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Abstract. This paper concerns the strong convergence rate of an averaging principle for two-
time-scale coupled forward-backward stochastic di↵erential equations (CFBSDEs, for short)
driven by fractional Brownian motion (fBm, for short). The fast component is a forward sto-
chastic di↵erential equation (FSDE, for short) driven by Brownian motion, while the slow com-
ponent is a backward stochastic di↵erential equation (BSDE, for short) driven by fBm with the
Hurst index greater than 1/2. Combining Malliavin calculus theory to stochastic integral and
Khasminskii’s time discretization method, the rate of strong convergence for the slow compo-
nent towards the solution of the averaging equation in the mean square sense is derived. The
strong convergence rate of an averaging principle for fast-slow CFBSDEs driven by fBm is new.
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1. Introduction and main result

For any T > 0, consider the following two-time-scale CFBSDEs :
8>><
>>:
�dX✏

t = a(⌘t, X✏
t ,Y✏

t ,Z✏
t )dt � Z✏

t dBH
t ,

dY✏
t =

1
✏ f (X✏

t ,Y✏
t )dt + 1p

✏
g(X✏

t ,Y✏
t )dWt,

(1.1)

for t 2 [0,T ] and ✏ 2 (0, 1), with a terminal condition X✏
T = '(⌘T ) and an initial condition

Y✏
0 = y, where X✏

t ,Y✏
t and Z✏

t are n-dimensional, m-dimensional and n ⇥ d-dimensional di↵u-
sion processes, respectively. The driving process BH

t is a d-dimensional fBm with the Hurst
parameter H 2 (1/2, 1), and Wt is a r-dimensional Wiener process. The two driven processes
BH := {BH

t }t2[0,T ] and W := {Wt}t2[0,T ] are assumed to be independent, and they are defined on
a given complete, filtered probability space (⌦,F ,Ft,P), where Ft is the complete reference
family generated by BH and W

�
i.e., the usual augmentation of �-algebra �

�
BH

s ,Ws, 0 6 s 6 t
��

,
and Ft satisfies the usual conditions. Here the integral with respect to BH is a divergence type
integral, and that with respect to W is the usual Itô’s integral. The precise conditions on a, f , g,'
and ⌘ will be presented in Section 3. Moreover, ✏ is a small positive parameter describing the
ratio of time scale between the process X✏ and Y✏ . With this time scale the variable X✏ is referred
as the slow component and Y✏ as the fast component.
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If there is no fast component and n = d = 1, Eq.(1.1) will be a one time scale BSDE driven
by fBm, namely, Eq.(1.1) becomes

8>><
>>:
�dX✏

t = a(⌘t, X✏
t ,Z✏

t )dt � Z✏
t dBH

t ,

X✏
T = '(⌘T ).

This equation was firstly studied by Hu and Peng [1], where they obtained the existence and
uniqueness of the solution. Later, Maticiuc and Nie developed a rigorous approach for this
equation with the help of quasi-conditional expectation and derived fractional backward vari-
ational inequalities in [2]. Wen and his coauthors discussed the anticipative and mean-field
BSDEs driven by fBm in [3] and [4], respectively. For further investigations, the reader is
referred to relevant literatures, which we omit here.

If the slow equation in Eq.(1.1) is replaced by an FSDE driven by Brownian motion, the
two-time-scale strong averaging principle was initiated by Khasminskii in the seminal work [5].
Since then, the strong averaging principle of FSDEs has been extensively developed in controls,
stability analysis, chemical reaction systems, stochastic approximations, adaptive algorithms
and extremum seeking (cf.[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], just mention a few). Now
the stochastic averaging principle of FSDEs has been extended from various aspects (cf., e.g.,
[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41], and so
on.).

If the slow equation in Eq.(1.1) is displaced by an FSDE driven by fBm, there are also a
number of papers on the averaging principle. Pei, Inahama and Xu in [31] utilized rough path
theory to study the averaging principle for such mixed fast-slow systems, where the slow equa-
tion is driven by fBm with the Hurst index H 2 (1/3, 1/2]. Hairer and Li in [32] discussed the
averaging dynamics where the slow system is driven by fBm with the Hurst index H 2 (1/2, 1)
and proved the convergence in probability via stochastic sewing lemma. Li and Sieber in [33]
demonstrated a fractional averaging principle for interacting slow-fast systems in Hölder norm
in probability, and established geometric ergodicity for a class of fractional FSDEs.

If fBm is substituted by Brownian motion and f (x, y) and g(x, y) reduce to f (y) and g(y), the
weak convergence of the averaging principle of Eq.(1.1) has been studied in the literatures. Let
us mention a few here. Pardoux and Veretennikov in [42] was first to establish an averaging of
BSDEs and then applied to semi-linear PDE’s. Later, Essaky and Ouknine in [43] investigated
a homogenization of partial di↵erential equations with periodic coe�cients by using averaging
of BSDEs. Recently, Bahlalia, Elouaflin and Pardoux in [44] proved an averaging principle
for BSDEs with null recurrent fast component and further applied to homogenization in a non
periodic media.

There exist some results on the weak convergence of the averaging principle of the two-time-
scale BSDEs, but the convergence rate is not given, the driving term is induced by Brownian
motion and the system is decoupled (i.e., f (x, y) = f (y) and g(x, y) = g(y))(see [42, 43, 44, 45]
and references therein). It seems that it is di�cult to get the convergence rate by the method
outlined in the above papers [42, 43, 44, 45]. However, the convergence rate is crucial in nu-
merical analysis and engineering linked research fields. On the other hand, most results of the
average principle of BSDEs are driven by Brownian motion. Contrary to Brownian motion, the
increment of fBm with the Hurst parameter H 2 (0, 1/2) [ (1/2, 1) is not independent and a
special case of fBm (with the Hurst parameter H = 1/2) is Brownian motion, which indicates
that fBm may be applied to describe much more natural or social phenomenon than that aspect
of Brownian motion. We note that in the case H 2 (1/2, 1), fBm is a process with long memory,
and it is widely used in finance, telecommunication networks, physics and statistics, etc.. In
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addition, the decoupled system is not general. It is well known that coupled system can degen-
erate into the decoupled system, but not vice versa. To the best of our knowledge, the strong
averaging principle of the two-time-scale CFBSDEs driven by fBm has not been established.

We would like to point out that it is not an easy task to study the strong averaging principle of
the two-time-scale BSDEs driven by fBm. The main reasons are as follows. First, due to the fact
that the solution of BSDEs driven by fBm in general is neither Markovian nor a semimartingale,
the classical stochastic analysis theory used in the studies of SDEs is not applicable. Second,
since we are considering the coupled system, there is no known consequence of the existence
and uniqueness for Eq.(1.1) driven by fbm. Third, by examining the existing research methods
on the averaging principle of BSDEs, one can not obtain the convergence rate (e.g.,[42, 43, 44,
45]). Last but not least, on account of the presence of BSDEs and Malliavin calculus theory, the
control variable Z is rather hard to manage, which is also a di�culty that can not be ignored.

It is very natural to ask whether the strong averaging principle of two-time-scale CFBSDEs
driven by fBm still hold. These motivate us to carry out this paper, aiming to establish the
strong averaging principle with an explicit convergence rate for Eq.(1.1). Our main result is the
following theorem.

Theorem 1.1. Suppose that (A1)-(A7) hold, then for any T > 0 and � > 0, we have

sup
06t6T

n
e�tE|X✏

t � X̄t|2 + E
Z T

t
e�ss2H�1|Z✏

s � Z̄s|2ds
o
6 C✏

1
4 , (1.2)

with ✏ 2 (0, 1) and H 2 (1/2, 1), where C is a positive constant which is independent of ✏,
(X✏ , Z✏) is the solution of Eq.(1.1), and (X̄, Z̄) is the solution of the following e↵ect dynamics
equation :

8>><
>>:
�dX̄t = ā(⌘t, X̄t, Z̄t)dt � Z̄tdBH

t ,

X̄T = '(⌘T ),
(1.3)

with
ā(u, x, z) =

Z

Rm
a(u, x, y, z)µx(dy), (u, x, z) 2 Rn ⇥ Rn ⇥ Rn⇥d,

where µx stands for the unique invariant measure for the following fast equation with the frozen
slow component

8>><
>>:

dYt = f (x,Yt)dt + g(x,Yt)dWt,

Y0 = y,
(1.4)

for any fixed x 2 Rn, and Wt is a r-dimensional standard Wiener process. For convenience, we
use | · | to denote the norms of vectors and matrices in (1.2).

Remark 1.2. Without loss of generality, we will consider only n = m = d = r = 1 in the sequel
assumptions, proofs and discussions. The general multidimensional case can be done in the
similar manner.

