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Abstract

Vibration energy harvesting is an emerging technology that enables electrical low-power
generation using electromechanical structures or devices with piezoelectric elements. The
prevailing approach for the characterization of the energy-harvesting performance in these
devices is to consider a finite structure operating under forced vibration conditions. This
thesis introduces an alternative framework whereby the intrinsic energy-harvesting charac-
teristics are rigorously quantified independent of the forcing and the structure size, and by
doing so, the notion of a piezoelectric material is considered rather than a finite piezoelectric
electromechanical structure. To illustrate the intrinsic quantification termed as “intrinsic
energy-harvesting availability,” suspended monoatomic and diatomic piezoelectric phononic
crystals (MPPnCs and DPPnCs) are considered and treated with Bloch’s theorem; conse-
quently, the representative energy-harvesting characteristics within the span of the unit cell’s
Brillouin zone (BZ) are formally quantified. In the absence of shunted piezoelectric elements,
the wavenumber-dependent dissipation (damping-ratio) of the phononic crystal (PnC) is
computed and shown to increase, as expected, with the level of prescribed (raw) damping.
With the inclusion of the piezoelectric elements, the wavenumber-dependent dissipation
rises by an amount proportional to the energy intrinsically available for harvesting; upon
summation of this increased amount over all the damping-ratio branches (acoustic and optical
modes) and subsequent complete integration over the BZ, a quantity representative of the net,
i.e., useful, dissipative energy intrinsically available for harvesting is obtained. Piezoelectric
elements comprising purely resistive and inductor-equipped shunt circuits are investigated.
A parametric design study yielding optimal piezoelectric-element properties in terms of the
proposed intrinsic energy-harvesting availability measure is also presented.

Metadamping is the phenomenon of either enhanced or diminished intrinsic dissipation
in a material emanating from the material’s internal structural dynamics. It has previously
been demonstrated that an elastic locally resonant metamaterial (LRM) may be designed to
exhibit higher or lower dissipation compared to a statically equivalent PnC with the same
amount of prescribed damping. In this thesis, it is revealed that even further dissipation
(positive metadamping) or, alternatively, further reduction of loss (negative metadamping)
may be attained in an inertially amplified material (IAM) and an inertially amplified locally
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resonant metamaterial (IALRM) compared to a statically equivalent PnC and LRM with
the same amount of prescribed damping. This is demonstrated by a passive configuration
whereby an attenuation peak is generated by the motion of an auxiliary mass connected to
the main/baseline mass by an inclined rigid link. It is further illustrated that by coupling
the inertially amplified attenuation peak with that of a local-resonance attenuation peak,
a trade-off between the temporal- and spatial-attenuation intensities associated with the
material properties is observed for a given range of the inertial-amplifier angle, i.e., angle
between the inclined rigid links and the central axis of the metamaterial. As a result, design
for desired performance is possible along this trade-off regime by adjustment of the inertial-
amplifier angle, i.e., passive tuning. A region of monotonic increase in both attenuation
types also exists for a different range of the inertial-amplifier angle. These results create a
pathway for highly expanding the Ashby space for load-bearing and damping capacities or
stiffness-damping capacities via design of a material’s internal structure.

Building upon the work on characterizing the amount of useful dissipative energy in-
trinsically available for harvesting in a piezoelectric periodic media, the energy-harvesting
availability is illustrated for a locally resonant piezoelectric metamaterial (LRPM) and an
inertially amplified locally resonant piezoelectric metamaterial (IALRPM). It is also demon-
strated that an LRPM with the same piezoelectric electrical parameters and the same amount
of prescribed damping as for a statically equivalent reference piezoelectric phononic crystal
(PPnC) exhibits an inherent emergence in the intrinsic energy-harvesting availability. This
intrinsic phenomenon is termed as “metaharvesting.” Furthermore, it is shown that an IAL-
RPM with the same piezoelectric electrical parameters and the same amount of prescribed
damping as for a statically equivalent LRPM and a statically equivalent reference PPnC
exhibits a further emergence in the intrinsic energy-harvesting availability, i.e., enhanced
metaharvesting.
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Chapter 1

Introduction

1.1 Brief summary of pertinent topics

Energy harvesting [1, 2] is the process of aggregating low-level ambient energy and convert-
ing it into useful electrical energy and has been a topic of intensive fruitful research for the
past few decades. The notion of capturing or harvesting different types of energies, such as
kinetic (waves and wind), thermal (solar), and electromagnetic, in nature or from man-made
constructs has led to a variety of modern innovative techniques of power generation, and this
venture continues to grow vibrantly among various research communities. The advent of low-
power energy-harvesting systems that can be utilized to power devices that are usually battery
operated has brought about new opportunities for the design of energy-efficient products.
Among the diverse range of energy-harvesting techniques that currently exist, vibration-based
energy harvesting has received substantial attention from researchers across a variety of
disciplines [3]. Many artificial structures are susceptible to low-frequency structural vibra-
tions; this naturally led to the promising avenue of harnessing the vibration (kinetic) energy,
arising due to ambient, base-excited, or forced mechanical vibrations, that would, otherwise,
simply dissipate as loss. Energy can be harvested from mechanical-vibration sources by
employing piezoelectric material [2, 4, 5], shape memory alloys [6], ionic polymer metal
composites [7, 8], magnetostrictive materials [9], and bistable systems [10]. Piezoelectric
vibration-energy harvesting (PVEH) in particular has demonstrated practical promise for the
generation of low-power electricity for a variety of applications including micro electrical de-
vices [11], wireless sensors [12], transducers [13], micro-electromechanical-system (MEMS)
portable devices [14], structural health monitoring devices [15–17], biomedical implants [18]
among others. Sodano et al. [19] and Anton et al. [4] presented in-depth research reviews on
vibration-energy harvesting using piezoelectric-material-based structures.
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A considerable amount of theoretical and experimental research has been carried out on
harvesting energy from the mechanical vibrations of cantilever beams with a tip mass and a
piezoelectric substrate/patch bonded to its surface [2, 20, 21]. Energy harvesting in beams
with a tip mass have also been examined in the non-linear vibrations regime [22]. In the
last two decades, a significant amount of research has also been undertaken in the area of
active vibration suppression using piezoelectric systems [23–27]. In the last decade, the area
of active vibration suppression has been merged with that of PVEH, which has resulted in
many insightful results with many possible practical applications [28]. The energy-harvesting
electromechanical structures proposed and analysed in the existing literature have been
analysed at the extrinsic level, i.e., with considerations pertaining to sizing, forcing, and
boundary conditions (operational requirements).

Concurrent to energy-harvesting research, the study of elastic/plane-wave propagation
in infinite periodic media, such as artificially structured periodic materials (waveguide)
[29–31], has been an explosive area of research over the past three decades. In this domain,
two key classes of engineered materials emerged: phononic crystals (PnCs) [32–38] and
acoustic/elastic locally resonant metamaterials (LRMs) [39–42]. When the wavelength in a
periodic array is of the order of the lattice spacing, PnCs undergo Bragg scattering, which
results in a band structure1, exhibiting band gaps (stop bands), shaped by scattering of waves
due to periodic inclusions and/or interferences between transmitted and reflected waves
at interfaces and/or boundaries within the medium. In acoustic/elastic LRMs, in addition
to wave interferences, the band structure is also influenced by couplings, arising due to
hybridizations, between resonance modes of the substructure, e.g., a local resonator, and
elastic-wave modes in the hosting medium when the wavelength is much larger than the
lattice constant [43]. The band-gap phenomenon, dissipation characterized by damping ratio,
and other wave-propagation characteristics, such as group and phase velocities, in reciprocal
lattice space [44, 45] have been among the key features of interest in both these classes
of materials. Among the important characteristics are the spatial-attenuation (measure of
decay in space) and temporal-attenuation (measure of decay in time) properties in particular.
Regardless of the level of dissipation for both free and driven waves, spatial attenuation
exists in phononic materials and is exhibited in and quantified by the imaginary part of the
wavenumber2 domain [46, 47]. More on free and driven waves can be found in section
2.3 of chapter 2. For free waves in a damped model, the temporal attenuation or level of

1A band structure is a graphical representation of frequency regions within which waves are allowed to
propagate (pass bands or transmission bands) and frequency regions within which waves are not allowed to
propagate (stop bands or attenuation bands).

2A wave exhibits a temporal angular frequency (rad s−1) and a spatial angular frequency (rad m−1).
The spatial angular frequency is referred to as the wavenumber. Wavenumbers are generally complex, i.e.,
κ = κreal + iκimag [46–48].
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dissipation is quantified by the wavenumber-dependent damping ratio corresponding to each
frequency dispersion branch [47]. While comparably wide Bragg band gaps may be realized
by rigorous unit-cell-topology design and optimization [49, 50], the unit cell is essentially
constrained to be of the order of the interference-waves wavelength, which indicates relatively
high-frequency band gaps for a small unit cell. While locally resonant metamaterials boast
an efficient realization of sub-wavelength low-frequency band gaps with small unit cells due
to the independency of the local-resonance couplings from the wave interferences across
the periodic host medium, they tend to be excessively narrow and require a relatively heavy
resonator to exhibit significantly lower frequency band gaps [51]. In pursuit of addressing
the aforementioned limitations, the mechanism/concept of inertial amplification has been
introduced as an alternative for band-gap generation in periodic structured media [52–54].
An inertially amplified locally resonant metamaterial (IALRM) exhibits a subtle contrast
to an LRM—in addition to a local resonator, it involves a mechanical mechanism which
magnifies the“effective inertia” of the unit cell [55, 56]. The mechanism, generally, involves
an auxiliary mass connected to the main masses within two adjacent unit cells via rigid links.

The merging of the research areas of PVEH and periodic media, PnCs and LRMs in
general, has gained a lot of attention in the last decade. The amalgamation of piezoelectricity
into PnCs for active tuning or energy harvesting has been the subject of various studies [57–
65]. Furthermore, piezoelectric energy harvesting in elastic LRMs has received widespread
attention in the energy harvesting community as evidenced in the reviews by Lee et al. [66],
Hu et al. [67], and Chen et al. [68]. Piezoelectricity can be used for energy harvesting [69]
and/or active tuning of the local-resonance characteristics for vibration attenuation [70] or
waveguiding [71]. The latter two applications are also referred to as band-gap tuning or wave
filtering. In a mass-in-mass elastic-metamaterial, i.e., an LRM, model statically equivalent
to a PnC model, in a local-resonance state, the effective mass can become negative near
the resonant frequency and the dynamic response results in an out-of-phase oscillation as
opposed to the in-phase input force. Owing to the out-of-phase oscillations, the resultant
force approaches zero at the resonant frequency; i.e., the net displacement is considerably
suppressed, and the accumulated wave energy remains localized within the resonators. By
installing an appropriate piezoelectric mechanism at the site of wave-energy localization, the
harvesting efficiency achieved is higher than that of a conventional piezoelectric substrate
[72]. Owing to the high Q-factor3 associated with the local-resonance mechanism and the
relatively narrow range of the resonating frequency, elastic metamaterials with an augmented
mass are well suited for efficient PVEH. For the aforementioned reasons, LRMs can portray

3Q-factor is defined as the ratio of the initial energy stored in the resonator to the energy lost in one
oscillatory cycle.



1.1 Brief summary of pertinent topics 4

simultaneous dual functionalities of vibration attenuation and energy harvesting and have
been demonstrated to do so [73–76]. As the enhanced PVEH performance of an LRM stems
from the local-resonance mechanism, amplifying the inertia of the local resonator could result
in even further enhancement. Adhikari et al. [77] showed that a configuration comprising of a
cantilever beam with bimorph piezoelectric layers and an inertially amplified tip mass resulted
in enhanced low-frequency PVEH. Similar to aperiodic energy-harvesting structures, the
energy-harvesting periodic electromechanical structures proposed and analysed in the existing
literature have been analysed at the structural or extrinsic level, i.e., with considerations
pertaining to sizing, forcing, and boundary conditions (operational requirements).

The study of dissipation in phononic materials is crucial because the intrinsic dissipa-
tion/damping performance of a material in dissipating kinetic/vibrational energy induced by
elastic waves determines the energy-harvesting performance of an electromechanical struc-
ture made out of the same material. Different types of phononic materials exhibit different
amounts of intrinsic dissipation, i.e., dissipation due to the internal design or microstructure.
This amount of intrinsic dissipation is termed as “loss” and, naturally, will always be lost
during the energy-harvesting process within a piezoelectric electromechanical structure
designed using a particular phononic material, i.e., it will not be harvested. However, the
higher the amount of intrinsic dissipation within the phononic material, the better will be the
energy-harvesting performance because a higher amount of intrinsic dissipation indicates
that the phononic material is also intrinsically geared towards dissipating or absorbing and
potentially harvesting a large amount of vibrational energy, surpassing the amount that is
represented by the intrinsic dissipation.

The phenomenon of dissipation is of significant importance in the area of structural
dynamics and, hence, has been continually subjected to in-depth theoretical research, which
has resulted in interesting and valuable findings, which have been exploited in many areas of
engineering. In a finite structure, dissipation depends on the structural dimensions and forcing
frequency. In an infinite periodic medium, such as an artificially structured periodic material
(waveguide), dissipation also shows a wavenumber (or wavevector) dependency. Damping
exhibited by materials is an intrinsic property which may play a critical role in determining the
structural response when present in a structural configuration. The relation between damping
capacity (dissipation) and stiffness of materials has been the focus of rigorous research
over the past few decades. Materials such as crystalline diamond and ceramics that exhibit
high stiffness, i.e., load-bearing capacity, are generally at a disadvantage when it comes to
damping capacity which is quite low. Contrarily, materials that are highly dissipative, such
as rubber- and foam-based materials, generally tend to possess low load-bearing capacities.
When it comes to applications such as vibration attenuation, shock absorption, and acoustic
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absorption, an increase in the damping intensity in the materials used, generally, ensues at the
expense of stiffness or mechanical load-bearing capacity, i.e., the trade-off is quite prominent.
Precisely engineering a material that possesses the capability of exhibiting damping and
stiffness properties in just the right proportion for a specific operational requirement has been
an active area of research within the domain of dynamics of materials, where one of the vital
objectives is to overcome the trade-off between stiffness and damping.

Materials such as fibre-reinforced composites and metal alloys can be tuned to exhibit
stiffness and damping capacities in nearly the right proportion but not quite accurately. A
class of materials referred to as hierarchical composite materials [78] has been shown to over-
come the trade-off in principle. Lattice or periodic materials, an emerging class of materials
as discussed above, such as one- or two-dimensional PnCs, LRMs, or IALRMs offer promis-
ing results with regards to simultaneously maximizing damping and stiffness capacities. In
an elastic waveguide, the representation of dissipation as an intrinsic wavenumber-dependent
quantity—damping ratio—provides a fundamental measure that is independent of global
dimensions, boundary conditions, and nature of forcing. A structure might be comprised
of many constituent substructures, each with its own dimensions along the x-, y-, and z-
directions. The term “global dimension” indicates the overall dimensions of the structure
along the aforementioned three directions. Contrarily, a material has no associated dimen-
sions. In the last decade, acoustic metamaterials with local-resonance properties [39] were
proposed as a candidate for usage in materials designed to exhibit high levels of dissipa-
tion while maintaining high stiffness. This led to the introduction of the phenomenon of
metadamping [79, 80] in which a locally resonant metamaterial exhibits high levels of dissi-
pation throughout the Brillouin-Zone (BZ) spectrum as a result of an emergence of damping
due to the presence of the local resonance. The phenomenon of metadamping has also
been investigated in inerter-based metamaterials. Aladwani et al. [81], presented a detailed
study on how the dispersion profiles, damping performance, and versatility of metamaterials
can be shaped and augmented by reconfiguring different variations of hierarchical inertant
mechanical networks. The research accentuates the vital roles played by different types of
inertant mechanical networks and the damping placement within them in influencing the
response, band-gap characteristics, and emergent dissipation. The choice of the inertant
network and appropriate internal damping deployment can be adjusted to realize an effi-
cient damped response suitable for specific applications in structural dynamics. The article
presents a comprehensive comparative analysis of dissipation shown by various types of
inertant mechanisms. However, it does not illustrate the enhanced emergence of dissipation,
i.e., metadamping, due to the inertant mechanisms relative to a statically equivalent PnC
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or an LRM for a wide range of long-wave sonic speeds, i.e., group velocities (measure of
quasi-static stiffnesses) by mere passive tuning.

1.2 Problem statement and thesis objectives

While the research works mentioned above have examined the electromechanical dispersion
characteristics, the focus has purely been on the energy-harvesting capacity of the aperiodic
or periodic electromechanical structure; i.e., the analysis has been performed to quantify
the amount of energy harvested in the form of electrical power and maximize it at the
extrinsic or structural level, where the focus is on the structural-dynamics performance and
the electromechanical structure is constrained by factors such as global dimensions, nature
of forcing, and boundary conditions. Moreover, every energy-harvesting electromechanical
periodic structure loses a certain amount of vibrational/kinetic energy, referred to as “loss,”
due to raw damping and possibly due to environmental factors, and this loss goes unaccounted
for during the performance analysis. With regards to the trade-off between dissipation and
load-bearing (stiffness) capacities, up until now, the phenomenon of metadamping has only
been illustrated in LRMs relative to a statically equivalent PnC for a wide range of long-wave
sonic speeds. This thesis addresses the aforementioned issues and, in the process, lays out
and accomplishes the following objectives:

1. A new formal approach, applicable to shunted piezoelectric periodic media, is pre-
sented for the characterization of the amount of useful dissipative energy available for
harvesting—energy-harvesting availability—that is fundamentally at the intrinsic or
material level in contrast to the extrinsic or structural/device level. The underlying
rationale behind energy-harvesting availability is to take the “loss,” inevitable due
to raw damping and environmental factors, into account and, consequently, give a
formal wavenumber-dependent representation of the net dissipative energy intrinsically
available for harvesting. The proposed concept of energy-harvesting availability aims
to appreciate the quality and performance of a piezoelectric periodic media at an
intrinsic unit-cell level and does not take anything away from or disagree in any way
with energy-harvesting analysis for a finite piezoelectric periodic media. (chapter 5)
[82].

2. It is revealed that even further dissipation (positive metadamping) or, alternatively,
further reduction of loss (negative metadamping) may be attained in an inertially
amplified material (IAM) and an inertially amplified locally resonant metamaterial
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(IALRM) compared to the improvements attained by a statically equivalent elastic
LRM (chapter 6) [48].

3. By combining inertial amplification with local resonance, i.e., in the IALRM, and,
consequently, coupling the inertially amplified attenuation peak with that of a local-
resonance attenuation peak, the unique phenomenon of a trade-off between the
temporal- and spatial-attenuation intensities associated with the material properties is
observed for a given range of the inertial-amplifier angle, i.e., angle between the rigid
links and the central axis of the metamaterial (chapter 6).

4. It is demonstrated that the intrinsic energy-harvesting availability is enhanced by a local-
resonance mechanism and even further enhanced by adding an inertial-amplification
mechanism; this enhancement is, essentially, an emergence of intrinsic energy-harvesting
availability and, hence, is termed as metaharvesting (chapter 7).

