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Abstract

We argue that results produced by a heuristic optimisation algorithm cannot be consid-

ered reproducible unless the algorithm fully specifies what should be done with solu-

tions generated outside the domain, even in the case of simple bound constraints. Cur-

rently, in the field of heuristic optimisation, such specification is rarely mentioned or

investigated due to the assumed triviality or insignificance of this question. Here, we

demonstrate that, at least in algorithms based on Differential Evolution, this choice in-

duces notably different behaviours in terms of performance, disruptiveness and popu-

lation diversity. This is shown theoretically (where possible) for standard Differential

Evolution in the absence of selection pressure and experimentally for the standard and

state-of-the-art Differential Evolution variants, on a special test function and the BBOB

benchmarking suite, respectively. Moreover, we demonstrate that the importance of
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this choice quickly grows with problem’s dimensionality. Differential Evolution is not

at all special in this regard – there is no reason to presume that other heuristic opti-

misers are not equally affected by the aforementioned algorithmic choice. Thus, we

urge the heuristic optimisation community to formalise and adopt the idea of a new

algorithmic component in heuristic optimisers, which we refer to as the strategy of deal-

ing with infeasible solutions. This component needs to be consistently: (a) specified

in algorithmic descriptions to guarantee reproducibility of results, (b) studied to better

understand its impact on an algorithm’s performance in a wider sense (i.e. conver-

gence time, robustness, etc.) and (c) included in the (automatic) design of algorithms.

All of these should be done even for problems with bound constraints.

Keywords

bound constraint, algorithmic behaviour

1 Introduction

The overwhelming majority of practical optimisation problems are constrained at least

in some sense: from simply limiting the ranges of input variables to complex nonlinear

or black-box functional constraints. There is a clear benefit of tackling such problems

according to their constrained nature by considering the search space as constrained

rather than at first approximating the problem as an unconstrained variant.

It is true that both engineering and pure mathematical approaches dictate that in-

feasible solutions should not be evaluated during optimisation: the former - due to

physical limitations of the underlying processes/devices, and the latter - since the ob-

jective function is not required to be formally defined for such infeasible solutions.

However, heuristic optimisation approaches, not being exact, sometimes use some kind

of ‘information’ on the values of the objective function corresponding to infeasible so-

lutions – see exterior penalty approaches (Coello Coello, 2002). On one hand, this nar-

rows down the applicability of such methods. On the other hand, they get an advan-

tage through additional domain information. Is it fair to compare such algorithms with

those not using this information? In our view, such distinction should at least be high-

lighted. Additionally, when benchmarking heuristic optimisation algorithms, it is often

unclear whether the boundaries should be dealt with explicitly by the algorithm, or if
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the problem itself should handle this using a penalty function (Hansen et al., 2021).

While the current level of development of the field of numerical heuristic optimisa-

tion allows tackling these problems directly as constrained, it is not done consistently,

especially for the simplest types of constraints. For example, very few papers in the

field mention what should be done with infeasible solutions (that violate some con-

straint) that might, or even are very likely to, be generated during an optimisation run.

Many options are possible for handling such solutions, e.g. penalty functions, repair

methods, and feasibility-preserving generating operators. In practice, the choice made

for a particular algorithm is often omitted from the description due to either its as-

sumed insignificance or triviality in the eyes of the algorithm’s designer. However, this

choice has been shown to strongly influence the algorithm’s performance (Arabas et al.,

2010; Liao et al., 2014; Biedrzycki et al., 2019; Boks et al., 2021; Kononova et al., 2021).

Moreover, the aforementioned ambiguity in algorithms’ specifications regarding

dealing with infeasible solutions naturally leads to reproducibility issues. It is this aspect

specifically that is being discussed in this paper.

If the algorithm’s source code is not made available, such an ambiguity in algo-

rithms’ specification has to be resolved via wasteful trying (‘and-erroring’) of infinite

possibilities. The latter fact is further burdened by the random nature of the algorithms

which does not allow guesses regarding missing details exactly: unless, in addition to

the available source code, the exact specifications of the operating system where the re-

ported experiments have been executed, versions of programming languages and ran-

dom seed values of pseudorandom number generator are also known (L’Ecuyer and

Simard, 2007; van den Honert et al., 2021).

If the source code of an algorithm is available, it is not guaranteed that missing

algorithmic specification can be easily extracted and therefore the accompanying spec-

ification can still be ambiguous regarding the strategy for dealing with infeasible so-

lutions. We can assume that either multiple options have been tried and the selected

one performs best, or the strategy for dealing with infeasible solutions component was

considered as non-essential to the algorithm behaviour and thus, not investigated. In

either case, information about the algorithm in relation to the strategy of dealing with
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infeasible solutions is never reported, and when only one method was considered this

could mean that potential performance gains have not been realised. This same argu-

ment can hold in the cases of automatic algorithm design and configuration, where

modules dealing with the bound constraints are rarely part of the search-space. Even

when they are considered in the configuration, they are often grouped together with

another operator such as mutation, thus making it more challenging to accurately see

its impact (Stützle and López-Ibáñez, 2019; Cruz-Duarte et al., 2020).

While the wider community of evolutionary algorithms has recently become more

aware of the challenges and benefits of reproducibility (López-Ibáñez et al., 2021), the

standards for availability of code, data, and other artefacts still differ widely between

the venues. For the field of heuristic optimisation algorithms to move forward, a

stronger reliance on reproducible experimental results is needed, especially in the ab-

sence of overarching theoretical frameworks. Thus, in order to ensure that any reported

findings can be reproduced, we should aim to be aware of even the seemingly small

design decisions within our algorithms that are often overlooked, since even minor

changes in algorithm search behaviour can lead to irreproducible results if not prop-

erly documented or otherwise made available.

Unfortunately, many of the papers which propose new (meta)heuristics or algo-

rithmic improvements on existing ones do not contain explicit information on how

the out-of-bounds components are treated. In the particular case of Differential Evo-

lution (DE), the number of such papers is significant – see Section 2.5 for a literature

review. We believe such problem manifests itself for all heuristic optimisation methods

discussed in both specialised theoretical and applied literature. Thus, with this paper,

we conclude that there is a major reproducibility issue with the state-of-the-art heuristic

optimisation methods and call for proper formalisation of a new operator/algorithmic

component that deals with infeasible solutions inside heuristic optimisers. Such com-

ponent needs to be consistently:

(a) specified in algorithmic descriptions to guarantee full reproducibility of results,

(b) studied to understand its impact on algorithms’ performance in a wider sense (i.e.
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convergence time, robustness, etc.),

(c) included in the (automatic) design of algorithms.

All of the above should be done even for problems with bound constraints only.

To emphasise the importance of such an algorithmic component, we propose an in-

tegrated approach, at both experimental and theoretical levels, to analyse the impact of

the strategies used to deal with solutions violating bound constraints on the behaviour

of the optimisation algorithm. One of the main contributions of this paper is the usa-

ge of the ‘cosine similarity’ measure to quantify the influence of the aforementioned

strategies on the search direction induced by the optimisation algorithm.

The remainder of this paper is organised as follows: In Section 2, we discuss the

general problem of using heuristic optimisation methods to solve bound-constrained

problems, with a focus on Differential Evolution and the Strategy of Dealing with In-

feasible Solutions (SDIS) used in this context. In Section 3, we consider the notion of

disruption of the search behaviour and propose the usage of cosine similarity to mea-

sure this phenomenon. Then, in Section 4, we present a theoretical analysis on the

number of infeasible solutions within DE, and analyse the impact of several popular

SDIS on search directions and diversity of the population. To further analyse the im-

pact of SDIS on these aspects, we make use of the special test function f0, which assigns

uniformly distributed random values to the elements and hence ‘removes’ the selective

pressure without any modification to the algorithm under investigation, and uses this

to study the relation between parameters of DE, SDIS, cosine similarity between search

directions and population diversity. We also consider the overall number of infeasi-

ble solutions generated, and relate the analysis on f0 to the concept of structural bias.

Finally, we perform a benchmark study on several versions of DE and investigate the

empirical impact of SDIS on their performance, while comparing the algorithmic be-

haviour observed to the results obtained theoretically on flat functions and empirically

on f0. In Section 7, we conclude that SDIS does indeed have an impact on algorithms’

performance, and should be taken into consideration more closely to improve the state

of reproducibility in our field. We look ahead at potential solutions and future research
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directions in Section 8.

2 Heuristic optimisation with bound constraints

Optimisation problems faced by practitioners from different application fields are ne-

cessarily defined within a domain D, commonly referred to as the search space in the

heuristic optimisation community. Indeed, in the real-world context, the presence of

feasibility constraints is almost inevitable, and even when the nature of the problem

seems to be unconstrained one may argue that when using heuristic approaches the

need for sampling solutions and generating random numbers imposes boundaries for

drawing such solutions. In this light, even when explicit equality and/or inequality

constraints are not present, it is generally assumed that each design variable of the

problem at hand must be bounded between some lower and upper bound, thus defin-

ing a search space D shaped as a hyperparallelepiped. Such a setting is commonly

referred to as bound-constrained or ‘box-constrained’ problem in computer science jar-

gon. In this study, we focus on real-valued single objective bound-constrained optimisation

problems, as defined and discussed in the next Section.

2.1 Problem formulation, related constrained optimisation problems

A real-valued bound-constrained problem is defined as finding a minimum of function

f : D “

n
ą

i“1

rai, bis Ñ R (1)

where ´8 ă ai ă bi ă 8 and D Ă Rn 1. This represents the lowest complexity of in-

equality constraint condition on the variables that a problem can have. For this reason,

1If X Ă Rn defines a bound-constrained domain, any function f : X Ñ Y Ă R can be extended to a
larger domain as g : Rn Ñ W Ă R (i.e. gpxq “ fpxq @x P X) and original bound-constrained problem can
be rewritten as an optimisation problem with unbounded domain subject to inequality constraint:

arg min
xPRn

gpxq subject to vpxq ď 0,

where vpxq “ Ax ´ b with A “ r´In, InsT and b “ r´a1, . . . ,´an, b1, . . . , bnsT, v : Rn Ñ R2n, where
In stands a unity matrix of size n. In other words, trivially, bound constraints represent a special case of a set
of linear constraints. However, in practice, such application of the latter methods to the transformed original
problem might lead to poor results, e.g. depending on the way the function at hand is extended (from f to
g, in the notation above), since an infinite number of extensions can be defined for any function – see above
the ambiguity in defining values of gpxq@x R X .
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some confusion arises in the literature with several authors often referring to this class

of problems as ‘unconstrained’ to stress the fact that design variables are not subject to

more complex linear or nonlinear constraints. However, we argue that this is incorrect

because ignoring bound constraints is an oversimplification leading to confusion and

reproducibility issues. It is indeed common to find articles in the literature where infor-

mation on the employed Strategy of Dealing with Infeasible Solutions (SDIS, see defini-

tion in Section 2.4) is omitted (see Section 2.5), even though recent studies indicate that

different SDIS operators differently influence (at least) such a characteristic of a heuris-

tic optimisation method as structural bias (see Section 5.5 for definition) (Kononova

et al., 2015; van Stein et al., 2021; Vermetten et al., 2022c,d), and thus playing a role

on the algorithmic behaviour of an optimisation algorithm. Hence, bound constraints

should not be ignored and solutions violating them are to be dealt with an appropriate

SDIS. In this light, a well-designed algorithm for real-valued unconstrained optimisa-

tion, i.e. where each design variable can be anywhere in the real axis (xi P R), might not

be as suitable for bound-constrained optimisation. It should indeed be observed how

some algorithms, see e.g. (Helwig and Wanka, 2008; Engelbrecht, 2013a; Kononova

et al., 2021), are prone to produce high numbers of solutions outside the search domain

under certain parameter configurations. This is quite likely to occur when an algorithm

for unconstrained optimisation is used over a bound-constrained domain, particularly

when the optimum is close to the boundary of the domain. In this scenario, the al-

gorithm has to be equipped with an SDIS which would have to be activated for the

vast majority of objective function evaluations, thus leading the search and taking over

the actual working logic of the algorithm itself. To prevent this phenomenon, being

constrained would be a key feature of an optimisation algorithm for bound-constrained

problems.

