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Abstract

Models derived from satellite image data are needed to monitor the status of

terrestrial ecosystems across large spatial scales. However, a remote sensing-

based approach to quantify soil multifunctionality at the global scale is missing

despite significant research efforts on this topic. A major constraint for doing

so is the availability of suitable global-scale field data to calibrate remote sens-

ing indicators (RSI) and, to a lesser extent, the sensitivity of spectral data of

available satellite sensors to soil background and atmospheric conditions. Here,

we aimed to develop a soil multifunctionality model to monitor global drylands

coupling ground data on 14 soil functions of 222 dryland areas from six conti-

nents to 18 RSI derived from a time series (2006–2013) Landsat dataset. Among

the RSI evaluated, the chlorophyll absorption ratio index was the best predictor

of soil multifunctionality in single-variable-based models (r = 0.66, P < 0.01,

NMRSE = 0.17). However, a multi-variable RSI model combining the chloro-

phyll absorption ratio index, the global environment monitoring index and the

canopy-air temperature difference improved the accuracy of quantifying soil

multifunctionality (r = 0.73, P < 0.01, NMRSE = 0.15). Furthermore, the corre-

lation between RSI and soil variables shows a wide range of accuracy with

upper and lower values obtained for AMI (r = 0.889, NMRSE = 0.05) and BGL

(r = 0.685, NMRSE = 0.18) respectively. Our results provide new insights on

assessing soil multifunctionality using RSI that may help to monitor temporal

changes in the functioning of global drylands effectively.
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Introduction

Drylands, areas with a precipitation/potential evapotrans-

piration ratio below 0.65 (Huang et al., 2016), are essen-

tial for sustaining life on our planet, as they cover around

42% of the global land surface, produce 42% of the

world’s food and host 30% of the world’s endangered

species (Gaur & Squires, 2017). However, drylands are

threatened by climate change and desertification (Burrell

et al., 2020), which can induce abrupt changes in their

structure and functioning. These changes have been asso-

ciated with increased aridity conditions (Berdugo

et al., 2020) or reduced soil fertility and multifunctional-

ity (Berdugo et al., 2017). Soil multifunctionality is

understood as the ability of soils to maintain several eco-

system functions and services simultaneously (Garland

et al., 2021). Consequently, it is crucial to monitor attri-

butes of ecosystems, such as soil multifunctionality, in

order to anticipate sudden changes that may be brought

about by land degradation and the effects of climate

change.

Earth observation satellites are critical for monitoring

temporal trends in ecosystem attributes across global dry-

lands. Optical sensors with coarse spatial resolution, such

as the National Oceanic and Atmospheric Administration

Advanced Very High-Resolution Radiometer or satellite

passive microwave observation, have provided valuable

information on quantifying dryland biomass at the

regional scale (Tian et al., 2016). However, empirically

validating the data from these sensors is challenging

because it requires measuring similar areas to their pixel

sizes (>10 km2). Broad-scale high-temporal frequency sat-

ellite data such as Landsat or MODIS have played an

essential role in monitoring dryland vegetation dynamics.

They have extensive spatial coverage and frequent obser-

vations, making them useful for this purpose. Landsat has

been particularly successful in monitoring dryland vegeta-

tion attributes, with reliable accuracy in retrieving frac-

tional cover and leaf area index at the regional scale

(Sonnenschein et al., 2011; Sun, 2015). One of the

methods most widely used to infer vegetation attributes

has been the calculation of remote sensing indicators

(RSI), such as the normalized difference vegetation index

(NDVI; Rouse et al., 1974). However, NDVI applicability

on a global scale is limited due to the spectral influence

of mixed sparse vegetation and bare soil (Huete &

Jackson, 1987).

Remote sensing indicators that minimize soil back-

ground have recently received considerable attention.

Indices such as the soil-adjusted vegetation index (SAVI;

Huete et al., 1985), the optimized soil-adjusted vegetation

index (OSAVI; Rondeaux et al., 1996), the atmospheri-

cally resistant vegetation index (ARVI; Kaufman &

Tanre, 1992), the modified chlorophyll absorption in

reflectance index (MCARI; Haboudane et al., 2004) or the

global environment monitoring index (GEMI; Ren &

Feng, 2015) are more resistant than NDVI to saturation,

background reflectance conditions and atmospheric

effects. For instance, ARVI has a similar dynamic range to

NDVI, but on average, it is four times less sensitive to

atmospheric effects than NDVI (Kaufman & Tanre, 1992).

