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A B S T R A C T   

An alternative modelling framework is proposed for capturing the rate-dependency in the loading 
and unloading (i.e., with softening) deformation behaviour of a wide range of isotropic incom-
pressible elastomers. The proposed framework departs from the existing approaches in the 
literature which assume an additive contribution of the ‘non-equilibrium’, or ‘viscous’, part to the 
elastic response. Instead, here it is considered that the model parameters of the basic hyperelastic 
function evolve (i.e., vary) with the deformation rate. That is, the basic hyperelastic model pa-
rameters are considered as functions of rate, given the deformation rate as a parameter and not a 
variable, pre-set in experiments. While the nature, and choice, of this functional dependency is 
empirical, a simple linear relationship is considered in this work between the parameters of a 
chosen basic hyperelastic model and the applied deformation rate. Using this specialisation, the 
model is applied to extant experimental data of a variety of elastomers including 3D-printed 
elastomeric polyurethane (EPU), dielectric elastomer VHB 4910, commercial 3D-printed sili-
cone (SIL30) and filled rubber Viton™ specimens under uniaxial loading – unloading de-
formations at various rates. It is shown that the model favourably captures the considered 
datasets. The mathematical simplicity of the proposed modelling framework, comparatively 
lower number of model parameters, and the favourable modelling and predictive results suggest 
that the implementation and application of this modelling framework is efficient and tractable, 
and merit further consideration for modelling the rate-dependant mechanical behaviour of a 
wider range of rubber-like materials and loading modalities.   

1. Introduction 

Amongst many inelastic features that elastomers may exhibit under various loading and boundary conditions, including ageing, 
crystallisation, damage, stress relaxation/creep, rate-dependant behaviour, softening in unloading etc., the latter two are perhaps the 
most frequently encountered characteristics in the mechanical function of many rubber-like soft materials. The occurrence of these two 
features are also commonly shared in soft tissues; rendering the study of rate-dependency and softening of particular relevance across 
various soft solids. In this work, therefore, we too will direct our focus on these two phenomena, primarily on modelling these be-
haviours using extant experimental data available in the literature. 

The rate-dependency in the mechanical behaviour of rubber-like materials is a manifestation of a more general mechanical 
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characteristic known as viscoelasticity. From the modelling perspective, the viscoelastic behaviour of elastomers is customarily 
accounted for via an additive decomposition of the elastic and the viscous contributions.1 The literature indicates numerous modelling 
efforts using this approach; see, e.g., the recent reviews by Xiang et al. (2020) and Ricker et al. (2023) for excellent summaries of the 
various existing viscoelastic models in the literature. In a broad classification, such models may be categorised as either phenome-
nological or (micro)structurally based. Seminal examples of the former include Lubliner (1985), Simo (1987), Holzapfel and Simo 
(1996), Reese and Govindjee (1998), Amin et al. (2006), Kumar and Lopez-Pamies (2016), while of the latter we note Bergström and 
Boyce (1998), Miehe and Göktepe (2005), Linder et al. (2011), Li et al. (2016), Zhou et al. (2018) and Dal et al. (2020) inter alia. 
However, despite the diversity in their numbers and types, many common traits may be identified across these models. 

A first common basis in most of the current viscoelastic models is the multiplicative decomposition of the deformation gradient into 
the elastic and inelastic (viscous) parts, inspired by the work of Lee (1969) originally proposed in the realm of in finite strain plasticity. 
While mathematically unimpeded, the physical basis of such an assumption may be questionable, particularly since the decomposed so 
called inelastic deformation gradient may not be the gradient of a real motion, as astutely pointed out by Rajagopal and Srinivasa 
(2004). 

A second common trait is the consideration of an evolution law for the dissipative effects, and the relevant internal variables, in 
those models. Except for the thermodynamics requirement that the evolution law must result in a positive dissipation rate, the choice 
of such governing equation(s) and the internal variable(s) is essentially a constitutive assumption, based on the judicious consideration 
of the user; see, e.g., the works of Hossain and co-workers (Hossain et al., (2012); Hossain and Liao (2020) and Hossain et al., (2020) 
amongst many other contributions from the same group) which have opted for different evolution laws for different elastomers. As a 
result, these evolution laws introduce an ad hoc level of complexity into the ensuing models – see also the recent contribution of 
Srikanth et al., (2023) for a summary of various models employing different evolution laws. 

The third common feature in those models, partly also stemming from the foregoing trait, is the high number of additional model 
parameters that needs to be incorporated to account for the viscous effects. For example, the seminal micro-sphere model of Miehe and 
Göktepe (2005) introduces 18 viscous parameters, or the viscosity function alone in some of those models includes comparable to, or 
even higher than, number of parameters in a hyperelastic model; see, e.g., those of Hrapko et al., (2006) and Kumar and Lopez-Pamies 
(2016) with 4 and 6 parameters, respectively. The interested reader is referred to Ricker et al., (2023) and Srikanth et al., (2023) for 
more detailed information on various models and the additional number of viscous parameters embodied in those models. In addition 
to the problems that a high number of model parameters inherently poses to finding the unique optimal fit and thereby identifying 
unique model parameter values (Ogden et al., 2004; Destrade et al., 2017), it still remains debatable whether (micro)structural-based 
models which typically carry higher number of model parameters do indeed provide a better fit to some datasets compared with 
models that incorporate lower number of parameters (Zhou et al., 2018). 

The fourth shared characteristic, as a result of the aforementioned three points, is that different models are required for satis-
factorily capturing the viscoelastic deformation of different elastomers. In other words, the universal application of most, if not all, of 
the existing models and modelling approaches in the literature to capturing the viscoelastic behaviour of various elastomers is often 
handicapped and meets its limitation. Again, the work of Hossain and co-workers (e.g., Hossain et al., (2012); Liao et al., (2019); 
Hossain et al., (2020) and Hossain and Liao (2020) inter alia) on 3D-printed elastomeric polyurethane (EPU) samples, dielectric 
elastomer VHB 4910 specimens as well as commercial 3D-printed silicone testers exemplifies this point, as not only different evolution 
laws had to be considered for modelling the rate-dependant behaviour of these elastomers, but different basic hyperelastic functions 
were required too. 

In passing we also note additional two general shortcomings of the existing viscoelastic models: (i) to the extent that the models are 
calibrated by fitting to the (macro-level) experimental data, (micro)structurally-based models do not offer any particular advantage 
over the phenomenological models; and (ii) many of the evolution laws do not result in the rate of deformation to appear as an explicit 
variable in the final form of the model formulation. Incorporating the deformation rate as an explicit variable in the model provides a 
versatile feature, since the rate of deformation is a control variable in the experiments and is provided as an input to the model. A 
modelling framework which facilitates such an incorporation is that devised by Maugin (1995) and Pioletti et al., (1998), which 
considers a ‘dissipation potential’ with an embedded rate of deformation, from which the additional rate-dependant stresses are 
derived. However, this approach seems to have been more utilised in the context of soft tissue biomechanics (see, e.g., Anssari-Benam 
et al., (2017; 2018; 2022b; 2023b) amongst others) and not elastomers; and therefore will not be considered here in any depth. 

The foregoing complexities are further exacerbated if damage needs to be also accounted for. The particular damage feature of 
interest here is the softening observed in the unloading curves, akin to the Mullin’s effect in natural and filled rubbers (Mullins, 1947; 
Harwood et al., 1965). Depending on the chosen framework as to how to model damage, the ensuing softening model can incorporate 
up to 14 parameters (e.g., the network evolution model by Dargazany and Itskov (2009), the network decomposition model of Dar-
gazany and Itskov (2013), and more recent multi-network based models by Morovati and Dargazany (2019) and Morovati et al., (2021) 
amongst other approaches), when considering features such as the permanent set and induced anisotropy etc. While some of the 
recounted viscoelastic models do indeed already incorporate the damage effects, adding this feature to viscoelastic models in general is 
expected to further the complexity of the models and the number of model parameters. 

