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ABSTRACT
Fitness landscape analysis often relies on visual tools to provide
insight to a search space, allowing for reasoning before optimisa-
tion. Currently, the dominant approach for visualisation is the local
optima network, where the local structure around a potential global
optimum is visualised using a network with the nodes as local min-
ima and the edges as transitions between those minima through
an optimiser. In this paper, we present an approach based on ex-
trema graphs, originally used for isosurface extraction in volume
visualisation, where transitions are captured between both maxima
and minima embedded in two dimensions through dimensionality
reduction techniques (multidimensional scaling in our prototype).
These diagrams enable evolutionary computation practitioners to
understand the entire search space by incorporating global infor-
mation describing the spatial relationships between extrema. We
demonstrate the approach on a number of continuous benchmark
problems from the literature and highlight that the resulting vi-
sualisations enable the observation of known problem features,
leading to the conclusion that extrema graphs are a suitable tool
for extracting global information about problem landscapes.

CCS CONCEPTS
• Human-centered computing→ Information visualization.
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1 INTRODUCTION
Recent years have seen substantial growth in fitness landscape anal-
ysis (FLA) studies. The fitness landscape is a functional mapping
between any given solution to an optimisation problem and its cor-
responding objective value. The fitness landscape can be thought of
as a topological representation of each region of a problem’s search
space, and its analysis yields important information about the likely
performance of a search algorithm when applied to it. Recent work
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has offered a plethora of techniques for exploring a problem’s fit-
ness landscape, but without loss of generality we denote by x𝑖 the
𝑖-th sample from the search space, and given an objective function
𝑓 (·), which is to be either minimised or maximised, we describe
the corresponding fitness of x𝑖 with 𝑦𝑖 = 𝑓 (x𝑖 ).

The features of a problem landscape have considerable impact on
the likely performance of a metaheuristic when applied to optimise
the problem. For example, it is well known that search algorithms
can be trapped in local optima - regions of the search space that are
optimal within the local area, and are thus difficult to escape from,
but are not the global optimum that is sought by the algorithm.
More complex characteristics such as funnels, disparate clusters of
local optima, and flat regions within the search space can also prove
problematic, and therefore identifying their presence can inform
the choice of a suitable algorithm and operators.

A range of techniques have been proposed for FLA (see [15]
for a recent review), and a prominent approach is the local optima
network (LON), specifically for visual analysis. LONs were first
proposed for the analysis of NK landscapes [18], and have since
gone on to be used in a wide range of combinatorial settings [19],
as well in the continuous [1] and multi-objective [5] domains. The
principle behind a LON is to represent the search landscape as a
directed graph, with nodes representing local optima and edges
representing possible transitions between the optima that might be
taken by a search algorithm. A key concept in the construction of a
LON is that of neighbourhood, and a number of approaches to this
have been taken depending on the specific representation at hand.
A key motivation behind constructing a LON is so that it can be
visualised. Visualisation is done using a technique such as a force-
directed layout [11], and provides an intuitive way of understanding
the landscape of an arbitrary problem. Providing visual information
behind the structure of a fitness landscape is a highly intuitive
approach to informing a problem owner or algorithm operator
about the type of problem they are dealing with.

In this work, we aim to develop a novel visualisation approach
to capture the general characteristics of function landscapes with
input dimensions of three or higher (similar to contour plots for two-
dimensional input spaces). We expect that this will assist the design
process of problem-specific optimisation algorithms. To this end,
we propose the use of extrema graphs for FLA. These have some
key similarities with LONs, providing a graphical representation of
a search space that can then be visualised, but include all extrema
(minima and maxima), to provide a more complete characterisa-
tion of the search space. Regions in which the distance between
the minima and maxima is small can be identified, such that the
ensuing small headroom makes passing between them difficult for
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solutions. In visualising the resulting network by projecting it into
two dimensions with multidimensional scaling (MDS) we also pre-
serve the distances between extrema, a characteristic which is lost
in other layouts such as force directed graphs.

The remainder of the paper is structured as follows. Section 2
describes related LON and visualisation research, before extrema
graphs are introduced in detail in Section 3. Section 4 analyses
the benefits of extrema graphs on a set of benchmark visualisa-
tions, while Section 5 provides further evaluation in the form of an
expert interview. Discussion (including that of future work) and
concluding remarks are made in Section 6.

2 BACKGROUND
Visual Landscape Analysis Fitness landscape analysis has be-
come a considerable topic of research within evolutionary compu-
tation. In this section, we review some of the relevant background
material. We note that, given the focus of this paper on a novel
visual technique for FLA, we restrict ourselves to a description of
techniques for visualising fitness landscapes.