However, the sensitivity of vegetation indices has mainly

been studied at local and regional scales, and no studies

have evaluated their suitability across global drylands. For

instance, some studies show that traditional indices like

NDVI perform better than modified vegetation indices

for monitoring above-ground green biomass in arid and

semi-arid grasslands (Ren & Feng, 2015). In contrast,

other studies show that the modified vegetation indices,

such as the SAVI and L-SAVI, improved the detection of

spatio-temporal changes in the vegetation in a semi-arid

area (Fatiha et al., 2013). These examples underscore the

current deficiency in assessing and comparing existing

vegetation indices at the global scale.

Developing global models of soil multifunctionality

faces significant challenges, one of which is the lack of

suitable field data that fits the spatial resolution of satel-

lite imagery required to build and validate these models.

To overcome this challenge, we need to move beyond

remote sensing indicators (RSI) mainly related to plant

cover and incorporate other indicators that can poten-

tially analyse biophysical properties such as plant compo-

sition and functioning. For instance, Zhao et al. (2018)

demonstrated a significant relationship between visible

black-sky albedo and soil multifunctionality across global

drylands. However, this study was limited to a selection

of 61 homogeneous plots from the 224 dryland datasets

compiled by Maestre et al. (2012) to avoid the mismatch

between field data collected from 30 9 30 m plots and

MODIS image resolution of 500 9 500 m (NASA LP

DAAC, 2017). Such limitations can be overcome by com-

bining existing global datasets of ground-collected soil

data collected within 30 9 30 m plots (Delgado-

Baquerizo et al., 2013; Maestre et al., 2012) with spectral

data provided by Landsat 7 ETM. Landsat satellites offer

the highest spatial resolution in the thermal region, with

freely available imagery and the longest temporal record

(roughly every 16 days) spanning the last 49 years

(Wulder et al., 2022).

In comparison, new missions such as Sentinel-3 cover

this region with a 1000-m spatial resolution. Landsat fea-

tures spatial resolutions ranging from 15 to 80 m in the

visible and infrared region and between 60 to 120 m in

the thermal region, depending on the specific Landsat

mission (Holden & Woodcock, 2016). Integrating

medium spatial resolution image data (30 9 30 m) such
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as Landsat data and field-based observations could

improve the assessment of soil multifunctionality world-

wide in a cost-effective and accessible manner. Further-

more, the high-performance computational capacities of

Google Earth Engine can be used to access and process

satellite data on the cloud, providing new possibilities for

analysing large volumes of data globally (Gorelick

et al., 2017).

Here, we combine the use of 18 surface reflectance veg-

etation indices and thermal remote sensing-based indices,

hereafter called remote sensing indicators (RSI), with a

global assessment of 14 soil functions measured in situ in

222 dryland ecosystems on six continents (Maestre

et al., 2012; Ochoa-Hueso et al., 2018). Our study has

two main objectives: first, to evaluate the sensitivity of

remote sensing indicators (RSI) in characterizing soil

multifunctionality in dryland ecosystems worldwide, and

second, to develop models to upscale ground-based

observations with RSI data. By achieving these objectives,

we aim to provide robust and comprehensive models that

can enhance our understanding of dryland ecosystems’

current status and dynamics globally.

Materials and Methods

Study sites

Field data were gathered from 222 sites in 19 countries

(Argentina, Australia, Brazil, Chile, China, Ecuador, Iran,

Israel, Kenya, Mexico, Morocco, Peru, Spain, Tunisia,

USA, Venezuela, Botswana, Burkina Faso and Ghana; Fig-

ure 1). These sites are a subset of the 236 sites used in

Ochoa-Hueso et al. (2018); we had to exclude 14 sites

due to the lack of cloud-free images during the invento-

ries at these sites. The 222 sites surveyed covered all

major vegetation/soil types and the wide range of envi-

ronmental conditions across global drylands (UNEP-

WCMC, 2007; Figure S1).

At each site, field data were collected from 30 9 30 m

plots between February 2006 and December 2013 using a

standardized protocol described in detail in Maestre

et al. (2012). Plant cover data were obtained from four

30-m-long transects using the line-intercept method

(Tongway & Hindley, 2004). Soil samples were collected

using a stratified procedure of five 50 9 50 cm quadrats

randomly placed under the dominant perennial vegetation

patch type and in open areas devoid of perennial vegeta-

tion. Five soil cores extracted at 0–7.5 cm depth from

each quadrat were bulked and homogenized in the field.

