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Abstract

The heterogeneous nature of the Industrial Internet of Thing (IIoT) has a considerable impact on the development
of an effective Intrusion Detection System (IDS). The proliferation of linked devices results in multiple inputs from
industrial sensors. IDS faces challenges in analyzing the features of the traffic and identifying anonymous behavior.
Due to the unavailability of a comprehensive feature mapping method, the present IDS solutions are non-usable to
identify zero-day vulnerabilities.

In this paper, we introduce the first comprehensive IDS framework that combines an efficient feature-mapping
technique and cascading model to solve the above-mentioned problems. We call our proposed solution deeP learnIG
model intrusioN detection in indUStrial internet-of things (PIGNUS). PIGNUS integrates Auto Encoders (AE) to se-
lect optimal features and Cascade Forward Back Propagation Neural Network (CFBPNN) for classification and attack
detection. The cascading model uses interconnected links from the initial layer to the output layer and determines
the normal and abnormal behavior patterns and produces a perfect classification. We execute a set of experiments on
five popular IIoT datasets: gas pipeline, water storage tank, NSLKDD+, UNSW-NB15, and X-IIoTID. We compare
PIGNUS to the state-of-the-art models in terms of accuracy, False Positive Ratio (FPR), precision, and recall. The re-
sults show that PIGNUS provides more than 95% accuracy, which is 25% better on average than the existing models.
In the other parameters, PIGNUS shows 20% improved FPR, 10% better recall, and 10% better in precision. Overall,
PIGNUS proves its efficiency as an IDS solution for IIoTs.

Thus, PIGNUS is an efficient solution for IIoTs.
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1. Introduction

The Internet of Thing (IoT) paradigm’s evolution elevates the digital era to a new level of pervasive and intelligent
connectivity. At the same time, security is a key issue for the connected milieu. Due to computational limitations,
skilled attackers can simply bypass the standard security measures and cause significant data loss. Intrusion Detection
Systems (IDSs) are currently popular for identifying known attacks based on stored signatures; however, IDSs fall
short in discovering zero-day threats. Human independent IDS with automatic detection and prevention can resolve
the issue [1]. The growing popularity and outstanding performance of Deep Learning (DL) approaches has a signif-
icant impact on application development. Object identification, live face detection, traffic management, discovering
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threat, pattern recognition, and medical interpretations are some DL development areas. Optimistic data reduction and
accurate assessment of unstructured data are the foremost benefits of DL techniques attracting Industrial IoT (IIoT)
applications. The popular smart industrial sector has some security challenges which are detailed in Table 1.

Table 1: Smart Industrial Attacks

Reference Industry Attack
Karl Koscher et al. [2] Telecommunications Data theft with false messages.
James.P Farwell et al. [3] Chemical and pharmaceutical

production
Stuxnet attack on nuclear power networks -
Iran 2010 targeted 60% of computers.

Nicolas Falliere et al. [4] Plant and machinery Stuxnet worm attack accessing PLC on
Irans nuclear plant.

A.Alvaro Cardenas et al. [5] Water supply The destruction of a water utility pump
through a SCADA System.

Felix Gomex Marmol et
al. [6]

Electricity production and dis-
tribution

Abrupt change of power consumption and
data theft.

David Edwards et al. [7] Oil production and supply Spear-Phishing and Distract attack on
(Aramco oil firm) Saudi Arabia, deleted the
official information.

Sujit Rokka Chhetri el
al. [8]

Power supply and transportation Jamming attacks to degrade or disable en-
ergy supply.

Fei Tao et al. [9] Gas pipeline and distribution Ukraine’s power grid hack, stolen creden-
tials and shut down 30 substations to access
confidential information.

IIoT infrastructure is a collection of interconnected heterogeneous devices including sensors, actuators, processors,
network devices, data transfer devices and application controllers. Figure 1 depicts a three-layer IIoT architecture with
perception, network and application layers. The perception layer establishes connectivity between sensor and field
device and forward for communication. Wireless communication technologies such as 2G, 3G, and Bluetooth are
used for data transfer in the network layer. Finally application layer controls the user-end communication. To provide
a secure transfer, fundamental security tools and services are embedded into the network layer. Firewalls, intrusion
detection systems (IDS) and user authentication are the key security techniques for identifying external threats. IIoT
architecture is adaptable based on the researcher’s perception and the application. The traditional three-layer IIoT
structure is given in Figure1.

1.1. IIoT architecture

Some of the connected IIoT components used to operate the industrial structure are discussed below: Centralized
Industrial Control System (ICS) act as an interface between sensors and physical manufacturing devices [10]. The
sensors collect information from connected physical components and share it with a centralized source. The Super-
visory Control And Data Acquisition (SCADA) component of ICS is used to access external activities. Distributed
Control Systems (DCS) manage the shared component services and Programmable Logic Controllers (PLC) configure
the industrial infrastructure. Finally, Human Machine Interface (HMI) processes huge data into effective information.
The application layer processes the data received from the network devices and manages the services provided to
external and internal users [11]. Risk prediction is very high in this type of structure results with data and life threat
[12]. Moreover, traditional insecure communications like Modbus and Transmission Control Protocol (TCP) are
creating authentication issues in IIoTs.

1.2. Motivation and contribution

Existing ML and DL models cannot detect zero-day vulnerabilities as they compare incoming traffic with out-of-
dateed signature patterns. PIGNUS is created to address the increasing security challenge in IIoT applications and
analyse the behavioural aspect. PIGNUS made the following contributions to this end.
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Figure 1: IIoT architecture.

• Optimal features: PIGNUS is a hybrid model that incorporates Auto Encoder (AE) for feature selection with
detection technique. AE is an unsupervised data compression technique that produces encoded data for further
processing. The approach generates discrete values for latent attributes, then forward them for decoding, and
produces a compressed dataset. PIGNUS uses the results of AE to train the classification model in order to
improve feature mappings.

• Cascading model: DL-based Cascading Forward Back Propagation Neural Network (CFBPNN) model in
PIGNUS establishes a sophisticated relationship with the raw data using multiple levels of abstraction. The
layers are interlinked and each layer receives the output of the previous layer as input. The hierarchical features
are extracted to classify the traffic based on the behavioral pattern.

• Performance: CFBPNN performs the best among the various DL classification methods currently available.
To evaluate the effectiveness of PIGNUS, we compared it with NSLKDD+, UNSW-NB15, and other IIoT
datasets. The PIGNUS model is more efficient than the state-of-the-art models based on a comparative analysis.

1.3. Paper organization
We organize the rest of the paper as follows. Section 2 reviews some deep learning-based detection models and

their techniques. Section 3 shows the proposed approach of IDS using the combinations of deep learning techniques.
We analyze the selected method with evaluation metrics in Section 4. Finally, we conclude our work in Section 5.

