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Abstract 

Biopolymers are promising environmentally benign materials applicable in multifarious 

applications. They are especially favorable in implantable biomedical devices thanks to their 

excellent unique properties, including bioactivity, renewability, bioresorbability, 

biocompatibility, biodegradability, and hydrophilicity. Additive manufacturing (AM) is a 

flexible and intricate manufacturing technology, which is widely used to fabricate 

biopolymer-based customized products and structures for advanced healthcare systems. 

Three-dimensional (3D) printing of these sustainable materials is applied in functional clinical 

settings including wound dressing, drug delivery systems, medical implants, and tissue 

engineering. The present review highlights recent advancements in different types of 

biopolymers, such as proteins and polysaccharides, which are employed to develop different 

biomedical products by using extrusion, vat polymerization, laser, and inkjet 3D printing 

techniques in addition to normal bioprinting and four-dimensional (4D) bioprinting 

techniques. This review also incorporates the influence of nanoparticles on the biological and 

mechanical performances of 3D-printed tissue scaffolds. This work also addresses current 

challenges as well as future developments of environmentally friendly polymeric materials 

manufactured through the AM techniques. Ideally, there is a need for more focused research 

on the adequate blending of these biodegradable biopolymers for achieving useful results in 

targeted biomedical areas. We envision that biopolymer-based 3D-printed composites have 

the potential to revolutionize the biomedical sector in the near future. 
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1. Introduction  

Scientific progresses in novel manufacturing approaches especially in the additive 

manufacturing (AM), alias three-dimensional (3D) printing areas, have laid the foundations 

for many engineering and biomedical applications thanks to its efficiency, precision, and 

accuracy [1], as illustrated in Fig. 1. The AM technology uses imaging techniques or 

computer-aided design (CAD) software to fabricate 3D customized objects like patient-

specific implants, without the need for molds or machining [2–4]. This technology is highly 

appropriate to develop intricate structures by using different materials, in contrast to 

conventional manufacturing processes [5–7]. Over the years, this technology has found its 

potential in myriad manufacturing areas including, but not limited to,  automotive, aerospace, 

construction, rapid prototyping, jewelry, and biomedical fields [8–11].  

Since the beginning of the 21st century, the 3D printing technique has been extensively 

applied in the biomedical sector for developing personalized prosthetics, dental implants, 

organ and tissue fabrications, anatomical models, and pharmaceutical products [12–14]. 

Some studies also illustrate the utilization of this novel technology for producing 

exoskeletons, ears, stem cells, bones, and microvascular networks [15–17]. The technology 

utilizes different biomaterials including metals, powders, liquids, ceramics, polymers, and 

living cells to develop intricate structures with excellent mechanical characteristics, which 

cannot be attained through conventional manufacturing techniques [18–20]. Biomaterials 

used for the development of such implants and human organs can be classified into three 

types of materials, i.e., metals, polymers, and ceramics [21]. Despite the high strength, 

hardness, fracture toughness, and corrosion resistance of inert metallic implants such as 

stainless steel (SS), these 3D-printed components may adversely impact on the human body 

because of their non-biodegradability [22–25]. However, metallic implants exhibit high 

elastic moduli that result in stress shielding. Furthermore, toxic effects appeared due to the 

release of  ions from the metallic implants limiting their use in biomedical applications [26]. 
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Figure 1. Recent scientific progresses in various fields of engineering 

Other non-biodegradable alloy scaffolds such as Chromium-Cobalt(Cr–Co) alloys also 

exhibit limited advantages, e.g., they can support tissues but simultaneously cause 

inflammation and allergic reactions at the implantation sites [27]. Most of these alloys 

contain free ions in their structures, which are responsible for these problems. It is worth 

mentioning that these are relatively expensive materials as well. To circumvent the 

aforementioned drawbacks, sustainable biomaterials have been formulated for a wide range 

of applications [28]. 

Renewable resources are the most attractive sources of raw material in terms of green 

environment and planetary health. Sustainable materials are acquired from renewable natural 

resources, recycling, or other low-carbon feedstock, which are managed through 

biodegradation and recycling approaches [29]. These materials including natural, synthetic, 

or modified bio-based polymers, are sustainable, renewable, and extraordinary materials with 

low carbon footprints and low embodied energy levels, compared to the existing traditional 

stabilizers. Carbon dioxide released at the end of service time, due to biodegradation is 

reabsorbed by fauna and flora, which makes them carbon neutral [30]. Biopolymers follow a 

circular economy model, which helps their recycling at the end of life. Additionally, the 

accumulated plastic waste has triggered the use of these environmentally benign polymers in 

different industrial sectors including biomedical engineering/science [31]. 

Sustainable biopolymers provide an interrelationship between renewable natural resources 

and biomaterials, and the world has considered the development of novel and sustainable 

biopolymer-based biomaterials as a feedstock for the AM technology, as illustrated in Fig. 2, 

thanks to their biodegradability, biocompatibility, and renewability [32–34]. These types of 

feedstock materials promote the sustainability within the AM technology itself [35]. 

Sustainable biopolymers including bio-based polymers are viable raw materials, which upon 
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formulation and modification into resins and inks offer sustainable AM solutions [36]. These 

polymers provide AM users the environmentally benign manufacturing options [37].  

 
Figure 2 Biopolymer-based biomaterials, as feedstock materials for AM technology to promote 

sustainable environment. (Figure modified from [38]) 

Bio-based polymeric materials like proteins, polysaccharides, and aliphatic polyesters are 

produced from plants, animals, or microbial synthesis [39]. These polymers are different 

from other biopolymers and can exist as biodegradable (starch) or non-biodegradable (like 

bio-polyethylene) [40]. Especially polycaprolactone (PCL) and polylactide (PLA) have been 

vastly explored in AM to generate biodegradable and biocompatible scaffolds for the 

biomedical sector [41]. The applications of these biopolymer-based sustainable biomaterials 

have increased quite dramatically in the last decade, compared to traditional materials, as 

illustrated in Fig. 3. The decomposition can be adjusted precisely by developing harmless 

components upon the implantation of sustainable materials [42–44]. The unique features can 

assist constructing hard and soft tissues simultaneously by using a selected array of synthetic 

and natural biopolymers [45]. Furthermore, these biopolymeric materials are less costly and 

have matching chemical, physical, and biological characteristics, as shown in Fig. 4, which 

are similar to certain living cells and tissues. 

 

                  



6 
 

 
Figure 3. Number of publications related to biopolymer-based biomaterials from 2010 to 2022. 

(Figure drawn by using both “Biopolymers” and “Biomedical” as keywords from Scopus database) 

 

 
Figure 4. Characteristics of 3D-printed biopolymer scaffolds (Figure drawn through the information 

provided by [46]) 

Fig. 5 depicts the socio-economic and environmental factors for evaluating the sustainability 

performance of biopolymeric composites. Sustainable materials have shown huge potentials 

in the 3D printing sector [38]. Soft biomaterials are vastly applied in different biomedical 

applications including tissue engineering (TE), lab-on-chip, scaffold design, nerve grating, 
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microvascular network, wound healing, and drug carrier applications [47–51], to mention a 

few. The 3D printing of biopolymeric materials is further revolutionizing healthcare systems 

by fabricating on-demand drug-released medical devices [52]. Different novel formulations 

including multi-drug combinations, controlled-release, novel design, orally disintegrating, 

and pediatric-friendly formulations have also been reported in the literature [53–55]. 

Figure 5 Sustainability performances of biopolymeric-based biomaterials (Figure modified from [56]) 

Amid the coronavirus disease 2019 (COVID-19) pandemic, the estimated market size of AM 

in the healthcare system was $1.45 billion in 2021 [57]. It is predicted that the economic 

growth of 3D-printed medical models and devices in the healthcare market will reach $6.21 

billion by 2030 [58]. Due to enormous interest in biopolymers for the AM, it is necessary to 

highlight the recent progresses and the role of environmentally sustainable biomaterials in 

advanced healthcare systems. Herein, we highlight some of the recent advancements in 3D 

printing biopolymeric materials including their potential applications in the field. 

2. Biopolymers-based sustainable material 

Biopolymers are derived from biological renewable resources such as animals, plants, and 

microorganisms, which exhibit excellent biocompatibility, chemical versatility, non-toxicity, 
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bioresorbability, bioactivity, and tunable biodegradability. The use of biopolymer-based 

sustainable materials in the biomedical sector including bone, cardiac, and liver regeneration, 

wound healing, and drug delivery systems, has been increasing day by day due to more 

refined and efficient treatments [59–62]. Some prominent natural- and synthetic-based 

biopolymeric materials and their biomedical applications are provided in Table 1. The 

biocompatibility of bioactive materials has influenced the functional properties of additively 

manufactured tissues or organs. Additionally, biomaterials require adherence of the native 

cells to maintain adhesion, viability, and interaction [63]. At present, synthetic biopolymers 

induce inflammatory reactions. However, it is necessary to overcome issues related to the 

safety and efficacy of these materials. This can be done by synthesizing composite scaffolds 

through chemical modifications [64]. 

 

                  



9 
 

Table 1. Types of commonly employed biodegradable polymers for the fabrication of scaffolds, their characteristics, and recent biomedical applications  

Biopolymer 

type 
Biopolymer  

Sustainability 

credentials for 

biomedical 

applications 

AM 

technique 
Advantages Disadvantages 

Degradation 

time 

Suggested 

polymers 

and bio-

ceramics 

to develop 

composites 

Formulations 
Biomedical 

applications 
Ref. 

