
Vol.:(0123456789)1 3

Engineering with Computers
https://doi.org/10.1007/s00366-023-01812-z

ORIGINAL ARTICLE

Meshing using neural networks for improving the efficiency
of computer modelling

Callum Lock1 · Oubay Hassan1 · Ruben Sevilla1 · Jason Jones1

Received: 26 September 2022 / Accepted: 17 March 2023
© The Author(s) 2023

Abstract
This work presents a novel approach capable of predicting an appropriate spacing function that can be used to generate a
near-optimal mesh suitable for simulation. The main objective is to make use of the large number of simulations that are
nowadays available, and to alleviate the time-consuming mesh generation stage by minimising human intervention. For a
given simulation, a technique to produce a set of point sources that leads to a mesh capable of capturing all the features of
the solution is proposed. In addition, a method to combine all sets of sources for the simulations available is devised. The
global set of sources is used to train a neural network that, for some design parameters (e.g., flow conditions, geometry),
predicts the characteristics of the sources. Numerical examples, in the context of three dimensional inviscid compressible
flows, are considered to demonstrate the potential of the proposed approach. It is shown that accurate predictions of the
required spacing function can be produced, even with reduced training datasets. In addition, the predicted near-optimal
meshes are utilised to compute flow solutions, and the results show that the computed aerodynamic coefficients are within
the required accuracy for the aerospace industry. An analysis is also presented to demonstrate that the proposed method lies
in the category of green AI research, meaning that computational resources and time are substantially reduced with this
approach, when compared to current practice in industry.

Keywords Mesh generation · Spacing function · Machine learning · Near-optimal mesh prediction · Computational fluid
dynamics

1 Introduction

Computational methods are increasingly used to comple-
ment experiments and analysis in many areas of science and
engineering. The large majority of numerical methods used
to simulate physical phenomena require the generation of
a mesh that describes the geometry under consideration.
The process of generating unstructured meshes of com-
plex geometries is still recognised as one of the bottlenecks

of the computational fluid dynamics (CFD) simulation
pipeline [1–3].

All mesh generation strategies require the specification
of a spacing function that controls the size of the generated
elements in the domain. The spacing function utilised must
lead to a mesh that is only refined in the vicinity of regions
that contain complex features that need to be resolved. Dif-
ferent approaches are usually considered to define the spac-
ing function, namely the use of a background structured or
unstructured mesh [4], refinement based on boundary curva-
ture [5], the specification of the spacing at certain geometric
entities and the use of point, line or triangular sources [5, 6].
Sources are usually preferred for complex geometric mod-
els in three dimensions due to the greater flexibility they
offer. In addition, using sources can complement the use

 * Callum Lock
 C.D.Lock@Swansea.ac.uk

 Oubay Hassan
 O.Hassan@Swansea.ac.uk

 Ruben Sevilla
 R.Sevilla@Swansea.ac.uk

 Jason Jones
 J.W.Jones@Swansea.ac.uk

1 Zienkiewicz Institute for Modelling, Data and AI, Swansea
University, Swansea SA1 8EN, Wales, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-023-01812-z&domain=pdf
http://orcid.org/0000-0001-6096-3755

 Engineering with Computers

1 3

of background meshes, the refinement based on boundary
curvature and/or the refinement based on geometric entities.
However, defining an appropriate set of sources for complex
models is still time consuming and it requires a significant
level of human intervention.

In recent years, mesh adaptive processes have gained
popularity [7]. With these approaches, the user only needs
to define an initial coarse mesh. An iterative and automatic
process ensures that the mesh is successively refined, only
where needed, to accurately capture the solution. Despite
the potential of such approaches, it is known that an inad-
equate initial mesh may result in some unresolved features,
even after many refinement loops. In addition, mesh adaptive
algorithms have shown that a significant number of refine-
ment loops, between 20 and 30, might be required to reach
the required accuracy [8]. It is worth noting that each loop
requires a computation, estimating the error of the computed
solution, generating an adapted mesh and the interpolation
of the solution from the old to the new mesh.

The objective of this work is to develop a technique,
based on neural networks (NNs), that enables the prediction
of a near-optimal mesh suitable for simulation. The main
idea is to make use of the vast volume of data, that already
exists in industry, to optimise the selection of a suitable
spacing function. The proposed approach aims at exploiting
the knowledge embedded in previous simulations to inform
the mesh generation stage. In addition, it has the potential to
alleviate the recurrent problem of mesh generation being a
major bottleneck in the CFD simulation pipeline. The tech-
nique presented can also be used to predict a mesh to be used
in an adaptive process. In this scenario, it is anticipated that
the number of refinement loops required would significantly
decrease, when compared to a naive choice of the initial
mesh.

The proposed strategy consists of four stages. First, a
technique to produce a set of point sources from an exist-
ing solution is proposed. The use of point sources, contrary
to other type of sources, is considered here to reduce the
parameters associated with each source and to enable the
possibility to group sources in a latter stage. For each avail-
able solution, a set of point sources that leads to a mesh
capable of capturing all the solution features is created.
The process is based on well established concepts of error
estimation and a recovery process to compute the Hessian
matrix of a key variable at the nodes of the given mesh.
With this information, a novel process is presented to cre-
ate point sources that lead to a continuous spacing function

that closely represent the discrete spacing function induced
by the calculated spacing at the nodes. This step is repeated
for all the solutions available, leading to different sets of
point sources. To ensure that the data can be used to train a
NN, an approach to combine the sources of each case into
a global set of sources is proposed. The strategy ensures
that the final set of sources can represent the spacing func-
tion for all the cases available. By using the global set of
sources, a NN is devised. The inputs are the design param-
eters (e.g. flow conditions, geometric parameters) and the
outputs are the characteristics of all the mesh sources (i.e.,
position of the sources, spacing and radius of influence).
After the NN is trained, it can be used to predict the spacing
function required for unseen cases and, ultimately, to predict
a near-optimal mesh for a new simulation. To speed up the
generation of the near-optimal meshes, a novel approach to
merge point sources into line sources is also proposed. The
approach is based on the total least-squares [9] and it ensures
that, during the mesh generation stage, the number of que-
ries required to calculate the spacing at a point is reduced.

The starting point considered here is a set of accurate
solutions that are available in an industrial environment.
It is worth noting that the solutions might have been com-
puted in over-refined meshes with the objective to mini-
mise the human intervention required to create an optimal
mesh. However, the approach could be easily extended to
learn from existing optimal meshes if they are available, for
instance when the computations use an adaptive approach
to reach the required accuracy.

The methodology proposed in this paper is also assessed
in terms of efficiency and the environmental implications. To
this end, the carbon footprint and energy consumption of the
computations required to perform a parametric CFD analysis
of a wing for varying flow conditions and angle of attack is
considered. The usual practice in industry consists of gen-
erating a fixed, very fine, mesh that is capable of capturing
the flow features for all the configurations to be tested. This
is usually done to minimise the required human intervention
that is required to generate tailored meshes for each one of
the cases of interest. With the approach proposed here, it is
possible to obtain near-optimal meshes at a negligible cost,
after a NN has been trained. However, in recent years there
have been growing concerns about the lack of transparency
when reporting the gains induced by the use of NNs [10].
This is due to the lack of data related to the cost of train-
ing and fine tuning the NNs that are subsequently used to
perform accurate predictions. This work aims at reporting

Engineering with Computers

1 3

the full cost of the proposed approach by accounting for the
fine tuning of the NN and even the repetition of experiments
usually performed to minimise the effect of the randomness
introduced in the initialisation of the NN weights.

Despite the use of machine learning algorithms in
the computational engineering field has increased expo-
nentially during the last years, the focus seems to be on
learning to predict physical phenomena [11–13]. The
use of machine learning to assist the mesh generation
has attracted much less attention, but related work can
be found in the literature. Early attempts to use NNs to
predict the mesh density can be found in the framework
of magnetic device simulations [14–16]. More recently,
in [17, 18] the authors propose the use of a NN to predict
the spacing at a given location based on some geometric
parameters, boundary conditions and parameters of the
partial differential equation under consideration. Algo-
rithms based on NNs to assist mesh adaptive strategies
have also been recently proposed [19–21] as well as the
use of NNs to inform mesh adaptation in transient simula-
tions [22] and even the assessment of mesh quality [23].

The approach proposed here is, to the authors knowl-
edge, the first attempt to predict the mesh spacing function
that is suitable for new simulations by using the flexibility
of mesh sources. The potential of the proposed approach is
demonstrated in the context of three dimensional inviscid
compressible flows, but the strategy is general and does
not rely on partial differential equations that describe the
underlying physical phenomena. It is worth noting that
the aim is to predict the mesh spacing and not the solution
for two main reasons. First, the volume of data required
to perform accurate predictions of three dimensional
solutions of large scale problems could render such an
approach unfeasible. Second, when utilising NNs to pre-
dict unseen cases, there is a level of uncertainty that is
difficult to control. It is apparent that an error in the mesh
spacing function is orders of magnitude more acceptable
than errors in engineering quantities of interest. In fact, the
near-optimal meshes predicted with the proposed approach
can be further tuned using mesh adaptivity to ensure a reli-
able output to be used in engineering design.

The remainder of the paper is organised as follows. Sec-
tion 2 summarises the required concepts on mesh spacing
and control and neural networks. The proposed strategy
is described in detail in Sect. 3, including the algorithms
proposed for each one of the stages involved in the pro-
cess. Numerical examples are presented in Sect. 4. The

examples demonstrate the applicability and potential of the
method in a CFD context, including problems with flow
and geometric parameters. The predicted near-optimal
meshes are assessed, not only by comparing the predicted
spacing to the target spacing, but also by assessing the
accuracy of the computed CFD solutions on the predicted
meshes. Section 5 presents a detailed analysis of the effi-
ciency of the method presented when compared to the cur-
rent industrial practice and the environmental implications
are discussed. Finally, Sect. 6 summarises the conclusions
of the work that has been presented.

2 Background

This Section introduces some fundamental concepts on
mesh spacing and neural networks that are utilised when
presenting the proposed strategy to predict near-optimal
meshes.

2.1 Mesh spacing and control

The ability of unstructured meshes to efficiently discretise
complex geometric domains has made them the preferred
choice in the aerospace industry for CFD simulations. In con-
trast to structured meshes, the efficiency arises from the ability
of an unstructured mesh to locally refine regions of interest
with minimal impact on the rest of the domain. Refinement
techniques can be divided into, automatic based on mesh adap-
tivity, or manually controlled based on user expertise. Adap-
tive remeshing can be regarded as an automatic technique
which can be used to concentrate elements in regions where
the gradient of the solution is high. However, it is known that
an inadequate initial mesh, despite many refinement loops,
may result in some unresolved flow features.

Various techniques have been utilised to enable user-con-
trolled refinement and to allow engineers to generate ele-
ments with the desired size in a given region of the domain.
These techniques include the use of a background mesh, the
use of points, lines or triangular sources and the refinement
based on boundary curvature [5].

The requirement of manually generating a coarse mesh
that covers the domain of interest, has restricted the use of
background meshes in three dimensions. However, they
are frequently used to control the gradation of the spacing
between the region of interest and the rest of the domain. In

 Engineering with Computers

1 3

this case, an unstructured mesh, made from a few tetrahedral
elements, is manually created, and the desired spacing at the
nodes of the mesh is defined. The spacing at any point in the
domain is computed by using a linear interpolation of the
nodal spacing values corresponding to the tetrahedron that
contains the point.

