y) = u2

µ(y),y ∈ Ωs
µ.

Let Vµ be a function space of vector-valued elements that are sufficiently
regular so that all mathematical operations they are involved in make sense. In
classical continuummechanics in the three-dimensional space, Vµ = [H1(Ωs

µ)]
3.

In what follows, to simplify the presentation, we assume Bµ to be sub-
ject only to body forces in its interior and prescribed displacements on its
boundary. Then, let Kin∗

µ be the linear manifold of kinematically admissible
displacements of Bµ, defined by

Kin∗
µ = {uµ ∈ Vµ; uµ|∂Ωs,b

µ,D
= uµ} = uo

µ + V ar∗µ, (1)

where uo
µ is an arbitrary element of Kin∗

µ, and V ar∗µ is the associated subspace
of kinematically admissible virtual actions of Bµ:

V ar∗µ = {v ∈ Vµ; v|∂Ωs,b
µ,D

= 0}. (2)

The mechanical equilibrium of the body Bµ is established by the following

variational problem: For a given load system defined by {bµ} ∈ V ′

µ (V ′

µ is the
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ℓ(Ωµ)

Ωµ

∂Ωµ

y

ℓ(Pµ)

Pµ

∂Pµ

Pµ

∂Ps,b
µ∂Pv,b

µ

Ps
µ

∂Ps,vb
µ

∂Ps,vi
µ

Fig. 1 Domain Ωµ taking into account its microstructure in an arbitrary part Pµ.

dual space of Vµ), find the reference solution u∗
µ ∈ Kin∗

µ such that∫
Ωs

µ

[Pµ(u
∗
µ) · ∇v − bµ · v]dΩµ = 0 ∀v ∈ V ar∗µ, (3)

where Pµ is the first Piola-Kirchhoff stress tensor – assumed a function of the
deformation gradient Fµ = I+∇u∗

µ. We assume the constitutive stress-strain
relation satisfying∫

Ps
µ

[Pµ(u
1
µ)−Pµ(u

2
µ)] · [∇(u1

µ − u2
µ)]dΩµ ≥ 0 ∀u1

µ,u
2
µ ∈ Kin∗

µ, (4)∫
Ps

µ

[Pµ(u
1
µ)−Pµ(u

2
µ)] · [∇(u1

µ − u2
µ)]dΩµ = 0 ⇔ ∇u1

µ = ∇u2
µ, (5)

for any part Ps
µ of Ωs

µ. Moreover, the above requirement implies that equality
in (5) is satisfied if and only if the stresses also coincide, i.e. Pµ(u

1
µ) = Pµ(u

2
µ).
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From (4)-(5) and the constraints prescribed over the displacement field, we
have that if the solution u∗

µ exists, it is unique. To see this, assume u1
µ and u2

µ

to be two solutions of (3). Then,∫
Ωs

µ

[Pµ(u
1
µ) · ∇v − bµ · v]dΩµ = 0 ∀v ∈ V ar∗µ, (6)∫

Ωs
µ

[Pµ(u
2
µ) · ∇v − bµ · v]dΩµ = 0 ∀v ∈ V ar∗µ. (7)

From these equations we obtain∫
Ωs

µ

[Pµ(u
1
µ)−Pµ(u

2
µ)] · ∇vdΩµ = 0 ∀v ∈ V ar∗µ. (8)

Further, since u1
µ − u2

µ ∈ V ar∗µ, the above implies that∫
Ωs

µ

[Pµ(u
1
µ)−Pµ(u

2
µ)] · ∇(u1

µ − u2
µ)dΩµ = 0, (9)

and from (5) and the assumed contraints on admissible displacement fields, we
conclude that

u1
µ = u2

µ = u∗
µ, (10)

and the uniqueness of the solution of (3) is demonstrated.
In what follows we shall assume that the body force data per unit volume

bµ is sufficiently regular so that the variational problem (3) is well posed in
the sense that it has a solution.

3 Homogenized mechanical formulation

In this section we consider the problem of coarsening the full-scale model of
Section 2 and devise a coarsened continuum that we shall refer to as the
macroscale model. The coarsened model is linked to the fine, full-scale model
through an appropriate power equivalence between the two continua, and
kinematical constraints provide the conditions for this balance to be imposed
in a consistent, physically meaningful manner, by means of the Principle of
Multiscale Virtual Power.

Now, let {Pi
µ, i = 1, . . . , Nµ} be an arbitrary partition of Ωµ into Nµ

microcells such that the following properties are satisfied:

• Ωs
µ =

⋃Nµ

i=1 Pi,s
µ ;

• Pi,s
µ ∩ Pj,s

µ = ∅, for i ̸= j, i, j = 1, . . . , Nµ;
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• In the present context, Nµ is, in general, a very large integer such that
the characteristic length of Pi

µ, denoted l(Pi
µ), is large enough to be rep-

resentative of the microstructures/heterogeneities present in the body Bµ,
but small enough when compared to the characteristic length of the macro
scale, or coarse scale. Let us denote ni the number of heterogeneities of Pi,s

µ

and Hi,k
µ , k = 1, . . . , ni, ni > 1, the part of the domain Pi,s

µ occupied by

heterogeneity k. We assume Pi,s
µ =

⋃ni

k=1 Hi,k
µ .

Also, for each part Pi
µ of the body we define

Ii = {j = 1, . . . , Nµ; for j ̸= i; ∂Pi,s,b
µ ∩ ∂Pj,s,b

µ ̸= ∅} (11)

as the set of indeces of the microcells that form the neighborhood of Pi
µ.

Using this partition, variational equation (3) can be rewritten as

Nµ∑
i=1

∫
Pi,s

µ

[Pµ(u
∗
µ) · ∇v − bµ · v] dΩµ = 0 ∀v ∈ V ar∗µ. (12)

Then, it is easy to show that the reference solution u∗
µ ∈ Kin∗

µ satisfies, in
a weak sense, the following Euler-Lagrange equations

divPµ(u
∗
µ) + bµ = 0 in Hi,k

µ k = 1, . . . , ni,

i = 1, . . . , Nµ, (13)

JPµ(u
∗
µ)nµK = 0 on ∂Hi,k

µ ∩ ∂Hi,m
µ , k ̸= m, k,m = 1, . . . , ni,

i = 1, . . . , Nµ, (14)

JPµ(u
∗
µ)nµK = 0 on ∂Pi,s,b

µ ∩ ∂Pj,s,b
µ , i ̸= j, i, j = 1, . . . , Nµ, (15)

Pµ(u
∗
µ)nµ = 0 on ∂Pi,s,v

µ , i = 1, . . . , Nµ, (16)

Pµ(u
∗
µ)nµ = r∗µ on ∂Ωs,b

µ,D, (17)

Pµ(u
∗
µ)nµ = 0 on ∂Ωs,b

µ \∂Ωs,b
µ,D, (18)

where r∗µ ∈ (V ar∗µ)
⊥ is the reaction resulting from the prescribed displacement

on the Dirichlet boundary ∂Ωs,b
µ,D, and nµ is the unit normal vector to the

boundary.

Remark 2 Equation (15) tells us that the traction, say t∗,iµ , exerted on an arbitrary

microcell boundary ∂Pi,s,b
µ by its neighboring microcells, Pj

µ, j ∈ Ii, across their

boundaries ∂Pj,s,b
µ , is, in general, a non-constant field over the intercell boundaries.

This field given exactly by Pµ(u
∗
µ)nµ|∂Pi,s,b

µ
= t∗,iµ .
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With the reference solution at micro level, u∗
µ, by using the Principle of

Multiscale Virtual Power (PMVP, see Appendix B) together with the homoge-
nization procedures for displacements, displacement gradients, stress and body
forces [37, 38, 47], expression (12) yields

∀v ∈ V ar∗µ 0 =

Nµ∑
i=1

∫
Pi,s

µ

[Pµ(u
∗
µ) · ∇v − bµ · v] dΩµ

=

Nµ∑
i=1

|Pi
µ| {P∗

M |xi · ∇vM |xi − b∗
M |xi · vM |xi}

=

∫
ΩM

[P∗
M · ∇vM − b∗

M · vM ]dΩM

= 0 ∀vM ∈ V ar∗M , (19)

where xi ∈ ΩM is the point at macroscale level associated to the microcell
Pi
µ, |Pi

µ| is the measure of the microcell Pi
µ including the solid and the void

parts, i.e. |Pi
µ| = |Pi,s

µ |+ |Pi,v
µ |. The domain ΩM is the macro-scale or coarse-

scale domain, which is the same as Ωµ but now understood as a coarsened
continuum. That is, ΩM is the fine-scale domain Ωµ viewed through ‘blurry
glasses’, where the fine-scale details/heterogeneities have been smoothed out as
a result of the homogenization procedure. In turn, the space V ar∗M is defined
as

V ar∗M = {vM ∈ VM ; vM |∂ΩD
M

= 0}, (20)

where ∂ΩD
M is the boundary of ΩM where Dirichlet boundary conditions are

prescribed.
Finally, note that in (19), the same kinematics has been assumed for both

macro- and micro-scales. However, the use of different kinematics in Ωµ and
in ΩM is possible. See [36, 40] for two examples of problems with mixed
kinematics.

Let us now look at some important conceptual details relevant as we move
through the different lines of equation (19):

• The second line of (19) is obtained from its first line by exploring the Method
of Multiscale Virtual Power (MMVP), proposed in [37, 38]. In particular,
we have made use of the Principle of Multiscale Virtual Power (PMVP)
presented in Appendix B, which postulates that the energetic consistency
between the macro- and micro-scale is established when the total virtual
powers at both scales coincide: “The total macroscale virtual power at a
point xi must be equal to the total microscale virtual power of the correspond-
ing microcell for all kinematically admissible macro- and micro-scale virtual
actions”. Hence, no approximation is introduced at this step. The identity
between the first and second lines of (19) follows simply from an arbitrary
partitioning of the full-scale continuum, and there is no requirement that
Pi
µ be a representative volume element. In fact, this domain must be large
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enough in order to adequately describe the heterogeneities (materials and
topological architecture) at that level.

• Further, according to the PMVP, P∗
M |xi

and b∗
M |xi

in the second line
of (19) are, respectively, the values of the macro-scale stress tensor field,
P∗

M , and the body force vector field per unit volume, b∗
M , at point xi of

the macroscale, linked to the microcell Pi
µ. Similarly, vM |xi

and ∇vM |xi

denote, respectively, the value of (coarsened) macroscale virtual action
fields, vM , and its gradient, ∇vM , at xi. It should also be stressed here
that, as established by the PMVP, the equality between the first and sec-
ond line of (19) must hold for all kinematically admissible virtual actions
vM ∈ V ar∗M = {vM ∈ VM ; vM |∂ΩD

= 0} over ΩM – the blurry version
of Ωµ – where the solid constitutive behavior and body force depend on
the mechanical interactions at the microcell level through the corresponding
homogenization operators.

• The second line of (19) can be interpreted as a midpoint quadrature formula
for the integral of the third line. Since Nµ is typically very large, we assume
the numerical error introduced by the quadrature to be negligible. For this
reason, we maintain the equal sign instead of the the approximation symbol
between lines two and three.