Natural 

Chitosan 

Biodegradable 

Low carbon 

footprint 

Extrusion, 

SLA 

Non-

immunogenicity, 

easily metabolized, 

antibacterial activity, 

and biocompatibility 

Low 

mechanical 

strength, 

brittle, stiff 

>20 weeks 

HAp, BG, 

alginate, or 

collagen 

Sponge, 

hydrogels, 

composite 

scaffolds 

Gene delivery, 

wound dressing, 

bone, nervous, 

skin, liver, 

cardiovascular, 

and cartilage TE 

[65–

67] 

Alginate 

Lower carbon 

footprint 

Biodegradable  

Extrusion 

Non-

immunogenicity, 

bioactivity, 

biocompatibility, and 

non-antigenicity 

Limited 

toughness and 

mechanical 

strength 

80 d 

BG, HAp, 

chitosan, or 

PLA  

Micro/nanosphere, 

hydrogels 

Hollow vascular 

channels, bone, 

cartilage, neural, 

skin regeneration, 

and wound healing 

[68–

70] 

Cellulose 

Excellent 

biodegradability 

Low carbon 

footprint 

DIW, 

FDM, IJP 

Bioactivity, excellent 

mechanical 

characteristics, and 

biocompatibility 

Limited cell 

adhesion 

Weeks to 

months 

HAp, 

CNTs, 

chitosan, 

PLA, or 

PBS 

Composite 

scaffolds 

Neural, skin, 

tendons, muscle, 

cardiac, cartilage, 

and bone 

regeneration 

[71–

74] 

Collagen 

Biodegradable 

Low embodied 

energy level 

and carbon 

footprint 

Extrusion, 

IJP 

High porosity, 

bioactivity, excellent 

mechanical 

characteristics, 

biocompatibility, and 

poor immunogenicity 

Low 

antigenicity, 

low 

mechanical 

strength, and 

low stiffness 

12 hours 

HA, 

PLGA, 

BG, or 

HAp 

Scaffolds 

Drug delivery, 

vascular, dental, 

cornea, bone, 

cartilage, and 

artificial skin 

regeneration 

[75–

77] 

SF 

Excellent 

biodegradability 

Low carbon 

footprint 

Micro-

extrusion, 

SLA, IJP 

Biocompatibility, 

excellent mechanical 

characteristics, high 

tensile strength, 

bioactivity, high 

flexibility, and low 

Brittle, rapidly 

degrade 
6 weeks  

Collagen, 

HAp, PLA, 

or calcium 

phosphate 

Scaffolds 

Gene delivery, 

wound healing, 

hepatic, vascular, 

cornea, neural, 

tendon, bone, 

cartilage, and skin 

[78–

81] 
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immunogenicity regeneration 

Gelatin 

Biodegradable 

Low embodied 

energy level 

Extrusion, 

SLA 

Biocompatibility, 

bioactivity, ECM 

mimicked, poor 

immunogenicity, and 

better solubility 

Rapid 

degradation, 

low 

mechanical 

strength, 

limited 

solubility in 

concentrated 

solutions 

10 d 

Chitosan, 

HAp, PLA, 

or PCL 

Micro/nanosphere, 

hydrogels 

Aortic valves, 

neovascularization, 

cartilage, neural, 

bone, and skin 

regeneration 

[82–

84] 

Starch 

Excellent 

biodegradability 

Low carbon 

footprint 

Extrusion 
Non-toxicity and 

biocompatibility 

Brittle and less 

surface area 

Several 

weeks 

GO, BG, or 

PCL 

Composite 

scaffolds 

bone, skin 

regeneration, and 

drug delivery 

systems 

[85–

88] 

HA 

Biodegradable 

Low embodied 

energy level 

Extrusion 

Non-toxicity, easily 

modified through 

chemical reaction, 

and biocompatibility 

Fast 

degradation 

rate and low 

mechanical 

characteristics 

4 months 

PEG, PLA, 

PLGA, 

collagen, 

or chitosan 

Scaffolds, 

hydrogels 

Skin and neural 

regeneration 

[89–

91] 

Synthetic 

PLA 

PLA 

degradation 

within the 

human body 

PLA 

copolymers, 

which can help 

in the 

adjustment of 

degradation 

Extrusion, 

SLA, IJP 

Highly flexible and 

biocompatible 

Highly 

inflammable, 

low cellular 

adhesion, 

porosity and 

bioactivity, 

poor rate of 

degradation 

20 months 

HA, 

alginate, 

chitosan, 

PCL, HAp, 

or BG 

Hydrogels, 

composite 

scaffolds 

Suture, neural, 

bone, skin 

cartilage, 

cardiovascular, 

ligament 

regeneration, and 

drug delivery 

applications 

[92–

94] 

PCL 

Slow 

degradation rate  

Water, solvent, 

oil, and chlorine 

resistant 

Extrusion, 

SLA, IJP 

Highly flexible, 

excellent mechanical 

characteristics, 

degradation and 

solubility, 

Limited 

degradation 

and low cell 

adhesion 

6-28 months 

Chitosan, 

PLA, BG, 

or HAp 

Composite 

scaffolds, 

hydrogels 

Dentistry, 

vascular, bone, 

retina, skin 

regeneration, and 

pharmaceutical 

[95–

97] 
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biocompatible, and 

minimal 

inflammability 

applications 

PGA 

Insoluble in 

water 

Biodegradable 

Extrusion, 

SLA, IJP 

Excellent tensile 

strength, 

bioresorbable, and 

biocompatible 

Limited 

solubility and 

rapid 

degradation 

5 months 

PLA, PEG, 

PLGA, 

collagen, 

or chitosan 

Composite 

scaffolds, 

hydrogels 

Surgical sutures, 

bone, ligament, 

and cartilage 

reconstruction 

[98–

101] 

PHB Biodegradable  
Extrusion, 

IJP 

Excellent 

mechanical, barrier 

properties, 

piezoelectricity, and 

optical activity 

Limited 

solubility, and 

low cell 

adhesion 

6-10 months 
Chitosan or 

alginate 

Composite 

scaffolds, 

hydrogels 

Surgical implants, 

biomedical 

devices, bone, 

skin, cartilage 

regeneration, or 
breast 

augmentation  

[102–

104] 

PVA 

Biodegradable 

Low carbon 

footprint 

Extrusion, 

IJP 

Biocompatibility, 

non-toxicity, self-

healing property, and 

hydrophilicity 

Low cell 

adhesion 
16-25 d 

Gelatin, 

chitosan, 

PLA, or 

PGA 

Hydrogels, 

composite 

scaffolds 

Drug delivery, 

wound dressing, 

bone, cartilage, 

and skin 

regeneration 

[105–

107] 

 

                  



12 
 

Natural bio-organisms including algae, fungi, and bacteria decompose biopolymers into tiny 

molecules through anaerobic or aerobic techniques by forming organic H2O and CO2 

products [108]. Additionally, these materials exhibit highly compatible behavior due to their 

resemblance with the extra-cellular matrix (ECM). ECM contains thick layers of tissues 

annexed together by adhesive polysaccharides or protein molecules. Moreover, it also 

promotes cell adhesion, interaction, proliferation, and differentiation [109].  

2.1. Natural biopolymers 

Natural biodegradable polymers (polysaccharides and proteins) are highly versatile and are 

used for tissue regeneration, gene delivery, controlled drug delivery, bio-actuators, and other 

healthcare applications. These biomaterials are generally derived from plants, animals, or 

microbes. Generally, natural biopolymers exhibit high molecular weight, which results in 

viscous polymer solutions that enable them to be used in the 3D printing. Consequently, 

processability and printability of these polymers remain a challenge [110]. Some of these 

polymers can be chemically modified, which improve non-toxicity, biocompatibility, and 

biodegradability. Some natural biopolymers are chitosan, silk fibroin (SF), collagen, 

cellulose, gelatin, hemicellulose, alginate, hyaluronic acid (HA), lignin, and starch. Despite 

excellent bioactivity, biocompatibility, and biodegradability, natural biopolymers have some 

disadvantages such as poor mechanical properties, high water solubility, source instability, 

possible immunogenicity, and denaturation during processing [111–113].  

Chitosan, a polysaccharide material derived from the deacetylation of chitin, is found in 

crustacean skeleton and is extensively applied in biomedical applications [114–116]. 

However, the low mechanical resistance of these materials limits their use in drug delivery 

applications [117–119]. Alginate, a heteropolysaccharide, which abundantly exists as an 

ingredient of cell walls of brown seaweed and in the capsule of bacteria pseudomonas sp. and 

Azotobacter sp. It possesses the ability to form a gel upon the incorporation of divalent 

cations [120–122]. Additionally, it has also been used for preparing hydrogels through 

various crosslinking approaches for a wide range of applications in the biomedical area [123–

125].  

Collagen, a natural polymer, is a ubiquitous protein found in animals, especially in the human 

body. Collagen scaffolds contain the fibrous structure of principal receptors (integrins) with 

dimeric peptides [126]. For instance, Heo et al. [127] observed that the incorporation of 

umbilical vein endothelial cells (UVECs) and mesenchymal stem cells (MSCs) into collagen 

hydrogels significantly improved osteogenic differentiation, cell viability, and vasculature 

ingrowth. Moreover, the blending of collagen with other natural biopolymers helps in 

forming fibrous polymeric scaffolds, which exhibit excellent strength and stability due to the 

crosslinked structure. Additionally, collagen sponges are also being used as a wound dressing 

material, due to porosity, structure, and surface properties [128–130]. 

SF, a natural polymer of proteinic nature, extracted from Bombyx mori cocoons, spiders, and 

silkworms. This biomaterial is highly elastic, strong, and high strength-to-density ratio. The 

porosity of the structure can be improved by adding calcium phosphate (CaP) in silk without 

any noticeable changes in its compressive behavior [131–133]. Nowadays, silk-based 

hydrogels are employed to release potential anticancer drugs including doxorubicin. 

Additionally, they also help in delivering genes, growth factors, proteins, and plasma 

molecules [134–137]. Starch is a renewable polymer obtained through plants. This material is 

primarily deposited in tubers, seeds, or roots of plants. The starch structure contains 

amylopectin and amylose, constituting about 98%-99% dry weight of this biopolymer. 
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Modified starch employed in acetylated, phosphate ester, and grafted forms for drug release 

applications [138–140]. 

Gelatin is one of the most versatile and promising natural biopolymers derived through 

partial hydrolysis and denaturation of collagens. It originates from different sources including 

pigskin, hides, fish, and cattle bones, and contains proline, glycine, and hydroxyproline 

constituents [141–143]. Excellent viscosity, gel strength, and low melting point are some of 

its unique characteristics that appear due to the presence of amino acids [144–146]. Cellulose, 

a renewable and biodegradable polysaccharide, is abundantly available in natural biological 

sources ranging from plants (bamboo, wood, bast, and cotton) to micro-organisms (algae, 

bacteria, and fungi) [147]. However, cellulose shows minimal solubility in the organic 

solvent and difficulty in melting due to strong hydrogen bonds, which makes its 

processability highly cumbersome [148]. Cellulosic fibers are mostly employed to reinforce 

the matrices of bioactive materials, which are manufactured through the AM technology. 

