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Abstract—Crack recognition is important in periodic 

pavement inspection and maintenance. The wide application of 

image recognition technology in daily inspection and 

maintenance makes the health monitoring of asphalt pavement 

defects more effective, intelligently, and sustainably. In this study, 

a mobile automatic system integrating 5th-generation wireless 

communication technology (5G), cloud computing and artificial 

intelligence (AI) was proposed for transportation infrastructure 

object recognition. The original dataset contained 344 images of 

pavement defects, including longitudinal cracks, transverse 

cracks, alligator cracks, and broken road markings. Three 

lightweight algorithms for automatic pavement crack 

identification were used and compared, including MobileNetV2, 

ShuffleNetV2, and ResNet50 networks respectively. The results 

showed that the model based on ShuffleNetV2 achieved the best 

overall predictive accuracy (ACC=95.52%). A mobile automatic 

monitoring system based on the cloud platform and Android 

framework was then established. With the help of 5G technology, 

the ‘cloud-network-terminal’ interconnection can be achieved to 

provide fast and stable information transmission between 

transportation infrastructure and road users. The proposed 
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system provides an engineering reference for the transportation 

infrastructure inspection and maintenance using the 5G 

communication technology.  

 
Index Terms—5G cloud platform; Android detection system; 

Lightweight model; Mobile automatic recognition; 

Transportation infrastructure objects recognition. 

 

I. INTRODUCTION 

or advanced technologies such as 5G, the Internet of 

Things (IoT), and big data analysis technologies such as 

cloud computing and Artificial Intelligence (AI), the 

integration of them can significantly contribute to the 

development of smart transportation. Especially, smart 

functions can be achieved by connecting roads, vehicles and 

users with multidimensional perception and information 

exchange, such as transportation infrastructure monitoring, 

traffic real-time information control and automatic driving 

decision. To provide long-term services, the quality 

monitoring of transportation infrastructures, like road surfaces, 

have become a significant problem for engineers. 

The traditional method is to use the manual visual 

recognition of road surface defects. However, there exist 

limitations of low efficiency, high cost, and low accuracy. 

Thus, engineers have tried to use Convolutional Neural 

Network (CNN) as a powerful tool for automatic road defects 

detection, which can automatically extract potential features of 

images to predict and identify pavement defects with 

satisfactory accuracy [1-3].  

To now, common automatic pavement defect recognition 

networks are developed based on Deep Convolutional Neural 

Network (DCNN), which has a complex structure and many 

model parameters. To improve the training speed and 

detection efficiency of the model, the lightweight CNN models 

have been widely studied by engineers [4-5], where the 

lightweight network has the characteristics of reducing 

network parameters by compressing the network and can be 

deployed in the cloud or on mobile devices more flexibly. 

Based on the above-mentioned researches, engineers have 

tried to further develop a more convenient mobile-based 

system for fast road distress recognition in recent years, where 

a series of mobile deep learning frameworks, enabling more 

real-time end-to-end image recognition have been proposed. 
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Tedeschi [6] developed a real-time Android mobile platform 

that can identify potholes, longitudinal cracks, and fatigue 

cracks with an accuracy of over 70%. Zhou et al. [7] used 

smartphones as sensors to collect road image data and 

proposed a road surface condition detection system based on 

CNN with 86.3% accuracy. Dogan et al. [8] used lightweight 

MobileNetV2 to conduct pixel-level crack identification, 

which can be applied in mobile systems. Zheng et al.[9] 

developed a sustainable monitoring system called SmartRoad 

using self-powered sensors and automatic identification 

technologies to determine the vehicle-load types. In sum, the 

realization of a mobile terminal defect identification system 

makes defect detection more convenient and mobile and can 

be widely used in transportation infrastructure detection in the 

future. 