Accordingly, here we wish to depart from the existing approaches in the literature to model the rate-effects and softening, by 
proposing a new modelling framework based on a recently proposed basic hyperelastic function by Anssari-Benam (2023a), so as to: (i) 

1 The elastic and viscous contributions are sometimes referred to as the ‘equilibrium’ and ‘non-equilibrium’ responses, respectively, in the 
literature. 
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reduce the complexities associated with the current modelling approaches, (ii) improve the accuracy of the predicted rate-dependant 
and softening behaviours, and (iii) provide a degree of comprehensibility in that the model could be applicable to various elastomer 
types. The impetus behind proposing this new framework stemmed from our primary investigations of modelling the rate-effects in 
elastomers, via the simple observation that when the basic hyperelastic model of interest (which will be elaborated in Section 2) was 
fitted to the stress – stretch data of various elastomers tested at each individual rate (e.g., data from Hossain et al., (2012) on dielectric 
elastomer VHB 4910 specimens and Hossain et al., (2020) on 3D printed elastomeric polyurethane (EPU) samples etc.), it favourably 
captured the datasets without the need of adding a ‘non-equilibrium’, or ‘viscous’, term. Naturally, the ensuing model parameter 
values identified at each rate were different. This observation led us to explore the possibility that there is perhaps no inherent need to 
consider an additive contribution of the ‘viscous’ effect(s) to the basic hyperelastic function W to model the rate effects, but rather W 
may simply be adapted such that the model parameter values evolve (i.e., vary) with the deformation rate. In other words, our observations 
motivated the following proposition: For modelling the rate- effects, the model parameters of the basic hyperelastic function W may be 
considered to evolve with the deformation rate. Put differently, the model parameters of W may be considered as functions of the 
deformation rate. This approach, as will be shown in the sequel, is also easily amenable to accommodating the softening in unloading 
paths, through a recently proposed extension by Anssari-Benam et al., (2023a) to the original theory of pseudo-elasticity devised by 
Ogden and Roxburgh (1999). Therefore, the (few) softening parameters that will be introduced to the basic hyperelastic function will 
also become functions of the deformation rate, and vary (e.g., evolve) with the rate. The notion of evolving model parameters, though 
not explored in the context of rate-dependency, may also be traced in approaches to modelling polymer curing; e.g. in Lion and Höfer 
(2007) and Hossain et al., (2009a; 2009b); and polymer ageing; e.g., in Mohammadi and Dargazany (2019) and Bahrololoumi et al., 
(2021). 

In the following we provide the theoretical and mathematical underpinnings of this modelling framework, and present our pre-
liminary modelling results. We must emphasise at the outset that the proposed modelling approach only incorporates and captures the 
rate-effects, and not the wider viscoelastic behaviour.2 However, its versatility, comprehensibility and accuracy should make a 
favourable case for the application of this modelling framework to the rate-dependant and softening behaviours of rubber-like ma-
terials. In proceeding towards this stated aim, we present the theoretical preliminaries and the model formulation in Section 2. In 
Section 3 we derive the ensuing general (Cauchy) stress – deformation relationships, and specialise the application of the model to 
uniaxial data and considering the evolution of the model parameter values with rate via a simple linear relationship. The application of 
the model to extant experimental datasets of a variety of elastomers obtained under uniaxial loading/unloading tests at various 
deformation rates is illustrated in Section 4, including 3D-printed elastomeric polyurethane (EPU) samples due to Hossain et al., 
(2020), dielectric elastomer VHB 4910 specimens from Hossain et al., (2012), commercial 3D-printed silicone test samples due to 
Hossain and Liao (2020), and that of filled rubber Viton™ specimens belonging to Wang and Chester (2018). Concluding remarks are 
conferred in Section 5. 

2. Model formulation 

The modelling framework pursued and presented in this section is constructed based on the following predicate. The core of the 
model consists of a basic hyperelastic strain energy function W(F), where F is the deformation gradient. This function is then enhanced 
to incorporate the rate effects through judicious empirical choices that relate the evolution of the model parameters to the rate of 
deformation. That is, the model parameters become functions of the rate. Such empirical relations may be of linear, exponential, power- 
law etc nature. Note that here the rate of deformation is a parameter and not a variable; i.e., its value is pre-set and given in/by ex-
periments. We refer to this enhanced W function as a pseudo-hyperelastic energy function, denoted by Wr(F; Ḟ), where Ḟ is the time 
derivative of F. The softening (in the unloading path) is then accounted for by incorporating the (directional) damage variable(s) into 
the said Wr function, resulting in W̃

r
, as will be defined in the sequel. Similar to the hyperelastic model parameters, the parameters 

related to damage are also considered to evolve with rate of deformation, i.e., as functions of rate. The (Cauchy) stress – stretch re-
lationships are then derived from W̃

r
, to be used for fitting with and prediction of the experimental deformation data. The mathe-

matical underpinning and derivations of this framework is presented in the following. 

2.1. The basic hyperelastic strain energy function W 

While within the foregoing described modelling framework the choice of the W function is not constrained to any presuppositions 
(see., e.g., the reviews of Steinmann et al., (2012), Dal et al., (2021), Kadapa and Mokarram (2022), Ricker and Wriggers (2023) and 
Zhan et al., (2023) for a summary of various hyperelastic W function choices in the literature), it is judicious to consider, as much as 
possible, a comprehensive model which provides more versatility (e.g., limited number of model parameters) and accuracy for 
modelling the datasets of various elastomers. One such model may be that recently proposed by Anssari-Benam (2023a) as: 

2 We are grateful to an anonymous reviewer for highlighting that inherent to our approach is the assumption of a constant and homogeneous rate of 
deformation across the continuum. These assumptions are not valid when a sharp local gradient of deformation rate is present, such as in a local 
impact or in the vicinity of a local flaw. In those cases, other modelling approaches that capture features such as plastic deformations (e.g., see 
Garcia-Gonzalez et al., 2015, 2017) may be required. 
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W(F) = 3(n − 1)
2n

μN
[

1
3N(n − 1)

(
λα

1 + λα
2 + λα

3 − 3
)
− ln

(
λα

1 + λα
2 + λα

3 − 3N
3 − 3N

)]

, (1)  

where F denotes the deformation gradient tensor, and μ, n, N and α are model parameters with: 

n, N ∈ R+, α ∈ R, (2)  

subject to the condition of incompressibility λ1λ2λ3 = 1. Note that μ is related to the infinitesimal shear modulus μ0 via: 

μ =
4nμ0

α2

1 − N
1 − nN

. (3)  

The dependence of W on F in (1) is through the eigenvalues of F; i.e., the principal stretches λi. 
The model in Eq. (1) is the one-term form of the more general multi-term form presented in Anssari-Benam (2023a), and is the 

parent to many of the existing landmark models in the literature including the neoHookean (Treloar, 1943), Mooney-Rivlin (Rivlin, 
1948), Gent (Gent, 1996) and Ogden (Ogden, 1972) models (see Anssari-Benam (2023a) for demonstration). Due to this comprehensive 
parenthood, and the accurate fits that it provides to a wide range of multiaxial datasets compared with the existing models (see, e.g., 
Anssari-Benam (2023a; 2023b)), we consider this model here as a more inclusive representation of the basic hyperelastic behaviour of 
isotropic incompressible elastomers. In the special case where α = 2, n = 3 and {n = 3, α = 2}, the model in Eq. (1) reduces to those 
developed by Anssari-Benam and Horgan (2022), Anssari-Benam et al., (2022a) and Anssari-Benam and Bucchi (2018; 2021), 
respectively. 

2.2. Incorporating the rate effect 

In our primary investigations of modelling the rate effects in elastomers it was observed that the model in Eq. (1) favourably 
captured the stress – stretch data of various elastomers tested at each individual rate (e.g., data from Hossain et al., (2012) on dielectric 
elastomer VHB 4910 specimens and Hossain et al., (2020) on 3D printed elastomeric polyurethane (EPU) samples), naturally with 
different model parameter values identified at different rates. This observation led us to explore the possibility for devising a new 
modelling framework to capture the rate effects in which W may simply be adapted such that the model parameters vary (evolve) with 
deformation rate. Therefore, here we depart from the existing classical frameworks reviewed in Section 1, and instead consider the rate 
of deformation as a parameter (not a variable) in the basic hyperelastic function W. 