Similarly, bioinks for the AM technology can also be prepared by using nanocellulose 

materials such as cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) as a 

reinforcing media [149–151]. HA, an emerging and versatile linear polysaccharide, naturally 

occurs in the body consisting of glycosaminoglycan with non-sulfated bonds [152]. HA plays 

an important role in cellular adhesion and differentiation, which makes it highly suitable for 

modern therapeutic formulations [153]. 

2.2. Synthetic biopolymers 

Diverse and versatile synthetic polymers such as polyanhydrides, polyamides, poly-α-

hydroxyesters, polyurethanes, and poly(ortho-esters) can be applied in tissue regeneration, 

medical devices, drug and gene delivery systems due to their modifications or tailorable 

designs [154–156]. These polymers have relatively low production cost compared to natural 

biodegradable polymers [156–158]. Aliphatic polyesters can be used as substitutes to 

petrochemical polymers due to their excellent mechanical properties and biodegradability. 

Synthetic biodegradable polymers including PLA, polyhydroxybutyrate (PHB), polyvinyl 

alcohol (PVA), polyethylene glycol (PEG), poly(lactide-co-glycolide) (PLGA), poly(glycerol 

sebacate) (PGS), polybutylene succinate (PBS), PCL, and polyglycolic acid (PGA) have 

gained considerable attention in healthcare systems.  

Nowadays, synthetic biopolymers are considered attractive alternatives for the biomedical 

sector. These polymers provide better control over molecular weight and chemical 

composition compared to their natural counterparts . Most synthetic biodegradable polymers 

are aliphatic polyesters like PLA, PCL, PGA, and their copolymers [159–163]. These 

polymers show high biocompatibility and controlled degradation rate. Furthermore, their 

degradated products in-vivo have not produced any toxic effects on tissues [164]. 

Additionally, polymers with improved mechanical properties are developed by manually 

controlling synthetic parameters and designs. However, some synthetic biopolymers exhibit 

in vivo degradation and yield acidic degradated products that lower the local pH value, thus, 

resulting in the acceleration of the degradation rate of grafts and triggering inflammatory 

foreign body reactions at the transplantation location. Compared to natural biopolymers, 

synthetic biopolymers lack cellular adhesion; however, the chemical modifications of these 

biopolymers can help in improving cell adhesion [165]. These biopolymers are highly 

beneficial in the biomedical sector and their characteristics can be tuned for tissue 

regeneration applications [166]. 

PLA, an eco-friendly synthetic biopolymer, is one of the most promising sustainable 

biomaterials used in healthcare systems [167]. Lactic acid can be acquired through sugar 
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fermentation, which is derived from renewable resources like corns and sugarcanes [168]. 

Some limitations like hydrophobicity, slow degradation rate, and low impact resistance 

associated with PLA polymer. The blending of PLA with other polymers helps in improving 

its mechanical properties [169]. PCL is an aliphatic semi-crystalline, biocompatible, easily 

accessible, hydrophobic nature, and biodegradable polyester, which is widely applied for 

tissue regeneration and wound healing applications [170–172]. PCL exhibits tailorable 

biological properties, mechanical strength, and physiochemical conditions. It also exhibits 

excellent permeability to deliver therapeutic molecules in TE, however, undesired burst 

release and low encapsulation limit its utilization in drug delivery applications. Additionally, 

the properties of PCL can be improved by developing copolymers through the combination of 

PCL with other poly(α-hydroxy esters) like poly(d, l-lactic acid-co-ε-caprolactone) 

(PDLLACL) and poly(l-lactic acid-co-ε-caprolactone) (PLCL) [173]. PGA, semi-crystalline 

aliphatic polyester similar in biochemistry to PLA, is a well-known bioresorbable tissue-

engineered polymer, which is extensively explored for the bioengineering field. Additionally, 

the fast-degrading nature of PGA makes it a good candidate for short-term tissue scaffolds 

[174–176]. 

3. Conventional manufacturing techniques 

It is difficult to control pore parameters as well as incorporate intricate architectural details, 

while ensuring reproducibility through conventional manufacturing techniques like gas 

foaming, freeze drying, powder forming, solvent casting, solvent casting /particulate 

leaching, sol-gel method, electrospinning, and thermally induced phase separation [177–179]. 

These conventional techniques are unable to generate fully interconnected and uniform pores 

in tissue scaffolds [180]. Additionally, it is almost impossible to avoid deviation during the 

conventional fabricating processes, which may result in the failure of the developed tissue 

constructs [181]. Table 2 summaries the key advantages and disadvantages of different 

conventional manufacturing techniques. 3D printing technology has led to the 

implementation of AM technology, which precisely controls the porosity as well as can 

distribute them uniformly throughout the tissue scaffolds [182].  

Table 2. Advantages and disadvantages of conventional manufacturing techniques, applied for 

developing biomedical products 

Conventional 

techniques 
Advantages Disadvantages Ref. 

Freeze drying 

(i) Suitable technique to develop 

interconnected pores 

(ii) Low temperature 

(iii) Distinct leaching is not 

necessary 

(i) Irregular and small pores 

(ii) Time consuming process 
[183] 

Gas foaming 
(i) Porous scaffolds 

(ii) Do not use organic solvents 

(i) Pore geometry cannot be 

controlled  

(ii) Require excessive heat 

(iii) Non-interconnected pore 

structures   

[184] 

Electrospinning 

(i) Controlled porosity, fiber 

diameter and pore size 

(ii) Micro- to nano-sized diameter 

scaffolds 

(iii) Highly porous scaffolds 

(i) Use organic solvents 

(ii) Low mechanical strength 

(iii) Pore size is reduced with fiber 

thickness 

[185–

187] 

Thermally (i) Highly porous 3D scaffolds (i) Small pores (<200 µm) [188] 
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induced phase 

separation 

(ii) Excellent mechanical 

properties 

(ii) Use of organic solvent, which 

are harmful to cells 

Solvent casting 

(i) Expensive equipment is not 

required 

(ii) Ease of fabrication 

(i) Develop simple shape scaffolds 

only 

(ii) Use residual solvents 

[189] 

Solvent casting 

/particulate 

leaching 

(i) Expensive equipment is not 

required 

(ii) Ease of fabrication 

(i) Protein denaturation 

(ii) Lack of control on the 

interconnectivity of pores 

(iii) Only form simple shape 

scaffolds 

(iv) Residual solvent is harmful to 

cells 

[190] 

Powder 

forming 

(i) Scaffolds with high porosity  

(ii) Tailorable pore size 
(i) Use organic solvents [191] 

Sol-gel method 
(i) Develop scaffolds by using 

different types of ceramics 

(i) Low mechanical strength of 

scaffolds 
[192] 

4. Additive manufacturing techniques 

AM technology has been widely explored by biomedical engineers to manufacture a variety 

of customized products for healthcare systems. The technology is highly beneficial to 

develop patient-specific anatomic models and medical implants by using an appropriate 3D 

printing process [193–195]. The transformation of reasonable AM and biopolymer 

availability are significant elements for their selection in biomedical applications [196–198]. 

Biopolymers for the 3D printing should ideally possess good printability, processability, 

structural stability, and high-shape fidelity, as well as precise and accurate 3D plotting of 

polymers [199–201].  

Fig. 6 depicts the general classification of 3D bioprinting processes as per the American 

Society for Testing and Materials (ASTM) International. Among these processes, extrusion-

based printing (fused deposition modeling (FDM) and direct ink writing (DIW)), inkjet 

printing (IJP)/binder jetting (BJ), stereolithography (SLA), and digital light processing (DLP) 

are vastly applied for the 3D bioprinting of sustainable polymeric materials [202–205]. Each 

of the 3D printing techniques has its advantages and limitations. Table 3 describes the 

schematic diagram and key aspects of some AM processes, which are generally adopted in 

the 3D manufacturing of biopolymer-based scaffolds and TE applications.  
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Figure 6. Classification of 3D bioprinting processes commonly applied in biomedical applications  

Table 3. Description about general additive manufacturing processes  

AM 

technologies 

3D 

printing 
Key Aspects Resolution 

Materials for 

3D printing 

Processing 

parameter 

Biomedical 

applications 

Cell 

viability 
Ref. 

Extrusion 

FDM 

(i) High 

mechanical 

strength 

(ii) Freedom 

in the 

selection of 

materials 

100-700 

µm 

Nanocellulose, 

PLA, PCL, 

PLGA, PEG, 

and HA 

Physical 

crosslinking, 

freeze-

drying 

Prostheses, 

orthoses, 

bone, 

cartilage, 

and vascular 

TE 

80%-

96% 

[206–

208] 

DIW 

(i) High 

resolution  

(ii) Complex 

porous 

scaffolds  

100-600 

µm 

Viscous 

biopolymer 

such as CNC, 

starch, gelatin, 

alginate, 

maize protein, 

k-carrageenan 

Freeze 

drying 

Bone TE, 

drug 

delivery 

systems, and 

personalized 

medicine 

80%-

96% 

[209–

211] 

Vat 

Polymerization 

DLP 

(i) Higher 

accuracy and 

good surface 

finish 

(ii) High 
printing 
speed 

15-100 µm 

PEG, PEGDA, 

PDLLA, and 

PCL 

UV or 

visible light 

TE, drug 

delivery 

systems, and 

complex 

organ 

structures 

> 90% 
[212–

214] 

SLA 

(i) High 

precision 

and 

5-100 µm 

Photo-

polymerizable 

resins of 

UV or 

visible light 

Prostheses, 

surgical 

instruments, 

> 90% 
[215, 

216] 
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resolution 

(ii) Can be 

used for cell 

patterning 

and growth 

factors  

CNCs, silk, 

and alginate 

bone and 

cartilage TE 

Laser-based 

printing 

SLS 

(i) High 

processing 

temperature 

(ii) Difficult 

to print 

biological 

materials or 

cell 

structures 

10-120 µm 

PVA, PLGA, 

PCL-based 

biopolymer 

composites 

Laser action 

Prostheses, 

orthoses, 

bone, and 

cartilage TE 

N/A 
[217–

219] 