The concept/quantification of intrinsic (independent of forcing, structure size, and bound-
ary conditions) energy-harvesting availability is demonstrated in suspended piezoelectric
phononic crystals (PPnCs) under free vibration and comprising of shunted circuits without
and with an inductor by comparing its dissipation characteristics, obtained after Bloch anal-
ysis, to that of its non-piezoelectric counterpart with the same amount of prescribed (raw)
damping. By considering the PPnC as a discretized (lumped-parameter model) material and
solely investigating the effects of the piezoelectric parameters, it is demonstrated that it ex-
hibits higher wavenumber-dependent damping-ratio in comparison to the statically equivalent
PnC, where the difference in damping-ratio is a representation of the useful dissipative energy
intrinsically available for harvesting. Positive and negative metadamping in the IAM and the
IALRM is demonstrated by using a statically equivalent PnC and a statically equivalent LRM
as references. The phenomenon of metaharvesting in a locally resonant piezoelectric meta-
material (LRPM) and enhanced metaharvesting in an inertially amplified locally resonant
piezoelectric metamaterial (IALRPM) is demonstrated by employing a statically equivalent
PPnC with the same piezoelectric material parameters and the same amount of prescribed
damping as the reference.

1.3 Thesis outline

The outline of this thesis is as follows. In addition to introducing the topics relevant to
this thesis by presenting a summarized literature review in section 1.1 of the current in-
troductory chapter, chapter 2 further expounds on the pertinent topics in a brief literature
review. Chapter 3 presents an overview of the dispersion and dissipation characteristics, in a
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Bloch wave-propagation framework, of diverse types of one-dimensional non-piezoelectric
and piezoelectric periodic media, namely, PnC, PPnC, LRM, LRPM, IALRM, and IAL-
RPM, to illustrate the applicability of the analytical work presented in chapter 5 to the
aforementioned piezoelectric periodic media. The dispersive and dissipative behaviours
of the non-piezoelectric and piezoelectric periodic materials are presented in a compara-
tive format. Chapter 4 presents the dispersion and dissipation characteristics, in a Bloch
wave-propagation framework, of a two-dimensional PnC and PPnC to demonstrate that the
analytical work presented in chapter 5 is also applicable to two-dimensional cases. For
simplicity, only a monoatomic PnC and the corresponding piezoelectric version are con-
sidered. Chapter 5 illustrates the new intrinsic concept of energy-harvesting availability in
suspended PPnCs and presents optimal values for the piezoelectric-element properties in
terms of the proposed intrinsic quantity. Chapter 6 illustrates the phenomena of positive and
negative metadamping in an IAM and an IALRM and the unique phenomenon of a trade-
off between the temporal- and spatial-attenuation intensities associated with the material
properties. Chapter 7 presents an overview of metadamping in an LRM and an IALRM and
demonstrates energy-harvesting availability in an LRPM and an IALRPM and, consequently,
an emergence of energy-harvesting availability, i.e., metaharvesting, in the LRPM and the
IALRPM by comparing the quantity to that of the statically equivalent PPnC. Finally, chapter
8 summarizes the previous chapters and gives a few potential future works.

1.4 Thesis outcomes: journal articles, conference
presentations, and posters

The research outcomes of this thesis are contained within the following literary works, namely
peer-reviewed journal publications, conference presentations, and research posters:

1.4.1 Journal publications

• Hussein MI, Patrick I, Banerjee A, and Adhikari S. Metadamping in inertially am-
plified metamaterials: Trade-off between spatial attenuation and temporal attenuation.
Journal of Sound and Vibration, page 116977, 2022, doi.org/10.1016/j.jsv.2022.116977.
(contents of chapter 6) [48].

• Patrick I, Adhikari S, and Hussein MI. Brillouin-zone characterization of piezoelectric
material intrinsic energy-harvesting availability. Smart Materials and Structures,
30(8):085022, 2021, doi.org/10.1088/1361-665X/ac0c2c. (contents of chapter 5) [82].
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The most recent article is published as a “Rapid Communication” in the Journal of Sound
and Vibration (JSV). Rapid Communications in the JSV are short papers focusing on fun-
damentally new and innovative ideas, new experimental observations, or definition of new
arduous problems. The contents of chapter 7 will potentially form the journal article titled
“Metaharvesting: Emergent energy harvesting by piezoelectric metamaterials,” which is being
prepared for submission.

1.4.2 Conference presentations

• Patrick I and Adhikari S. Wave Propagation in mechanical metamaterial configurations
with piezoelectric vibration-energy harvesters. Proceedings of the 10th International
Conference on Metamaterials, Photonic Crystals, and Plasmonics (META 2019), July
23-26, 2019, Lisbon, Portugal, ISSN: 2429-1390.

1.4.3 Research posters

• Patrick I and Adhikari S. Wave propagation in energy-harvesting mechanical meta-
materials. Zienkiewicz Centre for Computational Engineering (ZCCE) postgraduate
workshop 2019, College of Engineering, Bay Campus, Swansea University, Swansea,
2019.

• Patrick I and Adhikari S. Wave propagation in energy-harvesting mechanical meta-
materials. Zienkiewicz Centre for Computational Engineering (ZCCE) postgraduate
workshop 2018, College of Engineering, Bay Campus, Swansea University, Swansea,
2018.



Chapter 2

Literature Review

2.1 Introduction

Considering the objectives of the thesis and that it is an amalgamation of the domains of
elastic periodic materials (material dynamics or elastodynamics) and energy harvesting,
investigating dispersion and dissipation characteristics, it would be effective to present a
brief literature survey in the following four categories:

• Energy harvesting in electromechanical structures,

• Material dynamics of elastic periodic media,

• Energy harvesting in elastic periodic media,

• Metadamping: Emergence of dissipation/damping in elastic metamaterials.

The aforementioned topics are briefly surveyed in the existing literature and presented as
reviews in the following sections.

2.2 Energy harvesting in electromechanical structures

The idea of scavenging useful energy effectively has been researched extensively, and this
is manifested in many physical realizations, i.e., energy-harvesting systems, and numerous
publications demonstrating new concepts and optimization studies. The term “useful” in the
phrase “useful energy” is key as there is always some loss that dissipates into the environment.
Endeavours have been made to capture or harvest different types of energies, e.g., kinetic
(vibrational (wind/waves)), thermal, and electromagnetic, from ambient or artificial sources
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using various types of contraptions; this has led to a variety of innovative and efficient
methods of low-power generation, and this trend continues to grow actively in the energy-
harvesting communities [3]. Low-power battery-operated devices can be potentially powered
by low-power energy-harvesting systems. Generally, with regards to practical applications,
low-power energy-harvesting systems are manifested in micro electromechanical system
(MEMS) devices. Of the many energy-harvesting strategies, harvesting the kinetic energy
from ambient or forced vibrations has been comprehensively studied under the combined
areas of structural dynamics and energy harvesting. As mentioned by Williams and Yates in
their work [83] on vibrational energy harvesting for microsystems, the three fundamental
vibration-to-electric energy conversion techniques are piezoelectric [84], electrostatic [85],
and electromagnetic [86] transductions. A significant amount of research has been conducted
on the implementation of the aforementioned conversion mechanisms for low power yield
using ambient vibrations. The experimental research concerning these mechanisms are
summarized in the review articles by Beeby et al. [11] and Cook-Chennault et al. [14].
Among the three transduction mechanisms, piezoelectricity has been in the spotlight for the
past two decades. Many review articles [4, 13, 14, 19] have a laid a special emphasis on
piezoelectricity.
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Figure 2.1: [14] Power density vs. voltage comparison between common developmental and
lithium/lithium-ion power supply schemes.

The advantages that make piezoelectric materials the most sought-after in the field of
vibration-based energy harvesting are their immense power densities 1 and easy applicability.
Figure 2.1 depicts the power density versus voltage comparisons for a range of energy-

1Power density of an energy harvester is the ratio of the output power to the device volume for a given input.
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harvesting systems; as evident, piezoelectric covers the largest area in the plot; this type of
figure is referred to as an Ashby plot. The advantages of piezoelectric energy harvesting over
the electrostatic and electromagnetic avenues are that no external voltage input is required,
i.e., the output voltage emerges from the constitutive behaviour of the piezoelectric material,
and that piezoelectric devices can be manufactured at the macro scale as well as micro scale,
owing to thick-film and thin-film fabrication techniques.

Figure 2.2: Some examples of electromechanical structures. (a) Experimental set-up of
a cantilevered piezoelectric energy harvester under base excitation and the corresponding
schematic on the right [2]. (b) Schematics of piezoelectric vibration-energy harvesters,
comprising of two different types of shunt circuits, under base excitation [87]. (c) Schematics
of vortex-induced piezoelectric vibration-energy harvesters comprising of two different types
of shunt circuits [88]. (d) Illustration of stack-type piezoelectric vibration-energy harvesters,
comprising of two different types of shunt circuits, under base excitation [89]. (e) Schematic
of a non-linear inverted-beam used for piezoelectric vibration-energy harvesting (PVEH);
piezoelectric elements placed along the beam are not shown [22].
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The beginning of piezoelectric vibration-energy harvesting (PVEH) involved the analysis
of simple, but bulk, finite electromechanical structures subject to limitations such as overall
structural size and strength, boundary conditions, nature of forcing, and efficiency of piezo-
electric elements. A majority of the piezoelectric vibration-energy harvesters appear in the
form of cantilevered beams [1, 2, 20] with one or two piezoceramic layers, i.e., a unimorph
or a bimorph configuration. The cantilever beam is situated on a vibrating host structure,
and the dynamic strain induced in the piezoceramic layer(s), owing to base excitation or
base harmonic forcing applied to the structure, yields an alternating voltage output across
their electrodes. An example of such an arrangement is portrayed in figure 2.2(a). Figure
2.2 illustrates a few examples [2, 87–89], from the existing literature, of energy-harvesting
electromechanical structures comprising of cantilevered beams. The piezoelectric stacks
shown in figure 2.2(d) are an exception. In certain limited cases, stack- [90] and cymbal-type
[91] transducers are used under direct force excitation. In stack- and cymbal-type trans-
ducers, polyvinylidene fluoride (PVDF) membranes may also be utilized for piezoelectric
power generation; however, they exhibit very low electromechanical coupling as opposed
to piezoceramics. In the theoretical and experimental research pertaining to piezoelectric
energy harvesting, it is routine to consider a resistive load in the electrical domain, i.e., in the
shunt circuit, in order to estimate the performance of a device for AC power generation. In
addition to a purely resistive shunt mechanism, electronic load consisting of a resistor as well
as an inductor has also been considered in the literature as evident in figures 2.2(b), 2.2(c),
and 2.2(d). Recently, inertially amplified PVEH cantilevered beams with a tip mass and

Figure 2.3: [77] Schematics of inertially amplified piezoelectric vibration-energy harvesters
comprising of two different types of shunt circuits.

piezoelectric elements with shunt circuits that are purely resistive or consist of an inductor,
shown in figure 2.3, have been shown to result in low-frequency enhanced PVEH with the
enhancement attributed to the inertial amplifier mechanisms.

Considering the output from an electrical engineering perspective, in order to charge a
lightweight battery or a capacitor via the harvested energy, the alternating output voltage
should be converted to a stable rectified voltage by means of a rectifier bridge and a smoothing
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Figure 2.4: [2] Schematic illustrating the working principle of a piezoelectric vibration-
energy harvesting (PVEH) system.

capacitor, which together comprise an AC-DC converter. Generally, a second stage DC-DC
converter is implemented for output voltage regulation for the purpose of maximizing the
power transfer to the storage device. The aforementioned process is crudely summarized in
figure 2.4.

PVEH involving beams and masses has also been investigated in the non-linear vibrations
regime [22] as evidenced by figure 2.2(e). The last two decades have witnessed an impressive
amount of research in the area of active vibration suppression using piezoelectric systems
[23–27], and in the last decade or so, the area of active vibration suppression has been fused
with that of PVEH, which has significantly increased the potential for piezoelectric systems
on account of many possible practical applications [28].

It is also worth mentioning an important application of PVEH: self-charging structures.
Self-charging structures are constituted of elastic substructures, e.g., metallic or carbon fibre,
flexible piezoceramics embedded in kapton2 layers, and flexible thin-film battery layers
[92, 93]. The objective of this particular application is to promote multifunctionality in
scenarios involving low-power requirements, i.e., a self-charging structure is used as a load-
bearing system and to power a wireless sensor in close proximity to the system utilizing the
harvested and stored energy, e.g., a wing spar in a UAV [94, 95].

2.3 Material dynamics of elastic periodic media

The apparent properties of materials, such as mechanical, acoustic, etc., are the aggregated
outcome of many interactions and processes occurring at a small-scale level within the
microstructure of the material. As technology advances, the demand for exceptional materials
to satisfy unprecedented operational requirements goes up. Hence, the capability to alter
the microstructure in a custom manner and, subsequently, the behaviour of the material as a
whole is extremely important. One might think that, logically, engineering the microstructure
at the atomic or molecular level or at the grain scale in order to achieve the desired results falls
under the broad umbrella of chemistry. An alternative route is the design and deployment
of the internal structure at a “macroscopic” level in order to extract unique, perhaps even

2Kapton® is an unfilled polyimide thermoplastic material.
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counterintuitive, behaviour/performance from the consequent structured/architected material;
this could possibly lead to extending the boundary of the behaviour of materials; this route
is especially realizable with the introduction of additive manufacturing technology. These
architected materials may result in higher and more efficient energy harvesting due to their
unique properties. In the current section, such architected materials, referred to as phononic
materials, including phononic crystals (PnCs) [29–31] and acoustic/elastic metamaterials
[39, 96, 97], are introduced and their dynamical features (material dynamics) are briefly
discussed.

Phononic materials, typically, materialize from the periodic arrangement of small-scale
fundamental blocks, much like molecules in crystalline materials, which, by means of
scattering/interference and/or resonance phenomena, function to control the propagation
of acoustic/elastic plane waves. At the fundamental level, across specific frequency ranges
referred to as pass bands or transmission bands, a phononic material allows vibrational
plane waves to propagate at different speeds as opposed to the constant sonic speeds of
many conventional non-dispersive materials. Outside of these frequency ranges/bands,
referred to as attenuation bands, stop bands, or band gaps, the internal structure of the
material scatters and/or localizes the wave energy and, consequently, prohibits transmission
in all or specific directions. Waveguides and acoustic filters are the two most common
applications of the aforementioned characteristic. Nevertheless, through meticulous design
of the building blocks constituting the material’s internal structure, the unique dynamics of
phononic materials may be exploited and implemented in a diverse range of applications, e.g.,
acoustic lenses [98], elastic/acoustic cloaks [99], phononic subsurfaces for the purpose of
flow control [100]. Other types of applications can be found in [101]. As opposed to simple
non-dispersive cantilevered beams, different types of periodic media, e.g., PnCs, locally
resonant metamaterials (LRMs), and inertially amplified locally resonant metamaterials
(IALRMs), may result in higher and more efficient energy harvesting due to their unique
property of wave-energy localization, which can lead to simultaneous vibration attenuation
and energy harvesting as discussed in section 2.4.

Figures 2.5(a) and (b) [80] illustrate one of the earliest and simplest examples of a
phononic material, which is a one-dimensional medium constituted of periodically alter-
nating layers of varying composition, mass-density and elasticity [102–104]. Figure 2.5(a)
depicts a continuous model of the phononic material/medium whereas figure 2.5(b) depicts
the discretized model of the same material. Within a homogeneous medium, an elastic (vibra-
tional) wave of arbitrary frequency ω and wavenumber κ , i.e., spatial frequency, propagates
at a constant velocity given by Cph =

ω

κ
, where Cph is referred to as the phase velocity. As

per figure 2.5(c), within a phononic material, waves with different frequencies propagate
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(e)

(a) (b)

(c) (d)

Figure 2.5: [80] (a) Example of a layered medium (continuous model). (b) Equivalent
mass-spring system (discretized lumped-parameter model). (c) Dispersion diagram of the
continuous model obtained through analytical and numerical treatments. (d) Dispersion
diagram of the discrete model determined analytically. (e) Displacement profile in the finite
layered medium at different frequencies depicting the comparison of response between the
(top) pass band and (bottom) stop band (band gap) cases.

at different velocities—a phenomenon referred to as dispersion—indicating a non-linear
relationship between ω and κ . In the case of the layered medium, this is achieved by the
superposition of waves transmitted and reflected at the layer interfaces. Additionally, over
specific frequency ranges, the scattering/interference is enough to prevent the waves associ-
ated with those ranges from propagating through the material. Figure 2.5(c) illustrates each
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of the aforementioned scenarios where the displacement profiles are plotted for several unit
cells; a unit cell is the fundamental block/structure that is periodic/repetitive. In the pass
band, the wave propagates through the phononic material such that the displacement profile
covers the entire domain, which is theoretically infinite. Contrastingly, in the stop band or
band gap, the wave amplitude decays with distance, and the displacement nodes stay fixed in
space for all time instants.

Figure 2.5(c), essentially, shows an example of analytical and numerical simulation
results [80] for a layered medium composed of 100 unit cells. For the simulation, the layered
medium is disturbed by an impulse at mid-span, which produces a wide spectrum of waves
propagating away from the site of disturbance. The waves interact only with each other and
the underlying material periodicity before reaching either end of the medium; hence, such an
arrangement acts like an infinite medium. Under such conditions, a Fourier transform of the
displacement in space, with eiκx, and time, with e−iωt , yields the density plot shown in figure
2.5(c), where the narrow (along the horizontal) darker regions identify waves with spectral
characteristics, i.e., ω and κ , suitable for transmission through the medium and the wider
brighter regions represent incompatible characteristics, i.e., waves that are attenuated (not
allowed to propagate). The colour map shown in figure 2.5(c) and similar type of diagrams
obtained via numerical simulation are informative in revealing the dispersion characteristics
of different types of phononic materials; although, they are computationally time-consuming
and expensive, in particular for two- and three-dimensional models involving unit cells
with a complex design. As an alternative, owing to the periodic arrangement of material
constituents, similar to molecules in crystalline materials, the phononic material can be
theoretically analysed via the Floquet-Bloch theorem, generally referred to as the Bloch
theorem, arising from the field of solid-state physics. For one-dimensional elastodynamic
cases, the theorem is expressed as [105, 106]

u(x, t) = ũ(x)ei(κx−ωt), (2.1)

where u is displacement; ũ is the displacement amplitude; x is position, t is time; and√
−1 is the imaginary unit. The amplitude function ũ exhibits the same periodicity at

the underlying medium as the unit-cell length or the lattice spacing, a. Consequently,
u(x+na, t) = u(x, t)eiκna for any arbitrary integer n ∈ [−∞,∞]; this theoretically permits the
solution for an infinite number of unit cells, [x−∞a,x+∞a], to be obtained from the analysis
of only a single unit cell of size a at position x, i.e., only a finite portion of material of size
a. This concept also applies to two- and three-dimensional models. By considering and
analysing only a single unit cell instead of a multitude of cells, Bloch’s theorem substantially
diminishes computational demands and produces a compact theoretical representation of
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the wave propagation or dispersion characteristics. Figure 2.5(c) demonstrates excellent
agreement when comparing the numerical (density plot) and analytical (smooth curves)
results for the layered medium.