To maintain frame-invariance, the incorporation of the deformation rate into W is considered via Ḟ, i.e., the time-derivative of F; i. 
e.: Wr ≡ W(F; Ḟ), where we refer to Wr as a pseudo-hyperelastic energy function which incorporates the rate effects (and hence the 
superscript ‘r’). We emphasise that Ḟ here is strictly a parameter, in the same way that μ, n, N and α are, and is set in the experiments as 
a given. The evolution of the hyperelastic model parameters μ, n, N and α is then thought to depend on Ḟ; i.e., those parameters are 
considered to be functions of Ḟ: 

μ ≡ f (Ḟ); N ≡ g(Ḟ); α ≡ h (Ḟ); n ≡ k (Ḟ), (4)  

where f , g, h and k are empirical functions as yet unspecified. Explicitly, we define the dependence of Wr on Ḟ via its eigenvalues λ̇i, as 
follows. 

Since F = diag (λi), where λi are the principal stretches, it follows that Ḟ = diag (λ̇i). The control variable in the experiments, 
however, is the applied deformation rate; i.e., the rate of deformation applied in the loading direction(s). Therefore, the λ̇i of interest 
will be the one(s) in the loading direction(s) (and hence are experimentally controllable). Accordingly, we define a as a vector con-
taining information in regard to the loading direction: 

a = [δ1, δ2, δ3]
T
, δi =

⎧
⎪⎨

⎪⎩

1, if i is the applied loading direction,

0, if otherwise.
(5)  

Using a in Eq. (5), tensor A is defined as: 

A = a ⊗ a, (6)  

where ⊗ denotes the dyadic operator. We propose a specific measure of deformation by considering: 

ε̇ = max{AḞ}, (7)  

i.e., the maximum array of the matrix AḞ. 

Remark 1. Note that in obtaining ε̇ we consider the absolute value of the arrays of [AḞ]. That is, if for example we are dealing with 
compression, where some or all of λ̇i are negative, we consider the absolute value of λ̇i in establishing ε̇ from Eq. (7). 
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The evolution of the hyperelastic model parameters μ, n, N and α is now thought to depend on this measure of deformation rate, ε̇, i. 
e., to be a function of ε̇. Therefore, the generic functional form of Wr becomes: 

Wr(F; Ḟ) ≡ Wr(λi; ε̇) =
3[k (ε̇) − 1]

2k (ε̇) f (ε̇)g(ε̇)
{

1
3g(ε̇)[k (ε̇) − 1]

(
λh (ε̇)

1 + λh (ε̇)
2 + λh (ε̇)

3 − 3
)

− ln

(
λh (ε̇)

1 + λh (ε̇)
2 + λh (ε̇)

3 − 3g(ε̇)
3 − 3g(ε̇)

)}

,

(8)  

where f , g, h and k in Eq. (4) have now been given as explicit functions of ε̇; i.e., f (ε̇), g(ε̇), h (ε̇) and k (ε̇), respectively. 
The specific functional forms of f , g, h and k may be designated empirically; however, it is natural to consider that in quasi-static 

deformations, where ε̇→0, the basic hyperelastic model in Eq. (1) is recovered. Therefore, we require: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (0) = μ,

g(0) = N,

h (0) = α,

k (0) = n.

(9)  

Subject to (9), any functional form may thus be considered. A specific form will be conferred later in the sequel. We end this section by 
emphasising that the pseudo-hyperelastic energy function Wr given in Eq. (8) may be used for capturing and modelling the rate effects in 
loading paths. To capture the softening in the unloading paths, the Wr function is extended to incorporate damage, presented in the 
next subsection. 

2.3. Extension for capturing discontinuous damage: softening in the unloading paths 

A particular softening effect of interest is the softening observed in the unloading curves of elastomers, akin to the Mullins effect 
(Mullins 1947; Harwood et al., 1965). Therefore, in order to capture this effect, the model in Eq. (8) must be enhanced to account for 
damage. Of the various approaches that may be utilised to capture damage, a versatile framework is the theory of pseudo-elasticity, 
pioneered by Ogden and Roxburgh (1999). Whereas this theory was originally devised to capture the idealised Mullins effect, in a 
recent work by Anssari-Benam et al., (2023a) we extended the application of the pseudo-elasticity framework to incorporate the 
permanent set and the induced anisotropy. The extended constitutive law proposed was: 

W (λi,Ω) = Ω Ŵ (λi,Ωi) + ϕ(Ω), i = 1, 2, 3, (10)  

where Ω is the well-known damage parameter and is defined from the directional damage parameters Ωi via: 

Ω =
1
3
∑

i
Ωi
(
λi, λmax

i

)
, i = 1, 2, 3, (11)  

with λmax
i denoting the maximum principal stretches in the loading directions, considered as the measure of maximum deformation. We 

note that in the undeformed configuration there is no damage, i.e., Ωi = 1, and by definition 0 < Ω ≤ 1. Further, ϕ is a damage function 
which is a smooth function of Ω and ϕ(1) = 0. The function Ŵ is mathematically defined as (Anssari-Benam et al., 2023a): 

Ŵ (λi,Ωi) = W̃ + φ(Ωi) + w(λi), i = 1, 2, 3, (12)  

where W̃ was referred to as the pseudo-strain energy function (not to be confused with the pseudo-hyperelastic energy function Wr defined 
in this work) and is constructed from the basic hyperelastic strain energy function W; i.e., that given in Eq. (1), by incorporating the 
damage parameters Ωi . Note that here φ has the similar characteristics of the damage function ϕ in Eq. (10); i.e., is a smooth function of 
Ωi (and hence Ω) and we require φ(1) = 0. Finally, w(λi) is an arbitrary function of λi subjected to the following condition (Anssar-
i-Benam et al., 2023a): 

∂φ(Ωi)

∂λi
= −

∂w(λi)

∂λi
, (13)  

with the requirement that w(λi = 1) = 0. The specific functional form of the directional damage parameters Ωi was taken to be 
(Anssari-Benam et al., 2023a): 
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Ωi =
b + 2
b + 1

−
1

b + exp
[
− c

(
λmax

i − λi
)(

λmax
i − 1

)], (14)  

where: 

b, c ∈ R+, (15)  

i.e., are positive real-valued parameters. It is therefore of note, in view of Eqs. (11) and (14), that the damage parameter Ω is a separable 
function of the principal stretches λi. The specific functional form of W̃was constructed as (Anssari-Benam et al., 2023a): 

W̃ =
3(n − 1)

2n
μN
[

1
3N(n − 1)

(
Γα

1 +Γα
2 +Γα

3 − 3
)
− ln

(
Γα

1 + Γα
2 + Γα

3 − 3N
3 − 3N

)]

, (16)  

with: 

Γi = Ωκ
i λi, (17)  

where κ is a real-valued constant; i.e., κ ∈ R. Parameter κ may be considered as a modulating factor in converting the amount of damage 
into the amount of residual stretch. On the primary loading path Ωi = 1, and thus the W̃ function in Eq. (16) reduces to the basic 
hyperelastic strain energy function W given in Eq. (1). Therefore, no permanent set is present for the hyperelastic material in the 
absence of damage. If one wishes to only model the idealised Mullins effect, i.e., the softening in the unloading path but with no 
permanent set, then the constant κ is set to zero, which renders Γi = λi, and there is, again, no permanent set. The explicit mathematical 
forms of the damage functions φ(Ωi) and ϕ(Ω), or indeed w(λi), need not be specified, as these will not enter the stress-deformation 
relationships – see (Anssari-Benam et al., 2023a) for the detailed derivations. 