2.2 Classic and state-of-the-art versions of Differential Evolution

Despite the numerous advances in the field of DE, its solid general algorithmic frame-

work has remained quite unchanged since the first studies (Storn, 1996; Storn and Price,

1997), with many of the most important variants being proposed by mainly acting on
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the mutation operator, where individuals are linearly combined, see (Lampinen and

Zelinka, 2000; Price et al., 2006), and on adding self-adaptation rules for its three pa-

rameters (Das et al., 2016). These are the population size N and the two control param-

eters F P p0, 2s, acting as a scale factor for the mutation operator, and the crossover rate

Cr P r0, 1s. The working mechanism of DE is quite known and established, and for gen-

eral information one can see (Price et al., 2006; Das et al., 2016; Opara and Arabas, 2019;

Kononova et al., 2021), where description, pseudocode and analyses of its algorithmic

behaviour are provided. However, for the sake of clarity, we briefly report relevant DE

terminology which is used in the remainder of this paper.

In DE, the N individuals in the population are processed one at a time. When

the commonly called ‘current’ individual to be perturbed is selected to undergo re-

combination, it gets referred to as the target. Through the crossover operator, which

requires the availability of an ‘intermediate’ solution referred to as the mutant, the

target individual produces an offspring solution referred to as the trial. This new

solution can have infeasible components to be dealt with an appropriate SDIS before its

fitness value can be computed, as further commented in Section 2.4. To implement this

logic, a mutation strategy is required to produce the mutant solution. As previously

mentioned, this operator works by linearly combining individuals selected from the

population where a number of difference vectors are formed (from which the name of

this optimisation paradigm) and added to a specific individual. The latter, as well as

the number of difference vectors, depends on the adopted mutation strategy. With this

in mind, classic DE variants are identified with the well-known notation DE/a/b/c

where a indicates the mutation strategy, b the number of difference vectors employed

in the mutation strategy, and c specifies the crossover strategy - two options are mainly

used (i.e. the binomial bin and exponential exp crossover strategies) for c but a few

more strategies also exist in the literature (Das et al., 2016; Vermetten et al., 2022d).

Some state-of-the-art DE algorithms, which we also study in this piece of research,

slightly deviate from this structure. This is the case of the Success-History based Adap-

tive DE (SHADE) (Tanabe and Fukunaga, 2013), which can be seen as a variant of the

popular JADE algorithm (Zhang and Sanderson, 2009). SHADE features a memory sys-
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tem where both the weighted Lehmer average of successful F values, and the weighted

arithmetic average of successful Cr values from previous generations are stored. Such

values are randomly picked to adapt the control parameters, thus not relying only on

the values from the previous generation (as in JADE) but also on the previous ones.

Furthermore, the p parameter for the ‘current-to-pbest’ mutation strategy is randomly

generated for each individual (this introduces an extra parameter pmin to tune). These

small changes led to reported significant performance improvements with respect to

previously established self-adaptive DE algorithms. When compared to the algorith-

mic structure of a classic DE, one can immediately see a clear difference for SHADE:

• control parameters are self-adapted;

• by design, a mechanism is in place for using an optional archive of less fit individ-

uals to be entered in the population for preserving diversity;

• classic DE mutations are not employed, in favour of the ‘current-to-pbest/1’

(Zhang and Sanderson, 2009), where the pbest vector is selected at random

amongst the p% best individuals in the population, which is used in combination

with the binomial crossover in (Tanabe and Fukunaga, 2013).

The burden of tuning the population size is still present in SHADE, but is mitigated in

its successor L-SHADE (Tanabe and Fukunaga, 2014), where an initial (usually large,

i.e. 18 ¨ n) population size gets decreased linearly as a function of the number of fitness

evaluations. Reduction of the population size has shown to be beneficial in DE, see e.g.

(Zamuda and Brest, 2012), and appears to make L-SHADE perform better in several

benchmark problems.

2.3 Infeasibility

Referring to Eq. 1, a solution x P D is said to be feasible, while it is infeasible if x R D.

In a bound-constrained scenario, the last case occurs if at least one of its ith design

variables is either lower than ai or greater than bi. Such infeasible solutions cannot be

evaluated in the vast majority of real-world applications, i.e. they represent physically

impossible scenarios or require mathematically undefined calculations, and are pur-
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posely excluded by design. Also from the mathematical point of view, these solutions

should not be considered because the function modelling the problem is generally un-

defined outside its domain - i.e. the problem does not exist outside D. Despite this,

some confusion can arise while using common benchmark suites for optimisation such

as e.g. (Hansen et al., 2021; Wu et al., 2017), which always return a value for x R D,

these solutions should not be used to guide the search for solving test-bed problems.

It should be mentioned that strategies that treat the search as unconstrained might

be beneficial, as long as the objective function is well-defined outside the search do-

main. The impact of ‘roaming behaviour’ of unconstrained elements has been previ-

ously analysed for Particle Swarm Optimisation (Engelbrecht, 2013b) and Differential

Evolution (Engelbrecht, 2013a). Despite their interesting behaviour, such strategies are

out of the scope of this paper, as we are focusing on the case when the objective function

cannot be evaluated for infeasible solutions.

The number of infeasible solutions generated during the search depends both on

the particularities of the problem (e.g. fitness landscape, problem size) and on the cha-

racteristics of the search heuristic. More specifically, the number of infeasible solutions

increases with the problem size, n, and with the probability pv of violating the bound

constraints by a design variable, as the probability of generating an n-dimensional in-

feasible solution is 1 ´ p1 ´ pvq
n. The bound violation probability, pv , depends on the

distribution of the population elements in the bounding box and on the exact mutation

or perturbation operator. Theoretical results on the estimation of pv are scarce, as the

distribution of the population can be analytically derived only in the initial stage of the

evolution. One of the few papers addressing this aspect is (Helwig and Wanka, 2008),

which proves that in the case of Particle Swarm Optimisation, many particles leave

the bounding box in the first generation, particularly in the case of high-dimensional

problems.

The question whether a well-performing algorithm should generate many infeasi-

ble points to solve the problem remains open: (Boks et al., 2021) has demonstrated that

highly competitive adaptive variants of the Differential Evolution algorithm (see Sec-

tion 2.2) can indeed generate excessively large number of infeasible points throughout
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runs. Similar results have been obtained in this paper particularly on functions with

optimum near the boundary (see Figure 9). With these results in mind, can we still

claim that such optimisation methods efficiently utilise information contained within the

population if so many generated solutions need to be brought back into feasibility?

2.4 Strategy of dealing with infeasible solutions

Following the discussions of Section 2.1, SDIS, also referred to as boundary constraint

handling methods, are key operators for most algorithms. The same way variation

and recombination operators are carefully selected and combined during the algorith-

mic design phase, SDIS should be considered carefully. The most logical, and most

commonly recommended, moment for the use of SDIS in an algorithm is immediately

before the objective function call, to make sure that only feasible solutions are evalu-

ated.

While placing the SDIS immediately before evaluation ensures that only feasible

solutions are evaluated, there might be some cases, e.g. some hybrid heuristic struc-

tures, where intermediary solutions are involved in driving the search process before a

new individual is evaluated. Such intermediary solutions should not be used without

checking if they are feasible. So, in the most general case, one should always pay atten-

tion in activating SDIS every time a potentially infeasible solution is used to guide the

search, or has to be evaluated. As suggested in Section 2.2, in the DE framework there

is only one operator that can produce an infeasible solution. After being generated,

some of its components are transferred by a crossover operator to an existing individ-

ual, whose fitness value must be evaluated. Hence, placing a SDIS before crossover

would also make sure that novel candidate solutions are feasible, but this might be un-

necessary because the crossover could completely ignore infeasible components from

the mutant. In DE, the mutant is never evaluated nor used to guide other parts of the

search, so the placement of SDIS before or after crossover are equivalent. In this study,

we place SDIS after crossover to match the scheme depicted in the pseudocode from

(Kononova et al., 2021).

For this study, we select a varied range of existing strategies for dealing with in-
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feasible solutions:

• ‘complete one-sided truncated normal’, first introduced in (Caraffini et al., 2019),

which is denoted as COTN in the remainder of this investigation;

• ‘halfway-to-violated-bounds’, denoted as HVB here, which we define as the op-

erator replacing infeasible components with the midpoint between the previous

feasible components (before perturbation) and the violated problem’s bound;

• ‘mirror’, as described in (Kononova et al., 2020b,a), which we denote as mir here;

• ‘saturation’, see (Caraffini et al., 2019), which is denoted here as sat;

• ‘toroidal’, see (Caraffini et al., 2019), which is denoted as tor here;

• ‘uniform’, as defined in (Vermetten et al., 2022d), which we referred to as uni here.

Graphically, these SDIS are explained in Figure 1, which brings to attention the

stochastic nature of COTN and uni, while all the remaining strategies deterministically

return the same feasible value when the same infeasible value is used as input. Simi-

larly, one can also observe that the way COTN operates resembles a stochastic counter-

part of mir. These selected SDIS operators cover multiple and commonly used working
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and two (solid lines) infeasible components of a trial vector generated from a target
vector for 2-dimensional unit hypercube domain (green area).
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mechanisms for dealing with infeasible solutions, which might appear in the literature

under different names (see e.g. Table 1 and Section 2.5).

Unlike ‘vector-wise’ SDIS, where vector operations act on the totality of the com-

ponents to obtain a feasible point, they operate ‘per-component’ by modifying only

the infeasible coordinates while keeping the feasible ones unchanged. To distinguish

between the two working mechanisms, we refer to the latter as ‘coordinate-wise’ SDIS.

It is also worth clarifying that, in the context of DE, HVB acts on the trial individ-

ual by using the target individual as its feasible counterpart. Hence, before calling

the objective function, any infeasible design variable of the trial solution would get

replaced with a feasible value located halfway from the position of the corresponding

component in the target solution and the violated bound (upper or lower). In this

light, this SDIS can be seen as a coordinate-wise counterpart of the ‘projection to mid-

point’ repair strategy for DE used in (Biedrzycki et al., 2019), where the mutant vectors

are manipulated into feasible trial solutions as further discussed in Section 2.5.

2.5 State-of-the-art on strategies of dealing with infeasible solutions

Carried out as a part of the current paper, a review on recent publications which pro-

pose new or improved DE variants revealed that only a small proportion of papers

consider the strategy of dealing with infeasible solutions as a mechanism influencing

the search process and describe explicitly the used SDIS. As is illustrated in Table 2,

several categories of papers have been identified in case of DE.

On one hand, most of the papers do not provide access to the source code con-

taining the implementation of the proposed algorithm, which, on its own, implies re-

producibility issues. In this case, the only source of information is the algorithm de-

scription provided in the paper. In the few cases when the SDIS is explicitly specified

in the paper, no strong motivation for its choice is provided (simplicity or popularity,

being typically mentioned) and its influence on the algorithm behaviour is not dis-

cussed. Another category contains papers that present variants of a state-of-the-art

method (e.g. JADE or SHADE) and the reader might infer, in the absence of an explicit

statement on SDIS, that the strategy used in the original algorithm (e.g. the so-called
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Table 2: Summary of ways in which infeasible solutions aspect is addressed in recent
works proposing new DE variants

Source code
not available

1. SDIS is mentioned in the
paper

(Deng, 2020), (Cheng et al., 2021),
(Mohamed et al., 2021): uniform;
(Brest et al., 2019): mirror; (Liu
et al., 2019), (Stanovov et al., 2020):
HVB; (Zhan et al., 2020), (Zhao et al.,
2020): saturation; (Deng et al.,
2022): midpoint-base.

2. The proposed algorithm
is derived from SHADE,
JADE and it might be as-
sumed that SDIS is inher-
ited

(Awad et al., 2018), (Viktorin et al.,
2019), (Cheng et al., 2020), (Meng et al.,
2020), (Yi et al., 2021), (Zhong and
Cheng, 2021), (Kumar et al., 2022) (Zuo
and Guo, 2022): HVB.

3. The proposed algorithm
is a new or an enhanced
DE variant and SDIS is not
mentioned

(Tian and Gao, 2019), (Choi et al.,
2020), (Mousavirad and Rahnamayan,
2020), (Sun et al., 2020), (Wang et al.,
2020), (Zhou et al., 2020), (Mousavirad
et al., 2021), (Song and Li, 2021).