One of the principal techniques for visualisation within FLA
is the local optima network [18]. LONs are designed to illustrate
the structure of a landscape as a graph 𝐺 = (𝑉 , 𝐸) such that 𝑉
is a set of nodes representing basins of attraction (local optima)
connected by edges 𝑒𝑖 𝑗 ∈ 𝐸 wherein a node 𝑣𝑖 is connected to
𝑣 𝑗 if they are deemed to be neighbours. In the original work by
Ochoa et al. (2008) [18], which dealt with binary 𝑁𝐾 landscapes, a
neighbourhood was defined to be any two solutions whereby one
could transform to the other by means of a single bit flip. Since
that work, LONs have been extended to a wide range of solution
representations and problem types (including multi-objective [5]).
In the case of continuous problems, which are the focus of this work,
a variant of the discrete LON formulation was proposed in which
the distance between two nodes was used to identify neighbours
[1]. Figure 1 illustrates a LON constructed for a 5D instance of the
Rastrigin problem. Concepts from LONs have since been extended
to formulate search trajectory networks (STNs) [17]. Since mapping
the search process of an evolutionary algorithm through the space
is beyond the scope of this work, we do not consider STNs further.

Visualisation Inspiration for our approach comes from existing
literature in the visualisation community on extrema graphs [7, 8].
Extrema graphs, used in volume visualisation, provide a structure to
extract isosurfaces automatically from volumes. Two-dimensional
surfaces are defined in three dimensions, similar to the to one-
dimensional contour lines on a map, that separate areas of higher
density from areas of lower density in the volume. In isosurface ex-
traction, the graphs are usually embedded in three dimensions, but
that is not always the case for visual landscape analysis. Therefore,
for the purposes of landscape analysis, we visualise the calculated
extrema graph directly through dimensionality reduction of the
maxima/minima along with samples along the edges between them.

Dimensionality reduction takes data in high dimensional spaces
and maps them down to lower dimensional spaces which for vi-
sualisation is often two dimensions. Multidimensional scaling ap-
proaches [2, 3, 14, 20, 22] are one type of these methods which
optimises distances between points in the low dimensional space
so that they are representative of distances in the high dimensional

Figure 1: An example of a LON for the Rastrigin function
with 5-dimensional decision space using the default

settings from Adair et al. [1]. The dark red node represents
the global minimum. The series of red nodes show the
basin of attraction for the global minimum, while other
blue nodes represent basins for local minima. Arrows are

also included showing the direction of travel in the
basin-hopping algorithm.

space. In our approach, we use multidimensional scaling to embed
the extrema and the sample points along the edges (those which
make up the “edge nodes”) for visualisation in 2D. MDS has previ-
ously been used in other approaches to embed search spaces for
visualisation, such as in the work by Michalak [16]. However, our
work differs in the use of a graphical representation. For this reason,
we position our method as a complementary approach to LONs
rather than comparing it directly to other less similar approaches.

While in this work we use MDS to visualise the solution space,
it has also been used to visualise high-dimensional spaces in many-
objective optimisation, presenting trade-off surfaces for problems
comprising four or more conflicting objectives [24, 25]. Later work
considered the visualisation of a multi-objective optimiser’s route
through the search space in a way that enabled landscape charac-
teristics to be inferred from optimiser behaviour.

3 EXTREMA GRAPHS
Similarly to a LON, extrema graphs use a graphical representation
where nodes consist of extrema (in the case of LONs, only the
minima) and edges represent some metric of distance between
these extrema. However, extrema graphs differ from LONs in both
the construction and the visualisation of this graph, for example,
in the inclusion of both maxima and minima. The incorporation of
all extrema, however, is infeasible for large landscapes with many
extrema due to the computational expense in identifying them. To
generate our extrema graphs, we have therefore used the Niching
Migratory Multi-Swarm Optimiser (NMMSO) [4] to sample extrema
to include in the graph. NMMSO is a good multimodal optimiser
capable of finding many, if not all, of the extrema in our benchmark
problems, however could be substituted for another approach. In
this work, we focus on developing a novel visualisation technique,
rather than optimising the process for identifying extrema.
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3.1 Graph Construction
The graph is then constructed from these extrema in the following
steps, where, at the first stage, each node in the graph corresponds
to one of the extrema. A full overview of the graph construction
process is contained in Algorithm 1.

