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Abstract

Electro-mechanical response exists in growing materials such as biological tissues and hydrogels, influencing the growth
rocess, pattern formation and geometry remodelling. To gain a better understanding of the mechanism of the coupled effects
f growth and electric fields on the deformation behaviour, a finite element framework for coupled electro-elastic growth
s established. Based on the extended volume growth theory, the governing equations of the growing electro-elastic solid
re obtained. A coupled three-field mixed displacement-pressure-potential finite element formulation using inf–sup stable
ombinations is adapted. The finite element formulation is implemented in ABAQUS via a user element subroutine. The
mplementation is validated first by comparing the deformation and stress components of a growing tubular structure under
xial strain and radial voltage. Using the example of a bi-layer beam actuator, it is illustrated that growth parameters and the
xternal voltage can precisely control the bending angle. The framework is then applied to simulate pattern formation and
ransition behaviour, such as doubling and tripling of wrinkles, by specifying growth parameters and external voltage in a 3D
tiff film/soft substrate structure. Furthermore, the suppression of wrinkles by applying external voltage is demonstrated. It is
bserved that the electric field plays a significant role in stress redistribution and guiding growth, resulting in the promotion
r suppression of wrinkles, which is demonstrated by the numerical simulation of a long tubular structure. The proposed finite
lement scheme provides an accurate, efficient and stable tool for numerical simulation of electro-elastic solids incorporating
rowth effect, which can be used for understanding coupled growth phenomenon in biological soft matter and developing smart
evices for medical treatment.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Electro-elasticity; Differential growth; Shape-programming; Mixed formulation; Finite element analysis

1. Introduction

Growth (or atrophy) phenomena of soft materials widely exist in nature and engineering, such as the growing
f plant leaves and fruits, development of human organs, swelling of hydrogels and inflatable expansion of rubbers
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[1–3]. In this paper, we adopt the widely accepted viewpoint in the continuum mechanics community that the
growth of soft materials can be regarded as changes in mass [1]. Due to the genetic and biochemical factors,
the growth fields in soft materials are usually inhomogeneous or incompatible, which is a characteristic of the
so-called differential growth. Soft materials show complex responses in the deformation process of differential
growth, such as residual stresses due to incompatibility of growth fields [4], transitions of buckling modes [5], non-
uniqueness of morphologies [6], stress redistributions under external loads [7] etc. The mechanism of the growth
process is complicated, where mechanical, chemical, biological, and electrical factors can affect the morphological
deformation of growing samples [8–11]. Although the growth mechanism of soft materials is complex, from the
perspective of continuum mechanics, it is widely accepted that the growth phenomena can be regarded as variations
of the component’s volume or mass [1]. Generally, the growth of soft materials does not belong to the field of
pure mechanics. In order to have a more comprehensive study of the growth of soft materials, some coupling
models are established, such as the bio-mechanical model [11], the fluid diffusion-mechanical model [12,13], the
thermo-mechanical model [14] etc. In this work, we focus on the growing electro-active material, i.e., a material
having electro-mechanical responses and growth effects. Electro-active materials are popular in the area of actuators,
chemical/bio-sensor electrochromic devices and artificial muscles [15–18]. A typical kind of electro-active material
is electro-active polymers (EAP), which can undergo large deformation while bearing huge external force under the
electric field and mechanical boundary conditions. A characteristic of a cubic EAP under a voltage difference across
thickness is that contraction occurs along the thickness direction, and expansion happens in the planner directions
while the volume usually remains unchanged [19,20]. EAP is one of the most promising materials for engineering
applications thanks to its flexibility in generating large deformation under external electric field [21]. In addition to
large voltage-induced strain, other ideal properties of dielectric elastomers include fast response, noiseless actuation,
lightweight and low cost [22].

By incorporating the growth effect on electro-elastic solids, the interplay of the mechanical and the electric field
ill be complex and interesting. It has been demonstrated that electro-active growing materials commonly exist in

he field of biology and engineering. Growth factors, intracellular signalling modulators, and feedback loops of pH
nd resting potential affect bioelectric states, which in turn regulate features such as stem cell differentiation and
ancer cell motility [23]. The misexpression of ion-channel can cause drastic expansion of the forebrain during the
mbryogenesis of Xenopus laevis, leading to an abnormal electric field that influences the bioelectric signalling
rocess between cells [24]. The external direct current electric field can change the orientation of the migration
irection of the fibroblast tissue to the direction perpendicular to voltage difference [25]. Depolarization leading to
weak electrical action from tissue level is observed in Xenopus embryos during the transformation from normal

ells to cancer cells [26]. Harris [27] revealed that the regional shifts of electrical potential play crucial roles in cell
ehaviour and tissue organization in the early development of the vertebrate limb.

In terms of applications, hydrogels with electric response are widely applied in the design of smart soft devices,
nd hydrogels also have growth effects such as swelling and deswelling. Coupled electromechanical growth finds
traightforward applications in biology and engineering. By virtue of similarities to biological tissues and versatility
n electrical, mechanical, and biofunctional engineering, some bioelectronic hydrogel devices, such as wearable and
mplantable devices, have been applied on human organs, e.g., brain [28], skin [29] and heart [30,31] for electrical
timulation and recording of neural activities [32]. For instance, Xu and Hayward [33] triggered the nonuniform
urface pattern of a hydrogel by the external electric field, where creases formed near the anode area while the
rea near the cathode remained flat. By applying an electric field on the ion cross-linked hydrogel, the mechanical
roperties of the hydrogel can be tuned in a dynamic and flexible way [34]. Although some applications have been
eveloped, little is known about the interplay of the different physical fields, including mechanical and electrical
elds, which is a challenging task in biology and engineering.

From the theoretical modelling perspective, deformable soft materials are usually considered as hyperelastic
aterials. Due to the large deformation of growing soft material, the theoretical models should be proposed within

he finite strain framework. To describe the growth effects on elastic solids, volume growth theory has been adopted
in the literature to study the distribution of stress and instabilities during the growth process [35–38]. In most of
the existing growth models, the total deformation gradient tensor F is decomposed into an elastic tensor Fe and a
growth tensor Fg , i.e, F = Fe Fg [39,40]. Induced by the growth tensor Fg , the reference configuration reaches
to a virtual intermediate configuration, where the compatibility condition ∇ × Fg

= 0 is usually not satisfied
e
ue to the inhomogeneity of differential growth. The elastic deformation tensor F can generate residual stress on
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the intermediate configuration and eventually recover the current configuration. In addition, the growth tensor is
regarded as a given function of the input variable due to the fact that the growth process is much slower than the
elastic response [41]. As for the modelling of electro-active materials, one needs to consider the coupling effects
between mechanical and electric fields at finite strains. Governing equations of nonlinear electro-elasticity based on
continuum thermomechanics are well established regarding to the nonlinear static and dynamic problems [42]. The
interaction between electric fields and elastic deformation of the electro-elastic solids is investigated in [43], which is
further extended to the instability analysis of electro-elastic solids through incremental theory [44,45]. The theories
mentioned in [43–45] are established based on the notion of the Maxwell stress, and the governing equations are in
the Lagrangian form. From a different starting point of thermodynamics, Suo et al. [46] use virtual work to derive the
field equations without introducing electric force, where the stress is work conjugated to the deformation gradient,
and the electric displacement is work conjugated to the electric field. Similar works of formulation derivation
based on the thermodynamical framework can be found in [47–50]. To the best of the authors’ knowledge, existing
literature rarely considers the growth model, including both the mechanical and electrical behaviour of electro-active
materials. Very recently, Du et al. [7] has adopted volume growth theory to describe the electro-mechanical growth
phenomenon based on the framework of nonlinear electro-elastostatics [44], where the multiplicative decomposition
of the deformation gradient tensor is adopted. Although some prototype problems under simple boundary conditions
are investigated in [7], it is still far from the application in practical conditions where the geometry of a sample is
usually complex that requires a robust numerical framework. The finite element method is a versatile mathematical
tool for studying the nonlinear interplay behaviour such as the evolution of surface patterns, formation of creases
or wrinkles, period-doubling etc. [51–55].

In recent years, there has been an increasing amount of literature on the finite element simulation of coupling
behaviours between an electrical field and a mechanical field [56–58]. The variational formulation is built based
on the basic equations in non-linear electro-elasticity in an early work of Vu et al. [59], which is further developed
by Bustamante [60] and Vogel [61] using three-field formulation (displacement-pressure-Jacobian). Since electro-
elastic materials are usually incompressible, they pose a serious challenge in finite element simulations. To eliminate
the possible volumetric locking in the simulation of nearly incompressible materials, F-bar method proposed
by de Souza Neto et al. [62] is extended to the electro-elastic couple problem by Henann et al. [63]. However, the
F-bar method introduces a modified deformation gradient that complicates the linearization process. To improve
computational efficiency, the J -bar formulation is applied to the electro-elastic couple problem by Sharma and
Joglekar [56] based on a staggered algorithm for solving the coupling problem of the displacement field and
electric field. Recently, a reduced mixed finite element formulation is utilized to simulate the nearly incompressible
electro-viscoelastic materials [64,65], but it has limitations in tackling truly incompressible materials.