Using the foregoing approach, here we devise the rate-dependant form of Eq. (10) while noting that b, c and κ now too become 
functions (as yet unspecified) of the measure of deformation rate ε̇; i.e., 

b ≡ b (Ḟ) = b (ε̇); c ≡ p(Ḟ) = p(ε̇); κ ≡ j (Ḟ) = j (ε̇), (18)  

as: 

W
r
(λi,Ωr; ε̇) = Ωr Ŵ

r (
λi,Ωr

i ; ε̇
)
+ ϕr(Ωr), i = 1, 2, 3, (19)  

where all the parameters have the same standing as those in Eq. (10), with the superscript ‘r’ to indicate the specialisation for the 
incorporation of the rate effects. Note that here Ŵ

r
(λi,Ωr

i ; ε̇) is defined as: 

Ŵ
r(

λi,Ωr
i ; ε̇
)
= W̃

r (
λi,Ωr

i ; ε̇
)
+ φr(Ωr

i

)
+ wr(λi), i = 1, 2, 3, (20)  

where W̃
r

is the enhanced version of Wr(ε̇; λi) given in Eq. (8) by incorporating the damage variable: 

W̃
r(

λi,Ωr
i ; ε̇
)
=

3[k (ε̇) − 1]
2k (ε̇) f (ε̇)g(ε̇)

{
1

3g(ε̇)[k (ε̇) − 1]

(
Xh (ε̇)

1 + Xh (ε̇)
2 + Xh (ε̇)

3 − 3
)

− ln

(
Xh (ε̇)

1 + Xh (ε̇)
2 + Xh (ε̇)

3 − 3g(ε̇)
3 − 3g(ε̇)

)}

,

(21)  

with: 

Xi =
(
Ωr

i

)j (ε̇)λi, (22)  

and similar to the condition in Eq. (13) we require: 

∂φr
(
Ωr

i

)

∂λi
= −

∂wr(λi)

∂λi
, (23)  

with the requirement that wr(λi = 1) = 0. Also: 

Ωr
i =

b (ε̇) + 2
b (ε̇) + 1

−
1

b (ε̇) + exp
[
− p(ε̇)

(
λmax

i − λi
)(

λmax
i − 1

)], (24)  

such that: b (ε̇), p(ε̇) > 0. As before: 

Ωr =
1
3
∑

i
Ωr

i , i = 1, 2, 3. (25)  
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For a demonstration of the thermodynamical consistency of the constitutive law in Eq. (19) see Appendix A. 
Analogous to f , g, h and k , the functional forms of b , p and j may too be designated empirically; however, it is again natural to 

consider that: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b (0) = b,

p(0) = c,

j (0) = κ .

(26)  

Subject to (26), we will confer specific forms of b , p and j later in the sequel. Again, note that the explicit mathematical forms of ϕr(Ωr), 
(Ωr

i ) and wr(λi) need not be specified, due to the fact that these will not appear in the stress – stretch relationships (see Appendix B). 
These relationships will be presented in the next Section. 

3. The stress – deformation relationship 

Since ε̇ is a parameter, pre-set in the experiments, and thus not a variable, following the usual arguments for an incompressible 
isotropic material in the theory of pseudo-elasticity, the (Cauchy)stress-stretch T − λ relationship may be derived from W r given in Eq. 
(19) as: 

Ti = λi
∂W

r

∂λi
− p, i = 1, 2, 3, (27)  

where Ti denotes the components of the Cauchy stress, and p is the Lagrange multiplier enforcing the constraint of incompressibility. It 
can be shown (see Appendix B for the derivation) that Eq. (27) simplifies to: 

Ti = ΩrXi
∂W̃

r

∂Xi
− p, i = 1, 2, 3, (28)  

which, in view of the W̃
r
function in Eq. (21) breaks down to: 

Ti = Ωr h (ε̇)f (ε̇)
2k (ε̇) Xh (ε̇)

i
Xh (ε̇)

1 + Xh (ε̇)
2 + Xh (ε̇)

3 − 3k (ε̇)g(ε̇)
Xh (ε̇)

1 + Xh (ε̇)
2 + Xh (ε̇)

3 − 3g(ε̇)
− p, i = 1, 2, 3. (29)  

Eq. (29) now furnishes the way for obtaining specific stress–stretch relationships for a deformation of interest. 
Depending on the type of experimental test employed, the relationship in Eq. (29) may be adapted to incorporate the relevant 

boundary condition, and specialised for obtaining the explicit (Cauchy)stress – deformation (T − λ) relationship(s). A common char-
acterization method in investigating the rate-dependant mechanical properties of isotropic incompressible elastomers is the uniaxial 
(loading/unloading) test. For this deformation, say in direction 1, the principal stretches are: 

λ1 = λ, λ2 = λ3 = λ− 0.5 . (30)  

Also, from Eq. (7) we note: 

ε̇ = λ̇ . (31)  

In addition, since λ2 = λ3 = λ− 0.5 ≤ 1, i.e., λmax
2 = λmax

3 = 1, from Eq. (24) we find Ωr
2 = Ωr

3 = 1, so that we have: 

X1 =
(
Ωr

1

)j (λ̇)λ, X2 = X3 = λ− 0.5, Ωr =
1
3
(
Ωr

1 + 2
)
, (32)  

These relationships, on using Eq. (29), yield the following T − λ relationship: 
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Tuni = Ωr h (λ̇)f (λ̇)
2k (λ̇)

(
Ωr

1

)j (λ̇)h (λ̇)λ h (λ̇) + 2λ− 0.5h (λ̇) − 3k (λ̇)g(λ̇)
(
Ωr

1

)j (λ̇)h (λ̇)λh (λ̇) + 2λ− 0.5h (λ̇) − 3g(λ̇)

×
[(

Ωr
1

)j (λ̇)h (λ̇)λh (λ̇) − λ− 0.5h (λ̇)
]
.

(33)  

Remark 2. It is instructive to note that if one is only interested in modelling the rate-dependency in the loading phase, i.e., the 
unloading path is not investigated or the material shows negligible softening in unloading, then Ωr = Ωr

i = 1 and the related stress – 
stretch relationships can easily be recovered from Eq. (29) as: 

Ti =
h (ε̇)f (ε̇)

2k (ε̇) λh (ε̇)
i

λh (ε̇)
1 + λh (ε̇)

2 + λh (ε̇)
3 − 3k (ε̇)g(ε̇)

λh (ε̇)
1 + λh (ε̇)

2 + λh (ε̇)
3 − 3g(ε̇)

− p, i = 1, 2, 3, (34)  

or, in the case of uniaxial loading, from Eq. (33) as: 

Tuni =
h (λ̇)f (λ̇)

2k (λ̇)
λ h (λ̇) + 2λ− 0.5h (λ̇) − 3k (λ̇)g(λ̇)

λh (λ̇) + 2λ− 0.5h (λ̇) − 3g(λ̇)

[
λh (λ̇) − λ− 0.5h (λ̇)] . (35)  

What remains to do now is to specify the functional forms of f , g, h , k , b , p and j . These functional dependencies in essence 
determine the evolution of the (elastic) model parameters μ, N, α, n, b, c and κ, respectively, with the deformation rate. Designating such 
functional dependencies, subject to conditions (9) and (26), is ultimately a matter of empirical judgement. An initial, and rather a 
simplified, starting point may be to consider a linear dependency: 

⎧
⎪⎨

⎪⎩

f (λ̇) = μ + m1λ̇, g(λ̇) = N + m2λ̇, h (λ̇) = α + m3λ̇, k (λ̇) = n + m4λ̇,

b (λ̇) = b + m5λ̇, p(λ̇) = c + m6λ̇, j (λ̇) = κ + m7λ̇,
(36)  

where for all mi except for m3 and m7 we have mi > 0, while m3,m7 ∈ R, to comply with the a priori requirements set out in (2), (15) and 
just after (17). Note that m1 will be a viscous damping-like parameter with units of [Pa s], while the remaining mi are of a time nature 
(with units of [s]). With this choice of functional forms, the model embodies a total of 14 parameters. We note that at the limit λ̇ = 0, all 
the original model parameters are recovered. This is a useful feature, since it will allow the prediction of the elastic parameters from the 
rate-dependant modelling results identified by fitting the model to the rate data if the elastic deformation curves are not available, 
and/or to check the veracity of the modelling results. 