2. Related Work

The persuasive quality of DL techniques leverages popular applications in computer vision, bio-informatics, Nat-
ural Language Processing (NLP) etc. This imprints a significant growth with efficient performance over Machine
Learning (ML) techniques. Self-training and learning methods of DL handle a substantial volume of data with min-
imum human interaction. IIoT is an extension of IoT to establish industrial applications with sensor connectivity. A
review of the research status and the proposals of DL models in both areas is essential.

Artificial Neural Network (ANN), Deep Neural Network (DNN) and Convolutional Neural Network (CNN) are
the popular supervised instance learning methods. These techniques are accessed with a feed-forward neural network
to develop sequential and image-based detection models [11]. Recurrent Neural Networks (RNN) and the extension
Long Short-Term Memory (LSTM) are the popular methods used in IDS [13]. Semi-supervised techniques such
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as Restricted Boltzmann Machine (RBM) and Deep Belief Network (DBN) are suitable for training undefined pat-
terns. Transfer learning approaches are also supported by DL for generating generic models that is applied to similar
challenges [14]. The prominent DL-based IDS models for IoTs and IIoTs are discussed in the following subsections.

2.1. IDS models using deep learning in IoTs
The primary goal of DL approaches is to create smart and compact models that provide high-end security with min-

imal resources. As a result, DL-based models are beneficial for large data analytic, video and speech processing, image
recognition and building secure IoT applications. Extracting optimal features and developing a detection model is a
challenging task. A few integrated models with feature reduction and classification strategies are discussed below.

A DBN model with real-time testing to combine network virtualization with anomaly detection gave 95% accuracy
on five attack scenarios [15]. A comparative improvement using DBN for bot attack detection on port scanners by
[16] results with 2.8 false rates. An integrated DL model uses Spider Monkey Optimization (SMO) and Stacked
Deep Polynomial Network (SDPN) by [17] experimented for three-layer attack detection on huge IoT traffic This
model is compared with four Deep Feature Embedding Learning (DFEL) classifiers as Gradient Boosting-based Tree
(GBT), K-Nearest Neighbor (KNN), Decision Tree (DT), and Support Vector Machine (SVM). GBT’s performance
is low comparatively, even then overall precision is 99.38%. Other integrated techniques with Text-CNN and Gated
Recurrent Unit (GRU) for feature reduction and conversion by [18] resulted in a high F!-score. A combination of
Principle Component Analysis (PCA), Information Gain (IG), Correlation Attribute Evaluation (CAE), and SMO with
DNN results with 99.27% F1 score [19]. The best feature set is considered for the experiment. Stand-alone procedures
entail time and cost complications; as a solution, hybrid models outperform traditional techniques. LSTM-GRU, a
hybrid IDS model for the Internet of Vehicles (IoV), addresses the vanishing gradient problem encountered by RNN in
a limited time [20]. CNN-based anomaly detection results in 99% accuracy and provides qualities to examine whole
traffic across the IoT [21]. A unique combination of Reptile Search Algorithm (RSA) for feature reduction boosts
the anomaly detection accuracy with CNN [22]. All the detection models discussed above have a strategy to reduce
memory usage, improve the detection rate, reduce the false rate, and trace the new attacks. Table 2 summarises the
most recent DL-based IDS for IoTs.

Table 2: Review on DL-based IDS models in IoT

Author and Reference DL Technique Dataset Accuracy (%)
Thamilarasu et al. [15] DBN Real-time 99.50
Manimurugan et al. [16] DBN CICIDS 2017 98.37
Yazan Otoum et al. [17] SMO, SDPN NSLKDD+ 99.30
Tabassum et al. [18] AE,CNN NSLKDD+, Real-time 99.90
Muneeba Nasir et al. [19] DFS with DNN real-time 99.03
Safi Ullah et al. [20] LSTM,GRU CSE-CICIDS 2018 99.50
TanzilaSaba et al. [21] CNN-AIDS BoT-IoT 92.85
Abdelghani Dahou et al. [22] CNN,RSA BoT-IoT 99.91
Ming Zhong et al. [23] Text-CNN,GRU NSLKDD+ 98.90
Wumei Zhang et al. [24] Stacked Sparse AE NSLKDD+ 95.42

2.2. IDS models using deep learning in IIoT
Collaborative smart industrial technology with integrated IoT devices has numerous benefits with effective pro-

ductivity; however, their online nature makes them vulnerable to cyber-attacks. Due to attack upgrades, traditional
firewalls and antivirus software cannot address the security gaps caused by the complex structure of the smart fac-
tory. Thus, the situation induces a high risk of device proliferation resulting with direct or indirect intrusions. The
researchers propose various ML and DL techniques to build an effective IDS system. In this section, we explore some
of the models and the challenges faced by each.

The Deep Feed-Forward Neural Network (DFNN) and Deep Auto-Encoder (DAE) based anomaly detection sys-
tem developed by [25] has a distinctive style of training using supervised and unsupervised techniques. The exper-
iment on the NSL-KDD dataset results in 1.4 false rates compared to UNSW-NB15. The researches show a hybrid
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model experimenting on the CICIDS dataset and big data for IDS. The combination of Random Forest (RF) and GBT
for feature selection, and DNN for detecting multi-class attacks performs well in literature [26]. A feed-forward
neural network model illustrates high classification accuracy. The model is tested using a new dataset generated
with generic features at the packet level. The model identifies Denial Of Service (DoS), Distributed DoS (DDoS),
reconnaissance, and information theft attacks with improved performance [27].

DNN with ML-based classifiers trained to learn abstract and high-dimensional IDS features in IIoT performs
well on benchmark dataset [28]. Further, a multi-CNN fusion model for IDS to capture graphical intrusions [29]
tested on KDDtest+ and NSLKDD+ resulted in 13.5% false rate. The model divides the dataset into four parts. The
one-dimension dataset is converted into a gray-scale graph using the flow data visualization method for dimensional
reduction. The subset is processed with the CNN model for detection. On real-time graphical datasets, other integrated
models are significantly practical for IIoT environments [30].

The researcher tests the Ensemble-learning model with the combination of Random Subspace (RS) and Random
Tree (RT) with 15 SCADA IIoT network datasets. The RS learning method solves the sensitivity of irrelevant features,
whereas RT reduces the over-fitting problem encountered in IIoTs [31]. Feature normalization and identification of
patterns are more important in intrusions. A balanced representation of the imbalanced datasets processed with an
ensemble model using DNN and DT by [32]. The model evaluates with 10-fold cross-validation on Gas Pipeline
(GP) and Secure Water Treatment (SWaT) resulting apt for industrial structure. Integrity features-based DL prediction
model using Sparse Evolutionary Training (SET) results in 6.25% improved accuracy [33]. We summarize the latest
DL-based IDS models for IIoTS in Table 3 .