SLM 

(i) Rough 

surface 

(ii) Material 

wastage 

30-150 µm 

PP, PU, 

metals, and 

alloys 

Laser action 

Prostheses, 

orthoses, 

and bone TE 

N/A 
[220–

222] 

Inkjet printing 

/binder jetting 
IJP 

(i) Multi-cell 

heterogenous 

constructs 

(ii) Cell 

aggregation 

(iii) Low 

resolution 

20-200 µm 

Less viscous 

materials 

including 

alginate, SF, 

nanocellulose, 

PEG, and 

PEGDMA 

Liquid 

binding 

agent 

Personalized 

medicine, 

liver, skin, 

bone 

regeneration, 

and drug 

delivery 

systems 

85%-98 

% 

[223–

225] 

 

4.1. Extrusion-based printing 

Extrusion-based printing was one of the earliest technologies that was previously applied to 

develop prototypes by using metal or plastic as a feedstock material [226]. Even today, the 

extrusion-based 3D printing technique is the most common, relatively straightforward, and 

cost-effective AM process applied for prototyping biopolymers [227]. Different feeding 

mechanisms including piston-, pneumatic-, or screw-type used to extrude viscous materials 

with a viscosity between 30 mPa.s to 6×10
7
 mPa.s  [228]. Irrespective of the type of extrusion 

mechanism, the ink will be extruded continuously to perform a layer-by-layer deposition on 

the print bed, which solidifies to develop 3D objects, as illustrated in Fig. 7A. Biomedical 

applications usually employ micro-extrusion techniques to print highly dense cellular 

structures in a controlled fashion. The extrusion-based printing is further divided into FDM 

and DIW, based on the printing temperature [229–231]. FDM is considered a highly suitable 

strategy for the printing of biopolymers, in which thermoplastic filaments are heated into a 

molten state or semi-liquid state and extruded through an orifice onto a printing platform 

[232]. However, this strategy usually extrudes only viscous polymeric materials at room 

temperature and low resolution is achieved during the process [233]. In contrast, DIW is an 

extrusion-based printing technique exhibiting the ability to extrude biopolymeric-based 

viscoelastic ink in the liquid or heated form to generate fibers at ambient temperature. The 

deposition of these fibers into a specific pattern helps to produce scaffolds for tissue 

regeneration [234]. This technique can help in developing multipolymer-based tissue 

constructs. The manufactured bioinks must possess appropriate rheological characteristics, 

extraordinary shape retention ability, and high storage modulus [235]. Furthermore, bioinks 

should be able to hold their shape without depending upon the drying or solidification of raw 

                  



18 
 

materials. Bioink materials containing high-storage modulus make them highly suitable 

materials for developing bone regeneration scaffolds [236]. 

 

 
Figure 7. Schematic illustration of different AM processes; (A) FDM and DIW printing techniques; 

(B) Vat photopolymerization; (C) BJ/IJP; (D) SLM (adapted with permission from [237], copyright 

2021, Elsevier Inc.). 

4.2. Vat photopolymerization  
Vat photopolymerization is another effective technique used for the processing of 

biopolymeric composites. In this technique, 3D objects are formed by exposing photo-

sensitive polymers to light or ultraviolet (UV) radiation [238]. Here, UV light is used to 

trigger a reactive species or catalyst for the radical photopolymerization of methacrylates. 

Such a technique is highly attractive due to its printing speed and high resolution. Based on 

the variation of curing source, this technology is further categorized into SLA and DLP [239].  

SLA, a fascinating 3D printing process, uses selectively cross-linked materials including 

elastomers, thermosetting plastics, ceramic-based resins, and bioink materials in the presence 

of UV or visible light to develop patterned structures [240]. It is widely applied for producing 

biopolymer-based porous scaffolds and intricate constructs both for hard and soft tissue 

regeneration applications [241]. This technique facilitates the high printing resolution of 

values up to 20 µm and is considered one of the most accurate 3D printing techniques. 

Therein, the curing is triggered through the degradation of photo-initiators upon exposure to a 

light source [242], as illustrated in Fig. 7B. Thermoset resins in the SLA technique usually 

exhibit limited degradability under the action of the light source. Therefore, the combination 

of biodegradable polymers including diethyl fumarate (DEF), poly(propylene) fumarate 

 

(A) Extrusion-based Printing (B) Vat Photopolymerization 

 

(C) Binder Jetting 

 

(D) Laser-based Printing 
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(PPF), poly(trimethylene carbonate) (PTMC), and poly(d,l-lactic acid) (PDLLA) was applied 

for developing tissue biodegradable scaffolds [243]. However, SLA is not a suitable 

technique for the simultaneous printing of living cells due to the insolubility of photo-

initiators in water solution which makes cells highly toxic. Furthermore, cells are traumatized 

due to the action of the UV light upon curing.  Due to this reason, cells are incorporated after 

the development of scaffolds [244].  

Digital Light Process (DLP) technique is a rapid 3D printing process, which has gained 

significant attraction in the TE field due to its customizability and high precision [245]. In 

this process, the curing laser beam is controlled through a digital mirror device (DMD). The 

DMD contains an array of micro-mirrors that regulates the laser beam [246]. It can cure a 

complete layer simultaneously, thus, reducing printing time significantly compared to the 

traditional SLA process [247]. This process is highly suitable to develop intricate ceramic 

products with high accuracy and resolution, along with desirable mechanical characteristics. 

The variation in photocurable resin formulations affects the end-use characteristics of the 

printed scaffolds [248]. Thus, this process helps in developing 3D-printed scaffolds with 

specific characteristics and functionalities through the regulation of resin formulations [249].  

4.3. Laser-based printing 

Laser-based printing approaches consist of two printing techniques i.e., SLM and SLS for the 

processing of biopolymeric powders, which use laser light to fuse the material [250]. In the 

SLM technique, polymeric granules are completely melted, whereas, SLS permits heating 

below melting temperature just to fuse materials [251]. This approach uses a heater to preheat 

the powdered feedstock into the build cavity and a heating source (laser radiation) to fuse 

(sintering or melting) different cross-sections, as illustrated in Fig. 7D. This layer-by-layer 

melting and followed by a solidification process develops 3D objects. SLS/SLM approach 

develops accurate 3D-printed products compared to other processes like FDM or SLA [252]. 

Biomaterials such as biopolymers and ceramics are mainly applied in the SLS technique. This 

approach uses a variety of biopolymeric sustainable composite materials like PCL, PLA, 

PDLLA, poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), PVA, PCL/HAp, 

PLA/PCL/HAp to print scaffolds for BTE, cardiac TE, and cartilage TE applications [253]. 

For instance, Patel et al. [254] developed PHBV-based biodegradable scaffolds for BTE by 

using the SLS method and observed degradation mechanism and comparable mechanical 

properties. 

4.4. Inkjet printing 

Inkjet Printing (IJP) technique provides rapid prototyping by depositing tiny 

photopolymerized ink suspension/solution onto the substrate to develop 3D models and 

scaffolds, as illustrated in Fig. 7C. It is a powerful tool to deposit biomolecules, polymers, 

and living cells with high resolution and efficiency [255]. In this technique, for most cases, 

the viscosity of the bioink should be lower than 10 mPa-s for effective printing. Additionally, 

this technique offers low cell densities and high fabrication speed compared to other 3D 

printing processes [256].  

Inkjet 3D printing has mainly two working modes; drop-on-demand (DOD) IJP and 

continuous inkjet (CIJ) printing [257]. DOD, a non-contact 3D printing technique, uses tiny 

ink droplets of diameter (25-50 mm) that are developed on-demand, and direct the binder 

droplets with the help of pressure or voltage pulses. This technique is mostly applied to 

develop scaffolds for TE applications [258]. It possesses excellent control over droplet 
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directionality, uniformity, and size. Additionally, the quality of printing depends upon the 

positional accuracy of ink droplets. In CIJ printing, less viscous bioink materials are 

converted into a continuous droplet flow after passing through a nozzle (or a set of nozzles), 

to fabricate 3D objects. The spacing and size of binder droplets are regulated through a 

pressure wave pattern [259]. IJP is used to develop scaffolds by using both ceramics and 

biopolymer-based biomaterials like HAp, BG, PLA, PCL, PGA, etc. There is a variety of 

applications of IJP in other biomedical applications like personalized medicine, controlled 

drug delivery, and protheses [260]. 

4.5. Bioprinting 

Bioactive materials are natural or engineered materials that interact with the living tissues 

without producing any adverse effects and ensure treatment, augmentation, or substitution of 

organs [261]. In other words, the advancement in 3D printing technology has resulted in the 

development of 3D commercial bioprinters that include BioBots, Aether, Regenhu, and 

Cellink [262–265]. 3D bioprinting, an emerging and innovative technology, which is derived 

from AM technology and incorporates the viable cells with bioactive materials iteratively to 

fabricate biomedical components (shown in Fig. 8) that have revolutionized the TE, bone 

regeneration, and pharmaceutical sectors [266–269].  

Bioinks, as feedstock materials for the 3D bioprinting help to develop intricate and 

heterogeneous architectures like vasculatures, which enhance cell adhesion, growth, and 

differentiation with native tissues [270]. In comparison to traditional 3D printing 

technologies, the development of artificial tissues is more challenging in 3D bioprinting due 

to the selection of cell growth, types, differentiation factors, construction, and functionalities 

of tissues [271]. Nowadays, 3D bioprinting is fulfilling the demands of traumas, cancers, 

tooth extraction, and accidents by modulating porosity and their uniform dispersion during 

human interaction. However, there is a need to address some challenges including cell 

incorporation problems, structural activities, and feedstock requirements, in this approach 

[272]. 
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Figure 8. Schematic diagram illustrating the difference between 3D/4D bioprinting and 3D/4D 

printing (adapted with permission from [273], copyright 2022 Elsevier B.V.) 