The last two decades have seen a growing trend towards finite element framework for electro-elastic materials;
however, there is a lack of an accurate, robust, and computationally efficient numerical framework of the electro-
elasticity incorporated with growth. The issues and limitations of widely-used finite element schemes in the
computational electromechanics community are:

• To our knowledge, a numerical framework of the electro-elasticity incorporated with the growth effect is
not established. Although some analytical solutions for growing electro-elastic materials are available in the
literature, these analytical solutions rely on the simplicity of boundary conditions and constitutive relations.
These analytical results cannot meet the requirements of capturing the non-linear responses of structures in
practical cases, where the geometry, material model, and loading conditions are much more complicated.

• Both F-bar and J -bar methods suffer from increasing computational cost when Poisson’s ratio approaches
0.5, limiting their capability in simulating large-scale finite element models.

• The three-field formulation (displacement-pressure-Jacobian) with the Q1/P0 element [66] is effective in
modelling nearly incompressible materials, and the computational efforts are significantly reduced compared
with F-bar and J -bar methods. However, it suffers from spurious pressure mode when Poisson’s ratio
approaches 0.5 due to the lack of inf–sup or Ladyzhenskaya–Babuska–Brezzi (LBB) stability [67,68].

• The three methods mentioned above do not apply to truly incompressible materials, which limits the accuracy
of imposing the incompressibility constraint.

The objectives of this paper are: to establish a finite element framework for electro-elasticity incorporated

growth effects; to use novel formulation to capture behaviours of both compressible and incompressible materials;
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to implement the proposed framework through subroutine with a quadratic element that is inf–sup stable and
omputationally efficient.

In this work, we extend the finite element framework for electro-elasticity recently proposed by Kadapa
nd Hossain [69], to simulate electro-elasticity problems with combined growth and electric field effects. The
overning equations for electro-elasto-statics problem with growth effects presented in this work are in the style
f Du et al. [7]. To address the volumetric locking problem of an incompressible material, we follow the two-
eld mixed (displacement-pressure) formulation proposed in [70,71] when an electric potential field is omitted,
hich is computationally efficient and applicable for both compressible and incompressible materials. In the
resence of electrical potential, we adopt a three-field formulation (displacement-pressure-potential) for capturing
he nonlinearity of electro-elastic solids subjected to differential growth. Several advantages of this contribution are
ighlighted as:

1. To our knowledge, we will propose, for the first time, a numerical framework for the electro-elasticity
incorporating growth effects. This numerical framework plays an important role in capturing the coupling
behaviours of electro-elastic solids and benefiting the design of smart soft devices.

2. By adopting the two-field mixed formulation in pure mechanical cases, the proposed framework is applicable
for both compressible, nearly incompressible and perfectly incompressible materials.

3. The framework overcomes the volumetric locking issue without causing extra computational burden like
F-bar and J -bar methods when Poisson’s ratio approaches 0.5.

4. We develop the Q2/Q1 (quadratic) 3D element to implement the numerical framework, which can capture
strong non-linear behaviours in large deformation. Compared with the widely used Q1/P0 element, which is
not inf–sup stable, the Q2/Q1 element is not only inf–sup stable but also computationally efficient in capturing
extremely large deformations.

5. The numerical framework is implemented through a user element subroutine (UEL) in ABAQUS, offering
pre-and post-processing.

This paper is organized as follows: Section 2 introduces the governing equations for nonlinear electromechanics
incorporated with the growth effect. Modifications for incompressible materials and material models are also
introduced in Section 2 as a prelude to establishing a finite element framework. In Section 3, we propose the
finite element formulation used in this work. Some numerical examples are given in Section 4 to illustrate the
accuracy and efficiency of the proposed FEM framework. Conclusions and outlook for the future are summarized
in Section 5.

2. Governing equations for nonlinear electromechanics with growth effects

2.1. Kinematics, strain and stress

Consider a homogeneous electro-elastic solid body with the reference configuration Br in the 3D Euclidean space
R3. The solid body is subjected to external forces or electrical stimuli or internal stresses induced by the growth
or a combination of all, and it reaches the current configuration Bt . The position vector in the reference and the
current configurations is denoted by X and x, respectively. The displacement field is defined as

u(X) = x(X) − X . (1)

Then, based on the definition in (1), the total deformation gradient tensor F, and its determinant J are given as

F =
∂x
∂ X

= I +
∂u
∂ X

, and J = det F, (2)

here I is a second order identity tensor. Following the classical assumption of growth mechanics [35,39,40], the
otal deformation gradient tensor is decomposed multiplicatively into an elastic part Fe, and a growth part Fg , as

F = Fe Fg. (3)

sing the decomposition of F in (3), the determinant J can be written as

J = J e J g, (4)
4



Z. Li, C. Kadapa, M. Hossain et al. Computer Methods in Applied Mechanics and Engineering 414 (2023) 116128

I
c
t
B
c

s
b

t

T
i

d
a

w

T
r

R
g

Fig. 1. Kinematics: the total deformation can be decomposed into growth and elastic deformations.

where,

J e
= det Fe, and J g

= det Fg. (5)

n this work, the growth tensor Fg is assumed to be the function of the reference coordinate X only, without
onsidering the coupling effect with mechanical load and electrical stimuli. As shown in Fig. 1 the deformation of
he solid body can be decomposed into two steps; the first step is the deformation from the reference configuration

r to an intermediate stress-free configuration Bi under pure growth, and the second step is from the intermediate
onfiguration Bi to current configuration Bt with growth and elastic response.

The grown configuration Bi is determined by Fg , where the compatibility condition ∇ × Fg
= 0 may not be

atisfied, resulting in discontinuity and overlapping. In the current configuration Bt , residual stresses are triggered
y the incompatibility of the growth field, mechanical boundary condition, as well as electrical stimuli.

For soft materials (e.g., soft biological tissues, polymeric gels), the elastic deformations are usually isochoric so
hat

R(Fe, Fg) = J gR0(Fe) = J g (det Fe
− 1

)
= 0, (6)

his incompressibility constraint ensures that the pure elastic deformation of material does not result in a change
n the volume.

For modelling truly incompressible hyperelastic materials in the finite strain regime, the elastic part of the
eformation gradient Fe is decomposed into volumetric and deviatoric components (refer to Ogden [72] and Bonet
nd Wood [73] for the details) as

Fe
= Fe

vol F
e
dev, (7)

here

Fe
vol = J e1/3

I, Fe
dev = J e−1/3

Fe. (8)

Using the above definitions, the modified elastic deformation gradient tensor and the right Cauchy–Green tensor
are defined as

Modified elastic deformation gradient, Fe
:= J e−1/3

Fe (9)

Modified right Cauchy–Green deformation tensor, C
e
:= FeT

Fe
. (10)

he other quantities are modified accordingly [69]. It is worth mentioning that the modified quantities are with
espect to the virtual stress-free configuration Bi .

emarks. The mechanisms of growth phenomena in soft materials are complex, in which growth fields can be
enerated by internal factors such as gene and cell division, or external factors such as infusion or evaporation of
5
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Table 1
Electric field quantities in different configurations.

Configuration Reference (Br ) Intermediate (Bi ) Current (Bt )

Electric field vector E Ē e
Electric displacement vector D D̄ d

water, temperature and pressure. Due to the complexity of the mechanisms of growth, the growth fields in the soft
material samples are usually inhomogeneous or incompatible. To describe the growth effect of soft materials, the
growth tensor Fg is chosen to be a symmetric second order tensor [37], such that it can be used to describe the
inherent inhomogeneity and incompatibility of growth fields in soft material samples.

2.2. Electrostatics

To describe electrostatics, we introduce Faraday’s and Gauss’s laws. Since the elastic strains are triggered during
the deformation from Bi to Bt , the energy function Ψ is defined in the virtual stress-free grown configuration Bi .
Here, the two quantities corresponding to the electric field in three different configurations are listed in Table 1.