For our modelling campaign, which will be demonstrated in Section 4, we consider the functional forms in Eq. (36) and substitute 
those into Eq. (35) to obtain the final form of our model for application to uniaxial loading-unloading data at various rates: 

Tuni = Ωr (μ + m1λ̇) (α + m3λ̇)
2(n + m4λ̇)

×

(
Ωr

1

)(α+m3 λ̇)(κ+m7 λ̇)λα+m3 λ̇ + 2λ− 0.5(α+m3 λ̇) − 3(n + m4λ̇)(N + m2λ̇)
(
Ωr

1

)(α+m3 λ̇)(κ+m7 λ̇)λ α+m3 λ̇ + 2λ− 0.5(α+m3 λ̇) − 3(N + m2λ̇)

×
[(

Ωr
1

)(α+m3 λ̇)(κ+m7 λ̇)λα+m3 λ̇ − λ− 0.5(α+m3 λ̇)
]
,

(37)  

where from Eq. (24): 

Ωr
1 =

b + m5λ̇ + 2
b + m5λ̇ + 1

−
1

b + m5λ̇ + exp[ − (c + m6λ̇) (λmax − λ)(λmax − 1)]
, (38)  

and from Eq. (25): 

Ωr =
1
3

{
b + m5λ̇ + 2
b + m5λ̇ + 1

−
1

b + m5λ̇ + exp[ − (c + m6λ̇) (λmax − λ)(λmax − 1)]
+ 2
}

. (39)  

4. Application to experimental data 

As a pilot demonstration of the robustness of the proposed modelling approach in this manuscript, we consider the application of 
our model to rate-dependant behaviour of four distinct elastomers. The first dataset, from Hossain et al., (2020), reports on the uniaxial 
loading and unloading of 3D-printed elastomeric polyurethane (EPU) samples under various strain rates, including λ̇ = 0.032 s− 1 , 
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0.128 s− 1 and 0.384 s− 1. The second set of experimental data pertains to the uniaxial deformation of dielectric elastomer VHB 4910 
specimens under various rates of λ̇ = 0.01 s− 1, 0.03 s− 1 and 0.05 s− 1 by Hossain et al., (2012). The third dataset belongs to Hossain and 
Liao (2020) on using a commercial 3D-printed silicone (SIL30) by Carbon3D™, under uniaxial tests encompassing quasi-static loa-
ding-unloading experiments as well as those performed at λ̇ = 0.01 s− 1, 0.05s− 1 and 0.1 s− 1. The fourth and final dataset belongs to 
Wang and Chester (2018) and is related to uniaxial loading-unloading cycles of filled rubber Viton™ samples under quasi-static and λ̇ 
= 0.01 s− 1 and 0.1 s− 1 loading conditions. In the following we will present the modelling results of these datasets using our proposed 
approach. 

For the first three datasets, in keeping with the source data where the nominal stress P has been reported as the measure of stress, 

Fig. 1. Experimental nominal stress – stretch (P − λ) data versus the model predictions for the 3D-printed elastomeric polyurethane (EPU) samples of 
Hossain et al., (2020) under uniaxial loading and unloading: (a) the rate-dependant deformations; and (b) the ‘elastic’ response. The continuous 
lines show the modelling results in the loading path, while the dashed lines are those of the unloading. The experimental ‘elastic’ response was 
obtained by Hossain et al., (2020) from step-wise stress-relaxation tests on the specimens. The model prediction for the elastic response was obtained 
by fitting the elastic version of the model to the data, using the values of μ, N, α and n in the neighbourhood identified by modelling the 
rate-dependant data, i.e., given in Table 1. The model parameter values for the elastic fit are: μ = 4.05 [MPa], N = 2.48 [-], α = 1.04 [-] and n =
1.13 [-]. 

Table 1 
Model parameters for the 3D-printed EPU samples dataset due to Hossain et al., (2020).  

μ [MPa] N [-] α [-] n [-] b [-] c [-] κ [-] 

4.76 2.57 1.12 1.13 13.36 0.29 164.23 

m1[MPa s] m2[s] m3[s] m4[s] m5[s] m6[s] m7[s] 

3.53 1.77 -0.03 1.50 1.33×10− 6 0.41 8.915  
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Fig. 2. Experimental nominal stress – stretch (P − λ) data versus the modelling results for the dielectric elastomer VHB 4910 specimens due to 
Hossain et al., (2012): (a) the ‘elastic’ response (obtained from step-wise stress-relaxation tests on the specimens); (b) simultaneous fitting to the 
data obtained at λ̇ = 0.01 s− 1 and 0.05 s− 1 for specimens tested up to λ = 2 (with fixed elastic parameter values); (c) simultaneous fitting to the data 
obtained at λ̇ = 0.01 s− 1 and 0.05 s− 1 for specimens tested up to λ = 2.5 (with the same fixed elastic parameter values); (d) model prediction of the 
data at an intermediary rate λ̇ = 0.03 s− 1 for specimens tested up to λ = 2; and (e) model prediction of the data at an intermediary rate λ̇ = 0.03 s− 1 

for specimens tested up to λ = 2.5. The continuous lines show the modelling results in the loading path, while the dashed lines are those of 
the unloading. 
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the T − λ relationship in Eq. (37) was first converted to P − λ relationship on using T = FP, where F is the deformation gradient tensor. 
The ensuing relationship was then fitted to the datasets, as will be specified in the sequel. For the fourth dataset, where T − λ data has 
been provided, the relationship in Eq. (37) was directly fitted to the data. In each fitting exercise, the best fits were achieved by 
minimising the residual sum of squares (RSS) function defined as: RSS =

∑

r
(Pmodel − Pexperiment)

2
j or RSS =

∑

r
(Tmodel − Texperiment)

2
j , 

where j is the number of data points, depending on the reported experimental data as mentioned in the foregoing. The minimisations 
were performed via an in-house developed code in MATLAB®, using the genetic algorithm (GA) function; see, e.g., Anssari-Benam 
et al., (2023a). 

We start by considering the data due to Hossain et al., (2020) on 3D-printed elastomeric polyurethane (EPU) samples. The con-
verted form of Eq. (37) was fitted simultaneously to the datasets obtained at the three designated rates (λ̇ = 0.032 s− 1 , 0.128 s− 1 and 
0.384 s− 1). The plots in Fig. 1a present the modelling results, and Table 1 summarises the identified model parameters. 

While in the original study Hossain et al., (2020) did not wish to carry out the ‘elastic’ loading-unloading tests, i.e., at a quasi-static 
loading rate, they performed step-wise stress-relaxation tests from which they constructed a loading curve portending to be the ‘elastic’ 
stress – deformation curve. The data pertaining to that curve is shown in Fig. 1b. From the modelling results in Table 1, we note that the 
model predicts the ‘elastic’ loading curve using the identified values for μ, N, α and n. Interestingly, when we undertook to fit the 
elastic-version of the model; i.e., with no rate and damage parameters: Tuni =

μα
2n

λα+2λ− 0.5α − 3nN
λα+2λ− 0.5α − 3N (λα − λ− 0.5α), to this loading curve, in the 

neighbourhood of the values of μ, N, α and n as given in Table 1, a favourable fit was obtained. The resulting fit is shown in Fig. 1a 
(continuous line). This result further reassures that the identified model parameters via the curve fitting exercise to the rate data 
provide a close prediction of the expected elastic response. 