The composite included samples for microsites in open

areas devoid of perennial vegetation and under the can-

opy of the dominant perennial plant species. The number

of soil samples collected varied between 10 and 15 per site

(depending on whether one or two dominant plant spe-

cies were found at each site), accounting for more than

2600 samples. After field collection, the soil samples were

taken to the laboratory, where they were sieved (2 mm

mesh), air-dried for 1 month and stored for laboratory

analysis. Dry soil samples were then analysed for soil

functions related to the cycling and storage of carbon

(Table 1), as described in Maestre et al. (2012). A plot-

level estimate of all the soil functions was obtained using

a weighted average of values from open and vegetated

microsites weighted by their respective cover at each plot.

As a soil multifunctionality index, we used the average Z-

score for all soil functions estimated at the plot level

(Maestre et al., 2012).

Satellite data and processing

We used Landsat 5 TM and Landsat 7 ETM+ filtered

products to obtain spectral data from 927 available

images collected between 2006 and 2013. First, we selected

images taken as close as possible (within 1–3 months) to

the day when field surveys were conducted for the 236

sites analysed in Ochoa-Hueso et al. (2018). We then

used a local filter to select the cloud-free Landsat images

closest to the field surveys, reducing the dataset to 222

sites.

To correct for atmospheric gases and aerosols, which

can vary in space and time and can significantly impact

Landsat spectral data collected on different dates (Masek

et al., 2006; Roy et al., 2014), we atmospherically cor-

rected the Landsat imagery using the Landsat ecosystem

disturbance adaptive processing system (LEDAPS, version

3.4.0; Schmidt et al., 2013). We also corrected surface

reflectance to account for data from plots measured on

different dates. To retrieve surface temperature, we used a

methodology proposed by Jimenez-Mu~noz et al. (2009)

that employs a single-channel algorithm using the

thermal-infrared Landsat channel (band 6). This algo-

rithm conducts emissivity and atmospheric corrections to

retrieve the surface-level temperature. The algorithm has

been extensively validated in other independent studies

across various land covers, showing an RMSE between 1

and 2 K, which is typical accuracy for remotely sensed

land surface temperature products (Copertino, 2012;

Zhang, He, et al., 2016). First, we estimated surface emis-

sivity using a simple approach based on fractional vegeta-

tion cover and NDVI (Sobrino et al., 2008). We then

calculated atmospheric functions from total atmospheric

water vapour values obtained from the Copernicus Cli-

mate Change Service implemented by the European Cen-

tre for Medium-Range Weather Forecasts (Mu~noz-Sabater

et al., 2021). The single-channel algorithm needed these

data to be applied (Hersbach et al., 2020). We applied a
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30-m buffer to extract data from each study area and

weighted the value of each pixel covered in this area to

minimize errors in the geolocation and referencing of

each pixel. An average of the pixel weights by the percent-

age of the area overlapping each plot was used to ensure

an extensive, systematically collected sample scheme.

We obtained spectral reflectance for each TM and

ETM+ reflective band and surface temperature, which we

used to calculate the RSI dataset for each location. To

estimate a wide range of soil and plant traits (Hernandez-

Clemente et al., 2021), we evaluated a list of 18 RSI,

including formulations based on the near-infrared and

visible regions (NDVI, GLI, SIPI), modified vegetation

indices proposed to minimize background and soil effects

(SAVI, TSAVI, OSAVI, TSAVI/OSAVI, MCARI2 and

GEMI), modified vegetation indices considering atmo-

spheric corrections (ARVI, AFRI and VARI), formulations

based on the short-wave infrared (SWIR) bands (S1260

and NBR2) and thermal bands (Ts-Ta) and WDI. For

definitions and descriptions of acronyms, refer to Table 2.

Modelling approach

In this study, we investigated the capacity of the RSI eval-

uated to predict soil multifunctionality across global dry-

lands. The first step in data analysis entailed selecting the

most significant RSI for determining soil multifunctional-

ity, followed by an evaluation of the model’s perfor-

mance, as depicted in Figure 2. To ensure the

interpretability of our model output, we first reduced the

number of variables by using a filter-based feature

Figure 1. Distribution of the dryland sites used in this study. Dryland land areas are displayed in orange according to FAO/UNEP Land Cover

Classification System (UNEP-WCMC, 2007).

TABLE 1. Soil variables used for the calculation of the soil functions.

Total nitrogen TON

Available potassium AVP

Activity of b-glucosidase BGL

Activity of phosphatase FOS

Organic carbon ORC

Ammonium AMO

Nitrate NIT

Aminoacids AMI

Proteins PRO

Phenols PHE

Aromatic compounds ARO

Hexose content HEX

Pentose content PEN

Potential N transformation rate NTR
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selection approach (Gosiewska et al., 2021). We excluded

RSI that were highly correlated with each other (r > 0.85,

(Dormann et al., 2013)) and used only those with a vari-

ance inflation factor lower than 10 (Kutner et al., 2004).