• The third line of (19) implies that with the exact solution u∗
µ of the full-scale

equilibrium problem – the reference solution – at hand, the PMVP (with
the associated homogenization operators) enables us to obtain the coarse-
scale fields P∗

M and b∗
M over ΩM (as well as any other homogenized field,

such as, for example the homogenized constitutive tangent operator), that
satisfy the macroscale equilibrium in the sense of (19).

• Finally, since the first line is zero for any v ∈ V ar∗µ, the third line must also
be zero for any vM ∈ V ar∗M .

Remark 3 The above framework is not limited to only two scales (micro and macro).
Any number of scales can be considered with the above reasoning applied recursively.

Remark 4 In the above, we stated that the energetic consistency was satisfied using
the PMVP. The reader will notice that the balance of power between macro and
micro-scales was originally proposed in [9, 11], and became known as the Hill-Mandel
principle of Macrohomogeneity. While this well-known principle was originally for-
mulated for the true power exerted at both scales, the PMVP cast the Hill-Mandel
principle in a variational setting.

The tractions t∗,iµ , as should be expected, play no role in the PMVP.
Intercell tractions do not contribute to the external microscale virtual power
because they are reactions, associated by duality, to the constraint of kinemat-
ical compatibility between Pi

µ and its neighboring microcells. This observation

allows us to see the intercell tractions t∗,iµ as the Lagrange multipliers needed

to enforce intercell compatibility in the local equilibrium problem where Pi
µ
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is considered isolated (decoupled) from the rest of the body, with the corre-
sponding kinematical constraint relaxed in the sets of kinematically admissible
displacements and virtual actions. This fact will be explored in Section 4, where
the equilibrium of individual, isolated microcells is considered in isolation.

We stress that the solution u∗
µ of the full-scale equilibrium problem that

takes into account all fine details of the solid can be regarded as the refer-
ence solution in general multiscale modeling. In fact, its knowledge enables
the exact determination of all macro scale fields necessary for the equilibrium
and representation of the macro-scale behavior taking into account the fine
mechanical interactions of the micro-scale level. However, obtaining this solu-
tion by means of numerical approximation is, in general, not feasible at present,
given the prohibitive computing costs associated with the full-scale solution of
more realistic problems. One approach to overcome this challenge is the use
of classical, RVE-based multiscale models. This approach aims to formulate a
similar, generally representative problem that will deliver a (hopefully) good
approximation for u∗

µ|Pi,s
µ

at significantly lower computing costs. The better

the multiscale model, the better the approximation will be. The classical mul-
tiscale paradigm relies on the assumption that only homogenized information
is transferred between scales, and that each microcell Pi

µ is considered iso-
lated from its surroundings. The local microcell mechanical problem is then
formulated in each multiscale model by assuming a particular set of microcell
kinematical boundary conditions that, in some sense, tries to mimic the actual
interactions of the microcell with its surroundings in the full-scale problem.
These assumed kinematical constraints may or may not be good approxima-
tions of the real boundary interactions, and the ability to capture them with
good accuracy, to be as close as possible to the reference solution, is the most
crucial aim of any multiscale model.

Remark 5 As discussed in the introduction, isolation from the rest of the body gen-
erally brings inconsistencies between neighboring microcells, and this is one of the
main challenges addressed in this work: how to bring neighboring information into
the formulation of the microscale equilibrium problem for each microcell to reduce
or eliminate such inconsistencies.

In fact, without loss of generality, the reference solution u∗
µ restricted to

the microcell Pi
µ can be described exactly using a Taylor series-like expansion

by introducing the (linear) homogenization operators, denoted by HV
µ (·) and

HW
µ (·). These operators account for the affine characterization of the field, plus

a fluctuation component included in the Taylor expansion (see (21) below).
Thus, the microscale kinematics can be linked, through appropriate homoge-
nization procedures, to the corresponding point-wise value (associated to Pi

µ)
of the macroscale kinematics (see [37, 38, 47]). This expansion of the reference
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solution reads

u∗
µ|Pi,s

µ
= HV

µ (u
∗
µ|Pi,s

µ
) +HW

µ (∇u∗
µ|Pi,s

µ
)(y − yG) + ũ∗

µ(y)

= u∗
M |xi

+G∗
M |xi

(y − yG) + ũ∗
µ(y), y ∈ Pi,s

µ , (21)

where, for the material under consideration (heterogeneous with voids arbi-
trarily distributed in Pi

µ, that may or may not reach its boundary), yG =
1

|Pi,s
µ |

∫
Pi,s

µ
y dΩµ, ũ

∗
µ represents the displacement fluctuations, i.e. the higher

order term in u∗
µ, defined as

ũ∗
µ(y) = u∗

µ|Pi,s
µ

− u∗
M |xi

−G∗
M |xi

(y − yG), (22)

and u∗
M |xi

and G∗
M |xi

are, respectively, the displacement and gradient at the
point xi ∈ ΩM linked to the kinematics at the microscale by the multiscale
kinematical admissibility homogenization linear operators

u∗
M |xi

= HV
µ (u

∗
µ) =

1

|Pi,s
µ |

∫
Pi,s

µ

u∗
µ dΩµ

= u∗
M |xi

+HV
µ (ũ

∗
µ)

= u∗
M |xi

+
1

|Pi,s
µ |

∫
Pi,s

µ

ũ∗
µ dΩµ, (23)

G∗
M |xi

= HW
µ (∇u∗

µ) =

=
1

|Pi,s
µ |

[∫
Pi,s

µ

∇u∗
µ dΩµ −

∫
∂Pi,s,vi

µ

ũ∗
µ ⊗ nvi

µ d∂Ωµ

−
∫
∂Pi,s,vb

µ

ũ∗
µ ⊗ nvb

µ d∂Ωµ −
∫
∂Pi,s,b

µ

ũ∗
µ ⊗ nµ d∂Ωµ

]

=
1

|Pi,s
µ |

[
|Pi,s

µ | G∗
M |xi

+

∫
Pi,s

µ

∇ũ∗
µ dΩµ −

∫
∂Pi,s,vi

µ

ũ∗
µ ⊗ nvi

µ d∂Ωµ

−
∫
∂Pi,s,vb

µ

ũ∗
µ ⊗ nvb

µ d∂Ωµ −
∫
∂Pi,s,b

µ

ũ∗
µ ⊗ nµ d∂Ωµ

]

= G∗
M |xi

+
1

|Pi,s
µ |

∫
∂Pi,s,b

µ

ũ∗
µ ⊗ (nµ − nµ) d∂Ωµ

= G∗
M |xi

+HW
µ,∂Pi,s,b

µ
(ũ∗

µ|∂Pi,s,b
µ

). (24)

In the above, we used (21) and the definition of yG, and the vector nµ is
defined as

nµ =
1

|∂Pi,s,b
µ |

∫
∂Pi,s,b

µ

nµd∂Ωµ. (25)
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Remark 6 Note that the gradient homogenization operator introduced at the begin-
ing of (24) was proposed such that, after use of Gauss formula to take the gradient
to the boundary, only microcell boundary terms are present. So, out of the three
boundary terms, two of them were struck off after the Gauss formula was used. In
this manner, the homogenization rule only depends on fluctuations occurring over

the solid part of the microcell boundary (∂Pi,s,b
µ ). Otherwise, the kinematical model

would allow for artificial dual forces to occur on the void boundaries, which is not
physically justified. Moreover, this is the real concept of a physical experiment, in
which we can mechanically test a piece of material by fully controling the kinematics
over the solid part of the boundary, and study its response by evaluating the dual
forces that emerge on that boundary.

Remark 7 Homogenization formula (24) is actually novel, and should be compared
with those of [37, 38, 47]. The novelty is the appearance of the term related to nµ, as
defined in (25). This term allows the homogenization formula to perform consistently
even in the most arbitrary case in which voids randomly reach the microcell boundary.
For the sake of completeness, let us say that this term is responsible for maintaining
the kinematical consistency in such a general situation. A more in-depth analysis is
out of the scope of the present work.

It is interesting to note that in the above homogenization operators, u∗
µ and

ũ∗
µ are defined only over Pi,s

µ . Furthermore, HW
µ,∂Pi,s,b

µ
(ũ∗

µ|∂Pi,s,b
µ

) is the bound-

ary counterpart representation of the homogenization operator HW
µ (∇ũ∗

µ) for
the gradient of the displacement fluctuations. Finally, due to the description
(21) adopted for the reference solution, the displacement fluctuation ũ∗

µ has
the following properties

HV
µ (ũ

∗
µ) = 0, (26)

HW
µ (∇ũ∗

µ) = HW
µ,∂Pi,s,b

µ
(ũ∗

µ|∂Pi,s,b
µ

) = O. (27)

For microcells featuring arbitrarily distributed voids and/or material het-
erogeneities, from the above expressions it then follows that the so-called
Taylor Multiscale Model, obtained by postulating ũµ = 0 in Pi,s

µ , will not be
able to represent the reference solution in the microcell. This is also the case for
the Linear Boundary Multiscale Model since this model assumes ũµ|∂Pi,s,b

µ
= 0.

The widely used Periodic Boundary Multiscale Model, on the other hand, has
no meaning in the present case – heterogeneous materials including voids arbi-
trarily distributed in Pi

µ that may or may not reach the microcell boundary.
Finally, let us consider the Minimal Kinematical Restriction Multiscale Model
(MKR Model) described in Appendix A. In this model, the linear manifold
where the solution of the microcell equilibrium problem is sought is KinMKR

uµ

(see (A3)). Note that, from (26) and (27), we have that u∗
µ|Pi,s

µ
∈ KinMKR

uµ
and

ũ∗
µ ∈ V arMKR

ũµ
(see (A4)). These are the largest functional sets that guaran-

tee a consistent kinematical transfer between the different scales. Hence, these
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sets contain the solutions delivered by the aforementioned multiscale mod-
els as well as the reference solution. Notwithstanding that, the large size of
these sets is also detrimental to the solution we can obtain at the microcell. A
deeper analysis shows that the Lagrange multipliers (constant vector) ΘMKR

µ

and (constant second order tensor) ΛMKR
µ , respectively associated by dual-

ity with the multiscale kinematical admissibility restrictions (26) and (27), in
general do not represent adequately the interaction between the microcell Pi

µ

and its neighbors. Indeed, enforcing these integral constraints implies a con-
stant (reaction) traction tMKR

µ = ΛMKR
µ (nµ −nµ) over the boundary ∂Pi,s,b

µ .
Clearly, this is not satisfied in general by the reference solution (see Remark 2).

At this point a question arises: how can we improve upon, say, the MKR
model, so that it can deliver a better approximation of the reference solution in
the microcell?. The answer to this question is the goal of the next section, where
we explore a simple mechanical argument: to obtain the exact equilibrium
solution for a part of the whole domain considered isolated from the rest, it is
sufficient to find the equilibrium solution in the appropriate linear manifold in
which the exact (reference) displacement field is prescribed on the boundary
of that part. A second, equivalent alternative consists in relaxing the above
boundary displacement prescription and prescribe the associated (reactive)
traction on boundary.

4 Isolated microcell equilibrium

In this section we formulate the mechanical equilibrium of the microcell taking
into account the constraints that must be satisfied by the kinematical fields.