Table 3: Review on DL-based IDS models in IIoTs

Author and Reference DL Technique Datasets Accuracy
(%)

Muna et al. [25] DAE and DFNN NSLKDD 98.06
Osama Faker et al. [26] DNN, GBT UNSW-NB15 99.99
Ge. Mengmeng et al. [27] FNN BoT-IoT 98.02
Vinay Kumar et.al. [28] DNN KDDCup 99 92.90
Yanmiao Li et al. [29] Multi-CNN KDDtest+ 21 86.95
Eric Gyamfi et al. [30] OI-SVDD UNSW-NB15 95.02
Mohammad M.H et al. [31] RS,RT 15 SCADA test-bed 96.71
Al-Abassi et al. [32] DNN,DT GP,SWaT 99.67
Shahid Latif et al. [34] DRaNN UNSW-NB15 99.54
Sarika Choudhary et al. [35] DNN-IDS UNSW-NB15 90.02
Zhihong Tian et al. [36] Multiple concurrent DL CSIC 2010, 99.41
A.Mendon et al. [33] SET prediction Real- time 99.02
Beibei Li et al. [37] CNN-GRU Industrial CPS 99.20
Awotunde et al. [38] DFFNN and DAE UNSW-NB15 98.91
OthmaneFriha et al. [39] DNN,CNN,RNN CSE-CICIDS 2018 99.01
S.Tharewal et al. [40] DRL-IDS Gas pipeline 99.10

The model combines Online Incremental Support Vector Data Description (OI-SVDD) with Adaptive Sequential
Extreme Learning Machine (AS-ELM) and is tested on Multi-Access Edge Computing (MEC) server [30]. A real-
time data stimulation and attack modules introduced for reinforcement learning by [40] tested with Natural Gas
pipeline transportation. This model gave very marginal false rate.

An attack scenario with the administrator, user, and attack modules is launched for testing. The author proposes
a light-GBM technique to select the optimal features and a PPo2 algorithm with ReLU for detecting the attacks. The
model performs well compared to traditional DL techniques such as CNN, RNN, LSTM, and DQN [40]. From the
above mentioned literature study, we observe that none of the models project 100% accuracy for a single or multi-class
attack detection; thus, it provides a scope of improvement. Considering this, we integrate an AE feature reduction
technique with a cascading IDS model. This provides better detection accuracy for the anomalies available in the
industrial network.
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3. Proposed model: PIGNUS

We propose, deeP learnIG model intrusioN detection in indUStrial internet-of things (PIGNUS). PIGNUS signifies
security in Latin. PIGNUS in a novel DL-based IDS model with the combination of Auto Encoder (AE) and Cascade
Forward Back Propagation Neural Network (CFBPNN). The available models have an average accuracy of 95.00%;
however, none of the existing works examine AE base compression with cascading classifier. Our PIGNUS addresses
this issue and emphasizes the significance of feature extraction with a comparative analysis on traditional and AE-
based cascade structures. In this section, we present our preliminary knowledge of the DL techniques, then focus on
the assumptions made to construct PIGNUS. The methodology starts with full description of the datasets used in
the experiment followed by normalisation procedure. The application of AE in feature extraction, and the usage of
CFBPNN for detection are successively explored in this section.

3.1. Preliminary understanding

Figure 2 depicts the internal structure of NN with input, hidden, and output layers. The data is supplied into the
neurons for the input layer in the form of numbers/images/audio. These input features are represented as x1, x2, x3,...,
xn. The process multiples each input by weights (w1,w2,w3, ....,wn) and passes to an activation function. An activation
function is a step function that maps the input and output signals for network functioning. Equation 1 depicted the
mathematical representation of a NN. In this Equation 1, x represents an input, w represents a weight added for each
input, z is used for output, b represents bias, and f represents the activation function.

z = f (b +
N∑

i=1

xiwi). (1)

Figure 2: Structure of a NN

The feed-forward algorithm begins with the input layer moving in the forward direction to update the state of each
unit [27]. This model multiplies the weights and add the bias; this process repeats till all the layers are updated. The
model adjusts the weights and performs the task to improve the accuracy using back propagation. Though, the process
is generic, we observe some variations of the structure based on the application requirements.

3.2. Assumptions

Considering the shortfalls of the existing detection models, we observe that the security module extended to
multiple levels will be more predictive. The results of single-level detection and prevention techniques are only
reliable for a short period of time [14]. To justify the multi-level detection model, a three-level security system is
beneficial. A framework with a risk factor provide suitable security solution. We show the assumption of the security
model in Figure 3. The first level of security is formed with basic firewall protection. The security services are applied
to verify the authentication of the users and control unauthorized access in the second level. Finally, a DL-based IDS
model is a required to observe the network traffic and report the suspicious activities.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



PIGNUS: A Deep Learning Model for IDS in Industrial Internet-of-Things 7

Figure 3: Model Assumption

3.3. Methodology

This section provide a elaborated description of the methods integrated in PIGNUS. The traditional architecture
of the IDS model is prone to security leaks. The multi-layer recursive structure analyzes the data at various levels
and makes the model effective to handle minute complications. IIoTs have multiple frameworks with interconnected
devices and sensor operations. A single-layered model lacks in generating appropriate sequences and drops in per-
formance. Such models are restricted by the scope of the connected components [41]. The multi-layer model is
distributed across the system and executes the processes at each level. The major and minor values are converted
based on the state of the system. A self-learning model minimize human instructions and mitigates intrusions given
from input sequences. We show the flowchart of the methodology in Figure 4.

Figure 4: Methodology of proposed model

To solve the above-mentioned issues we provide PIGNUS, a hybrid model with the combination of AE and CF-
BPNN. AE builds an optimal feature set and CFBPNN traces the attack pattern based on predefined signatures and
identify the attack variant with the interrelated link.

3.4. Dataset

We conduct a comprehensive series of experiments on PIGNUS with five different datasets: i) UNSW-NB15 [42],
ii) ICS generated water storage tank dataset [43] , iii) gas pipeline dataset [44], and iv) NSLKDD+ dataset [45] v)
X-IIoTID dataset [46]. All five datasets have distinctive features; however, some features are common in all, such as
protocol, command-address, command memory, response count and write function length, cycle time, control mode,
time, and attack class.
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To check the applicability of PIGNUS, we use laboratory-scale ICS data from water storage tank dataset [43] and
industrial gas pipeline dataset [44]. These are IIoT datasets specially used for evaluating AI-based cyber security
applications. The water storage tank dataset contains pre-processed network transaction data with 2,36,180 samples
in which 1,72,415 are normal and 63,764 are attack values. The gas pipeline dataset contains 10,619 samples, where
6,672 are normal and 3,947 are attack values. We consider 10% of each dataset as sample for testing the experiment.
The gas pipeline dataset provide 27 features and the water storage tank dataset have 24 features; both datasets reflect
seven attack categories.