Firstly, an edge is added between two nodes where the Euclidean
distance between the corresponding extrema is less than a threshold.
The threshold, 𝑡 is given by a hyperparameter 𝜌 multiplied by the
Euclidean distance between the bounds of the search space, such
that 𝑡 = 𝜌 ∥b𝑢 − b𝑙 ∥ where b𝑢 and b𝑙 vectors are the upper and
lower bounds of the search space (line 4 of Algorithm 1). We call
the hyperparameter 𝜌 the radius percentage. This hyperparameter
can take values between 0 and 1, thus determining the proportion
of edges which are included, and can be chosen by the problem
owner based on their requirements when designing an optimiser
(for example, if it depends on a certain neighbourhood value) as
well as their own personal perception of the visualisation.

Once the edges have been determined, they are then replaced
with a sequence of nodes, which we call edge nodes. In the visualisa-
tion there are therefore no edges in the graph, however the original
extrema nodes have a much larger visual representation than the
new edge nodes, such that these take the appearance of edges be-
tween the extrema nodes. The benefits of drawing the edges as a
sequence of nodes are to vary the colour along the edge to visualise
changes in fitness value, as will be described in the subsequent
section 3.2, as well as to visually indicate how the search space is
folded by the dimensionality reduction. These benefits offset the
downside of additional visual clutter. Each of these edge nodes
also has an associated location in the search landscape, such that
they are linearly spaced along the line connecting the two relevant
extrema. The associated locations in the search landscape of both
the extrema nodes and the new edge nodes are stored in a location
matrix, 𝐿, as described in lines 5 and 10 of Algorithm 1.

This process produces the final graph topology, where we have a
number of extrema nodes and a number of edge nodes, each having
a corresponding location in the search landscape. The final step
before we can visualise the extrema graph is to translate these
locations in high-dimensional space to locations in 2-dimensional
space. In our extrema graph prototype, we use MDS [14] to perform
this translation as it aims to preserve relative distances, though
there are many other relevant dimensionality-reduction techniques
which could be applied, including Landmark MDS [20] or t-SNE
[22], which has previously been applied for visualising LONs [23].
The chosen dimensionality-reduction method should be applied to
all nodes - both extrema nodes, and edge nodes, to determine their
location in the extrema graph visualisation. It should be noted that,
while MDS aims to preserve pairwise distances when projecting
to lower-dimensional space, it is impossible to do so perfectly and
therefore there may be some unintuitive distortion of the space.
This motivates the use of edge nodes to aid understanding.

3.2 Visual Encoding
The MDS drawing of the extrema graph is visualised directly. How-
ever, in order to distinguish minima, maxima, and edge nodes, as

1An implementation of the algorithm in Python is available at
https://github.com/sophiefsadler/extrema_graphs.

Algorithm 1 Extrema Graph Construction1

Input: For a problem with dimensionality𝑚: function 𝑓 : R𝑚 →
R; upper and lower bounds on the search region, b𝑢 , b𝑙 ∈ R𝑚 ;
number of fitness evaluations, 2𝑁 ; radius percentage, 𝜌 ; num-
ber of edge nodes per edge, 𝑒

Output: Extrema graph and 2D node locations
1: Run NMMSO algorithm for 𝑁 fitness evaluations to obtain
𝑛𝑚𝑎𝑥 maxima

2: Run NMMSO algorithm for 𝑁 fitness evaluations to obtain
𝑛𝑚𝑖𝑛 minima

3: Initialise graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛𝑚𝑎𝑥 + 𝑛𝑚𝑖𝑛 and 𝐸 = ∅
4: Set the threshold, 𝑡 = 𝜌 ∥b𝑢 − b𝑙 ∥
5: Initialise location matrix 𝐿 ∈ R𝑛×|𝑉 | such that for every node
𝑖 ∈ 𝑉 , 𝐿_,𝑖 = 𝑜𝑖 where 𝑜𝑖 is the location of optimum 𝑖 in the
landscape

6: for pairs of extrema, 𝑜𝑖 , 𝑜 𝑗 do
7: If ∥𝑜𝑖 − 𝑜 𝑗 ∥ < 𝑡 , add edge (𝑖, 𝑗) to 𝐸
8: end for
9: for edges (𝑖, 𝑗) in 𝐺 do
10: Add 𝑒 nodes to 𝑉 and corresponding locations in the

search landscape to 𝐿 such that these locations are evenly
spaced along the line connecting 𝑜𝑖 and 𝑜 𝑗

11: Remove (𝑖, 𝑗) from 𝐸

12: end for
13: Perform MDS on L to reduce to 2 dimensions
14: Output 𝐺 = (𝑉 , ∅) and 𝐿
15: Note: ∥·∥ denotes the Euclidean norm in 𝑛 dimensions

well as to provide other useful information about the search land-
scape topology, we use additional visual channels in our encoding.