The last three decades, roughly, have witnessed a surge in research pertaining to investiga-
tions and applications of two-dimensional phononic crystals. The two-part review article [38]
gives some interesting examples of two-dimensional bulk phononic crystals of different types
based on the constituent materials, e.g., solid objects (inclusions) embedded in a solid back-
ground (matrix), solid objects embedded in a liquid, and liquid-liquid. Figure 2.6 provides

Figure 2.6: [38] Cross-section of a binary composite system: square array of infinite cylinders
A periodically arranged in an infinite matrix B.

an example of the type of two-dimensional periodic media reviewed in the paper. The first
part illustrates that the bandwidth of the stop band is strongly influenced by the nature of the
constituent materials (solid or fluid), the disparity between the physical characteristics, e.g.,
density and elastic modulus, of the inclusions and the matrix, the geometry of the periodic
arrangement of inclusions, and the shape and filling factor of the inclusions. The second
part of the review paper presents some possible applications of two-dimensional composite
materials. Specifically, it is shown that features such as cavities, waveguides, stubs, etc.,
known as defect modes, inserted within the two-dimensional periodic structure may lead
to selective frequency filtering and efficient devices for wavelength demultiplexing. The
possibility of sonic insulators, with comparatively small thicknesses of PnC samples, for
frequencies of the magnitude of KHz is also presented. Finally, the vibration modes of a
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two-dimensional crystal plate, i.e., a phononic crystal of finite thickness along the axis of
inclusions, are presented.

A layered (continuous) medium is one of the most rudimentary practical representations
of a phononic material and a simple demonstration. Generally, in phononic-media analysis,
lumped-parameter models are considered, exploiting the theoretical benefit (periodicity) of
Bloch’s theorem, to capture all the essential physics; make the connection between unit-
cell configuration and performance more accessible; and alleviate computational time and
cost. Concerning the ability of a lumped-parameter model to capture the essential physics
(dynamics), it can be observed that the dispersion diagram of the lumped-parameter (discrete)
model, shown in figure 2.5(d), accurately resembles the dispersion diagram of its continuum
version. The discretization portrayed in figures 2.5(a) and 2.5(b) can be better visualized
in figure 2.7. The lumped-parameter model in figure 2.7(b) employs masses and springs to
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k1

ρ1 E1 A1 ρ2 E2 A2

a2 a1 a2 a1 a2
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Figure 2.7: Demonstration of the discretization of (a) an infinite bilayered continuum model
into (b) a lumped-parameter diatomic discrete model.

represent each layer of the bilayered continuum model shown in figure 2.7(a). The mass and

spring, representative of each layer, are defined as m∗ = ρ∗A∗a∗ and k∗ =
E∗A∗

a∗
, respectively,

where m∗ is mass, k∗ is the stiffness coefficient of the spring; ρ∗, E∗, A∗, and a∗ denote the
density, Young’s modulus, cross-sectional area, and length of a layer, respectively; and the
subscript * denotes 1 or 2, corresponding to the two layers. The arrangement of two layers in
the continuum model and of equivalent masses and springs in the lumped-parameter model
constitutes a unit cell with length a.

The unit-cell of a PnC interacts with travelling elastic/plane waves to promote scatter-
ing/interferences and generate band gaps; this indicates a dependency on the unit-cell size to
generate band gaps. Over the past two decades, metamaterials, whose exceptional mechanical
and dynamical properties emanate from a uniquely customized internal architecture, have
stimulated intensive research in the field of acoustics [39], electromagnetics [107], and, fairly
recently, mechanics [108]. In acoustic/elastic LRMs, in addition to wave interferences, the
band structure is also shaped by couplings, arising due to hybridizations, between resonance
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modes of the substructure, e.g., a local resonator, and elastic-wave modes in the hosting
medium when the wavelength is much larger than the lattice spacing [43]. With regards
to dynamical aspects, many of the extraordinary properties of metamaterials, e.g., negative
effective mass/density, negative elastic/bulk modulus, negative refractive index, are often the
homogenized demonstration of sub-wavelength resonances engineered into every individual
unit cell. Some additional advances in mechanical metamaterials include ultra-lightweight,
pentamode, anisotropic mass density, origami, non-linear, bistable, and reprogrammable
mechanical metamaterials (see figure 2.8 and reference [108] for a summary of the these
advances). Figure 2.8 [108] presents some examples of advanced metamaterials with diverse
applications. The resonating bodies operate to localize, instead of scattering and/or reflecting,
the wave energy to generate band gaps. They may take the form of localized oscillators
distributed along the length of a rod [109], elastically coated heavy spheres in an epoxy
matrix [39], cylindrical or square pillars in an epoxy matrix [38], pillars [40, 110, 111], voids
in an epoxy matrix [112], among others.

With regards to phononic band gaps in phononic/periodic media, in a considerable portion
of the existing literature, they are generated through two widely-known means, namely, Bragg
scattering and local resonances. There are two approaches for wave-propagation or dispersion
analysis of damped phononic media. In the first, the frequencies are assumed to be real,
which allows damping effects to be exhibited only in the form of complex wavenumbers
(κ = κreal + iκimag). This is physically representative of a medium experiencing wave
propagation as a result of continuous driving frequency and dissipation manifesting only in
the form of spatial attenuation. This approach is referred to as the “driven-waves” approach
and follows a κ = κ(ω) formulation ensuing from either a linear or a quadratic eigenvalue
problem; i.e., a real frequency is supplied, and the underlying eigenvalue problem is solved
for a corresponding pair of real and imaginary wavenumbers, describing propagation and
attenuation constants, respectively. All wave modes are described by complex wavenumbers.
In the second approach, the frequencies are allowed to be complex, which allows damping
effects to be exhibited in the form of temporal attenuation. This is physically representative
of a medium permitting free dissipative wave motion, e.g., free vibration due to impulse
excitation. This approach is called the “free-waves” approach and follows a ω = ω(κ)

formulation resulting from a linear eigenvalue problem; i.e., a real wavenumber is supplied,
and the underlying eigenvalue problem is solved for corresponding complex frequencies,
where the real and imaginary parts provide the loss factor and the frequency for each wave
mode, respectively. Often, it is thought that the two approaches discussed above are the only
two available options, i.e., approach involving real frequencies and complex wavenumbers
and approach involving real wavenumbers and complex frequencies. However, if a medium
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Figure 2.8: [108] An overview of mechanical metamaterials in existing literature. The
five rows illustrate (a) auxetic, (b) light-weight, (c) negative-parameter, i.e., negative mass
density and/or moduli at a finite frequency ω ̸= 0, (d) pentamode, and (e) origami mechanical
metamaterials. The left column illustrates a combination of the Milton map, bulk modulus
B vs. shear modulus G, and the Ashby map, a particular modulus vs. mass density ρ . At
the point of crossing of the three arrows, which point towards the positive directions, all
the parameters are zero. In each entry in the first-column, ordinary solids (shown in black)
are compared with the corresponding metamaterials (shown in red). The center column
depicts blueprints of (extended) unit cells featuring characteristic structural elements, and
the right column shows electron micrographs of fabricated structures. The metamaterials
shown can (a) be easily compressible, yet not easily deformable; (b) be ultra-lightweight, yet
ultrastrong; (c) exhibit complete band gaps or support back-propagating waves; (d) be easily
deformable, yet not easily compressible; (e) be deployable, bistable, and reprogrammable.
The potential applications could be as (a) shock absorbers, (b) support structures, (c) reflectors
or concentrators, (d) mechanical cloaks, and (e) structures for space missions. Figures
reproduced with permission: (a) © 1987 AAAS, (b) © 2014 PNAS, (c) © 2000 AAAS, (d)
© 2012 AIP, and (e) © 2014 AAAS.

exhibits spatial attenuation in an undamped state, which is true for phononic media within
stop bands, then, theoretically, there must be an imaginary wavenumber component along
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with the real wavenumber component even when the frequencies are complex. This is a more
complete representation of the dispersion curves for damped free-wave motion in media that
contain built-in mechanisms for spatial attenuation, e.g., Bragg scattering and local resonance.
Reference [47] comprehensively gives an all-complex solution, i.e., complex wavenumbers
and complex frequencies, for damped free vibration in one-dimensional systems by providing
an algorithm, based on a quadratic eigenvalue problem, that provides dispersion curves and
damping ratios for both spatially propagating and attenuating waves.

In the last decade, the field of material dynamics has witnessed the introduction and
implementation of a new class of metamaterials referred to as inertially amplified metama-
terials (IAMs). These metamaterials are unique in the way that the effective inertia of the
wave-propagation medium (waveguide) is amplified by means of embedded amplification
mechanisms. In reference [52], inertial amplification is utilized to generate band gaps in

(a) (b)

(c)

(d)

Figure 2.9: [52] (a) Inertially amplified infinite periodic lattice and (b) the associated
irreducible unit cell. The thin lines with stiffness k and big dots with mass m form a triangular
truss structure; the thick lines with stiffness ka and the small dots with mass ma constitute
the amplification mechanisms. The angle θ dictates the amplification generated by the
mechanisms. The numbers 1-7 denote the nodes within the unit cell. (c) Hexagonal first
Brillouin zone of the reciprocal lattice. The shaded area represents the irreducible Brillouin
zone (IBZ); γ1 and γ2 are components of the wavevector, and Γ → K → M → Γ is the
wavevector path around the IBZ. (d) Detailed view of the amplification mechanism.

a two-dimensional mass-spring lattice shown in figure 2.9, and the sensitivity of the band
gaps, induced by inertial amplification, to parametric variations is quantified. Figure 2.9(c)
illustrates some key concepts used for presenting wave-propagation results: the first Brillouin
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zone (FBZ) and the irreducible Brillouin Zone (IBZ). The FBZ is the smallest area or volume
in reciprocal space that contains information about the infinitely repeating unit cell that
makes up a crystal lattice. For a phononic media in one, two, or, three dimensions, the FBZ
is contained within [−π,π] along the x-, y-, and z-directions. The IBZ is a reduced portion of
the FBZ that contains unique points providing all the necessary information about a unit cell.
It is realized by simply eliminating equivalent points, in the FBZ, that exist due to symmetry.
The dimensionless-wavevector (µµµ) path around the IBZ, e.g., Γ→K→M→ Γ, is the outline
of the IBZ that consists of µµµ-points comprising x-components µx = κxax, y-components
µy = κyay, and z-components µz = κzaz; κx, κy, and κz are wavevector components and ax,
ay, and az are unit-cell lengths or lattice spacings along the x-, y-, and z-directions, respec-
tively. It is demonstrated that inertial amplification results in very wide band gaps at low
frequencies. In reference [53], the characteristics of inertial-amplification-induced band gaps

(a) (b)

(c)

Figure 2.10: [53] (a) Inertially amplified infinite periodic lattice and (b) the associated
irreducible unit cell. The vertical and horizontal thin lines have stiffness k and the big
dots have mass m. Each central mass mc is attached to the neighbouring masses m through
lines with stiffness kc. Consequently, k, kc, m, and mc constitute the structural backbone
of the lattice; the thick lines with stiffness ka and the small dots with mass ma constitute
the amplification mechanisms. The angle θ dictates the amplification generated by the
mechanisms. (c) First Brillouin zone of the reciprocal lattice depicting the shaded irreducible
Brillouin zone (IBZ); γ1 and γ2 are wavevector components, and Γ → X → M → Γ is the
wavevector path around the IBZ.

are obtained for the lattice shown in figure 2.10 and compared with those of local-resonance
and Bragg band gaps in finite lattices. Deep inertial-amplification gaps are obtained at low fre-
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quencies without employing a myriad of unit cells; the gaps computed remain deep irrelevant
of boundary conditions, excitation direction, or vibration mode. Similar to reference [53],
in reference [54], it is shown that a two-dimensional solid structure embedded with inertial-
amplification mechanisms can exhibit a wide and deep phononic band gap at low frequencies.
The width and depth of the band gaps, induced by inertial amplification, are computed both
analytically via a distributed parameter model and numerically via one-dimensional and
two-dimensional finite element models. The inertial-amplification mechanisms are optimized
to produce wide and deep band gaps at low frequencies. In reference [56], elastic/plane
wave motion in a continuous elastic rod with a periodically attached inertial-amplification
mechanism is investigated. The mechanism exhibits characteristics analogous to an “inerter”
commonly used in vehicle suspension systems; however, it is constructed and implemented in
a way that modifies the intrinsic properties of a continuous structure. The elastodynamic band
structure of the hybrid model allows band gaps that are exceedingly wide and deep at low
frequencies in comparison to what can be obtained by employing standard local resonators.
Using the inertially amplified hybrid model, a large band gap may be realized with practically
twenty times less added mass as opposed to what is needed in a configuration involving a
standard local resonator. The hybrid model also features unique qualitative characteristics
in its dispersion curves, e.g., a characteristic double-peak in the spatial attenuation profile
within the band gaps and the possibility of combination of two neighbouring gaps resulting
in a large gap, where the the two neighbouring gaps are contiguous to each other.

(a) (b)

Figure 2.11: [55] (a) Inertially amplified chain comprised of a levered (inertial-amplifier)
mass and a local-resonance mass and (b) the associated unit cell. The thick green lines
represent rigid links; M denotes the baseline mass; ma denotes the inertial-amplifier mass;
m denotes the local-resonance mass; K is the baseline stiffness; k is the local-resonance
stiffness; ka is the stiffness of the spring connecting the two inertial-amplifier masses.

As mentioned earlier in the discussion pertaining to reference [56], a unique feature in
an inertially amplified band gap is that it may exhibit two coupled peaks in the imaginary
wavenumber spectrum of its dispersion band structure. In reference [55], a double-attenuation
band gap is shown to emerge, in an inertially amplified chain depicted in figure 2.11,
specifically from the modal coupling of a levered (inertial-amplifier) mass with a conventional
local-resonance mass separately attached to the base. The periodic arrangement shown in



2.4 Energy harvesting in elastic periodic materials 25

figure 2.11 presents a foundationally unique mechanical mechanism for the shaping of
inertially-amplified phononic band gaps and yields an avenue for combining strength and
breadth in the wave spatial-attenuation characteristics.

2.4 Energy harvesting in elastic periodic materials

Phononic materials or waveguides, namely, PnCs and metamaterials, enable the guiding,
focusing, and localizing of elastic or acoustic waves in different ways. The physical mech-
anisms behind wave manipulation are briefly discussed in chapter 1 and section 2.3. The
reader may also refer to comprehensive reviews by reviews by Lee et al. [66], Hu et al. [67],
and Chen et al. [68]. From PVEH using conventional beam-based finite structures, naturally,
the next step of progression was towards PVEH using periodic structures. The amalgamation
of the broad domains of PVEH and periodic media have resulted in many multifunctional
applications, e.g., simultaneous vibration suppression and energy harvesting as demonstrated
by Hu et al [73, 74] by using acoustic/elastic LRMs. Figure 2.12 illustrates the general
principle of PVEH in PnCs, e.g., a PnC with defect cavities, and LRMs.

Thorp et al. [57] proposed the electromechanical structure, shown in figure 2.13(a),
comprising of a rod with periodic shunted piezoelectric patches to control wave propagation
in the longitudinal direction. The continuous periodic structure boasts the capability of
filtering wave propagation, i.e., wave filtering, over certain frequency bands, i.e., stop bands.
The structure also demonstrates band-gap tuning by employing the shunted piezoelectric
elements. Cao et al. [64] proposed a piezoelectric PnC cantilever beam with a variable
cross-section, shown in figure 2.13(b), for energy harvesting. Gonella et al. [60] proposed
the multifunctional structural design, shown in figure 2.13(c), possessing the combined
capabilities of wave filtering and energy harvesting. Shin et al. [65] presented a PVEH
structure, shown in figure 2.13(d), consisting of a beam composed of two different alternating
materials with a piezoelectric patch (PZT-5H) bonded to the surface; the PnC beam amplifies
the input waves resulting in an improvement in energy harvesting. Chen et al. [62] also came
forth with a design, shown in figure 2.13(e), constituted of a piezoelectric PnC cantilever
beam and piezoelectric patches (PZT-5H) for energy harvesting as a result of the widening of
the resonant bandwidth.

In the last decade, LRMs have spurred intensive research [66–68] in the PVEH community.
Dwivedi et al. proposed the piezo-embedded negative-mass material, shown in figure 2.14(a),
for simultaneous vibration attenuation and energy harvesting and, for a finite number of unit
cells, computed the voltage and power produced by the piezoelectric elements along with
the system transmissibility via the backward substitution method. Hu et al. also proposed
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Figure 2.12: [66] A general illustration of piezoelectric vibration energy-harvesting (PVEH)
system using phononic crystals (PnCs) and locally resonant metamaterials (LRMs). The
process of harvesting elastic-wave energy using mechanical elements such as local resonators
and defect cavities is shown as a schematic at the top, where the piezoelectric material and
electrical circuit converts the elastic-wave energy from vibrations and sound to electrical
energy.

a metastructure, shown in figure 2.14(b), capable of simultaneous vibration suppression
and energy harvesting. Dwivedi et al. explored simultaneous vibration attenuation and
energy harvesting in a piezo-embedded negative-stiffness metamaterial as well, which is
portrayed in figure 2.14(c). The proposed metamaterial exhibited negative stiffness and
consisted of an energy-harvesting material installed within the local-resonance mechanisms.
The results included a parametric investigation, which suggested enhanced performance of
the metamaterial in the context of simultaneous vibration attenuation and energy harvesting.

2.5 Metadamping: Emergence of dissipation/damping in
elastic metamaterials

Numerous applications pertaining to structural dynamics, where strength of materials and
vibration control must be given their due importance, require materials that simultaneously
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Figure 2.13: (a) Infinite version (left) of a rod (continuum) with periodic shunted piezoelectric
patches and the finite version on the right [57]. (b) A piezoelectric phononic crystal (PnC)
cantilever beam (left) and the corresponding unit cell [64]. (c) Multifunctional design of an
electromechanical structure capable of simultaneous wave filtering and energy harvesting
[60]. (d) Schematic of a piezoelectric vibration energy-harvesting system (PVEH) involving
a base structure composed of two alternating media [65]. (e) Example of a one-dimensional
phononic piezoelectric cantilever beam [62].

exhibit high damping, i.e., vibration or shock suppression, and mechanical stiffness, i.e.,
load-bearing capacity; nevertheless, for conventional materials, an increase in one of the
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(a)

(b) (c)

Figure 2.14: (a) Schematic of a piezo-embedded negative-mass material [113]. (b) Unit
cell of an acoustic/elastic locally resonant metamaterial (LRM) [73]. (c) Schematic of a
piezo-embedded negative-stiffness metamaterial [114].

aforementioned aspects comes at the expense of the other. Rubber and steel are good
examples to understand the trade-off between the damping and load-bearing capacities; they
exhibit the trade-off opposite to each other; i.e., rubber is highly dissipative but has a poor
load-bearing capacity; whereas, steel has a high load-bearing capacity but a poor damping
capacity. Figure 2.15 presents the stiffness and damping capacities of traditional materials
and, consequently, illustrates the trade-off in an Ashby plot.