NSLKDD+ cup dataset is the most popular dataset for IDS with huge categories of attack signatures. This dataset
is prepared using the network traffic captured by the 1998 DARPA IDS evaluation program [45]. In our present
research, we use NSLKDD+ dataset, which overcomes data redundancy and provides updated attack profiles over
the traditional KDDCUP dataset. The training dataset contains a total of 125973 records of which 58630 are attack
values and 67343 are normal records. The dataset have 41 labeled input features of binary and multi-class attack
classification. A total of 38 traffic classes with 21 attack classes are available in the test data; we consider 16 attacks
and one normal class for training. The attack records are grouped into four major classes including DoS, probing,
User-to-Root (U2R), and Root-to-Local (R2L). The descriptions of each attack instance for gas pipeline, water storage
and NSLKDD+ dataset is given in Table 4.

Table 4: Attack types and number of records in IIoT and NSLKDD+ dataset

Gas Pipeline (GPl) and Water Storage tank(WSt) NSLKDD+
Type Samples (GPl) Samples(WSt) Type Samples
Normal 19503 6672 Normal 67343
Naive Malicious Response Injection 1198 335 DoS 45927
Complex Malicious Response Injection 1457 1664 Probe 11656
Malicious State Command Injection 209 93 R2L 995
Malicious Parameter Command Injection 410 842 U2R 52
Malicious Function Code Injection 155 41
Denial Of Service 135 189
Reconnaissance 4132 783

UNSW-NB15 dataset contains raw network packets created by the IXIA perfect storm tool in the cyber range
lab of the Australian Centre for Cyber Security (ACCS). The dataset provide nine types of cyber-attacks, 45 input
features and two million, 540,044 instance stored in four separate CSV files. A split of the dataset with 175,341
training and 82,332 testing instance with multi-class attack variants is considered for the experiment. The dataset
consists of 56000 normal values and 119341 records with nine attack categories. The generic attack type is with
40000 records and exploits count with 33393 records. According to the literature review, higher attack records aid
towards enhancement of model accuracy. Considering this, we have used UNSW-NB15 and X-IIoTID datasets to
train and test our model with a high attack instance. In binary classification for this dataset, PIGNUS produces zero
false rate.

The X-IIoTID dataset provides real-time labelled IIoT data that exposes host and network processes in both safe
and vulnerable environments [46]. This dataset estimates the attack strategies using statistical, machine learning,
and deep learning techniques. IIoT suitable features are extracted from log files and network traffic using device
resources and commercial IDS logs as (OSSEC and Zeek/Bro). The X-IIoTID dataset has 820,834 instances, with
68 features out of which 421,417 are normal and 399,417 attack observations. The dataset has three label levels
representing attack scenarios. Class one provides a binary category, and class two supports normal and 18 sub-
categories of attacks and finally class three with normal and ten sub-sub attack categories. We chose class 3 as the
sample set for our experiment. The detailed attack instance for UNSW-NB15 and X-IIoTID dataset is given in Table
5. To demonstrate the impact of a model within a time limit, the full dataset is used for experiment PIGNUS on binary
class. Ten percent of instances are selected for multi-class training and classification.
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Table 5: Attack types and number of records in UNSW-NB15 and X-IIoTID dataset

UNSW-NB15 X-IIoTID
Type Samples Type Samples
Normal 560000 Normal 421417
Analysis 2000 C and C 2863
Backdoor 1746 Crypto-Ransomware 458
DoS 12264 Exfiltration 22134
Exploits 33393 Exploitation 1133
Fuzzers 18184 Lateral-movement 31596
Generic 40000 RDOS 141261
Reconnaissance 10491 Reconnaissance 127590
Shellcode 1133 Tampering 5122
Worms 130 Weaponization 67260

3.5. Data normalization

As the first stage of normalisation, the fill missing function is used to replace empty values with constant and
standard values. In the second step, we convert all the categorical values (NaN) into numerical identities for easy
prediction using one hot-encoding technique. This technique processes the categorical variable and converts it into
a numerical representation. At the same time, natural ordering between categories with integers may result in poor
performance or unexpected results; we convert the string values to a new binary variable and add unique integer value
for each attack. The detailed implementation is given in Algorithm 3.

The training dataset provides several attack classes, while the validation dataset provides new attack classes that
were not initialized in the training dataset. In this way, we can test whether the trained model can identify new samples
besides the ones that were previously trained. To prevent over- or underfitting, we adjust some model parameters based
on the accuracy of the predictions after validation. Overfitting occurs when a model attempts to fit all of the training
data and ends up retaining the data patterns, noise, and random fluctuations. A model’s overfitting issue prevents it
from generalising and making good use of unanticipated data circumstances. Due to excessive bias in the data and
oversimplification of the issue, an under fitted model does not perform as expected in a training set of data. Our study
PIGNUS focuses on both binary and multi-class classification, where we represent normal values as 0 and attack
values as unique integers based on classification or 1 in case of binary attack.

3.6. Feature extraction with Auto Encoder (AE)

After the data is normalized, the next step is to extract the best features for training the model. AE is used to
improve training efficiency and speed up detection as part of dimensionality reduction. We use the encoded values as
input for detection models.

AE is an unsupervised learning technique used for a compressed representation of raw data. AE reduces the given
input into the lower-dimensional format and regenerates the output as a new representation. To replicate the input
vector against the output layer and train the AE model, we implement a back-propagation algorithm. For a given
input x and reconstruction result as x̂ the network is trained by minimizing the error L

(
x, x̂
)

to measure the variation
between the original input and the encoded output. We train AE with 25 hidden layers using the scaled conjugate
gradient training algorithm. Most activation functions used in AE are non-linear, such as ReLUs (Rectified Linear
Units) and sigmoid functions. The model performance is evaluated using Mean Square Error (MSE) with L2 sparsity
regularize. Based on our experiments the MSE for PIGNUS is 4.56%, the lowest among all five datasets we used. To
prevent over-fitting additional information is given to the model in the process of regularization. L2 regression is also
considered as ridge regression, represented with the Equation 2. We represent the loss function with L2 norm of the
weights given in Equation 3.

x̂ = w1 + x1 + w2x2 + . . . + wn + xn + b. (2)
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AE minimizes the difference between the input and output; we identify the loss function given in Equation 3.

Loss = Error
(
x, x̂
)
+ λ

N∑
i=1

w2
i . (3)

In the above expression for an AE model x̂ with x as input variables, w represents the weight and b represents the
bias. We use a loss function to analyze the difference between the true and predicted values. λ > 0 represents the
regularization parameter and σ represents the total calculated loss and predicts the efficiency of the model for each
input and added weight. The neurons are ”inactive” if their output value is close to 0 and active if it is close to 1.
We invoke sparsity parameters to make the neurons active and avoid overfitting issues. We observe that the average
activation of each hidden neuron is close to itself, or a value close to zero [47].