Next, we consider the data due to Hossain et al., (2012) of uniaxial tests on dielectric elastomer VHB 4910 specimens under various 
rates of λ̇ = 0.01 s− 1, 0.03 s− 1 and 0.05 s− 1. Therein, similar to the previous dataset, they also carried out step-wise stress-relaxation 
tests on the specimens, from which they constructed the so-considered ‘elastic’ stress – deformation loading curve. To test the rigour of 
our modelling framework, for this dataset we employed a reverse approach in fitting the model with the data, compared with the 
previous dataset. That is, instead of fitting the model to the rate-dependant data first and then predict the elastic response and 
parameter values, here we first fitted the elastic form of the model, Tuni =

μα
2n

λα+2λ− 0.5α − 3nN
λα+2λ− 0.5α − 3N (λα − λ− 0.5α), to the ‘elastic’ stress – 

deformation loading curve and identified the values of μ, N, α and n (i.e., the elastic parameter values). The fitting result is illustrated in 
Fig. 2a, and the elastic model parameter values are given in the top row of Table 2. Then, by fixing these parameter values, we fitted the 
model in Eq. (37), converted to the P − λ form, to data pertaining to deformations of up to λ = 2 at λ̇ = 0.01 s− 1 and 0.05 s− 1 rates 
simultaneously. The ensuing fits are presented in Fig. 2b, and the identified softening and rate parameters for this fitting are shown in 
the middle row of Table 2. Using the identified model parameters via these fittings, we undertook to predict the P − λ response at the 
intermediary rate of λ̇ = 0.03 s− 1, and compared the prediction against the experimental data. The results are shown in Figs. 2d. For all 
these fits, it is observed that the modelling results are in a favourable agreement with the experimental data. To further validate the 
model, we also considered the data for deformations up to λ = 2.5. Note that for these tests, Hossain et al., (2012) employed different 
samples, of the same material, than those used for deformations up to λ = 2. Due to this inter-variability between the samples, the rate 
effects on the stress-strain curves of the specimens tested up to λ = 2.5 are not the same as those reported in Fig. 2b for λ = 2 coun-
terparts, and thus the same rate parameter values are not valid for accurately predicting this dataset. Accordingly, we fitted the model 

Table 2 
Model parameters for dielectric elastomer VHB 4910 specimens due to Hossain et al., (2012). The top row indicates the parameter values for the 
‘elastic’ data, while the middle and bottom rows contain the identified rare parameters for tests up to λ = 2 and λ = 2.5, respectively.  

The ‘elastic’ deformation loading data 

μ [MPa] N [-]   α [-]   n [-]   

0.05 2.87   0.985   11.36   

Specimens used in tests up to λ = 2 

m1[MPa s] m2[s] m3[s] m4[s] b [-] m5[s] c [-] m6[s] κ [-] m7[s] 

2.98 8.79 -4.11 9.99 12.045 41.29 0.99 45.39 67.45 79.82 

Specimens used in tests up to λ = 2.5 

m1[MPa s] m2[s] m3[s] m4[s] b [-] m5[s] c [-] m6[s] κ [-] m7[s] 

2.75 9.95 -4.515 9.79 9.62 67.62 0.21 12.06 95.34 2.55  
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Fig. 3. Experimental nominal stress – stretch (P − λ) data versus the modelling predictions for commercial 3D-printed silicone (SIL30) samples due 
to Hossain and Liao (2020): (a) the ‘elastic’ response (up to λ = 2.5); and (b) the rate data obtained under λ̇ = 0.01 s− 1, 0.05 s− 1 and 0.1 s− 1 (up to λ 
= 2.5 deformation). These fits were obtained by simultaneously fitting Eqs. (40) and (37) to the data. (c) The predicted P − λ behaviour at λ̇ =
0.01 s− 1, 0.05 s− 1 and 0.1 s− 1 for deformations up to λ = 3 using the identified model parameters obtained by the simultaneous fits (a) and (b), 
given in Table 3, versus the experimental data. The continuous lines show the modelling results in the loading path, while the dashed lines are those 
of the unloading. 
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in Eq. (37) again simultaneously to datasets obtained at λ̇ = 0.01 s− 1 and 0.05 s− 1 rates for the tested specimens of up to λ = 2.5, with 
the same fixed values of the elastic parameters μ, N, α and n. The plots in Figs. 2c show the fitting results, and the bottom row of Table 2 
summarises the identified softening and rate parameter values. Using the identified model parameters via this exercise, we again 
predicted the P − λ response at the intermediary rate of λ̇ = 0.03 s− 1 and compared it with the experimental data. The results are shown 
in Figs. 2e. Reassuringly, the model predictions are in close affinity with the experimental data. It is therefore observed that the model 
facilitates favourable predictions of the rate-dependant behaviour from the elastic deformation response. 

We now present the modelling results of the rate data due to Hossain and Liao (2020) for a commercial 3D-printed silicone (SIL30) 
by Carbon3D™. In that study the authors also report the ‘elastic’ loading-unloading curve, obtained at a quasi-static rate of λ̇ =
0.0005 s− 1 , as well as the deformation data obtained under λ̇ = 0.01 s− 1, 0.05 s− 1 and 0.1 s− 1. The quasi-static data was fitted to the 
non-rate version of the model (i.e., when λ̇ = 0 as developed in Anssari-Benam et al., 2023a), having the form: 

Tuni = Ω
αμ
2n

λαΩακ
1 + 2λ− 0.5α − 3nN

λαΩακ
1 + 2λ− 0.5α − 3N

(
λαΩακ

1 − λ− 0.5α), (40)  

where: 

Ω1 = a −
1

b + exp[ − c (λmax − λ)(λmax − 1)]
, (41)  

and: 

Ω =
1
3
(Ω1 + 2), (42)  

simultaneously with the rate data using Eq. (37). In this way, the identified ‘elastic’ model parameters (i.e., μ, N, α, n, b, c and κ) remain 
constant also in modelling the rate data. The results are presented in Fig. 3a and 3b, and Table 3 summarises the identified model 
parameters. Note that the specimens were tested up to λ = 2.5. The favourable correlation between the data and modelling predictions 
is evident. 

Equipped with these results, we undertook to predict the P − λ response from the identified model parameters in Table 3 for de-
formations up to λ = 3, and compared it with the reported data of Hossain and Liao (2020). The predictions are shown in Fig. 3c. It is 
observed that the model favourably predicts the rate behaviour even beyond the initial range by which it was calibrated with (λ = 2.5). 

Finally, we consider here the uniaxial loading-unloading data of Wang and Chester (2018), where they report the T − λ curves for 
their Viton™ samples. Therein they carried out loading-unloading tests on the specimens for three successive cycles at quasi-static as 
well as λ̇ = 0.01 s− 1 and 0.1 s− 1 rates. Similar to the previous dataset, we fitted this dataset simultaneously to the non-rate version of 
the model (i.e., when λ̇ = 0) as given by Eq. (40) with Ω1 and Ω defined in Eqs. (41) and (42), respectively, and the rate-dependant 
form of the model as given by Eq. (37). We emphasise again that in this way the identified ‘elastic’ model parameters (i.e., μ, N, α, n, b, c 
and κ) remain constant also in modelling the rate data, as one would expect, so that only the rate-dependant evolution parameters can 
vary. The modelling results are shown in Fig. 4. The identified model parameters have been given in Table 4. 

Table 3 
Model parameters for the commercial 3D-printed silicone (SIL30) samples due to Hossain and Liao (2020).  

μ [MPa] N [-] α [-] n [-] b [-] c [-] κ [-] 

0.235 5.12 2.06 1.21 18.63 1.43 43.41 

m1[MPa s] m2[s] m3[s] m4[s] m5[s] m6[s] m7[s] 

1.75 0.02 -2.94 10.00 10− 6 9.99 9.99  
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Fig. 4. Modelling results for the experimental Cauchy stress – stretch (T − λ) data of Viton™ specimens due to Wang and Chester (2018): (a) the 
elastic loading-unloading cycles; (b) the loading-unloading cycles at λ̇ = 0.01 s− 1; and (c) the loading-unloading cycles at λ̇ = 0.1 s− 1. The 
continuous lines show the modelling results in the loading path, while the dashed lines are those of the unloading. The elastic and rate data were 
simultaneously fitted to Eqs. (40) and (37), respectively. 
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5. Remarks for discussion and conclusion 

The current work aimed to present the case for a new framework to model the rate-dependant mechanical behaviour of elastomers, 
both in loading and unloading (e.g., with softening) paths. For doing so, the relative simplicity of the model (via only an extension to 
the basic hyperelastic modelling), its thermodynamics consistency, and the accurate modelling results with relatively low number of 
model parameters were illustrated. The presented modelling framework departs from the classical approach of considering an additive 
contribution of the so called non-equilibrium, or viscous, part to the elastic response. Instead, the model parameters of the basic 
hyperelastic function are thought to vary, or evolve, with the deformation rate, and that evolution is incorporated into the model. Based 
on this framework, a specific basic hyperelastic function W was utilised, and specialised to incorporate the deformation rate and 
softening effects. The devised model was then applied to deformation datasets obtained from various elastomers, from dielectric 
elastomers to 3D-printed silicone samples and filled-rubber specimens. The preliminary results presented here indicate that the model 
favourably captures the data, even with the rather simplistic linear evolution relationships between the model parameters and the rate 
of deformation. In addition, the proposed modelling approach allows for the rate of deformation to be present as an explicit variable in 
the model; a feature that is not shared with many of the existing models in the literature. 