In addition to the unique characteristics and novel applications in the absence of damping,
metamaterials may show an enhanced capacity to attenuate waves compared to equivalent
traditional unstructured materials and PnCs under the influence of damping. This means
that metamaterials can potentially exhibit high damping levels with unaltered load-bearing
capacity. The phenomenon of this emergence of dissipation or damping capacity is termed
as metadamping [79]. The phenomenon of metadamping can be observed across a wide
spectrum rather than a narrow set of frequencies and has been demonstrated in locally
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Figure 2.15: [80] Ashby chart depicting the stiffness and damping for common materials and
illustrating the evident trade-off between the two.

resonant metamaterials consisting of monopolar [115] and dipolar [79, 115] local resonances
and resonances in more complex configurations [116, 117]. Figure 2.16 depicts unit cells
of locally resonant dipolar acoustic metamaterial (AM) and PnC and the phenomenon of
metadamping in the AM relative to the statically equivalent PnC, by means of an Ashby
diagram, as illustrated in the work by Hussein et al. [79]. Frazier et al. [115] extended
metadamping analysis to viscoelastically damped models. Figure 2.17 presents schematics of
viscoelastically and viscously damped PnC and dipolar AM and viscously damped monopolar
AM and illustrates metadamping in the two metamaterials. Similar to figure 2.17, figure 2.18,
obtained from the work by Bacquet et al. [80], also shows the unit cells for the PnC and the
two metamaterials and illustrates metadamping by considering the average of the damping-
ratio modes. Reference [80] also goes on to demonstrate metadamping in metamaterials
with non-local resonances. Antoniadis et al. [116] presented a stiff and dynamically stable
linear oscillator, depicted in figure 2.19(a) consisting of a negative stiffness element to
provide a general theoretical basis for a novel damping and vibration-isolation concept. The
oscillator is designed to use the same damping elements, overall static stiffness, and mass as
a reference linear single-degree-of-freedom (SDoF) oscillator. An optimized version of the
system with the negative-stiffness element is shown to present exceptional damping capacity,
higher than that of the reference system by several orders of magnitude, particularly in cases
where the prescribed damping of the reference system is exceedingly low. DePauw et al.
[117] proposed a novel hybrid metamaterial configuration, figure 2.19(b), that integrates
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(a) (b)

(c)

Figure 2.16: [79] Lumped-parameter unit-cell models of (a) an acoustic metamaterial (AM)
and (b) a phononic crystal (PnC). (c) Metadamping in dipolar AM: overall total damping
capacity versus long-wave sonic speed; limκ→0Cstat = dω/dκ , where ω is damped frequency
and κ is wavenumber.

the attributes of PnCs and AMs. The dispersion characteristics of the system, referred to
as phononic resonator, is shown to change across a broad spectrum of behaviours that can,
through optimal selection of inertial and stiffness parameters, be tuned to mimic a locally
resonant mechanism, phononic crystal, and uniform homogeneous lattice as well. With
the introduction of damping elements, the emergent dissipative effect, i.e., metadamping,
in the phononic resonator is shown to surpass that of a statically equivalent AM under
certain conditions specified in the paper. Recently, metadamping has also been explored in
inertially amplified materials, where the inertial-amplification mechanism is actively tuned
via a piezoelectric element [118]; however, the mechanism does not possess a local-resonance
mechanism.

2.6 Summary and conclusions

This chapter serves the purpose of briefly familiarizing the reader on the topics of PVEH
in aperiodic and periodic (phononic) electromechanical structures and damping capacities
of phononic materials by presenting the basics of energy harvesting, dynamics of phononic
materials, and dissipation augmentation, i.e., metadamping, by means of a brief literature
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(a) (b)

(c)

(d) (e)

Figure 2.17: [115] Lumped-parameter unit-cell models of (a) viscoelastically and (b) vis-
cously damped phononic crystal (PnC) (left) and dipolar acoustic metamaterial (AM) (right).
(c) Metadamping in dipolar AM for the viscoelastic and viscous cases. (d) Lumped-parameter
unit-cell model of a monopolar AM. (e) Metadamping in the monopolar and dipolar metama-
terials only for the viscous case.

survey. Note that all the electromechanical PVEH structures presented in this survey are
investigated at a structural level, i.e., subject to sizing, forcing, and relevant boundary
conditions.
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(a) (b) (c)

(d)

Figure 2.18: [80] Lumped-parameter unit-cell models of (a) phononic crystal (PnC), (b) dipo-
lar acoustic metamaterial (AM), and (c) monopolar AM. (d) Metadamping in the monopolar
and dipolar metamaterials.

(a) (b)

Figure 2.19: [116, 117] (a) A linear oscillator consisting of a negative stiffness element
and (b) a novel hybrid metamaterial configuration that integrates the attributes of phononic
crystals (PnCs) and acoustic metamaterials (AMs).



Chapter 3

Wave Propagation in One-Dimensional
Phononic Crystals and Piezoelectric
Phononic Crystals

3.1 Introduction

In order to present a better understanding of the wave-propagation and dissipation charac-
teristics of one-dimensional non-piezoelectric and piezoelectric periodic media in a com-
prehensive comparative manner, distinctive configurations of diverse periodic media are
considered and elaborated in this chapter. Each case/configuration is complimented with
a detailed schematic shown in the figures. The introductory theoretical framework for the
analysis of the propagation of elastic waves through different configurations of linear elas-
tic periodic media under free vibration and with and without energy harvesters is laid out
by employing a generalized Bloch’s theorem for plane waves followed by a state-space
transformation to set up an eigenvalue problem. In doing so, the dispersion relations are
derived and the mathematical definition of the solution, i.e., the eigenvalues, is given. Conse-
quently, the mathematical definition of the two most crucial characteristics, when it comes to
behaviour of periodic media, are extracted: wave-propagation or dispersion characteristic
of wavenumber-dependent damped frequencies and dissipation characteristic of damping
ratios. By considering a particular periodic media and its piezoelectric variant under free
vibration, independent of structural size, i.e., considering an infinite media, and independent
of boundary conditions, the intrinsic characteristics of the media can be obtained/computed
and comparatively analysed as stated in the introductory chapter. In the case of piezoelectric
periodic media being analysed under the aforementioned conditions, any difference from the
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normal version can only be attributed to the electrical parameters of the shunting mechanism
incorporated in the energy harvesters such as piezoelectric patches.

The layout of the chapter is as follows. As phononic crystals (PnCs) are the most fun-
damental type of periodic media that have been considered intensively from a research
perspective, monoatomic and diatomic PnCs with and without energy harvesters are dis-
cussed; each of the aforementioned cases are considered with and without grounding. With
regards to the energy harvesters, cases of shunt circuit without inductor and with inductor are
both considered. Locally resonant metamaterials (LRMs) and locally resonant piezoelectric
metamaterials (LRPMs), in similar configurations as the PnCs and piezoelectric PnCs, re-
spectively, are also considered. Finally, inertially amplified locally resonant metamaterials
(IALRMs), that are gaining a lot of attention due to their exploitable peculiar properties, are
examined at the end along with their piezoelectric counterparts (inertially amplified locally
resonant piezoelectric metamaterials or IALRPMs) in similar configuration as the PnCs
and piezoelectric PnCs. For all the configurations examined, the most general case of fully
damped is considered as in real world applications, an undamped system is unrealistic to
realize. For all the cases, the damped frequencies and damping ratios are presented in a
comparative format in a custom results section.

3.2 Overview of monoatomic phononic crystals

In this section, the application of generalized Bloch’s theorem to different configurations of
monoatomic phononic crystals (MPnCs) is elaborated as an overview to familiarise the reader
with the methodology of the application to monoatomic periodic media. A periodic media
is basically a tessellation and arrangement of certain unique basic (unit) cells in a periodic
fashion, and the resulting material is termed as a lattice. From the eigenvalue solution,
the mathematical definitions of certain core parameters such as wavenumber-dependent
damped frequency, resonant frequency, damping ratio, phase velocity, and group velocity are
extracted.

3.2.1 Without grounding

Figure 3.1 presents the schematics of an MPnC chain under free vibration without any
grounding and the associated unit cell as lumped-parameter models.

In figure 3.1, n is used to identify and refer to the central unit cell under consideration and
can be any non-zero positive integer in a finite lattice; (n+1) and (n−1) are used to identify
and refer to the unit cells on the right and left of the central (nth) unit cell, respectively; m
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Figure 3.1: Schematic of (a) a monoatomic phononic-crystal (MPnC) chain without ground-
ing and (b) the associated unit cell.

denotes the mass; k is the stiffness coefficient of the springs; c is the damping coefficient of
the viscous damping dashpots; xn(t) and xn±1(t) are the displacements of the masses, with
respect to time t, in the nth, (n+1)th, and (n−1)th unit cells, respectively; and a is the length
of a unit-cell or lattice spacing.

The forces on the mass in the central unit cell, i.e., the nth unit cell shown in figure 3.1(b),
under free vibration can be aggregated, and the governing equation pertaining to the central
unit cell can be written as

mẍn + c(2ẋn − ẋn−1 − ẋn+1)+ k(2xn − xn−1 − xn+1) = 0, (3.1)

where the number of overhead dots indicates the order of derivative with respect to time.
As per Bloch’s theorem, the plane-wave solution [119] for the displacement of a mass in

a periodic unit cell is given by

xn+g(r,κ; t) = x̃(t)eiκ(n+g)a, (3.2)

where x is the displacement; g ∈ [−∞,∞] is an integer used to locate and refer to any unit cell
relative to the central unit cell under consideration, i.e., the nth unit cell shown in figure 3.1; r
is the one-dimensional position vector of the nth unit cell given by r = na; κ is wavenumber;
x̃ is the displacement (complex-wave) amplitude in the wavenumber domain; and i =

√
−1
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is the imaginary unit. For the central unit cell under consideration, g = 0 (nth unit cell), and
for the unit cells towards the left and right of the central unit cell, g = −1, and g = +1,
respectively; i.e., they are the (n−1)th and (n+1)th unit cells. Substituting equation (3.2) in
equation (3.1) yields a homogeneous equation for the displacement amplitude, x̃, which can
be written as

m ¨̃x+ c(2− e−iκa − eiκa) ˙̃x+ k(2− e−iκa − eiκa)x̃ = 0. (3.3)

Equation (3.3) can now be converted into a first order equation, through a state-space
transformation [119–121] of the form

AẎ+BY = 0, (3.4)

where

A =

(
0 1
m c(2− e−iκa − eiκa)

)
; B =

(
−1 0
0 k(2− e−iκa − eiκa)

)
;

and Y =

(
˙̃x
x̃

)
. (3.5)

For equation (3.4), a solution of the form Y = Ỹλ eλ t is assumed, where Ỹλ is a complex-
amplitude state-space vector corresponding to eigenvalue λ . The dispersion relation and,
consequently, the wave-propagation and dissipation characteristics can now be obtained by
implementing the solution in equation (3.4) and solving the resulting eigenvalue problem
given by ∣∣A−1B+λ I

∣∣= 0. (3.6)

Expanding equation (3.6) for this particular case yields a second-order equation in terms of
λ , which, upon solving, gives two complex roots appearing as a complex-conjugate pair. The
complex solution for the eigenvalue problem at a given value of κ can be expressed as [29]

λ (κ) =−ζ (κ)ωr(κ)± iωd(κ) =−ζ (κ)ωr(κ)± iωr(κ)
√

1−ζ (κ)2. (3.7)

In the expression above, ωr is the wavenumber-dependent resonant frequency defined as

ωr(κ) = Abs[λ (κ)]; (3.8)

ωd is the wavenumber-dependent damped frequency defined as

ωd(κ) = Im[λ (κ)]; (3.9)
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and ζ (κ) is the wavenumber-dependent damping ratio defined as

ζ (κ) =− Re[λ (κ)]
Abs[λ (κ)]

. (3.10)

The phase velocity and the group velocity can also be obtained by using the definitions

Cph =
ωd

κ
and Cg =

∂ωd

∂κ
, (3.11)

respectively.

3.2.2 With grounding

Figure 3.2 presents the schematics of an MPnC chain under free vibration with grounding
and the associated unit cell as lumped-parameter models. This case is representative of a
scenario where the PnC chain is attached to bars; i.e., each unit cell is attached to a bar. For
the sake of simplification, the bars are simply modelled as damped oscillators.

The forces on the mass in the central unit cell, i.e., the nth unit cell shown in figure 3.2(b),
under free vibration can be aggregated, and the governing equation pertaining to the central
unit cell can be written as

mẍn + c1(2ẋn − ẋn−1 − ẋn+1)+ c2ẋn + k1(2xn − xn−1 − xn+1)+ k2xn = 0. (3.12)

Substituting equation (3.2) in equation (3.12) yields a homogeneous equation for the
displacement amplitude, x̃, which can be written as

m ¨̃x+(c1(2− e−iκa − eiκa)+ c2) ˙̃x+(k1(2− e−iκa − eiκa)+ k2)x̃ = 0. (3.13)

The dispersion relation for this particular case can now be formulated by subjecting equation
(3.13) to a state-space transformation of the form given in equation (3.4), where

A =

(
0 1
m c1(2− e−iκa − eiκa)+ c2

)
;

B =

(
−1 0
0 k1(2− e−iκa − eiκa)+ k2

)
; and Y =

(
˙̃x
x̃

)
, (3.14)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields a
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Figure 3.2: Schematic of (a) a monoatomic-phononic-crystal (MPnC) chain with grounding
and (b) the associated unit cell.

second-order equation in terms of λ , which, upon solving, gives two complex roots appearing
as a complex-conjugate pair.

3.3 Monoatomic piezoelectric phononic crystals

This section expounds upon the application of generalized Bloch’s theorem to different
configurations of monoatomic piezoelectric phononic crystals (MPPnCs). The piezoelectric
elements considered in the analysis are comprised of a shunt circuit which are either purely
resistive or consist of an inductor. The configurations addressed in this section are, essentially,
the piezoelectric counterparts of the configurations addressed in section 3.2.
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3.3.1 Without grounding

Figure 3.3 presents the schematics of an MPPnC chain under free vibration without any
grounding and the associated unit cell as lumped-parameter models. In figure 3.3, vn(t) and
vn±1(t) are the voltages, with respect to time, generated in the nth, (n+1)th, and (n−1)th

unit cells, respectively, and θ is the electromechanical coupling of the shunted piezoelectric
elements. The piezoelectric elements are placed between the masses.
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Figure 3.3: Schematic of (a) a monoatomic piezoelectric phononic-crystal (MPPnC) chain
without grounding and (b) the associated unit cell.

Shunt circuit without an inductor

The governing electromechanical equations pertaining to the nth unit cell under free vibration
consisting of a piezoelectric element with a shunt circuit lacking an inductor [73] can be
written as

mẍn + c(2ẋn − ẋn−1 − ẋn+1)+ k(2xn − xn−1 − xn+1)+θvn −θvn+1 = 0, (3.15)

−θ(ẋn − ẋn−1)+Cpv̇n +
1
R

vn = 0, (3.16)
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where Cp and R are the capacitance and resistance of the shunt circuit, respectively.
Similar to the displacement field (equation (3.2)), the voltage field can be mathematically

treated with a plane-wave solution given by a generalized Bloch’s theorem; hence, the plane-
wave solution for the voltage generated in a piezoelectric element in a periodic unit cell can
be written as

vn+g(r,κ; t) = ṽ(t)eiκ(n+g)a, (3.17)

where ṽ is the voltage amplitude. Substituting equations (3.2) and (3.17) in equations
(3.15) and (3.16) yields the following Bloch-transformed homogeneous equations for the
displacement amplitude x̃ and the voltage amplitude ṽ:

m ¨̃x+ c(2− e−iκa − eiκa) ˙̃x+ k(2− e−iκa − eiκa)x̃+(θ −θeiκa)ṽ = 0, (3.18)

(−θ +θe−iκa) ˙̃x+Cp ˙̃v+
1
R

ṽ = 0. (3.19)

The dispersion relation for this particular case can now be formulated by subjecting equations
(3.18) and (3.19) to a state-space transformation of the form given in equation (3.4), where

A =

0 1 0
m c(2− e−iκa − eiκa) 0
0 −θ +θe−iκa Cp

 ;

B =


−1 0 0
0 k(2− e−iκa − eiκa) θ −θeiκa

0 0
1
R

 ; and Y =

 ˙̃x
x̃
ṽ

 , (3.20)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields a
third-order equation in terms of λ , which, upon solving, gives a real root and two complex
roots appearing as a complex-conjugate pair.