4.6. 4D printing 

Four-dimensional (4D) printing, an innovative technology, involves the combination of 

stimuli-responsive materials and a 3D printing technology to develop dynamic patient-

specific scaffolds [274]. This technology uses stimuli-responsive polymers as a feedstock 

material, which can change to a temporary state or return to their original state upon exposure 

to external stimuli, as illustrated in Fig. 8. It was initially introduced by Tibbits in 2013 and 

has gained tremendous attraction in the biomedical field, due to its ability to produce tissue 

scaffolds with a dynamic environment [275]. 4D bioprinting, mostly an extension-based 4D 

printing, is extensively applied in healthcare systems, which involves the maturation of living 

cells after 3D printing [273]. During the maturation process, cell-incorporated 3D-printed 

scaffolds self-transform themselves in the presence of stimuli like light, humidity, heat, 

magnetic field, electric field, ultrasound, pH, etc [276]. 

Table 4 summarizes different stimuli-responsive biopolymers, which are well-suited for 

biomedical applications, especially TE applications. Beside stimuli-responsive polymers, 

lipids and hydrogels have been vastly applied as feedstock materials for the 4D bioprinting 

[277–279]. Additionally, different types of smart hydrogels including peptide, natural, and 

synthetic hydrogels have found their applications in the biomedical sector. These hydrogels 

develop architectures with tailorable porosity and excellent cell interconnectivity [280].  

Table 4 Stimuli-responsive biopolymers used to develop smart materials for healthcare system 

Stimuli-responsive 

biopolymeric composites 
AM technology Stimulus Applications Ref. 

PLA/Fe3O4 FDM Magnetic Tracheal stents [281] 

PLA-PCL copolymer FDM Temperature Elbow protection [282] 

PCL/Fe3O4/BG FDM Magnetic Bone tissue scaffolds [283] 

Collagen/agarose/iron NPs DIW Magnetic Cartilage tissue scaffolds [284] 

Gelatin/chitosan Extrusion Temperature Tissue vascularization [285] 

PCL/Fe3O4 SLA Magnetic Tissue scaffolds [286] 

PEGDA SLA Light Optogenetic muscle [287] 

Methacrylated alginate & 

Methacrylated HA 
Extrusion Humidity Tissue vascularization [288] 

PLA FDM Temperature Protective visors frame [289] 

Alginate/glycerin Extrusion pH Skin dressing [290] 

PLA/Fe3O4/benzophenone DIW Magnetic Cardiovascular implant [291] 

Collagen fibers Extrusion Temperature 
Left atrial appendage 

occlusion devices 
[292] 

5. Biopolymeric nanocomposites   

Biopolymer-based tissue constructs exhibit poor barrier properties and low thermal stability 

along with low mechanical characteristics [293]. In contrast, biopolymeric nanocomposites 

incorporate nanosized materials, which improve the mechanical characteristics of 

biopolymers [294]. These nanocomposites exist in the form of nano-filament composites, 

nano-layer composites, or nano-particulate composites [295]. Table 5 incorporates some of 

the recent biopolymeric-based nanocomposites used to develop scaffolds in tissue 

regeneration. 
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Table 5. Summary of nanocomposites which are obtained by incorporating NPs into biopolymers 

developed through various AM techniques  

Biopolymers NPs AM process Applications Ref. 

Alginate HAp Bioprinting Bone TE [296] 

PVA/sodium alginate/CNF HAp Extrusion Bone TE [297] 

PLA/GelMA Gold NPs FDM Bone TE [298] 

PCL Mesoporous BGs Bioprinting Bone TE [299] 

PCL/PEG β-TCP Extrusion Bone TE [300] 

PCL HAp SLS Bone TE [301] 

PLLA/PHBV CaP SLS Bone tissue regeneration [302] 

PCL Zn/HAp/GO Micro-extrusion Bone TE [303] 

PCL/PEG HAp Extrusion Bone tissue regeneration [304] 

GelMA HAp DLP Bone TE [305] 

PCL/PLA Halloysite FDM Bone tissue regeneration [306] 

PCL Strontium/HAp Extrusion Bone TE [307] 

Alginate BGs Extrusion Bone tissue regeneration [308] 

PCL GO Extrusion Bone TE [309] 

PEGDA CNCs SLA Soft TE [310] 

Alginate MWCNTs Extrusion Vascular tissue regeneration [311] 

PCL MWCNTs Extrusion Cardiac TE [312] 

PCL CNFs FDM 
Drug eluting cardiovascular 

scaffolds 
[313] 

Chitosan/alginate HAp Hybrid 3D 

printing 

Cartilage tissue regeneration [314] 

Alginate/thymoquinone Halloysite Extrusion Cartilage tissue repairing [315] 

Xanthan gum CNC DIW Liver TE [316] 

PLA Halloysite Extrusion Soft TE [317] 

The characterization of the polymer nanocomposites is an analytical approach, which helps to 

evaluate their size, structure, physical, and chemical properties. The incorporation of 

nanoparticles (NPs) into biopolymers provides better control on size, morphology, and 

dimensions of nano-constructs. Nevertheless, proper dispersion and integration of NPs into 

biopolymeric matrices are necessary for cell proliferation, adhesion, and infiltration within 

scaffolds. For instance, Liu et al. [300] incorporated tricalcium phosphate (TCP)-based 

nanomaterials into PCL/PEG-based 3D-printed composite bone scaffolds for improving the 

mechanical properties. Fig. 9A depicts the scanning electron microscope (SEM) analysis, 

which showed that composite scaffolds contain uniformly dispersed TCP. Such an uniform 

dispersion of TCP into biopolymer matrices improved the mechanical properties and cell 

viability.  
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Figure 9. (A) Surface characterization of composite scaffolds, where PCL/PEG/TCP-based 

composite scaffold showed excellent dispersion of the NPs (adapted with permission from [300], 

copyright 2022, Elsevier Ltd.); (B) Surface morphology and microstructure of 3D-printed bone 

scaffolds (adapted with permission from [318], copyright 2019, Elsevier Ltd.). 

Nanocelluloses in the form of CNCs and CNFs are vastly employed, as fillers to develop 

tissue scaffolds [319]. For instance, Baniasadi et al. [316] developed 3D-printed scaffolds for 

soft tissue regeneration by using xanthan gum (XG)/CNC, as illustrated in Fig. 10B. The 

authors reported excellent swelling ratio, porosity, and mechanical properties of scaffolds, 

which can be applied for soft tissue regenerations. Additionally, these scaffolds showed better 

attachment, differentiation, and proliferation of liver cancer cells. 

 
(A) 

 (B) 
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Figure 10. (A1) Schematic illustration of 3D-printed PCL/PLA/halloysite scaffolds; (A2) Optical 

photographs of 3D-printed scaffolds printed by varying halloysite (adapted from [306], under the 

Creative Commons Attribution License 4.0); (B) CNC, as a filler to develop XG/CNC-based 

scaffolds for repairing soft tissues (adapted with permission from [316], copyright 2022 Elsevier 

B.V.) 

Biopolymers are often used in a mixture with some other inorganic fillers such as ceramic or 

metal NPs, nano-fibers, graphene, carbon nanotubes (CNTs) as well as living cells which are 

obtained from some living materials [320–323]. Among these inorganic materials, CNTs are 

highly effective for developing 3D-printed biopolymeric-based nanocomposite scaffolds for 

bone, cardiac, and neuronal tissue regeneration, due to their extraordinary electrical 

conductivity, mechanical properties, and distinct dimensional features [324]. CNTs also help 

to improve strength, flexibility, and biocompatibility, along with the reduction of thrombosis 

and induction of angiogenesis during tissue regeneration [325–327]. For instance, Lee et al. 

[328] developed porous PEGDA/multi-walled carbon nanotube (MWCNT)-based nerve 

scaffolds through the SLA technique. The results indicated that the incorporation of 

MWCNTs promoted the growth and proliferation of neuronal cells, thus, it is a highly 

effective strategy for developing scaffolds for nerve TE applications. However, these 

materials exhibit non-resorbable behavior upon in vivo experimentation [329]. In another 

study, Alam et al. [306] developed PCL/PLA/halloysite scaffolds by using FDM technique, 

as illustrated in Fig. 10A. The results revealed that halloysite-incorporated scaffolds exhibited 

cellular adhesion, cytocompatibility, and biodegradation rate. Thus, these scaffolds have 

promising applications for bone regeneration.  

Anti-microbial properties of biopolymer composites can be enhanced by using metal-based 

micro- and NPs like bronze, copper, and silver. These anti-bacterial properties in the 

biopolymer composites are essential for tissue scaffolds [330–333]. For instance, Sang et al. 

[334] coated gold NPs on the surface of PCL-based scaffolds developed through 3D printing. 

Such NPs enhanced osteogenic differentiation and anti-microbial properties of 3D-printed 

bone scaffolds. Likewise, Li et al. [318] printed anti-microbial dual functional PCL-based 

scaffolds with self-assembly micro-nano surface, PDA, and silver NPs manufactured through 

the FDM technique, as illustrated in Fig. 9B. The NP-incorporated scaffolds exhibited 

excellent cytocompatibility, anti-bacterial, and mechanical properties. These scaffolds 

demonstrated their excellent potential for bone tissue regeneration. 

(A1) 

 

 

(B) 

(A2)  
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There is a great demand for bioactive materials like TCP, hydroxyapatite (HAp), and 

bioactive glass (BG) in TE and regenerative medicine, due to non-toxicity, biocompatibility, 

and better interaction with the human body, which accelerates the healing mechanism [335–

337]. HAp, an inorganic component, is highly suitable for developing biopolymer-based 

nanocomposites for bone tissue regeneration that provides excellent cell adhesion, 

proliferation, and differentiation [338].  

BG is a commercially available micro-sized filler and pure BG cannot be employed for 

developing tissue scaffolds, due to lose of its amorphous characteristics at a high sintering 

temperature [339]. Similarly, BG/biopolymer composites are special type biomaterials, which 

are used in healthcare systems for various applications ranging from surgical implants to 

tissue regeneration scaffolds [340]. However, bioactive reinforced-biopolymer scaffolds 

possess excellent biocompatibility, bio-functionality, biodegradability, and mechanical 

properties [341]. Aráoz et al. [342] incorporated BG into PHBV to fabricate 3D-printed 

scaffolds for bone tissue regeneration with biological and mechanical properties similar to 

ECM of trabecular bone. 

6. Scopes of biopolymeric composites in healthcare system 

Biopolymeric composites are widely used in many clinical and biomedical applications [343]. 