In what follows, consider a microcell Pi
µ in the interior of the domain

Ωµ. Also, let u∗
M , and G∗

M be the macroscale fields associated to the refer-
ence solution u∗

µ through the corresponding homogenization operators HV
µ and

HW
µ . Hence, they represent, respectively, the reference homogenized displace-

ment and displacement gradient at the macroscale. Moreover, let u∗
M |xi

, and
G∗

M |xi
be the value of these fields at point xi associated with the microcell

Pi
µ. Also, let t

∗,i
µ = Pµ(u

∗
µ|Pi,s

µ
)nµ|∂Pi,s,b

µ
, defined on the boundary ∂Pi,s,b

µ , be

the (reference) traction exerted by the neighboring microcells of Pi
µ.

As already mentioned, the exact equilibrium solution in the microcell Pi
µ

when considered isolated from the rest of the domain Ωµ can be obtained by
two different strategies. The first one consists in prescribing the displacement
on the boundary ∂Pi,s,b

µ as u∗
µ|∂Pi,s,b

µ
; in the second strategy this kinematical

constraint is relaxed the corresponding (reactive) traction, t∗,iµ is imposed on

∂Pi,s,b
µ .
If the microcell reaches the macroscale boundary, the part of the micro-

cell boundary that is also part of the boundary of the macroscale domain is
subjected to either displacement (Dirichlet), or traction (Neumann) bound-
ary condition. If displacement boundary conditions are prescribed, this must
be reflected on the construction of the corresponding function sets containing
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admissible displacement fields of the microcell. If traction boundary condi-
tions are considered instead, this must be added as an external power in the
microscale virtual power balance.

4.1 Displacement boundary conditions in the microcell

To formalize this concept using the description (21), let us introduce the
following notation

u∗,D
µ (y) = u∗

µ|∂Pi,s,b
µ

= u∗
M |xi

+G∗
M |xi

(y − yG) + ũ∗
µ(y), y ∈ ∂Pi,s,b

µ , (28)

and the set (linear manifold) Kin∗,D
uµ

defined by

Kin∗,D
uµ

= {uµ|Pi,s
µ

∈ Vµ; uµ|∂Pi,s,b
µ

= u∗,D
µ }. (29)

Note that, by construction, u∗
µ|Pi,s

µ
∈ Kin∗,D

uµ
. Hence, the above linear manifold

can be rewritten as

Kin∗,D
uµ

= u∗
µ|Pi,s

µ
+ V ar∗,Duµ

, (30)

where
V ar∗,Duµ

= {v|Pi,s
µ

∈ Vµ; v|∂Pi,s,b
µ

= 0}. (31)

Then, the equilibrium of the isolated microcell Pi
µ subject to the prescribed

displacement u∗,D
µ on the boundary ∂Pi,s,b

µ and to the external force per unit
volume {bµ}, is defined by the following variational problem: Find u∗

µ|Pi,s
µ

∈
Kin∗,D

uµ
such that the following variational equation∫

Pi,s
µ

[Pµ(u
∗
µ) · ∇v − bµ · v]dΩµ = 0 ∀v ∈ V ar∗,Duµ

(32)

holds. The Euler-Lagrange equations associated to the above equilibrium
problem are (see Appendix C)

divPµ(u
∗
µ) + bµ = 0 in Hi,k

µ k = 1, . . . , ni, (33)

JPµ(u
∗
µ)nµK = 0 on ∂Hi,k

µ ∩ ∂Hi,m
µ , k ̸= m, k,m = 1, . . . , ni, (34)

Pµ(u
∗
µ)nµ = t∗,iµ on ∂Pi,s,b

µ , (35)

Pµ(u
∗
µ)nµ = 0 on ∂Pi,v

µ , (36)

where t∗,iµ is the reactive force per unit area associated by duality with the

kinematical restriction u∗
µ|∂Pi,s,b

µ
= u∗,D

µ . The reactive traction satisfies the

following equations ∫
∂Pi,s,b

µ

t∗,iµ dΩµ = −
∫
Pi,s

µ

bµdΩµ, (37)
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and ∫
∂Pi,s,b

µ

t∗,iµ ⊗ (y − yG) dΩµ =

∫
Pi,s

µ

[Pµ(u
∗
µ)− bµ ⊗ (y − yG)] dΩµ, (38)

which are also obtained from the variational equation (32) (see Appendix C).
In addition, and since N (∇) = {c ∈ Rnd} – a constant vector field – we

have that V ar∗,Duµ
∩ N (∇) = {0}. Hence, any (sufficiently regular) external

force field per unit volume {bµ} is admissible in the variational equilibrium
problem (32).

Any displacement field uµ that satisfies

HV
µ (uµ) = u∗

M |xi
, (39)

HW
µ (∇uµ) = G∗

M |xi
, (40)

is said to satisfy the Principle of Multiscale Kinematical Admissibility
(PMKA). It is crucial to highlight here that there exist elements uµ ∈ Kin∗,D

uµ

which do not satisfy these constraints and, therefore, do not comply with the
PMKA. In fact, without loss of generality, any element uµ ∈ Kin∗,D

uµ
can be

represented as

uµ(y) = HV
µ (uµ) +HW

µ (∇uµ)(y − yG) + ũµ(y), y ∈ Pi,s
µ , (41)

which, on the boundary, has the form

uµ|∂Pi,s,b
µ

= HV
µ (uµ) +HW

µ (∇uµ)(y − yG)|∂Pi,s,b
µ

+ ⟨ũµ|∂Pi,s,b
µ

⟩+ ˜̃uµ|∂Pi,s,b
µ

, (42)

In the above, we made use of the following decomposition: Let w be a vector
field on ∂Pi,s,b

µ (in (42) it is ũµ|∂Pi,s,b
µ

). The field w can be expressed as

w =
1

|∂Pi,s,b
µ |

∫
∂Pi,s,b

µ

w d∂Ωµ + w̃ = ⟨w⟩+ w̃, (43)

where we have defined
w̃ = w − ⟨w⟩. (44)

Since uµ ∈ Kin∗,D
uµ

, and using (43) for field ũ∗,D
µ |∂Pi,s,b

µ
, we have

uµ|∂Pi,s,b
µ

− u∗,D
µ = [(HV

µ (uµ)− u∗
M |xi

) + (⟨ũµ|∂Pi,s,b
µ

⟩ − ⟨ũ∗
µ|∂Pi,s,b

µ
⟩)]

+ [HW
µ (∇uµ)−G∗

M |xi
](y − yG)|∂Pi,s,b

µ

+
[˜̃uµ|∂Pi,s,b

µ
− ˜̃u∗

µ|∂Pi,s,b
µ

]
= 0, (45)
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which implies

HW
µ (∇uµ)−G∗

M |xi = O, (46)

(HV
µ (uµ)− u∗

M |xi) + (⟨ũµ|∂Pi,s,b
µ

⟩ − ⟨ũ∗
µ|∂Pi,s,b

µ
⟩) = 0, (47)˜̃uµ|∂Pi,s,b

µ
− ˜̃u∗

µ|∂Pi,s,b
µ

= 0. (48)

From (46), it follows that any element uµ ∈ Kin∗,D
uµ

is such that HW
µ (∇uµ) =

G∗
M |xi

. However and from (47), HV
µ (uµ) = u∗

M |xi
if and only if ⟨ũµ|∂Pi,s,b

µ
⟩ =

⟨ũ∗
µ|∂Pi,s,b

µ
⟩ (which is the case of the reference solution restricted to the micro-

cell, u∗
µ|∂Pi,s,b

µ
∈ Kin∗,D

uµ
, among other fields in Kin∗,D

uµ
). As a consequence of

the above considerations, it follows that the PMKA is not necessarily satisfied
by all the elements of Kin∗,D

uµ
.

4.2 Traction boundary conditions on the microcell

The second approach to characterize the reference solution restricted to the
isolated microcell is classical in mechanics and consists in the relaxation of the
Dirichlet boundary condition given by u∗,D

µ and replace it with the prescription

of the associated (reactive) traction t∗,iµ as a Newmann problem. In this case,

the linear manifold in which the solution is sought is KinMKR
uµ

, generated by

the linear space V arMKR
ũµ

also satisfying u∗
µ|Pi,s

µ
∈ KinMKR

uµ
(see definitions in

Appendix A). This is possible because the multiscale kinematical restrictions
characterizing KinMKR

uµ
are not of Dirichlet type and, hence, a traction field

can be prescribed on the boundary. Then, the (exact) mechanical equilibrium
of the isolated microcell Pi

µ established by the variational equation (32) is now

rewritten in the following (equivalent) form: Find u∗
µ|Pi,s

µ
∈ KinMKR

uµ
such

that the following variational equation holds,∫
Pi,s

µ

[Pµ(u
∗
µ) · ∇v − bµ · v]dΩµ −

∫
∂Pi,s,b

µ

t∗,iµ · v d∂Ωµ = 0

∀v ∈ V arMKR
ũµ

. (49)

Let Θ∗
µ and Λ∗

µ denote the Lagrange multipliers associated by duality with

the two kinematical constraints included in KinMKR
uµ

. Then, the variational
equilibrium equation (49) can be rewritten as∫

Pi,s
µ

[Pµ(u
∗
µ) · ∇v − bµ · v]dΩµ −

∫
∂Pi,s,b

µ

t∗,iµ · v d∂Ωµ

−Θ∗
µ ·

∫
Pi,s

µ

vdΩµ

−Λ∗
µ ·

∫
∂Pi,s,b

µ

v ⊗ (nµ − nµ)d∂Ωµ = 0 ∀v ∈ Vµ. (50)
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The Euler-Lagrange equations satisfied in a weak sense by u∗
µ restricted to

Pi,s
µ are then given by (see (33)-(36))

divPµ(u
∗
µ) + bµ︸ ︷︷ ︸

=0 from (33)

+Θ∗
µ = 0 in Hi,k

µ k = 1, . . . , ni, (51)

JPµ(u
∗
µ)nµK = 0 on ∂Hi,k

µ ∩ ∂Hi,m
µ , k ̸= m, k,m = 1, . . . , ni, (52)

Pµ(u
∗
µ)nµ − t∗,iµ︸ ︷︷ ︸

=0 from (35)

−Λ∗
µ(nµ − nµ) = 0 on ∂Pi,s,b

µ , (53)

Pµ(u
∗
µ)nµ = 0 on ∂Pi,v

µ . (54)

In addition, since the microcell is now completely unconstrained kinematically,
we can take, in particular, v as an arbitrary constant vector field, v = c ∈ Vµ,
c ∈ Rnd , which yields (see (37))∫

Pi,s
µ

bµ dΩµ +

∫
∂Pi,s,b

µ

t∗,iµ d∂Ωµ +Λ∗
µ

∫
∂Pi,s,b

µ

(nµ − nµ) d∂Ωµ︸ ︷︷ ︸
= 0 from the definition of nµ

= 0, (55)

and, by taking v = A(y − yG) ∈ V, with an arbitrary constant A ∈ Lin, we
obtain (see (38))

Λ∗
µBµ =

∫
Pi,s

µ

Pµ(u
∗
µ|Pi,s

µ
)dΩµ −

∫
Pi,s

µ

bµ ⊗ (y − yG) dΩµ

−
∫
∂Pi,s,b

µ

t∗,iµ ⊗ (y − yG) d∂Ωµ = O, (56)

where

Bµ =

∫
∂Pi,s,b

µ

(nµ − nµ)⊗ (y − yG) d∂Ωµ, (57)

is an invertible second order tensor.
Now, note that from (51) and (56) we obtain

Θ∗
µ = 0, (58)

Λ∗
µ = O. (59)

As a consequence of the above we obtain what we call the exact Minimal
Kinematical Restriction Neumann Multiscale Model (MKR-N-t∗µ Model) since

the reference (reaction) traction t∗,iµ is considered over the boundary ∂Pi,s,b
µ as

a dual counterpart to the prescription of the reference displacement field over
the boundary, u∗,D

µ .
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Remark 8 As expected, the MKR-N-t∗µ Multiscale Model also characterizes the refer-

ence solution u∗
µ restricted to the isolated microcell Pi

µ. However, this is only possible

if we know in advance t∗,iµ , which is generally unknown in practice. Nevertheless,
the above results give us the possibility of defining a new MKR Multiscale Model,
referred to as MKR-N-tµ Model, in which the traction on the boundary is given by a

traction field tµ that is generally different from t∗,iµ , but satisfies the condition (37).
Further, for this kind of traction tµ it is not difficult to show that we always have

Θ
tµ
µ = 0 while, in general, Λ

tµ
µ ̸= O. Hence, this last Lagrange multiplier can be

used as an indicator of the quality of the adopted tµ. The selection of an appropriate
traction field tµ is an issue to be discussed and justified in the next section.