Shunt circuit with an inductor

The governing electromechanical equations pertaining to the nth unit cell under free vibration
consisting of a piezoelectric element with a shunt circuit including an inductor can be written
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as

mẍn + c(2ẋn − ẋn−1 − ẋn+1)+ k(2xn − xn−1 − xn+1)+θvn −θvn+1 = 0, (3.21)

−θ(ẍn − ẍn−1)+Cpv̈n +
1
R

v̇n +
1
L

vn = 0, (3.22)

where L is the inductance of the shunt circuit.
Substituting equations (3.2) and (3.17) in equations (3.15) and (3.16) produces the

following Bloch-transformed homogeneous equations for the displacement amplitude x̃ and
the voltage amplitude ṽ:

m ¨̃x+ c(2− e−iκa − eiκa) ˙̃x+ k(2− e−iκa − eiκa)x̃+(θ −θeiκa)ṽ = 0, (3.23)

(−θ +θe−iκa) ¨̃x+Cp ¨̃v+
1
R

˙̃v+
1
L

ṽ = 0. (3.24)

Equations (3.23) and (3.24) can be written in matrix form as

Z1
¨̃E+Z2

˙̃E+Z3Ẽ = 0, (3.25)

where

Z1 =

(
m 0

−θ +θe−iκa Cp

)
; Z2 =

c(2− eiκa − e−iκa) 0

0
1
R

 ;

Z3 =

k(2− eiκa − e−iκa) θ −θeiκa

0
1
L

 ; and Ẽ =

(
x̃
ṽ

)
. (3.26)

The dispersion relation for this particular case can now be formulated by subjecting equation
(3.25) to a state-space transformation of the form given in equation (3.4), where

A =

(
0 I

Z1 Z2

)
; B =

(
−I 0
0 Z3

)
; and Y =

( ˙̃E
Ẽ

)
, (3.27)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields
a fourth-order equation in terms of λ , which, upon solving, yields two real roots and two
complex roots appearing as a complex-conjugate pair.
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3.3.2 With grounding

Figure 3.4 presents the schematics of an MPPnC chain under free vibration with grounding
and the associated unit cell as lumped-parameter models. In figure 3.4, the subscripts 1 and 2
distinguish between the parameters corresponding to the piezoelectric elements that are part
of the baseline and the piezoelectric elements that are attached to the grounding mechanism
simply modelled as a damped oscillator.
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Figure 3.4: Schematic of (a) a monoatomic piezoelectric phononic-crystal (MPPnC) chain
with grounding and (b) the associated unit cell.
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Shunt circuit without an inductor

The governing electromechanical equations pertaining to the nth unit cell under free vibration
consisting of a piezoelectric element with a shunt circuit lacking an inductor can be written
as

mẍn + c1(2ẋn − ẋn−1 − ẋn+1)+ c2ẋn + k1(2xn − xn−1 − xn+1)+ k2xn

+θ1vn
1 +θ2vn

2 −θ1vn+1
1 = 0, (3.28)

−θ1(ẋn − ẋn−1)+Cp1 v̇n
1 +

1
R1

vn
1 = 0, (3.29)

−θ2ẋn +Cp2 v̇n
2 +

1
R2

vn
2 = 0. (3.30)

The plane-wave solution for the voltages generated in a periodic unit cell with multiple
voltage outputs can be written as

vn+g
l (r,κ; t) = v̂l(t)eiκ(n+g)a, (3.31)

where l = 1,2 is an index corresponding to the voltages generated in the two piezoelectric
elements in the monoatomic unit cell. Substituting equations (3.2) and (3.31) in equations
(3.28) and (3.29) yields the following Bloch-transformed homogeneous equations for the
displacement amplitude x̃ and the voltage amplitudes ṽ1 and ṽ2:

m ¨̃x+(c1(2− e−iκa − eiκa)+ c2) ˙̃x+(k1(2− e−iκa − eiκa)+ k2)x̃

+(θ1 −θ1eiκa)ṽ1 +θ2ṽ2 = 0, (3.32)

(−θ1 +θ1e−iκa) ˙̃x+Cp1
˙̃v1 +

1
R1

ṽ1 = 0, (3.33)

−θ2 ˙̃x+Cp2
˙̃v2 +

1
R1

ṽ2 = 0. (3.34)

The dispersion relation for this particular case can now be formulated by subjecting equations
(3.32), (3.33), and (3.34) to a state-space transformation of the form given in equation (3.4),
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where

A =


0 1 0 0
m c1(2− e−iκa − eiκa)+ c2 0 0
0 −θ1 +θ1e−iκa Cp1 0
0 −θ2 0 Cp2

 ;

B =


−1 0 0 0
0 k1(2− e−iκa − eiκa)+ k2 θ1 −θ1eiκa θ2

0 0
1

R1
0

0 0 0
1

R2

 ; and Y =


˙̃x
x̃
ṽ1

ṽ2

 . (3.35)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields
a fourth-order equation in terms of λ , which, upon solving, yields two real roots and two
complex roots appearing as a complex-conjugate pair.

Shunt circuit with an inductor

The governing electromechanical equations pertaining to the nth unit cell under free vibration
consisting of a piezoelectric element with a shunt circuit including an inductor can be
formulated as

mẍn + c1(2ẋn − ẋn−1 − ẋn+1)+ c2ẋn + k1(2xn − xn−1 − xn+1)+ k2xn

+θ1vn
1 +θ2vn

2 −θ1vn+1
1 = 0, (3.36)

−θ1(ẍn − ẍn−1)+Cp1 v̈n
1 +

1
R1

v̇n
1 +

1
L1

vn
1 = 0, (3.37)

−θ2ẍn +Cp2 v̈n
2 +

1
R2

v̇n
2 +

1
L2

vn
2 = 0. (3.38)

Substituting equations (3.2) and (3.31) in equations (3.28) and (3.29) yields the following
Bloch-transformed homogeneous equations for the displacement amplitude x̃ and the voltage
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amplitudes ṽ1 and ṽ2:

m ¨̃x+(c1(2− e−iκa − eiκa)+ c2) ˙̃x+(k1(2− e−iκa − eiκa)+ k2)x̃

+(θ1 −θ1eiκa)ṽ1 +θ2ṽ2 = 0, (3.39)

(−θ1 +θ1e−iκa) ¨̃x+Cp1
¨̃v1 +

1
R1

˙̃v1 +
1
L1

ṽ1 = 0, (3.40)

−θ2 ¨̃x+Cp2
¨̃v2 +

1
R2

˙̃v2 +
1
L2

ṽ2 = 0. (3.41)

Equations (3.39), (3.40), and (3.41) can be compactly written in a matrix form as

Z1
¨̃E+Z2

˙̃E+Z3Ẽ = 0, (3.42)

where

Z1 =

 m 0 0
−θ1 +θ1e−iκa Cp1 0

−θ2 0 Cp2

 ;

Z2 =


c1(2− eiκa − e−iκa)+ c2 0 0

0
1

R1
0

0 0
1

R2

 ;

Z3 =


k1(2− eiκa − e−iκa)+ k2 θ1 −θ1eiκa θ2

0
1
L1

0

0 0
1
L2

 ; and Ẽ =

 x̃
ṽ1

ṽ2

 . (3.43)

The dispersion relation for this particular case can now be formulated by subjecting equation
(3.42) to a state-space transformation of the form given in equation (3.4), where

A =

(
0 I

Z1 Z2

)
; B =

(
−I 0
0 Z3

)
; and Y =

( ˙̃E
Ẽ

)
, (3.44)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields
a sixth-order equation in terms of λ , which, upon solving, yields four real roots and two
complex roots appearing as a complex-conjugate pair.
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3.4 Wave-propagation and dissipation characteristics of
monoatomic phononic crystals and piezoelectric
phononic crystals

This section presents the wave-propagation and dissipation characteristics of the different
configurations of MPnCs and MPPnCs discussed so far in a graphical comparative format.

3.4.1 Without grounding

Table 3.1 details the parameters utilized in the computation of the dispersion (band structure)
and damping-ratio characteristics of the MPnC and MPPnCs without grounding.

Table 3.1: Mechanical and dimensionless electrical parameters employed in the monoatomic
phononic crystal (MPnC) and monoatomic piezoelectric phononic crystals (MPPnCs) without
grounding.

Parameter MPnC
MPPnC MPPnC

Unit
without an inductor with an inductor

a 1 1 1 m
m 0.0170 0.0170 0.0170 Kg
k 5×103 5×103 5×103 Nm−1

c 2 2 2 Nsm−1

α — 0.1399 0.1399 —
β — — 0.3162 —

kcoeff
2 — 0.9714 0.9714 —

The unit-cell length or lattice spacing a is chosen to have the unit of metre to be consistent
with S.I. units for all the parameters. As all the cases being solved are linear, the results will
remain unchanged for any length scale as long as all the parameters have compatible units.

A large portion of the energy-harvesting community predominantly expresses certain
electrical parameters in their non-dimensional form as evident in existing literature [87–
89]. For consistency with the existing literature, the electrical parameters of the shunt
circuits, namely, electromechanical coupling, resistance, capacitance, and inductance, are
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non-dimensionalized and presented in table 3.1 as

α = ω̄CpR, (3.45a)

β = ω̄
2CpL, (3.45b)

kcoeff
2 =

θ 2

kCp
, (3.45c)

where ω̄ =

√
k
m

.

Considering that the quantity that is of paramount interest and the subject of investigation
in this work is the wavenumber-dependent (on account of propagation of elastic waves)
damping ratio which is the rate of dissipation, it would be effective to quantify the damping
ratio as a single value. This is realized, firstly, by cumulatively integrating the damping ratio
over the irreducible Brillouin Zone (IBZ) as

ζ
cum(µ) =

∫
µ

0
ζ dµ (µ ∈ [0,π]), (3.46)

where µ is the dimensionless wavenumber defined as µ = κa, and, secondly, by obtaining
the total value, upon complete integration over the BZ, defined as

ζ
tot = ζ

cum(π). (3.47)

The quantity ζ tot is the total area under the curve and represents an overall quantification of
the damping capacity of a specific periodic unit cell.

Figure 3.5 depicts the normalized damped frequency, damping ratio, and cumulative
damping ratio for the MPnC and MPPnCs without grounding in the irreducible Brillouin Zone
(IBZ), i.e., for µ ∈ [0,π]. The damped frequencies are normalized (non-dimensionalized)
by using ω̄; i.e., the plots depict Ω =

ωd

ω̄
. The shaded region in figure 3.5(a) illustrates the

transmission band of the periodic media; i.e., waves can only propagate within this spectrum.
The region above this is referred to as the attenuation band, which extends to ∞; i.e., waves
cannot propagate within this spectrum. As the MPnC and MPPnCs give rise to only one
complex-conjugate pair, they present only one mode/branch of frequency and damping ratio.
The MPnC and MPPnCs are statically equivalent; i.e., they have the same long-wave speed1,

1Group velocity is given by the slope of frequency, ω (rad s−1), vs. wavenumber, κ (rad m−1); i.e., Cg =
∂ω

∂κ
.

As κ = 2π

λ
, where λ is wavelength, a small value of κ indicates a long/large wavelength; hence, the slope or the

group velocity obtained at a very small value of κ is referred to as the long-wave speed; i.e., Cg = limκ→0
∂ω

∂κ
.

While comparing the performance of different types of phononic media, it is crucial to ensure that they are
statically equivalent to each other for a fair comparison. In the literature, the group velocity Cg is used as a
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Figure 3.5: (a) Normalized-damped-frequency band structure, (b) damping-ratio diagrams,
and (c) cumulative-damping-ratio diagrams for the monoatomic phononic crystal (MPnC)
and monoatomic piezoelectric phononic crystals (MPPnCs) without grounding.

which is basically the group velocity or the slope of the ωd vs. κ curve at a very small
value of κ . This ensures a fair comparison to be made. Fabricating a periodic media with
piezoelectric elements does not alter its static equivalency as evident from figure 3.5(a). The
MPPnC with an inductor depicts a small decrease in the frequency, Ω, towards the end of

representation of the effective quasi-static stiffness of a periodic media and, consequently, to ensure static
equivalency with other periodic media. Static equivalency is ensured by making sure that the group velocities
of all the periodic media in the comparative analysis are equal.
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the BZ, but overall, the frequency plots do not exhibit a significant difference in their trend.
Contrarily, the damping ratio curves shown in figure 3.5(b) show a remarkable difference for
approximately similar band structures; the MPPnCs show a significant increase in dissipation
compared to the MPnC, and the MPPnC with an inductor shows the highest dissipation. Note
that the increase in dissipation can only be attributed to the piezoelectric elements as the
three periodic media have the same amount of raw (prescribed) damping given in table 3.1.
Figure 3.5(c) illustrates the integrated (cumulative) values, ζ cum, of the damping ratios. The
MPPnCs present a significantly increased rate of ζ cum in comparison to the MPnC. The value
of ζ cum at µ = π gives the total integrated value ζ tot, which is the highest for the MPPnC
with an inductor. Table 3.2 details the ζ tot values for the three periodic media.

Table 3.2: Total values of damping ratios of the monoatomic PnC (MPnC) and monoatomic
piezoelectric PnCs (MPPnCs) without grounding.

Parameter MPnC
MPPnC MPPnC

Unit
without an inductor with an inductor

ζ tot 0.4339 0.7091 0.7391 —

3.4.2 With grounding

Table 3.3 details the parameters utilized in the computation of the dispersion (band structure)
and damping-ratio characteristics of the MPnC and MPPnCs with grounding.

Considering that there are two piezoelectric elements in this particular case, the electrical
parameters of the shunt circuit are non-dimensionalized as

αl = ω̄lCpl Rl, (3.48a)

βl = ω̄
2
l Cpl Ll, (3.48b)

kcoeffl
2 =

θ 2
l

klCpl

, (3.48c)

where l = 1,2 is an index corresponding to the parameters of the two piezoelectric elements

and the frequencies obtained using the two springs: ω̄1 =

√
k1

m
and ω̄2 =

√
k2

m
.

Figure 3.6 depicts the normalized damped frequency, damping ratio, and cumulative
damping ratio for the MPnC and MPPnCs with grounding in the irreducible BZ, i.e., for
µ ∈ [0,π]. The damped frequencies are normalized with respect to ω̄1; i.e., the plots depict
Ω =

ωd

ω̄1
. As the periodic media are grounded, the frequency curves do not originate from



3.5 Overview of diatomic phononic crystals 50

Table 3.3: Mechanical and dimensionless electrical parameters employed in the monoatomic
phononic crystal (MPnC) and monoatomic piezoelectric phononic crystals (MPPnCs) with
grounding.

Parameter MPnC
MPPnC MPPnC

Unit
without an inductor with an inductor

a 1 1 1 m
m 0.0170 0.0170 0.0170 Kg
k1 3×104 3×104 3×104 Nm−1

k2 1.5000×104 1.5000×104 1.5000×104 Nm−1

c1 0.2180 0.2180 0.2180 Nsm−1

c2 0.2180 0.2180 0.2180 Nsm−1

α1 — 0.3427 0.3427 —
α2 — 0.2423 0.2423 —
β1 — — 0.5691 —
β2 — — 0.2846 —

kcoeff1
2 — 0.1619 0.1619 —

kcoeff2
2 — 0.3238 0.3238 —

zero unlike the previous case where the periodic media have no grounding. The frequency
plots do not exhibit a significant difference, but for approximately similar band structures,
the damping ratio curves shown in figure 3.6(b) show a remarkable difference. The MPPnCs
show a significant increase in dissipation compared to the MPnC, and the MPPnC with an
inductor shows the highest dissipation. In figure 3.6(c), the MPPnCs present a significantly
increased rate of ζ cum in comparison to the MPnC. The value of ζ tot is the highest for the
MPPnC with an inductor. Table 3.4 details the ζ tot values for the three periodic media.

Table 3.4: Total values of damping ratios of the monoatomic phononic crystal (MPnC) and
monoatomic piezoelectric phononic crystals (MPPnCs) with grounding.

Parameter MPnC
MPPnC MPPnC

Unit
without an inductor with an inductor

ζ tot 0.0286 0.1546 0.1812 —

3.5 Overview of diatomic phononic crystals

In this section, the application of generalized Bloch’s theorem to different configurations of
diatomic phononic crystals (DPnCs) is elaborated as an overview to familiarise the reader
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Figure 3.6: (a) Normalized-damped-frequency band structure, (b) damping-ratio diagrams,
and (c) cumulative-damping-ratio diagrams for the monoatomic phononic crystal (MPnC)
and monoatomic piezoelectric phononic crystals (MPPnCs) with grounding.

with the methodology of Bloch treatment of diatomic periodic media. From the eigenvalue
solution for the diatomic case, the mathematical definitions of certain core parameters such
as wavenumber-dependent damped frequency, resonant frequency, damping ratio, phase
velocity, and group velocity are extracted.
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3.5.1 Without grounding

Figure 3.7 presents the schematics of a DPnC chain under free vibration without any ground-
ing and the associated unit cell as lumped-parameter models. A unit cell, depicted in figure
3.7(b), consists of two unequal masses: m1 and m2.

(a)

(b)
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Figure 3.7: Schematic of (a) a diatomic phononic-crystal (DPnC) chain without grounding
and (b) the associated unit cell.

The forces on the masses in the central unit cell, i.e., the nth unit cell shown in figure
3.7(b), under free vibration can be aggregated, and the governing equations pertaining to the
central unit cell can be written as

m1ẍn
1 +(c1 + c2)ẋn

1 − c2ẋn
2 − c1ẋn−1

2 +(k1 + k2)xn
1 − k2xn

2 − k1xn−1
2 = 0, (3.49)

m2ẍn
2 +(c1 + c2)ẋn

2 − c2ẋn
1 − c1ẋn+1

1 +(k1 + k2)xn
2 − k2xn

1 − k1xn+1
1 = 0. (3.50)

For the diatomic case, the Bloch theorem’s plane-wave solution for the displacements of
the masses in any periodic unit cell is given by

xn+g
l (r,κ; t) = x̃l(t)eiκ(n+g)a, (3.51)

where l = 1,2 is an index corresponding to the two masses in a unit cell. Substituting equation
(3.51) in equations (3.49) and (3.50) yields the following Bloch-transformed homogeneous
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equations for the displacement amplitudes x̃1 and x̃2:

m1 ¨̃x1 +(c1 + c2) ˙̃x1 +(−c2 − c1e−iκa) ˙̃x2 +(k1 + k2)x̃1

+(−k2 − k1e−iκa)x̃2 = 0, (3.52)

m2 ¨̃x2 +(c1 + c2) ˙̃x2 +(−c2 − c1eiκa) ˙̃x1 +(k1 + k2)x̃2

+(−k2 − k1eiκa)x̃1 = 0. (3.53)

Equations (3.52) and (3.53) can be assembled into a matrix form as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃ = 0, (3.54)

where

X̃ =

(
x̃1

x̃2

)
; M =

(
m1 0
0 m2

)
; C(κ) =

(
c1 + c2 −c2 − c1e−iκa

−c2 − c1eiκa c1 + c2

)
;

and K(κ) =

(
k1 + k2 −k2 − k1e−iκa

−k2 − k1eiκa k1 + k2

)
. (3.55)

The dispersion relation can now be formulated by subjecting equation (3.54) to a state-space
transformation of the form given in equation (3.4), where

A =

(
0 I
M C(κ)

)
; B =

(
−I 0
0 K(κ)

)
; and Y =

( ˙̃X
X̃

)
. (3.56)

For equation (3.4) corresponding to this case, a solution of the form Y = Ỹλ eλ t is assumed,
where Ỹλ is a complex-amplitude state-space vector corresponding to eigenvalue λ . The
dispersion relation and, consequently, the wave-propagation and dissipation characteristics
can now be obtained by implementing the solution in equation (3.4) for this case and solving
the resulting eigenvalue problem of the form given in equation (3.6). Expanding equation
(3.6) for this particular case yields a fourth-order equation in terms of λ , which, upon solving,
gives four complex roots appearing as two complex-conjugate pairs. The complex solution
for the eigenvalue problem, for the diatomic case, at a given value of κ can be expressed as

λl(κ) =−ζl(κ)ωrl(κ)± iωdl(κ) =−ζl(κ)ωrl(κ)± iωrl(κ)
√

1−ζl(κ)2, (3.57)

where the subscript l identifies each complex-conjugate pair and, consequently, the mode or
branch number. All diatomic cases, on account of the two complex-conjugate pairs, exhibit
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two modes or branches: the acoustic (lower/first) branch given by l = 1 and the optical
(higher/second) branch given by l = 2. In equation (3.57), ωrl is the wavenumber-dependent
resonant frequency defined as

ωrl(κ) = Abs[λl(κ)]; (3.58)

ωdl is the wavenumber-dependent damped frequency defined as

ωdl(κ) = Im[λl(κ)]; (3.59)

and ζl(κ) is the wavenumber-dependent damping ratio defined as

ζl(κ) =− Re[λl(κ)]

Abs[λl(κ)]
. (3.60)

The phase velocity and the group velocity can also be obtained by using the definitions

Cphl
=

ωdl

κ
and Cgl =

∂ωdl

∂κ
, (3.61)

respectively.