We summarize the sequences of AE model in Algorithm 1.

Algorithm 1 Autoencoder(X)

1: Initialize transpose table X
2: ϕ : X → F
3: L = hiddenlayers
4: Activate w, b weight and bias with random values
5: per f ormance = MS E
6: trainAutoencoder(X, L)
7: ψ : F → X
8: i = 1
9: while i < L do

10: while Epochs = 1000 do
11: Train M sample X1, X2, ...XM .
12: ϕ : y = σ (WX + b)
13: ψ : y

′

= σ1
(
W
′

y + b′
)

14: MS E =
1
N
∑N

i
∑M

j

(
y′i j − yi j

)2
15: Loss = Error

(
x, x̂
)
+ λ
∑N

i=1 w2
i

16: end while
17: end while

The decoded output of AE is passed as an input argument for the classification model. The detailed procedure
of the detection model is given section 3.7. The training of the network is divided into the encoder and the decoder
segment. AE function is activated with x as input arguments from the PIGNUS (). A latent space F is created by
mapping the original data x to an encoder method /phi. To repeat the process we have to initialize hidden layer then
activate L weight w and bias b with random values. Next set the performance indicator to MS E. Then the AE network
is created with x input features and L hidden layers with the method trainAutoencoder(X, L). The decoder module by
ψ maps the latent space F. AE output is the same as the input function. The original sample size is recreated with
decoded content. The network construction is stated and the procedure is repeated for 1000 epochs. The encoded NN
ϕ function pass through an activation function σ, where y is the latent dimension. The decoding NN ψ represent in
a similar method, with different weights and bias. Final the performance of the model is evaluated based on the loss
function and MSE. MSE and loss is calculated for N rows Ni,Ni + 1....NL and M columnsM j,M j + 1....ML with the
decoded values y, y′. Finally the output generated from AE : y is passed as input argument for CFBPNN() method
given in Algorithm 2.

3.7. Detection process
Traditional machine learning approaches are effective in detecting suspicious patterns in network traffic [41]. At

the same time, working with pre-defined clusters, center point initialization, and selection of maximum and minimum
radius for the clusters are some of the drawbacks of the traditional ML methods [48]. Low performance with inappro-
priate feature mapping and clustering are the outcomes of such models. Our PIGNUS leverages the capability of ANN
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and forms inherited clusters to identify the instance of normal and abnormal behavior. This constructs boundaries be-
tween different clusters and helps to identify the most optimistic features suitable for complex architecture. A cluster
model is a type of feed-forward neural network, which is trained in a supervised manner with back propagation. The
method directly classifies the given input vector based on the specified target by matching it with the previous perfor-
mance and repeat till it reaches the threshold. The method is superior to other clustering and feed-forward techniques
as it adds a pre-clustering stage [49]; thus, PIGNUS training avoids the curse of dimensionality, which occurs when
the feature space of a fixed-size gets progressively sparse as the number of dimensions increases.

NN supports multiple algorithms for classification problems. According to our study, we select Cascading For-
ward Back Propagation Neural Network (CFBPNN) method to classify the anomaly and distinguish the attack and
normal packets. CFBPNN integrates Feed Forward (FF) and Back Propagation (BP) techniques to form the network
structure. FF method consists of a single input layer, multiple hidden layers and selected output layers. The BP
technique operates as a learning algorithm to train network models by calculating error values, adjusting weights, and
transmitting to the previous layer. Because of the non-linear transfer function utilised in many layers, the model learn
both linear and non-linear relations between input and output vectors [50].

Connecting the input weights from each successive layer is the process of a CFBPNN model. Networks with
multiple layers have the potential to learn the complex relations among input and output vectors. CFBPNN starts with
a single input layer and gradually adds numerous connected layers, which receive connections from the original input
layer and all previously hidden units. In order to shape the connection, we combine a direct link from input neuron
to a hidden layer [51]. We add the perceptions one by one in the correlation; it starts with a small number and ends
up with a bigger size. Additional connections improve the speed and learning rate. When the net performance is
greater than 99 % and there are no NAN results for any of the attack classifications, the process is terminated. We
describe the mathematical expression of CFBPNN in Equation 4. CFBPNN clusters the combination of sequence
and recurrent learning methods to connect initial inputs and their relationships to infer unseen connectivity. Thus,
CFBPNN is beneficial to generalize and predict anonymous data.

y =
n∑

i=1

f iwi
ixi + f 0

 k∑
j=1

w0
j f h

j

 n∑
i=1

wh
jixi


 . (4)

In Equation 4,
∫

represents activation function, w represents the weight from input to output layer, i is the number
of iteration, and y is for the output layer. We add the bias to the weights and sum with the previous value till k th layer.
For a given n sample, we represent

∫
the sigmoid activation function. This is added with the weights w and bias for

each iteration of i to the nth value in Equation 4. We first create a simple connected network with a single input and
output unit, and initialize the variable from 1 to n as x =

∑i=1
i<=n. We use a regression matrix to construct R as shown in

Equation 5. We summarize the sequence of CFBPNN model with PIGNUS in Algorithm 2.

R = f 0

wb +

k∑
j=1

w0
j f h

wb
j +

n∑
i=1

wh
jixi


 . (5)

The detailed approach of the CFBPNN model is shown in Algorithm 2. The input and target values are provided
from PIGNUS (). Next we create the CFBPNN with X input, Y target and L hidden layers. Set the input arguments
X to n rows and ni columns and initiate accuracy to 0. The Sum of weights and bias are calculated for each hidden
layer from X[i] to X[L] by adding the bias of each layer b[1]...b[L]. We repeat every iteration internally by forwarding
the values from the initial layer to the active layer in step 8. Next, calculate the sum of weights for each input layer.
The result is passed to activation function f , and the process repeats until the last layer is reached. The process is
terminated if the input-cell value is empty, else the delay unit is added and incremented to the next layer. The model
performance is calculated using accuracy and MSE. The process of calculating weights and updating the next layer is
repeated till the validation is completed or the accuracy of previous and active iterations remains static. Finally, the
model returns the values of MSE, accuracy, Regression (R), and output y as the prediction result. We show the overall
procedure of PIGNUS in Algorithm 3.
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Algorithm 2 CFBPNN(input, target)

1: X = Input,Y = Target, L = HiddenLayers.
2: Create y = cascade f orwardnet(X, L).
3: Initialize i = 1, j = 1; Set X j

i .. Xn
m ..