It is worthy to point out that the novelty of this paper is to extend the uncoupled results driv-
en by Brownian motion in [42, 43, 44, 45] to the coupled case driven by fBm, and from the
perspective of proof techniques, we establish a strong convergence rate by combining Malli-
avin calculus theory and Khasminskii’s time discretization method (cf.[5, 48, 49, 50, 51, 52]).
Furthermore, di↵erent from [30, 31, 32, 33], our work need to think over Z rigorously for the
reason that BSDEs participate in the systems, so the model itself is an innovation. As far as we
know, this is the first result on the averaging principle rate for fast-slow CFBSDEs driven by
fBm.
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This paper is organized as follows. In Section 2, we give some main definitions and results
about fBm and Malliavin calculus. In Section 3, we present some conditions on the coe�cients
of equations throughout this work. In Section 4, the existence and uniqueness theorem of two-
time-scale CFBSDEs is established. In Section 5, some a priori estimates are carrieded out
and further utilized in the subsequent discussions. In Section 6, we prove the mean-square
convergence rate for the averaging principle of two-time-scale CFBSDEs driven by fBm.

Throughout this paper, the letter C with or without subscripts will denote positive constants
whose value may change in di↵erent occasions. We will write the dependence of constant on
parameters explicitly if it is essential.

2. Preliminaries

In this section, we recall some main definitions and results about fBm and Malliavin calculus
which are used later. For more details, the readers may refer to, e.g., [48], [49], [50], [51], [52].

Let BH = (BH
t , t > 0) be an fBm defined on a complete probability space (⌦,F ,P), with the

Hurst parameter H 2 (1/2, 1). Define

�(x) = H(2H � 1)|x|2H�2, x 2 R (2.1)

and

h⇠, ⌘iT =
Z T

0

Z T

0
�(r � s)⇠r⌘sdrds, k⇠kT = h⇠, ⇠iT , (2.2)

where ⇠ and ⌘ are continuous functions on [0,T ]. Then h⇠, ⌘iT is a Hilbert scalar product.
We denote by H the completion of continuous functions endowed with this scalar product.
Moreover, let PT be the set of elementary random variables of the form

F = u
✓ Z T

0
⇠1(t)dBH

t , ...,

Z T

0
⇠n(t)dBH

t

◆
,

where u is a polynomial function of n variables and ⇠1, ..., ⇠n 2 H . The Malliavin derivative
operator DH of F 2PT is defined by

DH
s F =

nX

i=1

@u
@xi

✓ Z T

0
⇠1(t)dBH

t , . . . ,

Z T

0
⇠n(t)dBH

t

◆
⇠i(s), s 2 [0,T ].

Due to the fact that the derivative operator DH : L2(⌦,F ,P) 7! (⌦,F ,P) is closable, we denote
by D1,2 the Banach space defined as the completion of PT equipped with the following norm

kFk21,2 = E|F|2 + EkDH
s Fk2T , F 2PT .

Now let us introduce another derivative

DH
t F =

Z T

0
�(t � v)DH

v Fdv, t 2 [0,T ].

Moreover, we need the adjoint operator of the Malliavin derivative operator DH, which is the
so-called Skorohod divergence operator. This operator represents the divergence type integral
and is denoted by �(·).
Definition 2.1. A process v 2 L2(⌦ ⇥ [0,T ]; H ) is said to belong to the domain Dom(�), if
there exists �(v) 2 L2(⌦ ⇥ [0,T ]) satisfying the following duality relationship :

E(F�(v)) = E(hDH
· F, viT ), for all F 2PT .

In addition, if v 2 Dom(�), the divergence type integral of v w.r.t.BH is defined by puttingR T
0 vsdBH

s =: �(v).
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One has the following result for the divergence-type integrals

Proposition 2.2. Let LH
1,2 be the space of all stochastic processes ⇢ : (⌦,F ,P) 7!H such that

E
✓
k⇢k2T +

Z T

0

Z T

0
|DH

s ⇢(t)|2dsdt
◆
< 1. (2.3)

If ⇢ 2 L1,2
H , then the divergence-type integral

R T
0 ⇢(t)dBH

t exists in L2(⌦,F ,P) and

E
✓ Z T

0
⇢(t)dBH

t

◆
= 0, E

✓ Z T

0
⇢(t)dBH

t

◆2
= E

✓
k⇢k2T +

Z T

0

Z T

0
DH

s ⇢(t)DH
t ⇢(s)dsdt

◆
.

Next, we shall present the Itô’s formula and the integration by parts formula.

Theorem 2.3. Assume that �, ⇢ : [0,T ] 7! R are deterministic continuous functions. Let

Xt = X0 +

Z t

0
�(s)ds +

Z t

0
⇢(s)dBH

s , t 2 [0,T ],

where the initial X0 is a constant. Then, for every F 2 C1,2([0,T ] ⇥ R), the following formula
holds:

F(t, Xt) =F(0, X0) +
Z t

0

@F
@s

(s, Xs)ds +
Z t

0

@F
@s

(s, Xs)�(s)ds

+

Z t

0

@F
@s

(s, Xs)⇢(s)dBH
s +

1
2

Z t

0

@2F
@s2 (s, Xs)

 d
ds
k⇢k2s

�
ds, t 2 [0,T ].

Theorem 2.4. Let T 2 (0,1), �2, ⇢2 2 D1,2 , and for i = 1, 2,

E
 Z T

0
|�i(s)|2ds +

Z T

0
|⇢i(s)|2ds

�
< 1.

Suppose thatDH
t �2(s) andDH

t ⇢2(s) are continuously di↵erentiable with respect to (s, t) 2 [0,T ]2

for P-almost all ! 2 ⌦. Furthermore, assume that

E

Z T

0

Z T

0
|DH

t �2(s)|2dsdt < 1 and E

Z T

0

Z T

0
|DH

t ⇢2(s)|2dsdt < 1.

Denote

F(t) =
Z t

0
�1(s)ds +

Z t

0
�2(s)dBH

s , t 2 [0,T ]

and

G(t) =
Z t

0
⇢1(s)ds +

Z t

0
⇢2(s)dBH

s , t 2 [0,T ].

Then

F(t)G(t) =
Z t

0
G(s)�1(s)ds +

Z t

0
G(s)�2(s)dBH

s +

Z t

0
F(s)⇢1(s)ds

+

Z t

0
F(s)⇢2(s)dBH

s +

Z t

0
DH

s G(s)�2(s)ds +
Z t

0
DH

s F(s)⇢2(s)ds. (2.4)

Denote

dG(t) = ⇢1(t)dt + ⇢2(t)dBH
t ,

which means that Z t

0
�1(s)dG(s) =

Z t

0
�1(s)⇢1(s)ds +

Z t

0
�1(s)⇢2(s)dBH

s .
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The same notation will be applied to dF(t).

Remark 2.5. With the above notations, the formula (2.4) can be written formally as

d(F(t)G(t)) = F(t)dG(t) +G(t)dF(t) + [DH
t G(t)�2(t) + DH

t F(t)⇢2(t)]dt. (2.5)

3. Our assumptions

In the section, we give some assumptions throughout the rest of this work. We assume that
the drift coe�cients a(u, x, y, z) : R4 7! R, f (x, y) : R ⇥ R 7! R, and the di↵usion coe�cient
g(x, y) : R ⇥ R 7! R are Borel measurable and the following conditions hold:
(A1). There exists a constant ↵ > 0, which is independent of (x, y), such that

g2(x, y) > ↵, (3.1)

for all (x, y) 2 R ⇥ R.
(A2). There exists a positive constant K1 such that for all (ui, xi, yi, zi) 2 R4, i = 1, 2,

|a(u1, x1, y1, z1) � a(u2, x2, y2, z2)|2

6K1(|u1 � u2|2 + |x1 � x2|2 + |y1 � y2|2 + |⇣(z1) � ⇣(z2)|2), (3.2)

| f (x1, y1) � f (x2, y2)|2 + |g(x1, y1) � g(x2, y2)|2 6 K1(|x1 � x2|2 + |y1 � y2|2), (3.3)

where a(0, 0, 0, 0) = 0, and ⇣ : R 7! R is a measurable function with ⇣(0) = 0, which is bounded
by a positive constant K̃ and Lipschitz continuous, that is, there exists some positive constant L
such that |⇣(z1) � ⇣(z2)| 6 L|z1 � z2| for any z1, z2 2 R. Then, it is straightforward to verify that

|a(u1, x1, y1, z1) � a(u2, x2, y2, z2)|2 6 K1(|u1 � u2|2 + |x1 � x2|2 + |y1 � y2|2 + L2|z1 � z2|2) (3.4)

and

|a(u1, x1, y1, z1)|2 6 K1(|u1|2 + |x1|2 + |y1|2 + K̃2). (3.5)

(A3). There exist constants �1 > 0 and C > 0, which are both independent of (x, y), such that

2y f (x, y) + |g(x, y)|2 6 ��1|y|2 +C, (3.6)

for all (x, y) 2 R ⇥ R.
(A4). There exist constants �2 > 0 and C > 0, which are both independent of (xi, yi), such that

2(y1 � y2)( f (x1, y1) � f (x2, y2)) + |g(x1, y1) � g(x2, y2)|2 6 ��2|y1 � y2|2 +C|x1 � x2|2, (3.7)

for all (xi, yi) 2 R ⇥ R, i = 1, 2.
(A5). ' : R 7! R is a di↵erentiable function with polynomial growth.