These quantities in different configurations are related by the pull-back operation as given by

E = FTe = FgT Ē, (11)

D = J F−1d = J g Fg−1D̄, (12)

where

Ē = FeT
e, (13)

D̄ = J e Fe−1
d. (14)

In the absence of free charges and currents, Faraday’s and Gauss’s laws can be expressed using the electrical
quantities listed in Table 1, as

curl e = ∇x × e = 0,

divd = ∇x · d = 0,
(15)

where ∇x is the gradient operator with respect to the current configuration. Since curl e = 0, there exists a twice
continuously differentiable scalar electric field φ such that

e = −∇xφ. (16)

Eq. (16) automatically satisfies Faraday’s law (15)1.
The complete set of governing equations for the electro-mechanical growth problem in the current configuration

can be written as

−∇x · σ = f ∀x ∈ Bt (17a)

∇x · d = 0 ∀x ∈ Bt (17b)

u(x) = ū(x) ∀x ∈ ∂Bmech,D
t (17c)

σ (x) · n = t̄(x) ∀x ∈ ∂Bmech,N
t (17d)

φ(x) = φ̄(x) ∀x ∈ ∂Belec,D
t (17e)

−d(x) · n = ω̄(x) ∀x ∈ ∂Belec,N
t (17f)

here σ is the Cauchy stress, f is the body force per unit deformed volume, n is the unit outward normal on the
oundary ∂Bt , ū(x) is the prescribed value of displacement on the Dirichlet boundary Bmech,D

t , t̄(x) is the specified
raction force per unit deformed area on the Neumann boundary Bmech,N

t , φ̄(x) is the prescribed value of electric
otential on the Dirichlet boundary Belec,D

t , ω̄(x) is the specified electric surface charge density per unit deformed
elec,N
rea on the Neumann boundary Bt .

6
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2.3. Constitutive models and stress–strain relations

Since the virtual configuration is stress-free, elastic strains are generated during the deformation from Bi to
Bt , resulting from the mechanical load and electrical stimuli. Thus, the strain energy function is a function of
elastic deformation gradient F̄e

and electric field vector Ē. Generally, the strain energy function for the hyperelastic
materials is assumed to be decomposed into a deviatoric part Ψmech,dev, a volumetric part Ψmech,vol, and an
electric-mechanical coupled part Ψ coup as

Ψ (F̄e
, Ē) = Ψmech,dev(F̄e

) + Ψmech,vol(J e) + Ψ coup(Fe, Ē). (18)

For nearly incompressible material, several expressions for volumetric energy function Ψmech,vol have been adopted
to describe material behaviour (see [71] for details). In the case of a perfectly incompressible material, the volumetric
energy function Ψmech,vol vanishes. To capture the behaviour of perfectly incompressible material, the strain energy
function adopted in the following content of this paper is given as

Ψ (F̄e
, Ē) = Ψmech,dev(F̄e

) + Ψ coup(Fe, Ē). (19)

The effective first Piola–Kirchhoff stress for the mixed formulation is defined as

P̂ :=
∂(Ψmech,dev

+ Ψ coup)
∂ F

+ pJ e Fe−T
= P̄ + pJ e Fe−T

, (20)

here p is an arbitrary Lagrange multiplier accounting for the hydrostatic pressure. The effective Cauchy stress for
he mixed formulation is defined as

σ̂ :=
1
J e

P̂ FeT
=

1
J e

P̄ FeT
+ p I . (21)

Since the total deformation consists of growth and elastic deformation, the derivative with respect to the
deformation gradient F is calculated using the chain rule. P̄ is given by the first derivative of Ψ (F̄e

, Ē) with
respect to F

P̄i J =
∂(Ψmech,dev

+ Ψ coup)
∂ Fi J

=
∂(Ψmech,dev

+ Ψ coup)
∂ Fe

i M

∂ Fe
i M

∂ Fi J

=
∂(Ψmech,dev

+ Ψ coup)
∂ Fe

i M

∂ Fi N F g−1

N M

∂ Fi J
= P̄e

i M F g−1

J M ,

(22)

here P̄e
i M = ∂(Ψmech,dev

+ Ψ coup)/∂ Fe
i M . The second derivative of Ψ (F̄e

, Ē) with respect to F is given by

∂2(Ψmech,dev
+ Ψ coup)

∂ Fi J ∂ FkL
=

∂ P̄i J

∂ FkL
=

∂ P̄e
i M

∂ FkL
F g−1

J M =
∂ P̄e

i M

∂ Fe
k N

F g−1

L N F g−1

J M (23)

The first derivative of D̄ with respect to F is given by

∂ D̄I

∂ F j K
=

∂ D̄I

∂ Fe
j M

∂ Fe
j M

∂ F j K
=

∂ D̄I

∂ Fe
j M

∂ F j N F g−1

N M

∂ F j K
=

∂ D̄I

∂ Fe
j M

F g−1

K M (24)

From a variety of deviatoric energy functions available in the literature for modelling rubber-like materials, we
ave selected the energy function for Neo-Hookean material for simplicity without loosing the generality of our
umerical scheme. Its energy functions is

Ψmech,dev
=

µ

2

(
IC̄ − 3

)
(25)

Furthermore, the part of the strain energy function corresponding to the electromechanical coupling is taken as
he ideal electro-elastic solid [44,45]

Ψ coup
= −

1
2
ϵ J eCe−1

: (Ē ⊗ Ē) = −
1
2
ϵ J eĒI Ce−1

I J ĒJ , (26)

here Ce
= FeT Fe, ϵ = ϵrϵ0 is the permittivity of the material and ϵr is the relative permittivity, also known as
the dielectric constant and ϵ0 is the vacuum permittivity. Note that the material model introduced in this work is for

7
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the purpose of presentation. It does not mean the proposed numerical framework only applies to material models
introduced above. For example, we can use the Gent and Arruda–Boyce models for the deviatoric energy functions
and other kinds of electro-elastic solid model [69].

3. Finite element formulation

In order to accurately model the incompressible nature of deformations in electromechanical growth problems, we
dapt the mixed displacement-pressure-potential formulation in this work. For a detailed discussion of the advantages
f mixed formulations over F-bar and other similar formulations, we refer the reader to Kadapa and Hossain [71] in

which the mixed formulation was first proposed for the pure electromechanics problem. Since we are only interested
in the incompressible or quasi-incompressible deformations in this work, we adapted the perturbed Lagrangian form
as used in [71] instead of the generalized mixed formulation used for computational growth [74]. The important
details of the mixed formulation for electromechanics with appropriate changes accounting for the growth effects
are presented below.

The total energy functional of the electromechanical growth problem is given as

Π =

∫
Br

(
Ψmech,dev

+ Ψ coup
+ ΨPL

)
J g dV − Πext (27)

where dV is the elemental volume in the reference configuration. Since the integration is respect to the reference
configuration Br and the strain energy functions are functions of only the elastic part of total deformation, the strain
energy functions are multiplied by J g to account for the total volume change from the reference configuration to
the current configuration. ΨPL is the function for imposing the incompressibility constraint (6) using the perturbed
Lagrangian method. ΨPL is defined as

ΨPL = p(J e
− 1) −

p2

2κ
(28)

here κ is the bulk modulus of the material. For the truly incompressible case, i.e., when Poisson’s ratio (ν) is 0.5,
r κ = ∞, the term p2/(2κ) vanishes. The energy contribution due to the external forces, Πext, is given as

Πext =

∫
Br

uT f 0 J g dV +

∫
∂Bmech ,N

r

uT t0 Ag dA +

∫
∂Belec,N

r

φω̄Ag dA, (29)

here Ag is the surface Jacobian due to growth, dA is the elemental area in the reference configuration, f0 is the
ody force per unit original volume, t0 is the traction force per unit undeformed area, and ω0 is the electric surface
harge density per unit original area.