5 Novel multiscale models

In this section, we propose two novel multiscale models, named MKR-N Model
and PMKA Model, that satisfy some of the properties of the reference solu-
tion when restricted to an isolated microcell, as shown in Section 4. The
models proposed here feature, respectively, Neumann and Dirichlet boundary
conditions.

To devise the new models, we will make use of the Method of Multiscale
Virtual Power (see [37, 38, 47]). The first step here consists in defining the
linear manifold Kin, of kinematically admissible displacements of the micro-
cell satisfying the PMKA. This set together with the associated subspace of
admissible virtual actions, V ar, are fundamental in the definition/evaluation
of the external and internal virtual powers to be used in the characterization
of the equilibrium of the microcell through the PMVP (Principle of Multiscale
Virtual Power).

Then, let uM and GM be, respectively, the displacement and displace-
ment gradient fields in ΩM , and let uM |xi

and GM |xi
be their values at the

macroscale point xi ∈ ΩM , linked to the microcell Pi
µ ∈ Ωµ.

The linear manifold KinD
uµ

, of kinematically admissible displacements of
the microcell, is defined as

KinD
uµ

= {uµ ∈ Vµ; uµ|∂Pi,s,b
µ

= uD} = u0
µ + V arDuµ

, (60)

where u0
µ is an arbitrary element of KinD

uµ
and uD is the field

uD(y) = uM |xi
+GM |xi

(y − yG) +w(y), y ∈ ∂Pi,s,b
µ , (61)

with w such that
∫
∂Pi,s,b

µ
w⊗ (nµ −nµ) d∂Ωµ = O. Then, as shown in Section

4.1, all elements uµ ∈ KinD
uµ

satisfy HW
µ (∇uµ) = GM |xi . The subspace of

virtual actions associated with KinD
uµ

is

V arDuµ
= {v ∈ Vµ; v|∂Pi,s,b

µ
= 0}. (62)
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5.1 The MKR-N multiscale model

We start by devising the MKR-N multiscale model – a model for which
a given traction field is prescribed on the boundary of the microcell, and
whose equilibrium is defined as a Neumann problem. That is, in the MKR-N
model, the microcell is subject to Neumann boundary conditions. As shown in
Section 4.2, a model with prescribed microcell boundary tractions is built using
the same linear manifold KinMKR

uµ
as the classical Minimal Kinematic Restric-

tion (MKR) Multiscale Model (refer to Appendices A and B for a detailed
description of the MKR model):

KinMKR
uµ

= {uµ ∈ Vµ; HV
µ (uµ) = uM |xi

,HW
µ (∇uµ) = GM |xi

}
= {uµ ∈ Vµ; uµ = uM |xi

+GM |xi
(y − yG) + ũµ,

HV
µ (ũµ) = 0,HW

µ,∂Pi,s,b
µ

(ũµ|∂Pi,s,b
µ

) = O}

= u0
µ + V arMKR

uµ
, (63)

where u0
µ is an arbitrary element of KinMKR

uµ
, and V arMKR

uµ
is given by

V arMKR
uµ

= {vµ ∈ Vµ; HV
µ (v) = 0,HW

µ,∂Pi,s,b
µ

(v|∂Pi,s,b
µ

) = O}

= KinMKR
ũµ

= V arMKR
ũµ

. (64)

To take the interaction of Pi
µ with its neighbors into account, let tMKR−N

µ

be the traction prescribed on the boundary ∂Pi,s,b
µ . According to (37), the

boundary traction must satisfy∫
∂Pi,s,b

µ

tMKR−N
µ d∂Ωµ = −

∫
Pi,s

µ

bµ dΩµ. (65)

The above property can be easily satisfied if tMKR−N
µ is taken as the uniform

field

tMKR−N
µ (y) = − 1

|∂Pi,s,b
µ |

∫
Pi,s

µ

bµ dΩµ, y ∈ ∂Pi,s,b
µ . (66)

Alternatively, considering the property (35) satisfied by the traction t∗µ associ-
ated with the reference solution u∗

µ, we can choose a traction field distributed
according to the material heterogeneities that reach the boundary. We can
have, for example,

tMKR−N
µ (y) = −α(y)

ᾱ

∫
Pi,s

µ

bµ dΩµ, y ∈ ∂Pi,s,b
µ , (67)
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where

α(y) = |Pµ(GM |xi)nµ(y)|, y ∈ ∂Pi,s,b
µ , (68)

with | · | denoting the magnitude of vector (·), and

ᾱ =

∫
∂Pi,s,b

µ

α(y) d∂Ωµ. (69)

With the above at hand, we can now define the equilibrium problem of the
microcell Pi

µ for the MKR-N Multiscale Model.

Problem 1 (MKR-N Multiscale Model): Find ui,MKR−N
µ ∈ KinMKR

uµ
such

that the following variational equation∫
Pi,s

µ

[Pµ(u
i,MKR−N
µ ) · ∇v − bµ · v]dΩµ

−
∫
∂Pi,s,b

µ

tMKR−N
µ · v d∂Ωµ = 0 ∀v ∈ V arMKR

uµ
, (70)

is satisfied.

From (65) it is not difficult to show (see Appendices A and B) that the
Lagrange multiplier Θi,MKR−N

µ , associated with the kinematical restriction

HV
µ (u

i,MKR−N
µ ) = uM |xi

, is always zero. This is not the case, however, for the

other Lagrange multiplier, Λi,MKR−N
µ , arising from the kinematical restriction

HW
µ (∇ui,MKR−N

µ ) = GM |xi
. Very importantly, for this reason, Λi,MKR−N

µ

can be used as an indicator of the quality of the solution ui,MKR−N
µ , with

respect to the reference solution. That is, Λi,MKR−N
µ can provide a measure

of distance between ui,MKR−N
µ and the reference solution. To see this, note

that (see Appendix B) it is easy to show that

Λi,MKR−N
µ Bµ =

∫
Pi,s

µ

[Pµ(u
i,MKR−N
µ )− bµ ⊗ (y − yG)]dΩµ

−
∫
∂Pi,s,b

µ

ti,MKR−N
µ ⊗ (y − yG)d∂Ωµ, (71)

where Bµ is defined in (57).
Since u∗

µ|Pi,s
µ

∈ KinMKR
uµ

, note that, if ti,MKR−N
µ = t∗µ, then Λi,MKR−N

µ =

O and ui,MKR−N
µ = u∗

µ|Pi,s
µ
. That is, under specific choices of boundary data,

the MKR-N Multiscale Model is able to recover the reference solution.

5.2 The PMKA multiscale model

This section proposes another new multiscale model, which we will refer to as
the PMKA model. Similarly to the MKR-N model devised in Section 5.1, the
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solution of the microcell equilibrium problem of the PMKA model shares some
important properties with the reference solution. To devise the new model, we
start by defining the corresponding linear manifold of kinematically admissible
displacement fields of the microcell:

KinPMKA
uµ

= {u⋆
µ ∈ Vµ; u

⋆
µ = uµ −HV

µ (uµ) + uM |xi , uµ ∈ KinD
uµ

}. (72)

From this definition, we have that all elements of KinPMKA
uµ

satisfy the
Principle of Multiscale Kinematical Admissibility (PMKA) (see (39),(40)), as
HV

µ (u
⋆
µ) = uM |xi and HW

µ (∇u⋆
µ) = HW

µ (∇uµ) = GM |xi due to the fact that

uµ ∈ KinD
uµ

. Also note that the boundary ∂Pi,s,b
µ is partially free to move. In

fact, u⋆
µ|∂Pi,s,b

µ
= uµ|∂Pis,b

µ
− HV

µ (uµ) + uM |xi
= uD − HV

µ (uµ) + uM |xi
, i.e.

the boundary moves uD plus a translation. This observation is reflected on the
space of admissible displacement variations associated with the above linear
manifold, which is given by

V arPMKA
uµ

= {v⋆ ∈ Vµ; v
⋆ = v −HV

µ (v),v ∈ V arDuµ
}, (73)

hence, v⋆|∂Pi,s,b
µ

= −HV
µ (v). Further, it follows from (73) that the elements

v⋆ ∈ V arPMKA
uµ

can be viewed as fluctuation displacement fields since they

satisfy HV
µ (v

⋆) = 0 and HW
µ (∇v⋆) = O.

The PMKA multiscale model proposed here is built on the basis of the
of the above definitions of KinPMKA

uµ
/V arPMKA

uµ
. Note that, as a first step,

the model required the selection of appropriate sets, Kin/V ar, satisfying the
PMKA to define the internal and external virtual powers in the formula-
tion of the Principle of Multiscale Virtual Power (PMVP) and, hence, in the
characterization of the microcell equilibrium problem.

At this point it is crucial to stress that, given u⋆
µ ∈ KinPMKA

uµ
, there exists

uµ ∈ KinD
uµ

such that u⋆
µ = uµ −HV

µ (uµ) +uM |xi . Hence, uµ ∈ KinD
uµ

is the
variable that actually drives the problem. The same observation is valid for
v⋆ ∈ V arPMKA

uµ
, and the corresponding v ∈ V arDuµ

. Moreover, the two sets,

KinPMKA
uµ

and KinD
uµ

, are isomorphic under the transformation

f : KinD
uµ

→ KinPMKA
uµ

,

uµ 7→ u⋆
µ = uµ −HV

µ (uµ) + uM |xi
.