Source code
available

1. SDIS is mentioned in the
paper

(Mohamed, 2018), (Mohamed and Mo-
hamed, 2019): uniform;

2. SDIS is not mentioned in
the paper, but used in im-
plementation

(Tomczak et al., 2020): saturation.

midpoint-to-target, or HVB in the terminology of this paper) is used in the pro-

posed variant. However, this is just the guess of the reader and the reproducibility of

the results is at least questionable. The third category of papers includes descriptions

of algorithms without any specification on how the solutions that violate the bound

constraints have been treated.

On the other hand, there are papers for which the source code is made available,

thus even if the SDIS is not described in the paper it can be identified in the code. How-

ever, the reasoning behind choosing one strategy over the other ones is still missing.

Similar remarks are presented in a recent paper (Kadavy et al., 2022) where the impor-

tance of considering the bound constraint handling method as a specific component

of metaheuristic optimisation algorithms is emphasised. The analysis was conducted

on algorithms participating in CEC2017 and CEC2020 competitions on single-objective
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continuous optimisation and revealed that for only one-third of algorithms (8 out of

24) the method of handling the bound constraints was explicitly specified. The experi-

ments also showed that the performance of some of the competing algorithms could be

improved by changing the bound constraint handling method, leading even to some

changes in the final ranking of the competition.

It should be mentioned that there are several works devoted to the comparative

analysis of different strategies to deal with infeasible solutions in the context of various

metaheuristics: CMA-ES (Wessing, 2013; Biedrzycki, 2019), Particle Swarm Optimisa-

tion (Cheng et al., 2011; Helwig et al., 2013; Juárez-Castillo et al., 2017; Oldewage et al.,

2018), Differential Evolution (for DE see a summary in Table 1).

In relation to Differential Evolution, the first paper presenting a comparison be-

tween the performance of various SDISs applied to DE/rand/1/bin (Arabas et al.,

2010) analyse the following strategies: sat (referred to as projection), tor (referred

to as wrapping), uni (referred to as reinitialisation) and mir (referred to as

reflection). The main observation is that the choice of SDIS might have an influence

on the DE performance but the amount of impact depends on the problem characteris-

tics (e.g. position of the optimum and problem size): (i) sat and mir work well when

the optimum is near the bounds; (ii) for small size problems (e.g. n “ 10) the num-

ber of corrected elements is not significantly influenced by the used SDIS and there are

no significant differences between the performance of various strategies; (iii) for larger

size problems (e.g. n “ 30) a higher effectiveness has been observed for sat and mir

when compared with uni.

In the study (Padhye et al., 2015) addressing the influence of SDIS on

Particle Swarm Optimisation, Differential Evolution (DE/best/1/bin), and Ge-

netic Algorithms, it is stated that deterministic methods, for instance sat, lead

to a loss in population diversity, while uni (referred in the original paper as

random-reinitialisation) loses useful information carried by the current popu-

lation. The main remark on the performance of DE combined with a SDIS is that when

the optimum is near the midpoint of the feasible domain there is no significant differ-

ence between the impact of various strategies. On the other hand, when the optimum
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is close to the boundary then a parameterised vector-wise non-deterministic strategy

(inverse-parabolic) behaves the best with the experimental setup of the paper.

Currently, the most extensive study on bound constraints handling for standard

DE is (Biedrzycki et al., 2019), which presents experimental results based on the CEC

2017 benchmark suite. The authors analyse the impact of different strategies of dealing

with infeasible solutions (penalty functions, repairing methods, feasibility preserving

mutation) on the dynamics of the population, convergence speed, and global optimisa-

tion efficiency. The main insights reported in (Biedrzycki et al., 2019) are: (i) the greatest

influence on the mean and variance of the mutant population distribution is induced by

uni and tor SDIS; (ii) the performance sensitivity of standard DE to SDIS is higher for

larger size problems; (iii) the adaptive variants (e.g. JADE, SADE and jSO) are less sen-

sitive to the choice of SDIS than non-adaptive DE; (iv) the influence of a SDIS depends

on the DE variant with which it is combined, but overall the best behaviour is induced

by midpoint strategies (which use values between the corresponding component of

the target or base vector and the violated bound) and by mir. The authors of (Biedrzy-

cki et al., 2019) consider that the results of the experimental analysis can be explained

by the fact that a SDIS with better performance leads to a lower discrepancy between

the distributions of the before and after correction populations. It should be empha-

sised that best performance is obtained when the mutant construction is repeated by

sampling new parents until a feasible trial vector is obtained. A similar conclusion has

been reported also in (Kreischer et al., 2017) where DE/target-to-best/1/bin al-

gorithm (with F “ 0.8 and Cr “ 0.9) is combined with the same SDISs mentioned

above and tested on CEC 2017 benchmark. The authors of (Kreischer et al., 2017) also

recommend mir and projection to an interior point of the feasible region as strate-

gies which perform well in the case of CEC 2017 benchmark, followed by HVB.

An experimental study on the influence of nine strategies is presented in (de-

la-Cruz-Martı́nez and Mezura-Montes, 2020) aiming to deal with bound constraints

when combined with the so-called Deb feasibility rules (Deb, 2000) to solve four real-

world constrained optimisation problems related to mechanical design. The analysed

strategies are midpoint-target (HVB), reflection (mir), projection (sat),
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random-scheme (uni), full reinitialisation (all components, including the

feasible ones, are randomly reinitialised), conservatism (the trial vector is just dis-

carded), resampling (a new mutant is constructed by using other randomly selected

parents), evolutionary 10 (the infeasible component is replaced with a convex com-

bination between the violated bound and the corresponding component from the best

element in the population), centroid K+1 (average of a set including an element

selected from the population and K other elements obtained by applying uni to the

infeasible components). The main conclusion is that the influence of the SDIS is highly

dependent on the problem to be solved but overall, sat proved to be the most effective

strategy.

Similar to the setup in (Biedrzycki et al., 2019), (Boks et al., 2021) have in-

vestigated the effect of SDIS on performance on the single-objective noiseless ver-

sion of the BBOB benchmark (Finck et al., 2010) in DE for a wide selection of

operators, in a fully modular fashion. The considered mutation operators are

rand/1, best/1, target-to-best/1, best/2, rand/2, target-to-best/2,

target-to-pbest/1, rand/2/dir, NSDE, trigonometric, 2-opt/1, 2-opt/2,

proximity-based rand/1, and ranking-based-target-to-pbest/1. These

are combined with bin and exp crossovers with SHADE-based adaptation of

control parameters. The resulting DE variants are tested with a wide range

of SDIS operators, namely death-penalty, resampling, reinitialisation,

projection, reflection, wrapping, boundary-transformation, rand-

-base, midpoint-base, midpoint-target, projection-to-midpoint, pro-

jection-to-base, and conservatism. This paper appears to be the only analysis

of performance dependency on SDIS on the BBOB benchmark. The main conclusions of

(Boks et al., 2021) are: (i) no SDIS appears to be optimal for all DE configurations consid-

ered; (ii) SDIS ranks differ greatly between configurations and BBOB function groups;

(iii) to some extent, the best SDIS tends to depend on crossover. As a rule of thumb,

for similar setups, practitioners are therefore advised to consider conservatism for

exp crossover and reinitialisation for bin crossover as they perform best with

10Name as given by (de-la-Cruz-Martı́nez and Mezura-Montes, 2020)
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many configurations; such policy, however, does not always give the optimal result.

Optionally, midpoint-target in bin configurations rarely performs best but always

performs well and projection-to-midpoint is a reliable second option for exp

configurations. Finally, over all cases considered, resampling SDIS has been deemed

successful the highest number of times.

For DE implementations incorporated in various popular open-source libraries, the

most common SDIS is uni (used in SciPy 11, PyMOO 12 and PAGMO 13), followed by

sat (in the MOEA framework 14, PyADE 15) and mir, in PyMOO. Finally, a notable

exception is a highly modular AutoDE library 16 based on the aforementioned paper

(Boks et al., 2021) which provides many standard DE configurations and a hyper adap-

tive version of SHADE (Boks, 2021), all with 13 SDIS variants (see the list above).

3 Search direction

Any heuristic iterative optimiser can be considered an adaptive sampler which is guided

according to some logic by differences in values of the objective function (or deriva-

tives thereof) evaluated in the previously sampled points. It, therefore, makes sense

to consider a ‘path’ taken by an optimiser in the search domain or, more practically,

a sequence of search directions over sampled points. This section defines the search

direction induced by the DE operators and proposes to quantify the influence of a SDIS

by computing the cosine similarity between the unconstrained search direction and the

search direction resulting after applying a SDIS.

3.1 Definition of search direction in Differential Evolution

While it is easy to define the search direction for iterative single-solution methods, such

a task gets excessively complicated in the case of general population-based iterative

heuristic optimisers where multiple solutions steer the generation of subsequent so-

lutions. However, Differential Evolution (see Section 2.2) lends itself to such analysis

11Package scipy.optimize.differential evolution (Virtanen et al., 2020)
12https://pymoo.org/algorithms/soo/de.html
13https://esa.github.io/pagmo2/docs/cpp/algorithms/de
14http://moeaframework.org/
15https://github.com/xKuZz/pyade
16https://github.com/rickboks/auto-DE (Boks et al., 2021; Boks, 2021)
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easier thanks to its survivor selection mechanism based on a ‘1-to-1 spawning’ logic.

This means that every new solution updates its direction from the direction of a parent

and the whole population represents a repeatedly updated ensemble of search direc-

tions with a clear ‘inheritance’ scheme. Note that this happens despite the fact that

new solutions also incorporate information from others in the population apart from

their direct parent, and implicitly capitalise on the information contained in the popu-

lation, following the spirit of population-based heuristic optimisation (Prügel-Bennett,

2010).

In this context, we consider for each individual in the population, interpreted as

a target individual, a search direction which is defined as the difference between the

corresponding trial and target individuals. When an unfeasible trial individual

is corrected by applying a SDIS, the search direction will be altered. Changes in such

‘sequence of search directions’ can then be measured via, e.g. cosine similarity.

3.2 Cosine as a measure of similarity between search directions

The Cosine Similarity (CS) between non-zero vectors v1 and v2 is defined as their ‘nor-

malised’ inner product:

CSpv1,v2q “
v1

Tv2

}v1}}v2}
(2)

thus not depending on their magnitudes and registering only differences based on the

angle θ between them. For this reason, it can be seen as an angular distance, and can

be used to determine whether two directed vectors v1 and v2 are pointing to the same

oriented direction. Indeed, let us note that CSpv1,v2q “ cospθq P r´1, 1s and observe

that:

• CSpv1,v2q “ 0 ðñ v1 and v2 are orthogonal (i.e. the most dissimilar);

• CSpv1,v2q “ 1 ðñ v1 and v2 are parallel (i.e. aligned and pointing to the same

oriented direction);

• CSpv1,v2q “ ´1 ðñ v1 and v2 are anti-parallel (i.e. have opposite oriented

directions).
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In this study, we detect changes in the search direction during the evolution in DE algo-

rithms through the CS between two vectors, namely:

• d: obtained as the difference between the trial individual (before a SDIS is applied)

and the target vector - i.e. the target-to-trial directed vector,

• dc: obtained as the difference between the corrected trial individual (after a SDIS

is applied) and the target vector - i.e. the target-to-feasibleTrial directed

vector,

to observe if the employed SDIS is responsible for a change in the search direction. In a single

run, CS values are computed after a new trial individual is available, thus generating

a sequence of angular distances over time where the length of such sequence is equal

to the computational budget used minus the population size (to account for the initial

population). Sequences obtained across multiple runs for the same algorithmic con-

figuration are then aggregated for analysis purposes as indicated in Section 5.2. For

feasible solutions, CS values are not computed and thus excluded from the analysis.

3.3 Strategy of dealing with infeasible solutions as source of search disruptiveness

In the case of an unconstrained search, Differential Evolution can generate, for given

values of the control parameters, only a finite set of trial individuals which define the

corresponding set of search directions. When a SDIS is incorporated in DE, these search

directions can be altered through the introduction of new moves/perturbations, hence

a SDIS can be viewed as a source of disruptiveness in the DE search process. When

analyzing the impact of a SDIS on the search process there are at least two questions that

arise: (i) how much is the search process altered? (ii) does a SDIS have a beneficial or a

detrimental influence on the performance of the search?

