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SPORTS PERFORMANCE

Investigating the kinetics of repeated sprint ability in national level adolescent 
hockey players
Adam Runacres a,b, Kelly A Mackintosh a and Melitta A McNarry a

aApplied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, Swansea University, Swansea, UK; bInstitute of Sport, Manchester 
Metropolitan University, Manchester, UK

ABSTRACT
Repeated sprint ability (RSA) is more closely related to match performance outcomes than single- 
sprint performance, but the kinetic determinants in youth athletes remain poorly understood. 
Therefore, the aim of the study was to explore the kinetic determinants of RSA in youth athletes. 
Twenty trained adolescents (15 girls; 14.4 ± 1.0 years) completed five 15 m repetitions interspersed 
with 5-s rest. Velocity was measured during each trial using a radar gun at >46 Hz, following which 
the force–velocity–power (F-v-P) profile was fitted to a velocity–time curve and instantaneous 
power and force variables calculated. The mechanical efficiency of force application (DRF) was the 
primary predictor of both single and repeated sprint performance in adolescents. Secondly, hier-
archical analyses revealed the percentage reduction in peak velocity, DRF, and allometrically scaled 
peak force explained 91.5% of the variance in 15 m sprint time from sprints 1–5. Finally, declines in 
allometrically scaled peak power were more closely related to declines in peak force than reduc-
tions in velocity. In conclusion, given DRF was the primary predictor of both single and repeated 
sprint performance training programmes targeting RSA need to include technique, and skill acquisi-
tion, components.

ARTICLE HISTORY 
Received 13 September 2022  
Accepted 12 May 2023 

KEYWORDS 
Biomechanics; children; 
performance; talent

1. Introduction

Repeated sprint ability (RSA), defined as the ability to repeat-
edly reproduce consistent maximal efforts (Girard et al., 2011), 
is fundamental to athletic performance in team sports and 
routinely assessed in long-term athlete development (LTAD) 
programmes and talent identification batteries (Girard et al.,  
2011; Mendez-Villanueva et al., 2010; Moran et al., 2016; 
Papaiakovou et al., 2009). Indeed, adult athletes are reported 
to perform more than 50 individual sprints during an interna-
tional football match (Pons et al., 2021), with many being in 
close succession and almost always in game critical scenarios 
(i.e., scoring or preventing a goal; Spencer, Bishop, et al., 2004). 
Unsurprisingly, therefore, RSA has been more closely related to 
performance outcomes than individual sprint ability in adult 
team sports (Spencer, Bishop, et al., 2004; Spencer, Lawrence, et 
al. 2004). Youth team sports are characterised by similar move-
ment profiles (Buchheit et al., 2010; McLellan & Lovell, 2013), 
but the determinants of RSA are likely to be dependent on both 
chronological and biological age, although this requires further 
investigation. Indeed, determining the mechanisms of RSA in 
youth athletes would be pertinent for coaches, talent identifi-
cation, and the development of more comprehensive LTAD 
models. However, obtaining a reliable measure of RSA is diffi-
cult given the high intra- and inter-day variability (17–51% in 
some cases) and the number of different RSA protocols which 
are routinely used confounding direct comparisons between 
studies (Altmann et al., 2019).

The development of single-sprint performance during child-
hood and adolescence is thought to be a non-linear process, 
with accelerated periods of development around the time of 
peak height velocity (PHV; Mendez-Villanueva et al., 2010; 
Mujika et al., 2009; Philippaerts et al., 2006; Spencer et al.,  
2011). However, changes in RSA and its determinants during 
maturation are less well understood (Mujika et al., 2009; Rossi 
et al., 2017). The determinants of RSA have been postulated to 
be a combination of physiological (i.e., VO2max; Girard et al.,  
2011; Meckel et al., 2013; Rumpf et al., 2013) and biomechanical 
factors (Girard et al., 2011; Morin et al., 2006, 2011; Rossi et al.,  
2017; Rumpf et al., 2013; Rumpf, Cronin, Oliver, et al., 2015; 
Samozino et al., 2016). From a biomechanical perspective, 
sprint performance is suggested to be directly proportional to 
peak horizontal force (Fpeak) and peak power (Ppeak) during the 
initial acceleration (Morin et al., 2011; Rabita et al., 2015).