This resulted in an RSI selection referred to as RSI-mc.

We then performed a principal component analysis

(PCA) to interpret the contribution of each RSI based on

the first two principal components with an importance

higher than 15% (Pacheco et al., 2013). We identified the

loading vectors in the biplot of the principal components

explaining >60% of the variance, which were used to

select the RSI variables with the highest eigenvalues per

axis, resulting in an RSI selection referred to as RSI-pca.

Lastly, we included a single-index selection using the RSI

most correlated with soil multifunctionality, referred to as

the 1-RSI model, to check the improvement achieved

with the variable reduction approaches (RSI-mc and

RSI-pca).

To evaluate the suitability of our model, we compared

three different approaches: two artificial intelligence

methods, an evolutionary algorithm model (EAM) and a

random forest model (RF), and simple linear regression

(LR). The comparison between these three methods was

made to analyse the suitability of each approach, which

varies with the variability and dispersion of the data

(Franklin & Miller, 2010). The EAM model was based on

a genetic algorithm used to generate high-quality solu-

tions to optimize model accuracy in computer science,

known as evolutionary algorithms (Vikhar, 2016). We

computed the models with the Eureqa software package

v1.24 (Datarobot Inc., Boston, USA), combining the

arithmetic, trigonometric and exponential building blocks

for the best model accuracy. Eureqa uses evolutionarily

search to determine the best predictive models, simplify-

ing the final calculated model. The RF model was built by

using the Caret library (Kuhn et al., 2020) within the R

environment (R Core Team, 2013) and the package

‘caret’. The adjustment parameter mtry (Randomly

Selected Predictors) was established initially by iterating

over the whole range of values. Then, a pre-processing

TABLE 2. Remote sensing indicators and their formulations derived from Landsat data evaluated in this study.

Remote sensing indicator Formulation References

GLI: green leaf index GLI = (2�qGreen – qRed � qBlue)/(2�qGreen + qRed + qBlue) (Louhaichi et al., 2001)

SIPI: structure insensitive pigment

index

SIPI = (qNIR � qBlue)/(qNIR + qRed) (Pe~nuelas et al., 1995)

NDVI: normalized difference

vegetation index

NDVI = (qNIR – qRed)/(qNIR + qRed) (Rouse et al., 1974)

SAVI: soil-adjusted vegetation

index

SAVI = (1 + L) 9 ((NIR-Red)/(NIR + Red + L)) (Huete, 1988)

TSAVI: transformed soil-adjusted

vegetation index

TSAVI = (a 9 (qNIR – a 9 qRed � b))/

(qRed + a 9 qNIR � (a 9 b) + 0.08 9 (1 + a2))

(Baret & Guyot, 1991)

OSAVI: optimized soil-adjusted

vegetation index

OSAVI = (qNIR � qRed)/(qNIR + qRed + 0.16) (Rondeaux et al., 1996)

TSAVI/OSAVI TSAVI/OSAVI (Baret & Guyot, 1991)

MSAVI: modified soil-adjusted

vegetation index

MSAVI = 0.5 9 (2 9 qNIR + 1 � (((2 9 qNIR + 1)2)0.5

– 8 9 (qNIR � qRed)))

(Qi et al., 1994)

MCARI2: modified chlorophyll

absorption ratio index 2

MCARI2 = (1.5 9 (2.5 9 (q800 � q670) – 1.3 9 (q800 � R550)))/

((2 9 q800 + 1)2 � (6 9 q800 – 5 9 (q670)0.5) � 0.5)0.5
(Haboudane et al., 2002)

EVI: enhanced vegetation index EVI = 2.5 9 (qNIR � qRed)/(qNIR + 6 9 qRed � 7.5 9 qBlue + 1) (Huete et al., 2002)

GEMI: global environment

monitoring index

GEMI = n (1–0.25 9 n) � (Red � 0.125)/(1 � Red); n = 2

(NIR2 � Red2) + (1.5 9 NIR + 0.5 9 Red)/(NIR + Red + 0.5)

(Pinty & Verstraete, 1992)

ARVI: atmospherically resistant

vegetation index

ARVI = (qNIR � qRed) – c (qRed-qBlue)/(qNIR + qRed) – c

(qRed � qBlue)

(Kaufman & Tanre, 1992)

AFRI2100: aerosol-free

vegetation index

2100

AFRI2100 = (qNIR � 0.5 9 q2100)/(qNIR + 0.5 9 q2100) (Karnieli et al., 2001)

VARI: visible atmospherically

resistant index

VARI = (qGreen � qRed)/(qGreen + qRed � qBlue) (Gitelson et al., 2002)