4: Accuracy = 0;
5: while i <= L do
6: while Accuracy(i) <= Accuracy(i + 1) do
7: Xi +Wi, bi....X j +W jb j.
8: Y=

∑n
i=1
∑w

n x j
i

9: y =
∑n

i=1 f iwi
ixi + f 0

(∑k
j=1 w0

j f h
j

(∑n
i=1 wh

jixi

))
10: Accuracy =

∑
(Y = X)/N(X, L) ∗ 100;

11: MSE =
1
n
∑n

i=1
(
yi − ŷ

)2
12: R = f 0

(
wb +

∑k
j=1 w0

j f h
(
wb

j +
∑n

i=1 wh
jixi

))
13: i = i + 1
14: end while
15: end while

As PIGNUS starts with data loading and pre processing, later combines Algorithm 1 for AE and Algorithm 2
for CFBPNN respectively. Algorithm 3 starts by importing the dataset from external sources. The read-table method
opens the file specified as a parameter and then stores the contents of the variable x with input features. The DL models
are trained row by row; the dataset is transposed and indicated with x′. The Autoencoder method is called with x as
the argument value and the decoded result is stored in variable Table. Next supervised training is implemented
for classification with labeled data values. The target variable (attack type) provides multi-class string labels. This
variable is converted into numerical values using one-hot encoders. Table data is assigned to input variable. Next to
split the dataset, random function with input m and ratio P is activated. The split include 70% training and 30%
testing instance for this experiment. Finally given input and target arguments invoke CFBPNN the detection module.

Algorithm 3 Proposed PIGNUS

1: X = readtable( f ilename.csv)
2: Transpose table X = X′

3: Table = Autoencoder(X);
4: input = Table
5: Initialize target = categorical(attack);
6: Table conversion target = table(target);
7: target = onehotencode(target)
8: Initialize Row m Column n
9: Assign input to matrix [m, n] = size(input)

10: Splitting data :Train, Test
11: Initialize ratio P = 0.70
12: Var = randperm(m)
13: Train = Table(var(i = 1 : (P ∗ m)))
14: Train = Table(var(P ∗ m) + 1 to N)
15: input = Train
16: CFBPNN(input, target)
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4. Experimental analysis

In this section, we first describe the procedure for the experimental setup. We execute PIGNUS on an I5 processor
(16 GB RAM and 1 TB Octan memory) with Windows 10 operating system using MATLAB R2019b environment.
Then, we define the evaluation parameters and finally, discuss the results.

4.1. Experimental setup

We implement and evaluate our proposed PIGNUS model using MatLab R2019a Simulator. Using five different
datasets mentioned in Section 3.4, we experiment AE for conversion. We include UNSW-NB15 dataset with 175341
records, water storage tank dataset with 236180 records, 10619 samples from the gas pipeline dataset, 1025973
samples from the NSLKDD+ dataset, and finally X-IIoTID dataset with 820,834 instances for our study with random
split.

We adopt the network model with ideal parameters, which produce the highest accuracy and lowest false rate after
repeated experiments. We train the model using CFBPNN with the best network structure on all the five datasets.
The network structure contains one input layer with different nodes based on the total input features given by the
dataset. The experimental method provides 27 input nodes for the gas pipeline dataset, 24 for the water storage tank,
45 for UNSW-NB15, 42 for the NSLKDD+ dataset and 68 for X-IIoTID dataset. It also includes five hidden layers
(10 nodes each) and output layer (1 node) indicating the status in multi-class procedure. We represent the network
structure of CFBPNN model with 27 input units, four hidden layers and seven output layer each with 10 neurons and
7 attack classes as output given in Figure 5.

Figure 5: Network structure of CFBPNN

Cascading model is applied for all five datasets with common parameters, and variation in input size based on
features provided. The internal network mask of the model with five layers and interconnected nodes is given in
Figure 6. The internal architecture of the CFBPNN model for the first input layer is indicated as process input 1 with
five hidden layers Layer1..5. We use the transfer function, Tran− sigmoid [34], for each layer to calculate the weights
and bias received from previous units a1....to....4 performed before the hidden layer. The elements a1, a2, a3, and a4
carry the weights for the next layer represented after the hidden layer structure as shown in Figure 6. Finally, we
represent the classification output with process Output with the input layers.

We use 1000 epochs for the transfer function sigmoid with a learning rate 0.002, minimum performance gradient
1e − 07, decrease factor for µ with 0.1, and increase factor for µ with 10 for all the datasets with L1 and L2 regu-
larization. Sigmoid transfer function structure is given in Figure 7b this is applied with Levenberg-Marquardt (LM)
training method. LM is the fastest method for training a moderate-sized network and specially designed to approach
second-order training speed without hessian matrix. The performance is indicated with Mean Square Error (MSE).
Gradient Descent Momentum (GDM) is activated as adaption learning function with learning rate (LP.lr) − 0.01 and
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Figure 6: CFBPNN internal network architecture

momentum constant (LP.mc−)0.9, we show this expression in Equation 6.

dw = mc ∗ dwprev + (1 − mc) ∗ lr ∗ gw. (6)

From Equation 6, GDM calculates the change in weight (dw) for a selected neuron from the input P and error E
with weight W. We represent the learning rate with lr, and the momentum constant with mc, gradient weight with
gw. We use this to test the performance with gradient G for a weight going to the next layer. The learning rate and
learning state is updated by recording the prior weight changes (dw − prev) and implements repeatedly.

Figure 6 represents the initial input layer a1 connected to each hidden layer; PIGNUS represents five hidden
layers and one output layer. Every hidden layer is again connects to the next input carrying the sum of weights and
bias. Figure 7a shows the structure of internal layer with added weights, bias, delay units and the activation function
processed to the next input. We train our PIGNUS and evaluate its performance in detecting binary and multi class
attack variants and visualize with confusion matrices.

4.2. Evaluation metrics
The best method to evaluate the effectiveness of the classification model is a confusion matrix. This makes it easier

to distinguish between true and false instances for training and testing. The results of this technique identifies the types
of errors encountered by the model in the process of training. We analyze the number of incorrect predictions for each
class assigned to the model with the target variable. The confusion matrix projects the difference in the prediction and
actual assumptions. The elements of the confusion matrix are used to construct the accuracy of the overall model. The
confusion matrices for all the datasets is given in Figure 8. In the following paragraphs, we define the critical metrics
we consider for the review process.

False Negative Rate (FNR): FNR returns the ratio of false cases marked as true and anomalies considered as
normal activity in the network model or a missed alarm rate in detection. Our proposed PIGNUS has 0.00% FNR for
binary class and 0.22% for the multi-class as an average of all the test samples. The values indicate the number of
anomaly cases considered true is non-descriptive. We use Equation 7 to calculate FNR.

FNR =
FN

T P + FN
. (7)

False Positive Rate (FPR): FPR indicates the presence of attack records in the network package which is identified
as normal. We use Equation 8 to trace the false cases. This is a percentage of incorrect results classified. PIGNUS
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(a) Internal structure of input layer of CFBPNN model

(b) Structure of Sigmoid Transfer Function

Figure 7: Structure of CFBPNN internal layer and training function

shows a 0% false rate for the binary class that indicates no count for wrong interpretation encountered.