Alternatively, sources provide flexible control of the local
spacing desired at a given region. A point source defined, at
a given location x , provides the required spacing �0 at that
location. The region of influence of the source is defined by
specifying a sphere of radius r, within which the spacing
remains constant. To avoid a sudden increase of the spacing
beyond the sphere of influence, an exponential increase of
the spacing is defined by providing a second radius, R, at
which the spacing doubles. Hence, the spacing at a distance
d, from the source location x , is given by

The way a line source controls the local spacing is an exten-
sion of the point source. A line source is defined by connect-
ing two point sources. The location of the nearest point on
the line, p̂ , to a given point in space, p , is first determined.
Using the two points of the line source, a linear interpola-
tion is employed to determine the spacing and radii at p̂ . The
location p̂ is used as a point source with the interpolated
spacing and radii and to determine the required spacing at
the point p̂ . The extension to triangular sources follows the
same rationale.

When multiple mechanisms are utilised to control the size
of the elements, the minimum value of the spacing obtained
from all mechanisms will be utilised during the mesh gen-
eration stage.

2.2 Artificial neural networks

Artificial neural networks (NNs) are an assortment of neu-
rons organised by layers. For the NNs considered in this
work, each neuron is connected to all the neurons of the
previous and subsequent layers. Each connection between
the neurons has an associated weight, and each neuron has
a bias. This particular case is referred to as a multi-layer per-
ceptron, which is a class of feed-forward NNs. The first and
last layers of the network are called input and output layers,
respectively. The remaining layers, called hidden layers are

(1)𝛿(d) =

{
𝛿0 if d < r

𝛿0e
ln(2)

d−r

R−r otherwise
.

numbered l = 1,… ,Nl , with Nl being the number of hidden
layers [24].

During the forward propagation, the value of a neuron in
the layer l + 1 is computed by using the values associated
with the neurons in the previous layer, l, the weights of the
connections, and the bias from the previous layer, which is
then modified by an activation function Fl . Mathematically,
the value of the j-th neuron in the layer l + 1 , denoted by zl+1

j
 ,

is computed as

where bl
j
 is a bias that is introduced to enhance the approxi-

mation properties of the network, �l
ij
 denotes the weight of

the connection between the i-th neuron of the layer l and the
j-th neuron of the layer l + 1 and Nl

n
 is the number of neurons

in the layer l. An illustration of a generic multi-layer percep-
tron NN is shown in Fig. 1.

For a single case with N inputs and M outputs, the NN
has an input vector � = {x1, ..., xN}

T , and an output vector
� = {y1, ..., yM}

T . As part of the training process, to deter-
mine how well a NN is performing in the prediction of the
outputs, a cost function is used. The cost function used is
constructed using the mean square error, that measures the
discrepancy between the true outputs and the NN predic-
tions. The cost function for Ntr training cases is

(2)zl+1
j

= Fl+1
⎛⎜⎜⎝

Nl
n�

i=1

�l
ij
zl
i
+ bl

j

⎞⎟⎟⎠
,

(3)C(�) =
1

NtrM

Ntr∑
k=1

M∑
i=1

[yk
i
(xk) − hk

i
(�)]2,

Inputs Hidden Layers Outputs

Fig. 1 Schematic representation of a multi-layer perceptron NN

Engineering with Computers

1 3

where hk
i
(�) corresponds to the predicted output computed

using the forward propagation.
The goal of the training stage is to minimise the cost

function of Eq. (3), by optimising the weights and biases.
The ADAM optimiser is employed in this work [25], which
is considered computationally efficient and well suited for
problems involving large data sets or a large number of
parameters. The ADAM optimiser used to update a given
weight at iteration r + 1 in given by

where

and

In the above expressions, the step size is taken as � = 10−3 ,
the exponential decays for the moment estimates are taken
as �1 = 0.9 and �2 = 0.999 , and the regularisation is taken
as � = 10−7.

The design of the NN considered in this work requires
selecting an appropriate number of layers, number of neu-
rons per layer and the activation function. The selection of
the number of layers and neurons is done by studying the
performance of the network for different values of these
hyperparameters. Examples of these studies will be pre-
sented in the numerical examples in Sect. 4.

Numerical experiments have been performed to analyse
the influence of the activation function on the predict-
ing accuracy of the NN. The experiments showed that
the sigmoid function produced more accurate results
for reduced datasets, when compared to other classical
activation functions. Therefore, the architecture selected
involves the use of the sigmoid function for all hidden
layers and a linear function for the output layer. These
functions are given by

(4)�
l,r+1

i,j
= �

l,r

i,j
− �

m
l,r

i,j√
v
l,r

i,j
+ �

,

(5)m
l,r+1

i,j
=

�1(1 − �r−1
1

)

1 − �r
1

m
l,r

i,j
−

1 − �1

1 − �r
1

�C

��
l,r

i,j

(6)v
l,r+1

i,j
=

�2(1 − �r−1
2

)

1 − �r
2

v
l,r

i,j
−

1 − �2

1 − �r
2

(
�C

��
l,r

i,j

)2

.

respectively.

3 Construction of near‑optimal meshes

To obtain an optimum engineering design, numerous geo-
metric configurations must be analysed through the range
of operating conditions. Reducing the time to generate a
solution with the required accuracy enables more con-
figurations to be evaluated. In addition, often, multiple
meshes are required to ensure that the asymptotic conver-
gence has been reached. This process has to be repeated
for every configuration and for every operating condition.
Alternatively, a fine mesh that is capable of capturing the
features for a range of operating conditions can be used.
The first process could either be automated, by using
mesh adaptivity, or manually controlled, by enhancing
and updating the parameters of the used mesh control
technique.

This work proposes to use historic data, accumulated
from analysis carried out during previous designs, to pre-
dict an appropriate starting mesh that can be considered
as a near-optimal for a given geometric configuration
and/or operating conditions. It is assumed that solutions
satisfying the desired accuracy, for a range of geometric
configurations and operating conditions, are available.
These solutions could have been achieved utilising differ-
ent modelling techniques, such as structured, unstructured
or hybrid methods.

The proposed concept to generate a near-optimal mesh
can be summarised in the following four stages:

1. For every solution, obtained from a given set of design
parameters, create a set of point sources that can gener-
ate a mesh to capture the given solution.

2. Combine the individual sets of sources into a global set
that is customised to generate the available mesh for all
given cases.

3. Train a NN to predict the characteristics of the global set
of sources for a new, unseen, set of input parameters.

(7)S(x) =
1

1 + e−x
and L(x) = x,

 Engineering with Computers

1 3

4. Reduce the predicted global sources and combine point
sources into line sources prior to generating the near-
optimal mesh.

These four stages are described in detail in the remainder
of this Section.

3.1 Generating point sources from a given solution

The process of creating a set of sources that leads to a mesh
capable of capturing a given solution, requires the compu-
tation of the suitable element size at every point in space.
Here, the element spacing is related to the derivatives of the
solution using the Hessian matrix, a principle that is com-
monly used in error analysis, such as

where � is an arbitrary unit vector, �� is the spacing along the
direction of � , Hij are the components of the Hessian matrix
of a selected key variable � , namely

and K is a user-defined constant.
The derivatives of the key variable, � , are computed, at

each node of the current mesh, by using a recovery process,
based upon a variational residual statement [26, 27]. Next,
the optimal value of the spacing at a node is taken to be

where �i , for i = 1,… , n , are the eigenvalues of the Hessian
matrix, �.

The spatial distribution of the mesh parameters is
uniquely defined when a value for the user-defined constant
K is specified. For smooth regions of the flow, this constant
reflects the value of the root mean square error in the key
variable that can be accepted.

In the current implementation, two threshold values for
the computed spacing are used: a minimum spacing �min and
a maximum spacing �max , so that

The reason for defining the maximum value, �max , is to
account for the possibility of a vanishing eigenvalue in
Eq. (10). The value of �max is chosen as the spacing to be

(8)�2
�

(
N∑

i,j=1

Hij�i�j

)
= K,

(9)Hij =
�2�

�xi�xj
,

(10)�i = min
i=1,…,n

{√
K

�i

}
,

(11)�min ≤ �i ≤ �max, for i = 1,… ,N.

used in the regions where the solution is smooth. On the
other hand, maximum values of the second derivatives
occur near regions with steep gradients, where the gradi-
ent demands that smaller elements are used. By imposing
a minimum value for the mesh size, �min , an excessive con-
centration of elements near regions with steep gradients is
avoided.

To enable the use of data that was generated using dif-
ferent numerical techniques, a method which ensures the
uniformity of the training data has to be devised. Since the
underlying meshes that were used for generating the data
can be different and are often very large, the use of sources
to specify the mesh requirement to capture the given solu-
tions is proposed.

The main idea is, for a given mesh, to group points that
have similar required spacing, calculated using Eq. (10),
to form a point source that is located at the centre of the
grouped points with a radius that extend from the centre
to the furthest point in the group. This process reduces the
quantity of information needed to describe an optimal mesh
by up to two orders of magnitude, without sacrificing the
quality of the information which describes the required
mesh.

It is worth noting that the process will reflect the level of
fidelity provided by the given solutions. Hence, the process
can be used both, at the initial investigation stage, when the
meshes are not highly refined, and at the data acquisition
stage, when the solutions are provided on a highly refined
mesh or on an adapted mesh.

Algorithm 1 describes the devised technique to convert a
given solution to a set of point sources.

(a) One surrounding layer (b) Two surrounding layers

Fig. 2 Detail of a triangular mesh illustrating the concept of sur-
rounding layers. The central node is denoted by a blue star. The nodes
with similar spacing are denoted with a green circle, whereas nodes
with a dissimilar spacing are denoted with a red triangle. The sce-
nario in a shows one surrounding layer of nodes with similar spacing
to the central node, whereas the scenario in b shows two surrounding
layers

Engineering with Computers

1 3

Algorithm 1 Process for creating point sources
Input: A mesh M with N nodes and a vector δ of dimension N , where

the component δI contains the spacing at node I calculated using the equidis-
tribution principle, as given by Equation (10). The set of nodes is denoted by
N = {1, . . . , N} and the coordinates of the I-th node are denoted by xI

1: Construct a vector l of dimension N , where the component lI contains
the number of surrounding layers of nodes with a spacing δJ such that
δJ/δI < γ, with γ being a user-specified ratio;

2: Initialise the set of unused nodes: U ← N ;
3: Initialise the set of sources: S ← ∅;
4: while |U| > 0 do
5: Find J ∈ U such that δJ < δK and lJ > lK , ∀K ∈ U ;
6: Initialise a new point source: λ ← {xJ , δJ , r = δJ , R = 2r};
7: Create a list: L ← {J};
8: Mark the vertex J as used: U ← U \ {J};
9: NL ← 0;

10: while NL �= |L| do
11: NL ← |L|;
12: Create a list: L̃ ← {K ∈ N | K is connected to a node in L};
13: if δK/δJ < γ, ∀K ∈ L̃ then
14: L ← L ∪ L̃;
15: U ← U \ L̃;

16: Modify source: λ ←
{
∑

S∈L
xS/|L|, δJ , r = max

S∈L
{‖xL − xS‖2}, R = 2r

}
;

17: else if ∃K ∈ L̃ | δK/δJ < 2 then
18: for K ← 1 to |L̃| do
19: if δK/δJ < γ then
20: L ← L ∪ {K}
21: U ← U \ {K}
22: Modify source: λ ← {xJ , δJ , r = ‖xI − xK‖2, R = 2r};
23: else if δK/δJ < 2 then
24: L ← L ∪ {K};
25: U ← U \ {K}
26: end if
27: end for
28: end if
29: end while
30: S ← S ∪ {λ};
31: end while

The process starts from the computed spacing required
at every point of the mesh to capture a given solution.
To ensure optimum grouping of points that have similar
required spacing, the number of surrounding layers of
nodes with spacing similar to the node under considera-
tion is computed. Figure 2 illustrates the concept of sur-
rounding layers.