We note, however, that while the foregoing encouraging results provide a reassuring platform for further investigation of the 
comprehensibility and applicability of the proposed model for a broader set of elastomers, its suitability for application to a wider 
range of deformation rates (e.g., to higher deformation rates than those considered here) and multi-modal deformations (e.g., not only 
uniaxial) remains to be tested. This premise will be pursued in a follow up study. We also note the inherent empirical nature of the 
evolution relationships that characterise the variation of the model parameter values with rate in this framework. While considering 
more elaborate nonlinear relations such as power-law etc. may improve the modelling results, it will introduce a higher number of 
model parameters compared with the linear relationship considered here. Even in that case, however, the overall number of model 
parameters will still be comparable with the existing models in the literature, some of which alluded to in Section 1. It may also be 
informative to note that, as the results of Mao et al., (2017) and Hossain et al., (2020) amongst many others indicate, the softening in 
the unloading path of some elastomers may mainly be driven by the maximum deformation reached in the preceding loading cycle 
rather than the deformation rate, since the unloading paths of specimens loaded to the same deformation at different rates largely 
coincide (except for the initial difference between the stress levels), and the permanent sets also remain unaltered. Such results indicate 
that the softening parameters may be rate-insensitive, and hence there may not be any need for considering those parameters to evolve 
with rate. Should this prove to be the case, it will reduce the number of model parameters further. 

Further, it is instructive to recall that the presented modelling approach here is specific to only capturing the deformation rate 
effects, and not the broader viscoelastic behaviour such as the stress-relaxation and/or creep phenomena. On occasions where 
modelling the stress-relaxation behaviour of the subject elastomer is desired, the internal variable evolution models appear to be the 
preferred choice. However, we caution the reader on the usefulness of stress-relaxation tests and the extent of applicability of stress- 
relaxation in the functioning environment of elastomers. For example, it is well known that for truly separating the nonlinear elastic 
and time-dependant viscoelastic behaviours, an instantaneous step displacement should be applied in stress-relaxation tests onto the 
specimen. However, since mechanical testing devices are only capable of applying a ramp displacement, the specimen immediately 
begins to relax by some unknown amount during this phase, particularly if the displacement ramp is applied over a finite time. 
Therefore, the relaxation measured during the hold phase is in effect a reduced version of the actual relaxation, to the extent of the 
relaxation amount during the ramp loading phase (Doehring et al., 2004). This discrepancy naturally leads to erroneous parameter 
estimation from the relaxation tests. As another example, if the functional loading (and unloading) of elastomeric components that 
operate under high working deformation rates, or equivalently are tested under high deformation rates, occurs at a fast-enough rate so 
that the actual amount of relaxation experienced by the components is negligible, then reliance on stress-relaxation behaviour to 
calibrate a model for capturing the rate effects in those elastomers may be deemed superfluous. 

Finally, we note that the basic hyperelastic model considered here, i.e., that in Eq. (1), is of the limiting extensibility type for when 
N > 0; see Anssari-Benam (2023a). This feature means that the model will predict a rapid hardening as the deformation stretch ap-
proaches the limit. Due to the inherent nonlinear nature of the model and the minimisation process (i.e., fitting with the experimental 
data), if the model is calibrated on using stress – stretch data of lower amount of deformation, one cannot reliably expect an accurate 
estimation of the stress – stretch curve for higher levels of deformation using the same identified model parameters. See Appendix B of 
Anssari-Benam et al., (2021) for a discussion and numerical demonstrations of this point on using a sub-class of the same family of 
models. This feature is common to all models with a limiting chain extensibility characteristic, as well as models that when applied to 
the data result in a high value of the exponent(s) of the principal stretches such as, for example, the Ogden (1972) model. Therefore, a 
methodical way to calibrate the proposed model is to perform quasi-static deformation tests up to the highest level of deformation 
(stretch) possible, and simultaneously fit the model to this data as well as the data obtained from deformations at various rates. 

Table 4 
Model parameters for the commercial Viton™ samples due to Wang and Chester (2018).  

μ [MPa] N [-] α [-] n [-] b [-] c [-] κ [-] 

0.25 0.64 3.80 0.71 10.73 15.90 16.88 

m1[MPa s] m2[s] m3[s] m4[s] m5[s] m6[s] m7[s] 

19.23 14.98 -20.95 18.12 14.80 3.79×10− 5 101.23  
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Alternatively, if quasi-static tests are not carried out, the tests at various rates must be performed to the highest achievable level of 
deformation (stretch), and the model be calibrated by simultaneous fitting to those datasets at various rates. The identified model 
parameters in this way can then be used for predicting the deformation behaviour of the subject specimen at other rates (high or low), 
up to the deformation levels used for calibrating the model. 
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Appendix A. Thermodynamical consistency of the constitutive law in Eq. (19) 

A thermodynamical axiom for assessing the validity of any given constitutive relationship is its compliance with the second law of 
thermodynamics. Within the framework of continuum mechanics, a convenient manifestation of this law is considered through the 
Clausius-Duhem inequality which stipulates that the rate of dissipation in any deformation described by a proposed constitutive law 
must be non-negative. Assuming isothermal deformations, Naumann and Ihlemann (2015) have brilliantly analysed the compliance of 
the original pseudo-elasticity theory (of Ogden and Roxburgh, 1999) with this inequality. Adopting their approach, here we briefly 
demonstrate the thermodynamics validity of our proposed constitutive law in Eq. (19). 

Considering only the mechanical contributions (i.e., discounting the temperature and heat transfer effects etc.), the Clausius- 
Duhem inequality reads (Naumann and Ihlemann, 2015): 

D :=
1
2

S : Ċ − Ẇ ≥ 0, (A1)  

where D is the rate of dissipation per unit volume, W is the free energy (e.g., from which the stresses are derived), Ẇ is its time 
derivative, S and Ċ are the 2nd Piola-Kirchhoff and the time-derivative of the right Cauchy-Green tensors, respectively, and the 
operator (:) is ‘double contraction’. Within the context of the current work, the free energy of concern is W rgiven by Eq. (19). 
Accordingly, we must have: 

D :=
1
2

S : Ċ − Ẇ
r
≥ 0, (A2)  

with: 

Ẇ
r
=

dW
r

dt
=

∂W
r

∂C
:

∂C
∂t

+
∂W

r

∂Ωr ⋅
∂Ωr

∂t
. (A3)  

Recall from Section 3 that W r ≡ W r(F,Ωr; Ḟ); i.e., Ḟ is a parameter in W r and not a variable, set to a specified value in experiments, 
and hence the chain rule in the right-hand side of Eq. (A3). By substituting ∂C

∂t and ∂Ωr

∂t in Eq. (A3) with the familiar notations Ċ and Ω̇r, 
respectively, and inserting into (A2) we get: 

D :=
1
2

S : Ċ −

(
∂W

r

∂C
: Ċ+

∂W
r

∂Ωr Ω̇r
)

≥ 0 . (A4)  

However, by definition (see Appendix B): 

∂W
r

∂Ωr = 0, (A5)  

which renders the inequality in (A4) as: 

D :=

(
1
2

S −
∂W

r

∂C

)

: Ċ ≥ 0 . (A6)  
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This inequality is a priori satisfied since the 2nd Piola-Kirchhoff tensor is derived from the free energy W r by definitona as: 

S = 2
∂W

r

∂C
. (A7)  

Therefore, the proposed constitutive law in Eq. (19) is in compliance with the Clausius-Duhem inequality in that the ensuing dissi-
pation is non-negative. 