The amount of disruptiveness depends both on the number of components in the

trial individuals which are corrected by the SDIS and on the characteristics of the SDIS.

One way to quantify the influence of the SDIS on the search process is to compute the

cosine between the uncorrected and the corrected search directions, as it is easy to com-

pute and can provide useful information even for high dimensions. When this value
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is closer to one, more of the search direction is preserved. Besides the influence on the

search direction, different SDISs lead to different positions of the corrected individuals

and, as the chance of generating such individuals through the DE mutation (based on

the current population distribution and values of the control parameters) is smaller, the

disruptive character of the SDIS can be considered more significant.

The second question is more difficult to answer, because the interference between

the SDIS and the DE mechanisms can hinder but also help the search. At a first sight,

at least the coordinate-wise SDISs are characterised by inappropriate usage of the in-

formation contained in the population. Indeed, these alter the self-referential search di-

rection induced by the difference-based mutation and decouples the components (with

impact on the ability of some DE variants to be rotationally invariant (Bujok et al., 2014;

Caraffini and Neri, 2019)). From this point of view, a vector-wise SDIS, as that proposed

in (Kreischer et al., 2017), can be considered less disruptive.

On the other hand, interfering with the DE search might be beneficial at least with

respect to: (i) generation of trial individuals which would otherwise not be generated

by DE operators, thus increasing the pool of candidate solutions (this might be particu-

larly useful in the case of small populations); (ii) influence on the population diversity

by including components or individuals which do not fully rely on differences (this

might be useful to avoid premature convergence or stagnation which are two of the

main causes for lack of performance of DE). So we can say that a SDIS might turn into

an additional diversity increasing mechanism. Some of these aspects are discussed in Sec-

tion 4.4 and illustrated further in Section 5.3, but there are some more complex issues

related to the control of diversity which are not discussed here.

4 Theoretical analysis of strategies of dealing with infeasible solutions

Under the usual assumption that the scale factor, F , is less than one, all mutant vectors

generated by DE/rand/1 will have the components inside the extended domain r2ai´

bi, 2bi ´ ais, thus the infeasible components will belong to r2ai ´ bi, aiq Y pbi, 2bi ´ ais,

where f : D “
Śn

i“1rai, bis Ñ R.

To quantify the influence of a SDIS on the search dynamics, several quantities
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can be taken into account: (i) the number of corrected components (in the case of

coordinate-wise strategies); (ii) the difference between the infeasible trial element and

the corrected one; (iii) the (dis)similarity between the search direction as it would be

in an unconstrained search and the corrected search direction; (iv) the impact of SDIS

on the population diversity. Different SDISs can behave differently with respect to

these aspects. A theoretical analysis, even if conducted under some simplifying as-

sumptions, might lead to some insights which could explain empirical observations or

provide guidelines for selecting a SDIS.

The results presented in this section correspond to DE/rand/1/‹ 17 and are ob-

tained under some necessary simplifying assumptions: (i) absence of selection pressure

(this is equivalent with using a flat fitness function, i.e. all new trial individuals are

accepted as soon as they are generated); (ii) the analysis of population diversity is con-

ducted coordinate-wise; (iii) the distribution of the individuals in the current popula-

tion is close to the uniform one. The last assumption is used only for the estimation of

the probability to generate infeasible components and for the estimation of the variance

of the population of individuals which are corrected by using mir.

Furthermore, results discussed in this section under the aforementioned simplify-

ing assumptions are contrasted with empirical results on benchmark functions in Sec-

tions 5, 6 which are generally free of such assumptions. Formal proofs for statements

in this section are provided in Appendix A.

4.1 Estimation of bound violation probability

The number of infeasible components in a DE/rand/1 mutant depends on the mu-

tation probability (pm) and on the probability, called bound violation probability (pv),

to generate by mutation an outside the bounds component. The mutation probability

depends on Cr, on the problem size, n, and on the crossover type (Zaharie, 2009). On

the other hand, the bound violation probability depends on the mutation type and on

the value of the scale factor F . In the particular case when the distribution of the cur-

rent population is close to the uniform distribution, the probability that a component

17Symbol ‹means that either bin or exp crossover can be used.

Evolutionary Computation Volume x, Number x 25



A.V. Kononova et al.

violates the bounds is close to F {3 (Zaharie and Micota, 2017). The distribution of the

trial population is influenced both by the mutation operator and by the used SDIS. One

question is whether the use of a SDIS in the current generation increases or decreases

the risk of generating infeasible components in the next generation. This question is

rather difficult to answer in the general case, but it can be addressed in the case of sat

strategy. In this case, the current population, P , consists of three subpopulations: Pw

(elements within the bounds), Plb (elements on the lower bound), and Pub (elements

on the upper bound). If pvpgq denotes the bound violation probability corresponding

to generation g (for the first generation population it is considered that pvp1q “ F {3)

then it can be proved (Proposition 1 in Appendix A.1), under the assumption that Pw

remains almost uniformly distributed, that

pvpg ` 1q » pvpgq{2` p1´ pvpgqqpp
2
vpgqF {2` p1´ p

2
vpgqqF {3q (3)

This sequence of probabilities, pvpgq, converges to a value between F {3 and 2F {3

(see Figure 12 in Appendix A.1). This suggests that, in the absence of selection pressure,

sat increases the risk of generating infeasible components, but not by a large amount.

This is confirmed by the empirical results presented in Section 5.4, Figure 4.

4.2 Difference between infeasible and corrected elements

The simplest way to quantify the impact of a SDIS is simply to compute the Euclidean

distance between an infeasible trial individual, z, and its corrected version, zcorr. Using

Eq. (4), where cpyiq denotes the i-th component of the mutant transformed by applying

a SDIS, it follows that the expected value of }z ´ zcorr}2 is pmpv
řn

i“1pyi ´ cpyiqq
2.

zi “

$

’

&

’

%

xi with probab. 1´ pm

yi with probab. pm
zcorr
i “

$

’

’

’

’

&

’

’

’

’

%

xi with probab. 1´ pm

yi with probab. pmp1´ pvq

cpyiq with probab. pmpv

(4)

For a given component, the difference pyi ´ cpyiqq2 is obviously the smallest in the case

of sat. If 0 ă yi ´ bi ď pbi ´ aiq{2 or 0 ă ai ´ yi ď pbi ´ aiq{2 then the difference
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is smaller for mir than for tor. This always happens if F ď 0.5. In the case of uni,

as the corrected value can be anywhere in rai, bis, the difference can take any value in

p0, 2pbi ´ aiqq. However, the bound violation probability induced by sat is usually

higher than in the case of the other SDISs. This means that the expected value of the

Euclidean distance corresponding to sat is not necessarily the smallest one.

4.3 (Dis)similarity between search directions

The similarity between the DE search direction, i.e. d “ z ´ x (difference between

the infeasible trial individual, z, and the target individual, x) and the corrected search

direction, dc “ zcorr ´ x, can be analysed using the cosine of the angle between d and

dc. In the case of sat, the components of the corrected search direction, dsat, have the

same sign as the components of the DE search direction (either zi ă ai “ csatpziq ď xi

or zi ą bi “ csatpziq ě xi, where csat denotes the transformation corresponding to

sat). Thus, for sat the cosine similarity is always greater than 0. The highest value of

the similarity is obtained when zcorr is a convex combination between x and z, which

means that the SDIS does not alter the search direction.

The symmetry between the corrected solutions obtained by mir (cmir) and tor

(ctor), i.e. cmirpziq ` ctorpziq “ ai ` bi allows us to prove (see Proposition 2 in Ap-

pendix A) that when F ď 0.5 (which ensures that dT dmir ě dT dtor) and x and cmirpzq

are in the same quadrant, i.e. pcmirpziq ´ pai ` biq{2qpxi ´ pai ` biq{2q ě 0 for i “ 1, n

(which ensures that }dmir} ď }dtor}) then cospd, dmirq ě cospd, dtorq. When x and

cmirpzq are not in the same quadrant, then it is not necessary that }dmir} ď }dtor}, thus

the relationship between cospd, dmirq and cospd, dtorq cannot be inferred so easily.

For the other SDISs, it is difficult to prove statements on search directions in the

general case, since the target value, x, can be placed anywhere in the feasible domain.

However, in the case where only one component is corrected and the Euclidean norm of

the uncorrected search direction is not fully determined by the infeasible component,

sat preserves the search direction better than any other SDIS that generates values

inside the open domain, i.e. pai, biq. More specifically, if k denotes the index of the

infeasible component (e.g. zk ą bk) and if }d}2 “
n
ř

i“1

pzi ´ xiq
2 ě 2pzk ´ xkqpzk ´ bkq
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then cospd, dsatq ě cospd, dotherq (see the proof of Proposition 3 in Appendix A). The

above constraint on }d}2 might be violated in the case where Cr is small, leading to

very few mutated components (in the extreme case only one component is mutated,

and this is also infeasible) and F is large, leading to a large deviation of zk with respect

to xk.

4.4 Influence of strategy of dealing with infeasible solutions on population

diversity

The population diversity can be quantified using the average variance of the population

computed coordinate-wise, i.e. varpXq “ 1
n

n
ř

i“1

varpXiq and varpXiq “
1

N

N
ÿ

j“1

pxji ´Xiq
2

where Xi denotes the average of the ith component values over the entire population

of N individuals. In the following, the analysis is performed for one component; thus,

index i is skipped. In the case of DE/rand/1 mutation, the expected value of the cor-

rected trial population variance (after applying SDIS, cpZq) depends on the variance of

the current population, X , as given (Zaharie and Micota, 2017), in Eq.5:

ErvarpcpZqqs “ αppm, pv, N, F q ¨ varpXq ` βppm, pv, N, SDISq. (5)

The first coefficient, αppm, pv, N, F q is not influenced by the used SDIS, depending only

on the mutation probability (pm), bound violation probability (pv), population size (N )

and the scale factor (F ). The influence of SDIS is incorporated into the free term, which

depends on the average and variance of the corrected values, as is specified in Eq. 6,

whereX denotes the midpoint of the current population, meanpSDISq and varpSDISq

denote the average and variance of the individuals corrected using a specific SDIS,

respectively.

βppm, pv, N, SDISq “ pmpvp1´ pmpvq
N ´ 1

N
pX ´meanpSDISqq2

`pmpv

ˆ

1´
1´ pmpv

N

˙

varpSDISq (6)
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In the case of uni strategy, mean(uni) “ pa ` bq{2 and var(uni) “ pb ´ aq2{12. In the

case of sat strategy one can consider, in the absence of the selection pressure, that the

set of corrected individuals follows a Bernoulli distribution with values a and b and

corresponding probabilities plb ` pub “ 1. Since, in the case of a flat function, there

is no incentive to bias the population towards one of the bounds, one can consider

plb “ pub “ 1{2. In this case, we obtain mean(sat) “ pa`bq{2 and var(sat) “ pb´aq2{4.

This suggests that, at least under these simplifying assumptions, the influence of SDIS

on population variance is greater in the case of sat than in the case of uni strategy,

since the second term of βppm, pv, N, SDISq is greater in the case of sat.

For mir and tor strategies, the distribution of the population of corrected indi-

viduals is directly related to the distribution of the uncorrected trial population (Z).

In the case of mir, a corrected individual, cmirpzq, is 2b ´ z with probability pub and

2a ´ z with probability plb. Since for DE/rand/1 the expected mean of the mutant

population (ErZ]) is the same as the mean of the current population (X), it follows that

mean(mir) “ pa` bq´X . Thus, pX´mean(mir)q2 is close to 4
`

X ´ a`b
2

˘2
, suggesting

that the first rhs term in Eqs.6 is four times larger in the case of mir strategy than in

the case of the sat and uni strategies. However, if X ´ a`b
2 is small, the influence of

this term is also small. On the other hand, the variance of the population of individuals

that violate one of the bounds and are corrected using the mir strategy is expected to

be close to F 2{10 ´ F {4 ` 1{4 (under the assumptions that a “ 0 and b “ 1 and as

long as the distribution of the current population, X , is close enough to the uniform

distribution), which is less than 1{4 (variance of the individuals corrected by sat) but

greater than 1{12 (variance of the individuals corrected by uni). For details, see the

proof of Proposition 4 in Appendix A.