Firstly, extrema nodes are sized significantly larger than edge
nodes to distinguish them as local extrema. All nodes are then
coloured according to an isoluminant colour scheme representing
the fitness value at the corresponding location in the search land-
scape. In our prototype, we use Matplotlib’s Viridis colour scheme,
which varies from yellow for the highest values through green, blue
and finally purple to the lowest values. Thus minima are usually
represented in purple and maxima in yellow. Edge nodes are also
coloured according to this scheme, allowing for interpretation of
the shape of the landscape between two extrema. The global min-
ima are marked separately in red to distinguish them from other
minima, which may be globally non-optimal despite appearing
similar in colour when using the Viridis colour scheme.

None of the visual features described here are present in LONs,
and are therefore a key differentiator of the two methods.

4 EXPERIMENTAL RESULTS AND
ILLUSTRATIONS

In order to demonstrate the efficacy of extrema graphs for under-
standing search landscapes, we demonstrate them as applied to a
number of well-known, continuous benchmark functions: Sphere,
Rastrigin, Schwefel, Ackley, Griewank and Rosenbrock. Formula-
tions of these functions can be found in Appendix A, while the 2D
surface plots are shown in Figures 2 and 3 below.
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We have produced an extrema graph for each function in 2, 3 and
5 dimensions to demonstrate the performance and variation across
these differing numbers of dimensions. Additionally, the extrema
graph for the Sphere function in 10 dimensions can be found in
Appendix B. In the graph construction, we used 20, 000, 30, 000 and
50, 000 fitness evaluations respectively to generate extrema graphs
in 2, 3 and 5 dimensions. The radius percentage hyperparameter, 𝜌
was chosen for each function individually; these values are as in
table 1. As this value controls the number of edges included in the
extrema graph, using a larger value of this hyperparameter allows
more information about the fitness landscape to be captured and
included. However, for functions with large numbers of maxima
and minima, a large radius percentage can lead to an extrema graph
with too much visual clutter to be understood, and also drastically
increases computation time. For our evaluation, we chose this value
experimentally, by testing a range of values and selecting the one
for which the resulting extrema graph contained the best quantity
of valuable information in the eyes of our interpretation. These
values were then fixed across all dimensions so that all extrema
graphs for a given function could be directly compared. Note that
the NMMSO runs need not be rerun in order to test new values of
𝜌 , so these were performed only once.

Radius Percentage Values
𝜌 Search Bounds

Sphere 0.75 [−5.12, 5.12]𝐷
Rastrigin 0.08 [−5.12, 5.12]𝐷
Schwefel 0.1 [−500, 500]𝐷
Ackley 0.05 [−32.768, 32.768]𝐷
Griewank 0.25 [−5, 5]𝐷
Rosenbrock 0.75 [−5, 10]𝐷
Table 1: The value of the “radius percentage"

hyperparameter (𝜌 ∈ (0, 1]) used during graph construction,
alongside the bounds of the search region explored.

4.1 Benchmark Visualisations and
Interpretation

The first set of extrema graphs is shown in Figure 2 where we visu-
alise 2D, 3D and 5D landscapes for Sphere, Rastrigin and Schwefel.
The top row shows a conventional surface plot of a 2D fitness land-
scape for each, while the second, third and fourth row show the 2D,
3D and 5D extrema graph for the corresponding problem.

4.1.1 Sphere. Considering the first column, we see the results
for the Sphere problem – the problem with the simplest fitness
landscape considered herein. Figure 2(d) shows an extrema graph
of a 2D landscape. The graph consists of five extrema nodes: four
nodes shown in yellow, with the central node being shown in
red. As described in section 3.2, the red node corresponds to the
global minimum, while yellow nodes have high fitness value (so
are maxima). The larger extrema nodes are connected by smaller
edge nodes, also coloured according to fitness. In the case of the
Sphere function, this simple visualisation provides substantially
more information than would be visible in a LON representing

the same landscape. In that case, the graph would comprise of
a single node (representing the global minimum) with no edges.
Here it is possible to observe the maxima, which correspond to
the corners of the landscape shown in Figure 2(a); the scale of the
fitness in those nodes is determined by the bounding box selected
when instantiating the problem. The colour of the internal edges,
connecting the maxima to the minimum, show a steady decrease in
fitness (the colour gradually progresses from yellow to purple). This
represents the smooth slope of the landscape, which has no local
minima. The outer edges decrease to a trough before climbing back
towards the adjoining maxima. This is a graphical representation
of how the surface cuts the landscape’s bounding box, which is the
U-shape that can be seen at the edge of the landscape in Figure 2(a).