In this paper, MobileNetV2, ShuffleNetV2, and ResNet50 

lightweight networks based on the convolutional neural 

network were employed to classify different asphalt pavement 

objects such as transverse cracks, longitudinal cracks, alligator 

cracks, and broken road markings, respectively. First of all, the 

recognition performances of different lightweight networks 

were compared to find the best classification model. Secondly, 

with the deployment of the cloud platform and Android 

application using the 5G communication technology, a 

real-time transportation infrastructure intelligent monitoring 

system was developed.  

Fig.1 presents the analysis process of the transportation 

infrastructure objects recognition system in this study. Objects 

on asphalt pavement crack images collected by various sensors 

(e.g. smartphones) can be transmitted by a 5G wireless 

network to a centralized platform for data storage. Then, the 

Cloud Platform adopts AI-based algorithms to process and 

analyze traffic infrastructure images and delivers the real-time 

classification result to road users using an android mobile 

system. 

 

II. DATA PROCESSING AND ANALYSIS 

A. Image data preprocessing 

The data images adopted in this study were collected from 

the real asphalt roads around Beijing University of 

Technology, China and inspections on highways in Jiangsu 

Province, China. The original RGB image of 3648 * 2736 

pixels needs to be pre-processed before input into the 

lightweight network. The processing steps are as follows: (1) 

Divide the original image into 16 sub-images equally; (2) 

Adjust the size of all images to 224 * 224 pixels. Finally, the 

asphalt defect image dataset of this paper is composed of 134 

longitudinal cracks, 71 transverse cracks, 104 alligator cracks, 

and 35 broken road marking images, with a total of 344 

images. The four typical images are shown in Fig.2a (a)~(d) 

represent pavement longitudinal crack, transverse crack, 

alligator crack and broken road marking image respectively.  

In this paper, the original asphalt defect dataset was divided 

into the validation set and test set according to the ratios of 

60%:20%:20%. The data sets of asphalt pavement objects are 

shown in Table I. 

 
 

 

B. Deep learning algorithms and analysis 

1) Deep learning methods 

To apply lightweight CNN models to mobile terminals, the 

efficiency of the model should be evaluated first. The usual 

approach is to compress the network parameters of the trained 

model. At present, the commonly used lightweight networks 

have preliminary solve the problems. Besides, to achieve 

better classification performance, the transfer learning method 

was applied to transfer the general feature weight parameters 

from the pre-trained ImageNet-based model [10]. In this paper, 

the pre-trained MobileNetV2, ShuffleNetV2, and ResNet50 

were used to identify the above four types of asphalt pavement 

objects. 

(1) MobileNetV2 network 

Like MobileNet, the MobileNetV2network uses Depthwise 

Convolution and Pointwise Convolution as two convolution 

steps to improve the training speed by reducing the amount of 

network weight parameters. On this basis, a Residual 

Connection is added to form the Inverted Residual Block, 

which contains an Expansion layer, Depth separable 

TABLE I 
ASPHALT PAVEMENT DEFECTS AND OBJECTS DATASET 

Class Longitudinal 

crack 
Transverse 

crack 
Alligator 

crack 

Broken 
Road 

marking 
Total 

Train 81 43 63 21 208 
Valid 27 14 21 7 69 

Test 26 14 20 7 67 

Total 134 71 104 35 344 

 

 

 
Fig. 2.  Different pavement surface defect image dataset. 

 

 
Fig. 1. 5G-based mobile system for transportation infrastructure objects 

recognition 
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convolution layer, and Projection layer [11] to process images. 

In this research, the pre-trained MobileNetV2 model first 

used a 3*3 convolution and a 3*3 Depthwise Separable 

Convolution. Then, a total of 19 stacked Inverted Residual 

Blocks were applied to extract the features of the input images. 

The expansion factor of the first block was 1, and the others 

were all set to 6. Each block used several 1*1 and 3*3 

convolutions to increase the number of channels of the output 

features. Then, a 1*1 convolution, a global average pooling 

layer and a fully connected layer with Softmax activation 

function were added to reduce the size and channel number of 

the output image and classify images into requisite object 

categories. 