Remark 3.1. We would like to give some comments on the above assumptions.
• (A1), (3.3), (A3) and (A4) are interpreted as coupled conditions which yield a unique invari-
ant measure possessing exponentially mixing property for a Markov semigroup associated to
the fast variable equation (see, e.g., [25, Proposition 3.9.], [36, Section 4], [54, Theorem 6.6] ).
• The assumption on ⇣ in (A2) is very important. This point can be seen in (6.11). With-
out the boundedness of ⇣, the estimate of (6.11) can not be derived. The main reason is that
E

R T
0 s2H�1e�s|Zs|2ds is finite, but we can not get E|Zs|2 < +1, this makes it hard to deal with

(6.11).
• On the one hand, due to the boundedness of ⇣, we have |⇣(z)| 6 K̃. Moreover, the Lipschitz
condition for ⇣, combined with ⇣(0) = 0, yields that

|⇣(z)|2 = |⇣(z) � ⇣(0)|2 6 L2|z|2.
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Therefore, for all z 2 R, we have

|⇣(z)| 6 L|z| · I�L|z|6K̃
 + K̃ · I�L|z|>K̃

 ,

which means the boundedness of ⇣ and linear growth condition of ⇣ are not contradictory. In
fact, one can have examples for such function ⇣, one example is given as follows:

Example 3.2. Let ⇣(z) = arctan z. For all z 2 R, it is obvious that ⇣(0) = 0 and |⇣(z)| 6 ⇡
2 .

By utilizing the mean value theorem, one can derive for each z 2 R\0, |⇣(z)| = |⇣(z) � ⇣(0)| =
1

1+⇠2 |z| 6 |z|, where ⇠ 2 (0, z) or ⇠ 2 (z, 0). Therefore, for all z 2 R, we have

|⇣(z)| 6 |z| · I�|z|6 ⇡2
 +

⇡

2
· I�|z|> ⇡2

 .

The above inequality can also be regarded as a more accurate characterization of ⇣, rather than
only the bounded condition involved.

Next, we present some hypotheses and propositions for the stochastic process ⌘. Let

⌘t = ⌘0 +

Z t

0
bsds +

Z t

0
�sdBH

s , t 2 [0,T ], (3.8)

where the coe�cients satisfy the following:
(A6). the initial ⌘0 2 R is a constant;
(A7). the drift coe�cient b : R 7! R is a deterministic continuous function, and the coe�cient
� : R 7! R is a deterministic continuous function such that �t , 0, t 2 [0,T ].
If we define

�̂t =

Z t

0
�(t � v)�vdv, t 2 [0,T ],

then, by the definition of the scalar product (see (2.1) and (2.2)), we have

k�k2t = H(2H � 1)
Z t

0

Z t

0
|u � v|2H�2�u�vdudv.

Hence, k�k2t is continuous di↵erentiable w.r.t. t, and

dk�k2t
dt
=

d
dt

✓
2H(2H � 1)

Z t

v

Z t

0
|u � v|2H�2�u�vdudv

◆

=2H(2H � 1)
Z t

0
|t � v|2H�2�v�tdv

=2�̂t�t > 0, t 2 [0,T ].

Furthermore, by Remark 6 in [2], there exists a constant M > 0 such that
1
M

t2H�1 6
�̂t

�t
6 Mt2H�1, t 2 [0,T ]. (3.9)

From (A6), (A7) and Proposition 2.2, we know that there exists a constant CT > 0 such that

E|⌘t|2 6 3
h
⌘2

0 +
⇣ Z t

0
bsds

⌘2
+ k�kt

i
6 CT , t 2 [0,T ]. (3.10)

Let us finish this section by defining the following spaces:

•C1,3
pol([0,T ] ⇥ R) :=

⇢
' 2 C1,3([0,T ] ⇥ R), and all the derivatives of ' are polynomial growth

�
.

• VT :=
⇢
X = �(·, ⌘(·)) : � 2 C1,3

pol([0,T ] ⇥ R) with
@�

@t
2 C0,1

pol([0,T ] ⇥ R)
�
. (3.11)

7



And also, by ṼT and ṼH
T we denote the completion ofVT under the following norms, respec-

tively

kXk2 := E
Z T

0
e�t|Xt|2dt, kZk2 := E

Z T

0
t2H�1e�t|Zt|2dt,

where � is a positive constant.
• S2

T :=
n
R-valued Ft adapted continuous stochastic processes Yt : E sup

06t6T
|Yt|2 < 1

o
.

4. Well-posedness

In this section we state and prove the existence and uniqueness of the two-time-scale frac-
tional BSDEs. We proceed to introduce a lemma, which plays an important role in the proof of
the well-posedness theorem.

Lemma 4.1. Suppose that (A2) and (A5)-(A7) hold. Then
(i) for a pair of fixed adapted stochastic processes (x, z), the following equation admits a

unique solution (X,Y,Z) 2 (ṼT ⇥ S2
T ⇥ ṼH

T )
8>><
>>:

Xt = '(⌘T ) +
R T

t a(⌘s, Xs,Ys,Zs)ds �
R T

t ZsdBH
s ,

Yt = y +
R t

0 f (xs,Ys)ds +
R t

0 g(xs,Ys)dWs,
(4.1)

provided that the coe�cients are F -adapted processes and satisfy
Z T

0
E
⇥|a(⌘t, 0, 0, 0)|2 + | f (xt, 0)|2 + |g(xt, 0)|2⇤dt < 1,

where ', y, ⌘, a, f and g are the same as those given in the CFBSDEs (1.1);
(ii) The following inequality holds

E sup
06t6T
|Yt|2 + E

Z T

0
e�t|Xt|2dt + E

Z T

0
e�tt2H�1|Zt|2dt

6C1E|e�T'2(⌘T )| + 3e6K1T (T+4)
⇣C1T 2He�T

LM
+ 1

⌘
|y|2 + C1e�T T 2H�1

K1LM

Z T

0
E|a(⌘t, 0, 0, 0)|2dt

+ 6e6K1T (T+4)(T + 4)
⇣C1T 2He�T

LM
+ 1

⌘ Z T

0
E[| f (xt, 0)|2 + |g(xt, 0)|2]dt, (4.2)

where C1 := Te T2H
2HLM+

K1LMT2�2H

1�H + M
h
1 + e T2H

2HLM+
K1LMT2�2H

1�H

⇣
T 2H

2HLM +
K1LMT 2�2H

1�H

⌘i
.

Proof. This lemma is the combination of Theorem 25 in [2] and Theorem 3.17 in [46], so it is
su�cient to check (4.2).

For |Yt|2, by the basic inequality (a + b + c)2 6 3(a2 + b2 + c2), Cauchy-Schwarz’s inequality,
BDG’s inequality and (3.3), it is not hard to get for any u 2 [0,T ]

E sup
06t6u
|Yt|2

63|y|2 + 3E sup
06t6u

�����

Z t

0
f (xs,Ys)ds

�����
2
+ 3E sup

06t6u

�����

Z t

0
g(xs,Ys)dWs

�����
2

63|y|2 + 3T
Z u

0
E| f (xs,Ys)|2ds + 12

Z u

0
E|g(xs,Ys)|2ds

63|y|2 + 6T
Z u

0
E
⇥| f (xs,Ys) � f (xs, 0)|2 + | f (xs, 0)|2⇤ds

8



+ 24
Z u

0
E
⇥|g(xs,Ys) � g(xs, 0)|2 + |g(xs, 0)|2⇤ds

63|y|2 + 6T
Z T

0
E| f (xs, 0)|2ds + 24

Z T

0
E|g(xs, 0)|2ds + (6T K1 + 24K1)

Z u

0
E|Ys|2ds

63|y|2 + 6T
Z T

0
E| f (xs, 0)|2ds + 24

Z T

0
E|g(xs, 0)|2ds + (6T K1 + 24K1)

Z u

0
E sup

06v6s
|Yv|2ds,

which by Gronwall’s inequality implies that

E sup
06t6T
|Yt|2 6 e6K1T (T+4)

h
3|y|2 + 6T

Z T

0
E| f (xs, 0)|2ds + 24

Z T

0
E|g(xs, 0)|2ds

i
. (4.3)

Now we deal with Xt. Due to Theorem 8 of [2], we have

d|Xt|2 = 2XtdXt + 2ZtD
H
t Xtdt = �2a(⌘t, Xt,Yt,Zt)Xtdt + 2XtZtdBH

t + 2ZtD
H
t Xtdt.