Figure 2(g) shows the corresponding 3D Sphere landscape. The
characteristics highlighted in the 2D case can be seen here. In
this case, there are eight nodes representing maxima. This is to be
expected, as any instance of this problem will feature a hypercube
comprising 2𝐷 corners, which form the maxima. Each maximum is
again directly connected to the minimum via an edge, which again
exhibits the steady decrease we would expect from the smooth
landscape. Each adjacent maximum is again connected by an edge
that shows the U-shape formed by the bounding box, however in
this case there are additional edge nodes. This is an artefact of the
compression of a 3D landscape into two dimensions, and shows
connections between maxima in the third dimension. The same
topology is visible in the 5D graph shown in Figure 2(j). There are
again 25 = 32 nodes representing maxima, though the number of
edge connections in this case makes it difficult to observe direct
connections between them. It is, however, still possible to identify
the smooth progression from maxima to minimum by following the
colour of the edges as they move toward the centre of the graph.

4.1.2 Rastrigin. The second column of Figure 2 illustrates the Ras-
trigin examples. Again, the top row shows a the conventional land-
scape view and the second row (Figure 2(e)) shows the correspond-
ing 2D extrema graph. In some ways, the visualisation is not dis-
similar to the Sphere graph shown in Figure 2(d). There are four
maxima, again shown in yellow, though we note that the scale is
different as it depends on the fitness values in a specific graph. The
principal difference is the presence of a number of local minima,
represented as nodes within the graph. This is an intuitive way of
viewing the graph, since the Rastrigin objective function is formed
of the sum of squared decision variables (accounting for the similar-
ities to the Sphere case) which is offset by a cosine term introducing
regular local minima (accounting for the additional minima nodes).
The regularity of the minima can be seen by the way in which
the nodes have been placed into a grid arrangement. Clearly, the
graph is missing regions of the landscape; this is because of the
stochastic nature of the multimodal optimiser that has been used
to sample the space. One option that could be used to address this
and provide a more complete map would be to run multiple repeats
of the optimiser in the way that a LON is constructed, however,
this would increase the computational cost which is currently min-
imised by the use of only two optimiser runs, one for the maxima
and one for the minima. An interesting characteristic visible from
the edge nodes is that the problem is non-convex. This is shown by
the regular progression of colour between nodes.
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The 3D case shown in Figure 2(h) exhibits similar characteris-
tics to the 2D case, albeit in a less uniform layout because of the
compression of the additional dimension. The minimum is still
shown at the centre of the graph, however the graph shows fewer
connections between the inner core and the outer maxima. This
again is likely to be an artefact of the way in which the multimodal
optimiser has traversed the space while sampling. This effect is
even more pronounced in the 5D case (Figure 2(k)).

4.1.3 Schwefel. The Schwefel problem is similar in construction to
Rastrigin. Figure 2(f) indicates this in that the graph has a similar
regular structure. Noise in this case is introduced by a sine term
rather than the cosine, and taking the square root of the absolute
value of each decision variable introduces local minima at varying
heights, rather than the steadily decreasing minima of Rastrigin. In
Figure 2(e), the 2D Rastrigin extrema graph, the further a minimum
is toward the global minimum the lower the fitness value. In Figure
2(f), for Schwefel, theminima increase and decrease as they progress
to the global minimum. Another interesting aspect of this problem
compared to Sphere and Rastrigin is that it only has one maximum.
This is placed at the opposite end of the graph from the minimum,
which is again shown in red. While these characteristics are, as has
been the case in the other problems, visible in the 3D case Figure
2(i), they are more difficult to observe in the 5D case Figure 2(l).
We theorise that this is because of the effect of the more rugged
landscape on the sampling process, leading to fewer connected
edges which in turn leads to a less precise embedding with MDS.