.1. Variational formulations

After taking first variation of the total energy functional Π and then appropriate simplifications (see Appendix A
or the details), we get

δΠ =

∫
Br

(
δui, j σ̂i j + δφ,idi

)
J dV +

∫
Br

δp
(

J − J g
−

p
κ

J g
)

dV − δΠext. (30)

For the finite element discretization, we take the approximations for displacement (u), pressure (p) and electric
potential (φ) as

u = Nuu, p = Npp, and φ = Nφφ,

where u, p and φ are the displacement, pressure and electric potential degrees of freedom (DOFs) defined at nodes.
Nu, Np and Nφ are element-wise basis functions for displacement, pressure, and electric potential, respectively,
which are given by

Nu =

⎡⎣1 Nu 0 0 . . . nu Nu 0 0
0 1 Nu 0 . . . 0 nu Nu 0
0 0 1 Nu . . . 0 0 nu Nu

⎤⎦
[

1 N 2 N . . . np N
]

Np = p p p

8
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Nφ =
[

1 Nφ
2 Nφ . . . nφ Nφ

]
where nu, np and nφ are the number of the corresponding basis functions. With these approximations, the first
variations of the solution variables become

δu = Nu δu, δp = Np δp, and δφ = Nφ δφ. (31)

The gradient of the displacement field is represented as

∇x u = ui, j =
[
ux,x u y,x uz,x ux,y u y,y uz,y ux,z u y,z uz,z

]T

=

[
∂ux
∂x

∂uy
∂x

∂uz
∂x

∂ux
∂y

∂uy
∂y

∂uz
∂y

∂ux
∂z

∂uy
∂z

∂uz
∂z

]T

=Guu

(32)

where Gu is the gradient-displacement matrix which, for a single basis function, is given as

Gu =

⎡⎢⎣
∂ Nu
∂x 0 0 ∂ Nu

∂y 0 0 ∂ Nu
∂z 0 0

0 ∂ Nu
∂x 0 0 ∂ Nu

∂y 0 0 ∂ Nu
∂z 0

0 0 ∂ Nu
∂x 0 0 ∂ Nu

∂y 0 0 ∂ Nu
∂z

⎤⎥⎦
T

(33)

imilarly, the gradient of the electric potential in the current configuration is computed as

∇xφ = φ,i =

[
∂φ

∂x
∂φ

∂y
∂φ

∂z

]T
= Gφφ, (34)

here the gradient-potential matrix Gφ for a single basis function is

Gφ =

[
∂ Nφ

∂x
∂ Nφ

∂y
∂ Nφ

∂z

]T
. (35)

or the derivation of stiffness matrices in this work, we introduce a divergence-displacement matrix, Du , for
epresenting the divergence of the displacement in the vector form as

∇x · u = ui,i =
∂ux

∂x
+

∂u y

∂y
+

∂uz

∂z
= Duu (36)

ith Du for a single basis function as given by

Du =

[
∂ Nu
∂x

∂ Nu
∂y

∂ Nu
∂z

]
. (37)

For the ease of computer implementation of the finite element formulation, the effective Cauchy stress tensor is
written as a column vector as

σ̂ = σ̂i j =
[
σ̂xx σ̂yx σ̂zx σ̂xy σ̂yy σ̂zy σ̂xz σ̂yz σ̂zz

]T

=
[
σ̂11 σ̂21 σ̂31 σ̂12 σ̂22 σ̂32 σ̂13 σ̂23 σ̂33

]T
.

(38)

By substituting the first variations of the field variables (31) into the first variation of Π given in (30), the
esulting semi-discrete equations for the electromechanical growth problem with mixed formulation can be written
s

Ru = Fint
u − Fext

u = 0,

Rφ = Fint
φ − Fext

φ = 0,

Rp = Fint
p = 0,

(39)

here Fint
u , Fint

p and Fint
φ are the vectors of internal forces for the displacement, pressure and potential fields,

ext ext
espectively. Fu and Fφ are the vectors of external forces for the displacement and potential fields. Based on

9
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(29) and (30), these internal and external force vectors are given by

Fint
u =

∫
Bt

GT
uσ̂ dv,

Fint
p =

∫
Br

NT
p

(
J − J g

−
p
κ

J g
)

dV,

Fint
φ =

∫
Bt

GT
φd dv,

Fext
u =

∫
Br

NT
u f 0 J g dV +

∫
∂Bmech ,N

r

NT
u t0 Ag dA,

Fext
φ =

∫
∂Belec, N

r

Nφω0 Ag dA,

(40)

here dv = JdV is the elemental volume in the current configuration.

.2. Newton–Raphson scheme

The coupled nonlinear equations (39) are solved using an incremental iterative approach. The subscripts n and
+ 1 denote for the previously converged load step and current load step, respectively. Then the displacement,

lectric potential, pressure DOFs (degrees of freedom) and growth tensor at the nth converged load step are un , φn ,
n and Fg

n , respectively. The corresponding DOFs at the current load step are computed as

un+1 = un + ∆u,

φn+1 = φn + ∆φ,

pn+1 = pn + ∆p,

Fg
n+1 = Fg

n + ∆Fg,

(41)

here ∆u, ∆φ, ∆p and ∆Fg are the load step increments from step n to n+1. Here, the increment of growth tensor
∆Fg is considered as an input variable. By adopting the Newton–Raphson scheme, solution variables involved in
the coupled nonlinear equations (39) are solved at every load step iteratively. The subscripts k and k + 1 denote
previous and current iterations, respectively. Assuming the iterative increments of displacement, electric potential
and pressure fields are ∆̄u, ∆̄φ and ∆̄p, respectively, the respective quantities at the current iteration can be written
as

u(k+1)
n+1 = un + ∆u(k+1)

= un + ∆u(k)
+ ∆̄u = u(k)

n+1 + ∆̄u,

φ
(k+1)
n+1 = φn + ∆φ(k+1)

= φn + ∆φ(k)
+ ∆̄φ = φ

(k)
n+1 + ∆̄φ,

p(k+1)
n+1 = pn + ∆p(k+1)

= pn + ∆p(k)
+ ∆̄p = p(k)

n+1 + ∆̄p,

(42)

here k can run from 1 to kmax, the maximum number of iterations.
In order to solve the coupled nonlinear equations (39) using the Newton–Raphson scheme, we need to linearize

Π . By taking the second variation d(·) of Π , we get

d(δΠ ) =

∫
Br

(
δui, j ei jkl Jduk,l − δui, j pi jk Jdφ,k + δφ,i p̂i jl Jdu j,l − δφ,i dik Jdφ,k

+ δpJdui,i − δp
J g

κ
dp + δuk,k Jdp

)
dV, (43)

here ei jkl is the material tangent tensor of order four; pi jk and p̂i jl are third-order coupling tensors; and dik is the
electric permittivity tensor of order two, and they are given in Appendix B.

By substituting the corresponding finite element approximations in (43), we obtain the following discrete matrix
system for the incremental displacements, ∆̄u, incremental pressure, ∆̄p, and incremental electric potential, ∆̄φ,
at iteration k + 1,⎡⎣Kuu Kuφ Ku p

Kφu Kφφ 0

⎤⎦⎧⎨⎩
∆̄u
∆̄φ
¯

⎫⎬⎭ = −

⎧⎨⎩Ru
Rφ

⎫⎬⎭ , (44)

Kpu 0 Kpp ∆p Rp

10
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Fig. 2. The 20-noded hexahedral element with different DOFs.

where

Kuu =

∫
Bt

GT
ueGu dv,

Kup =

∫
Bt

DT
u Np dv = KT

pu,

Kuφ = −

∫
Bt

GT
upGφdv = KT

φu,

Kpp = −

∫
Br

1
κ

NT
pNp dV,

Kφφ = −

∫
Bt

GT
φdGφdv.

(45)

.3. Finite element spaces

Following the advantages of the higher-order elements for soft incompressible materials demonstrated in our
revious work [69,74], we adapt a second-order element in this work. As shown in Fig. 2, we use a 20-node
exahedral element (C3D20) for the displacement and electric potential fields and 8-node hexahedral element for the
ressure field. The element combination for displacement/pressure/electric potential field is denoted as Q2/Q1/Q2.

emarks. Since the approximation for the electric field is not linked to the LBB condition, we can use linear
r quadratic or further higher-order approximation for the electric field, independent of that of displacement. To
chieve higher accuracy per node or element, a quadratic approximation for the electric field is adopted. In addition,
he Cauchy stress is a function of the first derivative of displacement, pressure, and the first derivative of electric
otential. The quadratic approximation for the electric field can also enhance the accuracy of the total stress
alculated at quadrature points.

The finite element formulation for electromechanical growth is implemented a user-defined element subroutine
UEL) in FEA software ABAQUS. UEL subroutine is suitable for modelling multi-physical processes that are
oupled to structural behaviour. In a UEL subroutine, a user can define element order, basis functions and material
angent stiffness, so it can realize elements and materials of different complexity. The nodes on the isoparametric
lement are numbered following ABAQUS’s conventions, in which the DOFs for nodes 1–8 are displacement,
lectric potential and pressure, while for nodes 9–20, the DOFs are displacement and electric potential, as shown
n Fig. 2. With 20 × 3 displacement DOFs, 20 electric potential DOFs and 8 pressure DOFs, there are 88 DOFs
n total per each element. So the dimension of element stiffness is 88 × 88.

In the beginning of the iteration, UEL is called to calculate the element stiffness matrix and residual force vector,

.e., to define the contribution of the element to the model. A flowchart of UEL is shown in Fig. 3.

11



Z. Li, C. Kadapa, M. Hossain et al. Computer Methods in Applied Mechanics and Engineering 414 (2023) 116128

f
a
J
e
s
v
c
a
y
g
s
w

o
a
i
b
e
s

4

o

Fig. 3. A flowchart of the UEL subroutine.