(74)

To see this, assume that for a given u⋆
µ ∈ KinPMKA

uµ
there exist two elements

u1
µ,u

2
µ ∈ KinD

uµ
such that

u⋆
µ = u1

µ −HV
µ (u

1
µ) + uM |xi (75)

u⋆
µ = u2

µ −HV
µ (u

2
µ) + uM |xi . (76)
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Then,

0 = v −HV
µ (v), v ∈ V arDuµ

. (77)

The above expression is satisfied only if v = c, with c an arbitrary constant
vector field. Since v ∈ V arDuµ

, the constant field c must be zero, and u1
µ = u2

µ.
As a consequence of the adopted kinematics it is possible to prescribe

an arbitrary traction, say tµ, on the solid boundary ∂Pi,s,b
µ of the micro-

cell for the PMKA model. The corresponding mechanical equilibrium problem
for a microcell Pi

µ is defined as: Given a traction tµ defined on ∂Pi,s,b
µ ,

find u⋆,PMKA
µ = uD,PMKA

µ − HV
µ (u

D,PMKA
µ ) + uM |xi

∈ KinPMKA
uµ

(with

uD,PMKA
µ ∈ KinD

uµ
) such that the following variational equation holds:∫

Pi,s
µ

[Pµ(u
⋆,PMKA
µ ) · ∇v⋆ − bµ · v⋆] dΩµ

−
∫
∂Pi,s,b

µ

tµ · v⋆ d∂Ωµ = 0 ∀v⋆ ∈ V arPMKA
uµ

. (78)

Before going further, we need to check if the above equilibrium problem is
well defined, i.e. if tµ is admissible. The admissibility is given by the condition
obtained from the above equation with virtual actions restricted to the space
V arPMKA

uµ
∩ N (∇), where N (∇) is the null space (or kernel) of the operator

∇. Then, tµ is admissible if∫
Pi,s

µ

bµ · v⋆ dΩµ +

∫
∂Pi,s,b

µ

tµ · v⋆ d∂Ωµ = 0

∀v⋆ ∈ V arPMKA
uµ

∩N (∇). (79)

Since N (∇) = {c ∈ R3, c arbitrary constant}, we have V arPMKA
uµ

∩ N (∇) =
{0} and the above condition is satisfied for any traction field tµ prescribed on
∂Pi,s,b

µ and problem (78) is well defined.
Now, note that the variational equation (78) must hold for all v⋆ ∈

V arPMKA
uµ

, which are vector fields satisfying the restrictions HV
µ (v

⋆) = 0 and

HW
µ (∇v⋆) = O. These can be equally enforced by means of Lagrange multipli-

ers. In this case, the restrictions of V arPMKA
uµ

are relaxed and (78) is re-written
in the form: ∫

Pi,s
µ

[Pµ(u
⋆,PMKA
µ ) · ∇v⋆ − (bµ +ΘPMKA

µ ) · v⋆] dΩµ

−
∫
∂Pi,s,b

µ

[tµ +ΛPMKA
µ (nµ − nµ)] · v⋆ d∂Ωµ = 0 ∀v⋆ ∈ Vµ, (80)
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where ΘPMKA
µ and ΛPMKA

µ are the corresponding Lagrange multipliers.
Equation (80) yields the following Euler-Lagrange equations and characteriza-
tion of Lagrange multipliers:

div Pµ(u
⋆,PMKA
µ︸ ︷︷ ︸

=Pµ(u
D,PMKA
µ )

) + bµ +Θµ = 0 in Hi,k
µ k = 1, . . . , ni, (81)

JPµ(u
⋆,PMKA
µ︸ ︷︷ ︸

=Pµ(u
D,PMKA
µ )

)nµK = 0 on ∂Hi,k
µ ∩ ∂Hi,m

µ , k ̸= m, k,m = 1, . . . , ni, (82)

Pµ(u
⋆,PMKA
µ︸ ︷︷ ︸

=Pµ(u
D,PMKA
µ )

)nµ = tµ +ΛPMKA
µ (nµ − nµ) on ∂Pi,s,b

µ , (83)

Pµ(u
⋆,PMKA
µ︸ ︷︷ ︸

=Pµ(u
D,PMKA
µ )

)nµ = 0 on ∂Pi,v
µ , (84)

ΘPMKA
µ = − 1

|Pi,s
µ |

[∫
Pi,s

µ

bµdΩµ +

∫
∂Pi,s,b

µ

tµd∂Ωµ

]
, (85)

ΛPMKA
µ Bµ =

∫
Pi,s

µ

[Pµ(u
⋆,PMKA
µ︸ ︷︷ ︸

=Pµ(u
D,PMKA
µ )

)− bµ ⊗ (y − yG)]dΩµ

−
∫
∂Pi,s,b

µ

tµ ⊗ (y − yG)d∂Ωµ, (86)

where Bµ is the invertible tensor defined in (57).
From the above, it follows that the solution u⋆,PMKA

µ of equation (80)

satisfies the properties of the reference solution restricted to the microcell Pi,s
µ

(see (33)-(38)) if the prescribed boundary traction tµ satisfies∫
∂Pi,s,b

µ

tµd∂Ωµ = −
∫
Pi,s

µ

bµdΩµ, (87)∫
∂Pi,s,b

µ

tµ ⊗ (y − yG)d∂Ωµ =∫
Pi,s

µ

[Pµ(u
⋆,PMKA
µ︸ ︷︷ ︸

=Pµ(u
D,PMKA
µ )

)− bµ ⊗ (y − yG)]dΩµ. (88)

Since (87) can be easily satisfied (see (66) or (67)), let us then assume that
tµ indeed has this property. In this case, the above Euler-Lagrange equations
read

div Pµ(u
⋆,PMKA
µ︸ ︷︷ ︸

=Pµ(u
D,PMKA
µ )

) + bµ = 0 in Hi,k
µ k = 1, . . . , ni, (89)
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JPµ(u
⋆,PMKA
µ︸ ︷︷ ︸

=Pµ(u
D,PMKA
µ )

)nµK = 0 on ∂Hi,k
µ ∩ ∂Hi,m

µ , k ̸= m, k,m = 1, . . . , ni, (90)

Pµ(u
⋆,PMKA
µ︸ ︷︷ ︸

=Pµ(u
D,PMKA
µ )

)nµ = tµ +ΛPMKA
µ (nµ − nµ) on ∂Pi,s,b

µ , (91)

Pµ(u
⋆,PMKA
µ︸ ︷︷ ︸

=Pµ(u
D,PMKA
µ )

)nµ = 0 on ∂Pi,v
µ , (92)

∫
Pi,s

µ

bµdΩµ +

∫
∂Pi,s,b

µ

tµd∂Ωµ = 0, (93)

ΛPMKA
µ Bµ =

∫
Pi,s

µ

[Pµ(u
⋆,PMKA
µ︸ ︷︷ ︸

=Pµ(u
D,PMKA
µ )

)− bµ ⊗ (y − yG)]dΩµ

−
∫
∂Pi,s,b

µ

tµ ⊗ (y − yG)d∂Ωµ. (94)

Now, with the above traction field tµ, we return to the variational equation
(78) and rewritte it in terms of the driving variables:∫

Pi,s
µ

[Pµ(u
D,PMKA
µ ) · ∇v − bµ · v] dΩµ

+

[ ∫
Pi,s

µ

bµ dΩµ +

∫
∂Pi,s,b

µ

tµ d∂Ωµ︸ ︷︷ ︸
=0 from (87)

]
· HV

µ (v) = 0 ∀v ∈ V arDuµ
. (95)

From (87) (or (93)), the above equation allows us to define the PMKA
Multiscale Model.

Problem 2 (PMKA Multiscale Model): Find uD,PMKA
µ ∈ KinD

uµ
such that

the following variational equation∫
Pi,s

µ

[Pµ(u
D,PMKA
µ ) · ∇v − bµ · v] dΩµ = 0 ∀v ∈ V arDuµ

. (96)

is satisfied.

It is not difficult to show that the Euler-Lagrange equations associated
with the above variational equation are given by

divPµ(u
D,PMKA
µ ) + bµ = 0 in Hi,k

µ k = 1, . . . , ni, (97)

JPµ(u
D,PMKA
µ )nµK = 0 on ∂Hi,k

µ ∩ ∂Hi,m
µ , k ̸= m, k,m = 1, . . . , ni, (98)

Pµ(u
D,PMKA
µ )nµ = rDµ on ∂Pi,s,b

µ , (99)

Pµ(u
D,PMKA
µ )nµ = 0 on ∂Pi,v

µ , (100)
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µ

bµdΩµ +

∫
∂Pi,s,b

µ

rDµ d∂Ωµ = 0, (101)∫
Pi,s

µ

[Pµ(u
D,PMKA
µ )− bµ ⊗ (y − yG)]dΩµ

=

∫
∂Pi,s,b

µ

rDµ ⊗ (y − yG)d∂Ωµ, (102)

where rDµ ∈ V ′
µ is the reactive traction vector associated by duality with the

(Dirichlet) kinematical restriction prescribed on ∂Pi,s,b
µ .

Now, we introduce the above properties of the field uD,PMKA
µ in the Euler-

Lagrange equations (89)-(94). This gives

divPµ(u
D,PMKA
µ ) + bµ = 0 in Hi,k

µ k = 1, . . . , ni, (103)

JPµ(u
D,PMKA
µ )nµK = 0 on ∂Hi,k

µ ∩ ∂Hi,m
µ , k ̸= m, k,m = 1, . . . , ni, (104)

rDµ − tµ = ΛPMKA
µ (nµ − nµ) on ∂Pi,s,b

µ , (105)

Pµ(u
D,PMKA
µ )nµ = 0 on ∂Pi,v

µ , (106)∫
∂Pi,s,b

µ

rDµ d∂Ωµ =

∫
∂Pi,s,b

µ

tµd∂Ωµ, (107)

ΛPMKA
µ Bµ =

∫
∂Pi,s,b

µ

rDµ ⊗ (y − yG)d∂Ωµ

−
∫
∂Pi,s,b

µ

tµ ⊗ (y − yG)d∂Ωµ. (108)

From (105) we have that, if tµ → rDµ then, the reactive component associated

with the Lagrange multiplier vanishes, that is ΛPMKA
µ (nµ − nµ) → 0. More-

over, from (108) we obtain that, if
∫
∂Pi,s,b

µ
(rDµ − tµ) ⊗ (y − yG)d∂Ωµ → O,

then ΛPMKA
µ → O.