An athlete’s capacity to produce Fpeak whilst running is 
well described by the force–velocity relationship (Morin et al.,  
2006; Rossi et al., 2017; Samozino, 2018) which characterises 
the theoretical limits of the entire neuromuscular system and 
the theoretical exponents of Fpeak, Ppeak and peak velocity 
(Vpeak; Samozino et al., 2016). These mechanical variables 
(Fpeak, Ppeak, and Vpeak) appear to be the primary determi-
nants of single-sprint performance, irrespective of age or 
maturity (r2: 0.98–0.99; Rumpf, Cronin, Oliver, et al., 2015). 
However, the relative influence of Fpeak, Ppeak and Vpeak on 
RSA is less clear and the underpinning mechanisms are 
thought to be maturity dependant (Meyers et al., 2015,  
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2017a; Papaiakovou et al., 2009; Philippaerts et al., 2006). For 
instance, vertical stiffness, a reflection of the ability to tolerate 
and overcome gravitational forces, was reported to be the 
greatest predictor of sprint performance in pubertal adoles-
cents but not their pre- or post-pubertal counterparts (Rumpf, 
Cronin, Mohamad, et al., 2015; Rumpf, Cronin, Oliver, et al.,  
2015). Whilst the generalisability of these results is limited by 
the derivation of the biomechanical parameters from only the 
four fastest consecutive steps on a non-motorised treadmill, 
they raise interesting questions regarding the interaction 
between maturity and kinetic determinants of performance.

The mechanisms underpinning Fpeak and Ppeak are multi-
faceted and represent a complex interaction between neural, 
anthropometric, and morphological factors, alongside indivi-
dual muscle properties (Morin et al., 2006, 2011; Rabita et al.,  
2015). Interestingly, the technical ability to apply force (DRF) has 
recently been postulated to be more influential than absolute 
Fpeak (Morin et al., 2011; Rossi et al., 2017), highlighting that 
technique and skill proficiency may also be of importance. 
Whilst the influence of DRF has been reported in world-class 
(Rabita et al., 2015) and masters athletes (Slawinski et al., 2017), 
little is known about its role in sprint performance in youth 
athletes. It was recently reported that single-sprint DRF 

improved with age in a sample of 68 children and adolescents 
(Rossi et al., 2017). However, whether DRF is equally important 
for multiple-sprint performance remains largely unknown in 
youth athletes and thus further research is required to deline-
ate the potential effects of age and maturation and their inter-
action with training on the determinants of sprint performance. 
Therefore, the aim of this study was to assess RSA using radar 
technology and biomechanical modelling in trained children 
and adolescents to determine the underlying kinetics during 
repeated over-ground sprints.

2. Methods

Twenty adolescents (n = 15 girls; Table 1) involved in interna-
tional age-group field-hockey tournaments and an LTAD pro-
gramme participated in the study. A pre-screening medical 
questionnaire and informed parent/guardian consent were 
completed online using a custom-built consent form (Survey 
Monkey, Dublin, Ireland). Written participant assent was 
obtained on the day of testing. Ethics approval was obtained 
from the institutional ethics committee (approval number: 
SWA_2019_18) and the study conformed to the Declaration 
of Helsinki.

2.1 Experimental procedures

Standing and sitting stature were measured to the nearest 0.1  
cm using a Seca 213 portable stadiometer (Seca 213, Seca, 

Chino, CA, USA), with body mass measured to the nearest 0.1  
kg using a set of electronic scales (Seca 803, Seca, Chino, CA, 
USA). Maturity offset was subsequently calculated using the 
equations of Mirwald et al. (2002).