Thus, the theoretical analysis suggests that the greatest impact on population di-

versity is induced by sat followed by mir and then by uni. Due to the symmetry

between mir and tor (as cmirpzq ` ctorpzq “ a ` b), the population of corrected indi-

viduals has the same variance; thus, it is expected that these two strategies have the

same influence on population diversity.

When COTN strategy is used, the corrected mutant is calculated as cCOTNpzq “ a `
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|ξ|σ, in the case of a lower bound violation and as cCOTNpzq “ b ´ |ξ|σ, in the case of a

violation of the upper bound, where ξ „ Np0, 1q and σ “ pb ´ aq{3. The probability

distribution of the random variable corresponding to the corrected individuals is given

in Eq. 7, where R “ a if the lower bound is violated, and R “ b, if the upper bound is

violated:

fCOTNpvq “
2

σ
?
2π

exp

ˆ

´
pv ´Rq2

2σ2

˙

. (7)

It should be mentioned that when using cCOTN as defined above, there is a nonzero

probability to generate individuals which violate the opposite bound, as the support

of fCOTN is ra,8q when R “ a and is p´8, bs when R “ b. If σ is not large then this

probability is small; e.g., if σ “ pb´aq{3, the probability of violating the opposite bound

is 0.00269. In the experimental analysis, this SDIS is iterated until a feasible value is

obtained. Under the assumption that the probabilities to violate the bounds are equal

(plb “ pub “ 0.5), the variance of the mixture of corrected individuals (corresponding

to R “ a and R “ b in Eq. 7, respectively) is 0.095pb´ aq2 (for details, see Proposition 5

in the Appendix) which is greater than pb ´ aq2{12 “ 0.083pb ´ aq2. This suggests that

COTN has a slightly greater impact on population variance than uni.

5 Experimentation on f0

Understanding the ‘behaviour’ of a heuristic algorithm during the search for near-

optimal positions is challenging. As the sampled fitness landscape of the problem at

hand is the main driving force of this process, decoupling its effect on the internal dy-

namics of the candidate solutions is key to observing how the algorithm’s working

logic operates in figuring out promising search directions to follow. The f0 function of

Eq. 8 was first proposed in (Kononova et al., 2015) to serve such a purpose.

f0 : r0,1sn Ñ r0,1s, where @x, f0pxq „ Up0,1q. (8)

In other words, values of the objective function f0 are sampled from a uniform distri-

bution which is seeded before the start of each optimisation run. It should be noted

that a similar function has been independently proposed (Cleghorn and Engelbrecht,
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2014) for investigating the convergence of the particle swarm optimisation (PSO) algo-

rithm – as an example of a degenerate function which simultaneously warrants against

stagnation of PSO and provides a difficult convergence scenario.

Because of its stochastic nature, f0 separates otherwise highly interconnected ef-

fects from the fitness landscape and the location of the optima, thus being suitable for

analysing structural implications to the search. A previous study used f0 to under-

stand how often solutions are generated outside the search space in classic DE variants

(Kononova et al., 2021). Relevant observations are reported in Section 5.4. Other studies

used it to find structural biases in DE variants (Caraffini and Kononova, 2019; Caraffini

et al., 2019; van Stein et al., 2021; Vermetten et al., 2022d), as well as several other al-

gorithmic frameworks for heuristic optimisation (Kononova et al., 2020b,a; Vermetten

et al., 2021). A summary is reported in Section 5.5. In this work, we relate to these as-

pects and further employ f0 to collect the CS angular distances in the two most known

DE configurations and study their distribution.

Where possible, the results on the function f0 discussed in this section are put in

contrast to the theoretical conclusions obtained under a number of simplifying assump-

tions made in Section 4.

5.1 Setup for the experimentation on f0

The two well-known DE/rand/1/bin and DE/rand/1/exp algorithms are executed

on f0 function in n “ 30 dimensions (dimensionality consistent with previous studies

on f0, thus allowing for a direct comparison) for a fixed number of 10000 ¨ n function

evaluations. This is done for multiple configurations of the two DE variants equipped

with SDIS from the set tCOTN,mir,sat,tor,uni,HVBu (see Section 2.4), a specific

population size N P t5, 20, 100u and a pair of control parameters F and Cr.

To practically identify these configurations in our analysis we use the notation

DE/rand/1/‹-pN . As each configuration is tested over a wide range of F ´ Cr

pairs, these are not included in the notation, but are reported more effectively in

the graphical results. Note that the same set of scale factor values, i.e. F P

t0.05, 0.285, 0.52, 0.755, 0.99u, is considered for the bin and exp DE variants, which
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offers a good discretisation of the space of its typical admissible values. On the con-

trary, two different sets of values are used for Cr depending on the crossover operator

used, as indicated below:

• Cbin
r P t0.05, 0.285, 0.52, 0.755, 0.99u Y t0.0891, 0.1283, 0.1675, 0.2067, 0.2458u,

• Cexp
r P t0.05, 0.285, 0.52, 0.755, 0.99u,

where the admissible range p0, 1s is first discretised equally for the two crossover strate-

gies and a further set is added to better cover the range p0.05, 0.285qwhen the operator

bin is used. The latter additional range is of interest to our analysis, as it allows us to

detect the nature of changes (smooth vs sudden) in the algorithm behaviour, measured

here in terms of cosine similarity between search directions (as indicated in Section 3.2),

when only one or very few components are inherited and corrected. It should be noted

that doing this while employing the exp crossover operator would be irrelevant. In-

deed, with such low Cr values, this operator would be quite unlikely to exchange any

component from the mutant to the target on top of the one that is necessarily re-

placed by design; for clarifications on the behaviour of the exp operator, see (Caraffini

et al., 2019; Kononova et al., 2021; Vermetten et al., 2022d).

In total, the DE/rand/1/exp configurations obtained from combining the 6 SDIS

operators, the 3 population sizes, the 5 scale factor values, and the 5 crossover rate

values (that is, the 6 ¨ 3 ¨ 5 ¨ 5 “ 450 configurations), plus those obtained with similar

settings but with 5 more Cr values for DE/rand/1/bin (that is, 6 ¨ 3 ¨ 10 ¨ 5 “ 900),

results in 1350 optimisation processes. Each DE configuration is executed 30 times to

produce robust results over 30 independent runs.

Relevant information stored during each run includes CS measure values for solu-

tions where SDIS has been applied, percentages of infeasible solutions (see Section 6.4),

population and fitness diversity measures, etc. This experimentation has been carried

out with the SOS software platform (Caraffini and Iacca, 2020), whose source code is

available on its GitHub repository, where a permanent release of the current state of

the SOS platform is also available 18. This is accompanied by detailed clarifications on

18https://github.com/facaraff/SOS/releases/tag/ECJ-ReproducibilityInEC
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how to find software classes within the platform and how to reproduce the entire data

set used, which we have stored in the Zenodo repository (Vermetten et al., 2022a) along

with the full sets of static versions of all processing scripts.

5.2 Analysis of results on distributions of cosine similarity

To analyse the distribution of cosine similarity for infeasible solutions when using dif-

ferent SDIS, we can use the Empirical Cumulative Distribution Function (ECDF), which

shows for each value of x what fraction of infeasibility corrections had a CS of at most

x.

In Figure 2, we show the ECDF of CS values, for each SDIS, based on the values F

andCr, for all infeasible solutions generated during full runs of DE/rand/1/bin-p100

on f0. In this figure, SDIS with a larger disruptiveness will have a curve that is closer

to the upper left corner of the plot, so larger areas under the ECDF correspond to

smaller values of the cosine between unconstrained and corrected search directions,

i.e. larger amounts of disruptiveness. When comparing two strategies, in the case

when ECDF pSDIS1q ě ECDF pSDIS2q then it can be proved (see Proposition 6 in

Appendix A.5) that it is more likely that the cosine values corresponding to SDIS1 are

smaller than those corresponding to SDIS2.

We see in Figure 2 that even though the shape of the curves can change signifi-

cantly based on the parameter settings used, the ordering remains consistent: tor is

the most disruptive, followed by uni, COTN and mir, while HVB and sat are the least

disruptive. This ordering is also preserved when changing the population size or the

crossover type for DE/rand/1 – those figures are included in the Figshare repository

of this article (Vermetten et al., 2022b).

Relation to theoretical results. The experimental results illustrated in Figure 2

lead to remarks that are in line with the results derived in Section 4.3: (i) sat is more

likely to lead to the highest value of cosine similarity (provable in the case where only

one component is corrected - this could be related to small values of F and Cr); (ii) in

the case when F ď 0.5 it is more likely that tor induces a higher disruption than mir

(provable when the individual obtained by mirroring and the target individual are in
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Figure 2: ECDF curves of the cosine similarity values on f0 for DE/rand/1/bin-p100
for different SDIS and values of F (subfigures in vertical direction) and Cr (subfigures
in horizontal direction), 30 runs each.

the same quadrant); (iii) the cosine similarity between the initial search direction and

that corresponding to sat is always positive and higher than that corresponding to

HVB (Mitran, 2021).
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Figure 3: Evolution of population diversity (computed as explained in Section 5.3) per
generation on f0 for 30 runs of DE/rand/1/bin-p100 for different SDIS, values of
F (subfigures in vertical direction), Cbin

r (subfigures in horizontal direction). Colours
define SDIS variant and correspond to those in Figure 2.

5.3 Implications of direction-disruptive SDIS operators on population diversity

To further measure the impact of SDIS, we track population diversity on f0 in each gener-

ation g for multiple runs. The resulting trends are shown in Figure 3, where the diver-

sity of the population is the averaged standard deviation of the individuals that form

the gth generation calculated per dimension (n “ 30), after the application of different

SDIS.

Following the notation introduced in Section 4.4 to obtain the variances, this value

is simply calculated as stdpgq pXq “ 1
n

n
ř

i“1

a

varpgqpXiq. For the sake of clarity, note that

the theoretical analysis was performed, for computational reasons, in terms of variance,

while the graphical illustration of the evolution of population diversity is based on the

standard deviation.

Figure 3 demonstrates a rather consistent picture for DE/rand/1/bin-p100 in f0

for all values of F excluding the smallest and for all values of Cr: (i) diversity induced

by sat variant shown in blue is consistently the highest and increases during the runs;
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(ii) the second highest diversity values are attained consistently by the variants tor

and mir shown in pink and orange, respectively; these two variants are nearly con-

stant during the runs and indistinguishable in terms of diversity; (iii) the third group

of variants, also indistinguishable in terms of diversity, is demonstrated by COTN, uni

and HVB; the diversity corresponding to these variants is consistently decreasing dur-

ing the runs. Meanwhile, for the smallest value of F “ 0.05, the diversity of all variants

is largely indistinguishable and decreases over time. In general, the increase and de-

crease of diversity during the run depend on both DE control parameters, however, the

increase in diversity in the sat variant is more drastic than the decrease of variants

from the third group discussed above.

Furthermore, comparing the results of disruptiveness (Section 5.2) with those re-

lated to diversity, it turns out that a more disruptive strategy does not necessarily in-

duces an increase in population diversity (when diversity is quantified using popula-

tion variance).

Relation to theoretical results. The theoretical results on population diversity pre-

sented in Section 4.4 (for sat, uni and mir) state that the variance of the population of

corrected components is the largest in the case of sat and the smallest in the case of uni,

being equal to pb´aq2{4 and pb´aq2{12, respectively. The variance of the population of

components corrected by mir decreases with F from the value corresponding to sat

to that corresponding to

textttCOTN which is slightly larger than that of components corrected by uni (Fig. 13,

Appendix A.4). On the other hand, as also stated in Section 4.4, the symmetry between

mir and tor leads to the same variance of the population of components corrected by

these two SDISs. Thus, as illustrated in Fig. 14 (Appendix A.4) the experimental results

are consistent with what is expected from the theoretical point of view.