(2) ShuffleNetV2 network 

The ShuffleNetV2 [12] employs Group Convolution and 

Channel Shuffle to significantly decrease the weight 

parameters of the model. The model can effectively process 

images by separating the input image into two 

channel-dimension branches.   

The study adopted ShuffleNetV2 to classify the type of 

asphalt pavement objects. As shown in Fig.3a, the network 

first included a 3*3 convolution layer and a max-pooling layer 

with a stride of 2. Then, there were 3 stages composed of 

several repeated Shuffle unit modules to ensure the feature 

map and the number of channels were constant. The repeated 

time was 4, 8, and 4 respectively for each stage. Finally, 1*1 

convolution, global average pooling and full connection were 

used to output the predicted result.  

(3) ResNet50 network 

When deeper networks are able to start converging, a 

degradation problem has been exposed: with the network 

depth increasing, accuracy gets saturated and then degrades 

rapidly. Unexpectedly, such degradation is not caused by 

over-fitting, and adding more layers to a suitably deep model 

leads to higher training error [13]. ResNet, short for Residual 

Network is a specific type network that was introduced in 2015 

to solve this problem. The Residual Learning and Identity 

Mapping by Shortcuts are the key parts in ResNet. [14]. 

ResNet50 is a 50-layer Residual Network. It includes Plain 

Networks and Residual Networks. The Plain Networks is 

mainly inspired by VGG nets: (I) the 48 convolutional layers 

have 3×3 filters (the layers have the same number of filters for 

the same output feature map size, and have the doubled layers 

for the halved feature map size); (II) one down-sampling 

layers that have a stride of 2; and (III) the network ends with a 

global average pooling layer and a 1000-way fully-connected 

layer with Softmax. And the Residual Networks are based on 

the Plain Networks, expect that a shortcut connection is added 

to each pair of 3×3 filters.  

2) Training Parameter Setting 

The lightweight classification models were based on a deep 

learning framework developed by Google called TensorFlow 

2.0. The whole classification models were conducted on a 

laptop computing workstation (CPU: Intel Core i7-9700K@ 

3.60GHz; GPU: NVIDIA GeForce RTX2080, 16 GB of 

RAM). In the training process, the adaptive learning rate 

adjustment algorithm RMSProp (Root Mean Square Prop) [15] 

was adopted as the optimization algorithm of gradient descent 

in the process of backpropagation. This algorithm 

preliminarily solves the problem of large swings in the 

optimization, which can adaptively adjust the learning rate 

during gradient descent to minimize the value of the loss 

function. The model hyper-parameters are as follows: (1) The 

Batch Size was set as 10; (2) The learning rate was 0.001 and 

the learning decay rate was 1×10-6. The learning rate decayed 

constantly after each generation to avoid the network 

parameters falling into local optimum. 

3) Results and analysis 

In this study, the lightweight model introduced the 

above-recognized objectives on 134 images of longitudinal 

cracks, 71 images of transverse cracks, 104 images of alligator 

cracks, and 35 images of broken road marking. Accuracy 

(ACC), precision (P), recall rate (R), F1-score value (F1) and 

confusion matrix were further adopted to evaluate the 

classification results of asphalt pavement defects based on 

lightweight models. 

After 100 epochs of training with the best model 

monitored by validation loss selected, the classification results, 

training parameters and training time of each lightweight 

network are shown in Table Ⅱ. The ShuffleNetV2 

demonstrated the best performance by achieving 95.52% 

recognition accuracy and a relatively faster speed of an hour, 8 

minutes and 39 seconds on the test dataset. 