The purpose of the repeated sprint protocol was to mimic 
gameplay scenarios where near maximal sprints are completed 
in quick succession with changes in direction. Velocity was mea-
sured throughout all sprints using a STALKER ATS II radar gun 
(STALKER, Plano, Texas, USA), mounted on a tripod positioned 
10 m behind the start line, in accord with manufacturer recom-
mendations. The STALKER ATS II has a recording frequency of 
46.875 Hz, allowing for near-instantaneous power and force vari-
ables to be modelled. Rossi et al. (2017) used radar technology 
coupled with macroscopic biomechanical modelling to estimate 
force and power variables in field-based settings. This radar 
technology has the ability to measure both inbound and out-
bound velocities (Simperingham et al., 2016, 2017), thereby 
enabling the quantification of between sprint differences. 
Indeed, such high-resolution quantification of the kinetics under-
pinning repeated sprints could not only further our understand-
ing of, but also facilitate targeted interventions to improve, RSA 
during childhood and adolescence (Girard et al., 2011; Samozino 
et al., 2016; Simperingham et al., 2017). Moreover, radar technol-
ogy has demonstrated high intraday reliability in paediatric 
populations (Runacres et al., 2019).

Prior to undertaking the repeated-sprint protocol, partici-
pants undertook a standardised five-minute low-intensity 
warm-up, culminating in two 15 m sprints that simultaneously 
served as familiarisation with the sprint protocol. Participants 
were then given at least 2 min of active rest before completing 
the repeated-sprint protocol. The 20 m sprinting lane was 
marked by a pair of coloured cones and prior to undertaking 
the RSA protocol participants had the opportunity to ask any 
questions. For the repeated-sprint protocol, participants com-
pleted five 20 m sprints, turning 180° every 20 m. To minimise 
the potential confounding effects of differences in turning 
speed between participants and sprints, participants were 
required to stop for up to 5 s before accelerating into the 
next maximal sprint. A repeated measures ANOVA revealed 
that there was no significant difference in the times in between 
sprints. Sprint times and kinetic variables were subsequently 
derived from the initial 15 m of each sprint to minimise the 
effects of deceleration. Participants started from a two-point 
standing start to reduce vertical displacement during the early 
phase of the sprint and were instructed to start using auditory 
cues (i.e., “3 . . . 2 . . . 1 . . . GO!”). All sprints were completed on 
outdoor AstroTurf pitches, with the mean air temperature and 
wind speed being 15.8 ± 0.8ºC and 1.6 ± 0.8 m ⋅ s−1, respec-
tively. Verbal encouragement was given to each participant 
for the duration of the RSA protocol to ensure that all partici-
pants completed the RSA protocol to the best of their ability.

Table 1. Participant descriptives.

Mean ± SD

Age (years) 14.4 ± 1.0
Height (m) 1.66 ± 0.08
BMI (kg ⋅ m−2) 21.1 ± 3.2
Maturity Offset (years) 0.75 ± 0.23

Note: BMI = Body Mass Index.
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2.2 Data analysis and statistics

Radar technology has the ability to measure both inbound and 
outbound velocities (Simperingham et al., 2016, 2017), thereby 
enabling the quantification of between sprint differences. 
Indeed, such high-resolution quantification of the kinetics 
underpinning repeated sprints could not only further our 
understanding of but also facilitate targeted interventions to 
improve, RSA during childhood and adolescence (Girard et al.,  
2011; Samozino et al., 2016; Simperingham et al., 2017). To 
assess RSA, the data was first segmented into five sections to 
represent each repeated sprint and, subsequently, the first 
reading of each new sprint was assigned time 0, and the first 
0.3 s deleted in line with previous recommendations 
(Samozino, 2018). Using the biomechanical model of 
Samozino et al. (2016), the following parameters were derived 
for each sprint: time to peak power (t_Ppeak), absolute, relative 
and allometrically scaled peak power (Ppeak), mean power 
(Pmean), relative mean power (relative Pmean), peak and mean 
velocity (Vpeak and Vmean, respectively), 15 m sprint time (15mT), 
absolute, relative, and allometrically scaled peak force (Fpeak), 
fatigue rate (FR) and DRF. Furthermore, to aid comparisons with 
previous literature, the fatigue index (FI) was calculated using 
the formula reported elsewhere (Mujika et al., 2009).