These sustainable materials have also addressed the demands of environmental toxicological 

and public health studies, due to inherent properties including biodegradability, non-toxicity, 

biocompatibility, flexibility, and renewability [344]. A wide range of natural and synthetic 

biopolymers are now under extensive consideration for many applications such as 3D 

anatomical models, TE, surgical equipment, scaffold design, and artificial implants [345]. 

Particularly, these composites have myriad of scopes in both hard and soft TE [346]. This 

section illustrates some of the key applications of 3D-printed biopolymeric composite 

materials. 

6.1. Tissue engineering (TE) 

Biodegradable polymer-based porous scaffolds developed through the 3D printing processes 

are vastly applied as artificial ECMs to support native tissues, which help in regenerating and 

reconstructing tissues [347]. Sometimes, biologically active molecules or cells are 

incorporated to promote tissue regeneration. Depending upon the type of application, these 

porous scaffolds should possess excellent biocompatibility, cytotoxicity, porosity, optimal 

pore size, and interconnectivity. Furthermore, porous scaffolds have a significant role in the 

application of drug delivery systems, the development of biomedical devices and surgical 

instruments, and the encapsulation of human and animal cells [348–350]. 

Additionally, 3D-printed human organs, stents, medical devices, and drug delivery systems 

have been developed using biodegradable polymers [351–353]. For instance, Misra et al. 

[353] developed a multi-drug eluting 3D-printed stent by incorporating graphene nano-

platelets into the biodegradable PCL-based polymer through an extrusion-based process. This 

printed stent was deployed in a pig heart, as shown in Fig. 11A. The improved mechanical 

properties, as well as in vitro results, depicted that these novel biodegradable stents can be 

employed for treating heart patients suffering from blocked coronary arteries. Table 6 

provides the summary of different 3D-printed biopolymeric composites employed in different 

soft and hard tissue regeneration applications. 
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Figure 11. (A1) Schematic illustration depicting different steps for fabricating micro-stents; (A2) 

Sequential demonstration of 3D-printed stent PCL-based  polymer composite implanted in the heart 

of the pork (adapted with permission from [353], copyright 2017 WILEY‐ VCH); (B) Implantation 

of 3D-printed PMTC-based scaffolds into the human jawbone manufactured through SLA strategy 

(adapted with permission from [354], copyright 2019 American Chemical Society); (C1) 3D-printed 

PCL-based polymer scaffold; (C2) Insertion of scaffold into the tooth socket of human mouth; (C3) 

Trimming of the excess scaffold (adapted with permission from [355], copyright 2014 John Wiley 

& Sons Ltd) 

Table 6. Biopolymeric scaffolds manufactured through various 3D printing techniques 

Type 

of 

tissue 

Target 

tissue 

Biopolymeric 

material(s) 
Printing technique  

In vitro 

study 
Structure   Ref. 

Hard 

Bone PEG/Silk/PCL 
Extrusion-based 3D 

printing 
BMSCs 

Crypt-like 

structures 
[356] 

Bone  Gel/PVA 
Extrusion-based 3D 

printing 
MG63 cells - [357] 

Bone  PLA FDM hBMSCs - [358] 

Bone PVA/BC FDM 

Human 

osteoblast 

cells 

- [359] 

Soft Cartilage  PCL/PLA/PEG FDM hBMSCs Layer by layer- [360] 

 (B) 

 

(A1) 

 

(A2) 

 

(C1) (C2) (C3) 
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based 

honeycomb 

structure  

Cartilage SF/PEG  
Extrusion-based 3D 

printing 
Chondrocytes 

Disk/meniscus-

shaped 

scaffold: 

[361] 

Cartilage SF/Gelatin  
Extrusion-based 3D 

printing 
hMSCs 

Layer-based 

3D structure 
[362] 

Nasal 

cartilage 
Collagen  

Extrusion-based 3D 

printing 

Human 

chondrocytes 

Microporous 

structure 
[363] 

Nerve 
Alginate/CMC/ 

agarose 
DIW 

Human 

iPSC-derived 

glial cells 

Layered 

porous 

structure 

[364] 

Nerve PCL 
Electrohydrodynamic 

jet-based 3D printing 
 PC12 

Tubular multi-

layered 

complex 

[365] 

Skin 

Keratin/glycol 

chitosan 

methacrylate  

Extrusion-based 3D 

printing 
hASCs 

“NTU”-based 

3D model  
[366] 

Skin PEG/SF DLP NIH/3T3 

3D lattice 

structure 

containing thin 

keratin layer 

[367] 

Cornea GelMA 
Extrusion-based 3D 

printing 

Human 

keratocytes 

Complex 

porous 
[368] 

Liver  SF/Gelatin 
Extrusion-based 3D 

printing 

Hepatocytes, 

Huh7 

Six-layered-

based scaffolds 
[369] 

Lung SF/CNF 
Extrusion-based 3D 

printing 

Lung 

epithelial 

stem cells 

Two crossing 

layers 
[370] 

6.1.1. Hard tissue engineering TE 

Natural and synthetic 3D-printed biodegradable polymers have huge potential to be used for 

hard tissue (bone) regeneration applications due to their biocompatibility and cytotoxicity 

[371]. Furthermore, these 3D printing processes have the flexibility to provide any complex 

shape using biopolymers along with satisfactory biological, physical as well as mechanical 

properties [372–374].  

Bone, a naturally regenerative tissue, may suffer significant trauma due to accidents, thus, 

hindering its normal regeneration, which causes bone defects [375]. Bone defects require 

artificial scaffold support during the healing process and bone growth. Since the inception of 

3D printing techniques, myriad of biomedical researchers tried to develop scaffolds for bone 

tissue engineering (BTE) applications, as making scaffolds as this technology is simple and 

easy. For instance, Dienel et al [354] employed the SLA technique to fabricate biodegradable 

implants for a bone generation. In this study, the 3D-printed scaffolds were manufactured by 

incorporating 51 wt% of β-tricalcium phosphate (β-TCP) into PTMC to get high resolution 

and best quality implant. Fig. 11B depicts 3D-printed porous scaffolds embedded into the 

human jaw. Similarly, Ben and Tan [355] employed PCL-based biodegradable material for 

the fabrication of scaffolds to heal the socket of human tooth, as depicted in Fig. 11C. For 

this purpose, a 3D printing technique was used to fabricate the PCL scaffold that could be 

used in the bone healing of the human tooth. The 3D-printed scaffold was inserted into the 

teeth socket of the human without using the filler and observed the results after 6 months. 
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The results depicted that the insertion of a biodegradable PCL-based scaffold significantly 

healed the bone. 

In another study, Choi et al. [376] developed PLA-based biodegradable polymers that could 

be used effectively in the formation of bone scaffolds. For this, a FDM-based technique was 

used to fabricate the specimens by incorporating a chain extender and a chemical foaming 

agent and observed the improvement in the morphology, porosity, and melting properties. 

Similarly, Shim et al. [377] studied the effect of PLGA/PCL/β-TCP-based scaffolds through 

FDM for bone regeneration and osteointegration of dog tooth. Fig. 12A1 depicts the 

sequential procedure of this work adopted by the authors to manufacture 3D-printed 

scaffolds. For in vitro examination, the developed 3D-printed membrane was implanted into 

the dog’s mouth, as shown in Fig. 12A2. Both in vivo and in vitro results further help to print 

scaffolds for applications.  

 
Figure 12. (A1) Sequential procedure starting from CAD design of membrane to the implantation of 

membrane into the edentulous mandibular alveolar ridge; (A2) Implantation of implants into the 

edentulous mandibular alveolar ridge; (A3) Used the grafting material to compromise and fill the 

defects and then membrane was implanted (adapted from [377] under the Creative Commons 

Attribution License 4.0); (B1) Schematic illustration showing the experimentational procedure of in 

vitro vascularized tissue generation of the bone; (B2) 3D-printed PLA/HAp-based composite scaffold 

in lateral and (B3) front view; (B4) Figure showing the saphenous arteriovenous blood bundles; (B5) 

Periosteum was displayed on the surface for surgery; (B6) Implantation of PLA/HAp-based 

composite scaffold; (B7) Scaffold was rolled in the form of capsule (adapted from [378] under the 

Creative Commons Attribution License 4.0). 

Zhang et al [378] explored a strategy to repair bone defects using the PLA/HAp-based 

biodegradable scaffold. The preparation of these scaffolds was performed by the vascularized 

(A1) 

 

Implanted 

biodegradable 

scaffold. 

(A2) (A3) 

 

(B1) 

(B2) (B3) 

 
(B4) (B5) 

(B7) (B6) 
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TE bone of the rabbit using an in vivo bioreactor. Fig. 12B1 depicts the experimental 

procedure adopted by the authors to completely analyze the in vitro behavior of the fabricated 

scaffold. In this methodology, the tibial periosteum capsule was filled with PLA/HAp 

composite scaffolds and rabbit bone marrow cells, as depicted in Fig. 12B6. After 8 weeks, 

the results depicted that these scaffolds are helpful in generating vascularized bone tissues. 

The mechanical properties of biopolymer-based scaffolds are matchable to the properties of 

the targeted hard tissues. Additionally, the degradation rate of the scaffolds is the same as that 

of the replacement rate of cells. It helps in the replacement and remodeling of natural ECM. 

Table 7 provides most remarkable, recently fabricated 3D-printed biopolymeric composite-

based bone scaffolds, their properties, morphologies, and research highlights. 
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Table 7. Recently adopted different 3D-printed biodegradable polymer composite-based scaffolds for tissue regeneration 

AM process Biopolymeric composites Mechanical characteristics Morphology Highlights Ref. 

FDM PLGA/HA/HACC  

Compressive strength: 31.3 MPa  

Tensile strength: 22.7 MPa  

Elastic modulus: 1.9 GPa 

 

The results of the in vivo study 

showed that the biodegradation 

of the scaffolds was influenced 

by the bone infection and helped 

in the repairing of the bone. 

[379] 

Extrusion Alginate/gelatin/CNC 
Storage modulus: ~150,000 MPa 

at 100 rad/s  

 

Rapid bone grafting has been 

noted in the rat CCD-1 defects 

model in the presence of the 

biopolymers-based scaffolds 

after 21 d of the transplantation. 