The process ensures that the spacing required at every
node of the given mesh is covered by a minimum of one

point source. In the current implementation, it is assumed
that the radius R, where the spacing doubles, is twice the
radius r where the spacing is constant and equal to the
spacing of the grouped points. It is also assumed that dif-
ferent spacings are similar, if they are lower than 5% of the
spacing at the node under consideration. The creation of
a point source is terminated if the spacing at a surround-
ing layer is larger than the spacing at the radius R of the
point source.

 Engineering with Computers

1 3

3.2 Generating global sources from sets of local
sources

The process described above does not guarantee that the
number of sources to capture the required meshes is the
same, for different sets of input parameters. In addition,
despite the fact that two sets of sources would contain
sources in close proximity, their position in the list of
sources can be, in general, very different. The former will
make the use of NNs unfeasible, whereas the later will
impose significant difficulties when finding a correlation
between inputs and outputs. To solve these two issues, a
process to create one set of global sources that can be used
for all sets of input parameters is devised.

The basic idea is to create one set of global sources
which can be used to map the index of each source in a

local set to an index of a source in the global set. The map-
ping is based on the minimum distance between the global
and local sources and it is defined as

where Li = {(j, i) | j ∈ {1,… , |Si|}} denotes the indices
of local sources in Si , the indices of all local sources is
L = L1 ∪… ∪ LC and the indices of the global sources is
G = {1,… , |G|} , where G is the list of global sources.

Algorithm 2 describes the developed process to com-
bine the sets of local sources into one set of global sources.
The set of global sources are further tuned for each input
set of parameters to produce the required mesh to capture
the given solution.

(12)

F ∶ L ⟶ G

(j, i) ⟼ F(j, i) ∶=

{
k if ∃k ∈ G |�j,i = Λk

0 otherwise
,

Fig. 3 Illustration of the process described in Algorithms 1 and 2 to obtain the point sources for a set of training cases and the construction of
the global set of sources

Engineering with Computers

1 3

The process starts with an empty list of global sources
and considers one case at a time. As the sources of the first
available case are unique, they are added to the list of global
sources with a one to one mapping. Any newly added source
to the global list is inserted in an ADT data structure. The
ADT is then be utilised to identify sources from the global

Algorithm 2 Process for creating global sources
Input: Set of lists of point sources S = {S1, . . . ,SC}, where Si is the list of

sources for the i-th case and C is the total number of cases. The j-th source of
the i-th case is denoted by λj,i and the sphere associated to a point source, with
centre xj,i and radius rj,i, is denoted by Bj,i = {x ∈ R3 | ‖x− xj,i‖2 ≤ rj,i};
1: Insert the sources of all cases, S, in an alternating digital tree (ADT);
2: Initialise the list of global sources: G ← S1. Global sources are denoted

by Λl, for l = 1, . . . , |G| and the sphere associated to a global source with
centre xl and radius rl, is denoted by Bl = {x ∈ R3 | ‖x− xl‖2 ≤ rl};

3: Associate sources in S1 with corresponding global sources in G by using
the mapping given by Equation (12);

4: for i ← 2 to C do
5: for j ← 1 to |Si| do
6: Search the ADT to create a list of sources: L ← {λr,s ∈ S | Br,s ∩

Bj,i �= ∅};
7: for all λr,s ∈ L do
8: if F (r, s) �= 0 and ‖xj,i − xr,s‖2 ≤ min{rj,i, rr,s} then
9: Find λu,v such that ‖xu,v − xj,i‖2 ≤ min

λa,b∈L
{‖xa,b − xj,i‖2};

10: end if
11: end for
12: if ∃ λu,v then
13: Associate λj,i with the global source ΛF (u,v);
14: else
15: G ← G ∪ {λj,i};
16: Associate λj,i with the global source Λ|G|;
17: end if
18: end for
19: end for
20: for i ← 1 to C do
21: Initialise the list of combined sources: Ci ← ∅;
22: for k ← 1 to |G| do
23: if ∃j | F(j, i) = k then
24: λ� ← λj,i;
25: else
26: A ← {(r, s) | F(r, s) = k};

27: λ� ←

∑

(r,s)∈A

xr,s/‖A‖, δ� = min
l∈Si

{δl(x�)}, r = δ�, R = 2r

;

28: end if
29: Ci ← Ci ∪ {λ�}
30: end for
31: end for

list that are in close proximity to the remaining local sources.
If no source from the global list is close to a local source,
the local source is added to the list of global sources and the
mapping is updated. If a global source is found to be in close
proximity of a local source, the local source index is mapped
to the global source index. When all cases are considered,

 Engineering with Computers

1 3

the global set of sources are customised for each set of input
parameters. For each case, if a local source has been mapped
to a global source, the local source characteristics are used
unchanged. For any global source that has no corresponding
local source, the characteristics are calculated to ensure that
the spacing produced is compatible with the spacing that
would be produced by the local source.

Figure 3 illustrates the two algorithms described above
using a two dimensional example with two design varia-
bles, namely the free-stream Mach number and the angle
of attack.For each training case, the pressure field is used
to obtain a set of point sources. The point sources in Fig. 3
are represented by circles, coloured using the spacing value
and with a radius proportional to the radius of influence of
each source. The illustration, made with real data from a two
dimensional example, shows that point sources with small
spacing are created in the regions where the solution shows
a high pressure gradient.

Once the point sources for all cases are constructed, the
sets of global sources are created for each case using Algo-
rithm 1. This process ensures that the number of global
sources is the same in all cases, and therefore the data can
be used to train a NN.

3.3 Construction of NN for predicting
the characteristics of the sources

The creation of a set of global sources, with the same num-
ber of characteristics for all cases, enables the use of NNs to
predict these characteristics for unseen cases. In this work,
the objective is to predict the location, spacing and the radius
within which the spacing remains constant. Generally, the
values of the spacing and the radius varies by more than two

orders of magnitude. To ensure a consistent training of the
NN, without a bias towards larger values, the logarithm of
the spacing and the radius is used. This scaling also prevents
the NN predicting unrealistic negative values for these two
outputs.

As stated in Sect. 2.2, the NN has an input input vector
� = {x1, ..., xN}

T , and an output vector � = {y1, ..., yM}
T . In

the numerical examples considered in this work, the number
of inputs, N, is related the flow conditions and/or geometric
parameters, whereas the number of outputs M are the source
characteristics (i.e., position, spacing and radius r). When
Ntr training cases are considered, the input is an array of size
N × Ntr and the output is an array of size M × Nsrc × Ntr ,
where Nsrc is the number of global sources.

Different models can be used to train and predict the
characteristics of the global sources. The obvious choice
is to train one NN to predict all the source characteristics.
However, this work will also investigate the use of different
NNs to train source characteristics of different nature. For
instance, one NN can be trained to predict the position of the
sources, another NN to predict the spacing and another NN
to predict the radius. Another alternative would be to train
Nsrc NNs, each one trained to predict the characteristics of
a single source.

In terms of the implementation, TensorFlow 2.7.0 [28]
was used to construct the NNs considered in this work. To
ensure that the NN prediction capability is not heavily influ-
enced by the initial choice of the NN weights, the training
is performed five times for each experiment considered by
varying the seed values of the optimisation process. For
each training, a maximum of 500 epochs is considered and
the training is stopped when either the maximum number
of epochs is reached or no improvement in the objective

Fig. 4 Illustration of prediction stage using the trained NN and the process described in Algorithms 3 to reduce the set of sources before generat-
ing and mesh that can finally be used to compute a solution

Engineering with Computers

1 3

function is observed during 50 consecutive epochs. It is
worth noting that the batch size used in all the examples
considered is eight, which for the examples presented here
produced a better performance than the default value of 32
in TensorFlow.

To measure the accuracy of the NN predictions, the clas-
sical statistical R 2 measure [29] is considered for all the test
cases. To better illustrate the difficulty on predicting the dif-
ferent characteristics of mesh sources, the R 2 measure is
reported for the five characteristics independently (x, y and
z position of the source, spacing and radius).

3.4 Reducing the global set of sources

After the training stage, a NN is used to predict the char-
acteristics of the global set of sources for unseen cases.
Although it is possible to use the global set of sources
to generate a predicted mesh, removing from the list of
global sources entries that are redundant, has the potential
to speed up the generation process considerably. This is
because, during the mesh generation process, it is neces-
sary to compute the spacing induced by each source at a
point to take the minimum of all the spacings.

Sources with an associated spacing function adequately
described by other sources are classed as surplus. Algo-
rithm 3 describes the process devised to remove surplus
sources.

Algorithm 3 Process for removing inactive point sources
Input: List of global point sources G = {Λ1, . . . ,Λ|G|};

1: Create a vector, d, of dimension |G|, where the i-th component is di such
that δ(x) = δ̃, ∀x ∈ ∂Bdi,xi

, with δ̃ being the background spacing and
Bd,x0 = {x ∈ R3 | ‖x− x0‖2 ≤ d};

2: Insert the sources in an ADT;
3: Mark all sources as active: A ← G
4: for i ← 1 to |G| do
5: Search the ADT to create a list of sources: L ← {Λk ∈ G | Bk∩Bi �= ∅};
6: for j ← 1 to |L| do
7: if Λj ∈ A then
8: if δi < δj and ‖xi − xj‖2 < ri − rj then
9: A ← A \ {Λj};

10: else if δi > δj and ‖xi − xj‖2 < rj − ri then
11: A ← A \ {Λi};
12: break;
13: end if
14: end if
15: end for
16: end for
17: Initialise the list of visited sources: V ← ∅;
18: Initialise the list of reduced sources: R ← ∅;
19: while |V| < |A| do
20: Find Λk ∈ A such that δk = min

Λj∈A
{δj} and rk = max

Λj∈A
{rj};

21: Define a Cartesian grid of H := [xk−Rk, xk+Rk]× [yk−Rk, yk+Rk]×
[zk − Rk, zk + Rk] with
2Rk/δk	 equally-spaced points in each direction
and define the sampling points in the grid as pr,s,t

22: if ∃pr,s,t | δk(pr,s,t) < min
Λj∈R

{δj(pr,s,t)} then

23: R ← R∪ {Λk}
24: end if
25: V ← V ∪ {Λk}; ;
26: end while

 Engineering with Computers

1 3

The algorithm starts by determining the maximum
region of influence of each source, i.e. the region where
the computed spacing from the source reaches the maxi-
mum allowable spacing. All sources are inserted into an
ADT data structure to speed up the search process. For
each source in the global list, the ADT is searched to
identify sources that have an overlapping sphere with
the source under consideration. The source with a larger
spacing is removed if its associated sphere is inside the
associated sphere of the source with smaller spacing.