By applying the integration by parts formula (2.4) to e�t|Xt|2, we get

e�t|Xt|2 + 2
Z T

t
e�sZsD

H
s Xsds + �

Z T

t
e�s|Xs|2ds

=e�T'2(⌘T ) + 2
Z T

t
e�sa(⌘s, Xs,Ys,Zs)Xsds � 2

Z T

t
e�sXsZsdBH

s . (4.4)

By (3.4) and the inequality 2xy 6 1
C x2 +Cy2, it is easy to derive that

2a(⌘s, Xs,Ys,Zs)Xs

6
s2H�1

2K1LM
[a(⌘s, Xs,Ys,Zs) � a(⌘s, 0, 0, 0) + a(⌘s, 0, 0, 0)]2 +

2K1LM
s2H�1 |Xs|2

6
s2H�1

K1LM
[a(⌘s, Xs,Ys,Zs) � a(⌘s, 0, 0, 0)]2 +

s2H�1

K1LM
|a(⌘s, 0, 0, 0)|2 + 2K1LM

s2H�1 |Xs|2

6
⇣ s2H�1

LM
+

2K1LM
s2H�1

⌘
|Xs|2 +

s2H�1

LM
|Ys|2 +

s2H�1

M
|Zs|2 +

s2H�1

K1LM
|a(⌘s, 0, 0, 0)|2. (4.5)

Taking expectation on both sides of (4.4) and using (4.5), we have

E[e�t|Xt|2] + 2E
Z T

t
e�sZsD

H
s Xsds

6E|e�T'2(⌘T )| + E
Z T

t
e�s

⇣ s2H�1

LM
+

2K1LM
s2H�1

⌘
|Xs|2ds + E

Z T

t

e�ss2H�1

LM
|Ys|2ds

+
1
M
E

Z T

t
e�ss2H�1|Zs|2ds + E

Z T

t

e�ss2H�1

K1LM
|a(⌘s, 0, 0, 0)|2ds

6E|e�T'2(⌘T )| + E
Z T

t
e�s

⇣ s2H�1

LM
+

2K1LM
s2H�1

⌘
|Xs|2ds +

T 2H�1

LM

Z T

0
e�sE|Ys|2ds

+
1
M
E

Z T

t
e�ss2H�1|Zs|2ds +

e�T T 2H�1

K1LM

Z T

0
E|a(⌘s, 0, 0, 0)|2ds. (4.6)

According to (4.1) and [2, Proposition 24], we are able to deduce that DH
s Xs =

�̂s
�s

Z✏
s . Together

with (3.9), (4.3) and (4.6), it follows that for any t 2 [0,T ]

E[e�t|Xt|2] +
1
M
E

Z T

t
e�ss2H�1|Zs|2ds
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6E|e�T'2(⌘T )| + e�T T 2H�1

K1LM

Z T

0
E|a(⌘s, 0, 0, 0)|2ds

+
e�T T 2H�1

LM

Z T

0
E sup

06s6T
|Ys|2ds + E

Z T

t
e�s

⇣ s2H�1

LM
+

2K1LM
s2H�1

⌘
|Xs|2ds

6E|e�T'2(⌘T )| + T 2H

LM
e6K1T (T+4)+�T


3|y|2 + 6T

Z T

0
E| f (xs, 0)|2ds + 24

Z T

0
E|g(xs, 0)|2ds

�

+
e�T T 2H�1

K1LM

Z T

0
E|a(⌘s, 0, 0, 0)|2ds + E

Z T

t
e�s

⇣ s2H�1

LM
+

2K1LM
s2H�1

⌘
|Xs|2ds. (4.7)

By Gronwall’s inequality (cf.[46, Page 581, Corollary 6.62]), (4.7) implies

sup
06t6T
E[e�t|Xt|2]

6
n
E|e�T'2(⌘T )| + T 2H

LM
e6K1T (T+4)+�T


3|y|2 + 6T

Z T

0
E| f (xt, 0)|2dt + 24

Z T

0
E|g(xt, 0)|2dt

�

+
e�T T 2H�1

K1LM

Z T

0
E|a(⌘t, 0, 0, 0)|2dt

o
e

T2H
2HLM+

K1LMT2�2H

1�H ,

so we obtain

E

Z T

0
e�t|Xt|2dt

6
n
E|e�T'2(⌘T )| + T 2H

LM
e6K1T (T+4)+�T


3|y|2 + 6T

Z T

0
E| f (xt, 0)|2dt + 24

Z T

0
E|g(xt, 0)|2dt

�

+
e�T T 2H�1

K1LM

Z T

0
E|a(⌘t, 0, 0, 0)|2dt

o
Te

T2H
2HLM+

K1LMT2�2H

1�H

and

E

Z T

0
e�tt2H�1|Zt|2dt

6
n
E|e�T'2(⌘T )| + T 2H

LM
e6K1T (T+4)+�T


3|y|2 + 6T

Z T

0
E| f (xt, 0)|2dt + 24

Z T

0
E|g(xt, 0)|2dt

�

+
e�T T 2H�1

K1LM

Z T

0
E|a(⌘t, 0, 0, 0)|2dt

o
M

h
1 + e

T2H
2HLM+

K1LMT2�2H

1�H
⇣ T 2H

2HLM
+

K1LMT 2�2H

1 � H

⌘i
.

Combining the above two inequalities with (4.3), we finally arrive at (4.2), which then completes
the proof. ⇤

Theorem 4.2. Under (A2) and (A5)-(A7), Eq.(1.1) admits a unique solution (X✏ ,Y✏ ,Z✏) satis-
fying the following:

(i) (X✏ ,Y✏ ,Z✏) 2 (ṼT ⇥ S2
T ⇥ ṼH

T );
(ii) X✏

t = '(⌘T ) +
R T

t a(⌘s, X✏
s ,Y✏

s ,Z✏
s)ds �

R T
t Z✏

sdBH
s , 0 6 t 6 T ;

(iii) Y✏
t = y + 1

✏

R t
0 f (X✏

s ,Y✏
s )ds + 1p

✏

R t
0 g(X✏

s ,Y✏
s )dWs, 0 6 t 6 T.

Proof. Without loss of generality, we only prove the case of ✏ = 1. For arbitrarily fixed x 2 ṼT ,
we consider the following system

8>><
>>:

Xt = '(⌘T ) +
R T

t a(⌘s, Xs,Ys,Zs)ds �
R T

t ZsdBH
s ,

Yt = y +
R t

0 f (xs,Ys)ds +
R t

0 g(xs,Ys)dWs.
(4.8)
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Next, we introduce the operator � : (ṼT ⇥ ṼH
T ) ! (ṼT ⇥ ṼH

T ), defined by (x, z) ! �(x, z) =
(X,Z). For two elements (x, z), (x0, z0) 2 (ṼT ⇥ ṼH

T ), let (X,Y,Z), (X0,Y 0,Z0) be the correspond-
ing solution to (4.8). If we set

�x = x � x0,�z = z � z0,�X = X � X0,�Y = Y � Y 0,�Z = Z � Z0,

we will focus on the system below for any t 2 [0,T ]
8>><
>>:
�Xt =

R T
t [↵1

s�Xs + ↵2
s�Ys + ↵3

s�Zs]ds �
R T

t ZsdBH
s ,

�Yt =
R t

0 [↵4
s�xs + ↵5

s�Ys]ds +
R t

0 [↵6
s�xs + ↵7

s�Ys]dWs,
(4.9)

where

↵1
s =

8>><
>>:

a(⌘s,Xs,Ys,Zs)�a(⌘s,X0s,Ys,Zs)
�Xs

, if �Xs , 0,
0, if �Xs = 0,

and ↵i
s are defined similarly, i = 2, . . . , 7. Because of (3.3), we can see |↵4

s |2 + |↵6
s |2 6 K1. With

the help of Lemma 4.1, it follows that

E sup
06t6T
|�Yt|2 + E

Z T

0
e�t|�Xt|2dt + E

Z T

0
e�tt2H�1|�Zt|2dt

66e6K1T (T+4)(T + 4)
⇣C1T 2He�T

LM
+ 1

⌘
E

Z T

0
e�t|↵4

t�xt|2 + e�t|↵6
t�xt|2dt

66e6K1T (T+4)(T + 4)
⇣C1T 2He�T

LM
+ 1

⌘
K1

⇢
E

Z T

0
e�t|�xt|2dt + E

Z T

0
e�tt2H�1|�zt|2dt

�
,

where C1 := Te T2H
2HLM+

K1LMT2�2H

1�H +M
h
1+e T2H

2HLM+
K1LMT2�2H

1�H

⇣
T 2H

2HLM +
K1LMT 2�2H

1�H

⌘i
. Taking a small enough

positive number K1 so that 6e6K1T (T+4)(T + 4)
⇣

C1T 2He�T

LM + 1
⌘
K1 < 1, it is easy to derive that the

mapping � is a contraction in (ṼT ⇥ ṼH
T ) and has a unique fixed point (X,Z). When Y is the

solution of (1.1) with respect to the fixed point (X,Z), (X,Y,Z) is the unique solution to (1.1)
naturally.