FPR =
FP

T P + FP
. (8)

Accuracy (A): We represent the ratio of correctness for the classified in Equation 9. PIGNUS is proved to be
accurate for selected samples. The accuracy of the model is 100% for binary and multi-class with selected samples.

Accuracy(A) =
T P + T N

T P + FP + FN + T N
. (9)

Precision (P): The ratio of true positive samples to the predicted positive samples is known as precision. We use P
to represent the confidence of attack detection as in Equation 10. PIGNUS results in a 0.01% precision value, which
indicates that the identification of a normal sample to a similar class is more appropriate.

P =
T P

T P + FP
. (10)

Recall (R): We use recall to represent the ratio of true positive values to the total value with Equation 11. We
can consider this as the detection rate and use in IDS evaluations. R reflects the model’s ability to recognize the
attacks from a given class. R-value for the proposed model represents that it can classify the attack category to 0.99%
accurately with 0.01% error rate.

R =
T P

T P + FN
. (11)
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4.3. Results and comparative analysis
The goal of PIGNUS is to map the relationships between input and target values and improve the performance

of the detection. We combine several threshold function with multiple compositions in layers to enhance the model
accuracy. We show the comparative results in Table 6. In this table, we compare the accuracy of CFBPNN model
and AE-based CFBPNN (AE+CFBPNN). Both the models are introduced by us; we observe that AE integrated with
CFBPNN performs better than the traditional cascade model. As a result, we select AE and CFBPNN for PIGNUS.
The findings of PIGNUS on overall detection are displayed in the discussion, followed by the outcomes of attack-
specific conditions. We conclude by comparing PIGNUS with other state-of-the-art models.

Table 6: Overall Accuracy of the CFBPNN and PIGNUS model for all five datasets

Dataset CFBPNN Accuracy (%) PIGNUS Accuracy (%) AE-MSE
NSLKDD+ 99.02 99.02 8.46
UNSW-NB15 70.06 100.00 7.93
Gas Pipeline 98.02 100.00 4.23
Water storage tank 93.09 99.09 2.87
X-IIoTID 73.05 91.07 4.24

Table 6 display the performance of all five datasets of PIGNUS. The NSLKDD+ dataset remains constant in both
models. where a huge improvement is noticed in UNSW-NB15 and XIIoT-ID datasets.

4.3.1. Overall performance
As the Industrial IoT dataset have huge data elements, compressing and decoding data elements trace the pattern

more effectively than the traditional cascading method. We observe a 30.00% improvement of detection accuracy in
UNSW-NB15 and X-IIoTID dataset while using AE-based CFBPNN. We observe 6.00% improvement for the water
storage tank dataset in attack detection. Repeated training with change in parameters for PIGNUS has given 100.00%
accuracy upon identifying the binary and multi-class attacks for gas pipeline and UNSW-NB15 dataset 6.

PIGNUS results in 0.00% false rate for UNSW-NB15 and gas pipeline dataset and 0.01% and 0.08% for water
storage tank and NSLKDD+ dataset respectively. The false rate observations reflect the nonexistence of Type-I or
Type-II errors. The false rate of this experiment prove that PIGNUS is suitable for detecting attacks with binary and
multi-class classification. The model shows excellent performance for all datasets with 100.00% accuracy and 0.00%
false rate for binary classification, projected in Figure 8.

Traditional feed-forward networks travel in one direction, passing the input data with added weights and bias to
the next layer. RNN travels using a loop structure connecting the neurons of previous and successive layers. The
combination of both the network with interconnection from the input to output is the quality of PIGNUS. This avoids
the missing values and the interconnection to carry best weights and bias. For hidden layers sigmoid function is used
and for output layers purelin function is used. We have tested the model with various training algorithms wherein the
Levenberg-Marquardt results as the best fit for all five datasets with higher accuracy.

Comparative analysis of the AE+CFBPNN model gives a quite low value of MSE: nearby 0.264 for a gas pipeline,
0.217 MSE for a water storage tank, and 1.74 MSE for NSLKDD+, 1.52 MSE for UNSW-NB15 dataset and 0.76 for
X-IIoTID dataset. We notice the least gradient value at 0.0039 for the water storage tank dataset with six validation
checks indicating the best performance state of the model. Time taken for training is considerably low with 00 : 29
minutes for the gas pipeline and the highest time is 3hours45minutes for the X-IIoT dataset. We use regression value
to identify the relation between input and the target variable; regression test shows 0.97071 R-value for NSLKDD+
dataset 0.98307 for a water storage tank and 1 for both gas pipeline and UNSW-NB15 datasets signify the absolute
relations among the variables.

4.3.2. Attack wise detection results
We evaluate PIGNUS for all five datasets, and the performance is estimated using accuracy, precision, recall, and

F1 score . For all attack classes the UNSW-NB15 and the gas pipeline dataset project absolute accuracy with 0.0%
false rate, hence other three dataset attack performance is visualized in given in Table 8, Table 7 and Table 9.
NSLKDD+ dataset have variations to identify some attack classes given in Table 8. NSLKDD+ dataset contains 16
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Figure 8: Binary class confusion matrices for all five datasets

attacks, which are subdivided into four classes. PIGNUS shows accuracy of 100.00% for DoS attack, probe attack,
and also for normal traffic detection. R2L and U2R attacks are detected by PIGNUS with 99.86% accuracy.

Table 7: PIGNUS multi-class detection for NSLKDD+ dataset

Attack Accuracy Precision Recall F1 Score
Normal 100.00 1.0 1.0 1.00
DoS 100.00 1.0 1.0 1.00
Probe 100.00 1.0 1.0 1.00
R2L 99.86 0.5 1.0 0.95
U2R 99.86 0.5 1.0 0.95
RDOS 100.00 1.0 1.0 1.00

Water storage tank dataset provides six attack classes, in which PIGNUS found effective to identify DOS and
reconnaissance attack instances compare to other four malicious packets. However, PIGNUS shows less accuracy
for detecting malicious state command injection attacks. In contrast, malicious parameter command injection and
function code injection only vary by 0.1% when compared to denial-of-service attacks. The water storage tank dataset
shows that the naive malicious response injection attacks perform the least among with a false rate of about 0.3 percent
comparatively. PIGNUS efficiency for Water storage tank is given in Table 8.