4.1.4 Ackley. The left-hand column of Figure 3 illustrates extrema
graphs for the Ackley problem. Again, Figure 3(a) shows the 2D
landscape in a surface plot, and 3(d) shows the corresponding ex-
trema graph. This graph follows the typical layout we have seen in
previous cases, with maxima arranged around a central minimum
(again, shown in red). The regions between the external maxima
and the minimum are sparse. This, in combination with the high
concentration of minima identified near the global minimum, indi-
cates that the optimiser has not struggled to locate the problem’s
central funnel. Those maxima and local minima that have been
found are arranged in a somewhat regular fashion, which is as
would be expected for the problem. When considering the 3D case
(Figure 3(g)) the number of local minima nodes found near the
global minimum has reduced considerably. This indicates that the
funnel is becoming steeper, and the optimiser is less likely to be
trapped by local minima once it locates solutions within the funnel.
Having increased to 5D in Figure 3(j), the distance between the
funnel and the maxima nodes is increased. This is due to the MDS
compression, which has placed nodes towards the corners of the
projection as it seeks to keep nodes that are distant in the 5D space
distant in the corresponding 2D embedding.

4.1.5 Griewank. As can be seen in Figure 3(b), the Griewank land-
scape is highly regular. This regularity has resulted in a distinct
extrema graph (Figure 3(e)). As seen previously, the global mini-
mum is placed toward the centre of the graph. The local minima
and maxima are placed around it, organised into lines. These lines
cut across the fitness landscape, and the peaks and troughs visible
in the 2D landscape (Figure 3(a)). This effect is visible in the 3D case,
shown in Figure 3(h), and the 5D case, shown in Figure 3(k). In both

cases, compressing the extra dimensions into a two-dimensional
extrema graph has resulted in curved edge nodes. While in the 2D
and 3D cases all of the maxima and local minima have been located,
the optimiser has not sampled the entire 5D landscape.

4.1.6 Rosenbrock. The final problem we consider is Rosenbrock.
As shown in Figure 3(c), this problem is characterised by a deep
trench of reasonable fitness, only a specific portion of which is
actually optimal. Figure 3(f) illustrates the 2D extrema graph. Here,
there is a single maxima, due to a slight tilt in the fitness landscape
that biases the value of one of the maxima to be marginally higher
than the other corners (however, by expanding the bounds of the
problem the opposite side of the landscape in the 𝑥2 axis becomes
visible). In the lower right-hand corner of the graph are a set of
near-optimal local minima connected to each other, as well as the
global minimum. This indicates the trench, and this characteristic
can be seen in Figures 3(i) for the 3D case and 3(l) for the 5D case.
In both the 3D and 5D cases the optimiser has located maxima in
other corners, and in both cases these are connected to the trench
(and, in some cases, the global minimum itself) by decreasing edge
nodes as was the case in the Sphere example.

5 EXPERT INTERVIEW
We also conducted an interview with an FLA expert to ascertain
whether extrema graphs as we have presented them can be easily
understood, and whether they fulfil the intended purpose. Expert
interviews are a common assessment of visualisation techniques,
usually consisting of studies with a small number of experts2. In
this case, we perform such an evaluation with one expert and will
expand this evaluation in future work.

Experimental Design. The interview took the following format.
We began by introducing the premise of our approach and the aims
of our research. This was followed by some technical discussion of
the methodology, and finally by provision of examples in the form
of the Sphere function extrema graphs in 2D, 3D, 5D and 10D.

In the second stage, we presented randomly ordered extrema
graphs and randomly ordered surface plots for the remaining bench-
mark functions in 2D (Ackley, Griewank, Rastrigin, Rosenbrock
and Schwefel), and asked the expert to match each extrema plot
with one of the surface plots. At this stage, we did not tell the ex-
pert whether the answers were correct, but immediately presented
randomly ordered extrema graphs for the benchmark functions in
3D and asked the expert to again match these to the surface plots.
Although the expert was not informed of the correct answers for the
2D plots, we cannot rule out that a learning effect could take place
to improve the expert’s performance on the subsequent 3D plots.
This approach was chosen to assess the expert’s understanding as
it gives us a quantitative evaluation of performance, in contrast to
other qualitative elements of the expert interview. The interview
was concluded with an exploration of the benefits and drawbacks
of our approach as perceived by the expert.

Participant Response. For the 2D functions, the expert correctly
matched the Ackley, Rastrigin and Schwefel graphs to their surface
plots without difficulty, but deliberated over the matching of the
2Five or fewer experts can find the majority of issues with a visualisation [21]. In line
with standard ethical practice, anonymity of participants/experts is protected.



GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Sadler et al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2: Surface plots for the Sphere (a), Rastrigin (b) and Schwefel (c) functions. Extrema graphs for the Sphere function in
2D, 3D and 5D are shown in (d), (g) and (j); for the Rastrigin function in 2D, 3D and 5D in (e), (h) and (k); and for the Schwefel

function in 2D, 3D and 5D in (f), (i), and (l).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3: Surface plots for the Ackley (a), Griewank (b) and Rosenbrock (c) functions. Extrema graphs for the Ackley
function in 2D, 3D and 5D are shown in (d), (g) and (j); for the Griewank function in 2D, 3D and 5D in (e), (h) and (k); and for

the Rosenbrock function in 2D, 3D and 5D in (f), (i), and (l).
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Griewank and Rosenbrock functions and ultimately matched these
incorrectly. For the 3D functions, the expert once again deliberated
over the matching of the Griewank and Rosenbrock functions, but
this time got the matching of all 5 functions correct. This indicates
that the expert was able to gain enough insight from the extrema
graphs to identify the corresponding functions. Increased exposure
may have led to the improved performance in the second round.

During the discussion in the final stage of the interview, the ex-
pert identified the ability of extrema graphs to capture the rugged-
ness of the landscape, which is derived from the concise repre-
sentation of the spatial relationship of the extrema, as their main
benefit. These approaches can provide an overview of the functions
in higher dimensions, in particular with respect to their function
variability. Furthermore, the expert highlighted that this method
may be useful in visualising paths of optimisers for analysing their
performance on specific problems.

Regarding drawbacks, the expert noted that the appearance of
the extrema graphs may be sensitive to methodological details. The
expert highlighted with the following comments some examples of
possible sensitivities: the use of edge nodes may introduce bias into
the MDS procedure towards regions where there are more edges
(i.e. where there are more maxima and minima closer together in
Euclidean space); interpolating edge nodes between extrema “as
the crow flies” restricts the view of the landscape to the regions
directly connecting extrema; and finally, the NMMSO algorithm
expends some proportion of its work towards finding the global
optimum, so it may ignore certain optima.

We agree that our method is highly dependent on the efficacy of
the multimodal optimiser in finding distinct extrema. Nonetheless,
we believe the sensitivity due to this is minimal in our demonstra-
tion, especially due to the high number of function evaluations
used for the known synthetic problems explored in this paper, and
focus here on evaluation of the visualisation technique itself.

During this informal discussion of benefits and drawbacks, the
expert provided insights that may lead to potential further work,
detailed in section 6 below. We conclude based on the expert’s feed-
back that extrema graphs provide the benefit of capturing a realistic
idea of landscape ruggedness, while potentially being sensitive to
details in the methodology used to generate these visualisations.

6 DISCUSSION AND CONCLUSIONS
In this work, we have presented a novel methodology for visual-
ising fitness landscapes through the use of extrema graphs. We
have shown that the incorporation of both minima and maxima
can provide valuable information, and that appropriate use of di-
mensionality reduction is key for visualising ruggedness of the
landscape. The use of sampled “edge nodes” replacing edges can
then be used to visualise the folding of the search space.

6.1 Limitations and Future Work
Some limitations of extrema graphs are accepted here as a trade-
off for associated benefits. For example, the extrema included in
the graph are limited to those identified by NMMSO, however the
use of just two runs of this optimiser keeps the computational
complexity low. Similarly, the visual clutter introduced by edge
nodes is accepted for the benefit of the information gained about

the folding of the search space, the general characteristics of the
landscape, and how this changes for a given value of 𝜌 .

Some interesting directions for areas of future work were identi-
fied during the expert interview segment of our evaluation, based
on suggestions made by the expert. These included:

• Replacing edge nodes with edges with coloured line seg-
ments. Where these lines intersect with different colours
would then give some information about how the search
space has been folded during dimensionality reduction.

• Investigating a methodology for automatically determining
the value of the radius percentage hyperparameter.

One of the commonly cited reasons for a visualisation, especially
in the field of explainable AI (XAI), is that we seek to represent a
complex concept to a lay audience. The expert interview conducted
in this study has shown that extrema graphs can convey useful
information characterising problem landscapes to experts, however
it would be beneficial to scale the human-centered evaluation by
interviewing more experts. Since access to experts is limited, this
is an inherent limitation to expert interviews.

Additionally, while we have not tested whether our visualisa-
tions can be understood by a non-expert, it would likely be more
difficult for a non-expert to perform such analysis. Two avenues of
future work are therefore to explore the extent to which these are
accessible to non-expert users, and – in the event that they are not
intuitive – to perform an investigation into approaches by which
the technical barrier to entry could be reduced.