3.5.2 With grounding

Figure 3.8 presents the schematics of a DPnC chain under free vibration with grounding and
the associated unit cell as lumped-parameter models. This case is representative of a scenario
where the PnC chain is attached to bars; i.e., each mass in a unit cell is attached to a bar. For
the sake of simplification, the bars are simply modelled as damped oscillators as shown in
figure 3.8.

The forces on the masses in the central unit cell, i.e., the nth unit cell shown in figure
3.8(b), under free vibration can be aggregated, and the governing equations pertaining to the
central unit cell can be written as

m1ẍn
1 +(c1 + c2 + c3)ẋn

1 − c2ẋn
2 − c1ẋn−1

2 +(k1 + k2 + k3)xn
1 − k2xn

2 − k1xn−1
2 = 0, (3.62)

m2ẍn
2 +(c1 + c2 + c4)ẋn

2 − c2ẋn
1 − c1ẋn+1

1 +(k1 + k2 + k4)xn
2 − k2xn

1 − k1xn+1
1 = 0. (3.63)
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Figure 3.8: Schematic of (a) a diatomic phononic-crystal (DPnC) chain with grounding and
(b) the associated unit cell.

Substituting equation (3.51) in equations (3.62) and (3.63) yields the following Bloch-
transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2:

m1 ¨̃x1 +(c1 + c2 + c3) ˙̃x1 +(−c2 − c1e−iκa) ˙̃x2 +(k1 + k2 + k3)x̃1

+(−k2 − k1e−iκa)x̃2 = 0, (3.64)

m2 ¨̃x2 +(c1 + c2 + c4) ˙̃x2 +(−c2 − c1eiκa) ˙̃x1 +(k1 + k2 + k4)x̃2

+(−k2 − k1eiκa)x̃1 = 0. (3.65)

Equations (3.64) and (3.65) can be compacted into a matrix form as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃ = 0, (3.66)
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where

X̃ =

(
x̃1

x̃2

)
; M =

(
m1 0
0 m2

)
; C(κ) =

(
c1 + c2 + c3 −c2 − c1e−iκa

−c2 − c1eiκa c1 + c2 + c4

)
;

and K(κ) =

(
k1 + k2 + k3 −k2 − k1e−iκa

−k2 − k1eiκa k1 + k2 + k4

)
. (3.67)

The dispersion relation can now be formulated by subjecting equation (3.66) to a state-space
transformation of the form given in equation (3.4), where

A =

(
0 I
M C(κ)

)
; B =

(
−I 0
0 K(κ)

)
; and Y =

( ˙̃X
X̃

)
, (3.68)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields a
fourth-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs.

3.6 Diatomic piezoelectric phononic crystals

In this section, the application of generalized Bloch’s theorem to different configurations of
diatomic piezoelectric phononic crystals (DPPnCs) is elaborated. Similar to the monoatomic
case, the piezoelectric elements considered in the analysis are comprised of a shunt circuit
which are either purely resistive or consist of an inductor. The configurations addressed in
this section are, essentially, the piezoelectric counterparts of the configurations addressed in
section 3.5.

3.6.1 Without grounding

Figure 3.9 presents the schematics of a DPPnC chain under free vibration without any
grounding and the associated unit cell as lumped-parameter models.
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Figure 3.9: Schematic of (a) a diatomic piezoelectric phononic-crystal (DPPnC) chain
without grounding and (b) the associated unit cell.

Shunt circuit without an inductor

The governing electromechanical equations pertaining to the nth unit cell under free vibration
consisting of piezoelectric elements with a shunt circuit lacking an inductor can be written as

m1ẍn
1 +(c1 + c2)ẋn

1 − c2ẋn
2 − c1ẋn−1

2 +(k1 + k2)xn
1 − k2xn

2 − k1xn−1
2

+θ1vn
1 −θ2vn

2 = 0, (3.69)

m2ẍn
2 +(c1 + c2)ẋn

2 − c2ẋn
1 − c1ẋn+1

1 +(k1 + k2)xn
2 − k2xn

1 − k1xn+1
1

+θ2vn
2 −θ1vn+1

1 = 0, (3.70)

−θ1(ẋn
1 − ẋn−1

2 )+Cp1 v̇n
1 +

1
R1

vn
1 = 0, (3.71)

−θ2(ẋn
2 − ẋn

1)+Cp2 v̇n
2 +

1
R2

vn
2 = 0. (3.72)

The plane-wave solution for the voltage generated in the piezoelectric element of a
periodic diatomic unit cell is similar to equation (3.31). Substituting equations (3.51) and
(3.31) in equations (3.69)–(3.72) yields the following Bloch-transformed homogeneous
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equations for the displacement amplitudes x̃1 and x̃2 and the voltage amplitudes ṽ1 and ṽ2:

m1 ¨̃x1 +(c1 + c2) ˙̃x1 +(−c2 − c1e−iκa) ˙̃x2 +(k1 + k2)x̃1 +(−k2 − k1e−iκa)x̃2

+θ1ṽ1 +(−θ2)ṽ2 = 0, (3.73)

m2 ¨̃x2 +(c1 + c2) ˙̃x2 +(−c2 − c1eiκa) ˙̃x1 +(k1 + k2)x̃2 +(−k2 − k1eiκa)x̃1

+(−θ1eiκa)ṽ1 +θ2ṽ2 = 0, (3.74)

−θ1 ˙̃x1 +θ1e−iκa ˙̃x2 +Cp1
˙̃v1 +

1
R1

ṽ1 = 0, (3.75)

−θ2 ˙̃x2 +θ2 ˙̃x1 +Cp2
˙̃v2 +

1
R2

ṽ2 = 0. (3.76)

Equations (3.73)–(3.76) can be compacted into matrix equations as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃+T1(κ)Ṽ = 0, (3.77)

T2(κ)
˙̃X+Cp

˙̃V+RṼ = 0, (3.78)

where

X̃ =

(
x̃1

x̃2

)
; Ṽ =

(
ṽ1

ṽ2

)
; M =

(
m1 0
0 m2

)
;

C(κ) =

(
c1 + c2 −c2 − c1e−iκa

−c2 − c1eiκa c1 + c2

)
;

K(κ) =

(
k1 + k2 −k2 − k1e−iκa

−k2 − k1eiκa k1 + k2

)
;

T1(κ) =

(
θ1 −θ2

−θ1eiκa θ2

)
; T2(κ) =

(
−θ1 θ1e−iκa

θ2 −θ2

)
;

Cp =

(
Cp1 0
0 Cp2

)
; and R =

 1
R1

0

0
1

R2

 . (3.79)

The dispersion relation can now be formulated by subjecting equations (3.77) and (3.78) to a
state-space transformation of the form given in equation (3.4), where

A =

 0 I 0
M C(κ) 0
0 T2(κ) Cp

 ; B =

−I 0 0
0 K(κ) T1(κ)

0 0 R

 ; and Y =


˙̃X
X̃
Ṽ

 , (3.80)
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implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields a
sixth-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs and two real roots.

Shunt circuit with an inductor

The governing electromechanical equations pertaining to the nth unit cell under free vibration
consisting of piezoelectric elements with a shunt circuit including an inductor can be written
as

m1ẍn
1 +(c1 + c2)ẋn

1 − c2ẋn
2 − c1ẋn−1

2 +(k1 + k2)xn
1 − k2xn

2 − k1xn−1
2

+θ1vn
1 −θ2vn

2 = 0, (3.81)

m2ẍn
2 +(c1 + c2)ẋn

2 − c2ẋn
1 − c1ẋn+1

1 +(k1 + k2)xn
2 − k2xn

1 − k1xn+1
1

+θ2vn
2 −θ1vn+1

1 = 0, (3.82)

−θ1(ẍn
1 − ẍn−1

2 )+Cp1 v̈n
1 +

1
R1

v̇n
1 +

1
L1

vn
1 = 0, (3.83)

−θ2(ẍn
2 − ẍn

1)+Cp2 v̈n
2 +

1
R2

v̇n
2 +

1
L2

vn
2 = 0. (3.84)

Substituting equations (3.51) and (3.31) in equations (3.81)–(3.84) yields the following
Bloch-transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2 and
the voltage amplitudes ṽ1 and ṽ2:

m1 ¨̃x1 +(c1 + c2) ˙̃x1 +(−c2 − c1e−iκa) ˙̃x2 +(k1 + k2)x̃1 +(−k2 − k1e−iκa)x̃2

+θ1ṽ1 +(−θ2)ṽ2 = 0, (3.85)

m2 ¨̃x2 +(c1 + c2) ˙̃x2 +(−c2 − c1eiκa) ˙̃x1 +(k1 + k2)x̃2 +(−k2 − k1eiκa)x̃1

+(−θ1eiκa)ṽ1 +θ2ṽ2 = 0, (3.86)

−θ1 ¨̃x1 +θ1e−iκa ¨̃x2 +Cp1
¨̃v1 +

1
R1

˙̃v1 +
1
L1

ṽ1 = 0, (3.87)

−θ2 ¨̃x2 +θ2 ¨̃x1 +Cp2
¨̃v2 +

1
R2

˙̃v2 +
1
L2

ṽ2 = 0. (3.88)

Equations (3.85)–(3.88) can be compactly written in a matrix format as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃+T1(κ)Ṽ = 0, (3.89)

T2(κ)
¨̃X+Cp

¨̃V+R ˙̃V+LṼ = 0, (3.90)
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where

X̃ =

(
x̃1

x̃2

)
; Ṽ =

(
ṽ1

ṽ2

)
; M =

(
m1 0
0 m2

)
;

C(κ) =

(
c1 + c2 −c2 − c1e−iκa

−c2 − c1eiκa c1 + c2

)
;

K(κ) =

(
k1 + k2 −k2 − k1e−iκa

−k2 − k1eiκa k1 + k2

)
;

T1(κ) =

(
θ1 −θ2

−θ1eiκa θ2

)
; T2(κ) =

(
−θ1 θ1e−iκa

θ2 −θ2

)
;

Cp =

(
Cp1 0
0 Cp2

)
; R =

 1
R1

0

0
1

R2

 ; and L =

 1
L1

0

0
1
L2

 . (3.91)

Equations (3.89) and (3.90) can be further compacted into a single matrix equation as

Z1
¨̃E+Z2

˙̃E+Z3Ẽ = 0, (3.92)

where

Z1 =

(
M 0

T2(κ) Cp

)
; Z2 =

(
C(κ) 0

0 R

)
; Z3 =

(
K(κ) T1(κ)

0 L

)
;

and Ẽ =

(
X̃
Ṽ

)
. (3.93)

The dispersion relation can now be formulated by subjecting equation (3.92) to a state-space
transformation of the form given in equation (3.4), where

A =

(
0 I

Z1 Z2

)
; B =

(
−I 0
0 Z3

)
; and Y =

( ˙̃E
Ẽ

)
, (3.94)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields an
eight-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs and four real roots.
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3.6.2 With grounding

Figure 3.10 presents the schematics of a DPPnC chain under free vibration with grounding
and the associated unit cell as lumped-parameter models.
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Figure 3.10: Schematic of (a) a diatomic piezoelectric phononic-crystal (DPPnC) chain with
grounding and (b) the associated unit cell.
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Shunt circuit without an inductor

The governing electromechanical equations pertaining to the nth unit cell under free vibration
consisting of piezoelectric elements with a purely resistive shunt circuit can be written as

m1ẍn
1 +(c1 + c2 + c3)ẋn

1 − c2ẋn
2 − c1ẋn−1

2 +(k1 + k2 + k3)xn
1 − k2xn

2 − k1xn−1
2

+θ1vn
1 −θ2vn

2 +θ3vn
3 = 0, (3.95)

m2ẍn
2 +(c1 + c2 + c4)ẋn

2 − c2ẋn
1 − c1ẋn+1

1 +(k1 + k2 + k4)xn
2 − k2xn

1 − k1xn+1
1

−θ1vn+1
1 +θ2vn

2 +θ4vn
4 = 0, (3.96)

−θ1(ẋn
1 − ẋn−1

2 )+Cp1 v̇n
1 +

1
R1

vn
1 = 0, (3.97)

−θ2(ẋn
2 − ẋn

1)+Cp2 v̇n
2 +

1
R2

vn
2 = 0, (3.98)

−θ3ẋn
1 +Cp3 v̇n

3 +
1

R3
vn

3 = 0, (3.99)

−θ4ẋn
2 +Cp4 v̇n

4 +
1

R4
vn

4 = 0. (3.100)

Substituting equations (3.51) and (3.31) in equations (3.95)–(3.100) yields the following
Bloch-transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2 and
the voltage amplitudes ṽ1, ṽ2, ṽ3, and ṽ4:

m1 ¨̃x1 +(c1 + c2 + c3) ˙̃x1 +(−c2 − c1e−iκa) ˙̃x2 +(k1 + k2 + k3)x̃1

+(−k2 − k1e−iκa)x̃2 +θ1ṽ1 +(−θ2)ṽ2 +θ3ṽ3 = 0, (3.101)

m2 ¨̃x2 +(c1 + c2 + c4) ˙̃x2 +(−c2 − c1eiκa) ˙̃x1 +(k1 + k2 + k4)x̃2

+(−k2 − k1eiκa)x̃1 +(−θ1eiκa)ṽ1 +θ2ṽ2 +θ4ṽ4 = 0, (3.102)

−θ1 ˙̃x1 +θ1e−iκa ˙̃x2 +Cp1
˙̃v1 +

1
R1

ṽ1 = 0, (3.103)

−θ2 ˙̃x2 +θ2 ˙̃x1 +Cp2
˙̃v2 +

1
R2

ṽ2 = 0, (3.104)

−θ3 ˙̃x1 +Cp3
˙̃v3 +

1
R3

ṽ3 = 0, (3.105)

−θ4 ˙̃x2 +Cp4
˙̃v4 +

1
R4

ṽ4 = 0. (3.106)
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Equations (3.101)–(3.106) can be compacted into matrix equations as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃+Tbase
1 (κ)Ṽbase +TbarsṼbars = 0, (3.107)

Tbase
2 (κ) ˙̃X+Cbase

p
˙̃V

base
+RbaseṼbase = 0, (3.108)

−Tbars ˙̃X+Cbars
p

˙̃V
bars

+RbarsṼbars = 0, (3.109)

where

X̃ =

(
x̃1

x̃2

)
; Ṽbase =

(
ṽ1

ṽ2

)
; Ṽbars =

(
ṽ3

ṽ4

)
; M =

(
m1 0
0 m2

)
;

C(κ) =

(
c1 + c2 + c3 −c2 − c1e−iκa

−c2 − c1eiκa c1 + c2 + c4

)
;

K(κ) =

(
k1 + k2 + k3 −k2 − k1e−iκa

−k2 − k1eiκa k1 + k2 + k4

)
;

Tbase
1 (κ) =

(
θ1 −θ2

−θ1eiκa θ2

)
; Tbase

2 (κ) =

(
−θ1 θ1e−iκa

θ2 −θ2

)
;

Tbars =

(
θ3 0
0 θ4

)
; Cbase

p =

(
Cp1 0
0 Cp2

)
; Cbars

p =

(
Cp3 0
0 Cp4

)
;

Rbase =

 1
R1

0

0
1

R2

 ; and Rbars =

 1
R3

0

0
1

R4

 . (3.110)

Note that the superscripts "base" and "bars" are used to differentiate between the matrices
consisting of electrical parameters of the piezoelectric elements on the base chain and the
bars, respectively. The dispersion relation can now be formulated by subjecting equations
(3.107)–(3.109) to a state-space transformation of the form given in equation (3.4), where

A =


0 I 0 0
M C(κ) 0 0
0 Tbase

2 (κ) Cbase
p 0

0 −Tbars 0 Cbars
p

 ;

B =


−I 0 0 0
0 K(κ) Tbase

1 (κ) Tbars

0 0 Rbase 0
0 0 0 Rbars

 ; and Y =


˙̃X
X̃

Ṽbase

Ṽbars

 , (3.111)
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implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields a
eight-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs and four real roots.

Shunt circuit with an inductor

The governing electromechanical equations pertinent to the nth unit cell under free vibration
consisting of piezoelectric elements with a shunt circuit including an inductor can be written
as

m1ẍn
1 +(c1 + c2 + c3)ẋn

1 − c2ẋn
2 − c1ẋn−1

2 +(k1 + k2 + k3)xn
1 − k2xn

2 − k1xn−1
2

+θ1vn
1 −θ2vn

2 +θ3vn
3 = 0, (3.112)

m2ẍn
2 +(c1 + c2 + c4)ẋn

2 − c2ẋn
1 − c1ẋn+1

1 +(k1 + k2 + k4)xn
2 − k2xn

1 − k1xn+1
1

−θ1vn+1
1 +θ2vn

2 +θ4vn
4 = 0, (3.113)

−θ1(ẍn
1 − ẍn−1

2 )+Cp1 v̈n
1 +

1
R1

v̈n
1 +

1
L1

vn
1 = 0, (3.114)

−θ2(ẍn
2 − ẍn

1)+Cp2 v̈n
2 +

1
R2

v̈n
2 +

1
L2

vn
2 = 0, (3.115)

−θ3ẍn
1 +Cp3 v̈n

3 +
1

R3
v̇n

3 +
1
L3

vn
3 = 0, (3.116)

−θ4ẍn
2 +Cp4 v̈n

4 +
1

R4
v̇n

4 +
1
L4

vn
4 = 0. (3.117)

Substituting equations (3.51) and (3.31) in equations (3.112)–(3.117) yields the following
Bloch-transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2 and
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the voltage amplitudes ṽ1, ṽ2, ṽ3, and ṽ4:

m1 ¨̃x1 +(c1 + c2 + c3) ˙̃x1 +(−c2 − c1e−iκa) ˙̃x2 +(k1 + k2 + k3)x̃1

+(−k2 − k1e−iκa)x̃2 +θ1ṽ1 +(−θ2)ṽ2 +θ3ṽ3 = 0, (3.118)

m2 ¨̃x2 +(c1 + c2 + c4) ˙̃x2 +(−c2 − c1eiκa) ˙̃x1 +(k1 + k2 + k4)x̃2

+(−k2 − k1eiκa)x̃1 +(−θ1eiκa)ṽ1 +θ2ṽ2 +θ4ṽ4 = 0, (3.119)

−θ1 ¨̃x1 +θ1e−iκa ¨̃x2 +Cp1
¨̃v1 +

1
R1

˙̃v1 +
1
L1

ṽ1 = 0, (3.120)

−θ2 ¨̃x2 +θ2 ¨̃x1 +Cp2
¨̃v2 +

1
R2

˙̃v2 +
1
L2

ṽ2 = 0, (3.121)

−θ3 ¨̃x1 +Cp3
¨̃v3 +

1
R3

˙̃v3 +
1
L3

ṽ3 = 0, (3.122)

−θ4 ¨̃x2 +Cp4
¨̃v4 +

1
R4

˙̃v4 +
1
L4

ṽ4 = 0. (3.123)

Equations (3.118)–(3.123) can be fused into matrix equations as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃+Tbase
1 (κ)Ṽbase +TbarsṼbars = 0, (3.124)

Tbase
2 (κ) ¨̃X+Cbase

p
¨̃V

base
+Rbase ˙̃V

base
+LbaseṼbase = 0, (3.125)

−Tbars ¨̃X+Cbars
p

¨̃V
bars

+Rbars ˙̃V
bars

+LbarsṼbars = 0, (3.126)
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where

X̃ =

(
x̃1

x̃2

)
; Ṽbase =

(
ṽ1

ṽ2

)
; Ṽbars =

(
ṽ3

ṽ4

)
; M =

(
m1 0
0 m2

)
;

C(κ) =

(
c1 + c2 + c3 −c2 − c1e−iκa

−c2 − c1eiκa c1 + c2 + c4

)
;

K(κ) =

(
k1 + k2 + k3 −k2 − k1e−iκa

−k2 − k1eiκa k1 + k2 + k4

)
;

Tbase
1 (κ) =

(
θ1 −θ2

−θ1eiκa θ2

)
; Tbase

2 (κ) =

(
−θ1 θ1e−iκa

θ2 −θ2

)
;

Tbars =

(
θ3 0
0 θ4

)
; Cbase

p =

(
Cp1 0
0 Cp2

)
; Cbars

p =

(
Cp3 0
0 Cp4

)
;

Rbase =

 1
R1

0

0
1

R2

 ; Rbars =

 1
R3

0

0
1

R4

 ;

Lbase =

 1
L1

0

0
1
L2

 ; and Lbars =

 1
L3

0

0
1
L4

 . (3.127)

Equations (3.124)–(3.126) can be further merged into a single matrix equation as

Z1
¨̃E+Z2

˙̃E+Z3Ẽ = 0, (3.128)

where

Z1 =

 M 0 0
Tbase

2 (κ) Cbase
p 0

−Tbars 0 Cbars
p

 ; Z2 =

C(κ) 0 0
0 Rbase 0
0 0 Rbars

 ;

Z3 =

K(κ) Tbase
1 (κ) Tbars

0 Lbase 0
0 0 Lbars

 ; and Ẽ =

 X̃
Ṽbase

Ṽbars

 . (3.129)
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The dispersion relation can now be formulated by subjecting equation (3.128) to a state-space
transformation of the form given in equation (3.4), where

A =

(
0 I

Z1 Z2

)
; B =

(
−I 0
0 Z3

)
; and Y =

( ˙̃E
Ẽ

)
, (3.130)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields
an twelfth-order equation in terms of λ , which, upon solving, gives four complex roots
appearing as two complex-conjugate pairs and eight real roots.