Before closing the present section, we apply the PMKA Model to a problem
that, in contrast to the case studied above, does not depend exclusively on
the gradient of the solution. To this end, consider the following equilibrium
problem: Find u⋆,PMKA

µ = uD,PMKA
µ −HV

µ (u
D,PMKA
µ ) +uM |xi

∈ KinPMKA
uµ

(with uD,PMKA
µ ∈ KinD

uµ
) such that∫

Pi,s
µ

[Kµu
⋆,PMKA
µ · v⋆ +Pµ(u

⋆,PMKA
µ ) · ∇v⋆ − bµ · v⋆] dΩµ

−
∫
∂Pi,s,b

µ

tµ · v⋆ d∂Ωµ = 0 ∀v⋆ ∈ V arPMKA
uµ

, (109)

where Kµ is a symmetric positive definite second order tensor field.
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Proceeding in a similar way as before, the above variational equation for
the variable uD,PMKA

µ ∈ KinD
uµ

and its variations v ∈ V arDuµ
takes the form∫

Pi,s
µ

[
Kµ(u

D,PMKA
µ −HV

µ (u
D,PMKA
µ ) + uM |xi

) · v

+Pµ(u
D,PMKA
µ ) · ∇v − bµ · v

]
dΩµ

+

[∫
Pi,s

µ

[
Kµ(u

D,PMKA
µ −HV

µ (u
D,PMKA
µ ) + uM |xi)− bµ

]
dΩµ

−
∫
∂Pi,s,b

µ

tµ d∂Ωµ

]
· HV

µ (v) = 0 ∀v ∈ V arDuµ
, (110)

As before, by taking tµ = rDµ – now satisfying∫
∂Pi,s,b

µ

tµ d∂Ωµ =

∫
∂Pi,s,b

µ

rDµ d∂Ωµ =∫
Pi,s

µ

[
Kµ(u

D,PMKA
µ −HV

µ (u
D,PMKA
µ ) + uM |xi)− bµ

]
dΩµ (111)

– the variable uD,PMKA
µ ∈ KinD

uµ
is expressed as the solution of the variational

equation ∫
Pi,s

µ

[
Kµ(u

D,PMKA
µ −HV

µ (u
D,PMKA
µ ) + uM |xi

) · v +

+Pµ(u
D,PMKA
µ ) · ∇v − bµ · v

]
dΩµ = 0 ∀v ∈ V arDuµ

, (112)

and, in addition, we find that the traction vector tµ prescribed on the boundary
satisfies ∫

∂Pi,s,b
µ

tµ ⊗ (y − yG) d∂Ωµ =

∫
∂Pi,s,b

µ

rDµ ⊗ (y − yG) d∂Ωµ =

=

∫
Pi,s

µ

Pµ(u
D,PMKA
µ ) dΩµ +

+

∫
Pi,s

µ

Kµ(u
D,PMKA
µ −HV

µ (u
D,PMKA
µ ) + uM |xi)⊗ (y − yG) dΩµ

−
∫
Pi,s

µ

bµ ⊗ (y − yG) dΩµ. (113)

At this point, it is worth highlighting the following points:

• For the PMKA Multiscale Model, the solution of the mechanical equilibrium
problem of the microcell subject to a prescribed traction tµ = rDµ on the

boundary is u⋆,PMKA
µ = uD,PMKA

µ −HV
µ (u

D,PMKA
µ ) + uM |xi

∈ KinPMKA
uµ
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where uD,PMKA
µ ∈ KinD

uµ
is the solution of an appropriate (Dirichlet) varia-

tional equation (see for example (96) or (112)). Recall that rDµ is the reactive
traction vector associated by duality with the kinematical prescription of
uD over the microcell boundary. Further, note that u⋆,PMKA

µ is endowed
with some properties of the reference solution, i.e. the Lagrange multipliers
ΘPMKA

µ and ΛPMKA
µ are both zero.

• The solution u⋆,PMKA
µ is such that, when restricted to an isolated microcell

Pi
µ, it takes the value u

⋆,PMKA
µ |∂Pi,s.b

µ
= uD,PMKA−HV

µ (u
D,PMKA
µ )+uM |xi

on the boundary ∂Pi,s.b
µ . This has two major implications: (i) the mechan-

ical equilibrium of the microcell using the MKR-N Multiscale Model with
prescribed traction field tµ = rDµ on the boundary is exactly u⋆,PMKA

µ ; (ii) if

a new Dirichlet problem is defined by prescribing a displacement uD−New =
uD,PMKA − HV

µ (u
D,PMKA
µ ) + uM |xi

, then u⋆,PMKA
µ ∈ KinD−New

uµ
and,

hence, the solution of this new Dirichlet problem is exactly given by
u⋆,PMKA
µ . These are important properties of the reference solution (see

Section 4).

6 Multicontinuum approach to the full-scale
problem

Following the discussion presented in the previous sections, this section pro-
poses the use of a multiscale framework based on the MKR-N and PMKA
models as a multicontinuum approach for the computation of the reference
solution, u∗

µ, of the full-scale equilibrium problem. As discussed in Section 4,
the equilibrium problems defined by the MKR-N and PMKA multiscale mod-
els are able to deliver, under specific conditions, the reference solution u∗

µ|Pi
µ

within each microcell. In addition, as seen in Section 5, the MKR-N and PMKA
models can improve the solution obtained with the MKR model when the ref-
erence solution is not known. The idea here is to explore these properties of the
two multiscale models to devise a procedure that can approach the reference
solution at low computational cost.

Now, let us invert the perspective and, instead of the bottom-up (micro-
to-macro) approach considered so far, let us take a top-down (macro-to-micro)
approach. Let xi be the point at macro level associated with the microcell Pi

µ

and let Nxi
= {xj , j ∈ Ii} be the set of points associated with the microcells

Pj
µ that surround Pi

µ (see (11)). As a result of the homogenization inherent to
the multiscale approach, for all xj ∈ Nxi

, we have

uM |xj
= uM |xi

+GM |xi
(xj − xi) + o(|xj − xi|2), (114)

where o(·) denotes a term of the order of (·). Here we shall assume that GM

varies smoothly. We also assume that the points xj are such that |xj − xi| =
o(l(Pi

µ)), where l(Pi
µ) denotes the characteristic length of the microcell Pi

µ,
here assumed very small when compared to the characteristic length of the
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macro-scale (refer to Section 3). With l(Pi
µ) sufficiently small so that terms of

order o(|xj − xi|) can be neglected, the previous expressions yield

uM |xj = uM |xi +GM |xi(xj − xi), (115)

Let ui,MKR
µ be the solution of the equilibrium problem of microcell Pi

µ

using the MKR model (see Appendices A and B). Then, from the above
considerations, it is expected that

ui,MKR
µ (y) ≈ uj,MKR

µ (y), y ∈ ∂Pi,s,b
µ ∩ ∂Pj,s,b

µ , j ∈ Ii, (116)

with the difference between ui,MKR
µ (y) and uj,MKR

µ (y) stemming from the

discrepancy between the fluctuations ũi,MKR
µ (y) and ũj,MKR

µ (y), y ∈ ∂Pi,s,b
µ ∩

∂Pj,s,b
µ , j ∈ Ii. Note that this discrepancy can be seen as a jump discontinuity

in the solution on the boundaries of neighboring microcells.
To reduce this discontinuity let us first define a continuous vector-valued

function over the boundary ∂Pi,s,b
µ ,

d(ui,MKR
µ (y),uj,MKR

µ (y)), y ∈ ∂Pi,s,b
µ ∩ ∂Pj,s,b

µ , j ∈ Ii, (117)

satisfying the property∫
∂Pi,s,b

µ

d(ui,MKR
µ (y),uj,MKR

µ (y))⊗ (nµ − nµ) d∂Ωµ = O, (118)

and such that the following displacement on the boundary

uD(y) = uM |xi +GM |xi(y − yG) + ũi,MKR
µ (y)

+ d(ui,MKR
µ (y),uj,MKR

µ (y)), (119)

reduces the displacement discrepancy between the microcell Pi
µ and its

neighbors.
Then, we use the boundary displacement field uD of (119) to define the

linear manifold KinPMKA
uµ

. With KinPMKA
uµ

defined this way, the solution of

the equilibrium problem of the microcell Pi
µ using the PMKA model, given

by u⋆,PMKA
µ = uD,PMKA

µ − HV
µ (u

D,PMKA
µ ) + uM |xi

, can be obtained. This
PMKA solution is such that the discontinuity of the displacement between the
microcell Pi

µ and its neighbors is reduced.
It should be noted, however, that the PMKA solution above does not in

general lead to continuity of boundary tractions on the interface between Pi
µ

and its neighboring microcells. In fact, there will be generally a jump in the
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traction field at such interfaces. That is,

Pµ(u
i,⋆,PMKA
µ )nµ︸ ︷︷ ︸

tiµ

̸= Pµ(u
j,⋆,PMKA
µ )nµ︸ ︷︷ ︸

−tjµ

on ∂Pi,s,b
µ ∩ ∂Pj,s,b

µ , j ∈ Ii. (120)

To reduce the traction discontinuity, we shall adopt an analogous approach to
that proposed above to address the displacement discontinuity – now using an
appropriate MKR-N model with the traction tNµ defined as follows. We define
a vector-valued function over the microcell boundary,

j(tiµ(y), t
j
µ(y)), y ∈ ∂Pi,s,b

µ ∩ ∂Pj,s,b
µ , j ∈ Ii, (121)

with the property ∫
∂Pi,s,b

µ

j(tiµ(y), t
j
µ(y))d∂Ωµ = 0, (122)

and such that the prescribed boundary traction

tNµ (y) = tiµ(y) + j(tiµ(y), t
j
µ(y)), y ∈ ∂Pi,s,b

µ , (123)

reduces the boundary traction discrepancy between the microcell Pi
µ and its

neighbors.

Remark 9 Note that the operators d and j introduced in (117) and (121) have not
yet been defined. These operators are at the core of the cyclic iterative procedure. If
they are linear operators, then properties (119) and (123) can be trivially satisfied by
construction. In such a case, linear combination of the arguments leads to sub/over
relaxation approaches, and we are in the realm of Gauss-Jacobi (or Gauss-Seidel)
methods. More involved situations can be envisaged if we considered Krylov methods
to generate updates in the displacement and/or traction fields (see also Remark 11).

Based on the above considerations, a cyclic iterative process can be pro-
posed where displacements and tractions are alternately enforced on the
regions of the microcell boundary shared with its neighbors using, respectively,
the PMKA and MKR-N models. In Figure 2 we illustrate the idea of the pro-
posed multiscale method as a strategy to exchange boundary data between
neighboring microcells within a divide and conquer paradigm.

Such iterative procedure generates a sequence of solutions which, is
expected to converge to a solution where both displacements and tractions
have no jumps on the microcell boundaries. For more about the convergence
and alternative strategies, see Remark 9.

Let us assume now that finite element discretizations of the macro- and
micro-continuum equilibrium variational problems are adopted to produce
approximate solutions, and the partitions into finite elements are sufficiently
fine to ensure that the approximate solutions of the corresponding variational
equilibrium equations are accurate enough. These solutions will be denoted
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PMKA

MKR-N

Zoom

PMKA

MKR-N

PMKA

MKR-N

PMKA

MKR-N

 : left neighboring micro-cell toj=a : right neighboring micro-cell to

: top neighboring micro-cell to

: bottom neighboring micro-cell tod

I  = {a, b, g, d}: set of indices of the micro-cells

neighboring to

i

From MKR-N to PMKA data:

From PMKA to MKR-N data:

,

,

j=b

j=d

j=g

Fig. 2 Illustration of boundary data exchange between PMKA and MKR-N multiscale
models for neighboring microcells.

u⋆,hM

M and u
⋆,hµ
µ respectively. Note that in general, the computation of the

full-scale finite element solution u
⋆,hµ
µ in a monolithic manner is generally not

feasible for realistic problems at present, even with the help high performance
computers. We also consider that the macro-continuum partition into micro-
cells is performed over a finite element mesh built at micro level in such a way
that the finite element domains are never crossed by the boundaries of the
microcells, ∂Pi

µ, i = 1, . . . , Nµ. In other words, we are restricted to conformal

finite element meshes for Pi
µ and their neighbors Pj

µ, j ∈ Ii. Also, we assume
that the partition of the macro domain into finite elements must be such that
each integration point xi of the macro-scale finite elements at macro level is
associated with a microcell Pi

µ.
Then, we propose the following iterative algorithm based on the alternate

application of the PMKA and MKR-N multiscale models to obtain u
⋆,hµ
µ .