The difference in the shape of the standard deviation curves as illustrated in Figures 3

and 14 (Appendix A.4) can be explained by the fact that the theoretical curves have been

estimated in the case of a flat function, i.e., all new elements are incorporated into the

population after correction, while for f0 acceptance is based on a random decision (via

the value of the objective function), so the change in the populations corresponding to
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Figure 4: Empirical probability of bounds violation (averages of the relative frequen-
cies of infeasible components) in DE/rand/1/‹-p100 on f0 of dimensionality n “ 30,
estimated over 100 generations and 30 independent runs. The dashed lines correspond
to the lower and upper bounds inferred for sat under the assumptions stated in Ap-
pendix A.1: F {3 and 2F {3, respectively).

two consecutive generations is expected to be smaller than in the case of a flat func-

tion. This might explain the more gradual change in the diversity measure in the case

of empirical analysis (Fig. 3) than in the case of theoretical estimations (Fig. 14 in the

Appendix A.4) where the limit values are reached rather quickly.

5.4 Relation to the analysis of bound violation probabilities

To collect information on the influence of SDIS on the number of infeasible solutions,

an experimental analysis was carried out on f0 using a population ofN “ 100 elements

and collecting the number of infeasible components during the first 100 generations of

DE/rand/1/‹, in the case of the 5 values of F , as used in previous experiments. The

probability of bound violation has been estimated as the average frequency of infeasible

components and the estimations for five SDISs are illustrated in Figure 4.

The main remark is that sat generates the highest number of infeasible compo-

nents followed by mir and tor which are characterised by the same bound violation

probability. The smallest number of infeasible components seems to be generated by

COTN and by uni.
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Relation to theoretical results.

In the absence of selection-induced bias, it is expected that the probability of gen-

erating, by DE/rand/1 mutation, components that are outside the bounds is close to

that estimated theoretically, that is, pv “ F {3. However, the inclusion of corrected com-

ponents in the population, during the evolutionary generations, can lead to changes in

the probability of violation of the bounds, as inferred in Proposition 1 (Appendix A.1)

for sat. As is illustrated in Fig. 4, the empirically estimated bound violation probabil-

ity for sat is between the limits established for sat under the assumptions stated in

Appendix A.1, i.e. F {3 and 2F {3.

5.5 Relation to the analysis of structural bias

The test function f0 used in this investigation was originally introduced (Kononova

et al., 2015) to study the so-called structural bias (SB) of a heuristic optimisation al-

gorithm, which is an inability of an algorithm to explore different parts of the search

domain to the same extent regardless of the objective function. Such a study requires

decoupling the effects of the landscape of the objective function from that of SB. It is

precisely the random nature of f0 and thus the known distribution of locations of its

optima in a series of independent runs that allows the identification of SB: an algorithm

is said to suffer from SB if the locations of the final best points found in a series (of a

reasonable size) of independent runs minimising f0 produced within a realistic budget

of fitness evaluations deviate from uniform (Kononova et al., 2015).

As the nature of SB appears to originate from the iterative application of a limited

set of algorithm operators, its identification is not straightforward (Kononova et al.,

2020b,a; Vermetten et al., 2022c). Among the various algorithms investigated in litera-

ture so far, the results on SB in DE show clear patterns in time (van Stein et al., 2021),

dimensionality (Vermetten et al., 2021) and parameter space (Vermetten et al., 2022d).

Referring to the latter, Figure 5 shows such results on the presence and type of SB

identified for DE/rand/1/bin-p100 for various values of F and Cr with 5 variants

of SDIS considered in this paper.

These results support the picture in Figure 3: (i) mir and tor indeed stay constant
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Figure 5: Predictions on the kind of structural bias (with confidences as colour in-
tensities) produced by the random forest model from the BIAS toolbox (Vermetten
et al., 2022c) for DE/rand/1/bin-p100 with 5 SDIS variants, F P r0.05, 1.13s and
Cr P r0.05, 0.99s. White squares correspond to configurations with no structural bias
detected. The figure is taken from (Vermetten et al., 2022d), which has not considered
the HVB SDIS.

in terms of diversity, which is what we would expect from an unbiased algorithm; (ii)

the ‘most’ biased variant (sat) also has the largest difference in terms of diversity, while

uni and COTN are somewhat in-between.

Relation to theoretical results. The absence of structural bias in the case of mir

and tor suggests that the assumption of uniformly distributed populations, used in

the theoretical analysis, is not too restrictive, at least for these strategies. This aspect

is illustrated, for mir and tor, through the closeness between the theoretically and

empirically estimated values of the bound violation probability (Figure 4). On the other

hand, in the case of sat, uni, and COTN, the presence of structural bias induces a

deviation from the uniformity assumption, and consequently, the empirical violation

probabilities are not so close to the theoretical values obtained based on the uniformity

assumption.

6 Experimentation on the BBOB suite

To assess whether the observed differences in SDIS have an impact on DE perfor-

mance outside of f0, we conducted a benchmarking study on COCO benchmarking

suite (Hansen et al., 2021). We make use of the single-objective, noiseless version of
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the BBOB function set, which contains 24 distinct functions (Finck et al., 2010), each

of which can be instantiated with different transformations, referred to as instances of

these functions. The BBOB-functions are all defined using box-constraints of r´5, 5sn,

where n is the dimension of the problem, and are accessed here using IOHexperi-

menter (de Nobel et al., 2021).

Where possible, results on BBOB functions discussed in this section are contrasted

with theoretical conclusions obtained under a number of simplifying assumptions

made in Section 4.

6.1 Setup for the experimentation on the BBOB suite

To run Differential Evolution algorithms on the BBOB-functions, we make use of

a python-based implementation that incorporates several variants of DE, including

SHADE and L-SHADE employed for this study – see Section 2.2 for their description.

The code for both this version of Differential Evolution and the complete bench-

marking setup on BBOB can be found on GitHub 19. Furthermore, all reproducibility

steps can be found on the same GitHub page. For the BBOB-based experiments de-

scribed in this section, we use both the 5- and 30-dimensional versions of the problems,

using instances 1-5, and perform 5 runs per instance. We use a total budget of 10000 ¨ n

fitness evaluations.

6.2 Analysis of performance benchmarking

The most common way to analyse the performance of an iterative optimisation heuris-

tic is by considering Expected Running Time (ERT), defined as follows.

Given an algorithm A, a function instance F , a target φ and the run number i, we

define the hit time tipA,F, φq as the number of function evaluations that the algorithm

used in its ith run before evaluating a quality solution of at least φ. Based on this, we

can then define the expected running time in a set of I runs and J problem instances as

follows:

ERTpv,F , φq “
řI

i“1

řJ
j“1 minttipv, f

pjq, φq, Bu
řI

i“1

řJ
j“1 1ttipv, f

pjq, φq ă 8u

19https://github.com/Dvermetten/DE_TIOBR
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Figure 6: ECDF curves of L-SHADE with 5 different SDIS, aggregated across all 24 30-
dimensional BBOB functions with 5 instances and 5 runs each, using 51 logarithmically
spaced fitness targets between 102 and 10´8.

where B denotes the computational budget with respect to the number of function

evaluations.

In Figure 7, we show the ERT (fraction of runs that reach the specified tar-

gets in their respective function vs the number of function evaluations) achieved by

the L-SHADE algorithm (see Section 2.2) with 5 different SDIS variants on the 30-

dimensional BBOB functions, per function.

From this figure, we can clearly see that for many functions, the effect of SDIS on

overall performance is relatively minor. However, there are some outliers, in particular

f5 (linear slope). Since for f5 the optimum is located on the bound in each coordinate,

the SDIS method will have a significant impact on the ability of DE to converge. When

zooming in on this function, we clearly see that sat outperforms all other SDIS, fol-

lowed by mir, and then the other SDISs. This performance ordering is also present for

some other unimodal functions such as f1 (Sphere) and f2 (Ellipsoidal).

When aggregating the performance across all functions, which we can do using the

ECDF as seen in Figure 6, we actually observe clear differences in overall performance

between the different L-SHADE versions. Although the ECDF is obviously affected by

the linear slope function, even when this is removed from consideration, the ordering
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Figure 7: Overview of the ERT (shown in the vertical axis) vs best-so-far fpxq (shown
on the horizontal axis) for L-SHADE with 5 SDIS methods on the BBOB-functions in
30D, 5 instances 5 runs each.

of SDIS-variants remains the same and matches the order of least disruptiveness in

the search, as discussed in Section 5.2. In addition to running L-SHADE on the 30-

dimensional BBOB-functions, we have also collected data on the 5D version for both
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L-SHADE and SHADE. All figures are available on figshare (Vermetten et al., 2022b),

while the extended data set is available directly on the IOHanalyzer GUI 20.

Overall, we can see that the choice of SDIS indeed has an impact on the final per-

formance of the algorithm, and although this impact is not present on all functions, it is

a clear indication that SDIS should be considered a part of the specification of the algo-

rithm. Furthermore, the fact that the differences are not equally present on all functions

indicates that methods for per-instance algorithm configuration could benefit from in-

cluding the SDIS in their search space.

6.3 Cosine similarity distributions on BBOB

The distributions of the cosine similarity values corresponding to five variants of SDIS

(COTN, mir, sat, tor, and uni) have been generated for 24 BBOB functions both when

L-SHADE is used (Figure 8) and when SHADE is used - omitted for space limitation;

see the extensive set of graphical results in (Vermetten et al., 2022b).

The behaviour patterns are only slightly different between the two methods.

When comparing the ECDFs illustrated in Figure 8 with those obtained by applying

DE/rand/1/‹ on f0 (Figure 2), we can see that the curves have shifted as a result of

the different objective functions landscapes, but the global ordering is preserved al-

most everywhere with sat SDIS characterised by the largest CS values and tor by the

smallest ones. The presence of different patterns for different functions supports the

idea that SDIS should be considered a separate algorithmic component.

Relation to theoretical results. Our experimental results on BBOB match our the-

oretical insights. Although our proofs on the relation between mir and tor make

some particular assumptions, the empirical analysis shows that mir indeed preserves

more of the search direction than tor in all except one of the tested functions (f5).

The significance of differences in cosine values between different SDISs has been con-

firmed by running pairwise Kolmogorov-Smirnov tests with Benjamini-Yukateli cor-

rection α “ 0.01. The overall ordering of cosine similarities is consistent for almost all

BBOB functions and matches that observed on f0.

20Available as data set source ‘TIOBR DE’ on https://iohanalyzer.liacs.nl
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Figure 8: ECDF curves of cosine similarity values of corrected infeasible solutions ge-
nerated during 5 independent full-budget runs of L-SHADE on 24 BBOB functions (all
instance 1) for different SDIS variants (one subfigure per function, functions are shown
left to right, top to bottom).
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Figure 9: Final percentages of infeasible solutions generated in full-budget runs of
L-SHADE with different SDIS variants on 24 functions of the BBOB suite (instance 1
only) averaged over 5 runs per variant per function. Vertical labels apply to both plots.

6.4 Analysis of final percentage of infeasible solutions

In addition to looking at the performance of DE with different SDISs, we can also zoom

in on the related behaviour of the algorithm. Since a SDIS is activated only when solu-

tions outside of the bounds are generated, we can consider the Percentage Of Infeasible

Solutions (POIS) generated throughout the optimisation process. The final POIS val-

ues (that is, the number of infeasible solutions generated at the end of the run to the

total fitness evaluation budget) from the L-SHADE algorithm produced on the BBOB

functions is shown in Figure 9, from which we can see that for the higher dimensional-

ity (n “ 30), the fraction of infeasible solutions generated during the search is slightly

higher than for lower dimensionality (n “ 5).

This can be explained by considering that we count a solution to be infeasible when

one or more components are outside their boundaries, which is more likely to occur

when there are more components in a solution (see also Section 2.3). However, since

for the BBOB suite of problems the optimum is guaranteed to be at least 10% away from

the bound on each side in all functions except the linear slope Finck et al. (2010), the

effect of increased dimensionality is not as obvious in those functions.

A difference between SDISs is visible, particularly in the case of function land-

scapes that enforce the search nearby the boundary (e.g. f5, f23). For the other func-

tions, infeasible individuals are generated mainly in the first generations, thus the ag-

gregated POIS values are mainly influenced by the small number of infeasible individ-

uals generated during most of the evolution.
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We additionally see that the POIS varies greatly between functions, with the linear

slope (f5) clearly showing a large number of infeasible solutions as would be expected.