All statistical analyses were conducted in SPSS (Version 26.0, 
IBM, Armonk, NY, USA), with values presented as mean ± SD. 
Sex differences in anthropometric variables were assessed 
using an independent samples t-test, revealing no sex differ-
ences in any anthropometric or repeated sprint parameter, so 
data were pooled for subsequent analyses. Allometric scaling, 
a common technique to account for body size differences in 
children (Welsman & Armstrong, 2019), was performed on Ppeak 

and Fpeak, with a b exponent of 1.54 and 1.87 for Ppeak and Fpeak, 
respectively. Following confirmation that all variables were 
normally distributed parametric tests were used throughout. 
A repeated measures ANOVA was used to compare perfor-
mance parameters between sprints, with Bonferroni correc-
tions applied where necessary. Cohen's d effect sizes were 
also calculated to determine trivial (≤0.20), moderate (≥0.21–≤ 
0.60), large (≥0.61–≤ 0.80), and very large (≥0.81) effects 
(Cohen, 1988).

Hierarchical linear regressions were used to ascertain the 
biomechanical determinants of each 15 m sprint repetition. 
Allometrically scaled Ppeak was initially added to the model 
due to the emerging associations with single-sprint perfor-
mance in children and adolescents (Rumpf, Cronin, Mohamad, 
et al., 2015; Rumpf, Cronin, Oliver, et al., 2015). Subsequently, 
predictor variables were entered into the models to determine 
the independent association with each repetition’s 15mT, with 
inclusion into the model accepted if a significant increase in 
explained variance was observed at the 0.05 confidence inter-
val. Collinearity checks were conducted using the variance 
inflation factor (VIF), with a VIF <1, between 1 and 5, and 
greater than 5 indicating low, moderate and high collinearity, 
respectively (Daoud, 2017). If high multi-collinearity was found 
between variables, the variable explaining the greatest propor-
tion of variance was included in the model (Daoud, 2017). The 
accuracy and suitability of the model was assessed using the 
normality of residual values. The correlation coefficients were 

classified according to Hopkins (2006) as trivial (0.0–0.1), small 
(0.1–0.3), moderate (0.3–0.5), large (0.5–0.7), very large (0.7– 
0.9), or nearly perfect (0.9–1.0). A significant correlation was 
evident between the percentage decline in 15mT and allome-
trically scaled Ppeak (R

2 = 0.76; very large, p < 0.01) but Ppeak was 
not entered into the regression model due to its high collinear-
ity with Vmax and Fpeak. Declines in Fpeak were more strongly 
related to declines in Ppeak during the repeated sprints (R2 =  
0.89; very large, p < 0.01) than changes in Vmax (R

2 = 0.42; mod-
erate, p < 0.05).

To assess the overall RSA, the mean percentage decline from 
the first to last sprint was calculated for each mechanical vari-
able, similar to Chaouachi et al. (2010), with a subsequent 
hierarchical stepwise linear regression used to ascertain which 
variables predicted the decline in performance according to the 
15mT. Pearson’s correlations were performed to establish the 
relationship between the relative declines in kinetic variables 
over the repeated sprints.

3. Results

The repeated measures ANOVA demonstrated a main effect for 
sprint number, with post-hoc analyses demonstrating that, as 
shown in Figure 1, this was primarily attributable to differences 
between the first two sprints and all subsequent sprints. More 
specifically, there was a main effect for Ppeak regardless of how 
it was expressed, with post-hoc tests revealing Ppeak during 
sprint 1 was significantly higher than sprint 4 (d = 0.54; Table 2). 
Pmean, relative Pmean, and DRF were significantly higher during 
sprint 1 compared to all other sprints (Pmean: F(4,76) = 23.7, p <  
0.01, relative Pmean: F(4,76) = 24.7, p < 0.01, DRF: F(4,76) = 2.6, p <  
0.01). There was an overall effect of sprint number on Vpeak 

(F(4,76) = 29.4, p < 0.01), Vmean (F(4,76) = 17.4, p < 0.01) and 15mT 
(F(4,76) = 17.1, p < 0.01), with post-hoc analyses revealing that 
Vpeak, Vmean and 15mT decreased from sprints 1 to 4, before 
increasing slightly in sprint 5 (Table 2). However, as shown in 
Figure 1c, there were no significant differences in Fpeak, irre-
spective of whether it was expressed in absolute, relative, or 
allometrically scaled units, over the five sprint repetitions (all p  
> 0.05). Additionally, t_Ppeak and FR did not significantly change 
with each sprint repetition. The mean FI over the five sprint 
repetitions was 11.0 ± 3.9%.