At the beginning of the UEL, variables are declared and the material properties are defined by values passed in
rom an input file. According to the order of Gauss quadrature, the coordinates and weight of each Gauss point
re calculated. Entering the Gauss loop, the basis functions and their derivatives, as well as the determinant of the
acobian matrix are calculated. Then the material tangent tensor and the Cauchy stress are also calculated. At the
nd of the Gauss loop, the element matrix and the residual force vector are calculated through the Gauss quadrature
cheme. Following the convention of ABAQUS, the element matrix is passed to AMATRIX, and the residual force
ector is passed to the output variable RHS. With all the necessary output variables and state variables defined
orrectly, the UEL subroutine returns these variables to ABAQUS for assembling into the global stiffness matrix
nd the residual force vector. Then, the solver is called to solve the assembled linear algebraic equation system,
ielding the solution for the current iteration. Following the Newton iteration approach, if the solution satisfies
overning equation with a certain tolerance, this iteration step is said to be converged, and a new incremental load
tep will begin; otherwise, a new iteration step will begin until it exceeds the maximum number of iterations, in
hich case, the load step is decremented.
Since the element orientation and degrees of freedom of the user element may be incompatible with the setting

f the visualization module, plotting of user elements is not supported in ABAQUS/CAE. However, all the solution
nd state variables information is enclosed in the user element subroutine. To visualize the results of user elements
n the ABAQUS/Viewer, the dummy element method is adopted in this work. The dummy elements are generated
y duplicating the original mesh with the same nodes but with very weak stiffness such that it has a negligible
ffect on the solution. The user elements can be overlaid with standard elements, and the nodal displacement of the
tandard element can be displayed, representing the deformation of the user elements.

. Numerical examples

Units: Although it is straightforward to model the electro-growth problem in the SI units, the magnitude
f material parameters between the mechanical and electrical fields varies significantly. Due to the substantial
12
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Table 2
Units used in the present work for fundamental quantities.

Variables Units

Length millimetres (mm)
Mass grams (g)
Time seconds (s)
Electric potential kilo Volts (kV)

Fig. 4. The tubular structure is made of an electro-elastic solid with applied stretch λz in the axial direction and voltage in the radial
direction.

differences in the magnitudes of parameters in elastostatic and electrostatic problems, the non-zero coefficients
in the matrix system vary significantly as well. Such matrix systems pose serious challenges in obtaining numerical
solutions. To overcome these numerical issues, we follow the practice of modelling with the units for the basic
quantities (presented in [69]), as tabulated in Table 2.

Using the units in Table 2, permittivity of the free space and the shear modulus become ϵ0 = 8.854×10−12 F/m =

.854 g mm/(kV2 s2) and µ = (·)Pa = (·) g/(mm s2), respectively. Thus, the material parameters between the
echanical and electrical fields are in the same regime, making it easy to solve the matrix system under the
ewton–Raphson scheme.

.1. Verification with analytical solution

The accuracy of the developed UEL subroutine is at first verified by studying an example with an analytical
olution discussed in [7]. Here, we consider the deformation of a circular tube under an axial stretch/compress in

z-direction and with a prescribed electric potential on the inner and outer faces. The growth tensor is assumed to be
constant diagonal tensor. All the diagonal components are set such that the tube is under isotropic growth and is

ndependent of any external electro-mechanical loads. As shown in Fig. 4, in the reference configuration, the tube
ccupies the region

Ri ≤ R ≤ Ro, −π ≤ Θ ≤ π, 0 ≤ Z ≤ L , (46)

hile in the current configuration, the tube occupies the region

ri ≤ r ≤ ro, −π ≤ θ ≤ π, 0 ≤ z ≤ l. (47)
13
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Under the isotropic growth and axial loading, the deformation gradient tensor, growth tensor, and elastic
eformation tensor of the tube are written as

F =

⎡⎣ ∂r
∂ R 0 0
0 λ 0
0 0 λz

⎤⎦ ,

Fg
=

⎡⎣g 0 0
0 g 0
0 0 g

⎤⎦ , Fe
=

⎡⎣g−1 ∂r
∂ R 0 0

0 g−1λ 0
0 0 g−1λz

⎤⎦ ,

(48)

here Fe is obtained by virtue of (3), g is the growth parameter in constant, λ = r/R and λz = l/L . To enforce
the incompressible constrain (6), we have

∂r
∂ R

= g3λ−1λ−1
z , (49)

hich further gives the geometrical relation

R2
− R2

i = g−3λz
(
r2

− r2
i

)
. (50)

o obtain some concrete results, the material is chosen as the ideal Neo-Hookean dielectric solid. The mechanical
art of the strain energy function is given in (25), while the strain energy function corresponding to the
lectromechanical coupling is given in (26). Then, following the derivations in [7], the corresponding dimensionless
oltage V̄ is

V̄ =
r̄oλiλ

−1
z ln r̄o

R̄o − 1

√
1

r̄2
o − 1

(
g4λ−2

o − g4λ−2
i + 2 gλz ln

λi

λo

)
, (51)

where r̄o = ro/ri , R̄o = Ro/Ri , λi = ri/Ri and λo = ro/Ro. Using (50), the dimensionless voltage V̄ can be
rewritten in terms of V̄ (λi , R̄o, λz, g). Thus, when (R̄o, λz, g) are given, the relations of dimensionless voltage V̄
nd inner circumferential strain λi can be plotted.

In the numerical simulation, we consider a 3D model with the original height L = 2 mm, inner radius Ri = 1 mm
nd outer radius Ro = 2 mm. The relative permittivity is taken as ϵr = 5, ϵ0 = 8.854 g mm/(kV2 s2), and the shear
odulus is µ = 104 Pa. For the sake of saving computational efforts, only a quarter of the tube is modelled, which is
eshed into 2040 (20-node) hexahedral elements. To be consistent with the analytical results, the loading process is

ivided into two stages. In the first stage, growth and axial stretching/compression are applied to the tube while the
xternal voltage remains zero. At the end of the first stage, both the growth field and axial stretching/compression
each the target values. For the second stage, non-zero voltage is applied on the surfaces of the tube while both the
rowth field and axial stretch/compress remain target values achieved at the end of the first stage.

To show the accuracy and efficiency of the developed UEL, two cases are simulated. In case 1, λz is set as 1.0
nd the growth parameter g is set as (1.0, 1.1, 1.2, 1.3) respectively. In case 2, the growth parameter g is set as 1.0
nd the λz is set as (0.8, 1.0, 1.1, 1.2), respectively. The electro-response of the tube at certain constant magnitudes
f V̄ is shown in Fig. 5, where g = 1.0 and λz = 1.0. It can be seen that the application of voltage leads to the
adial expansion of the tube.

The results of inner circumferential strain λi versus dimensionless voltage V̄ at the second loading stage are
hown in Fig. 6, where the solid lines are analytical results, and the dots are numerical results. As shown in Fig. 6,
he results obtained from the developed UEL are in excellent agreement with the analytical solutions. In all cases,
e observed that the inner circumferential strain λi shots to infinity with the increase of dimensionless voltage

V̄ . The increase of g also raises the threshold of V̄ leading λi to infinity. However, the threshold is lowered by
ncreasing λz .

To further demonstrate the accuracy of the developed UEL, the stress components in the tube are extracted by
pecifying parameters g, V and λz . The distributions of the stress components along the radial directions are shown
n Fig. 7, where the solid, dashed, and dotted lines are analytical results of σ̄r , σ̄θ and σ̄z respectively; the circular,
ectangular, and triangle dots are numerical results of σ̄r , σ̄θ and σ̄z respectively. σ̄r is relatively small compared
ith the other two stress components σ̄θ and σ̄z , and it is zero at the inner and outer surfaces. The increase of g
an reduce the magnitude of all the stress components.

14
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Fig. 5. The expansion of the tube due to the external electric stimulus when g = 1.0 and λz = 1.0.

Fig. 6. Comparison of analytical result (solid lines) and numerical result (dots) of inner circumferential strain λi versus dimensionless voltage
V̄ at loading stage 2.

.2. The bi-layer bending actuator

In this example, we demonstrate the suitability and effectiveness of the proposed finite element framework for
lectro-growth actuators undergoing a bending deformation. For this purpose, we consider a thin bi-layer actuator
hose geometry and boundary conditions are as shown in Fig. 8, where the length of the beam is |AB| = 20 mm,

hickness |AA′
| = 1.0 mm and width |BC | = 4 mm.