Remark 4.3. The system we considered here is not fully coupled, more precisely, the coe�cients
f and g in the forward equation are independent of Z. If not, the existence and uniqueness of
such fully CFBSDEs can still be done, but unfortunately, the dependence will bring new and
almost insurmountable di�culties during the course of demonstrating the averaging principle.
This will be considered in our future work.

⇤

5. Some a priori estimates

In this section, we first derive some a priori estimates for solution processes X✏ , Z✏ and Y✏ .

Lemma 5.1. Suppose that (A1)-(A7) hold, then for any T > 0 there exists a positive constant
C such that for all ✏ 2 (0, 1),

sup
06t6T
E|Y✏

t |2 6 |y|2 +C (5.1)

and

sup
06t6T

n
E[e�t|X✏

t |2] + E
Z T

t
e�ss2H�1|Z✏

s |2ds
o
6 C(1 + |y|2 + E|e�T'2(⌘T )|), (5.2)

where C is independent of ✏.
11



Proof. For |Y✏
t |2, we have by the classical Itô’s formula

dE|Y✏
t |2 =

2
✏
E
�
Y✏

t f (X✏
t ,Y

✏
t )

�
dt +

1
✏
E|g(X✏

t ,Y
✏
t )|2dt. (5.3)

By (A3), we have

2Y✏
t f (X✏

t ,Y
✏
t ) + |g(X✏

t ,Y
✏
t )|2 6 ��1|Y✏

t |2 +C. (5.4)

In terms of (5.3) and (5.4) we have

dE|Y✏
t |2 6 �

�1

✏
E|Y✏

t |2dt +
C
✏

dt.

Furthermore, we have by Gronwall’s inequality (cf.[47, Page 13, 2.4])

E|Y✏
t |2 6 |y|2e�

�1
✏ t +

C
�1

(1 � e�
�1
✏ t) 6 |y|2 +C, (5.5)

which means (5.1) holds.
For |X✏

t |2, thanks to Theorem 8 of [2], it is easy to get

d|X✏
t |2 = 2X✏

t dX✏
t + 2Z✏

tD
H
t X✏

t dt = �2a(⌘t, X✏
t ,Y

✏
t ,Z

✏
t )X✏

t dt + 2X✏
t Z✏

t dBH
t + 2Z✏

tD
H
t X✏

t dt.

By applying the integration by parts formula (2.4) to e�t|X✏
t |2, we have

e�t|X✏
t |2 + 2

Z T

t
e�sZ✏

sD
H
s X✏

sds + �
Z T

t
e�s|X✏

s |2ds

=e�T'2(⌘T ) + 2
Z T

t
e�sa(⌘s, X✏

s ,Y
✏
s ,Z

✏
s)X✏

sds � 2
Z T

t
e�sX✏

sZ
✏
sdBH

s . (5.6)

By (3.5) and the inequality 2xy 6 1
K1

x2+K1y2, it is easy to derive that there is a positive constant
C such that

2a(⌘s, X✏
s ,Y

✏
s ,Z

✏
s)X✏

s 6
C
K1

a2(⌘s, X✏
s ,Y

✏
s ,Z

✏
s) +

K1

C
|X✏

s |2 6 C(K̃2 + |⌘s|2 + |Y✏
s |2) + �|X✏

s |2, (5.7)

where C + K1
C = �.

Taking expectation on both sides of (5.6) and using (5.7), we have

E[e�t|X✏
t |2] + 2E

Z T

t
e�sZ✏

sD
H
s X✏

sds 6 C(1 + E|e�T'2(⌘T )|) +CE
Z T

t
e�s(|⌘s|2 + |Y✏

s |2)ds. (5.8)

According to (1.1) and [2, Proposition 24], we are able to deduce that DH
s X✏

s =
�̂s
�s

Z✏
s . Together

with (3.9), (3.10), (5.5) and (5.8), it follows that

E[e�t|X✏
t |2] +

2
M
E

Z T

t
e�ss2H�1|Z✏

s |2ds 6 C(1 + E|e�T'2(⌘T )|) +CE
Z T

t
e�s|Y✏

s |2ds

6 C(1 + |y|2 + E|e�T'2(⌘T )|). (5.9)

By choosing M > 2, the inequality (5.2) can be derived from (5.9). The proof is complete. ⇤

Lemma 5.2. Suppose that (A1)-(A7) hold, then for any T > 0 there exists a positive constant
C such that

E
⇥
e�t|X✏

t � X✏
t+h|2

⇤
+ E

Z t+h

t
e�ss2H�1|Z✏

s |2ds 6 Ch, (5.10)

for all t 2 [0,T ], h 2 (0, 1) and t + h 6 T, where C is independent of (✏, h).
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Proof. It is clear that for all t 2 [0,T ], h 2 (0, 1) and t + h 6 T ,

X✏
t � X✏

t+h =

Z t+h

t
a(⌘s, X✏

s ,Y
✏
s ,Z

✏
s)ds �

Z t+h

t
Z✏

sdBH
s .

Applying Itô’s formula to e�t|X✏
t � X✏

t+h|2 (see Theorem 2.4), we have

e�t|X✏
t � X✏

t+h|2 + 2
Z t+h

t
e�sZ✏

sD
H
s (X✏

s � X✏
s+h)ds + �

Z t+h

t
e�s|X✏

s � X✏
s+h|2ds

=2
Z t+h

t
e�sa(⌘s, X✏

s ,Y
✏
s ,Z

✏
s)(X✏

s � X✏
s+h)ds � 2

Z t+h

t
e�s(X✏

s � X✏
s+h)Z✏

sdBH
s . (5.11)

Combined with the fact that DH
s (X✏

s �X✏
s+h) = �̂s

�s
Z✏

s (cf. [2, Proposition 24]) and (3.9), if we take
expectation on both sides of (5.11), this yields

E
⇥
e�t|X✏

t � X✏
t+h|2

⇤
+

2
M
E

Z t+h

t
e�ss2H�1|Z✏

s |2ds + �E
Z t+h

t
e�s|X✏

s � X✏
s+h|2ds

62E
Z t+h

t
e�sa(⌘s, X✏

s ,Y
✏
s ,Z

✏
s)(X✏

s � X✏
s+h)ds. (5.12)

With the help of Young’s inequality and (3.5), we get

2a(⌘s, X✏
s ,Y

✏
s ,Z

✏
s)(X✏

s � X✏
s+h)

6
1
�
|a(⌘s, X✏

s ,Y
✏
s ,Z

✏
s)|2 + �|X✏

s � X✏
s+h|2

6C(1 + |⌘s|2 + |X✏
s |2 + |Y✏

s |2) + �|X✏
s � X✏

s+h|2. (5.13)

By (5.12) and (5.13), we have

E
⇥
e�t|X✏

t � X✏
t+h|2

⇤
+

2
M
E

Z t+h

t
e�ss2H�1|Z✏

s |2ds 6 CE
Z t+h

t
e�s(1 + |⌘s|2 + |X✏

s |2 + |Y✏
s |2)ds.

Thus, the above inequality, (3.10), (5.1) and (5.2) allow to conclude (5.10) by choosing M >
2. ⇤

Next, we introduce two auxiliary processes
�
X̂✏

t , Ŷ✏
t
� 2 R ⇥ R. Fix a positive number � < 1

and do a partition of time interval [0,T ] of size �. We construct a process Ŷ✏
t , with initial datum

Ŷ✏
0 = y, by means of the equations

dŶ✏
t =

1
✏

f (X✏
k�, Ŷ

✏
t )dt +

1p
✏

g(X✏
k�, Ŷ

✏
t )dWt, Ŷ✏

k� = Y✏
k�,

for t 2 ⇥
k�,min

�
(k + 1)�,T

 �
, k > 0, where X✏

k� is slow solution process at time k�, respectively.
Denote b·c to be the integer function and define the process X̂✏

t by integral

X̂✏
t = '(⌘T ) +

Z T

t
a(⌘s(�), X✏

s(�), Ŷ
✏
s ,Z

✏
s(�))ds �

Z T

t
Z✏

s(�)dBH
s , (5.14)

for t 2 [0,T ], where s(�) = bs/�c� is the nearest breakpoint preceding s. We will establish
convergence of the auxiliary processes Ŷ✏

t to the fast solution process Y✏
t and X̂✏

t to the slow
solution process X✏

t , respectively.

Lemma 5.3. Suppose that (A1)-(A7) hold, then for any T > 0 there is a positive constant C
such that

E|Y✏
t � Ŷ✏

t |2 6 C�, (5.15)
where t 2 [0,T ].
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Proof. Because the proof of this lemma can be concluded from [36, Page 853, (48)] by taking
�(x) = x, we omit the details. ⇤

Lemma 5.4. Suppose that (A1)-(A7) hold, then for any T > 0 there is a positive constant C
such that

sup
06t6T

n
E[e�t|X✏

t � X̂✏
t |2] + E

Z T

t
e�ss2H�1|Z✏

s � Z✏
s(�)|2ds

o
6 C�, (5.16)

where C is independent of (✏, �).