3.1 Biomechanical determinants of repeated sprints

In model 1, in which only allometrically scaled Ppeak was 
entered, 74–82% of the variance in the 15mT from sprints 
1 to 4 was explained, with the explained variance lower for 
sprint 5 only (62%; Table 3). DRF was found to be 
a significant additional predictor of sprint performance for 
sprints 1, 2, 3 and 5, increasing the explained variance to 
between 84% and 92%. Mean allometrically scaled Ppeak 

across the five sprints explained a large proportion of the 
variance in the mean 15mT (81%), with the inclusion of 
mean DRF significantly increasing the explained variance to 
90%. The hierarchical linear regression revealed that percen-
tage declines in Vmax was the strongest predictor of 15mT 
(37.9%), followed by DRF (34.7%) and allometrically scaled 
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Fpeak (18.9%). Subsequently, the percentage decline in 15mT 
was described by:

Percentage decline in 15mT = −0.903 + (0.629 * Vmax) +  
(0.143 * DRF) + (0.415 * allometrically scaled Fpeak)

4. Discussion

This study was the first to utilise radar technology in combina-
tion with macroscopic biomechanical modelling to gain greater 
insights into the mechanical properties underpinning 
repeated-sprint ability in adolescents. The main findings of 
the current study indicate that declines in allometrically scaled 

Ppeak with repeated sprints are more closely related to declines 
in allometrically scaled Fpeak than peak velocity in circa-PHV 
adolescents. Moreover, the hierarchical analysis revealed that, 
irrespective of sprint number, the kinetic determinants of single 
sprints were also key to RSA performance. Finally, DRF was the 
primary predictor of both single- and multiple-sprint kinetics. 
The results of this study provide important insights for the 
design and implementation of training interventions targeting 
improvements in RSA in youth athletes.

Data from non-motorised treadmills in boys (Rumpf, Cronin, 
Oliver, et al., 2015) and force platforms in girls (Nagahara et al.,  
2019) indicate that Ppeak and Fpeak are key determinants of 

Figure 1. Post-processed representative traces from the five sprint-repetitions for a typical participant showing a) velocity-time profile; b) power-velocity profile; and c) 
the force velocity profile.
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single-sprint performance during youth. In contrast, the pre-
sent study suggests that DRF, an indication of mechanical effi-
ciency, is a greater predictor of single-sprint performance than 
Fpeak. This is in agreement with data in trained youth (Rossi 
et al., 2017) and adult (Morin et al., 2011) sprinters, which was 
attributed to Fpeak being the sum of both horizontal and ver-
tical forces, with the latter not significantly influencing perfor-
mance (Morin et al., 2006, 2011). However, DRF represents the 
linear decline in the ratio of forces (horizontal: vertical) with 
increasing velocity and may therefore be more performance- 
orientated (Samozino et al., 2016; Slawinski et al., 2017). Of 
note, DRF has also been reported to significantly decline in 
repeated cycling sprints, whereby participant’s force-efficiency 
decreased as pedalling frequency increased (Sanderson, 1991). 
Whilst it is not possible to exert zero vertical force (and subse-
quently have a ratio of forces of 100%) as this would preclude 
running motion (Morin et al., 2006, 2011), future research 
should seek to establish optimal values that could improve 
both single and repeated sprints.