For the sake of notation, the superscripts hM and hµ are suppressed in what
follows.
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Multiscale Algorithm
for the computation of the reference solution u∗

µ

• STEP 1. Using the MKRmultiscale model find the homogenized constitutive
operator, CM , at each macro-scale finite element integration point xi.

• STEP 2. Solve the macroscale variational equilibrium (19) to get u⋆
M and

G⋆
M at any point x ∈ ΩM .

• STEP 3. For i = 1, . . . , Nµ do

– For the microcell Pi
µ, solve the MKR multiscale model using u⋆

M |xi and

G⋆
M |xi as input, which amounts to finding the solution ui

µ (and hence the

fluctuation ũi
µ) of the variational equilibrium equation (B8).

• STEP 4. Set the iteration number, Niter = 1.
• STEP 5. Application of the PMKA model:

– Set ContDispl = TRUE
– For each microcell Pi

µ, i = 1, . . . , Nµ do

∗ Evaluate d (see (117)).
∗ Evaluate |d| = [

∫
∂Pi,s,b

µ
(d · d) d∂Ωµ]

1
2 .

∗ Evaluate |ui
µ| = [

∫
∂Pi,s,b

µ
(ui

µ · ui
µ) d∂Ωµ]

1
2 .

∗ Evaluate eiD = |d|
|ui

µ| .

∗ Displacement continuity control: If eiD > eD (eD a user defined
tolerance)
Then:

· Set ContDispl = FALSE
· Evaluate uD (see (119)) .
· With uD define the PMKA model and find its solution
u⋆,PMKA
µ = ui,S

µ − HV
µ (u

i,S
µ ) + u⋆

M |xi , where ui,S
µ is given

by Problem 2, i.e. equation (96) (or any other correspond-
ing variational equation), and the (reactive) traction tiµ on

∂Pi,s,b
µ .

Else: continue.

• STEP 6. Application of the MKR-N model:

– Set NullJump = TRUE
– For each microcell Pi

µ, i = 1, . . . , Nµ do

∗ Evaluate j (see (121)).
∗ Evaluate |j| = [

∫
∂Pi,s,b

µ
(j · j) d∂Ωµ]

1
2 .

∗ Evaluate |tiµ| = [
∫
∂Pi,s,b

µ
(tiµ · tiµ) d∂Ωµ]

1
2 .

∗ Evaluate eiN = |j|
|tiµ|

∗ Traction jump control. If eiN > eN (eN a user-defined tolerance)
Then:
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· Make NullJump = FALSE
· Evaluate tNµ (y) (see (123)).

· With tNµ and using the MKR-N model find the solution

ui,MKR−N
µ of Problem 1, i.e. the variational equilibrium

equation (70).
· Set ui

µ = ui,MKR−N
µ .

Else : continue.

• STEP 7. If ContDispl= TRUE and NullJump = TRUE or Niter ≥ MaxNiter
Then: END
Else: Set Niter = Niter + 1 and go to STEP 5.

Remark 10 STEP 5 mitigates the displacement discontinuity while STEP 6 mitigates
the traction discontinuity on the boundary of neighboring microcells.

Now, we compare the computational cost, CDNS , of the evaluation of the
reference solution addressing the full-scale problem (often referred to as a direct
numerical simulation, or DNS solution) with the computational cost, CMSA,
of the solution obtained with the proposed multicontinuum strategy based on
the multiscale paradigm. To do this let us introduce the following notations

• NelM denotes the number of finite elements used for the solution at
macroscale,

• NeqM denotes the number of equations associated to the solution at
macroscale,

• Nelµ denotes the number of finite elements used for the computation of the
reference solution using DNS (the full-scale solution),

• Neqµ denotes the number of equations to be solved for the evaluation of the
reference solution using DNS,

• NelPi
µ
, i = 1, . . . , Nµ denotes the number of finite elements used for the

solution of the equilibrium corresponding to the isolated microcell Pi
µ using

the MKR together with the PMKA and MKR-N multiscale models,
• NeqPi

µ
, i = 1, . . . , Nµ denotes the number of equations associated to the

solution of the equilibrium of the isolated microcell Pi
µ using the MKR

together with the PMKA and MKR-N multiscale models.

Now let C(Neq) be the computational cost associated to the solution of Neq

equations which we assume here to be of the order of o(Neq
2) (optimistic

estimate using preconditioned iterative methods for solving the corresponding
algebraic systems of equations). We also assume that the number of equations
to be solved at each Pi

µ, NeqPi
µ
, is the same for all i = 1, . . . , Nµ. Hence, the
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number of equations Neqµ associated to the DNS approach is

Neqµ =

Nµ∑
i=1

NeqPi
µ
= Nµ × NeqPi

µ
. (124)

Then, the expected computational cost CDNS is

CDNS = o(Neq
2
µ) ≈ N2

µ × o(Neq
2
Pi

µ
). (125)

In turn, disregarding the computational cost of macro level solution, the
computational cost associated with the proposed CMSA algorithm is

CMSA ≈ (2×Niter + 1)×Nµ × o(Neq
2
Pi

µ
). (126)

The comparison between the computational costs (125) and (126) gives the
ratio

CDNS

CMSA
≈ Nµ

(2×Niter + 1)
, (127)

which in is general a very large number if the number of iterations to achieve
convergence remains bounded.

Remark 11 The proposed algorithm can be understood as a sort of Dirichlet (PMKA)
and Neumann (MKR-N) exchange between neighboring microcells. In this regard,
this is a sort of Gauss-Jacobi (or Gauss-Seidel) iterative procedure, where conver-
gence only occurs if certain conditions are satisfied. These conditions depend on the
stiffness of the neighboring microcell mechanical problems. Situations where neigh-
boring microcell domains contain materials with substantially different mechanical
properties, or neighboring microcells with significantly different sizes could harm
convergence. One general strategy to mitigate this is to add sub-relaxation, as com-
mented above, but the sub-relaxation parameter may depend on the specific problem
and boundary conditions [54]. Another approach is to rely on iterative procedures
which are more powerful than Gauss-Jacobi-type methods. Alternative algorithms
such as Newton methods, or matrix-free versions of the GMRES approach can be
very helpful in addressing more challenging scenarios [53].

7 Final Remarks

An in-depth analysis of the mechanical equilibrium problem for a solid contin-
uum featuring small scale heterogeneities was presented, based on the Principle
of Multiscale Virtual Power previously proposed by the authors. The analysis
revealed important properties of the reference solution – the exact solution of
the problem accounting for all small scale heterogeneities – leading to gener-
alisations of the classical Minimum Kinematical Restriction multiscale model
where displacement or traction boundary conditions may be enforced on the
boundary of the microcell. The framework provided by the new models led



Springer Nature 2021 LATEX template

Novel Multiscale Models as a Multicontinuum Approach 37

naturally to the proposal of a new, multicontinuum strategy to search for the
reference solution at low computational cost in an iterative fashion. The pro-
posed new strategy consists in first solving a coarsened equilibrium problem
(defining a macro- or coarse scale) weakly coupled to the microscale domains
– the microcells. The material points of the coarse scale model are linked to
given microcells that describe the heterogeneities of the body under consider-
ation. Then, once the weakly coupled problem is solved, an iterative algorithm
is used to reduce the discontinuities in the displacement and traction fields at
the interfaces between neighboring microcells through the alternate solution of
suitably formulated Dirichlet (PMKA model) and Neumann (MKR-N model)
problems. The reference solution is retrieved if all such discontinuities vanish.
Finally, we remark that the present work lays the foundations of a contin-
uum counterpart of a domain decomposition approach, with all the potential
generalizations brought about by the Method of Multiscale Virtual Power.
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Appendix A The MKR multiscale model

According to [37, 38, 47], a kinematically admissible displacement uµ ∈ Vµ is
characterized by the Minimal Kinematical Restriction multiscale model (MKR
model), which satisfies the Principle of Multiscale Kinematical Admissibility.
This implies that the following relations are satisfied: uM |xi

= HV
µ (uµ) and

GM |xi
= HW

µ (∇uµ), leading to the kinematical restrictions

HV
µ (ũµ) =

1

|Pi,s
µ |

∫
Pi,s

µ

ũµ dΩµ = 0, (A1)

HW
µ (∇ũµ) =

1

|Pi,s
µ |

[∫
Pi,s

µ

∇ũµ dΩµ −
∫
∂Pi,s,vi

µ

ũµ ⊗ nvi
µ d∂Ωµ

−
∫
∂Pi,s,vb

µ

ũµ ⊗ nvb
µ d∂Ωµ −

∫
∂Pi,s,b

µ

ũµ ⊗ nµ d∂Ωµ

]

=
1

|Pi,s
µ |

∫
∂Pi,s,b

µ

ũµ ⊗ (nµ − nµ) d∂Ωµ

= HW
µ,∂Pi,s,b

µ
(ũµ|∂Pi,s,b

µ
) = O. (A2)
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Then, the kinematically admissible displacements for the MKR model live in
the linear manifold KinMKR

uµ
characterized by

KinMKR
uµ

= {uµ ∈ Vµ; HV
µ (uµ) = uM |xi

,HW
µ (∇uµ) = GM |xi

}
= {uµ ∈ Vµ; uµ = uM |xi +GM |xi(y − yG) + ũµ,

HV
µ (ũµ) = 0,HW

µ,∂Pi,s,b
µ

(ũµ|∂Pi,s,b
µ

) = O}

= u0
µ + V arMKR

ũµ
, (A3)

where u0
µ is an arbitrary element of KinMKR

uµ
, and V arMKR

ũµ
is given by

V arMKR
ũµ

= {vµ ∈ Vµ; HV
µ (v) = 0,HW

µ,∂Pi,s,b
µ

(v|∂Pi,s,b
µ

) = O}. (A4)

Appendix B Principle of Multiscale Virtual
Power

The energetic consistency between scales is satisfied through the formulation
of the Principle of Multiscale Virtual Power (PMVP). This balance of power
between macro and micro-scales was originally proposed in [9, 11] through the
so-called Hill-Mandel principle of Macrohomogeneityt, which was claimed to
hold for the true powers exerted at both scales. In [37, 38, 47], the PMVP was
postulated by re-casting the Hill-Mandel principle in a variational setting.