 

 

 

 
 

TABLE Ⅱ 
TEST RESULTS OF LIGHTWEIGHT MODELS AFTER TRAINING WITH DIFFERENT DATASETS 

Group Lightweight model 
Total accuracy 

Training parameters Training time 
Training Validation Testing 

1 MobileNetV2 92.79% 81.16% 80.60% 2,228,996 3m16s 

2 ShuffleNetV2 100.00% 97.10% 95.52% 1,257,704 8m39s 

3 ResNet50 100.00% 94.20% 94.03% 23,542,788 18m19s 
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The evaluation metrics for each pavement defect type 

classified by ShuffleNetV2 are shown in Table Ⅲ. It can be 

seen that the ShuffleNetV2 classifier can identify almost all 

transportation infrastructure objects, where the value of 

precision, recall and F1 score are satisfactory. Specifically, the 

classification precision for longitudinal crack, transverse crack, 

alligator crack and broken road marking were 0.9630, 0.9333, 

1.0000 and 0.8750 respectively. The recall values were all 

over 0.85. The F1 score reached 0.9811, 0.9655, 0.9189 and 

0.9333. In addition, the comprehensive evaluation results of 

different average accuracy methods (i.e. Micro-average, 

Macro-aver and Weighted-average) all reached above 0.94. 

 

III. 5G CLOUD PLATFORM AND MOBILE TERMINAL SYSTEM 

DEVELOPMENT 

A. Cloud Platform deployment 

The cloud platform contains two main parts: the back-end 

server and the front-end website. The severing of the cloud 

control platform was deployed using Python programming 

language in Pycharm and the front-end website was 

established based on a VUE framework of Webstorm on the 

same computing workstation.  

1) Back-end server  

It consists of a series of databases named MongoDB and 

MySQL that uses a sample dataset of defect images. In 

addition, the messaging protocol Message Queuing Telemetry 

Transport (MQTT) was also deployed to realize data 

transmission between the cloud platform and terminal 

equipment.  

2) Front-end website  

In the front end, users can view users’ information, AI 

model information, APP device information and the running 

results of AI-based models, etc. over the Hypertext Transfer 

Protocol (HTTP). Furthermore, the operational management 

of terminal devices, deep learning models and real-time 

distress-type identification information can be also realized. 

 

B. Mobile infrastructure monitoring system 

In recent years, mobile devices are playing an increasingly 

significant role in informing decision-making in daily life. 

This work aimed to develop a real-time mobile monitoring 

system for road distresses.  

1) Android-based automatic recognition system 

With the help of the Android Studio development software, 

Activity, Layout, UI interface and Service, etc. were designed 

through the Android-JAVA language. After virtual compiling 

and debugging by the API26 AVD simulator, a software 

package (APK file) mobile application was automatically 

generated. The application can then be deployed on any 

common mobile terminal device. In this study, the Android 

application was installed on a 5G smartphone (Version: Vivo 

Pro5G, V1916A; CPU: Snapdragon 855Plus, eight-core, and 

2.96GHz). 

2) Results display of the mobile system 

In the mobile defect recognition system, the communication 

between mobile terminal devices and the cloud platform was 

realized by 5G wireless technology. The designed specific 

process of the traffic infrastructure objects identification is as 

follows: 1) Smartphones use their cameras to collect defect 

images from real pavement surfaces (where the same datasets 

are used in the current study for convenience) and transmit 

them to the cloud platform through 5G communication; 2) 

Based on the vast storage and computing power of the 

platform, the image dataset can be processed and analyzed 

efficiently using AI-based models; 3) The final operating 

results of transportation infrastructural defect types will be 

sent back to the mobile phone for display.  

A total of 134 longitudinal crack images, 71 transverse 

crack images, 104 alligator crack images and 35 broken road 

marking images were delivered to the cloud by 5G 

communication techniques. Then, the cloud platform analyzed 

and identified each asphalt defect type by using the 

ShuffleNetV2 deep learning model. The datasets of asphalt 

pavement objects for mobile system detection are shown in Fig. 