Proof. Note that

X✏
t � X̂✏

t =

Z T

t

⇥
a(⌘s, X✏

s ,Y
✏
s ,Z

✏
s) � a(⌘s(�), X✏

s(�), Ŷ
✏
s ,Z

✏
s(�))

⇤
ds �

Z T

t
(Z✏

s � Z✏
s(�))dBH

s .

By Itô’s formula (Theorem 2.4) we have for any t 2 [0,T ]

e�t|X✏
t � X̂✏

t |2 + 2
Z T

t
e�s(Z✏

s � Z✏
s(�))D

H
s (X✏

s � X̂✏
s)ds + �

Z T

t
e�s|X✏

s � X̂✏
s |2ds

=2
Z T

t
e�s⇥a(⌘s, X✏

s ,Y
✏
s ,Z

✏
s) � a(⌘s(�), X✏

s(�), Ŷ
✏
s ,Z

✏
s(�))

⇤
(X✏

s � X̂✏
s)ds

� 2
Z T

t
e�s(X✏

s � X̂✏
s)(Z

✏
s � Z✏

s(�))dBH
s . (5.17)

Combined with the fact that DH
s (X✏

s � X̂✏
s) =

�̂s
�s

(Z✏
s � Z✏

s(�)) (see [2, Proposition 24]) and (3.9), if
we take expectation on both sides of (5.17), this yields

E[e�t|X✏
t � X̂✏

t |2] +
2
M
E

Z T

t
e�ss2H�1|Z✏

s � Z✏
s(�)|2ds

62E
Z T

t
e�s⇥a(⌘s, X✏

s ,Y
✏
s ,Z

✏
s) � a(⌘s(�), X✏

s(�), Ŷ
✏
s ,Z

✏
s(�))

⇤
(X✏

s � X̂✏
s)ds. (5.18)

By (3.4) and the inequality 2xy 6 1
C x2 +Cy2, we obtain

2
⇥
a(⌘s, X✏

s ,Y
✏
s ,Z

✏
s) � a(⌘s(�), X✏

s(�), Ŷ
✏
s ,Z

✏
s(�))

⇤
(X✏

s � X̂✏
s)

6
s2H�1

MK1L
⇥
a(⌘s, X✏

s ,Y
✏
s ,Z

✏
s) � a(⌘s(�), X✏

s(�), Ŷ
✏
s ,Z

✏
s(�))

⇤2
+

MK1L
s2H�1 |X

✏
s � X̂✏

s |2

6
s2H�1

ML
⇥|⌘s � ⌘s(�)|2 + |X✏

s � X✏
s(�)|2 + |Y✏

s � Ŷ✏
s |2 + L|Z✏

s � Z✏
s(�)|2

⇤
+

MK1L
s2H�1 |X

✏
s � X̂✏

s |2. (5.19)

Now recall that

⌘t = ⌘0 +

Z t

0
bsds +

Z t

0
�sdBH

s , t 2 [0,T ].

So, with the aid of the inequality (x + y)2 6 2(x2 + y2), Hölder’s inequality, (A6), (A7) and
Proposition 2.2, we can derive that

E|⌘s � ⌘s(�)|2

62E
⇣ Z s

s(�)
budu

⌘2
+ 2E

⇣ Z s

s(�)
�udBH

u

⌘2

62�E
Z s

s(�)

�
bu

�2du + 2E
⇣ Z s�s(�)

0
�u+s(�)dBH

u+s(�)

⌘2
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6C� + 2H(2H � 1)
Z s�s(�)

0

Z s�s(�)

0
|u � v|2H�2�u�vdudv

6C� +C�2 · �2H�2 6 C�. (5.20)
From Lemma 5.2, Lemma 5.3, (5.18), (5.19) and (5.20), we have

E[e�t|X✏
t � X̂✏

t |2] +
1
M
E

Z T

t
e�ss2H�1|Z✏

s � Z✏
s(�)|2ds

6E
Z T

t

e�ss2H�1

ML
⇥|⌘s � ⌘s(�)|2 + |X✏

s � X✏
s(�)|2 + |Y✏

s � Ŷ✏
s |2

⇤
ds + E

Z T

t

MK1Le�s

s2H�1 |X
✏
s � X̂✏

s |2ds

6
C�
ML

Z T

t
e�ss2H�1ds + E

Z T

t

MK1Le�s

s2H�1 |X
✏
s � X̂✏

s |2ds

6C� + E
Z T

t

MK1Le�s

s2H�1 |X
✏
s � X̂✏

s |2ds.

Moreover, we have by Gronwall’s inequality (cf.[46, Page 581, Corollary 6.62])

sup
06t6T

n
E[e�t|X✏

t � X̂✏
t |2] +

1
M
E

Z T

t
e�ss2H�1|Z✏

s � Z✏
s(�)|2ds

o
6 C� exp

nT 2�2H � t2�2H

2 � 2H

o
6 C�.

Taking M > 1, the estimate (5.16) is obtained. ⇤

Secondly, we give some estimates for solution processes X̂✏ , Z✏ and Ŷ✏ .

Lemma 5.5. Let (A1)-(A7) hold. Then for any T > 0 there is a positive constant C such that

sup
06t6T

n
E[e�t|X̂✏

t |2] + E
Z T

t
e�ss2H�1|Z✏

s(�)|2ds
o
6 C(1 + |y|2 + E|e�T'2(⌘T )|) (5.21)

and
sup

06t6T
E|Ŷ✏

t |2 6 |y|2 +C, (5.22)

where C is independent of (✏, �).

Proof. Because the proof can follow the same as Lemma 5.1, we omit it. ⇤

Lemma 5.6. Suppose that (A1)-(A7) hold. Then for any T > 0 and h 2 (0, 1) there exists a
positive constants C such that

E
⇥
e�t|X̂✏

t � X̂✏
t+h|2

⇤
+ E

Z t+h

t
e�ss2H�1|Z✏

s(�)|2ds 6 Ch, (5.23)

where t 2 [0,T ], t + h 6 T and C is independent of (✏, �).

Proof. Because the proof can follow the same as Lemma 5.2, we omit the details. ⇤

6. Averaging principle

In this section, our aim is to derive a strong convergence rate of the averaging principle for
Eq.(1.1). Namely, we are going to verify that the sequences {X✏

t : t > 0}✏>0 and {Z✏
t : t > 0}✏>0

strongly converge to the solution processes {X̄t : t > 0} and {Z̄t : t > 0} of the averaged system
(1.3) as ✏ goes to zero in the corresponding spaces.

By the definition of ā, (A2) and (A4), we can get that the mapping ā : R ⇥ R ⇥ R 7! R is
Lipschitz continuous (cf. [25, Lemma 3.12], [36, Lemme 6.1]). By (3.5) and the definition of
ā it is easy to derive that |ā(u, x, z)|2 6 C(1 + |u|2 + |x|2). Thus, we can conclude that the well-
posedness of the solutions for backward stochastic averaged equations (1.3). In what follows,
we shall study the regularity of X̄.
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Lemma 6.1. Assume that (A1)-(A7) hold. For all t 2 [0,T ] and h 2 (0, 1), there exists a positive
constant C such that for any T > 0

sup
06t6T

n
E[e�t|X̄t|2] + E

Z T

t
e�ss2H�1|Z̄s|2ds

o
6 C(1 + |y|2 + E|e�T'2(⌘T )|), (6.1)

E
⇥
e�t|X̄t � X̄t+h|2

⇤
+ E

Z t+h

t
e�ss2H�1|Z̄s|2ds 6 Ch, (6.2)

where t + h 6 T and C is independent of (✏, h).

Proof. The Lemma can be proved in the same way we did for Lemma 5.1 and Lemma 5.2. So
we omit the details. ⇤

Next, we shall explore the di↵erences between the solution of backward stochastic averaged
equation and backward stochastic auxiliary process X̂✏

t . By the construction of Ŷ✏
t and a time

shift transformation, we have for any fixed k and s 2 [0, �)

Ŷ✏
s+k� =Ŷ✏

k� +
1
✏

Z k�+s

k�
f (X✏

k�, Ŷ
✏
r )dr +

1p
✏

Z k�+s

k�
g(X✏

k�, Ŷ
✏
r )dWr

=Ŷ✏
k� +

1
✏

Z s

0
f (X✏

k�, Ŷ
✏
r+k�)dr +

1p
✏

Z s

0
g(X✏

k�, Ŷ
✏
r+k�)dW⇤

r ,

where W⇤
t = Wt+k� �Wk� is the shift version of Wt, and hence they have the same distribution.