We experiment PIGNUS with industrial intrusion detection data set: X-IIoTID. PIGNUS produce significantly
better results than the conventional cascade model. In the three kinds of attack occurrences that this dataset supports,
PIGNUS gives 100.00% accuracy for binary class. In attack wise comparison C and C attack has given the least per-
formance with 8.36 false rate. Apart from tampering and RDOS and lateral moveman ent all the attack detection with
PIGNUS results above 99producesuracy.Weprovideadetailedsummaryo f thePIGNUS per f ormanceagainstattacksusingX−
IIoT IDdatasetinTable 9.
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Table 8: PIGNUS multi-class detection for Water storage tank

Attack Accuracy Precision Recall F1 Score
Naive Malicious Response Injection 99.97 1.0 1.0 1.0
Complex Malicious Response Injection 99.98 1.0 0.99 1.0
Malicious State Command Injection 99.97 1.0 0.99 1.0
Malicious Parameter Command Injection 99.97 0.97 1.0 0.98
Denial Of Service 100.00 1.0 1.0 1.0
Reconnaissance 100.00 1.0 1.0 1.0

Table 9: PIGNUS multi-class detection results for X-IIoTID dataset

Attack Accuracy (%) Precision Recall F1 Score
C and C 91.64 1.0 0.68 0.81
Crypto-ransomware 99.99 1.0 0.99 1.0
Exfiltration 99.79 0.98 1.0 0.99
Exploitation 99.74 0.98 0.98 0.98
Lateral-movement 98.37 0.89 1.0 0.94
RDOS 98.95 0.93 1.0 0.96
Reconnaissance 99.55 0.97 1.0 0.98
Tampering 94.02 0.18 0.96 0.31
Weaponization 99.02 0.99 0.94 0.97

4.3.3. Comparison of PIGNUS with state-of-the-art models
We compare our proposed PIGNUS with the state-of-the-art models and display the results in Table 10. Feed for-

ward methods have the disadvantage of non-recurrent values or missing values. We solve this problem by cascading
recursive method proposed in PIGNUS. Our proposed model works with recursive connectivity to calculate weight
and bias. PIGNUS also forwards the values to the next layer for fine-tuning the detection technique.

From Table 10 show that all of the models’ accuracy increases as recall values rise and the other models perfor-
mances are fairly comparable. With loop connection PIGNUS can track both the forward and backward process and
it produces 0% false rates for detection which is comparable to the FNN model [27]. Anomaly detection using DAE
and DFNN by [25] achieved 92.04 % accuracy, while PIGNUS achieved 99.02 % accuracy for NSK-KDD dataset.
The nested structure of the cascading model improve performance significantly. PIGNUS is more accurate than
DRaNN [34] compared with the false rate and performance for the KDDCUP+ dataset. PIGNUS performs much bet-
ter than [29]. CNN methods are more usable for image-based datasets a multi-conventional network model proposed
by [29] results in a 13.5 false ratio comparatively the highest false rate out of all available models. RSRT model [31],
DNN and DT model [34] show 96.00% accuracy for IIoT datasets. PIGNUS outperforms all these mentioned models
with 100% accuracy. DNN model [35] is tested on KDDCup99, NSLKDD, and UNSW-NB15 datasets and projects
high performance compared to other datasets. Our PIGNUS results in 100% accuracy for the same dataset with five
recursive and cascading layers. The false-positive ratio of our model is less than all the models. High accuracy with
notable precision value is observed in [34]. However, the disadvantage with regular deep learning techniques is to
determine values with the next layer; PIGNUS have the advantage of processing the previous weight and bias values
to the next hidden layers.
We compare the FPR metrics for all the existing models given in Table 10. We observe different performances be-
tween Multi-CNN and the proposed PIGNUS model. The concurrent DM model is close to the results of PIGNUS,
at the same time [36] has a minimum false rate indicating more detection efficiency. Comparing PIGNUS with the
latest model, [39] produce 99.2% accuracy tested on water storage tank results.
The model works effectively on testing with the traditional dataset but real-time industrial dataset comparison is not
much clear. Real-time testing model bu [40] for industrial gas pipeline dataset results with 99.9% accuracy; following
the similar line, PIGNUS results in 100% accuracy for the industrial dataset. The experiment results in 0% FPR for
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Table 10: Comparison of DL models for IDS in Industrial IoTs

Source DL Technique Dataset Accuracy
(%)

FPR Precision Recall

Muna et al. [25] DAE and
DFNN

NSL-KDD 95.05 5.00 0.94 0.84

Mengmeng .Ge et
al. 2019 [27]

FNN BoT-IoT 99.00 1.00 0.99 0.99

Mohammad M.H
et al. 2019 [31]

RSRT SCADA 96.71 3.29 0.97 0.96

Yanmiao Li et al.
2020 [29]

Multi-CNN KDD test +21 86.95 13.05 0.89 0.87

Abassi A.AI et al.
2020 [32]

DNN, DT GP, SWaT 96.00 4.00 0.94 0.93

Shahid Latif et al.
2020 [34]

DRaNN UNSW-NB15 99.41 0.59 0.99 0.98

Sarika Choud-
hary et al.
2020 [35]

DNN-IDS UNSW-NB15 91.50 8.50 0.93 0.92

Zhihong Tian et
al. 2020 [36]

Multiple con-
current DL

CSIC 2010 99.04 0.60 0.99 0.95

Beibei Li et al.
2021 [37]

CNN-GRU Industrial CPS 99.20 0.80 0.95 0.94

Awotunde et al.
2021 [38]

DFNN UNSW-NB15 98.09 1.10 0.967 0.99

Othmane Friha et
al. 2022 [39]

DNN, CNN,
RNN

CSE-CICIDS2018 99.02 0.8 0.92 0.96

S. Tharewal et al.
2022 [40]

DRL-IDS Gas Pipeline 99.01 0.01 0.99 0.99

Proposed
PIGNUS

AE+CFBPNN UNSW-NB15 100.00 1.00 1.00 1.00

NSLKDD+, water storage tank, and 0.22% for UNSW-NB15, and 2.89 for the gas pipeline dataset. The strong reason
for this efficiency is the length of vectors passed on to the model for processing. We notice that AE implementation
for the dataset has high dimensions and retains a low false rate compared to the high featured dataset. This proves that
our PIGNUS model is suitable for providing security in IIoT networks.

5. Conclusion

In this paper, we propose PIGNUS a hybrid model with the combination of AE and CFBPNN. PIGNUS identifies
multi-class IIoT attacks and contributes towards a secured environment with increased attack detection effectiveness.
To demonstrate the model’s performance we test PIGNUS on five well-known datasets: UNSW-NB15, NSLKDD+,
X-IIoTID, gas pipeline, and water storage tank. On the UNSW-NB15 and gas pipeline dataset, PIGNUS performs
best with a 0.0% false rate in identifying multi-class attacks. Given that the model was developed using IIoT-specific
datasets, the results demonstrate how well-suited PIGNUS for the IIoT environment. In the future, we would like to
extend our experiment with other open datasets and enhance multi-class attack identification to generalize the findings.
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