A further check is conducted to determine if the
region of influence of a source can be covered by mul-
tiple regions of influence of other sources. This is per-
formed in a discrete fashion, by using the spacing of the
source to divide the region of influence of the source

under consideration into a uniform local grid. The spac-
ing at each point of the local grid is evaluated using the
sources that have been already added to the list of reduced
sources. If the evaluated spacing at any point of the local
grid has a larger spacing that the spacing from the source
under consideration, the source is added to the list of
reduced sources.

Figure 4 illustrates the on-line stage of the proposed
approach.After the NN is trained, for a new set of design
parameters (flow conditions in this two dimensional exam-
ple), the NN is used to predict the characteristics of the
global sources. Using Algorithm 3, the sources are reduced.
This process ensures that the mesh generation stage does
not require a very large number of queries to compute the
spacing at a point. For the examples considered in this work,
Algorithm 3 produces a reduction of around 60% in the num-
ber of point sources.

Once the mesh is obtained, the standard CFD calculation
is performed. The illustrative example of Fig. 4 shows the
computed pressure field, which exhibits all the expected flow
features for this transonic case.

In an attempt to produce a smooth spacing function, line
sources are created using a group of point sources. Algo-
rithm 4 describes the process that is proposed for the crea-
tion of line sources from grouped point sources.An iterative

Fig. 5 Pressure coefficient, Cp ,
for three different flow condi-
tions

(a) M∞ = 0.41, α = 8.90◦ (b) M∞ = 0.79, α = 5.39◦ (c) M∞ = 0.80, α = 8.19◦

Fig. 6 Data sets for training (blue circles) and testing (red crosses) for
the example with varying flow conditions

Table 1 Three models used for training NNs able to predict the char-
acteristics of the sources

Model NN architecture

1 NN
1
 (x, y, z, �

0
 , r)

2 NN
1
 (x, y, z) NN

2
 (�

0
) NN

3
 (r)

3 NN
1
 (x) NN

2
 (y) NN

3
 (z) NN

4
 (�

0
) NN

5
 (r)

Engineering with Computers

1 3

50 100 150 200 250
Number of neurons per layer (Nn)

1

2

3

4

5

6
N
um

be
r
of

la
ye
rs

(N
l)

96

97

98

99

100

(a) x

50 100 150 200 250
Number of neurons per layer (Nn)

1

2

3

4

5

6

N
um

be
r
of

la
ye
rs

(N
l)

96

97

98

99

100

(b) y

50 100 150 200 250
Number of neurons per layer (Nn)

1

2

3

4

5

6

N
um

be
r
of

la
ye
rs

(N
l)

96

97

98

99

100

(c) z

50 100 150 200 250
Number of neurons per layer (Nn)

1

2

3

4

5

6

N
um

be
r
of

la
ye
rs

(N
l)

75

80

85

90

95

(d) δ0

50 100 150 200 250
Number of neurons per layer (Nn)

1

2

3

4

5

6

N
um

be
r
of

la
ye
rs

(N
l)

75

80

85

90

95

(e) r

Fig. 7 r2 for the five source characteristics as a function of the number of layers and number of neurons in each layer for model 2 and for the
example with varying flow conditions

(a) M∞ = 0.41, α = 8.90◦ (b) M∞ = 0.79, α = 5.39◦ (c) M∞ = 0.80, α = 8.19◦

Fig. 8 The regression plots for the spacing, �
0
 , for three flow conditions corresponding to a subsonic and two transonic cases

 Engineering with Computers

1 3

process is used to identify sources that have similar spac-
ing and their associated sphere intersects with the associ-
ated sphere of a source that has already been added to the
group. Orthogonal regression is then used to fit a plane to
the grouped point sources. The distance of each point source
to the plane is calculated, and the points with a distance
greater than their radius of influence are removed from the
group. The process of finding a best fit plane continues until
all points in the group are within the allowable distance.
The coordinates of the remaining point sources are projected
onto the best fit plane and used to compute the best fit line
using orthogonal regression. The process of removing points
from the group that do not satisfy the allowable distance
criteria will also be applied to the projected points. The fur-
thest two points remaining in the group will be used to form
a line source.

Fig. 9 R2 histogram for all test cases for the example with varying
flow conditions

0 40 80 120 160
Number of training cases (Ntr)

75

80

85

90

95

100

B
es
t
R

2

x

y

z

δ0
r

(a) Model 1

0 40 80 120 160
Number of training cases (Ntr)

75

80

85

90

95

100

B
es
t
R

2

x

y

z

δ0
r

(b) Model 2

0 40 80 120 160
Number of training cases (Ntr)

75

80

85

90

95

100

B
es
t
R

2

x

y

z

δ0
r

(c) Model 3

Fig. 10 Minimum R 2 for the five mesh characteristics as a function of the number of training cases for the three models of Table 1

(a) Target

(b) Model 1 (c) Model 2 (d) Model 3

Fig. 11 Target mesh and predicted meshes using the three models of Table 1 for M∞ = 0.79 and � = 5.39◦

Engineering with Computers

1 3

Algorithm 4 Process for merging point sources into line sources
Input: List of point sources: L = {Λ1, . . . ,Λ|L|};

1: Initialise the set of unused sources: U ← L;
2: while U �= ∅ do
3: Initialise the list of connected point sources: C ← ∅;
4: Find Λk ∈ U such that δk = min

Λj∈L
{δj};

5: Create the list of sources to be added: A ← {Λk};
6: Add sources to the list: C ← C ∪ A;
7: Mark sources as used: U ← U \ A;
8: NC ← 0;
9: while NC �= |C| do

10: NC ← |C|;
11: Ã ← ∅
12: for j ← 1 to |A| do
13: for i ← 1 to |L| do
14: if Λi ∈ U and max{δi, δk}/min{δi, δk} < γ and ‖xi −

xj‖2 < ri + rj then
15: Ã ← Ã ∪ {Λi};
16: end if
17: end for
18: end for
19: A ← Ã;
20: C ← C ∪ A;
21: U ← U \ A;
22: end while
23: NC ← 0;
24: while NC �= |C| do
25: NC ← ‖C‖;
26: X ← {xi}i=1,...,|C|;
27: Compute the plane P that fits the set of points X using orthogonal

regression, as described in Appendix A.1;
28: for i = 1 to |C| do
29: Compute the distance to the plane: di,P := min

x∈P

{‖x− xi‖2};
30: if di,P > ri then
31: C ← C \ {Λi};
32: U ← U ∪ {Λi};
33: end if
34: end for
35: end while
36: NC ← 0
37: while NC �= |C| do
38: NC ← |C|;
39: X ← {xi}i=1,...,|C|;
40: Compute the line L that fits the set of points X using orthogonal

regression, as described in Appendix A.2;

41: for i = 1 to |C| do
42: Compute the distance to the plane: di,L := min

x∈L

{‖x− xi‖2};
43: if di,L > ri then
44: C ← C \ {Λi};
45: U ← U ∪ {Λi};
46: end if
47: end for
48: end while
49: Find xi and xj such that ‖xi − xj‖2 = max

Λk,Λl∈C
‖xk − xl‖2;

50: Build a line source using the point sources Λi and Λj ;
51: end while

 Engineering with Computers

1 3

Fig. 12 Histogram of the ratio between the predicted and target spacing for the three models of Table 1

(a) M∞ = 0.41, α = 8.90◦ (b) M∞ = 0.79, α = 5.39◦ (c) M∞ = 0.80, α = 8.19◦

(d) M∞ = 0.41, α = 8.90◦ (e) M∞ = 0.79, α = 5.39◦ (f) M∞ = 0.80, α = 8.19◦

Fig. 13 Target (top row) and predicted (bottom row) meshes using model 2 for three flow conditions

(a) M∞ = 0.41, α = 8.90◦ (b) M∞ = 0.79, α = 5.39◦ (c) M∞ = 0.80, α = 8.19◦

Fig. 14 Pressure coefficient, Cp , for three different flow conditions, computed using the predicted near-optimal meshes of Fig. 13

Engineering with Computers

1 3

4 Numerical examples

This Section presents three numerical examples of increas-
ing difficulty to test the potential and applicability of the
proposed technique. The examples involve the prediction
of meshes for three dimensional CFD simulations involv-
ing inflow conditions and geometric parameters. One of the
challenges of the examples used is that the variation of the
input parameters induce different flow patterns that include
subsonic and transonic cases with different shock structures
and strength. Therefore, being able to predict the near-opti-
mal mesh for unseen cases is not an easy task.

4.1 Near‑optimal mesh predictions on the ONERA
M6 wing at various inflow conditions

The first example considers the prediction of near-optimal
meshes over a fixed geometry, with variable flow condi-
tions. The objective is to study the potential of the proposed
approach to accurately predict the sources that can be used
to generate near-optimal meshes for unseen flow conditions.
Numerical experiments are used to study the influence of the
hyperparameters and the size of the training set.

The geometry used in this example is the ONERA M6
wing [30] and the inviscid compressible flow conditions are
described by two parameters, namely the free-stream Mach
number, M∞ , and the angle of attack, � . It is worth noting
that the range used for the parameters, M∞ ∈ [0.3, 0.9] and
� ∈ [0◦, 12◦] leads to subsonic and transonic flows. This

means that the required meshes vary substantially with
respect to the flow conditions.

To illustrate the variation in the solution induced by the
parameters, Fig. 5 shows the pressure coefficient, Cp , for
three different combinations of the input parameters.For the
first set of input parameters, M∞ = 0.41 and � = 8.90◦ , the
flow is subsonic and the mesh should be refined near the
leading and trailing edges to capture the high variation of
the pressure on these regions. For the second set of inputs,
M∞ = 0.79 and � = 5.39◦ , the typical �-shock can be clearly
observed. Refinement near the discontinuity of the pressure
is therefore necessary to capture such abrupt changes in the
pressure field. Finally, for the last set of inputs, M∞ = 0.80
and � = 8.19◦ , the �-shock is also clearly visible, but at a dif-
ferent position and with a different strength when compared
to the second case. The simulations were performed using
the in-house flow solver FLITE [31] with unstructured tetra-
hedral meshes consisting of approximately 1.3 M elements
and 230K nodes. The surface mesh is made of approximately
20K triangular elements.

For training, a set with Ntr = 160 cases is considered
and a set with Ntst = 100 cases is considered for testing.
To minimise the undesired use of the trained NNs for
extrapolation, the training set is generated in the region of
interest, namely (M∞, �) ∈ [0.3, 0.9] × [0◦, 12◦] , whereas
the test set is generated using a reduced space, namely
(M∞, �) ∈ [0.33, 0.81] × [1.0◦, 11.0◦] . Both the training and
testing datasets are displayed in Fig. 6.