3.7 Wave-propagation and dissipation characteristics of
diatomic phononic crystals and piezoelectric phononic
crystals

This section presents the wave-propagation and dissipation characteristics of the different
configurations of DPnCs and DPPnCs discussed so far in a graphical comparative format.

3.7.1 Without grounding

Table 3.5 details the parameters utilized in the computation of the dispersion (band structure)
and damping-ratio characteristics of the DPnC and DPPnCs without grounding.

The electrical parameters of the shunt circuit are non-dimensionalized as

αl = ω̄lCpl Rl, (3.131a)

βl = ω̄
2
l Cpl Ll, (3.131b)

kcoeffl
2 =

θ 2
l

klCpl

, (3.131c)

where l = 1,2 is an index corresponding to the parameters of the two piezoelectric elements

and the frequencies obtained from the two mass-spring pairs: ω̄1 =

√
k1

m1
and ω̄2 =

√
k2

m2
.

As a diatomic unit cell has two modes or branches, the integrated (cumulative) and total
value of the damping ratios are defined as

ζ
cum
l (µ) =

∫
µ

0
ζl dµ (l = 1,2, or sum; µ ∈ [0,π]), (3.132)
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Table 3.5: Mechanical and dimensionless electrical parameters employed in the diatomic
phononic crystal (DPnC) and diatomic piezoelectric phononic crystals (DPPnCs) without
grounding.

Parameter DPnC
DPPnC DPPnC

Unit
without an inductor with an inductor

a 1 1 1 m
m1 0.0170 0.0170 0.0170 Kg
m2 0.0340 0.0340 0.0340 Kg
k1 2×104 2×104 2×104 Nm−1

k2 1×104 1×104 1×104 Nm−1

c1 0.2180 0.2180 0.2180 Nsm−1

c2 0.2180 0.2180 0.2180 Nsm−1

α1 — 0.1302 0.1302 —
α2 — 0.2603 0.2603 —
β1 — — 0.4706 —
β2 — — 0.4706 —

kcoeff1
2 — 0.2000 0.2000 —

kcoeff2
2 — 0.8000 0.8000 —

and
ζ

tot
l = ζ

cum
l (π) (l = 1,2, or sum), (3.133)

respectively, where l = 1,2, or sum corresponds to the acoustic branch, optical branch, and
the summation of the two branches, respectively.

Figure 3.11 depicts the normalized damped frequencies, damping ratios, and cumulative
damping ratios for the DPnC and DPPnCs without grounding in the IBZ, i.e., for µ ∈ [0,π].
The damped frequencies are normalized with respect to ω̄1; i.e., the plots depict Ωl =
ωdl

ω̄1
, where l=1 (acoustic branch), 2 (optical branch). Considering that the diatomic unit

cell has two branches, figure 3.11(a) presents two transmission bands and two attenuation
bands as indicated by the shaded and non-shaded regions, respectively. The DPnC and
DPPnCs without grounding exhibit a wider first transmission band as opposed to the second
transmission band. The DPnC and DPPnCs have roughly similar band structures except
that the DPnC shows a lower and narrower second transmission band. For dispersion band
structures that are approximately similar, figure 3.11(b) shows a significant difference in
the damping ratio curves. It is observed that, in comparison to the DPnC, the DPPnCs
portray relatively higher levels of damping ratios ζ1 and ζ2. For a better comparison,
the summation of the two damping ratio curves, ζsum, is also plotted to show the total
wave-number dependent damping ratio in the IBZ. In figure 3.11(c), the DPPnCs present
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Figure 3.11: (a) Frequency band structure, (b) damping-ratio diagrams, and (c) cumulative-
damping-ratio diagrams for the diatomic phononic crystal (DPnC) and diatomic piezoelectric
phononic crystals (DPPnCs) without grounding.

a considerably higher rate of increase of ζ cum
l (l=1, 2, or sum) in comparison to the DPnC.

The value of ζ tot
l (l=1, 2, or sum) is the highest for the DPPnC with an inductor. Table 3.6

details the ζ tot
l values for the three periodic media.
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Table 3.6: Total values of damping ratios of the diatomic phononic crystal (DPnC) and
diatomic piezoelectric phononic crystals (DPPnCs) without grounding.

Parameter DPnC
DPPnC DPPnC

Unit
without an inductor with an inductor

ζ tot
1 0.0153 0.2265 0.2580 —

ζ tot
2 0.0330 0.2393 0.2780 —

ζ tot
sum 0.0483 0.4658 0.5360 —

3.7.2 With grounding

Table 3.7 details the parameters utilized in the computation of the dispersion (band structure)
and damping-ratio characteristics of the DPnC and DPPnCs with grounding.

Considering that there are four piezoelectric elements in a unit cell in this particular case,
the electrical parameters of the shunt circuit are non-dimensionalized as

αl = ω̄lCpl Rl, (3.134a)

βl = ω̄
2
l Cpl Ll, (3.134b)

kcoeffl
2 =

θ 2
l

klCpl

, (3.134c)

where l = 1,2,3,4 is an index corresponding to the parameters of the four piezoelectric

elements and the frequencies obtained from the four springs: ω̄1 =

√
k1

m1
, ω̄2 =

√
k2

m2
,

ω̄3 =

√
k3

m1
, and ω̄4 =

√
k4

m2
.

Figure 3.12 depicts the normalized damped frequencies, damping ratios, and cumulative
damping ratios for the DPnC and DPPnCs without grounding in the IBZ, i.e., for µ ∈ [0,π].

The damped frequencies are normalized with respect to ω̄1; i.e., the plots depict Ωl =
ωdl

ω̄1
,

where l=1 (acoustic branch), 2 (optical branch). It is noticed in figure 3.12(a) that the
transmission bands illustrated by the DPnC and DPPnCs with grounding are remarkably
narrow and the three periodic media have approximately similar band structures except that
the DPnC presents a slightly lower and narrower second transmission band. In figure 3.12(b),
it is observed that the DPPnCs portray higher levels of ζ1, ζ2, and ζsum in comparison to the
DPnC. In figure 3.12(c), the DPPnCs present a considerably higher rate of increase of ζ cum

l

(l=1, 2, or sum) in comparison to the DPnC. The DPPnC with an inductor demonstrates the
highest values of ζ tot

1 , ζ tot
2 , and ζ tot

sum as evidenced in table 3.8.
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Table 3.7: Mechanical and dimensionless electrical parameters employed in the diatomic
phononic crystal (DPnC) and diatomic piezoelectric phononic crystals (DPPnCs) with ground-
ing.

Parameter DPnC
DPPnC DPPnC

Unit
without an inductor with an inductor

a 1 1 1 m
m1 0.0170 0.0170 0.0170 Kg
m2 0.0340 0.0340 0.0340 Kg
k1 2.0500×103 2.0500×103 2.0500×103 Nm−1

k2 1.0250×103 1.0250×103 1.0250×103 Nm−1

k3 4.1000×103 4.1000×103 4.1000×103 Nm−1

k4 4.1000×103 4.1000×103 4.1000×103 Nm−1

c1 0.2180 0.2180 0.2180 Nsm−1

c2 0.2180 0.2180 0.2180 Nsm−1

c3 0.2180 0.2180 0.2180 Nsm−1

c4 0.2180 0.2180 0.2180 Nsm−1

α1 — 0.4480 0.4480 —
α2 — 0.2240 0.2240 —
α3 — 0.6335 0.6335 —
α4 — 0.4480 0.4480 —
β1 — — 0.4926 —
β2 — — 0.1232 —
β3 — — 0.9852 —
β4 — — 0.4926 —

kcoeff1
2 — 0.2369 0.2369 —

kcoeff2
2 — 0.4738 0.4738 —

kcoeff3
2 — 0.1185 0.1185 —

kcoeff4
2 — 0.1185 0.1185 —

Table 3.8: Total values of damping ratios of the diatomic phononic crystal (DPnC) and
diatomic piezoelectric phononic crystals (DPPnCs) with grounding.

Parameter DPnC
DPPnC DPPnC

Unit
without an inductor with an inductor

ζ tot
1 0.0517 0.1659 0.2068 —

ζ tot
2 0.1015 0.2613 0.3671 —

ζ tot
sum 0.1532 0.4272 0.5738 —

3.8 Overview of locally resonant metamaterials

In this section, the application of generalized Bloch’s theorem to different configurations of
locally resonant metamaterials (LRMs) is illustrated as an overview. LRMs are distinct to the
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Figure 3.12: (a) Frequency band structure, (b) damping-ratio diagrams, and (c) cumulative-
damping-ratio diagrams for the diatomic phononic crystal (DPnC) and diatomic piezoelectric
phononic crystals (DPPnCs) with grounding.

PnCs in the way that they possess a locally resonant mechanism, usually, a mass, attached to
the base mass via an oscillator.
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3.8.1 Without grounding

Figure 3.13 presents the schematics of an LRM chain under free vibration without any
grounding and the associated unit cell as lumped-parameter models. An LRM unit cell,
depicted in figure 3.13(b), consists of a base mass m1 and a locally resonant mass m2.
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Figure 3.13: Schematic of (a) a locally resonant metamaterial (LRM) chain without grounding
and (b) the associated unit cell.

The forces on the base mass and the locally resonant mass in the central unit cell, i.e.,
the nth unit cell shown in figure 3.13(b), under free vibration can be aggregated, and the
governing equations pertaining to the central unit cell can be written as

m1ẍn
1 + c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )+ c2(ẋn
1 − ẋn

2)+ k1(2xn
1 − xn−1

1 − xn+1
1 )

+k2(xn
1 − xn

2) = 0, (3.135)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1) = 0. (3.136)
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Substituting equation (3.51) in equations (3.135) and (3.136) yields the following Bloch-
transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2:

m1 ¨̃x1 +(c1(2− e−iκa − eiκa)+ c2) ˙̃x1 +(−c2) ˙̃x2

+(k1(2− e−iκa − eiκa)+ k2)x̃1 +(−k2)x̃2 = 0, (3.137)

m2 ¨̃x2 + c2 ˙̃x2 +(−c2) ˙̃x1 + k2x̃2 +(−k2)x̃1 = 0. (3.138)

Equations (3.137) and (3.138) can be assembled into a matrix form as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃ = 0, (3.139)

where

X̃ =

(
x̃1

x̃2

)
; M =

(
m1 0
0 m2

)
; C(κ) =

(
c1(2− e−iκa − eiκa)+ c2 −c2

−c2 c2

)
;

and K(κ) =

(
k1(2− e−iκa − eiκa)+ k2 −k2

−k2 k2

)
. (3.140)

The dispersion relation can now be formulated by subjecting equation (3.139) to a state-space
transformation of the form given in equation (3.4), where

A =

(
0 I
M C(κ)

)
; B =

(
−I 0
0 K(κ)

)
; and Y =

( ˙̃X
X̃

)
, (3.141)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields a
fourth-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs.

3.8.2 With grounding

Figure 3.14 presents the schematics of an LRM chain under free vibration with grounding
and the associated unit cell as lumped-parameter models. This case is representative of a
scenario where the LRM chain is attached to bars; i.e., the base mass m1 in a unit cell is
attached to a bar. For the sake of simplification, the bars are simply modelled as damped
oscillators as shown in figure 3.14.

The forces on the base mass and the locally resonant mass in the central unit cell, i.e.,
the nth unit cell shown in figure 3.14(b), under free vibration can be aggregated, and the
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Figure 3.14: Schematic of (a) a locally resonant metamaterial (LRM) chain with grounding
and (b) the associated unit cell.

governing equations pertaining to the central unit cell can be written as

m1ẍn
1 + c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )+(c2 + c3)ẋn
1 − c2ẋn

2 + k1(2xn
1 − xn−1

1 − xn+1
1 )

+(k2 + k3)xn
1 − k2xn

2 = 0, (3.142)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1) = 0. (3.143)

Substituting equation (3.51) in equations (3.142) and (3.143) yields the following Bloch-
transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2:

m1 ¨̃x1 +(c1(2− e−iκa − eiκa)+ c2 + c3) ˙̃x1 +(−c2) ˙̃x2

+(k1(2− e−iκa − eiκa)+ k2 + k3)x̃1 +(−k2)x̃2 = 0, (3.144)

m2 ¨̃x2 + c2 ˙̃x2 +(−c2) ˙̃x1 + k2x̃2 +(−k2)x̃1 = 0. (3.145)
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Equations (3.144) and (3.145) can be compacted into a matrix form as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃ = 0, (3.146)

where

X̃ =

(
x̃1

x̃2

)
; M =

(
m1 0
0 m2

)
; C(κ) =

(
c1(2− e−iκa − eiκa)+ c2 + c3 −c2

−c2 c2

)
;

and K(κ) =

(
k1(2− e−iκa − eiκa)+ k2 + k3 −k2

−k2 k2

)
. (3.147)

The dispersion relation can now be formulated by subjecting equation (3.146) to a state-space
transformation of the form given in equation (3.4), where

A =

(
0 I
M C(κ)

)
; B =

(
−I 0
0 K(κ)

)
; and Y =

( ˙̃X
X̃

)
, (3.148)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields a
fourth-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs.

3.9 Locally resonant piezoelectric metamaterials

This section delves into the application of generalized Bloch’s theorem to different configura-
tions of locally resonant piezoelectric metamaterials (LRPMs). The configurations addressed
in this section are, essentially, the piezoelectric counterparts of the configurations addressed
in section 3.8.

3.9.1 Without grounding

Figure 3.15 presents the schematics of an LRPM chain under free vibration without any
grounding and the associated unit cell as lumped-parameter models.
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Figure 3.15: Schematic of (a) a locally resonant piezoelectric metamaterial (LRPM) chain
without grounding and (b) the associated unit cell.

Shunt circuit without an inductor

The governing electromechanical equations pertaining to the nth unit cell under free vibration
consisting of piezoelectric elements with a shunt circuit lacking an inductor can be written as

m1ẍn
1 + c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )+ c2(ẋn
1 − ẋn

2)+ k1(2xn
1 − xn−1

1 − xn+1
1 )

+k2(xn
1 − xn

2)+θ1vn
1 −θ1vn+1

1 −θ2vn
2 = 0, (3.149)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1)+θ2vn

2 = 0, (3.150)

−θ1(ẋn
1 − ẋn−1

1 )+Cp1 v̇n
1 +

1
R1

vn
1 = 0, (3.151)

−θ2(ẋn
2 − ẋn

1)+Cp2 v̇n
2 +

1
R2

vn
2 = 0. (3.152)

Substituting equations (3.51) and (3.31) in equations (3.149)–(3.152) yields the following
Bloch-transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2 and
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the voltage amplitudes ṽ1 and ṽ2:

m1 ¨̃x1 +(c1(2− e−iκa − eiκa)+ c2) ˙̃x1 +(−c2) ˙̃x2

+(k1(2− e−iκa − eiκa)+ k2)x̃1 +(−k2)x̃2 +(θ1 −θ1eiκa)ṽ1 +(−θ2)ṽ2 = 0, (3.153)

m2 ¨̃x2 + c2 ˙̃x2 +(−c2) ˙̃x1 + k2x̃2 +(−k2)x̃1 +θ2ṽ2 = 0, (3.154)

(−θ1 +θ1e−iκa) ˙̃x1 +Cp1
˙̃v1 +

1
R1

ṽ1 = 0, (3.155)

−θ2 ˙̃x2 +θ2 ˙̃x1 +Cp2
˙̃v2 +

1
R2

ṽ2 = 0. (3.156)

Equations (3.153)–(3.156) can be compacted into matrix equations as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃+T1(κ)Ṽ = 0, (3.157)

T2(κ)
˙̃X+Cp

˙̃V+RṼ = 0, (3.158)

where

X̃ =

(
x̃1

x̃2

)
; Ṽ =

(
ṽ1

ṽ2

)
; M =

(
m1 0
0 m2

)
;

C(κ) =

(
c1(2− e−iκa − eiκa)+ c2 −c2

−c2 c2

)
;

K(κ) =

(
k1(2− e−iκa − eiκa)+ k2 −k2

−k2 k2

)
;

T1(κ) =

(
θ1 −θ1eiκa −θ2

0 θ2

)
; T2(κ) =

(
−θ1 +θ1e−iκa 0

θ2 −θ2

)
;

Cp =

(
Cp1 0
0 Cp2

)
; and R =

 1
R1

0

0
1

R2

 . (3.159)

The dispersion relation can now be derived by subjecting equations (3.157) and (3.158) to a
state-space transformation of the form given in equation (3.4), where

A =

 0 I 0
M C(κ) 0
0 T2(κ) Cp

 ; B =

−I 0 0
0 K(κ) T1(κ)

0 0 R

 ; and Y =


˙̃X
X̃
Ṽ

 , (3.160)
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implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields a
sixth-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs and two real roots.