The thickness of each layer is 0.5 mm. The interface between the two layers is grounded, and a positive voltage
f φ = 4 kV is applied on the top or the bottom face. The left side of the beam (ADD′ A′) is fixed elastically, making
his a bi-layer cantilever. The material model is taken as Neo-Hookean with a shear modulus of µ = 104 Pa and a
ulk modulus κ = 109 Pa, and the permittivity ϵ = ϵ0ϵr = 8.854×5 g mm/(kV2 s2). The 3D model is meshed into
0 × 8 × 8 elements in X , Y and Z directions. To demonstrate the efficiency of the UEL subroutine, we introduce
wo loading cases, with the total duration of the simulated electro-growth process is 2. In case 1, growth functions
nd electric stimuli are applied separately in different time intervals, while in case 2, growth functions and electric
timuli are applied simultaneously.

ase 1: In the first stage t ∈ [0, 1], the growth function increase linearly from identity I to Fg
t = diag(π/2 +

Zπ/40, 1, 1), while the external electric potential remains zero. This growth tensor will generate a quarter of a
◦
ylinder with a bending angle of 90 and an outer radius of 20, which is calculated according to the formulations

15
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Fig. 7. Comparison of analytical result (lines) and numerical result (dots) of stress components σ̄r , σ̄θ and σ̄z . The solid, dashed, and dotted
lines are analytical results of σ̄r , σ̄θ and σ̄z respectively; the circular, rectangular, and triangle dots are numerical results of σ̄r , σ̄θ and σ̄z
espectively. Different growth parameters are considered: (a) g = 1.0; (b) g = 1.1.

Fig. 8. A bi-layer bending actuator: problem setup for the 3D model.

obtained in [75]. In the second stage t ∈ [1, 2], the growth function remains unchanged as Fg
t , while the electric

potential increase linearly from 0 to φ = 4 kV.

Case 2: During time regime t ∈ [0, 2], the growth function increase linearly from identity I to Fg
t = diag(π/2 +

Zπ/40, 1, 1), while the electric potential increase from 0 to φ = 4 kV. It is expected that, irrespective of the loading
ase, the bending angle of the beam should be the same at the end since the prescribed growth tensor Fg

t and the
pplied potential φ is the same at the end of each case.

The simulation results are shown in Fig. 9, including bending angle (a), and deformed shapes of the beams in
◦
b) and (c). As presented in Fig. 9(a), the bending angle increases linearly from 0 to 90 in the first stage of case 1

16
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Fig. 9. Numerical results of a bending actuator in 3D: (a) bending angle of the beam during time t ∈ [0, 2]; (b) deformation of the actuator
in loading case 1; (c) deformation of the actuator in loading case 2. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 10. The stiff film/soft substrate structure: geometry and boundary conditions.

(i.e., from point 1 to 2) due to pure growth, generating a quarter of cylinder with an outer radius 20. During time
t ∈ [0, 1], the curves with circle markers are coincident as the beams are experiencing the same pure growth process.
Then the two curves branch at t = 1.0: the electric potential φ applied on the top face drives the bending angle
rom point 2 to point 3, while the electric potential φ applied on the bottom face causes the drop of bending angle
own to point 4. As for loading case 2 (see the curves with square markers), growth fields and electric potential are
pplied simultaneously on the beam. Upward bending deformation is observed when the electric stimulus is applied
n the top face, in which the bending angle increases from points 1 to 3 monotonically. When the electric stimulus
s applied on the bottom face, the beam bends up first and then bends down, with the bending angle reaching a

aximum 19.22◦ at time 0.8, then drops down to point 4. In both cases, we observed the electric stimulus on the
op face of the beam leads to upward bending deformation, while the electric stimulus on the bottom face of the
eam results in downward bending deformation.

The beams with electric stimulus on the bottom face (see the curves in blue) experience balancing in terms of the
ending angle, where the bending angle becomes 0◦ again at point 5 in separate loading and point 6 in simultaneous
oading. The effect of the growth field and the electric stimulus is balanced in this state, where the total contribution
o the bending angle is zero. Notice that the beam is elongated in the balancing state due to growth compared with
he reference configuration.

This example shows that the bending angle can be controlled by differential volumetric growth through a
rescribed growth field or applied electric field, or a combination of both.

.3. Wrinkling of a stiff film/soft substrate structure in plane strain condition

To assess how electric potential can influence the wrinkling pattern on a surface induced by growth, we simulate
he post-buckling instabilities of a stiff film/soft substrate structure under an external electric stimulus. In this
xample, the structure is assumed to be in plane strain condition. The geometry and boundary conditions of the
ross-section of the structure are shown in Fig. 10. The sample consists of a hard film on the top of a soft substrate,
ith the shear moduli of µ f and µs , respectively. The external electric potential is specified on the left side of the

ample, and it is grounded on the right side.
The material of the sample is the ideal Neo-Hookean dielectric material with permittivity ϵ = 44.27, shear moduli

f µ f = 299.98 and µs = 2.9998 such that the ratio of shear modulus for the film and substrate as µ f /µs = 100.
rowth is prescribed in the X and Y directions, such that the growth tensor is Fg

= diag(g, g, 1), where g is a
onstant parameter.

The film and substrate are meshed with 300 × 4 and 300 × 50 C3D20 elements, respectively. To trigger the
nitiation of the wrinkle pattern, a displacement perturbation is applied on the sample at the beginning of the first
oad step. To obtain the nodal displacement perturbation, a linear buckling analysis is conducted, from which we
btained the displacement field of all nodes in different buckle modes. An appropriate scaling factor is multiplied
o the displacement field of the selected mode, such that the magnitude of the applied perturbation is large enough
o trigger instability without affecting the accuracy of the result. Growth parameter g is set as 1.05, 1.10, 1.15, and
.20, respectively. The selected linear buckling mode is a 5-period waves with a scaling factor of 0.05. The applied
lectric potential on the left end is 145 kV, and the right side is grounded. To have a better understanding of the
ffect of the electric stimulus, growth and electric potential are applied separately in the post-buckling analysis,
.e., in time regime t ∈ [0, 1], the growth function increases linearly from identity I to Fg

= diag(g, g, 1), while
t
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Fig. 11. A cross-section of the stiff film/soft substrate structure: wrinkle pattern of the sample when time t is 1.0, 1.2 1.5, 1.7 2.0, and g
s set as 1.05, 1.10, 1.15, and 1.20, respectively. The wavelength of the samples at time t = 1.0 is denoted as 3ℓ0.

he external electric potential remains zero; in time regime t ∈ [1, 2], the growth function remains unchanged as
Fg

t , while the electric potential increases linearly from 0 to φ = 145 kV. When external voltage is applied, the
ample has the tendency to shrink in the X direction. However, due to the constraint ux = 0 in the left and right
ides of the sample, this tendency of shrinking is eliminated by induced residual tension stress in the X axis. The
volution of the wrinkle pattern in the sample is shown in Fig. 11.

At the time t = 1.0, i.e., at the end of the pure growth stage, all the samples have 5 waves (not sinusoidal),
hich is consistent with the applied linear buckling perturbation. Then external electric stimulus starts to play a

ole from t = 1.0, leading to variations in the number of wrinkles. At the time t = 1.2, the number of wrinkles is
oubled to 10 in the case of g = 1.05. At the time t = 1.5, the number of wrinkles is also doubled to 10 in the
ases of g = 1.10, g = 1.15 and g = 1.20. The number of wrinkles is tripled to 15 in the case of g = 1.10 at time

t = 1.7, and this tripling moment is t = 2.0 for the case of g = 1.15. The film surfaces are flat at t = 2.0 when
g = 1.05 and g = 1.10.

To qualify the effect of voltage on the wrinkle pattern, the amplitude of the film is calculated by subtracting
oordinate Ymax − Ymin in the top surface of the film at each load step. The variation of the amplitude with time in
he film is shown in Fig. 12. In the pure growth stage t ∈ [0, 1], the amplitude of each sample increases with time
nd is positively correlated with the growth parameter g. Due to the applied voltage, a sharp drop of amplitude is
bserved in the doubling and tripling wrinkle transformation. In the case of g = 1.05 and 1.10, the film becomes
at in the end. Although wrinkles are still observed at t = 2 when the growth parameter is large (g = 1.15 and
.20), it is expected that they eventually flatten with a further increase in external voltage. From this example, we
ee that the growth parameter can promote the formation of wrinkles, while external electric potential can suppress
rinkles.

.4. Wrinkling of a stiff film/soft substrate structure in 3D

To understand the mechanism of pattern transformation, a simulation of a 3D growing stiff film/soft substrate
tructure under an external electric stimulus is conducted as an extension of the example in 4.3. For the sake of
aving computational efforts, only a quarter of the sample is modelled. The geometry and boundary condition of
he quarter of the 3D sample are shown in Fig. 13.

As shown in Fig. 13, both the length and width of the sample are 60. The thickness of the hard film and the soft
′ ′
ubstrate are 0.8 and 25, respectively. The external electric potential is specified on the left side (face ADD A ) of
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i

Fig. 12. The amplitude of the top surface of the hard film: amplitude of the film when g is set as 1.05, 1.10, 1.15, and 1.20, respectively,
n time regime [0, 2].