S1260: sulphur index 1260 S1260 = (q1260 � q660)/(q1260 + q660) (Mahajan et al., 2014)

NBR2: landsat normalized burn

ratio 2

NBR2 = (SWIR1 � SWIR2)/(SWIR1 + SWIR2) (Norton et al., 2009)

Ts-Ta: surface temperature minus

air temperature

Ts-Ta (Jackson et al., 1981)

WDI: water deficit index WDI (Moran et al., 1994)
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transformation was applied by centring and scaling the

training data. Comparatively, we also tested a simple

method based on a linear fitting (Freedman, 2009)

between RSI and soil multifunctionality. Finally, the

models were trained considering a resampling method of

five k-folds and three repetitions. The model accuracy

was evaluated with a cross-validation bootstrap procedure

(Austin & Tu, 2004). For doing so, data were randomly

split into K = 500 sets, selecting 80% of our dataset to

generate each predictive model, and the remaining 20%

was set aside for validation purposes. The average and

standard deviation from this cross-validation bootstrap

procedure was used for validation. We calculated the R-

squared (R2) and the normalized root-mean-square error

(NRMSE) by contrasting predicted versus observed values.

Results

Soil multifunctionality RSI determination

The feature reduction simplified the number of variables

included in the modelling process. For example, the first

reduction, RSI-mc, resulted in a list of 10 RSI: MCARI2,

NBR2, MSAVI, GLI, S1260, AFRI22, TSAVI_OSAVI,

GEMI, Ts-Ta and WDI. In the PCA biplot, we observed

that these RSI were grouped into three clusters of loading

vectors, each associated with climate (Figure 3A) and veg-

etation type (Figure 3B) and enclosed by concentration

ellipses.

The modified vegetation indices MCARI2, MSAVI,

GLI, TSAVI_OSAVI, S1260, NBR2 and AFRI22 were neg-

atively correlated with the same principal component

(PC1), while GEMI was positively related to PC1. On an

orthogonal axis, the third group of vectors, Ts-ta and

WDI, were the best contributors to PC2. In the PCA

biplot, the contribution of WDI and Ts-Ta was quite sim-

ilar, with the eigenvalue being slightly higher for Ts-Ta.

However, it should be noted that WDI was significantly

more correlated than Ts-Ta with the soil functions evalu-

ated (Figure 4).

The ellipses in the Standardized Principal Components

(PC1 vs. PC2) plot serve as visual representations of the

distribution and variability of data points associated with

the same climate (Figure 3A) and vegetation type

(Figure 3B). In these plots (Figure 3A and B), large ellip-

ses centred within the graph represent semi-arid climates,

(A)

(B)

Figure 2. Data analysis workflow – Remote sensing indicators (RSI) selection and model performance evaluation for soil multifunctionality

determination.
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grasslands and open forests. These ellipses demonstrate a

high degree of variability in the data for each cluster and

a consistent representation across the 10 RSI-mc selected.

Conversely, certain ellipses are associated explicitly with

particular RSI. For example, GEMI and water stress indica-

tors (Ts-Ta and WDI) contribute more to sites in arid

areas. At the same time, GEMI and soil-adjusted, atmo-

spherically resistant RSI (MCARI2, MSAVI, GLI, TSA-

VI_OSAVI, S1260, NBR2 and AFRI22) are more prominent

in dry-subhumid areas (Figure 3A and Figure S1). In the

standardized principal components plot of vegetation types

(Figure 3B), GEMI and water stress indicators mainly rep-

resent savannahs. Shrublands form a cluster to the left,

characterized by soil-adjusted, atmospherically resistant

RSI and water stress indicators (Figure 3B).

We selected one RSI per group with the highest eigen-

values from the three main groups of eigenvectors in the

standardized principal components (PC1 vs. PC2) plot

(Figure 3). As a result, RSI-pca selection reduced the pre-

dictors to MCARI2, GEMI and Ts-Ta. Finally, we compared

the RSI reductions, RSI-mc and RSI-pca, to the 1-RSI with

the highest correlation for estimating soil multifunctional-

ity. According to Figure 4, MCARI2 strongly correlates with

soil multifunctionality (R = 0.54, R2 = 0.28, P < 0.01).