Allometrically scaled Ppeak and peak velocity were signifi-
cantly higher in sprint 1 compared to all other sprints (d = 0.54– 
1.16), with the decline in allometrically scaled Ppeak reaching 
significance from sprint 4. In contrast, there were no significant 
differences between any sprints for Fpeak, regardless of how it 
was expressed. Therefore, it was surprising that declines in Fpeak 

were the primary cause of the reductions in Ppeak over the 
course of the five sprints. Nevertheless, previous research in 
children has reported that relative Fpeak has a very strong 
relationship with step length and flight length (the distance 
travelled by the COM from toe-off to touchdown; Lloyd et al.,  
2016). Thus, it may be possible that even small changes in 
relative Fpeak may negatively impact upon these crucial kine-
matic variables, thereby lowering velocity (Lloyd et al., 2016; 
Meyers et al., 2017b). Of note, allometrically scaled Fpeak and 
Ppeak explained significantly more variance in both individual 
sprint 15mT and the overall decline in 15mT across the five 
sprint repetitions than absolute or relative values. This may be 
due to the near-linear relationship observed between Ppeak, 
Fpeak and body mass, irrespective of sex (Doré et al., 2005,  
2008), with ratio-scaling consequently penalising heavier, 
more mature individuals (Nevill, Bate, & Holder, 2005; 
Welsman & Armstrong, 2019).

Allometric scaling, unlike conventional ratio scaling, allows 
the specific exponent of body mass to be calculated, and is 
currently the most robust statistical method to account for 
body mass differences in aerobic fitness (Welsman & 
Armstrong, 2019). Allometric scaling was utilised within this 
study to provide reference values for future studies exploring 
the kinetic determinants of RSA in circa-PHV adolescents. 
Additionally, by employing allometric scaling, comparisons 

Table 2. Sprint variables from each of the 5 × 15 m sprint repetitions.

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Significant Differences

t_Ppeak (s) 0.56 ± 0.12 0.52 ± 0.11 0.50 ± 0.12 0.50 ± 0.07 0.53 ± 0.11 -
Ppeak (W) 732.0 ± 268.3 647.9 ± 190.8 659.7 ± 238.8 606.2 ± 190.7a 643.3 ± 198.8 1–4, d = 0.54
Relative Ppeak (W ⋅ kg−1) 12.6 ± 3.7 11.2 ± 2.6 11.2 ± 2.8 10.4 ± 2.2a 11.0 ± 2.3 1–4, d = 0.72
Scaled Ppeak (W ⋅ kg−1) 7.9 ± 2.3 7.0 ± 1.7 7.0 ± 1.7 6.5 ± 1.3a 6.9 ± 1.4 1–4, d = 0.75
Pmean (W) 362.1 ± 95.8 318.0 ± 91.4a 308.2 ± 102.0a 287.4 ± 91.4a b 286.7 ± 77.6a 1 – All other sprints (d = 0.47–0.86) 

2–4, d = 0.33
Relative Pmean (W ⋅ kg−1) 6.3 ± 1.4 5.5 ± 1.4a 5.3 ± 1.3a 5.0 ± 1.2a b 5.0 ± 1.1a 1 – All other sprints (d = 0.57–1.03) 

2–4, d = 0.40
Vpeak (m ⋅ s−1) 5.87 ± 0.51 5.51 ± 0.50a 5.40 ± 0.48a e 5.30 ± 0.45a b e 5.61 ± 0.52a 1 – All other sprints (d = 0.71–1.16) 

2–4, d = 0.42 
4–5, d = 0.64

Vmean (m ⋅ s−1) 4.40 ± 0.40 4.15 ± 0.30a e 4.12 ± 0.30a e 4.05 ± 0.27a e 4.35 ± 0.35 1 – Sprints 2,3 and 4 (d = 0.71–1.13) 
5 – Sprints 2, 3 and 4 (d = 0.58–0.96)

T15m (s) 3.43 ± 0.31 3.63 ± 0.29a e 3.67 ± 0.29a e 3.73 ± 0.28a e 3.47 ± 0.29 1 – Sprints 2,3 and 4 (d = 0.71–1.13) 
5 – Sprints 2, 3 and 4 (d = 0.58–0.96)