Table 2 Comparison of the
aerodynamic coefficients
computed with the target and
predicted meshes for three flow
conditions

M∞ = 0.41, � = 8.90◦ M∞ = 0.79, � = 5.39◦ M∞ = 0.80, � = 8.19◦

Target Prediction Target Prediction Target Prediction

C
L

0.605 0.603 0.469 0.468 0.722 0.723
C
D

0.0342 0.0340 0.0289 0.0287 0.0828 0.0828

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Target
Predicted

(a) M∞ = 0.41, α = 8.90◦

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Target
Predicted

(b) M∞ = 0.79, α = 5.39◦

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Target
Predicted

(c) M∞ = 0.80, α = 8.19◦

Fig. 15 Comparison of the pressure coefficient, Cp , for three different flow conditions, at one section

 Engineering with Computers

1 3

To produce sampling points that offer good coverage of
the parametric space, the training and testing datasets are
generated using scrambled Halton sequencing. The Halton
sequence is a sequence of points commonly used in numeri-
cal analysis and Monte Carlo simulations because it is deter-
ministic and the points generated have low discrepancy [32].
The scrambled Halton sequence is a modification of the

original Halton sequence to improve performance in higher
dimensions [33, 34].

It should be noted that when utilising data generated by
industry over the years, the training set will most likely not
correspond to a Hatlton sequencing. It would be expected
that the cases available have been decided by an expert engi-
neer and, therefore, would be specifically selected to cap-
ture sensitive areas of the flight envelope that undergo large

0 1 2 3 4 5 6
Root m

0

5

10

15

20

25
%

of
ca
se
s

Train
Test

(a)

0 1 2 3 4
Root n

0

5

10

15

20

25

30

35

40

%
of

ca
se
s

Train
Test

(b)

6 9 12 15 18 21 24
Root p

0

2

4

6

8

10

%
of

ca
se
s

Train
Test

(c)

0 1 2 3 4 5 6
Tip m

0

5

10

15

20

25

%
of

ca
se
s

Train
Test

(d)

0 1 2 3 4
Tip n

0

5

10

15

20

25

30

35

40

%
of

ca
se
s

Train
Test

(e)

6 9 12 15 18 21 24
Tip p

0

2

4

6

8

10

%
of

ca
se
s

Train
Test

(f)

Fig. 16 Histograms of the sampling data used for the training and test sets of the variable wing geometry

(a) NACA0010–NACA1115 (b) NACA4109–NACA6306 (c) NACA0012–NACA0007

Fig. 17 Pressure coefficient, Cp , for three different geometric configurations. For each case the first NACA corresponds to the root of the wing
and the second NACA corresponds to the tip

Engineering with Computers

1 3

changes in flow features. Such bias in parameter selection
is expected to improve the accuracy of the NNs. As such,
the random approach of the Halton sequencing taken in this
paper is a more conservative approach that requires more
training data.

The number of sources generated from the solutions of
the training and test datasets, computed using Algorithm 1,
varied between 2142 and 5593. The global set of sources
that resulted from the combination of sources described
in Algorithm 2 and used for training the NNs consisted of
19,345 sources.

Three different models could be used for predicting the
characteristics of the sources. All the models use the same
two inputs, but differ by the number of NNs required and the
number of predicted outputs for each NN. The first model
predicts the five characteristics of all the sources using a

0 40 80 120 160
Number of training cases (Ntr)

50

60

70

80

90

100

B
es
t
R

2

x

y

z

δ0
r

Fig. 18 Minimum R 2 for the five mesh characteristics as a function of
the number of training cases for the example with varying geometry

Fig. 19 Histogram of the ratio between the predicted and target spacing for the example with varying geometry

(a) NACA0010–NACA1115 (b) NACA4109–NACA6306 (c) NACA0012–NACA0007

(d) NACA0010–NACA1115 (e) NACA4109–NACA6306 (f) NACA0012–NACA0007

Fig. 20 Target (top row) and predicted (bottom row) meshes for three geometric configurations

 Engineering with Computers

1 3

single NN. The second model trains the location (three coor-
dinates) of all the sources using one NN, whereas the spac-
ing and radius are trained using two more NNs. The third
model trains each characteristic of all the sources separately,
requiring the training of five NNs. The three models under
consideration are summarised in Table 1.

Three further models could be considered, where the
training of each source is performed independently. For
instance, Nsrc NNs could be trained to predict the five char-
acteristics of each source. Similarly, three NNs could be
trained per source or even five NNs per source. These three
models are not considered in the current work because they
become impractical for realistic problems involving a large
number of sources. Not only the training requires the con-
struction of thousands of NNs, but also the prediction stage
requires loading the weights of thousands of NNs to com-
pute the required spacing.

To compare the three models described in Table 1,
first the hyperparameters of each NN are tuned. Figure 7
shows the variation of the R 2 as a function of the number of

layers and the number of neurons in each layer when using
NTr = 160 training cases.It is worth noting that a different
colour scale is used for the coordinates and the remaining
two characteristics, i.e. spacing and radius. The results show
that it is substantially more difficult to predict the spacing
and radius, compared to the coordinates of the source. In
addition, the accuracy of the predicted coordinates is almost
insensitive to the NN architecture, whereas the spacing and
radius benefit from using a particular choice of hyperparam-
eters. The most suitable architecture for this example would
be a NN with three hidden layers and 25 neurons per layer.
This will provide the best possible accuracy for all the char-
acteristics whilst minimising the size of the NN.

Figure 8 shows the regression plot for the spacing, for
three flow conditions that correspond to a subsonic and two
transonic cases.It is worth noting that the R 2 value for all
cases is above 90, despite the substantial difference in flow
features between a subsonic and a transonic case. This shows
the robustness of the proposed approach when predicting the

(a) NACA0010–NACA1115 (b) NACA4109–NACA6306 (c) NACA0012–NACA0007

Fig. 21 Pressure coefficient, Cp , for three different geometric configurations, computed using the predicted near-optimal meshes of Fig. 20

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Target
Predicted

(a) NACA0010–NACA1115

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Target
Predicted

(b) NACA4109–NACA6306

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Target
Predicted

(c) NACA0012–NACA0007

Fig. 22 Comparison of the pressure coefficient, Cp , for three different geometric configurations, at one section

Engineering with Computers

1 3

spacing of each source, which is the most difficult quantity
to predict accurately.

The histogram in Fig. 9 shows the R 2 for all test cases.The
results show that only one test case has an R 2 value below
90 and the average R 2 is above 96. This demonstrates the
accuracy of the predictions for unseen cases encompassing
both subsonic and transonic flow features.

The next experiment aims to investigate the influence of
the number of training cases, Ntr , in the accuracy of the pre-
dictions and the performance of the three models described
in Table 1. Figure 10 shows the minimum R 2 for the five
mesh characteristics as a function of the number of training
cases, for the three models of Table 1.The minimum number
of training cases used was 10, and it was increased until the
total number of available cases was selected. All the test
cases were used in assessing the accuracy of the selected
NN regardless of the number of training cases used. For each

number of training cases, the hyperparameters were tuned,
as presented earlier.

The results show that very few training cases are required
to perform accurate predictions of the coordinates of the
sources. This is expected because, as explained in Sect. 3.2,
sources are grouped based on proximity. The prediction of
the spacing and radius is much more challenging and the
results show that models 2 and 3 are able to outperform
model 1. This is because both models 2 and 3 train an inde-
pendent NN to predict the spacing and radius, whereas in the
first model, a single NN is used to predict all characteristics.
The performance of models 2 and 3 is almost identical.

To illustrate the potential of the proposed approach, the
trained NNs are next used to predict the characteristics of
the sources and near-optimal meshes are generated and
compared with target meshes. All the meshes are generated
following the process to eliminate surplus point sources

(a) NACA3114–NACA1113,
M∞ = 0.69, α = 3.00◦

(b) NACA5421–NACA2116,
M∞ = 0.74, α = 5.60◦

(c) NACA2121–NACA4409,
M∞ = 0.86, α = −3.10◦

Fig. 23 Pressure coefficient, Cp , for three different geometric configurations and flow conditions. For each case the first NACA corresponds to
the root of the wing and the second NACA corresponds to the tip

0 200 400 600 800 1000 1200 1400
Number of training cases (Ntr)

50

60

70

80

90

100

B
es
t
R

2

x

y

z

δ0
r

(a) Increasing geometry

0 200 400 600 800 1000 1200 1400
Number of training cases (Ntr)

50

60

70

80

90

100

B
es
t
R

2

x

y

z

δ0
r

(b) Increasing flow conditions

0 200 400 600 800 1000 1200 1400
Number of training cases (Ntr)

50

60

70

80

90

100

B
es
t
R

2

x

y

z

δ0
r

(c) Increasing both

Fig. 24 Minimum R 2 for the five mesh characteristics as a function of the number of training cases for the example with varying flow conditions
and geometry. Three different strategies of increasing the number of training cases are considered

 Engineering with Computers

1 3

described in Algorithm 3. In addition, point sources are
merged into line sources using Algorithm 4.

Figure 11 shows the target mesh and the predictions using
the three models of Table 1.The flow conditions corresponds
to M∞ = 0.79 and � = 5.39◦ . The meshes produced with the
three models exhibit the refinement required to capture the
most important features of this transonic flow. However,
model 1 predicts a larger spacing near the location of the
shock, whereas the characteristics of the sources produced
by models 2 and 3 produce a spacing much more similar
to the target. It is worth noting that the only difference
between models 2 and 3 is the prediction in the location of
the sources. It is expected that the position of the sources is
more accurate in model 3 because independent NNs are used

for each one of the three coordinates. However, the gain is
expected to be negligible because the previous experiments
showed that the location of the sources is the easiest quantity
to predict, even when using a very reduced training set.

To further illustrate the performance of each model,
the spacing function induced by the predicted sources is
compared with the spacing function induced by the target
sources. To this end, the spacing induced by the predicted
sources is compared to the target spacing at the centroid
of each element of the target mesh, for all test cases. Fig-
ure 12 shows the histogram of the ratio between predicted
and target spacing for the three models.The minimum and
maximum values for each bin in the histogram are depicted
with red error bars, whereas the orange bar represents the

Fig. 25 Histogram of the ratio between the predicted and target spacing for the example with varying flow conditions and geometry

(a) NACA3114–NACA1113,
M∞ = 0.69, α = 3.00◦

(b) NACA5421–NACA2116,
M∞ = 0.74, α = 5.60◦

(c) NACA2121–NACA4409,
M∞ = 0.86, α = −3.10◦

(d) NACA3114–NACA1113,
M∞ = 0.69, α = 3.00◦

(e) NACA5421–NACA2116,
M∞ = 0.74, α = 5.60◦

(f) NACA2121–NACA4409,
M∞ = 0.86, α = −3.10◦

Fig. 26 Target (top row) and predicted (bottom row) meshes for three flow conditions and geometric configurations

Engineering with Computers

1 3

standard deviation from the mean. A value of the ratio
between 1/1.25 and 1.25 is considered extremely accurate
and it should produce a mesh able to capture all the targeted
flow features. Values of the ratio higher than 1.25 indicate
that there are regions where the NN predicts a larger spac-
ing, resulting in an under-refined mesh that can lead to miss-
ing some flow features. Similarly, a value of the ratio below
1/1.25 indicates that there are regions where the NN predicts
a smaller spacing, resulting in regions unnecessarily refined.

The results in Fig. 12 show a very similar performance
of the three models. Model 1 exhibits a slightly lower value
in the middle bin, whereas the bin between 1.15 and 1.25
contains a larger percentage of elements when compared to
models 2 and 3. It can also be observed that the worst per-
forming case for model 1 is less accurate than the worst case
produced from models 2 and 3. The performance of models
2 and 3 is very similar, with a marginal better performance
provided by model 3.