[380] 

FDM PLA/HAp 
Nozzle diameter: 0.2 mm  

Layer thickness: 50 μm 

 

Young's modulus, similar to the 

modulus of the cancellous bone 

when 50 wt% of HAp were used. 

[381] 

Extrusion MWCNTs/PCL 

Melting temperature: 90 °C 

Air pressure: 6 bar 

Deposition velocity: 20 mm/s 

 

The in vitro study depicted that 

implanted scaffold containing 3 

wt.% of MWCNTs significantly 

repaired the bone tissues.   

[382] 

Micro-

extrusion 

Alginate/gelatin/GO/chondr

oitin sulfate 
Compressive modulus: 100 kPa 

 

The incorporation of GO in 

biopolymer-based scaffolds 

exhibited excellent cell 

proliferation, adhesion, and 

proliferation. In vitro analysis 

showed excellent bioactivity, 

cytotoxicity, and 

biocompatibility. These 

scaffolds are excellent 

candidates for TE. 

[383] 
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Extrusion Silica NPs/ oxidized alginate 
Yield stress: 79 Pa with 2 wt.% 

of NPs 

 

The results exhibited that 

incorporation of silica NPs 

enhanced mechanical stability, 

shear-thinning properties, and 

high fidelity. 

[384] 

DLP PGSA 

Feature thickness: 80 μm 

Elastic modulus: 3668.7 kPa 

Ultimate tensile strength: 919.1 

kPa 

 

The results revealed that PGSA-

based biodegradable tubular 

scaffold exhibited excellent 

mechanical properties and 

degradation kinetics. Thus, it has 

the potentiality to be applied for 

tissue regeneration applications 

including vascular grafting. 

[385] 

DLP β-TCP/PCL 
Compressive strength: 11 ± 4 

MPa  

 

The experimental results 

indicated that 3D-printed hybrid 

scaffolds exhibited excellent 

compressive strength. Thus, 

these rigid bioactive scaffolds 

have the potential to be applied 

for BTE applications. 

[386] 

DLP PCL/PEG/GelMA 

Diameter: 1.5 mm, 2 mm, and 

2.5 mm 

Wall thickness: 0.75 mm, 1 mm, 

and 1.5 mm 

 

3D-printed scaffolds exhibited 

excellent biocompatibility and 

mechanical properties. Hence, 

these composite scaffolds will be 

highly suitable for nerve repair. 

[387] 
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SLS PCL 

Laser power: 0.3 – 0.7 W 

Laser beam diameter: 260 μm, 

390 μm 

Elastic modulus: 11.3 ± 0.5 MPa 

 

PCL-based porous scaffolds 

have depicted excellent 

biocompatibility and comparable 

elastic modulus. Therefore, these 

scaffolds can be applied for bone 

regeneration.  

[252] 

FDM PCL/PGA/yarn fiber 
Tensile strength: 79.7 MPa 

Elastic modulus: 3.5 GPa 

 

Stiffness and tensile strength of 

3D-printed biodegradable 

scaffolds were enhanced, 

significantly with the 

incorporation of yarn fibers. 

Additionally, these scaffolds 

exhibited excellent 

biocompatibility and 

cytotoxicity. These scaffolds 

have the potential to be applied 

for bone regeneration.  

[388] 

FDM PLA 
Yield strength: 60 MPa 

Young’s modulus: 4 GPa 

 

3D-printed vascular stent 

exhibited excellent self-

expandable and thermal 

properties. The synergetic 

combination of these properties 

makes this 3D-printed product a 

promising candidate for solving 

complications of cardiovascular 

disease.   

[389] 

FDM PCL 

Compressive strength: 0.65 MPa 

Compressive modulus: 10.60 

MPa 

 

Build envelope temperature, 

nozzle temperature, material 

volume and deposition speed are 

important parameter for 

determining the fidelity of PCL 

lattice scaffold structures. 

[390] 
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6.1.2. Soft tissues engineering 

3D-printed biopolymeric composites are promising candidates for mimicking native soft 

tissues, as illustrated in Fig. 13. Several soft tissues including cartilage, urethra, nerve, skin, 

tendon, liver, ligament, intestine, and vascular are continuously performing their function in 

the human body. In comparison to hard tissues, soft tissues exhibit distinct properties 

including compliant modulus of elasticity, flexibility, and weak mechanical properties, 

therefore, semi-crystalline biopolymeric materials are not considered for these soft-tissue 

applications [391–394]. Additionally, the composition and structural characteristics of these 

scaffolds should be matchable to ECM tissues for helping in cell growth, proliferation, and 

differentiation. Similarly, biocompatibility, porosity, and nutrient transportation of these 

scaffolds are other essential attributes for soft tissue regeneration [395]. Table 7 also includes 

some of biopolymeric composite-based scaffolds fabricated through 3D printing techniques 

for soft tissue regeneration applications. 

 
Figure 13. Various parts of the human body where 3D-printed biopolymeric composites can be 

used to regenerate soft tissues. 

Different natural biopolymers (α-keratin, chitosan, HA, alginate, and collagen) and synthetic 

biopolymers (PCL, PGS, PEG, PLA, and their copolymers) can be employed to print 

scaffolds for soft TE applications [396]. For instance, Liu et al. [397] regulated the elastic 

modulus and stiffness of the poly (l-lactic acid) (PLLA) by incorporating PCL-based 

biopolymer and noted that PLCL-copolymer scaffolds exhibited good biocompatibility and 

mechanical properties. Thus, copolymerized PLCL-based scaffolds show promising potential 

for the regeneration and repairing of muscle, cardiac, tendon, and skin tissues. Similarly, 

customized bioinks and PCL-based biopolymer were employed by Cho et al. [398] to develop 

biocompatible dome and spherical-shaped adipose tissue assemblies, as illustrated in Fig. 

14C. Thus, the research has shown great promise for regenerating breast tissues. 
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Various fibrous materials including collagens through the 3D printing techniques produce 

scaffolds for wound dressing and skin regenerative therapies [399]. For instance, Ramasamy 

et al. [400]  printed collagen/PCL-based biodegradable scaffolds through a extrusion-based 

process, as shown in Fig. 14B, and observed excellent cell differentiation, viability, and 

reproducibility.  

3D-printed artificial skin tissues contain different bioactive materials, growth factors, and 

cells [27]. Several researchers have 3D-printed skin constructs by incorporating stem cells, 

antimicrobial particles, and growth factors. For instance, Afghah et al. [401] developed 

poly(propylene) succinate (PPS)/PCL-based scaffolds by incorporating anti-microbial silver 

granules and human dermal fibroblast (HDF) cells. 3D-printed skin constructs exhibited 

excellent antimicrobial characteristics and degradation behavior, thus, considered as a 

potential candidate for skin TE applications. In another study, Zhang et al. [402] developed 

3D hybrid cell-laden skin constructs by using PVC-based biodegradable polymers and 

poly(N-isopropyl acrylamide-co-acrylic acid) (PNIPAAm-AA)-based hydrogels, as 

illustrated in Fig. 14D. The in vitro experimentation revealed that cell-laden constructs 

exhibited excellent superficial cornification, splitting, and sprouting of the subcutaneous ECs. 

These artificial tissues have the potential to be applied for wound healing applications. 
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Figure 14 (A) PLCL-based 3D-printed scaffolds which exhibited tailorable elasticity, stiffness as 

well as excellent biocompatibility (adapted with permission from [397], copyright 2020 Royal 

Society of Chemistry); (B) Schematic process illustration depicting the collagen/PCL-based 

scaffolds and their characterizations (adapted with permission from [400], copyright 2020 Elsevier 

B.V.); (C) PCL-based biodegradable polymer used to develop dome and spherical-shaped adipose 

tissue assemblies, which depicts its potential utilization for developing breast-replicating soft tissue 

repairing (adapted from with permission [398], copyright 2020 Wiley‐ VCH GmbH);(D1) 

Biopolymer-based 3D-printed hybrid skin constructs; (D2-D3) Multi-layered PVA-based porous cell-

laden scaffolds; (D4-D5) Hematoxylin and Eosin stain images depicting the distribution of cells in 

multi-layered 3D-printed scaffolds (adapted with permission from [402], copyright 2020 Elsevier 

B.V.) 

Peripheral nerve injury (PNI) cannot be self-healed and requires neural grafting or end-to-end 

suturing for its remedy. 3D printing is a highly suitable and versatile approach for developing 

(A) 

(B) 

 

(C) 

(D1) 

 

(D2) 

(D3) 

(D5) 

(D4)  
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patient-specific branched or unbranched conduits with high resolutions, better features, and 

native scale dimensions [403]. Biopolymer-derived sustainable biomaterials exhibit 

incomparable biological properties, which are equivalent to ECM. Thus, they provide sites 

for biological cues and protein binding that regulate the cell behavior. Recently, different 

biopolymer scaffolds including CNFs, alginate, gelatin, starch, and collagen have gained 

attraction for TE and are used to develop the next-generation conduits for neural tissue 

regeneration [404]. The rapid development in the nerve regeneration yields multiform 

biopolymer-based nerve scaffolds with different micro/nano-scaled structures, which possess 

excellent biological characteristics, cues, and appropriate mechanical strength to fulfill the 

nerve regeneration requirements. The mechanical properties and internal microstructures of 

nerve guidance conduits (NGCs) may be determinants in promoting axonal regeneration and 

remyelination. Yoo et al. [405] combined electrospun PLCL and 3D-printed collagen 

hydrogel to develop a single-lumen nerve conduit to repair PNI. The results indicated that 

developed NGCs significantly promoted myelin regeneration, axonal growth, and nerve 

function recovery. 

In another study, Ye et al. [406] employed the DLP process to fabricate NGCs by using 

GelMA-based hydrogels, as illustrated in Fig. 15A. These 3D-printed NGCs depicted 

excellent support for the differentiation, migration, proliferation, and survival of neural cells 

along the longitudinal channel. Likewise, Zhang et al. [407] developed starch/gellan gum-

based composite scaffolds via an extrusion-based 3D printing, as depicted in Fig. 15B. These 

porous structured scaffolds exhibited excellent biodegradability, biocompatibility, 

printability, and cytotoxicity, which can permit their use for treating PNI. 