Fpeak (N) 445.2 ± 151.7 421.4 ± 112.1 435.3 ± 139.4 411.9 ± 110.3 417.7 ± 118.5 -
Relative Fpeak (N ⋅ kg−1) 7.7 ± 2.0 7.3 ± 1.4 7.4 ± 1.5 7.1 ± 1.0 7.2 ± 1.3 -
Scaled Fpeak (N ⋅ kg−1) 3.6 ± 0.9 3.5 ± 0.7 3.5 ± 0.7 3.4 ± 0.4 3.4 ± 0.6 -
FR (W ⋅ s−1) 272.6 ± 150.8 245.7 ± 99.4 263.9 ± 133.9 243.2 ± 106.1 211.6 ± 90.2 -
DRF (% ⋅ s ⋅ m−1) −7.64 ± 1.03 −8.63 ± 1.44a −8.51 ± 1.49a −8.93 ± 1.19a −8.34 ± 1.45a 1 – All other Sprints (d = 0.40–0.78)

Note: All variables presented as mean ± SD. t_Ppeak = Time to Peak Power, Ppeak = Peak power, Pmean = Average power, Vpeak = Peak Velocity, Vmean = Average 
velocity, T15m = 15 m sprint time, Fpeak = Peak Force, FR = Fatigue Rate, DRF = Mechanical Efficiency Index. a significantly different compared to sprint 1, b 

significantly different compared to sprint 2, c significantly different compared to sprint 3, d significantly different compared to sprint 4, e significantly different 
compared to sprint 5.

Table 3. Biomechanical determinants of 15 m sprint time for each repetition.

Sprint Number Predictor Variables β Standard Error R2

1 Scaled Ppeak −0.12 0.02 0.78 **
DRF −0.04 0.02 0.84 *

2 Scaled Ppeak −0.15 0.02 0.74 **
DRF −0.08 0.02 0.88 **

3 Scaled Ppeak −0.15 0.02 0.82 **
DRF 0.07 0.02 0.92 **

4 Scaled Ppeak −0.19 0.02 0.79 **
5 Scaled Ppeak −0.16 0.03 0.62 **

DRF −0.20 0.02 0.84 **

Note: Scaled Ppeak = Allometrically Scaled Ppeak, DRF = Mechanical Efficiency Index, * p < 0.05, ** p < 0.01.
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of kinetic RSA determinants across maturity groups are facili-
tated, which is especially relevant as it is likely that the deter-
minants may be maturity dependent. Indeed, circa-PHV 
adolescents are often characterised by “adolescent awkward-
ness” caused by rapid growth of limbs in relation to the trunk 
inhibiting motor control (Quatman-Yates et al., 2012). 
Consequently, the potential reductions in motor control may 
explain the importance of DRF for RSA in this study. However, 
future research is warranted to establish the kinetic determi-
nants of RSA throughout maturity.

In the present study, similar mechanical determinants of 
single and repeated sprints were evident, therefore suggest-
ing that single- and repeated-sprint ability may be governed 
by the same mechanical properties. From a physiological 
perspective, declines in Ppeak during repeated cycling sprints 
have primarily been attributed to neuromuscular fatigue, 
arising from increases in blood lactate concentrations and 
associated reductions in intramuscular pH (Ratel et al., 2002; 
Ratel, Duche, et al., 2006). Such reductions inhibit the ability 
to recruit type II higher-order muscle fibres, with changes in 
motor-unit recruitment patterns in the quadriceps, mea-
sured using an electromyogram, explaining 97% of the 
total work during repeated cycling sprints, interspersed 
with 30 s rest in untrained adults (Girard et al., 2011). 
Moreover, a reduction in pH may lead to reductions in 
motor co-ordination (Doré et al., 2005; Ratel, Williams, 
et al., 2006), which may also explain DRF as a predictor of 
fatigue during repeated sprints. However, although similar 
fatiguing pathways seem likely (Ratel, Duche, et al., 2006), 
whether the same physiological mechanisms are also 
responsible for the declines in running performances 
remains to be established.