Fig. 13. Geometry and boundary conditions of a quarter of the stiff film/soft substrate structure.

the sample, and it is grounded on the right side (face BCC ′ B ′). Displacement in the z direction is constrained in the
bottom face (face ABC D). We have ux = 0 in left and right side, and uz = 0 in face AB B ′ A′ and DCC ′ D′. The
material of the sample is taken as ideal Neo-Hookean dielectric material with permittivity ϵ = 44.27 g mm/(kV2 s2).
We set the shear modulus of the film and substrate as µ f = 1000 Pa and µs = 10 Pa such that the ratio of shear
modulus for the film and substrate as µ f /µs = 100. Growth of the sample is assumed to be isometric, i.e., Fg

= g I .
The quarter of the sample is meshed into 15 300 (20-node) hexahedral elements. To trigger the initiation of the

wrinkle pattern, a nodal displacement perturbation is applied on the sample at the beginning of the first load step.
Two of the first five modes from linear buckling analysis are chosen as the displacement perturbation with the
scaling factor 0.1. The applied electric potential on the left is 50 kV. To have a better understanding of the effect
of the electric stimulus, growth and electric potential are applied separately in the post-buckling analysis, i.e., in
time regime t ∈ [0, 1], the growth function increases linearly from identity I to Fg

t (Fg
t = g I), while the external

electric potential remains zero; in the time regime t ∈ [1, 2], the growth function remains unchanged as Fg
t , while

the electric potential increases linearly from 0 to φt = 50 kV. Configurations and displacement (Uy) contours of
the sample during the electric loading process (t ∈ [1, 2]) are shown in Fig. 14, where the growth parameter g for
Fig. 14(a) and (b) is 1.023 and 1.024, respectively.

We can see that the wrinkles are suppressed in both Fig. 14(a) and (b), where the wrinkles are highest at time
t = 1.0 due to growth, and then they are nearly flattened at the end of the electric loading t = 2.0. Apart from
suppression of wrinkles, pattern transformation is also observed in both Fig. 14(a) and (b). For Fig. 14(a), there are
two cusps in the area marked with A at time t = 1, which finally merge into one cusp at time t = 2.0. As for the

cusp in the area marked with B, movement from the inner side to the outer side is observed. For Fig. 14(b), the
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Fig. 14. Configurations and displacement (Uy ) contours of the sample during the electric loading process (t ∈ [1, 2]), where the whole
sample is generated by duplicating the quarter of the sample in X and Z directions with the deformation scale factor 20.

hapes in the area marked with C and D at time t = 1 are similar. However, the pattern evolutions of areas C and
are different. Area C consists of one cusp, while area D consists of two cusps at time t = 1.21.
From this example, we see that the external electric potential not only affects pattern formulation but also can

uppress wrinkles. The electric field can be explored further as a potential control mechanism for controlling patterns

n growing elastic solids.
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4.5. Response of a growing tube

To figure out the mechanism of the morphological remodelling under the external electric stimulus, post-buckling
nalyses are conducted on a long tube. Similar to the geometry and boundary condition setting in 4.1, the long tube
ccupies the region Ri ≤ R ≤ Ro, −π ≤ Θ ≤ π, 0 ≤ Z ≤ L . In the numerical simulation, we consider

a 3D model with the original height L = 5 mm, inner radius Ri = 1 mm and outer radius Ro = 1.5 mm. The
relative permittivity is taken as ϵr = 5, ϵ0 = 8.854 g mm/(kV2 s2), and the shear modulus is µ = 104. For the sake

f saving computational efforts, only a quarter of the tube is modelled, which is meshed into 12400 (20-noded)
exahedral elements. The axial stretching/compression parameter λz is set as 1.0. Growth parameter g is set as
.1, 1.2, and 1.3, respectively. Similar to the previous examples, growth and electric fields are applied separately in
wo different load steps. The growth tensor is isotropic. For comparison, we introduce two different cases for the
pplication of voltage. In case 1, the electric potential difference is along the radial direction, where the inner surface
s applied with voltage φt = 6 kV, and the outer surface is grounded. In case 2, an electric potential difference is
pplied along the axial (Z ) direction, where the top face is applied with a voltage φt = 50 kV and the bottom face
s grounded. To trigger the initiation of instability, a displacement perturbation is applied at the beginning of the
rst load step with a scale factor of 0.01. Two buckle modes are selected as the geometry imperfection from the
rst five modes of linear buckling analysis.

For case 1, the simulation results of the two modes are shown in Figs. 15 and 16, respectively. The applied
eometry imperfections of case 1 are shown in the sub-figure in Figs. 15(a) and 16(a), which are in the form
f non-axisymmetric and axisymmetric shape, respectively. To qualify the deformation, the Y -amplitude of a line
ocating at X = 0 on the outer surface is presented in Figs. 15(a) and 16(a), which are marked with thick solid
ines in their subfigures. The shape of this line on the outer surface is plotted in Figs. 15(b) and 16(b) to show
he wrinkles of the tube at some key points of simulation, i.e., M1–M3 and N1–N3 for non-axisymmetric geometry
mperfection, and P1–P3 and Q1–Q3 for axisymmetric geometry imperfection.

As shown in Figs. 15(a) and 16(a), Y -amplitude of line X = 0, Y = Ro increases with time during the growth
rocess (t ∈ [0, 1]), and reaches to M1, M2 and M3 for mode 1 and P1, P2 and P3 for mode 2 at t = 1 for growth
arameter g = 1.1, g = 1.2 and g = 1.3 respectively. In both tubes under two different geometry imperfection
odes, the amplitude at the end of the growth process (t = 1.0) positively correlates with the growth parameter

g. Then, by applying an external electric stimulus in the radial direction, the Y -amplitude of line X = 0, Y = Ro
ncreases with voltage and reaches N1, N2 and N3 for mode one and Q1, Q2 and Q3 for mode two at the end of
imulation for growth parameter g = 1.1, g = 1.2 and g = 1.3, respectively. We can clearly see that the external
oltage along the radial direction promotes wrinkles. All the simulations diverged before t = 2.0, and there is such a
rend that the Y -amplitude of the line located at X = 0 on the outer surface shoots to infinity. The larger the growth
arameter, the earlier the simulation crashes, i.e., this upper limit of voltage decreases with the growth parameter

g, which is similar to the previous results presented in Fig. 6.
We choose the stress component σz to analyse the behaviour of the growing tubes under external voltage as

he magnitude of σz is much larger than σr and σθ . Figs. 17 and 18 present the stress σz distribution regarding to
mperfection mode one and mode two, respectively.

From Figs. 17 and 18, we can see residual stress is induced by growth at time t = 1. When parameter g is
mall (g = 1.1), the stress field of σz due to growth is uniformly distributed. The uniform distribution of stress
omponent σz at time t = 1.0 no longer exists when we increase the growth parameter. Furthermore, applying
xternal voltage along the radial direction exacerbates this non-uniformity of the stress field, where the minimum
f stress is decreased and the maximum is increased, resulting in the obvious wrinkling surfaces of the tubes.

In case 2, the electric potential is applied in the axial (Z ) direction, and the growth parameter g is also set as
.1, 1.2 and 1.3. The Y -amplitude of the line at X = 0 and Y = Ro is presented in Fig. 19(a) and (b) for mode 1
nd 2 respectively.

Both Fig. 19(a) and (b) show that the y-amplitude reaches the maximum at time t = 1.0 due to growth. By
pplying the external voltage, the y-amplitude decreases with time, suggesting that wrinkles are suppressed by the
xternal voltage along the axial direction. Although the surfaces of the tubes are not completely flat at t = 2.0, it
s expected that a larger external voltage will flatten the surfaces.

Compared with case 1, the deformation on the outer surface in case 2 is significantly different. For further
nvestigation, we plot the σz along line X = 0 and Y = Ro. As shown in Fig. 20, σz distribution of this line are

resented for point M1–M3, N1–N3, G1–G3 and P1–P3, Q1–Q3, H1–H3.
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Fig. 15. Simulation results of the tube with radial electric potential difference and geometry imperfection mode 1. (a) the Y -amplitude of
line X = 0 on the outer surface and geometry imperfection applied at time t = 0; (b) the shape of line X = 0 on the outer surface at time
t = 1 (solid lines) and at the end of simulation (dashed lines).

At the end of the growth process, residual stress is accumulated due to mechanical constraints in the two ends
Z = 0 and Z = L . When growth parameter is large, the fluctuation of stress distribution is obvious. In the presence
of radial voltage, this fluctuation is enhanced, leading to the non-uniformity of stress distribution. However, this
fluctuation is suppressed under axial voltage, showing that the residual stress is relaxed.