Global models of soil multifunctionality

The scaling-up of soil multifunctionality across a wide

range of climates and vegetation types with EAM, RF and

LM models showed R2 and NMRSE values ranging from

0.17 to 0.55 and from 0.25 to 0.15, respectively, which

depended on the type of model and number of RSI con-

sidered (Figure 5A). The highest accuracy for soil multi-

functionality was obtained with models computed with

EAM using the RSI-pca selection, which improved

NRMSE by 25% from RF and 27% from LM models

respectively (Figure 5B). The EAM analysis reduced the

NMRSE in soil multifunctionality estimations for the

three variable selection methods followed (RSI-pca, RSI-

mc and 1-RSI). The EAM-driven analysis utilizing

MCARI2 resulted in a 22% reduction in NMRSE com-

pared to the linear analysis derived from RSI-pca. Fur-

thermore, it was observed that employing models based

on RSI-mc was unnecessary, as the RSI-pca produced the

most reliable outcomes when processed through EAM

(Figure 5A).

The accuracy of the soil multifunctionality model

based on RSI-pca using EAM analyses (r = 0.733,

NMRSE = 0.15) also shows consistency across soil func-

tions, with upper and lower values obtained for AMI

(R = 0.889, NMRSE = 0.05) and BGL (R = 0.685,

NMRSE = 0.18) respectively (Figure 6).

Discussion

We developed and validated a model to estimate soil

multifunctionality across global drylands using a compre-

hensive global field survey and satellite imagery. Our
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Figure 3. Standardized principal components (PC1 vs. PC2) plot of the 10 remote sensing indicators (RSI) less correlated among them. Biplot

vectors are RSI loadings, whereas the position of the 222 sites is shown within each climate (arid, semi-arid and dry-subhumid, A) and vegetation

type (grasslands, shrublands, open forests with shrubs and savannahs, B).
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results highlight the reliability of RSI, such as MCARI2,

NBR2, MSAVI, GLI, S1260, AFRI22, TSAVI_OSAVI or

GEMI, to model dryland soil multifunctionality. These

RSI were developed to reduce the influence of soil back-

ground and atmospheric effects on the regions with low-

density vegetation cover. In contrast, other simpler RSI

formulations, such as the widely used NDVI, showed

about 50% lower coefficient of determination values than

MCARI2 (see Figure S2) to model soil multifunctionality.

These results may be related to a higher sensitivity of

NDVI to soil brightness effects or to the presence of

senesced vegetation and standing litter (Baret

et al., 1993). However, NDVI could still provide comple-

mentary information to modelling soil multifunctionality

with MCARI2 as a proxy for primary production

(Prince, 1991; Tucker et al., 1983) or ecosystem structure

and functioning (Gait�an et al., 2013) over large scales. In

contrast to studies mainly based on the relationship

between fractional vegetation cover and NDVI (Song

et al., 2017), here we developed a model to monitor soil

multifunctionality, a key feature of dryland ecosystems

(Maestre et al., 2016).

The models based on the combination of MCARI2,

GEMI and Ts-Ta (RSI-pca) improved the accuracy in

estimating soil multifunctionality compared to models

using a single predictor. While Ts-Ta alone cannot serve

as a reliable indicator of soil multifunctionality, it can

complement other RSI, such as MCARI2 and GEMI, to

enhance the accuracy of global models. When combined

with MCARI2 and GEMI, Ts-Ta improves the accuracy of

soil multifunctionality models, as demonstrated by a 12%

decrease in NMRSE, and enhances the prediction of spe-

cific soil functions by 8%–18% (Table S1). This outcome

may be attributed to the combination of RSI-pca selec-

tions (MCARI2, GEMI and Ts-Ta), which more accu-

rately represent the variability observed in drylands

distributed across diverse climates and vegetation types

worldwide. In addition to the strong correlations found

between MCARI2, GEMI and Ts-Ta and soil multifunc-

tionality, further analyses using structural equation

Figure 4. Pearson correlation coefficients between soil multifunctionality (M) and individual soil functions (Table 1) and the different vegetation

indices used (Table 2); P > 0.05 value are shown with an ‘x’ symbol (n = 222).
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modelling (Table S2 and Figure S3) demonstrate that

these RSI provide the most reliable models for estimating

soil multifunctionality in drylands. These findings align

with prior research, indicating that MCARI2 and GEMI

indices (Haboudane et al., 2004; Pinty & Verstraete, 1992)

exhibit lower sensitivity compared to other vegetation

indices such as NDVI in detecting fractional cover

variations ranging from 2% to 83% across analysed dry-

land locations (Maestre et al., 2012).