Using the best available NN in model 3, the predicted
sources for the three test cases are used to produce the near-
optimal meshes for the cases shown in Fig. 5. Figure 13
shows the target and predicted meshes for three different
flow conditions.The results clearly show the ability of the
proposed technique to produce meshes that are locally
refined near the relevant regions, with no manual interac-
tion and no required user expertise.

The solutions obtained using the predicted near-optimal
meshes are shown in Fig. 14.To further compare the accu-
racy of the solutions obtained on the predicted near-optimal

meshes, Fig. 15 compares the pressure coefficient, at one
section of the wing, to the pressure coefficient computed
with the target mesh.The results indicate that, regardless
of the flow regime, the resolution of all flow features are
captured equally well by the meshes generated using the
predicted and target sources.

Finally, the lift, CL , and drag, CD , coefficients obtained
from the simulations using the meshes generated from the
target sources and the meshes generated from the predicted
sources are compared in Table 2.A maximum difference
of two lift counts and two drag counts, further confirms
the ability of the trained sources to construct the required
meshes for unseen cases.

An alternative approach to using a NN to predict a near-
optimal mesh for an unseen test case would be to use an opti-
mal mesh from a similar flight condition from the training
dataset. A case from the unseen test set is selected to com-
pare this alternative method with the NN approach presented
in this paper. The case used is a transonic case, where the
optimal mesh varies significantly as the parameters change,
and the accuracy of the solution is very sensitive to using
an appropriate mesh.

Taking an example flight condition of (M∞, �) being
(0.79, 5.39◦) , above, the nearest training cases in the para-
metric space corresponds to (M∞, �) equal to (0.82, 5.34◦) .
Taking the optimal mesh from the training case and using it
on the unseen test flight condition, a solution using the given
mesh is obtained.

(a) NACA3114–NACA1113,
M∞ = 0.69, α = 3.00◦

(b) NACA5421–NACA2116,
M∞ = 0.74, α = 5.60◦

(c) NACA2121–NACA4409,
M∞ = 0.86, α = −3.10◦

Fig. 27 Pressure coefficient, Cp , for three different flow conditions and geometric configurations, computed using the predicted near-optimal
meshes of Fig. 27

Table 3 Comparison of the
aerodynamic coefficients
computed with the target and
predicted meshes for three
geometric configurations

NACA0010–NACA1115 NACA4109–NACA6306 NACA0012–
NACA00072

Target Prediction Target Prediction Target Prediction

C
L

0.377 0.377 0.751 0.754 0.311 0.312
C
D

0.0275 0.0273 0.0851 0.0853 0.0154 0.0154

 Engineering with Computers

1 3

Comparing the lift, CL , and drag, CD , coefficients obtained
using the two methods, a very large difference is found
between the expected target results and the obtained results
using a mesh from a similar case. The difference being 8 lift
counts and 12 drag counts, which is beyond what is to be
tolerated. Whereas the NN could accurately predict a mesh
able to capture the solution within one lift and drag count of
the target solution.

4.2 Near‑optimal mesh predictions on a variable
wing geometry at fixed inflow condition

The second example involves the prediction of near-optimal
meshes for a geometrically parametrised wing at a fixed tran-
sonic condition of M∞ = 0.85 and � = 3◦ . The geometry is
constructed from two different four-digit NACA aerofoils
placed at the root and the tip of the wing. A linear variation
of the geometry is considered in the span direction of the
wing. The three parameters of each four-digit NACA aero-
foil form the input of the NN. Given the better performance
of the model 3 architecture demonstrated in the previous
example, this and the following example in Sect. 4.3, only
use this model type for the NNs.

Halton sequencing of the six input parameters is used
to generate a training dataset consisting of Ntr = 160 train-
ing cases. For both aerofoils, the range of the maximum
camber, m, is taken between 0 and 6, the range of location
of the maximum camber, n, is set between 0 and 4 (corre-
sponding to 0% and 40% of the chord) and the range of the
thickness, p, is set between 6 and 24. A further dataset of
Ntst = 40 test cases is also generated using Halton sequenc-
ing. As in the previous example, the range of inputs used
to generate the test cases is slightly modified to minimise
the undesired use of the trained NNs for extrapolation. To

Table 4 Comparison of the
aerodynamic coefficients
computed with the target and
predicted meshes for three
geometric configurations

NACA3314–NACA1113 NACA5421–NACA2116 NACA2121–NACA4409

M∞ = 0.69 , � = 3.00◦ M∞ = 0.74 , � = 5.60◦ M∞ = 0.86 , � = −3.10◦

Target Prediction Target Prediction Target Prediction

C
L

0.435 0.436 0.805 0.804 −0.021 −0.020
C
D

0.0158 0.0162 0.1009 0.1013 0.0509 0.0508

Table 5 Details of the algorithm and HPC facilities used

Type of core CPU
Number of cores (Mesh generation) 1
Number of cores (CFD) 24–64
Number of cores (NN) 1
CPU Model IntelⓇ XeonⓇ Gold 6252
Memory available 96GB-192GB
Platform Local server
Geographical location United Kingdom
Real CPU usage factor 1.0
Power usage efficiency (PUE) 1.4

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Target
Predicted

(a) NACA3114–NACA1113,
M∞ = 0.69, α = 3.00◦

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Target
Predicted

(b) NACA5421–NACA2116,
M∞ = 0.74, α = 5.60◦

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−1.5

−1.0

−0.5

0.0

0.5

1.0

C
p

Target
Predicted

(c) NACA2121–NACA4409,
M∞ = 0.86, α = −3.10◦

Fig. 28 Comparison of the pressure coefficient, Cp , for three different flow conditions and geometric configurations, at one section

Engineering with Computers

1 3

illustrate the training and test datasets employed, Fig. 16
displays a histogram of the two datasets.

For each training and test case, the CFD solution is
obtained using FLITE [31] on an unstructured tetrahedral
mesh consisting of approximately 1.3 M elements and
250K nodes. Figure 17 shows the pressure coefficient, Cp ,
on the surface and a cut across the wing for three geom-
etries from the test set.The number of sources generated
from the solution of each case in the datasets, based on
Algorithm 1, varied between 3,949 and 7,571. The global
set of sources that resulted from the combination of
sources described in Algorithm 2, and used for training,
consisted of 48,503 sources.

Following the rationale of the previous example, the
influence of the number of training cases on the accuracy
of the predictions is studied. For each number of training
cases, the NN architecture is tuned by varying the num-
ber of hidden layers and neurons in each layer. Figure 18
shows the minimum R 2 for the five mesh characteristics
as a function of the number of training cases.Similar to
the previous example, predicting the coordinates of the
sources requires very few training cases to achieve an
excellent predicting accuracy. Predicting the spacing and
radius of the sources is more difficult, but with 40 training
cases the lowest R 2 is already above 80. It is worth noting
that the same level of R 2 achieved in the first example is
not reached. This is mainly attributed to the fact that in
both cases the maximum number of training cases is 160
but this example contains three times more parameters. In
addition, it is worth noting that the parameters considered

in this example are geometric parameters and it is usu-
ally more difficult to generate reduced order models, when
compared to flow conditions [12, 35].

To quantify the ability of the model to predict the correct
characteristics of the sources that produces a mesh compa-
rable to the target mesh, the ratio between the spacing com-
puted using the predicted sources and the target sources at
the centroid of the elements was evaluated. Figure 19 shows
the histogram of the ratio between predicted and target spac-
ing.The results show that, despite the reduced size of the
training dataset, less than 5% of the elements generated for
all test cases have a spacing more than double the target
spacing. The results suggest that more training cases that
better sample the parametric space are needed. This can be
achieved using a more generic definition of the geometry
and eliminating the need to have the NACA digits as integer
values.

Using the best available NN, the predicted sources are
used to produce the near-optimal meshes for the three test
cases outlined in Fig. 17. Figure 20 shows the target and
predicted meshes for the three different geometric configura-
tions.Despite the low number of training cases used for this
problem involving six geometric parameters, the proposed
approach is able to predict near-optimal meshes, capturing
the local refinement required for different geometric con-
figurations. It is worth noting that the last geometric case
considered in Fig. 20 corresponds to a point near the bound-
ary of the six-dimensional parametric space and therefore
the accuracy of the prediction is expected to be lower, when
compared to other cases.

The solutions obtained using the predicted near-optimal
meshes are shown in Fig. 21.To better compare the accuracy
of the solutions obtained on predicted near-optimal meshes,
Fig. 22 compares the pressure coefficient, at one section of
the wing, with the pressure coefficient computed with the
target mesh.The comparison of pressure coefficients shows
that, despite some differences that can be observed on the
predicted meshes of Fig. 20, the predicted near-optimal
meshes are capable of capturing all the flow features. To

Fig. 29 Fine mesh around the M6 wing

Table 6 Carbon footprint and energy consumption for the parametric
study using a fixed mesh capable of accurately capturing all the solu-
tions

Task Wall clock (H) Carbon (Kg
CO

2
e)

Energy (MWh)

Mesh generation 1.0 3.61 × 10−3 5.89 × 10−5

CFD solution 3,432.10 527.17 2.28
Total 3,433.0 527.17 2.28

Table 7 Carbon footprint and energy consumption for the parametric
study using the proposed approach to train a NN, including tuning the
hyperparameters, predict the near-optimal meshes and run the CFD
simulations

Task Wall clock (H) Carbon
(Kg CO

2

e)

Energy (MWh)

NN tuning and training 156.6 2.13 9.22 × 10−3

Mesh generation 23.8 0.32 1.40 × 10−3

CFD solution 143.0 12.36 5.35 × 10−2

Total 323.4 14.81 0.064

 Engineering with Computers

1 3

confirm this finding, the lift, CL , and drag, CD , coefficients
obtained from the simulations using the meshes generated
from the target sources and the meshes generated from the
predicted sources are compared in Table 3.A maximum
difference of only three lift counts and two drag counts,
confirms the ability of the trained sources to construct the
required meshes for unseen cases.

4.3 Near‑optimal mesh predictions at various
inflow conditions on a variable wing geometry

The last example involves the prediction of near-optimal
meshes for a geometrically parameterised wing at vari-
able flow conditions. The geometry is the same used in the
example of Sect. 4.2, whereas the flow conditions consider
a Mach number and angle of attack between [0.6, 0.9] and
[−4◦, 10◦] , respectively.

A Halton sequencing of the six geometric parameters
is used to generate a dataset consisting of 52 cases. For
each value of the geometric parameters, a Halton sequenc-
ing of the two flow parameters was used to generate a
dataset that consisted of 24 cases. The combination of
the two datasets provides the final dataset that consisted
of Ntr = 52 × 24 = 1, 248 training cases. The same pro-
cedure was used to generate a test dataset that contains
Ntst = 8 × 24 = 192 cases.

For each case in the training and test datasets, the
solution is obtained using the FLITE [31] solver and an
unstructured tetrahedral mesh consisting of approximately
1.3 M elements and 250K nodes. The distribution of the
pressure coefficient for three test cases is shown in Fig. 23.