However, as noted by Naumann and Ihlemann (2015), it is somewhat counter-intuitive to consider the softening in the unloading 
path as a non-dissipative phenomenon (i.e., D = 0). To the contrary, it is reasonable to expect a positive dissipation. In their original 
paper, Ogden and Roxburgh (1999) defined a dissipation rate parameter, derived from the non-recoverable (or residual) part of the 
energy, and showed that this rate was always positive. Employing their approach here, it can be shown that the same finding also 
applies to the constitutive law in Eq. (19). Accordingly, when the continuum returns to a fully unloaded (i.e., λi = 1) configuration, we 
have from Eq. (19) that: 

W
r
= Ωr × 0 + ϕr (Ωr

min

)
= ϕr(Ωr

min

)
, (A8)  

where we note that Xi = λi since there has been no permanent set and thus Ŵ
r
= 0, akin to a non-deformed state, and that the damage 

variable Ωr by definition attains its minimum value Ωr
min. The residual value ϕr(Ωr

min) is referred to as the non-recoverable part of the 
energy W r; i.e., the part that is lost due to dissipation. Now, by definition ∂W r

∂Ωr = 0, and thus from Eq. (19) we get: 

∂W
r

∂Ωr = 0 ⇒ Ŵ
r
+ Ωr∂Ŵ

r

∂Ωr +
∂ϕr

∂Ωr = 0, (A9)  

which, in view of the fact that ∂Ŵ
r

∂Ωr = 0 (see, e.g., Appendix B) results in: 

Ŵ
r
= −

∂ϕr

∂Ωr = − ϕr′ , (A10)  

where the notation ϕr′ has been introduced for ∂ϕr

∂Ωr. Since the maximum value of energy ̂W
r
max occurs at the maximum deformation point 

before the unloading initiates; i.e., when Ωr = 1, we obtain from Eq. (A10): 

Ŵ
r
max = − ϕr′ (1). (A11)  

As pointed out by Ogden and Roxburgh (1999), Eq. (A11) indicates that function ϕr, through Ŵ
r
max, depends on the point at which the 

unloading initiates. Similar to Ogden and Roxburgh (1999), then, let us define an arbitrary function f(Ωr) that accounts for this feature: 

f (Ωr) = ϕr ′ (Ωr) + Ŵ
r
max = ϕr ′ (Ωr) − ϕr ′ (1) ⇒ ϕr ′ (Ωr) = f (Ωr) + ϕr ′ (1) . (A12)  

By integrating both sides of the above ansatz with respect to Ωr we get: 

ϕr(Ωr) =

∫Ωr

1

f (Ωr)dΩr + (1 − Ωr)Ŵ
r
max, (A13)  

and to obtain the non-recoverable part of energy in Eq. (A8), we insert Ωr = Ωr
min: 

ϕr(Ωr
min

)
=

∫Ω
r
min

1

f (Ωr)dΩr +
(
1 − Ωr

min

)
Ŵ

r
max . (A14)  

By differentiating the above equation with respect to time we find: 

(A15)  

Since by definition 0 < Ωr ≤ 1, it is clear that (1 − Ωr
min) ≥ 0. In addition, since stress is increasing with deformation (up to the failure 

point), it follows that Ŵ
r
max is also increasing with deformation and thus Ŵ

r
max > 0. Therefore, ϕr(Ωr

min) ≥ 0, meaning that the rate of 
dissipation is always non-negative. 

It is thus observed that on using either the Clausius-Duhem inequality approach of Naumann and Ihlemann (2015) or the energy 
argument of Ogden and Roxburgh (1999), the constitutive law in Eq. (19) is consistent with the requirements of the second law of 
thermodynamics, in that the ensuing dissipation rate is always non-negative. 
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Appendix B. Derivation of the (Cauchy)stress-stretch T − λ relationship in Eq. (27) 

Since ε̇ is a parameter, with a given fixed value in experiments, the damage parameter Ωr is only a function of the deformation 
gradient F as its variable. Let F denote an arbitrary function which constrains Ωr to F as (Ogden, 2001): 

F (F,Ωr) = 0 . (B1)  

Since F is an arbitrary function, and the dependence of W r on Ωr is also arbitrary, one solution is obtained if F is set to be: F = ∂W r

∂Ωr . 
It follows from Eq. (B1) that: 

∂W
r
(λi,Ωr; ε̇)
∂Ωr = 0 . (B2)  

Note that the dependence of F on F has been taken via the eigenvalues of F, i.e., the principal stretches λi. From the definition of Ωr in 
Eq. (24) we note that ∂Ωr

∂Ωr
i
= 1

3. Therefore, Eq. (B2) yields: 

∂W
r
(λi,Ωr; ε̇)
∂Ωr

i
= 0 . (B3)  

Similarly, the dependence of Ωr
i on F may be taken to be characterised by: 

F i
(
F,Ωr

i

)
= 0, i = 1, 2, 3, (B4)  

where F i are also arbitrary functions relating Ωr
i to F. Again, setting F i =

∂Ŵ
r

∂Ωr
i 

renders a possible solution, and leads to: 

∂Ŵ
r(

λi,Ωr
i ; ε̇
)

∂Ωr
i

= 0 . (B5)  

Given that ∂Ωr

∂Ωr
i
= 1

3, we get: 

∂Ŵ
r(

λi,Ωr
i ; ε̇
)

∂Ωr = 0 . (B6) 

On using Eq. (19) we find that: 

∂W
r
(λi,Ωr ; ε̇)
∂λi

=
∂

∂λi

[
Ωr Ŵ

r(
λi,Ωr

i ; ε̇
)
+ ϕr(Ωr)

]

=
∂Ωr

∂λi
Ŵ

r(
λi,Ωr

i ; ε̇
)
+ Ωr∂Ŵ

r (
λi,Ωr

i ; ε̇
)

∂λi
+

∂ϕr(Ωr)

∂λi
.

(B7)  

From Eq. (B2): 

∂W
r
(λi,Ωr ; ε̇)
∂Ωr = 0 ⇒

∂
∂Ωr

[
Ωr Ŵ

r(
λi,Ωr

i ; ε̇
)
+ ϕr(Ωr)

]
= 0

⇒ Ŵ
r (

λi,Ωr
i ; ε̇
)
+ Ωr∂Ŵ

r(
λi,Ωr

i ; ε̇
)

∂Ωr +
∂ϕr(Ωr)

∂Ωr = 0,

(B8)  

which in view of Eq. (B6) results in: 

Ŵ
r(

λi,Ωr
i ; ε̇
)
+

∂ϕr(Ωr)

∂Ωr = 0 ⇒
∂ϕr(Ωr)

∂Ωr = − Ŵ
r(

λi,Ωr
i ; ε̇
)
. (B9)  

Applying the chain rule to Eq. (B9) we obtain: 

∂Ωr

∂λi
= −

1
Ŵ

r(
λi,Ωr

i ; ε̇
) ⋅

∂ϕr(Ωr)

∂λi
. (B10)  

Substituting for ∂Ωr

∂λi 
from Eq. (B10) into Eq. (B7) yields: 

∂W
r
(λi,Ωr; ε̇)
∂λi

= Ωr∂Ŵ
r(

λi,Ωr
i ; ε̇
)

∂λi
. (B11)  

However, we note from the condition in Eq. (23) that: ∂φr(Ωr
i )

∂λi
= −

∂wr(λi)
∂λi

, which in view of Eq. (B11) implies: 
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∂Ŵ
r(

λi,Ωr
i ; ε̇
)

∂λi
=

∂
[
W̃

r (
λi,Ωr

i ; ε̇
)
+ φr

(
Ωr

i

)
+ wr(λi)

]

∂λi
=

∂W̃
r(

λi,Ωr
i ; ε̇
)

∂λi
. (B12) 

Using the chain rule again we find: 

∂W̃
r(

λi,Ωr
i ; ε̇
)

∂λi
=

∂W̃
r(

λi,Ωr
i ; ε̇
)

∂Xi
⋅

∂Xi

∂λi
=
(
Ωr

i

)j (ε̇)∂W̃
r(

λi,Ωr
i ; ε̇
)

∂Xi
. (B13)  

By substituting this result into Eq. (B11) we obtain: 

λi
∂W

r

∂λi
= Ωrλi

(
Ωr

i

)j (ε̇)∂W̃
r

∂Xi
= ΩrXi

∂W̃
r

∂Xi
. (B14)  

which renders Eq. (28). Note that for simplicity we have dropped the notational dependence of W̃
r 

on (λi,Ωr
i ; ε̇). 
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