The RSI-pca model improves estimates of soil multi-

functionality and individual soil functions. While the cor-

relations of the 1-RSI model are significantly related to

most of the soil functions (TON, BGL, ORC, PRO, PHE,

ARO, HEX and NTR), the RSI-pca model can generate
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Figure 5. (A) Accuracy results in the prediction of soil multifunctionality according to the coefficient of determination (R2) and the normalized

root mean square error (NMRSE). Results are shown for the linear model (LM), random forest (RF) and evolutionary algorithm model (EAM)

modelling approaches used, and for the three variables reduction sets used: RSI-mc based on MCARI2, NBR2, MSAVI, GLI, S1260, AFRI22, TSA-

VI_OSAVI, GEMI, Ts-Ta and WDI; RSI-pca based on MCARI2, GEMI and Ts-Ta; and 1-RSI based on MCARI2�. (B) Observed versus predicted soil

multifunctionality for the RSI-pca selection with the EAM model using the remote sensing indicators MCARI2, GEMI and Ts-Ta and EAM analysis

(n = 222). The dashed line represents the 1∶1 line. See Table 2 for the acronyms of the indices used.
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models with errors of only 5–18% for all variables. This

can be explained by the indirect relationship that many

soil components have with different types of variables,

such as variations in biomass, soil moisture and primary

production (Liu et al., 2023). The combined use of a

model that absorbs this variability can reflect the specific

variations of these compounds, as demonstrated in this

work for AVP, NIT, AMI and PEN.

Our study emphasizes the importance of avoiding

models based solely on best-fitting indices (Hornero

et al., 2021). The PCA reduction method improves the

results’ interpretability by evaluating the RSI loading vec-

tors used to assess soil multifunctionality and functions

per climate and vegetation type. Among the selected RSI,

MCARI2 and GEMI are used as a proxy for fractional

cover (Haboudane et al., 2002; Pinty & Verstraete, 1992),

where MCARI2 reduces the RSI’s sensitivity to soil and

background effects, and GEMI minimizes the impact of

undesirable atmospheric perturbations. Additionally, Ts-

Ta provides an indicator of the water stress condition of

the vegetation linked to stomatal conductance and tran-

spiration (Morillas et al., 2013), contributing to represent-

ing semi-arid dryland sites.

Our study provides compelling evidence that EAM

methods are a reliable tool for accurately upscaling

ground-based observations of soil multifunctionality on a

global scale. The EAM models developed in this study

showed significant improvement in NRMSE values by

37% and 33%, respectively, compared to RF and LR

models for quantifying soil multifunctionality (Table S1).

Furthermore, the accuracy obtained for predicting soil

multifunctionality using the 1-RSI (r = 0.66, P < 0.01)

and RSI-pca (r = 0.73, P < 0.01) models with Landsat

data and EAM models represents a significant improve-

ment compared to results from previous studies. For

instance, Zhao et al. (2018) reported a correlation

between soil multifunctionality and MODIS land surface

albedo of only r = �0.314. These findings align with

recent efforts to apply deep learning approaches to quan-

tify soil organic carbon composition at the national level,

as reported by Odebiri et al. (2022). These results demon-

strate the potential of EAM models for providing reliable

estimates of soil multifunctionality and support their

application for global-scale monitoring and management

of soil resources in drylands.

Biocrusts are essential components of drylands globally,

significantly regulating their structure and functioning

(Bowker et al., 2013; Maestre et al., 2011, 2013). Biocrusts

fix substantial amounts of atmospheric CO2 (over 2.6 Pg

of C per year; Elbert et al., 2012) and impact the tempo-

ral dynamics of soil CO2 efflux and net CO2 uptake.

Additionally, biocrusts influence soil enzyme activity

(Miralles et al., 2012), nitrification (Castillo-Monroy &

Maestre, 2011) and runoff-infiltration rates (Zaady

et al., 2013), all of which contribute to soil multifunction-

ality. Remote sensing provides a valuable and reliable

method for mapping biocrusts. Nevertheless, due sto the

spectral resemblance between predominant dryland sur-

face elements and biocrusts, it is necessary to utilize map-

ping indices based on hyperspectral data to identify areas

dominated by biocrusts at the ecosystem level accurately

(Rodr�ıguez-Caballero et al., 2017). This limitation hinders

the ability of most satellite imagery products, such as Sen-

tinel, Landsat or MODIS, to effectively detect biocrusts

(Rozenstein & Adamowski, 2017). Because of this, we

could not consider biocrusts explicitly in our analyses.
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However, they have been shown to influence the soil func-

tions we evaluated in drylands significantly (Bowker

et al., 2011), and, as such, they could have also influenced

our results. Nevertheless, we do not expect biocrusts to

invalidate our results for two main reasons: (i) we mea-

sured soil functions at 0–7.5 cm depth, and biocrusts affect

soil functions largely at the 0–2 cm depth (Pointing & Bel-

nap, 2012), and (ii) the positive impacts of perennial vege-

tation on soil functions such as those studied here extend

beyond plant canopies to influence adjacent open areas

devoid of perennial vegetation (Maestre et al., 2009).