The PMVP applied to the isolated microcell Pi
µ within the context of the

MKR Model, is given by

PM |xi · ĜM |xi − bM |xi · ûM |xi =

=
1

|Pi
µ|

[ ∫
Pi,s

µ

(Pµ(uµ) · (ĜM |xi
+∇v)

− bµ · (ûM |xi + ĜM |xi(y − yG) + v))

]
dΩµ,

∀ (ûM |xi
, ĜM |xi

,v) ∈ Rxi

VM
× Rxi

WM
× V arMKR

ũµ
. (B5)

By using standard variational arguments, (B5) yields

• PM |xi
-Homogenization ((0,∀ĜM |xi

,0) ∈ Rxi

VM
× Rxi

WM
× V arMKR

ũµ
)

PM |xi
=

1

|Pi
µ|

[∫
Pi,s

µ

(Pµ(uµ)− bµ ⊗ (y − yG)) dΩµ

]
. (B6)

• bM |xi-Homogenization ((∀ûM |xi ,O,0) ∈ Rxi

VM
× Rxi

WM
× V arMKR

ũµ
)

bM |xi
=

1

|Pi
µ|

∫
Pi,s

µ

bµ dΩµ. (B7)
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• Equilibrium of the isolated microcell Pi
µ given by the following variational

problem: Find ui
µ ∈ KinMKR

uµ
(or equivalent find ũi

µ ∈ V arMKR
ũµ

) such that

satisfies the following variational equation∫
Pi,s

µ

[Pµ(u
i
µ) · ∇v − bµ · v]dΩµ = 0 ∀v ∈ V arMKR

ũµ
. (B8)

Let ΘMKR
µ and ΛMKR

µ be the Lagrange multipliers corresponding to

the kinematical restrictions HV
µ (v) = 0 and HW

µ,∂Pi,s,b
µ

(v|∂Pi,s,b
µ

) = O in

V arMKR
ũµ

, then the above variational problem can be rewritten as follows:

Given uM |xi and GM |xi find ũi
µ ∈ Vµ,Θ

MKR
µ ∈ Rxi

VM
and ΛMKR

µ ∈ Rxi

WM

such that satisfy the following variational equation∫
Pi,s

µ

[Pµ(u
i
µ) · ∇v − (bµ +ΘMKR

µ ) · v]dΩµ

− ΛMKR
µ ·

∫
∂Pi,s,b

µ

v ⊗ (nµ − nµ) d∂Ωµ

− Θ̂MKR
µ ·

∫
Pi,s

µ

ũi
µ dΩµ − Λ̂MKR

µ ·
∫
∂Pi,s,b

µ

ũi
µ ⊗ (nµ − nµ) d∂Ωµ = 0,

∀(Θ̂MKR
µ , Λ̂MKR

µ ,v) ∈ Rxi

VM
× Rxi

WM
× Vµ. (B9)

The Euler-Lagrange equations associated with the above variational equi-
librium problem are given by

HV
µ (ũ

i
µ) = 0, (B10)

HW
µ,∂Pi,s,b

µ
(ũi

µ|∂Pi,s,b
µ

) = O, (B11)

divPµ(u
i
µ) + bµ +ΘMKR

µ = 0 in Hi,k
µ k = 1, . . . , ni, (B12)

JPµ(u
i
µ)nµK = 0 on ∂Hi,k

µ ∩ ∂Hi,m
µ , k ̸= m, k,m = 1, . . . , ni, (B13)

Pµ(u
i
µ)nµ = ΛMKR

µ (nµ − nµ) on ∂Pi,s,b
µ , (B14)

Pµ(u
i
µ)nµ = 0 on ∂Pi,v

µ . (B15)

Since (B9) must be satisfied for all v ∈ Vµ and in particular for an arbitrary
constant vector v = c, we obtain an additional Euler-Lagrange equation
characterizing the Lagrange multiplier ΘMKR

µ ∈ Rxi

VM

ΘMKR
µ = − 1

|Pi,s
µ |

∫
Pi,s

µ

bµdΩµ. (B16)

Furthermore, considering variations of the form v = A(y−yG) characterized
by any constant second order tensor A ∈ Lin, we also obtain
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A ·
[ ∫

Pi,s
µ

[Pµ(u
i
µ)− bµ ⊗ (y − yG)]dΩµ

−ΛMKR
µ

∫
∂Pi,s,b

µ

(nµ − nµ)⊗ (y − yG)d∂Ωµ

]
= 0 ∀A ∈ Lin. (B17)

From the above expression we obtain the Euler-Lagrange equation that
characterizes the Lagrange multiplier ΛMKR

µ

ΛMKR
µ Bµ =

∫
Pi,s

µ

[Pµ(u
i
µ)− bµ ⊗ (y − yG)]dΩµ, (B18)

where Bµ is given by

Bµ =

∫
∂Pi,s,b

µ

(nµ − nµ)⊗ (y − yG)d∂Ωµ. (B19)

For the previous developments, spaces Rxi

VM
and Rxi

WM
depend on the spatial

dimension of the problem. For three dimensional problems, we have Rxi

VM
→ R3

and Rxi

WM
→ R3×3.

Appendix C Isolated microcell equilibrium

The equilibrium of the isolated microcell Pi
µ submitted to the prescribed dis-

placement u∗,D
µ at the boundary ∂Pi,s,b

µ and to a force system given by {bµ}
is characterized by the following variational problem: Find u∗

µ|Pi,s
µ

∈ Kin∗,D
uµ

such that satisfies the following variational equation∫
Pi,s

µ

[Pµ(u
∗
µ) · ∇v − bµ · v]dΩµ = 0 ∀v ∈ V ar∗,Duµ

, (C20)

where

Kin∗,D
uµ

= {uµ ∈ Vµ; uµ|∂Pi,s,b
µ

= u∗,D
µ } = u∗

µ|Pi,s
µ

+ V ar∗,Duµ
, (C21)

and
V ar∗,Duµ

= {v ∈ Vµ; v|∂Pi,s,b
µ

= 0}. (C22)

The variational problem (C20) can be redefined by relaxing the kinematical
restriction uµ|∂Pi,s,b

µ
= u∗,D

µ . This procedure leads to the following equiva-

lent variational problem: Find u∗
µ|Pi,s

µ
∈ Vµ such that satisfies the following

variational equation∫
Pi,s

µ

[Pµ(u
∗
µ) · ∇v − bµ · v]dΩµ −

∫
∂Pi,s,b

µ

t∗,iµ · vd∂Ωµ
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−
∫
∂Pi,s,b

µ

t̂µ · (u∗
µ|∂Pi,s,b

µ
− u∗,D

µ )d∂Ωµ = 0

∀(v, t̂µ) ∈ Vµ × V ′
µ(∂Pi,s,b

µ ), (C23)

where t∗,iµ is the (Lagrange multiplier) vector traction field over ∂Pi,s,b
µ asso-

ciated by duality with the kinematical restriction uµ|∂Pi,s,b
µ

= u∗,D
µ , and t̂µ is

its virtual variation.
The Euler-Lagrange equations associated to the variational problem (C23)

are given by

• Taking v = 0 and for all t̂µ ∈ V ′
µ we have

u∗
µ|∂Pi,s,b

µ
= u∗,D

µ on ∂Pi,s,b
µ . (C24)

• Taking t̂µ = 0 and for all v ∈ Vµ we have

divPµ(u
∗
µ) + bµ = 0 in Hi,k

µ k = 1, . . . , ni, (C25)

JPµ(u
∗
µ)nµK = 0 on ∂Hi,k

µ ∩ ∂Hi,m
µ , k ̸= m, k,m = 1, . . . , ni, (C26)

Pµ(u
∗
µ)nµ = t∗,iµ on ∂Pi,s,b

µ , (C27)

Pµ(u
∗
µ)nµ = 0 on ∂Pi,v

µ , (C28)

Now, since (C23) must be satisfied for all v ∈ Vµ, it particularly holds for any
arbitrary constant vector field v = c. Then, it results∫

∂Pi,s,b
µ

t∗,iµ d∂Ωµ = −
∫
Pi,s

µ

bµdΩµ. (C29)

Also, (C23) must be satisfied for all fields of the form v = A(y − yG)
characterized by any constant second order tensor A ∈ Lin. Then

A ·
[ ∫

Pi,s
µ

[Pµ(u
∗
µ)− bµ ⊗ (y − yG)]dΩµ

−
∫
∂Pi,s,b

µ

t∗,iµ ⊗ (y − yG)d∂Ωµ

]
= 0 ∀A ∈ Lin. (C30)

From the above expression we obtain∫
∂Pi,s,b

µ

t∗,iµ ⊗ (y − yG)d∂Ωµ =

∫
Pi,s

µ

[Pµ(u
∗
µ)− bµ ⊗ (y − yG)]dΩµ. (C31)
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No97. Springer, Berlin (1971)

[12] Gurson, A.: Continuum theory of ductile rupture by void nucleation and
growth. part i: Yield criteria and flow rule for porous media. J. Engng.
Mat. Techn. 99, 2–15 (1949)

[13] Bensoussan, A., Lions, J., Papanicolaou, G.: Asymptotic Analysis for
Periodic Structures. Elsevier, North-Holland, ??? (1978)

[14] Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory.
Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)



Springer Nature 2021 LATEX template

Novel Multiscale Models as a Multicontinuum Approach 43

[15] Sanchez-Palencia, E.: Homogenization method for the study of composite
media. In: Verhulst, F. (ed.) Asymptotic Analysis II. Surveys and New
Trends. Lecture Notes in Mathematics vol. 985, pp. 192–214. Springer,
Berlin (1981)

[16] Feyel, F., Chaboche, J.: Fe2 multiscale approach for modelling the elasto-
viscoplastic behaviour of long fibre sic/ti composite materials. Comput.
Meth. App. Mech. Eng. 183, 309–330 (2000)

[17] Kouznetsova, V., Brekelmans, W., Baaijens, F.: An approach to micro-
macro modeling of heterogeneous materials. Comp. Mech. 27, 37–48
(2001)

[18] Kouznetsova, V., Geers, M., Brekelmans, W.: Multiscale constitutive
modelling of heterogeneous materials with a gradient-enhanced compu-
tational homogenization scheme. Int. J. Num. Meth. Eng. 54, 1235–1260
(2002)

[19] Kouznetsova, V., Geers, M., Brekelmans, W.: Multiscale second order
computational homogenization of multi-phase materials: A nested finite
element solution strategy. Comput. Meth. App. Mech. Eng. 193, 5525–
5550 (2004)

[20] Larsson, F., Runesson, K., Su, F.: Variationally consistent computational
homogenization of transient heat flow. Int. J. Num. Meth. Eng. 81, 1659–
1686 (2010)

[21] Michel, J.C., Moulinec, H., Suquet, P.: Effective properties of compos-
ite materials with periodic microstructure: A computational approach.
Comput. Meth. App. Mech. Eng. 172, 109–143 (1999)

[22] Miehe, C., Koch, A.: Computational micro-to-macro transition of dis-
cretized microstructures undergoing small strain. Arch. Appl. Mech. 72,
300–317 (2002)

[23] Miehe, C., Schotte, J., Lambrecht, J.: Homogenization of inelastic solid
materials at finite strains based on incremental minimization principles.
Application to the texture analysis of polycrystals. J. Mech. Phys. Solids
50, 2123–2167 (2002)
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Method of Multiscale Virtual Power for the derivation of a second order
mechanical model. Mech. Mater. 99, 53–67 (2016)

[37] Blanco, P.J., Sánchez, P.J., de Souza Neto, E.A., Feijóo, R.A.: Variational
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Applied Mechanics and Engineering 195(41-43), 5797–5812 (2006)
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