The number of sources generated from the solution of
each case in the datasets, based on Algorithm 1, varied
between 1,533 and 7,582. The global set of sources that
resulted from the combination of sources described in Algo-
rithm 2, and used for training, consisted of 54,713 sources.
The influence of the number of training cases in the accuracy
of the predictions is studied next. To better understand the
importance of the flow and geometric parameters separately,
the increase of the number of training cases is performed in
three different ways. First, the number of training cases are
increased by increasing only the number of geometric con-
figurations, starting with 3 cases and doubling the number
of geometric cases until all geometric configurations avail-
able are considered. For each geometric configuration, the
24 available flow conditions were used. Second, the number
of training cases are increased by increasing only the number
of flow conditions considered. Finally, the increase in the
number of training cases is performed by not distinguishing
the type of parameters, so increasing both the number of
flow conditions and geometric configurations is considered.

Figure 24 shows the minimum R 2 , for the five mesh
characteristics, as a function of the number of training
cases.The qualitative behaviour is similar to the previous
examples. With a very reduced dataset for eight param-
eters, it is possible to produce very accurate predictions
of the coordinates of the sources, whereas accurate pre-
dictions of the spacing and radius require a significant
increase in the number of training cases. For a given num-
ber of training cases, the best NN architecture was found
by varying the number of hidden layers and neurons in
each layer, following the same process described in previ-
ous examples.

To quantify the ability of the model to predict the correct
characteristics of the sources that produces a mesh compa-
rable to the target mesh, the ratio between the spacing com-
puted using the predicted sources and the target sources at
the centroid of the elements of the target mesh is evaluated.
Figure 25 shows the histogram of the ratio between predicted
and target spacing.Despite the larger number of parameters
and the different nature of the parameters involved, the
results show that less than 5% of the elements generated
for all test cases have a spacing more than double the target
spacing.

Using the predicted characteristics of the sources, meshes
for the three test cases shown in Fig. 23 are produced, and
compared to the meshes obtained with the target charac-
teristics. As in the previous examples, all the meshes are
generated following the process to eliminate surplus point
sources described in Algorithm 3 and merging point sources
into line sources using Algorithm 4. Figure 26 shows the
target and predicted meshes for the three different geometric
configurations.The results show that the proposed approach
is able to predict the characteristics of the sources in such
a way that the generated meshes provide appropriate mesh
resolution near the regions where is needed. The smoothness
of the spacing function in the second and third test cases
of Fig. 26 could be improved by increasing the number of
training cases or by modifying the similarity tolerance used
for grouping sources.

To analyse the ability of the near-optimal meshes gener-
ated to capture the required flow features, Fig. 27 shows the
pressure coefficient distribution obtained with the predicted
meshes of Fig. 26.To better quantify the accuracy of the
solutions obtained on predicted near-optimal meshes, Fig. 28
compares the pressure coefficient, at one section of the wing,
with the pressure coefficient computed with the target mesh.
It can be clearly observed that despite the lack of smoothness
in the spacing functions obtained with the predicted char-
acteristics of the sources, the near-optimal meshes are able
to correctly capture all the required flow features, offering
an excellent agreement with the solutions computed on the
target meshes.

Engineering with Computers

1 3

Finally, the lift and drag coefficients resulted from the
simulation using the mesh generated from target sources and
the mesh generated from the predicted sources are compared
in Table 4.A maximum difference of only one lift count and
four drag counts confirms the ability of the trained NNs to
predict the characteristics of the mesh sources for unseen
cases.

5 Efficiency and environmental implications

The strategy proposed in this work relies on training a
relatively large number of NNs using deep learning. The
accuracy of the predictions has been evaluated and the
implications in terms of reducing the number of hours
required to produce near-optimal meshes for simulation
are clear. However, in the last few years there have been
growing concerns about the environmental impact of train-
ing large models using NNs [10, 36]. This is because the
majority of articles found in the literature tend to focus on
the accuracy of the predictions, but ignore the resources
required to train and tune the NNs.

This Section aims at analysing the efficiency of the pro-
posed approach to demonstrate that the strategy presented
can be labelled as Green AI research [10], in the sense that
it reduces the computational cost that is currently required
in industry to achieve similar results.

When considering the computational and environmental
impact of a methodology based on deep learning, several
factors must be taken into consideration. These factors
include not only the training time for one model, but also
the time required to perform the hyperparameter tuning. In
addition, other factors such as the computing infrastructure
used, the hardware architecture or even the geographical
location of the high performance computing (HPC) facili-
ties employed [36, 37].

In this work, the model developed in [36] to estimate
the carbon footprint of a computation is considered. The
characteristics of the HPC facilities used in all the compu-
tations presented in this work are summarised in Table 5.
The algorithms involved, when measuring the efficiency of
the proposed approach, are the mesh generation algorithm,
the CFD solver and the NN training. The mesh generator
runs on a single processor. The CFD solver runs on 24
processors for meshes between 5 M to 6.5 M elements and
on 64 processors for a mesh of 40 M elements. Finally, the
training of the NN is performed using a single processor.

To analyse the efficiency and environmental impact of
the methodology proposed in this work, the common task
of performing CFD computations for a varying free-stream
Mach number and angle of attack is considered. This cor-
responds to the first example described in Sect. 4.1. The

free-stream Mach number varies between 0.3 and 0.9, and
computations are performed in steps of 0.05. The angle of
attack varies between −4◦ and 12◦ , and computations are
performed in steps of 1.6◦ . This means that a total of 143
CFD computations are required.

The most common approach considered in industry when
performing this parametric study consists of generating a
fixed, very fine, mesh that is capable of capturing the solu-
tion for all the cases of interest [38]. This is done in practice
to minimise the time consuming task of generating a mesh
tailored for every single case, which is not only difficult, but
actually requires a significant amount of human intervention.
For the example considered here, an unstructured mesh of
40 M tetrahedral elements is generated. A detailed view of
the fine mesh generated is shown in Fig. 29.The genera-
tion of this mesh takes only one hour on a single processor.
However, the implications of generating a single mesh are
substantial when running the CFD solver. In this example,
each CFD simulation takes 24 h using 64 processors, which
implies a server memory capacity of 192GB. This amounts
for a total of 3,432 h to compute the 143 solutions required.

Table 6 summarises the carbon footprint and energy con-
sumption induced by the process of computing the 143 solu-
tions with a fixed mesh.The footprint is obviously dominated
by the CFD calculations and the total amount is equivalent
to more than 3000 km in a passenger car, or almost a flight
from New York City to San Francisco [36].

The alternative, proposed in this work, is to train a NN
with all the data that is currently available in industry and
use the predictions to generate tailored near-optimal meshes
for each case. With this strategy the mesh generation stage
is no longer time consuming and does not require the input
of an expert engineer. In the current example, each near-
optimal mesh is generated in 10 min using a single proces-
sor. The near-optimal meshes have between 5 M and 6.5 M
elements for all the cases considered, which is a fraction of
the number of elements required for the fixed-mesh approach
currently employed in practice. For the near-optimal meshes,
the CFD simulations run on 24 processors, with 96GB avail-
able memory, and the solution requires between 40 min and
one hour and 20 min. It is worth noting that the variation of
the time required for the solution is induced by the variation
in the mesh that is required for each case.

Table 7 summarises the carbon footprint and energy con-
sumption induced by the proposed approach.This includes
the resources required to tune the hyperparameters of the
network, the generation of 143 near-optimal meshes and the
associated CFD simulations. It is worth noting that the time
required for tuning accounts for the fact that the experiments
to tune the NNs were repeated five times, to minimise the
effect of the random initialisation of the NN weights.

The footprint of the proposed approach is dominated by
the tuning of the NN, which is a figure that is not reported

 Engineering with Computers

1 3

on many occasions [10]. Despite a grid search was used
to find the best hyperparameters and experiments were
repeated five times, the total carbon footprint and energy
consumption is more than 35 times lower than using the
common practice of running all cases on a single mesh.

It is worth noting that it is possible to reduce the com-
putational cost of performing the simulations in a very
fine mesh by utilising the solution with a certain Mach
number and/or angle of attack for another case. However,
it is very important to note that the proposed approach also
permits this type of solution restarting after interpolating
one computed solution to a new predicted mesh. There-
fore, the gain is expected to be very similar to the one
reported here. In addition, it is worth mentioning that on
some occasions this restarting approach is not preferred
because it requires running all the cases serially.

6 Concluding remarks

A novel method to predict the characteristics of sources that
are used to control the spacing in an unstructured mesh gen-
eration algorithm has been proposed. The method provides
the ability to automatically predict the near-optimal mesh for
an unseen flow condition or geometric configuration, using
historic data accumulated from previous CFD analysis.

It is assumed that a database of accurate solutions is
available for a variety of flow conditions and/or geometric
configurations. The strategy involves four steps. First, for
every solution available, a set of mesh sources is created.
Each source has five characteristics, namely the three spatial
coordinates, the spacing required at the vicinity of the point
and the radius of influence. A procedure to create the sources
that will enable reproducing the spacing function that will
produce a mesh capable of accurately reproducing the given
solution is proposed. The second step involves combining
the sources of multiple cases into a single set of global mesh
sources. A process to combine the sources into a global set
is proposed. The resulting set of global sources will enable
the generation of meshes that are suitable to capture all the
solutions of a given set of cases. The third step involves
the use of machine learning. A NN is trained to predict the
characteristics of the global set of sources. Once trained, the
NN is used to predict the characteristics of the mesh sources
for unseen flow conditions and/or geometric configurations.
The last step, aimed at improving the efficiency of the mesh
generation process, removes surplus sources and merge point
sources into line sources when possible.

The ability of the proposed strategy to predict the near-
optimal mesh for unseen flow conditions and/or geometric
configurations is tested using three numerical examples. The
examples utilise a database of three dimensional inviscid
compressible flow solutions for varying inflow conditions

and geometric parameters. Numerical experiments are
reported to show the influence of the NN architecture and
the size of the training dataset in the prediction capability
of the NN. Even with a reduced training dataset, the mesh
characteristics are accurately predicted. Furthermore, the
near-optimal meshes constructed with the predicted charac-
teristics of the sources are used to compute CFD solutions.
The results show that even in the most complicated example,
with eight parameters of different nature (i.e. flow condi-
tions and geometric parameters), the resulting meshes lead
to accurate CFD solutions. More precisely, the computed
aerodynamic quantities using the near-optimal meshes are
within the required accuracy for the aerospace industry, i.e.
less than five lift/drag counts difference with respect to the
target solution.

To conclude, the proposed approach was analysed in
terms of efficiency and the environmental implications were
discussed. The analysis showed that the technique proposed
in this work is capable of reducing the carbon footprint
of computations by a factor of 35, when compared to the
current practice in industry. This factor was obtained by
accounting for the whole cost of the proposed technique,
that is including the resources required to train multiple NN
and fine tune the hyperparameters.