This study demonstrates the potential of Landsat

images and EAM-based models to assess soil multifunc-

tionality over large areas, but several limitations must be

acknowledged. First, the temporal resolution of the sensor

(one or two images per month) limits the estimations to

monthly or yearly intervals, and advanced filters cannot

be applied to select images with similar weather condi-

tions within the same month. Second, the spectral resolu-

tion of the images, with spectral bands of ~30 nm on

average in the VIS–NIR region, restricts the quantification

of biocrusts, as discussed above, and of critical biophysi-

cal variables that evaluate the status of dryland ecosys-

tems, such as the chlorophyll fluorescence or pigment

contents of vegetation (Smith et al., 2018; Zhang, Xiao,

et al., 2016). Third, the spatial resolution of the images,

with pixels of 30 9 30 m, cannot capture the fine-scale

spatial heterogeneity that characterizes dryland ecosystems

(Smith et al., 2019), as well as that of biocrusts (Maestre

& Cortina, 2002). However, new satellite missions will

overcome some of these limitations. For instance, Sentinel

2 provides 13 spectral bands and a spatial resolution

ranging from 10 m to 60 m, the NASA mission EMIT

provides hyperspectral data from 400 to 2500 nm with a

daily temporal resolution and a spatial resolution of 5 m,

and the enhanced spectral resolution of the upcoming

Landsat next missions. In addition, the future satellite

mission FLEX will provide a single platform of a

fluorescence-dedicated imager at an unprecedented spatial

resolution of 300 m (Meng et al., 2022). The implementa-

tion of these new missions will enhance the ability to

seamlessly integrate field data, such as those used in this

study, with high-resolution indicators of photosynthetic

activity and soil properties, such as texture, organic car-

bon and moisture. This will improve the accuracy of

global models for soil multifunctionality.

Conclusions

The combined use of a unique global field dataset includ-

ing 14 soil functions and a wide range of RSI calculated

from Landsat has enabled us to develop a predictive

model for soil multifunctionality in drylands based on

three RSI: MCARI2, a soil-atmosphere resistant VI;

GEMI, an atmospherically resistant VI; and Ts-Ta, a

proxy of water stress conditions. Our findings demon-

strate that RSI, such as MCARI2, performs better than

NDVI. These findings imply that NDVI is more sensitive

to the variability of global dryland covers, a crucial factor

in developing comprehensive models for soil multifunc-

tionality in sparsely vegetated regions. To the best of our

knowledge, our study is the first to use and demonstrate

that thermal-based indicators such as Ts-Ta, which are

related to the evapotranspiration rate and water deficit,

can improve global models of soil multifunctionality in

combination with other RSI. Future research to improve

our understanding of dryland dynamics should include

EAM methods for accurately upscaling ground-based

observations. The soil multifunctionality models devel-

oped in this study open the possibility of accurately map-

ping regional- to global-scale essential soil processes at

spatiotemporal resolutions relevant to land managers

across drylands worldwide.
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Figure S1. Mean annual temperature and mean annual

precipitation of the global distribution of drylands classi-

fied according to biomes (A) and type of vegetation (B).

Figure S2. Relationship between the vegetation indices

MCARI2 (first line of boxplots) and NDVI (second line

of boxplots) with soil multifunctionality (M), the soil

functions total nitrogen (TON), and organic carbon

(ORC; n = 222) according to the coefficient of determi-

nation (R2) and the correlation coefficient (R).

Figure S3. Relationships between soil multifunctionality,

total cover and the RSI-pc, MCARI2, GEMI and Ts-Ta.

Arrow widths are proportional to effect sizes and signifi-

cance levels. Positive sizes are depicted with green arrows,

and negative effects depicted in red.

Table S1. Results from the three modelling approaches

tested: linear model (LM), random forest (RF) and evolu-

tionary algorithm model (EAM) for the quantification of

the soil multifunctionality (M) and soil functions (TON,
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FOS and ORC; n = 222). Predictors tested include: (RSI-

mc) based on MCARI2, NBR2, MSAVI, GLI, S1260,

AFRI22, TSAVI_OSAVI, GEMI, Ts-Ta and WDI; (RSI-pc)

based on MCARI2, GEMI and Ts-Ta; and (1-RSI) based

on MCARI2. The best results for each case are highlighted

in bold.

Table S2. Structural equation modelling between soil

multifunctionality, total cover and the RSI-pc, MCARI2,

GEMI and Ts-Ta. Estimate value, Standard Error, z-

values, P (>z), and standardises to the latent factors (Std.

lv) and standardised estimates for paths (Std. all).
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