6.5 Analysis of windowed percentage of infeasible solutions and population

diversity

While the final POIS discussed in Section 6.4 is useful in providing information on the

total number of infeasible solutions, we can get a more detailed overview of the number

of infeasible solutions generated using a sliding window approach: for each generation,

we can calculate the fraction of infeasible solutions generated thus far 21 and visualise

the moving average of 10 generations. We can use a similar approach for population

diversity, which allows us to check for possible correlations between ongoing POIS and

diversity. Figures 10 and 11 visually show these two types of graph for functions f5 and

f23, respectively.

In the case of the multi-modal f23 function (Figure 10) the behaviour of SHADE is

in accordance with some of the theoretical insights regarding the number of infeasible

solutions (largest bound violation probability in the case of sat) and the evolution of

population diversity (largest diversity in the case of sat, smallest in the case of uni

and COTN and intermediate in the case of mir and tor). Meanwhile, in particular, for

f5, we can observe in Figure 11 a clear pattern between the different variants of SDIS:

sat initially has a much larger POIS, which would be beneficial, since the optimum of

this function is located on the bounds. The other SDISs do not have this direct benefit

of sat, and need to generate a point on the boundary exactly, without the correction

moving it away from the optimum. For the 5-dimensional version of the function,

this is still achievable for most SDISs, with the lower disruptiveness of mir allowing

it to find the optimum relatively easily, but for 30 dimensions, the most disruptive

SDISs have runs that do not converge to a single solution, which explains their poor

performance seen in Figure 7.

We also notice that the differences between SHADE and L-SHADE are rather sig-

nificant, especially on the higher dimensions – detailed reasons for this require further

21Equivalent to the fraction of solutions which have had a SDIS applied.
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Figure 10: Evolution of windowed POIS (left column) and population diversity (right
column) over generations for different SDIS methods on 5 runs of f23, instance 1. None
of the runs reached the optimum.
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Figure 11: Evolution of windowed POIS (left column) and population diversity (right
column) over generations for different SDIS methods on 5 runs of f5, instance 1.
Coloured vertical lines show times when the optimum was found at least once in a
run.
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Table 3: Ranking of SDIS based on theoretical (obtained where possible) and empirical
results with respect to the numbe of infeasible components, search direction disrup-
tiveness measured using cosine similarity, population diversity measured using the
component-wise variance and performance measured using ERT.

Aspect
Number of Amount of Increase of Fitness-basedinfeasible disruptiveness population performancecomponents diversity

Sorting smaller-larger smaller-larger larger-smaller best-worst
Algorithm DE/rand/1/* DE/rand/1/* DE/rand/1/* (L-)SHADE

Type theor. empir. theor. empir. theor. empir. empir.
Function(s) flat f0 flat f0 flat f0 BBOB

Section 4.1 5.4 4.3 5.2 4.4 5.3 6.2

1. uni uni sat sat sat sat sat

2. sat COTN mir
COTN mir mir COTN
mir tor tor mir

3. mir
tor uni

COTN COTN
uni

tor uni uni

4. sat tor tor

investigation.

7 Conclusions

The results of the comparative analysis on SDIS presented in this article are sum-

marised in Table 3 where the investigated strategies are ranked according to what has

been theoretically proved and/or experimentally observed.

Despite the fact that the theoretical analysis is limited to subsets of strategies, con-

sistency can be observed between theoretical and experimental results on how various

SDISs can be grouped based on their impact on: (i) number of infeasible components;

(ii) search direction; (iii) population diversity. The most significant agreement appears

to be between the amount of disruptiveness and fitness-based performance, suggesting

that the strategies with a smaller impact on the search direction, i.e., higher cosine similarity

between unconstrained and corrected search directions, have a better performance. When

compared with previously reported results, one can see that the more disruptive strate-

gies, uni and tor, have also been identified in (Biedrzycki et al., 2019) as having the

highest influence on population distribution. Similarly, in (Padhye et al., 2015) it is
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stated that uni leads to a loss of useful information carried by the current population

which confirms the disruptive effect also observed in the current study. On the other

hand, sat and mir identified in our study with a small impact on search direction but

a large impact on diversity have been consistently among well-performing strategies,

as is also illustrated in (Kreischer et al., 2017) and (de-la-Cruz-Martı́nez and Mezura-

Montes, 2020). However, the performance advantage of the less disruptive strategies

in BBOB is not present in all functions equally.

Throughout this paper, we have shown that the strategy of dealing with infeasi-

ble solutions within Differential Evolution has a clear impact on the behaviour of the

algorithm as a whole. Although DE allows us to combine insights on the impact of

SDIS from both a theoretical and empirical perspective, it is by no means the only al-

gorithm where the way of handling bound constraints can have an impact on overall

search behaviour. This highlights an important issue in the field of evolutionary com-

putation as a whole, because methods such as SDIS are often overlooked because they

are considered unimportant compared to the novel algorithmic ideas discussed in the

literature. When this omission is combined with other factors, such as the inaccessibil-

ity of the source code used, this leads to a significant amount of ambiguity, even when

other operators are defined clearly. As such, reproducing results requires specificity

and, ideally, open source code for all the operators used, not only the core algorithmic

components.

To achieve better standard for reproducibility, SDIS should be considered as an opera-

tor to be specified in every optimisation algorithm which deals with bound constraints,

as for some functions the interaction of the algorithm with bounds can cause clear dif-

ferences in behaviour, especially for some of the high-dimension version of functions

in the BBOB-set.

Finally, as such, we see potential benefits for the inclusion of SDIS in automatic

algorithm configuration task.
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8 Future work

Although we have investigated the impact of SDIS on several variants of differential

evolution throughout this work, it remains formally unconfirmed that such findings

translate to other optimisation algorithms. Since many of these algorithms are built to

work with bound constraints by default, it stands to reason that the SDIS used would

have an influence, and by studying this in more detail, we could potentially broaden

our understanding of the interactions between SDIS, algorithm, and objective function.

Furthermore, we have started to lay a theoretical foundation for the study of seve-

ral SDISs by considering their disruptiveness and impact on diversity. By continuing to

build upon these notions, we hope to gain a more detailed understanding of the impact

of SDIS on search behaviour, in general.
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Stützle, T. and López-Ibáñez, M. (2019). Automated Design of Metaheuristic Algorithms, volume

272 of International Series in Operations Research & Management Science, page 127–146. Springer,

Cham.

Sun, G., Xu, G., and Jiang, N. (2020). A simple differential evolution with time-varying strategy

for continuous optimization. Soft Computing, 24(4):2727–2747.

Tanabe, R. and Fukunaga, A. (2013). Success-history based parameter adaptation for differential

evolution. In 2013 IEEE Congress on Evolutionary Computation, pages 71–78.

Tanabe, R. and Fukunaga, A. S. (2014). Improving the search performance of shade using linear

population size reduction. In 2014 IEEE Congress on Evolutionary Computation (CEC), pages

1658–1665. IEEE.

Tian, M. and Gao, X. (2019). An improved differential evolution with information intercross-

ing and sharing mechanism for numerical optimization. Swarm and Evolutionary Computation,

50:100341.

56 Evolutionary Computation Volume x, Number x



The importance of being constrained

Tomczak, J. M., Wundefinedglarz-Tomczak, E., and Eiben, A. E. (2020). Differential evolution

with reversible linear transformations. In Proceedings of the 2020 Genetic and Evolutionary Com-

putation Conference Companion, page 205–206.

van den Honert, N., Vermetten, D., and Kononova, A. V. (2021). Benchmarking the status

of default pseudorandom number generators in common programming languages. CoRR,

abs/2109.12997.

van Stein, B., Caraffini, F., and Kononova, A. V. (2021). Emergence of structural bias in differential

evolution. In Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion,

GECCO ’21 Companion.

Vermetten, D., Kononova, A. V., Caraffini, F., Mitran, M., and Zaharie, D. (2022a). The importance

of being constrained - dataset. www.doi.org/10.5281/zenodo.7115488.

Vermetten, D., Kononova, A. V., Caraffini, F., Mitran, M., and Zaharie, D. (2022b). The importance

of being constrained - figures. www.doi.org/10.6084/m9.figshare.18319394.v2.

Vermetten, D., Kononova, A. V., Caraffini, F., Wang, H., and Bäck, T. (2021). Is there anisotropy in
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A Proofs for statements in Sections 4 and 5

All proofs presented in this Appendix are for DE/rand/1 mutation with a scale factor

F P p0, 1s in the case of flat objective functions (no selection pressure). The notations

used are: xi - i-th component of an individual from the current population; zi - i-th

component of the DE mutant (which could be in or out of the bounds); cpziq - i-th

component of the DE mutant corrected by applying an SDIS (where appropriate, the

SDIS type is specified as an index, e.g. csat); d “ z ´ x denotes the DE search direction

and dc “ cpzq´x denotes the corrected search direction (where appropriate, the specific

SDIS is specified as an index, e.g. dsat ); pv - the probability that a component violates

the bounds.

A.1 Bound violation probability for sat – Section 4.1

Proposition 1. If pvpgq denotes the probability of bound violation corresponding to

generation g, then, under the assumption that the distribution of the population of

elements that are within the bounds (i.e., in pai, biq) is close to the uniform distribution

and sat is applied to infeasible individuals, the probability of violation satisfies

pvpg ` 1q » pvpgq{2` p1´ pvpgqqpp
2
vpgqF {2` p1´ p

2
vpgqqF {3q (9)

Proof. The analysis is conducted at component level, thus the component index is

skipped. Let us consider that the population corresponding to generation g, P pgq, con-

sists of three subpopulations: P pgq “ Pwpgq Y Plbpgq Y Pubpgq, corresponding to mu-

tants generated inside the bounding box (Pwpgq), placed on the lower bound (Plbpgq)

and placed on the upper bound (Pubpgq). If N denotes the number of elements in P pgq,

the expected size of Pwpgq is Np1´ pvpgqq and the expected size of Plbpgq and Pubpgq is
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Npvpgq{2, respectively (based on the assumption that in the absence of selection pres-

sure, there is no incentive to preferentially violate one of the bounds). To estimate the

probability of generating infeasible mutants in generation g` 1 we consider two cases:

(a) The base individual, xr1 , is on one of the bounds (xr1 P PlbpgqYPubpgq). In this case,

the probability of generating an infeasible mutant, xr1`F ¨pxr2´xr3q, is 1{2 as there

are no incentives to sample more frequently positive or negative differences. On

the other hand, the probability of selecting a base element from the bounds is pvpgq

(under the assumption that the probability of generating through DE mutation

individuals which are on the bounds is negligible, i.e. they are generated only by

applying the sat strategy). Thus in this case pvpg ` 1q “ pvpgq{2.

(b) The base individual xr1 is strictly between the bounds (event of probability p1 ´

pvpgqq). In this case, we can analyse three subcases:

(i) both xr2 and xr3 belong to the same bound (event of probability p2vpgq{2): in

this case the mutant will be just xr1 , thus feasible;

(ii) xr2 and xr3 belong to different bounds (event of probability p2vpgq{2): in this

case, the probability to generate an infeasible mutant is F ; this follows from

the remark that Probpxr1 `F ¨ pb´ aq P ra, bsq “ Probpxr1 P ra´F ¨ pb´ aq, b´

F ¨ pb´ aqs “ p1´F qpb´ aq{pb´ aq “ 1´F , thus the probability of generating

a value out of ra, bs is F .

(iii) xr2 and xr3 belong both to Pw or at most one is on the bound (event of prob-

ability p1 ´ p2vpgqq): in this case, under the assumption that the population of

elements belonging to Pw has a distribution which is close to the uniform one,

the probability of generating an infeasible mutant is close to F {3.

By combining the probabilities corresponding to these complementary events one

obtains:

pvpg ` 1q »
pvpgq

2
` p1´ pvpgqq

ˆ

p2vpgq
F

2
` p1´ p2vpgqq

F

3

˙

60 Evolutionary Computation Volume x, Number x



The importance of being constrained

saturation

F/3

2F/3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F

B
ou
nd
vi
ol
at
io
n
pr
ob
ab
ili
ty

F=0.99

F=0.75

F=0.52

F=0.285

F=0.05

10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

0.6

generation

B
ou
nd
vi
ol
at
io
n
pr
ob
ab
ili
ty

Figure 12: Probability of bounds violation in the case of sat (a) limit value (left); (b)
evolution during generations (right).