Let W̄t be a Wiener process and independent of BH
t and Wt. Construct a process YX✏

k�,Ŷ
✏
k� by means

of

YX✏
k�,Ŷ

✏
k�

s/✏ =Ŷ✏
k� +

Z s/✏

0
f (X✏

k�,Y
X✏

k�,Ŷ
✏
k�

r )dr +
Z s/✏

0
g(X✏

k�,Y
X✏

k�,Ŷ
✏
k�

r )dW̄r

=Ŷ✏
k� +

1
✏

Z s

0
f (X✏

k�,Y
X✏

k�,Ŷ
✏
k�

r/✏ )dr +
1p
✏

Z s

0
g(X✏

k�,Y
X✏

k�,Ŷ
✏
k�

r/✏ )d ¯̄W✏
r ,

where ¯̄W✏
t =
p
✏W̄t/✏ is the scaled version of W̄t. By comparing the above two equations, it is

easy to derive that

(X✏
k�, Ŷs+k�) ⇠ (X✏

k�,Y
X✏

k�,Ŷ
✏
k�

s/✏ ), s 2 [0, �), (6.3)

where ⇠ denotes coincidence in distribution sense. Set

L
✏

k := E
����
Z �/✏

0
e�k�⇥a(⌘k�, X✏

k�, Ŷ
✏
s✏+k�,Z

✏
k�) � ā(⌘k�, X✏

k�,Z
✏
k�)

⇤
ds

����
2
, 0 6 k 6 bT/�c � 1,

then we state the critical lemma, which will be used later.

Lemma 6.2. Suppose that (A1)-(A7) hold, then for any T > 0 there exists a positive constant C
such that

L
✏

k 6 C
�

✏
, 0 6 k 6 bT/�c � 1, (6.4)

where C is independent of (✏, �).

Proof. Let Qy denote the probability law of the di↵usion process {Y x
t : t > 0} which is governed

by the di↵erential equation

dY x
t = f (x,Y x

t )dt + g(x,Y x
t )dW̄t.

When its initial value is Y x
0 = y and we denote the solution by Y x,y

t . The expectation with respect
to Qy is denoted by Ey. Hence we have Ey� (Y x

t )
�
= E

�
 (Y x,y

t )
�

for all bounded function  . For
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more details on Qy the readers are referred to [53]. First we note that it is easy to show that
L

✏
k < 1, k = 0, 1, · · · bT/�c � 1. Then, for k = 0, 1, · · · bT/�c � 1, by Fubini’s theorem, we have

L
✏

k 6
e2�T

✏2 E

�����

Z �

0

⇥
a(⌘k�, X✏

k�, Ŷ
✏
s+k�,Z

✏
k�) � ā(⌘k�, X✏

k�,Z
✏
k�)

⇤
ds

�����
2

=
e2�T

✏2 E

�����

Z �

0

⇥
a(⌘k�, X✏

k�,Y
X✏

k�,Ŷ
✏
k�

s/✏ ,Z✏
k�) � ā(⌘k�, X✏

k�,Z
✏
k�)

⇤
ds

�����
2

=
e2�T

✏2 E

Z �

0

Z �

0

⇥
a(⌘k�, X✏

k�,Y
X✏

k�,Ŷ
✏
k�

s/✏ ,Z✏
k�) � ā(⌘k�, X✏

k�,Z
✏
k�)

⇤

⇥ ⇥
a(⌘k�, X✏

k�,Y
X✏

k�,Ŷ
✏
k�

⌧/✏ ,Z✏
k�) � ā(⌘k�, X✏

k�,Z
✏
k�)

⇤
dsd⌧

=
2e�T

✏2 E

Z �

0

Z �

⌧

⇥
a(⌘k�, X✏

k�,Y
X✏

k�,Ŷ
✏
k�

s/✏ ,Z✏
k�) � ā(⌘k�, X✏

k�,Z
✏
k�)

⇤

⇥ ⇥
a(⌘k�, X✏

k�,Y
X✏

k�,Ŷ
✏
k�

⌧/✏ ,Z✏
k�) � ā(⌘k�, X✏

k�,Z
✏
k�)

⇤
dsd⌧,

where the first equality we used

P{(⌘k�, X✏
k�, Ŷs+k�,Z✏

k�) 2 (·)} = P{(⌘k�, X✏
k�,Y

X✏
k�,Ŷ

✏
k�

s/✏ ,Z✏
k�) 2 (·)}. (6.5)

Indeed, if P{(⌘k�, X✏
k�,Z

✏
k�) 2 (·)} = 0, (6.5) is obvious; on the other hand, if P{(⌘k�, X✏

k�,Z
✏
k�) 2

(·)} > 0, we get

P{(⌘k�, X✏
k�, Ŷs+k�,Z✏

k�) 2 (·)} = P{(⌘k�, X✏
k�,Z

✏
k�) 2 (·)}P{Ŷs+k� 2 (·)|(⌘k�, X✏

k�,Z
✏
k�) 2 (·)} (6.6)

and

P{(⌘k�, X✏
k�,Y

X✏
k�,Ŷ

✏
k�

s/✏ ,Z✏
k�) 2 (·)} = P{(⌘k�, X✏

k�,Z
✏
k�) 2 (·)}P{YX✏

k�,Ŷ
✏
k�

s/✏ 2 (·)|(⌘k�, X✏
k�,Z

✏
k�) 2 (·)}. (6.7)

In light of P{(⌘k�, X✏
k�,Z

✏
k�) 2 (·)} > 0, we have P{X✏

k� 2 (·)} > 0 by monotonicity of probability.
Moreover, by (6.3) and P{X✏

k� 2 (·)} > 0, we obtain

P{Ŷs+k� 2 (·)|X✏
k� 2 (·)} = P{YX✏

k�,Ŷ
✏
k�

s/✏ 2 (·)|X✏
k� 2 (·)}. (6.8)

By the tower rule of conditional probability and (6.8), we have

P{Ŷs+k� 2 (·)|(⌘k�, X✏
k�,Z

✏
k�) 2 (·)} = P{YX✏

k�,Ŷ
✏
k�

s/✏ 2 (·)|(⌘k�, X✏
k�,Z

✏
k�) 2 (·)}. (6.9)

By (6.6), (6.7) and (6.9), it is easy to derive that (6.5) holds.
Set

Jk(⌧, s, u, x, y, z) := E
⇥�

a(u, x,Y x,y
s , z) � ā(u, x, z)

� ⇥ �
a(u, x,Y x,y

⌧ ) � ā(u, x, z)
�⇤
.

In view of Markov property of Y x,y
t , we have

Jk(⌧, s, x, y, z) =Ey
⇢
Ey

h�
a(u, x,Y x

s , z) � ā(u, x, z)
� ⇥ �

a(u, x,Y x
⌧ , z) � ā(u, x, z)

�����M x
⌧

i�

=Ey
n⇥

a(u, x,Y x
⌧ , z) � ā(u, x, z)

⇤ ⇥ EY x,y
⌧

⇥
a(u, x,Y x

s�⌧, z) � ā(u, x, z)
⇤o
,

where M
x

t denotes the�-field generated by {Y x
r ; r 6 t}, EY x,y

⌧
�
a(u, x,Y x

s�⌧, z)�ā(u, x, z)
�

means the
function Eỹ�a(u, x,Y x

s�⌧, z) � ā(u, x, z)
�

evaluated at ỹ = Y x,y
⌧ . Therefore the Cauchy- Schwarz’s

inequality yields

Jk(⌧, s, u, x, y, z) 6
�
Ey|a(u, x,Y x

⌧ , z) � ā(u, x, z)|2 
1
2
�
Ey�Eỹ�a(u, x,Y x

s�⌧, z) � ā(u, x, z)
�2|ỹ=Y x,y

⌧

� 1
2 ,

(6.10)
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which, with the help of nonlinear growth bound of (a, ā), implies that

Ey|a(u, x,Y x
⌧ , z) � ā(u, x, z)|2 62Ey�|a(u, x,Y x

⌧ , z)|2 + |ā(u, x, z)|2�

6C(1 + u2 + x2 + Ey|Y x
⌧ |2)

6C(1 + u2 + x2 + y2). (6.11)

By (6.10), (6.11) and [36, Page 850, (38)], we find

Jk(⌧, s, x, y, z) 6 C
�
1 + u2 + x2 + y2�e

��2(s�⌧)
2 . (6.12)

LetM✏
k� be the ��field generated by X✏

k� and Y✏
k�, which is independent of {Y x,y

r : r > 0}. By
adopting the approach in [53, Theorem 7.1.2], we can deduce from (6.12) and Lemma 5.1 that

L
✏

k 6
2e�T

✏2

Z �

0

Z �

⌧

E
⇢
E
h⇣

a(⌘k�, X✏
k�,Y

X✏
k�,Y

✏
k�

s/✏ ,Z✏
k�) � ā(⌘k�, X✏

k�,Z
✏
k�)

⌘

⇥
⇣
a(⌘k�, X✏

k�,Y
X✏

k�,Y
✏
k�

⌧/✏ ,Z✏
k�) � ā(⌘k�, X✏

k�,Z
✏
k�)

⌘����M✏
k�

i�
dsd⌧

=
2e�T

✏2

Z �

0

Z �

⌧

E
⇣�

Jk(⌧/✏, s/✏, u, x, y, z)
�����

(u,x,y,z)=(⌘k�,X✏
k�,Y

✏
k�,Z

✏
k�)

⌘
dsd⌧

6
C
✏2

Z �

0

Z �

⌧

e��2(s�⌧)/2✏dsd⌧ 6
C
✏

[� � 2✏
�2

2
(1 � e�

��2
2✏ )],

which completes the proof. ⇤

Lemma 6.3. Suppose that (A1)-(A7) hold. Then we have for any T > 0

sup
06t6T
E
����
Z t

0
e�s(�)�a(⌘s(�), X✏

s(�), Ŷ
✏
s ,Z

✏
s(�)) � ā(⌘s(�), X✏

s(�),Z
✏
s(�))

��
X̂✏

s(�) � X̄s(�)
�
ds

���� 6 C(
p
� +

r
✏

�
),

(6.13)

where C is a positive constant and independent of (✏, �).