Total least‑squares approximations in three
dimensions

Finding the plane or line that produces the best fit to a given
set of points is a classical problem in many applications of
science and engineering. To define what is considered the
best fit, it is necessary to specify a measure for the deviation
of a point with respect to a plane or line. On many occa-
sions, a simple measure that involves one of the coordinates
is considered, but the result is highly dependent on the par-
ticular arrangement of the given set of points. This section
describes the procedure to fit a plane or a line to a set of
points in three dimensions by employing the true distance,
measured in the orthogonal direction. This is a particular
case of the technique usually referred to as the total least-
squares.[9]

Fitting a plane to a set of points using orthogonal
regression

Let us consider a set of n points in ℝ3 , denoted by
X = {xi}i=1,…,n , and a plane, P , defined by a point x0 ∈ ℝ

3
and a unit normal vector n . By definition, a point x ∈ P

Engineering with Computers

1 3

satisfies n ⋅ (x − x0) = 0 . A generic point xi ∈ X can be
expressed as

where �i = n ⋅ (xi − x0) is the distance from the point
xi to the plane P , �i is the distance from the orthogonal
projection of xi onto P , namely x̂i , to the point x0 and
t = (x̂i − x0)∕‖x̂i − x0)‖.

To find the plane that best fits the given set of points, the
point x0 and the unit normal vector n that minimises the
energy function given by

are sought, where M ∶=

n∑
i=1

(
xi − x0

)(
xi − x0

)T.

To simplify the minimisation problem, the point x0 is
taken as the average position of the given set of points X ,

namely x0 =
n∑
i=1

xi∕n . With this choice, the energy function

becomes a quadratic form and the unit normal vector n that
provides the minimum of E(n) is simply the normalised
eigenvector corresponding to the minimum eigenvalue of the
matrix M.

Fitting a line to a set of points using orthogonal
regression

Let us consider a set of n points in ℝ3 , denoted by
X = {xi}i=1,…,n , and a line, � , defined by a point x0 ∈ ℝ

3
and a unit vector t . By definition, a point x ∈ � satisfies
t × (x − x0) = 0 . A generic point xi ∈ X can be expressed as

where �i = t ⋅ (xi − x0) is the distance from x0 to the orthog-
onal projection of xi onto the line � , namely x̂i . The coeffi-
cient �i = ‖xi − x̂i‖ = ‖xi − x0 − �it‖ represents the distance
from xi to its orthogonal projection onto the line �.

To find the line that best fits the given set of points, the
point x0 and the unit vector t that minimises the energy func-
tion given by

a r e s o u g h t , w h e r e M̂ = tr (M)I −M a n d

M ∶=

n∑
i=1

(
xi − x0

)(
xi − x0

)T.

(13)xi = x0 + �in + �it,

(14)E(x0, n) =

n∑
i=1

�2
i
= nTMn

(15)xi = x0 + �in + �it,

(16)E(x0, t) =

n∑
i=1

�2
i
= tTM̂t

To simplify the minimisation problem, the point x0 is
taken as the average position of the given set of points X ,

namely x0 =
n∑
i=1

xi∕n . With this choice, the energy func-

tion becomes a quadratic form and the unit vector t that
provides the minimum of E(t) is the normalised eigenvec-
tor corresponding to the minimum eigenvalue of the
matrix M̂.

Acknowledgements The authors are grateful for the financial support
provided by the Engineering and Physical Sciences Research Council
(EP/T517987/1).

Declarations

 Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Dawes W, Dhanasekaran P, Demargne A, Kellar W, Savill A
(2001) Reducing bottlenecks in the CAD-to-mesh-to-solution
cycle time to allow CFD to participate in design. J Turbomach
123(3):552–557

 2. Slotnick, J.P., Khodadoust, A., Alonso, J., Darmofal, D., Gropp,
W., Lurie, E., Mavriplis, D.J.: CFD vision 2030 study: a path to
revolutionary computational aerosciences. Technical report (2014)

 3. Karman SL, Wyman N, Steinbrenner J (2017) Mesh generation
challenges: A commercial software perspective. In: 23rd AIAA
Computational Fluid Dynamics Conference, p 3790

 4. Peraire J, Peiro J, Morgan K (1992) Adaptive remeshing for three-
dimensional compressible flow computations. J Comput Phys
103(2):269–285

 5. Thompson JF, Soni BK, Weatherill NP (1998) Handbook of Grid
Generation. CRC Press, Boca Raton

 6. Löhner R (2008) Applied Computational Fluid Dynamics Tech-
niques: an Introduction Based on Finite Element Methods. John
Wiley & Sons, Chichester

 7. George PL, Borouchaki H, Alauzet F, Laug P, Loseille A, Mar-
cum D, Maréchal L (2017) Mesh generation and mesh adaptivity:
Theory and techniques. In: Stein, E., de Borst, R., Hughes, T.J.R.
(eds.) Encyclopedia of Computational Mechanics Second Edition
vol. Part 1 Fundamentals. John Wiley & Sons, Ltd., Chichester .
Chap. 7

 8. Loseille A, Dervieux A, Alauzet F (2010) Fully anisotropic goal-
oriented mesh adaptation for 3D steady Euler equations. J Comput
Phys 229(8):2866–2897

http://creativecommons.org/licenses/by/4.0/

 Engineering with Computers

1 3

 9. Golub GH, Hansen PC, O’Leary DP (1999) Tikhonov regu-
larization and total least squares. SIAM J Matrix Anal Appl
21(1):185–194

 10. Schwartz R, Dodge J, Smith NA, Etzioni O (2020) Green ai. Com-
mun ACM 63(12):54–63

 11. Pfaff T, Fortunato M, Sanchez-Gonzalez A, Battaglia PW (2020)
Learning mesh-based simulation with graph networks. In: Inter-
national Conference on Learning Representations

 12. Balla K, Sevilla R, Hassan O, Morgan K (2021) An application
of neural networks to the prediction of aerodynamic coefficients
of aerofoils and wings. Appl Math Model 96:456–479

 13. Cai S, Mao Z, Wang Z, Yin M, Karniadakis GE (2022) Physics-
informed neural networks (PINNs) for fluid mechanics: A review.
Acta Mechanica Sinica, 1–12

 14. Dyck D, Lowther D, McFee S (1992) Determining an approxi-
mate finite element mesh density using neural network techniques.
IEEE Trans Magn 28(2):1767–1770

 15. Chedid R, Najjar N (1996) Automatic finite-element mesh gen-
eration using artificial neural networks-part i: Prediction of mesh
density. IEEE Trans Magn 32(5):5173–5178

 16. Alfonzetti S, Coco S, Cavalieri S, Malgeri M (1996) Automatic
mesh generation by the let-it-grow neural network. IEEE Trans
Magn 32(3):1349–1352

 17. Zhang Z, Wang Y, Jimack PK, Wang H (2020) MeshingNet: A
new mesh generation method based on deep learning. In: Inter-
national Conference on Computational Science, pp. 186–198 .
Springer

 18. Zhang Z, Jimack PK, Wang H (2021) MeshingNet3D: Efficient
generation of adapted tetrahedral meshes for computational
mechanics. Adv Eng Softw 157:103021

 19. Chen G, Fidkowski K (2020) Output-based error estimation and
mesh adaptation using convolutional neural networks: Applica-
tion to a scalar advection-diffusion problem. In: AIAA Scitech
2020 Forum, p. 1143

 20. Bohn J, Feischl M (2021) Recurrent neural networks as opti-
mal mesh refinement strategies. Computers & Mathematics with
Applications 97:61–76

 21. Yang J, Dzanic T, Petersen B, Kudo J, Mittal K, Tomov V,
Camier J-S, Zhao T, Zha H, Kolev T, et al (2022) Reinforce-
ment learning for adaptive mesh refinement. In: International
Conference on Learning Representations

 22. Manevitz L, Bitar A, Givoli D (2005) Neural network time
series forecasting of finite-element mesh adaptation. Neuro-
computing 63:447–463

 23. Chen X, Liu J, Gong C, Li S, Pang Y, Chen B (2021) MVE-
Net: An automatic 3-D structured mesh validity evaluation
framework using deep neural networks. Comput Aided Des
141:103104

 24. Hagan MT, Demuth HB, Beale M (1997) Neural Network Design.
PWS Publishing Co., Stillwater

 25. Kingma DP, Ba J (2014) ADAM: A method for stochastic optimi-
zation. arXiv preprint arXiv: 1412. 6980

 26. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch
recovery and a posteriori error estimates. part 1: The recovery
technique. International Journal for Numerical Methods in Engi-
neering 33(7), 1331–1364

 27. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recov-
ery and a posteriori error estimates. part 2: Error estimates and
adaptivity. International Journal for Numerical Methods in Engi-
neering 33(7), 1365–1382

 28. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M,
Ghemawat S, Irving G, Isard M et al (2016) TensorFlow: a system
for Large-Scale machine learning. In: 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), pp.
265–283

 29. Glantz SA, Slinker BK (2001) Primer of Applied Regression &
Analysis of Variance, Ed vol. 654. McGraw-Hill, Inc., New York,
New York

 30. Schmitt V (1979) Pressure distributions on the ONERA M6-wing
at transonic Mach numbers, experimental data base for computer
program assessment. AGARD AR-138

 31. Sørensen KA, Hassan O, Morgan K, Weatherill NP (2003) A
multigrid accelerated hybrid unstructured mesh method for 3D
compressible turbulent flow. Comput Mech 31(1–2):101–114

 32. Cheng J, Druzdzel MJ (2000) Computational Investigation of
Low-Discrepancy Sequences in Simulation Algorithms for Bayes-
ian Networks. Proceedings of the Sixteenth conference on Uncer-
tainty in artificial intelligence

 33. Halton JH (1964) Algorithm 247: Radical-inverse quasi-random
point sequence. Commun ACM 7(12):701–702

 34. Vandewoestyne B, Cools R (2006) Good permutations for deter-
ministic scrambled halton sequences in terms of l2-discrepancy.
J Comput Appl Math 189(1):341–361

 35. Sevilla R, Zlotnik S, Huerta A (2020) Solution of geometrically
parametrised problems within a CAD environment via model
order reduction. Comput Methods Appl Mech Eng 358:112631

 36. Lannelongue L, Grealey J, Inouye M (2021) Green algorithms:
quantifying the carbon footprint of computation. Advanced sci-
ence 8(12):2100707

 37. Lacoste A, Luccioni A, Schmidt V, Dandres T (2019) Quantifying
the carbon emissions of machine learning. arXiv preprint arXiv:
1910. 09700

 38. Michal T (2019) Development of an Anisotropic Solution Adap-
tive Meshing Tool for Production Aerospace Applications. In:
Sixth Workshop on Grid Generation for Numerical Computations

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1910.09700
http://arxiv.org/abs/1910.09700

	Meshing using neural networks for improving the efficiency of computer modelling
	Abstract
	1 Introduction
	2 Background
	2.1 Mesh spacing and control
	2.2 Artificial neural networks

	3 Construction of near-optimal meshes
	3.1 Generating point sources from a given solution
	3.2 Generating global sources from sets of local sources
	3.3 Construction of NN for predicting the characteristics of the sources
	3.4 Reducing the global set of sources

	4 Numerical examples
	4.1 Near-optimal mesh predictions on the ONERA M6 wing at various inflow conditions
	4.2 Near-optimal mesh predictions on a variable wing geometry at fixed inflow condition
	4.3 Near-optimal mesh predictions at various inflow conditions on a variable wing geometry

	5 Efficiency and environmental implications
	6 Concluding remarks
	Total least-squares approximations in three dimensions
	Fitting a plane to a set of points using orthogonal regression
	Fitting a line to a set of points using orthogonal regression

	Acknowledgements
	References