 
Figure 15 (A) Schematic illustration of GelMA-based hydrogels NGCs fabricated through DLP 

(adapted from [406], Creative Commons Attribution 4.0 International License); (B) Schematic diagram 

depicting the cell-laden starch/gellan gum-based composite scaffold for PNI treatment (adapted from 

[407] Creative Commons Attribution 4.0 International License). 

6.2. Pharmaceutical and other biomedical applications 

The applications of 3D-printed biopolymer composites vary from nose reconstruction to 

dental manufacturing, human ear construction to bone regeneration, and surgical instruments 

manufacturing to developing human hand models. Fig. 16 depicts some of the applications of 

biopolymeric composites in the healthcare system. Controlled drug delivery systems are 

important to improve the therapeutic efficiency of drugs. Delivery rates of drugs must meet 

the physiological conditions [408–415]. 

(A) 

 (B)  
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Figure 16. 3D-printed biopolymer-based manufactured parts for healthcare systems; (A) CNF/GelMA-

based composite used to develop 3D-printed nose structure (adapted with permission from [408]); (B) 

3D-printed surgical instruments including scalpel handle, hemostats, needle drivers, forceps nylon 

surgical set (adapted with permission from [409], copyright 2016, Springer Nature); (C) 3D-printed 

biopolymer stent (adapted with permission from [410], copyright 2017, Mary Ann Liebert, Inc.); (D) 

3D-printed anatomical models PDLLA-based mandibular model (adapted with permission from [411], 

copyright 2020 Elsevier Ltd.); (E) 3D-printed denture containing HA-loaded PEGDA resins (adapted 

with permission from [412], copyright 2021, Springer Nature); (F) 3D-printed alginate/CNF-based 

human ear model (adapted with permission from [413], copyright 2015 American Chemical Society); 

(G) Exo-prostheses: multifunctional prosthetic 3D-printed hand prototype fabricated through fiber-

reinforced nylon (adapted with permission from [414], copyright 2014, Springer Science Business 

Media Dordrecht); (H) Personalized medical 3D-printed PHBH/CNC-based device for finger 

dislocation (adapted with permission from [416], copyright 2020 American Chemical Society); (I) 3D-

printed implanted nerve scaffold NGF gradient for sensory path signals and GDNF gradient for motor 

path signals in the scaffold (adapted with permission from [415], copyright 2015 WILEY‐ VCH 

Verlag GmbH); (J) 3D-printed biomimetic cochleae (adapted from [417], under the Creative Commons 

Attribution License 4.0). 

3D printing is an emerging technology that uses biopolymers to fabricate drug dosage forms 

in different intricate shapes. These polymers modulate the drug release rate and provide 
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physical stability to active drug ingredients [418]. However, the usage of 3D-printed 

biopolymer dosage must fulfill regulatory requirements, in terms of safety and quality 

standards for human use. FDM and IJP are the most preferred 3D printing techniques used in 

pharmaceutics and drug delivery applications. These techniques provide high accuracy, 

patient-customized drugs, quick drug release, and high dosage loading of drugs [419]. 

However, they suffer from low productivity, compared to conventional fabrication techniques 

of biomedicine. Different biopolymers have been developed as delivery mediums by using 

3D printing technologies. For example, Tappa et al. [420] fabricated 3D-printed biomedical 

implants and medical devices using PCL-based biodegradable polymer and incorporating 

estrogen or progesterone. The printed samples were surgical meshes, subdermal rods, medical 

devices, and pessaries. This study also gives a feasible concept for the application of drug 

delivery systems. Moreover, 4D printing has also gained significant attraction in the 

pharmaceutical industry [421]. For instance, Melocchi et al. [422] used water-responsive 

PVA-based polymer for intravesical drug delivery systems manufactured through FDM. 

7. Future perspectives of 3D-printed biopolymeric composites 

The 3D printing technology has shown significant advancement through biopolymers for 

constructing 3D-hybrid tissues with tunable mechanical properties and controllable biological 

characteristics. Despite extraordinary advancements in the 3D printing of biopolymeric 

composites for a wide range of applications, further research is needed to address the 

remaining challenges. The new generation of printing technologies construct tissue scaffolds 

through the combination of hydrogels, synthetic, and natural-based biopolymers [423]. For 

instance, Morris et al. [424] developed PEGDA/chitosan-based hybrid scaffolds through the 

SLA technology. To use its full potentials, it is essential to develop nanometer-to-millimeter 

hierarchical biopolymer-based architectures. Advanced hybrid manufacturing (i.e., traditional 

manufacturing processes with 3D/4D printing) technologies can be employed to fabricate 

intricate constructs. For instance, an artificial collagen/fibrin hydrogel with electrospun PCL 

and animal chondrocytes was employed for the construction of cartilaginous tissues through 

an electrospinning/hybrid IJP system [425].  

Indeed, 3D-printed biodegradable-based biopolymers have transformed the design and 

manufacturing landscapes of scaffolds. These biopolymers are successfully employed in the 

fabrication of synthetic bone models through the FDM technology [426]. However, over the 

technology possesses low printing resolution which is especially true for the 3D bioprinting 

of trabecular bone architecture. Hence, there is a further need to investigate 3D printing and 

hybrid technologies other than the FDM technology for the fabrication of 3D-printed 

biopolymer-based bone scaffolds.  

Biodegradable polymers should fulfill the safety standards, which require long-term and 

rigorous efforts. Furthermore, there is a need to modulate the degradation rate of the 

developed scaffolds for providing appropriate mechanical support to the regenerated tissues. 

The use of biopolymers for soft and hard tissues requires collaborative efforts of material 

scientists and researchers of relevant fields. There is a need to further explore a few 

perspectives for 3D-printed biodegradable polymers including mechanical properties and 

smart mechanisms for their degradability in the complex natural micro-environment. For 

instance, a largely material extrusion-based technique has been widely employed for scaffold 

manufacturing [427]. However, this technique is not flexible enough to load fillers. Hence, it 

cannot achieve the required mechanical characteristics and biocompatibility. These novel 

avenues require insightful exploration for developing efficient tissue scaffolds. 
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Biopolymer composites can contribute to healthcare systems, due to their improved 

biodegradability, biocompatibility, renewability, sustainability, and bioresorbability [428]. 

Furthermore, insightful comprehension of the composition of biopolymers along with in vitro 

and in vivo analyses will be helpful in producing novel hierarchical scaffolds. Fig. 17 shows 

the future of 3D printing biopolymers in different biomedical applications. Currently, many 

3D printing technologies are employed to develop biodegradable-based polymer scaffolds 

[429], however, their actual utilization on the commercial scale depends on the fulfillment of 

different scaffolds criteria including mechanical integrity, thermal stability, chemical 

composition, and biological characteristics. Additionally, the biological cell growth or 

adhesions with scaffolds is imperative to boost their clinical applications. Therefore, it is 

essential to further investigate and characterize additively manufactured biopolymer-based 

scaffolds with a focus on establishing their clinical role in BTE and other biomedical 

applications. 

 

 
Figure 17. Glimpse of future of 3D-printed biopolymer composite in different applications 

There is a need to develop biopolymer-based composite tissue grafts for addressing the issues 

of tissue interfaces including tendon-to-bone, ligament-to-bone, and cartilage-to-bone. 

Sustainable gradient biomaterials with anisotropic structural properties will help to 

reestablish tissue connectivity, and function as well as improve long-term clinical outcomes. 

Machine learning and artificial intelligence may also help to adjust the chemical structure of 

biopolymer composites for developing gradient tissue constructs. 

The availability of appropriate biopolymers for the 3D printing is still limited compared to 

the materials available for traditional fabrication techniques. There is a need to evaluate 

further biomaterials for achieving more feasible combinations. By overcoming this challenge, 

the utilization of 3D printing technology will be increased in the pharmaceutical industry. 

Additionally, shape-recovery polymers and hydrogels also exhibited tremendous potentials 

for the pharmaceutical sector.  

3D bioprinting technologies are extensively applied to develop intricate tissue structures 

through a controlled and automated approach [430]. However, the dynamic behavior of 

tissues cannot be precisely imitated by the presently manufactured structures. Additionally, 
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tissue structures may undergo conformational changes during tissue repair and regeneration 

[431]. Consequently, time-dependent stimuli response can be employed in the 3D-printed 

tissues to ensure their structural transformations.  

In addition to this, a novel 4D bioprinting technology has been devised by researchers via cell 

traction forces and stimuli-responsive bioactive materials especially smart biopolymers that 

help to construct tissues of dynamic nature  [432]. This technology is highly suitable to 

develop intricate dynamic structures, smart medical devices, or complex human organs. 

However, the concept of 4D bioprinting is still in the nascent stage and its realization in 

clinical applications is limited. Moreover, it is extremely difficult to predict the deformation 

of 4D printing due to the lack of computational modeling. Similarly, there is a need to 

develop bioink materials for 4D printing by considering their biocompatibility and stiffness. 

Furthermore, 4D bioprinting requires further research on multiple-responsive stimuli, as in 

vivo environments might possess more than one stimulus. Additionally, valiant efforts are 

worth devoting to developing biopolymer-based products for the biomedical sector through 

4D printing in certain conditions where unresponsiveness of the 4D-printed parts is required 

for certain stimuli including temperature and pH. 

 
Figure 18. Recent developments in sustainable biomaterials are leading towards a cybernetic future 

(adapted with permission from [433], copyright 2018 Wiley‐ VCH GmbH) 

To conclude, both natural and synthetic biopolymers have exceptional utilizations in the 3D 

printing, due to their biodegradability, renewability, and biocompatibility. These polymers 

can be used to repair/develop ears, bones, heart valves, stents, and organs, as well as can help 

to produce medical equipment. Furthermore, the implants exhibit the necessary deformable 

and soft characteristics to perfectly align with the native tissues. The integration of 

bioelectronics with the human body will take this world towards a cybernetic future, as 

illustrated in Fig. 18. Biopolymer-based scaffolds will help to treat patients with organ or 

tissue malfunction, due to different factors and road accidents, cancers, injuries, trauma, burn 

diseases, metabolic disorders, and war injuries. Artificial parts have the same biological and 
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mechanical properties as organs, which are employed as life saviors in the case of a shortage 

of donors at a crucial time. 
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