Proof. For any t 2 [0,T ], there exists an nt = bt/�c such that t 2 [nt�, (nt + 1)� ^ T ]. Therefore,
the integral term can be rewritten as

Z t

0
e�s(�)�a(⌘s(�), X✏

s(�), Ŷ
✏
s ,Z

✏
s(�)) � ā(⌘s(�), X✏

s(�),Z
✏
s(�))

��
X̂✏

s(�) � X̄s(�)
�
ds := ⇥1(t, ✏) + ⇥2(t, ✏),

(6.14)

where

⇥1(t, ✏) =
nt�1X

k=0

Z (k+1)�

k�
e�k��a(⌘k�, X✏

k�, Ŷ
✏
s ,Z

✏
k�) � ā(⌘k�, X✏

k�,Z
✏
k�)

��
X̂✏

k� � X̄k�
�
ds,

⇥2(t, ✏) =
Z t

nt�

e�nt�
�
a(⌘nt�, X

✏
nt�
, Ŷ✏

s ,Z
✏
nt�

) � ā(⌘nt�, X
✏
nt�
,Z✏

nt�
)
��

X̂✏
nt�
� X̄nt�

�
ds.

For all T > 0, by the nonlinear growth conditions of the functions (a, ā), (3.10), (5.2), (5.21),
(5.22), (6.1), Cauchy-Schwarz’s inequality and Fubini’s Theorem, we have

E|⇥2(t, ✏)|

=E
����
�
X̂✏

nt�
� X̄nt�

�
Z t

nt�

e�nt�
�
a(⌘nt�, X

✏
nt�
, Ŷ✏

s ,Z
✏
nt�

) � ā(⌘nt�, X
✏
nt�
,Z✏

nt�
)
�
ds

����

6
✓
e�nt�E|X̂✏

nt�
� X̄nt�|2
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p
�. (6.15)

For ⇥1(t, ✏), by (5.21), (6.1), Cauchy-Schwarz’s inequality and Fubini’s Theorem, it can be
deduced that

E|⇥1(t, ✏)|

6E sup
06t6T
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✏
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��
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✏
s ,Z

✏
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Moreover, by (6.4) and (6.16), it can be concluded that

E|⇥1(t, ✏)| 6 C
r
✏

�
,

which, taking into account (6.14) and (6.15), provides (6.13). This completes the proof. ⇤

Lemma 6.4. Suppose that (A1)-(A7) hold, then
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06t6T

n
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o
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� +

r
✏

�

�
,

for any T > 0, where C is a positive constant and independent of (✏, �).

Proof. For any t 2 [0,T ], by (1.3) and (5.14), we have
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Then, applying Itô’s formula (Theorem 2.4) to e�t|X̂✏
t � X̄t|2 on [0,T ] and using the fact that
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(Z✏
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where
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✏
s ,Z

✏
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For U1(t), by the nonlinear growth conditions of the functions (a, ā), Cauchy-Schwarz’s in-
equality, Young’s inequality, Fubini’s Theorem, mean valve Theorem, (3.10), (5.2) and (5.22),
we have
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s(�))| + |ā(⌘s(�), X✏

s(�),Z
✏
s(�))|

�|X̂✏
s � X̄s|ds

6C�
Z T

t

�
e�sE|a(⌘s(�), X✏

s(�), Ŷ
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6C� +C
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(e�sE|X̂✏

s � X̄s|2)ds. (6.19)

ForU2(t), by the elementary inequality |x � y| 6 |x| + |y| and (6.13), we have
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✏
s ,Z

✏
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For U3(t), by the nonlinear growth conditions of the functions (a, ā), Cauchy-Schwarz’s in-
equality, Fubini’s Theorem, (3.10), (5.2), (5.22) and (5.23), we have

E|U3(t)|

6E
Z T

t
2e�s|a(⌘s(�), X✏

s(�), Ŷ
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For U4(t), by the nonlinear growth conditions of the functions (a, ā), Cauchy-Schwarz’s in-
equality, Fubini’s Theorem, (3.10), (5.2), (5.22) and (6.2), we have
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s(�))| + |ā(⌘s(�), X✏

s(�),Z
✏
s(�))|

�|X̄✏
s � X̄✏

s(�)|ds

6C
Z T

t

�
e�sE|a(⌘s(�), X✏

s(�), Ŷ
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s |2)(e�sE|X̄✏

s � X̄✏
s(�)|2)

1
2 ds

6C
Z T

t
(e�sE|X̄✏

s � X̄✏
s(�)|2)

1
2 ds 6 C�

1
2 . (6.22)

21



For U5(t), by Young’s inequality, Fubini’s Theorem, (5.10), (5.20) and the Lipschitz property
of ā, we have
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ForU6(t), by Young’s inequality, Fubini’s Theorem, (5.16) and the Lipschitz property of ā, we
have
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s(�)) � ā(⌘s, X̂✏

s ,Z
✏
s(�))

⇤2ds +
Z T

t
e�sE|X̂✏

s � X̄s|2ds

6C
Z T

t
e�s�E|X✏

s � X̂✏
s |2 + E|X̂✏

s � X̄s|2
�
ds.

6C� +C
Z T

t
e�sE|X̂✏

s � X̄s|2ds. (6.24)

ForU7(t), by Young’s inequality, Fubini’s Theorem, (5.16) and the Lipschitz property of ā, we
have
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Here, we shall prove that EU8(t) is equal to zero. From Proposition 2.2, it su�ces to check
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Now taking expectation on both sides of (6.18) and employing (6.20)-(6.26), we find that
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which, with the aid of Gronwall’s inequality (see [46, Page 581, Corollary 6.62]), yields
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This completes the proof. ⇤

We are now in a position to give the proof of Theorem 1.1.

Proof. By Lemma 5.4 and Lemma 6.4 and taking � =
p
✏ with ✏ 2 (0, 1), we have
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which finishes the proof. ⇤

Remark 6.5. It should be pointed out that the convergence rate is ✏ 1
8 , which is independent of

the Hurst parameter H of fBm. It seems strange at the first sight, but indeed it is reasonable due
to the fact that � + �2H 6 2� for � 2 (0, 1) and H 2 (1/2, 1)(see (5.20) for details).
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continuous coe�cients, Journal of Di↵erential Equations, 270 (2021) 476-504.

24



[29] F. Feo, The averaging principle for non-autonomous slow-fast stochastic di↵erential equations and an appli-
cation to a local stochastic volatility model, Journal of Di↵erential Equations, 302(2021) 406-443.

[30] B. Pei, Y. Inahama, Y. Xu, Averaging principles for mixed fast-slow systems driven by fractional brownian
motion, arXiv:2001.06945v3, accepted by Kyoto Journal of Mathematics, 2021.

[31] B. Pei, Y. Inahama, Y. Xu, Averaging principle for fast-slow system driven by mixed fractional Brownian
rough path, Journal of Di↵erential Equations, 301(2021) 202-235.

[32] M. Hairer, X. Li, Averaging dynamics driven by fractional Brownian motion, Ann. Probab., 48 (4) (2020)
1826-1860.

[33] X. Li, J. Sieber, Slow-fast systems with fractional environment and dynamics, arXiv preprint arX-
iv:2012.01910, 2020.
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[35] M. Röckner, L. Xie, Di↵usion approximation for fully coupled stochastic di↵erential equations, Ann. Probab.
49 (3) (2021) 1205-1236.

[36] J. Xu, J. Liu, J. Liu, Y. Miao, Strong averaging principle for two-time-scale stochastic McKean-Vlasov
equations, Applied Mathematics and Optimization, 84(2021) 837-867.

[37] J. Bao, G. Yin, C. Yuan, Two-time-scale stochastic partial di↵erential equations driven by ↵-stable noises:
Averaging principles, Bernoulli, 23(1) (2017) 645-669.

[38] F. Wu, G. Yin, Fast-slow-coupled stochastic functional di↵erential equations, Journal of Di↵erential Equa-
tions, 323(2022) 1-37.

[39] H. Fu, L. Wan, J. Liu, Strong convergence in averaging principle for stochastic hyperbolic-parabolic equations
with two time-scales, Stochastic Process. Appl., 125(8) (2015) 3255-3279.
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