The trained hockey players in the present study showed 
a higher decrement in performance, as measured using FI 
(11.9%), to that reported in highly trained footballers (4.1– 
5.5%; Girard & Farooq, 2012; Mujika et al., 2009), likely due to 
differences in the repeated-sprint protocol as both groups 
were highly trained completing ≥7 hours ∙ week−1. 
Specifically, most repeated-sprint studies incorporate 10–30 
s of rest between repetitions (Meckel et al., 2009; Mendez- 
Villanueva et al., 2010; Mujika et al., 2009; Temfemo et al.,  
2011), whereas this study utilised a near-continuous protocol. 
Whilst it could be argued that incorporating rest between 
sprints is more indicative of team-sport scenarios (Mendez- 
Villanueva et al., 2010), the inclusion of rest periods facilitates 
aerobic recovery. Indeed, previous paediatric research found 
a significant correlation between aerobic capacity and fati-
gue resistance during repeated-sprint protocols (Mendez- 
Villanueva et al., 2007). Moreover, Dupont et al. (2005) 
reported that the magnitude of change in sprint time was 
negatively correlated with the speed of the pulmonary VO2 

kinetics in adults (r2 = 0.80, p < 0.01), with faster pulmonary 
VO2 kinetics postulated to spare intramuscular phosphocrea-
tine for the later sprints and thereby increase RSA perfor-
mance (Dupont et al., 2005). Therefore, future research 
should seek to establish physiological determinants of 
repeated-sprint performance in children and adolescents to 
further explain the declines in mechanical variables during 
sprint running.

It may be pertinent to note that the last sprint (sprint 5) was 
faster than sprints 2, 3 and 4, perhaps highlighting that future 
research should incorporate an increased number of sprint 
repetitions to induce greater fatigue, as well as the potential 
role of pacing resulting in sub-maximal sprints (Impellizzeri 
et al., 2008; Ratel, Williams, et al., 2006). In the absence of 
criteria to determine the maximal effort, it could be postulated 
that an element of pacing is involved within all repeated-sprint 
protocols, irrespective of recovery period. The present study 
utilised specific strategies to increase and maintain motivation 
during repeated sprints, including a longer finish line distance 
(Mendez-Villanueva et al., 2010) and verbal encouragement 
(Mujika et al., 2009; Philippaerts et al., 2006). However, no 
studies have examined differences between trials with and 
without motivational techniques, so it is unclear whether 
these techniques mitigate the role of pacing.

Although there are numerous strengths to this study, cer-
tain limitations must be noted. Data collection was curtailed 
by COVID-19 resulting in a relatively small sample size, 
thereby limiting generalisability. Given the small sample size, 
the results of this study should be interpreted as a preliminary 
investigation into the potential underpinning mechanisms of 
RSA in highly trained youth. Furthermore, all participants were 
classified as circa peak height velocity and so the results of this 
study should be interpreted as the kinetic determinants of 
RSA in this maturity group only. Whilst the macroscopic bio-
mechanical model used provides an overview of the kinetics 
underpinning sprint performance, muscle-specific inferences 
cannot be made. Consequently, the specific muscles respon-
sible for the observed power reduction cannot be established, 
limiting intervention specificity. Nevertheless, radar technol-
ogy coupled with biomechanical modelling offers 
a foundation for quantifying potential sex, training and 
maturational differences in RSA.

4.1 Practical recommendations

The results of this study indicate that DRF was the most impor-
tant factor in determining RSA, suggesting that future interven-
tions and training programmes seeking to improve RSA in 
youth should incorporate a focus on technique and skill acqui-
sition components. This is important as many LTAD models 
focus almost exclusively on physiological conditioning with 
little consideration for the wider determinants of talent devel-
opment. Furthermore, coaches and practitioners working with 
youth team sport athletes should endeavour to incorporate 
strength, or power, training into their training regimes as 
Ppeak was found to be a key determinant of 15mT.

5. Conclusions

In conclusion, DRF was the primary determinant of both single- 
and repeated-sprint performance in youth and therefore 
future training interventions aiming to improve RSA in youth 
should include some technique, or skill acquisition, compo-
nents. Future studies should seek to establish the RSA devel-
opment in untrained children and adolescents, so the 
trainability of RSA, and any sex, or maturity, differences can 
be established.
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Highlights

● Mechanical efficiency (DRF) was the primary determinant of single- and 
repeated-sprint performance in youth.

● Declines in peak power with repeated sprints were more closely related 
to reductions in peak force than velocity.

● Peak velocity, DRF, and allometrically scaled peak force explained 91.5% 
of the variance in RSA.
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