Remark. It is easy to see that for F P p0, 1s the sequence pvpgq converges to a value

between F {3 and 2F {3 (see Fig. 12).

A.2 (Dis)similarity between search directions: cosine similarity for search

directions corresponding to mir and tor – Section 4.3

Proposition 2. If 0 ă F ď 0.5 and x and cmirpzq belong to the same quadrant, i.e.

pcmirpziq ´ pai ` biq{2qpxi ´ pai ` biq{2q ě 0 for i “ 1, n then cospd, dmirq ě cospd, dtorq.

Proof. Since cmirpziq ` ctorpziq “ ai ` bi it follows that dT dmir ´ dT dtor “
řn

i“1pzi ´

xiqp2cmirpziq´pai`biqq. If F ď 0.5 then an infeasible component, zi, satisfies either ai´

pbi´aiq{2 ď zi ă ai or bi ă zi ď bi`pbi´aiq{2. Thus, when ai´pbi´aiq{2 ď zi ă ai ď xi

then cmirpziq “ 2ai ´ zi ď pai ` biq{2 meaning that pzi ´ xiqp2cmirpziq ´ pai ` biqq ě 0.

In the other case, e.g. xi ď bi ă zi ď bi ` pbi ´ aiq{2 one have cmirpziq “ 2bi ´ zi ě

pai ` biq{2 leading to pzi ´ xiqp2cmirpziq ´ pai ` biqq ě 0. Thus, if F ď 0.5 the scalar

product between the DE search direction and the search direction corresponding to mir

is larger than that corresponding to tor strategy, i.e. dT dmir ě dT dtor.

On the other hand, when comparing the Euclidean norms of dmir and dtor one

obtains:

}dtor}
2 ´ }dmir}

2 “

n
ÿ

i“1

rpcmirpziq ´ xiq
2 ´ pai ` bi ´ cmirpziq ´ xiq

2s “
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“

n
ÿ

i“1

rpai ` bi ´ 2cmirpziqqpai ` bi ´ 2xiqs (10)

Thus, if cmirpziq ´ pai ` biq{2 and xi ´ pai ` biq{2 have the same sign for all i “ 1, n,

meaning that cmirpzq and x belong to the same quadrant with respect to pai ` biq{2, it

follows that }dtor}2 ě }dmir}
2. By combining this result with the property related to

the scalar products it follows that cospd, dmirq ě cospd, dtorq always when F ď 0.5 and

the corrected and the target elements are in the same quadrant.

A.3 (Dis)similarity between search directions: cosine similarity analysis for one

infeasible component – Section 4.3

Proposition 3. If there is only one infeasible component, e.g. zk ą bk, and the norm

of the search direction DE satisfies }d}2 “
řn

i“1pzi ´ xiq
2 ě 2pzk ´ xkqpzk ´ bkq, then

the cosine similarity between the DE search direction and the direction induced by sat

is greater than the cosine similarity between the DE search direction and the direction

induced by any other SDIS which generate components inside pak, bkq.

Proof. If dc denotes the search direction induced by a SDIS and zk is the infeasible com-

ponent, then the cosine between the DE direction, d, and the modified one is:

cospd, dcq “
}d}2 ` pzk ´ xkqpcpzkq ´ xkq ´ pzk ´ xkq

2

}d}
a

}d2} ` pcpzkq ´ xkq2 ´ pzk ´ xkq2

“
}d}2 ` pcpzkq ´ zkqpzk ´ xkq

}d}
a

}d2} ` pcpzkq ´ xkq2 ´ pzk ´ xkq2
(11)

To compare cospd, dcq for different SDISs, let us define the function:

CpD, δc, δq “
pD ` δpδc ´ δqq

2

D ` δ2c ´ δ
2

(12)

From Eqs. (11) and (12) it follows thatCp}d}2, cpzkq´xk, zk´xkq{}d}2 “ cos2pd, dcq.

Thus to compare cospd, dsatq and cospd, dcq it is enough to compare Cp}d}2, csatpzkq ´

xk, zk´xkqwithCp}d}2, cpzkq´xk, zk´xkq, cpzkq being a corrected value which belongs
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to pak, bkq. Let us consider the case where zk ą bk, thus csatpzkq “ bk. To find sufficient

conditions that ensure that cospd, dsatq ě cospd, dcq one can solve the inequality

CpD, δsat, δq ´ CpD, δc, δq ě 0 (13)

with respect to δc taking into account the fact that the following conditions are always

satisfied:

(i)D ě δ2, i.e. }d}2 is larger or at least equal to the term corresponding to the infeasible

component δ2 “ pzk ´ xkq2;

(ii) δsat ą δc (since cpzkq ă bk it follows that δsat “ bk ´ xk ą cpzkq ´ xk “ δc);

(iii) δsat ă δ (if zk ą bk then δsat “ bk ´ xk ă zk ´ xk “ δ);

(iv) δsat ě 0 (since xk P rak, bks it follows that δsat “ bk ´ xk ě 0).

Using the Reduce function from Wolfram Mathematica 12 to solve the inequality

specified in Eq. 13 it follows that the inequality is satisfied at least under the following

conditions (depending on the position of the component xk of the target individual):

(i) if ak ă xk ď bk ´ pzk ´ xkq then cos2pd, dsatq ě cos2pd, dcq;

(ii) if bk ´ pzk ´ xkq ă xk ď bk and if }d}2 ě 2δpδ ´ δsatq “ 2pzk ´ xkqpzk ´ bkq then

cos2pd, dsatq ě cos2pd, dcq;

Since cospd, dsatq ě 0 it follows that cos2pd, dsatq ě cos2pd, dcq implies

cospd, dsatq ě cospd, dcq. A similar result can be obtained when the lower bound is

violated, i.e. zk ă ak.

A.4 Influence of the SDIS on the population diversity – Section 4.4

Proposition 4. If the current population is uniformly distributed on r0, 1s, the variance

of the mutants corrected by applying mir is

varrcmirpZqs “
F 2

10
´
F

4
`

1

4
.
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Proof. According to (Ali and Fatti, 2006), the infeasible individuals obtained by ap-

plying a DE/rand/1 (with F P r0.5, 1s) mutation on a uniformly distributed scalar

population follow distributions given by:

fZlb
pzq “

1

F

ż z`F

0

ˆ

1´
x´ z

F

˙

dx “
pF ` zq2

2F 2
p´F ď z ă 0q (14)

and

fZub
pzq “

1

F

ż 1

z´F

ˆ

1´
z ´ x

F

˙

dx “
p1` F ´ zq2

2F 2
p1 ă z ď 1` F q (15)

For F P p0, 0.5q, it can be proved that under the same assumption of uniformly

distributed individuals in the current population, infeasible mutants follow the same

distributions (differences appear only in the distribution of feasible mutants). In order

to ensure that Eqs. (14) and (15) correspond to truncated probability distributions on

r´F, 0q and p1, 1` F s, respectively, each of the functions should be multiplied by 6{F .

The variance and mean of Zlb and Zub are varrZlbs “ varrZubs “ 3F 2{80 and

ErZlbs “ ´F {4, ErZubs “ 1` F {4, respectively.

Using Zmirlb “ ´Zlb and Zmir
ub “ 2 ´ Zub to denote the random variables cor-

responding to the individuals corrected by mir it follows that ErZmir
lb s “ F {4 and

ErZmir
ub s “ 1 ´ F {4. Since mirroring does not change the variance of the random vari-

able, it follows that varrZmirlbs “ varrZmirubs “ 3F 2{80.

The random variable, cmirpZq, corresponding to the population of corrected indi-

viduals can be interpreted as a mixture of variables Zmir
lb and Zmir

ub with mixing weights

wlb “ wub “ 1{2, as in the absence of a selection pressure there should be no difference

between the probabilities of violating the lower or the upper bound. The variance of

the mixture satisfies Eq. (16).

varrcmirpZqs “ wlbvarrZmir
lb s ` wubvarrZmir

ub s ` wlbpErZmir
lb sq2 ` wubpErZmir

ub sq
2 ´

pwlbErZmir
lb s ` wubErZmir

ub sq
2 (16)
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Figure 13: Standard deviation of the population of corrected elements (sat, mir, COTN,
uni) under the assumption that the distribution of the current population is close to the
uniform distribution on r0, 1s.

By replacing in Eq. (16) the mixing weights wlb and wub with 1{2, the variance and

the mean of Zmir
lb and Zmir

ub with the values mentioned above, one obtains that

varrcmirpZqs “
1

2

˜

3F 2

40
`

ˆ

F

4

˙2

`

ˆ

1´
F

4

˙2
¸

´
1

4

ˆ

F

4
` 1´

F

4

˙2

“
3F 2

40
`
F 2

16
´
F

4
`

1

4

“
F 2

10
´
F

4
`

1

4
(17)

Proposition 5. Let us consider that p P r0, 1s denotes the fraction of infeasible compo-

nents which violate the lower bound. The variance of the mutants corrected by apply-

ing COTN is:

varrcCOTNpZqs “

˜˜

1`
8

9π
´

4

3

c

2

π

¸

pp1´ pq `
π ´ 2

9π

¸

pb´ aq2 (18)

Proof. Let us consider the distribution probability, f lbCOTN, corresponding to corrected

components obtained by applying COTN in the case when the lower bound has been
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Figure 14: Theoretical influence of SDIS (sat, mir, COTN, uni) and of Cr and F on
the evolution of the expected standard deviation of the population (DE/rand/1/bin,
population size of 100, n “ 30).

violated:

f lbCOTNpvq “
2

σ
?
2π

exp

ˆ

´
pv ´ aq2

2σ2

˙

, v P ra,8q. (19)

The mean of this probability distribution is a` σ
a

2{π and the variance is p1´ 2{πqσ2.

In the case of the violation of the upper bound, the corrected components have the

distribution:

fubCOTNpvq “
2

σ
?
2π

exp

ˆ

´
pb´ vq2

2σ2

˙

, v P p´8, bs (20)

for which the mean is b´ σ
a

2{π, and the variance is again p1´ 2{πqσ2.

The variance of the mixture, computed using the same approach as in Eq. (16), the

weight wlb “ p for the distribution corresponding to lower bound violation and the

weight wub “ p1´ pq for the upper bound violation case, is that given in Eq. (18) which

becomes p1` 12p1´
a

2{πqqpb´ aq2{36 “ 0.095pb´ aq2 when p “ 1{2.
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Remark. The comparison between the standard deviation of the populations of indi-

viduals corrected using sat, mir, COTN and uni is illustrated in Fig.13. For the same

SDISs, Fig. 14 illustrates the evolution of the standard deviation of the entire popu-

lation over the first 100 generations corresponding to the same values of F and Cr as

those used in the experimental analysis presented in section 5.3.

A.5 Analysis of cosine similarity distribution – Section 5.2

Proposition 6. IfX and Y are two independent random variables such that their cumu-

lative distribution functions, FX and FY , satisfy FXpxq ě FY pxq then the probability

that X is smaller than Y is greater than 0.5, that is, it is more likely that X is smaller

than Y than the other way around.

Proof. The cumulative distribution function of Z “ X ´ Y satisfies:

FZpzq “

ż 8

´8

ż y`z

´8

fXY px, yqdxdy “

ż 8

´8

ż y`z

´8

fXpxqfY pyqdxdy (21)

Since FXpxq ě FY pxq it follows that the probability density functions fX and fY satisfy

the same property, that is, fXpxq ě fY pxq. On the other hand, the probability that X is

smaller than Y is P pZ ď 0q “ FZp0qwhich satisfies:

FZp0q “

ż 8

´8

ż y

´8

fXpxqfY pyqdxdy

ě

ż 8

´8

ż y

´8

fY pxqfY pyqdxdy

“

ż 8

´8

fY pyq

ˆ
ż y

´8

fY pxqdx

˙

dy

“

ż 8

´8

fY pyqFY pyqdy “

ż 8

´8

F 1Y pyqFY pyqdy

“
1

2

ż 8

´8

pF 2
Y pyqq

1dy “
1

2
. (22)

Thus P pX ď Y q ě 0.5.
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