Faster methods for multidimensional scaling could be used to
draw our extrema graphs, similar to stressed-based layout methods
in graph drawing [9] which have been accelerated via many meth-
ods [6, 10, 13, 26]. Using a more scalable MDS algorithm would
allow extrema graphs to scale to larger data sets.

Beyond enhancing the visualisation, a larger range of problems
should be explored, including those with discrete representations,
as well as those with multi-objective search spaces. A key con-
sideration will be how to represent solution quality, and whether
trade-offs between solutions that define such problems are usefully
visualised in an extrema graph.

One of the primary motivations behind developing the method
was to investigate the fitness landscape of a maximum likelihood
estimation (MLE) function. When fitting a mathematical model, e.g.
a compartmental model for disease progression in COVID-19, to
real-world observations, we often query whether the parameters
are identifiable [12]. Specifically, this relates to the identification of
the convexity of the relevant MLE function, and there are common
statistical procedures in biomathematics for this purpose. Current
work focuses on deploying extrema graphs to the parameter identi-
fiability problem, to complement standard parameter identifiability
approaches.
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A FUNCTION DEFINITIONS
Here, we present the mathematical formulations of the benchmark
functions used in our paper for extrema graph visualisations.

Ackley Function. The Ackley function is defined in 𝑛 dimensions
as:

𝑓 (x) = − 20 exp ©­«−0.2
√√

1
𝑛

𝑛∑
𝑖=1

𝑥2
𝑖

ª®¬
− exp

(
1
𝑛

𝑛∑
𝑖=1

cos(2𝜋𝑥𝑖 )
)
+ 20 + exp(1)

Our search bounds were defined by the hypercube
𝑥𝑖 ∈ [−32.768, 32, 768], and in this region there is one global mini-
mum at x = 0 with a function value of 𝑓 (0) = 0.

Griewank Function. The Griewank function is defined in 𝑛 di-
mensions as:

𝑓 (x) =
𝑛∑
𝑖=1

𝑥2
𝑖

4000
−

𝑛∏
𝑖=1

cos
(
𝑥𝑖√
𝑖

)
+ 1

Our search bounds were defined by the hypercube 𝑥𝑖 ∈ [−5, 5],
and in this region there is one global minimum at x = 0 with a
function value of 𝑓 (0) = 0.

Rastrigin Function. The Rastrigin function is defined in 𝑛 dimen-
sions as:

𝑓 (x) = 10𝑛 +
𝑛∑
𝑖=1

(
𝑥2𝑖 − 10 cos(2𝜋𝑥𝑖 )

)
Our search bounds were defined by the hypercube

𝑥𝑖 ∈ [−5.12, 5.12], and in this region there is one global minimum
at x = 0 with a function value of 𝑓 (0) = 0.

Rosenbrock Function. The Rosenbrock function is defined in 𝑛
dimensions as:

𝑓 (x) =
𝑛−1∑
𝑖=1

(
100(𝑥𝑖+1 − 𝑥2𝑖 )

2 + (𝑥𝑖 − 1)2
)

Our search bounds were defined by the hypercube 𝑥𝑖 ∈ [−5, 10],
and in this region there is one global minimum at x = 1 = (1, . . . , 1)
with a function value of 𝑓 (1) = 0.

Schwefel Function. The Schwefel function is defined in 𝑛 dimen-
sions as:

𝑓 (x) = 418.9829𝑛 −
𝑛∑
𝑖=1

𝑥𝑖 sin(
√
|𝑥𝑖 |)

Our search bounds were defined by the hypercube
𝑥𝑖 ∈ [−500, 500], and in this region there is one global minimum at
x = 420.9687 = (420.9687, . . . , 420.9687) with a function value of
𝑓 (420.9687) = 0.

Sphere Function. The Sphere function is defined in 𝑛 dimensions
as:

𝑓 (x) =
𝑛∑
𝑖=1

𝑥2𝑖

Our search bounds were defined by the hypercube
𝑥𝑖 ∈ [−5.12, 5.12], and in this region there is one global minimum
at x = 0 with a function value of 𝑓 (0) = 0.

B SUPPLEMENTARY VISUALISATIONS
In addition to the 2D, 3D and 5D examples created for the bench-
mark functions, we also generated one example in 10D as a proof-of-
concept for higher dimensions. Included here is an extrema graph
for the Sphere function in 10D.

Figure 4: An extrema graph for the Sphere function in 10
dimensions
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