3a. The values in red represent the numbers for the specific 

category that the platform could correctly identify and the 

values in the bracket are the number of samples inputted into 

the model. Final performance accuracy for training, validation, 

and test set of each defect category are shown in Fig. 3b. 

Overall samples of longitudinal crack, transverse crack, 

alligator crack and broken road marking can be classified by 

the intelligent deep learning-based algorithm with the 

accuracy of 99.25%, 100%, 97.12%, and 97.14%, respectively. 

For all defect samples in the overall dataset, the overall 

accuracy analyzed by the cloud platform reached 98.55%. It 

can be demonstrated that the lightweight ShuffleNetV2 

classifier can accurately identify almost all the defects and 

objects on the transportation infrastructure. In addition, the 

TABLE Ⅲ 
EVALUATE RESULTS OF SHUFFLENETV2 MODEL  

Evaluation Class Precision Recall F1 score Test samples 

Each defect category  

longitudinal crack 96.30% 100.00% 98.11% 26 

transverse crack 93.33% 100.00% 96.55% 14 

alligator crack 100.00% 85.00% 91.89% 20 

broken road marking 87.50% 100.00% 93.33% 7 

Overall model  

Micro-average ACC 95.52% 95.52% 95.52% 67 

Macro-average ACC 94.28% 96.25% 94.97% 67 

Weighted-average ACC 95.86% 95.52% 95.43% 67 
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total operating time of the mobile system, including three steps 

of a mobile device collection, cloud computing analysis and 

mobile phone display was also counted in this part. As shown 

in Fig. 3c, the time required for identifying one defect image 

via the whole mobile system operation is around 1000ms. It 

should be noted that, in the current studies, we haven’t 

considered the time of taking photos and all the process is 

computed based on the existing images of transportation 

infrastructure objects stored in the phone for conveniences. 

In general, with the mobile road object recognition system 

developed based on the cloud platform and Android 

framework proposed in the paper, engineers and road users can 

obtain road defect-type information accurately and remotely. 

 

IV. CONCLUSIONS AND OUTLOOK 

This study proposed a 5G-based automatic mobile system 

for asphalt pavement object detection based on lightweight 

network. The original dataset consisted of 344 images, 

including longitudinal crack, transverse crack, alligator crack 

and broken road marking. Then, the MobileNetV2, 

ShuffleNetV2 and ResNet50 were respectively trained and 

verified for the dataset. The experimental results showed that 

the asphalt pavement objects classification network based on 

ShuffleNetV2 achieved the best prediction accuracy 

(ACC=95.52%). On this basis, a real-time mobile intelligent 

recognition system of pavement objects was developed with 

Android, which can be deployed on any Android mobile 

device. The study provides a low-cost system that can monitor 

and analyze defect and object types on transportation 

infrastructures in real-time using smart terminal device sensors 

and deep learning-based methods operating in the cloud. The 

application is capable of identifying a road defect test image 

for approximately 1000ms using a 5G communication system 

and obtaining a real-time evaluation of pavement defect and 

object category with relatively high accuracy (overall accuracy 

= 98.55%). The implementation of the system provides a 

real-time approach for periodic pavement inspection for 

engineers using mobile phones instead of heavy workstation in 

the road site. 

Future studies will consider to design a mobile pavement 

defect monitoring system based on the 5G cloud platform and 

mobile deep learning framework. The mobile recognition 

application will be developed using TensorFlow Lite, which 

can be deployed on any mobile computation device. Different 

from a desktop-level deep learning analysis system, the mobile 

system enables road users to get fast and reliable pavement 

defect information by running a mobile deep learning 

algorithm using its CPU. It is expected that the wide 

 
 

Fig. 3.  The mobile application result display. a) asphalt pavement defect dataset for clouding computing in the mobile system; b) performance evaluation 

result of the cloud; c) mobile terminal running interface, which shows the overall time spent in the whole mobile system. 
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application of this system can provide real-time road defect 

information to engineers and promote the development of 

smart transportation. 
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