By investigating the two loading cases of tubes, we observed that voltage could increase or suppress wrinkles.
Response of wrinkles mainly depends on stress redistribution inside the tube owing to the loading positions of
external voltage. For case 1, the stress component in the Z direction σz is decreased to negative, as demonstrated
in Fig. 7. The analogy to applying compression in the axial direction, the external voltage along the radial direction

causes the non-uniformity of σz , leading to the promotion of wrinkles and instability. However, for case 2, σz
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Fig. 16. Simulation results of the tube with radial electric potential difference and geometry imperfection mode 2. (a) the Y -amplitude of
line X = 0 on the outer surface and geometry imperfection applied at time t = 0; (b) the shape of line X = 0 on the outer surface at time
t = 1 (solid lines) and at the end of simulation (dashed lines).

increases to positive, which is similar to applying tension in the axial direction, resulting in the suppression of
wrinkles.

5. Conclusions

In this work, we proposed a finite element framework for simulating the coupled response of electro-elastic
materials under growth effects and applied electric field. The novel aspects of this study are the extension
of a recently published three-field mixed displacement-pressure-potential formulation to model coupled electro-
mechanical growth in soft incompressible materials and valuable insights gained into the effect of electric and

growth fields on the mechanical deformation in soft materials. The computer simulations are realized through a
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Fig. 17. Stress σz distribution of the tube with radial electric potential difference and geometry imperfection mode 1 at moments M1–M3
and N1–N3.

user element subroutine in ABAQUS. The mixed hexahedron element (Q2/Q1) is employed to account for true

incompressibility and model the large deformation behaviour accurately using coarse meshes. To demonstrate the

accuracy and effectiveness of the proposed numerical framework, we consider several numerical examples, such as

tubular and stiff film/soft substrate structures.
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Fig. 18. Stress σz distribution of the tube with radial electric potential difference and geometry imperfection mode 2 at moments P1–P3
and Q1–Q3.

By introducing the growth field, the volume of growing electro-elastic material is adjustable, making up for
a deficiency of traditional dielectric material that the overall deformation is isochoric. The numerical framework
is first validated using the example of the tubular structure under an axial strain and a radial voltage, for which
the analytical solution exists. Further numerical experiments on this example revealed upper limits for the applied
voltage in the radial direction, corresponding to the axisymmetric collapse of the tubular structure with a certain
26
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Fig. 19. The Y -amplitude of line X = 0 on the outer surface of the tube with axial electric potential difference and geometry imperfection
pplied at time t = 0: (a) mode 1 (b) mode 2.

xial stretch and growth factor. Using the example of a bilayer cantilever beam, we demonstrated the flexibility of
eveloping novel shape programming schemes by combining the effects of growth and electric fields to control the
ending deformation of beam.

Investigation of the post-buckling behaviour of tubes and stiff film/soft substrate structures offered key insights
nto the formation and attenuation/suppression of wrinkles. The post-buckling results of stiff film/soft substrate
tructures show that the surface pattern formation can be guided or controlled by an external voltage. Pattern
ransition is observed during the electric loading process: the number of the wrinkles is doubled or tripled by the
pplied voltage in the plane strain model, and complex pattern evolution such as merging, split, and movement of
usps are demonstrated in the 3D model of stiff film/soft substrate structure. The example of a long tube suggests that

he voltage can not only suppress but also can promote wrinkles, depending on its loading position. It is observed
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Fig. 20. σz distribution of line locating at X = 0 on outer surface with radial/aixal electric potential difference: (a) mode 1, at moments
M1–M3 (solid lines), N1–N3 (dashed lines) and G1–G3 (dotted lines); (b) mode 2, at moments P1–P3 (solid lines), Q1–Q3 (dashed lines)
nd H1–H3 (dotted lines).

hat residual stresses induced by the growth can be adjusted using an external voltage, leading to a redistribution of
tress fields, which can be exploited to remodel the shape. Similar to the results obtained in the analytical solution,
he applied voltage in the radial direction reaches the upper limit corresponding to the crash of simulation, resulting
rom the non-uniformity of the residual stress. In addition, it is also observed that the upper limit decreases with
he growth parameter at a constant axial stretch, showing that the growth effect plays an important role in stress
edistribution.

To conclude, combining electro-mechanics with growth fields enhances the flexibility of shape morphing schemes
or soft materials. The proposed finite element framework using a mixed formulation is promising for capturing the
echanical response of growing electro-elastic solids. The current framework can be used for designing applications
n smart devices made of electro-active polymers. The loading cases and material models used in the present
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work are relatively simple. Future extensions of this work can focus on incorporating complex loading cases and
anisotropic material models to capture additional physics and realize twisting and curling deformations that can aid
in the design of versatile smart devices. In addition, the time-dependent response of growing electro-elastic solids
is interesting and challenging, which needs to be addressed in future work.
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ppendix A. The first variation of energy function
The first variant of the strain energy function (Ψmech,dev

+ Ψ coup) and the perturbed Lagrangian ΨPL is given as
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)
J g dV

+

∫
Br

pδ J + δp
(

J − J g
−

p
κ

J g
)

dV − δΠext

=

∫
Br

(
δFi J

(
J eσ̄ik F−1

Jk

)
+
(
Fe

i I δφ,i
) (

J e Fe−1

I j d j

))
J g dV

+

∫
Br

pδ J + δp
(

J − J g
−

p
κ

J g
)

dV − δΠext

=

∫
Br

((
δui, j F j J

) (
J σ̄ik F−1

Jk

)
+ Jdiδφ,i

)
dV

+

∫
Br

pJδi jδui, j + δp
(

J − J g
−

p
κ

J g
)

dV − δΠext

=

∫
Br

(
δui, j

(
σ̄i j + pδi j

)
+ δφ,idi

)
J dV

+

∫
Br

δp
(

J − J g
−

p
κ

J g
)

dV − δΠext

=

∫ (
δui, j σ̂i j + δφ,idi

)
J dV +

∫
δp
(

J − J g
−

p
κ

J g
)

dV − δΠext

(A.1)
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where the relations below are used

σ̂i j = σ̄i j + pδi j ,

δFi J = δui,J = δui, j F j J ,

δ J = Jδui,i = Jδui, jδi j ,

D̄I = J e Fe−1

I i di ,

ĒI = Fe
i Iei ,

P̄i J = J eσ̄ik F−1
Jk .

(A.2)

Appendix B. The second variation of energy function

The second variation d(·) of the energy functional (Ψmech,dev
+Ψ coup) and the perturbed Lagrangian ΨPL can be

written as

d
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where the following relations are used
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[70] C. Kadapa, W.G. Dettmer, D. Perić, Subdivision based mixed methods for isogeometric analysis of linear and nonlinear nearly

incompressible materials, Comput. Methods Appl. Mech. Engrg. 305 (2016) 241–270.
[71] C. Kadapa, M. Hossain, A linearized consistent mixed displacement-pressure formulation for hyperelasticity, Mech. Adv. Mater. Struct.

29 (2) (2022) 267–284.
[72] R.W. Ogden, Non-Linear Elastic Deformations, Dover Publications, 1997.
[73] J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, second ed., Cambridge University Press, 2008.
[74] C. Kadapa, Z. Li, M. Hossain, J. Wang, On the advantages of mixed formulation and higher-order elements for computational

morphoelasticity, J. Mech. Phys. Solids 148 (2021) 104289.
[75] J. Wang, Z. Li, Z. Jin, A theoretical scheme for shape-programming of thin hyperelastic plates through differential growth, Math.

Mech. Solids (2022) 108128652210896.
33

http://refhub.elsevier.com/S0045-7825(23)00252-9/sb63
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb63
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb63
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb64
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb64
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb64
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb65
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb65
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb65
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb66
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb66
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb66
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb67
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb67
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb67
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb68
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb69
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb69
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb69
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb70
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb70
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb70
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb71
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb71
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb71
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb72
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb73
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb74
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb74
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb74
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb75
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb75
http://refhub.elsevier.com/S0045-7825(23)00252-9/sb75

	A numerical framework for the simulation of coupled electromechanical growth
	Introduction
	Governing equations for nonlinear electromechanics with growth effects
	Kinematics, strain and stress
	Electrostatics
	Constitutive models and stress–strain relations

	Finite element formulation
	Variational formulations
	Newton–Raphson scheme
	Finite element spaces

	Numerical examples
	Verification with analytical solution
	The bi-layer bending actuator
	Wrinkling of a stiff film/soft substrate structure in plane strain condition
	Wrinkling of a stiff film/soft substrate structure in 3D
	Response of a growing tube

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A. The first variation of energy function
	Appendix B. The second variation of energy function
	References