Shunt circuit with an inductor

The governing electromechanical equations pertaining to the nth unit cell under free vibration
consisting of piezoelectric elements with a shunt circuit equipped with an inductor can be
written as

m1ẍn
1 + c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )+ c2(ẋn
1 − ẋn

2)+ k1(2xn
1 − xn−1

1 − xn+1
1 )

+k2(xn
1 − xn

2)+θ1vn
1 −θ1vn+1

1 −θ2vn
2 = 0, (3.161)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1)+θ2vn

2 = 0, (3.162)

−θ1(ẍn
1 − ẍn−1

1 )+Cp1 v̈n
1 +

1
R1

v̇n
1 +

1
L1

vn
1 = 0, (3.163)

−θ2(ẍn
2 − ẍn

1)+Cp2 v̈n
2 +

1
R2

v̇n
2 +

1
L2

vn
2 = 0. (3.164)

Substituting equations (3.51) and (3.31) in equations (3.161)–(3.164) yields the following
Bloch-transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2 and
the voltage amplitudes ṽ1 and ṽ2:

m1 ¨̃x1 +(c1(2− e−iκa − eiκa)+ c2) ˙̃x1 +(−c2) ˙̃x2

+(k1(2− e−iκa − eiκa)+ k2)x̃1 +(−k2)x̃2 +(θ1 −θ1eiκa)ṽ1 +(−θ2)ṽ2 = 0, (3.165)

m2 ¨̃x2 + c2 ˙̃x2 +(−c2) ˙̃x1 + k2x̃2 +(−k2)x̃1 +θ2ṽ2 = 0, (3.166)

(−θ1 +θ1e−iκa) ¨̃x1 +Cp1
¨̃v1 +

1
R1

˙̃v1 +
1
L1

ṽ1 = 0, (3.167)

−θ2 ¨̃x2 +θ2 ¨̃x1 +Cp2
¨̃v2 +

1
R2

˙̃v2 +
1
L2

ṽ2 = 0. (3.168)

Equations (3.165)–(3.168) can be assembled into matrix equations as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃+T1(κ)Ṽ = 0, (3.169)

T2(κ)
¨̃X+Cp

¨̃V+R ˙̃V+LṼ = 0, (3.170)
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where

X̃ =

(
x̃1

x̃2

)
; Ṽ =

(
ṽ1

ṽ2

)
; M =

(
m1 0
0 m2

)
;

C(κ) =

(
c1(2− e−iκa − eiκa)+ c2 −c2

−c2 c2

)
;

K(κ) =

(
k1(2− e−iκa − eiκa)+ k2 −k2

−k2 k2

)
;

T1(κ) =

(
θ1 −θ1eiκa −θ2

0 θ2

)
; T2(κ) =

(
−θ1 +θ1e−iκa 0

θ2 −θ2

)
;

Cp =

(
Cp1 0
0 Cp2

)
; R =

 1
R1

0

0
1

R2

 ; and L =

 1
L1

0

0
1
L2

 . (3.171)

Equations (3.169) and (3.170) can be further compacted into a single matrix equation as

Z1
¨̃E+Z2

˙̃E+Z3Ẽ = 0, (3.172)

where

Z1 =

(
M 0

T2(κ) Cp

)
; Z2 =

(
C(κ) 0

0 R

)
; Z3 =

(
K(κ) T1(κ)

0 L

)
;

and Ẽ =

(
X̃
Ṽ

)
. (3.173)

The dispersion relation can now be formulated by subjecting equation (3.172) to a state-space
transformation of the form given in equation (3.4), where

A =

(
0 I

Z1 Z2

)
; B =

(
−I 0
0 Z3

)
; and Y =

( ˙̃E
Ẽ

)
, (3.174)

implementing a solution of the formY = Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields an
eight-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs and four real roots.
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3.9.2 With grounding

Figure 3.16 presents the schematics of an LRPM chain under free vibration with grounding
and the associated unit cell as lumped-parameter models.
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Figure 3.16: Schematic of (a) a locally resonant piezoelectric metamaterial (LRPM) chain
with grounding and (b) the associated unit cell.
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Shunt circuit without an inductor

The governing electromechanical equations pertaining to the nth unit cell under free vibration
consisting of piezoelectric elements with a purely resistive shunt circuit can be written as

m1ẍn
1 + c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )+(c2 + c3)ẋn
1 − c2ẋn

2 + k1(2xn
1 − xn−1

1 − xn+1
1 )

+(k2 + k3)xn
1 − k2xn

2 +θ1vn
1 −θ1vn+1

1 −θ2vn
2 +θ3vn

3 = 0, (3.175)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1)+θ2vn

2 = 0, (3.176)

−θ1(ẋn
1 − ẋn−1

1 )+Cp1 v̇n
1 +

1
R1

vn
1 = 0, (3.177)

−θ2(ẋn
2 − ẋn

1)+Cp2 v̇n
2 +

1
R2

vn
2 = 0, (3.178)

−θ3ẋn
1 +Cp3 v̇n

3 +
1

R3
vn

3 = 0. (3.179)

Substituting equations (3.51) and (3.31) in equations (3.175)–(3.179) yields the following
Bloch-transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2 and
the voltage amplitudes ṽ1, ṽ2, and ṽ3:

m1 ¨̃x1 +(c1(2− e−iκa − eiκa)+ c2 + c3) ˙̃x1 +(−c2) ˙̃x2

+(k1(2− e−iκa − eiκa)+ k2 + k3)x̃1 +(−k2)x̃2

+(θ1 −θ1eiκa)ṽ1 +(−θ2)ṽ2 +θ3ṽ3 = 0, (3.180)

m2 ¨̃x2 + c2 ˙̃x2 +(−c2) ˙̃x1 + k2x̃2 +(−k2)x̃1 +θ2ṽ2 = 0, (3.181)

(−θ1 +θ1e−iκa) ˙̃x1 +Cp1
˙̃v1 +

1
R1

ṽ1 = 0, (3.182)

−θ2 ˙̃x2 +θ2 ˙̃x1 +Cp2
˙̃v2 +

1
R2

ṽ2 = 0, (3.183)

−θ3 ˙̃x1 +Cp3
˙̃v3 +

1
R3

ṽ3 = 0. (3.184)
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The dispersion relation can now be formulated by subjecting equations (3.180)–(3.184) to a
state-space transformation of the form given in equation (3.4), where

A =



0 1 0 0 0 0 0
0 0 0 1 0 0 0

m1 c1b+ c2 + c3 0 −c2 0 0 0
0 −c2 m2 c2 0 0 0
0 −θ1 +θ1e−iκa 0 0 Cp1 0 0
0 θ2 0 −θ2 0 Cp2 0
0 −θ3 0 0 0 0 Cp3


;

B =



−1 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 k1b+ k2 + k3 0 −k2 θ1 −θ1eiκa −θ2 θ3

0 −k2 0 k2 0 θ2 0

0 0 0 0
1

R1
0 0

0 0 0 0 0
1

R2
0

0 0 0 0 0 0
1

R3


;

and Y =



˙̃x1

x̃1
˙̃x2

x̃2

ṽ1

ṽ2

ṽ3


, (3.185)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields
a seventh-order equation in terms of λ , which, upon solving, gives four complex roots
appearing as two complex-conjugate pairs and three real roots. In A and B in equation
(3.185), the term b = 2− e−iκa − eiκa.

Shunt circuit with an inductor

The governing electromechanical equations pertinent to the nth unit cell under free vibration
consisting of piezoelectric elements with a shunt circuit including an inductor can be written
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as

m1ẍn
1 + c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )+(c2 + c3)ẋn
1 − c2ẋn

2 + k1(2xn
1 − xn−1

1 − xn+1
1 )

+(k2 + k3)xn
1 − k2xn

2 +θ1vn
1 −θ1vn+1

1 −θ2vn
2 +θ3vn

3 = 0, (3.186)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1)+θ2vn

2 = 0, (3.187)

−θ1(ẍn
1 − ẍn−1

1 )+Cp1 v̈n
1 +

1
R1

v̈n
1 +

1
L1

vn
1 = 0, (3.188)

−θ2(ẍn
2 − ẍn

1)+Cp2 v̈n
2 +

1
R2

v̈n
2 +

1
L2

vn
2 = 0, (3.189)

−θ3ẍn
1 +Cp3 v̈n

3 +
1

R3
v̇n

3 +
1
L3

vn
3 = 0. (3.190)

Substituting equations (3.51) and (3.31) in equations (3.186)–(3.190) yields the following
Bloch-transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2 and
the voltage amplitudes ṽ1, ṽ2, and ṽ3:

m1 ¨̃x1 +(c1(2− e−iκa − eiκa)+ c2 + c3) ˙̃x1 +(−c2) ˙̃x2

+(k1(2− e−iκa − eiκa)+ k2 + k3)x̃1 +(−k2)x̃2

+(θ1 −θ1eiκa)ṽ1 +(−θ2)ṽ2 +θ3ṽ3 = 0, (3.191)

m2 ¨̃x2 + c2 ˙̃x2 +(−c2) ˙̃x1 + k2x̃2 +(−k2)x̃1 +θ2ṽ2 = 0, (3.192)

(−θ1 +θ1e−iκa) ¨̃x1 +Cp1
¨̃v1 +

1
R1

˙̃v1 +
1
L1

ṽ1 = 0, (3.193)

−θ2 ¨̃x2 +θ2 ¨̃x1 +Cp2
¨̃v2 +

1
R2

˙̃v2 +
1
L2

ṽ2 = 0, (3.194)

−θ3 ¨̃x1 +Cp3
¨̃v3 +

1
R3

˙̃v3 +
1
L3

ṽ3 = 0. (3.195)

Equations (3.191)–(3.195) can be fused into a matrix form as

Z1
¨̃E+Z2

˙̃E+Z3Ẽ = 0, (3.196)
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where

Z1 =


m1 0 0 0 0
0 m2 0 0 0

−θ1 +θ1e−iκa 0 Cp1 0 0
θ2 −θ2 0 Cp2 0
−θ3 0 0 0 Cp3

 ;

Z2 =



c1b+ c2 + c3 −c2 0 0 0
−c2 c2 0 0 0

0 0
1

R1
0 0

0 0 0
1

R2
0

0 0 0 0
1

R3


;

Z3 =



k1b+ k2 + k3 −k2 θ1 −θ1eiκa −θ2 θ3

−k2 k2 0 θ2 0

0 0
1
L1

0 0

0 0 0
1
L2

0

0 0 0 0
1
L3


; and Ẽ =


x̃1

x̃2

ṽ1

ṽ2

ṽ3

 . (3.197)

In Z2 and Z3, the term b = 2− e−iκa − eiκa. The dispersion relation can now be formulated
by subjecting equation (3.196) to a state-space transformation of the form given in equation
(3.4), where

A =

(
0 I

Z1 Z2

)
; B =

(
−I 0
0 Z3

)
; and Y =

( ˙̃E
Ẽ

)
, (3.198)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields a
tenth-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs and six real roots.
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3.10 Wave-propagation and dissipation characteristics of
locally resonant metamaterials and piezoelectric
metamaterials

This section presents the wave-propagation and dissipation characteristics of the different
configurations of LRMs and LRPMs discussed so far in a graphical comparative format.

3.10.1 Without grounding

Table 3.9 details the parameters utilized in the computation of the dispersion (band structure)
and damping-ratio characteristics of the LRM and LRPMs without grounding. The electrical
parameters of the shunt circuit are non-dimensionalized in a fashion similar to the case of
DPPnC without grounding.

Table 3.9: Mechanical and dimensionless electrical parameters employed in the locally
resonant metamaterial (LRM) and locally resonant piezoelectric metamaterials (LRPMs)
without grounding.

Parameter LRM
LRPM LRPM

Unit
without an inductor with an inductor

a 1 1 1 m
m1 0.0170 0.0170 0.0170 Kg
m2 0.0340 0.0340 0.0340 Kg
k1 3×104 3×104 3×104 Nm−1

k2 1.5000×104 1.5000×104 1.5000×104 Nm−1

c1 2 2 2 Nsm−1

c2 2 2 2 Nsm−1

α1 — 0.1594 0.1594 —
α2 — 0.3188 0.3188 —
β1 — — 0.7059 —
β2 — — 0.7059 —

kcoeff1
2 — 0.1333 0.1333 —

kcoeff2
2 — 0.5333 0.5333 —

Figure 3.17 depicts the normalized damped frequencies, damping ratios, and cumulative
damping ratios for the LRM and LRPMs without grounding in the IBZ, i.e., for µ ∈ [0,π]. The

damped frequencies are normalized with respect to ω̄1 =

√
k1

m1
; i.e., the plots depict Ωl =

ωdl

ω̄1
,

where l=1 (acoustic branch), 2 (optical branch). Considering that, similar to a DPnC, a locally
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Figure 3.17: (a) Frequency band structure, (b) damping-ratio diagrams, and (c) cumulative-
damping-ratio diagrams for the locally resonant metamaterial (LRM) and locally resonant
piezoelectric metamaterials (LRPMs) without grounding.

resonant unit cell has two branches, figure 3.17(a) presents two transmission bands and two
attenuation bands as indicated by the shaded and non-shaded regions, respectively. The LRM
and LRPMs without grounding exhibit a wider second transmission band as opposed to the
first transmission band. The three periodic media have a roughly similar band structure except
that the LRM depicts a lower second transmission band. For dispersion band structures that
are approximately similar, figure 3.17(b) shows a significant disparity in the damping ratio
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curves. It is observed that, in comparison to the LRM, the LRPMs display higher levels
of ζ1, ζ2, and ζsum. In figure 3.17(c), the LRPMs present a much higher rate of increase
of ζ cum

l (l=1, 2, or sum) in comparison to the LRM. The value of ζ tot
l (l=1, 2, or sum) is

the highest for the LRPM with an inductor. Table 3.10 details the ζ tot
l values for the three

periodic media.

Table 3.10: Total values of damping ratios of the locally resonant metamaterial (LRM) and
locally resonant piezoelectric metamaterials (LRPMs) without grounding.

Parameter LRM
LRPM LRPM

Unit
without an inductor with an inductor

ζ tot
1 0.0909 0.2285 0.2436 —

ζ tot
2 0.2798 0.4612 0.5012 —

ζ tot
sum 0.3707 0.6897 0.7447 —

3.10.2 With grounding

Table 3.11 details the parameters utilized in the computation of the dispersion (band structure)
and damping-ratio characteristics of the LRM and LRPMs with grounding.

Considering that there are three piezoelectric elements in a unit cell in this particular case,
the electrical parameters of the shunt circuit are non-dimensionalized as

αl = ω̄lCpl Rl, (3.199a)

βl = ω̄
2
l Cpl Ll, (3.199b)

kcoeffl
2 =

θ 2
l

klCpl

, (3.199c)

where l = 1,2,3 is an index corresponding to the parameters of the three piezoelectric

elements and the frequencies obtained from the three springs: ω̄1 =

√
k1

m1
, ω̄2 =

√
k2

m2
, and

ω̄3 =

√
k3

m1
.

Figure 3.18 depicts the normalized damped frequencies, damping ratios, and cumulative
damping ratios for the LRM and LRPMs without grounding in the IBZ, i.e., for µ ∈ [0,π].

The damped frequencies are normalized with respect to ω̄1; i.e., the plots depict Ωl =
ωdl

ω̄1
,

where l=1 (acoustic branch), 2 (optical branch). It is noticed in figure 3.18(a) that the LRM
and LRPMs with grounding exhibit a wider second transmission band as opposed to the
first transmission band. The periodic media have an approximately similar band structure
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Table 3.11: Mechanical and dimensionless electrical parameters employed in the locally
resonant metamaterial (LRM) and locally resonant piezoelectric metamaterials (LRPMs)
with grounding.

Parameter LRM
LRPM LRPM

Unit
without an inductor with an inductor

a 1 1 1 m
m1 0.0170 0.0170 0.0170 Kg
m2 0.0340 0.0340 0.0340 Kg
k1 5×103 5×103 5×103 Nm−1

k2 10×103 10×103 10×103 Nm−1

k3 5×103 5×103 5×103 Nm−1

c1 2 2 2 Nsm−1

c2 2 2 2 Nsm−1

c3 2 2 2 Nsm−1

α1 — 0.0651 0.0651 —
α2 — 0.2603 0.2603 —
α3 — 0.0651 0.0651 —
β1 — — 0.2353 —
β2 — — 0.9412 —
β3 — — 0.2353 —

kcoeff1
2 — 0.8000 0.8000 —

kcoeff2
2 — 0.8000 0.8000 —

kcoeff3
2 — 0.8000 0.8000 —

except that the LRM presents a slightly lower second transmission band. In figure 3.18(b), it
is noticed that the LRPMs portray higher levels of ζl (l=1, 2, or sum) in comparison to the
LRM. In figure 3.18(c), the LRPMs present a considerably higher rate of increase of ζ cum

l

(l=1, 2, or sum) in comparison to the LRM. The LRPM with an inductor demonstrates the
highest values of ζ tot

l (l=1, 2, or sum) as evidenced in table 3.12.

Table 3.12: Total values of damping ratios of the locally resonant metamaterial (LRM) and
locally resonant piezoelectric metamaterials (LRPMs) with grounding.

Parameter LRM
LRPM LRPM

Unit
without an inductor with an inductor

ζ tot
1 0.1824 0.3229 0.3264 —

ζ tot
2 0.5885 0.9857 1.0442 —

ζ tot
sum 0.7709 1.3086 1.3706 —
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Figure 3.18: (a) Frequency band structure, (b) damping-ratio diagrams, and (c) cumulative-
damping-ratio diagrams for the locally resonant metamaterial (LRM) and locally resonant
piezoelectric metamaterials (LRPMs) with grounding.

3.11 Overview of inertially amplified locally resonant
metamaterials

In this section, the application of generalized Bloch’s theorem to different configurations of
inertially amplified locally resonant metamaterials (IALRMs) is described as an overview.
IALRMs are akin to LRMs, but in addition to containing a locally resonant mechanism,
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usually, a mass, attached to the base mass via an oscillator, they are equipped with an inertial-
amplifier mechanism, usually, a mass, attached to the baseline mass via rigid rods. The
purpose of the inertial-amplifier mechanism is to increase the effective inertia of a unit cell.

3.11.1 Without grounding

Figure 3.19 presents the schematics of an IALRM chain under free vibration without any
grounding and the associated unit cell as lumped-parameter models. In addition to each
baseline mass in an IALRM chain connected to a locally resonant mass, each baseline mass
is connected to the neighbouring baseline masses on the left and right by inertial-amplifier
attachments, each of which is comprised of an auxiliary mass and two rigid links—one
for each of the baseline masses—as shown in figure 3.19(a). Hence, an IALRM unit cell,
depicted in figure 3.19(b), consists of a base mass m1, a locally resonant mass m2, and an
inertial-amplifier mass m3. As the auxiliary or inertial-amplifier mass, m3, is connected to the
baseline mass, m1, by a rigid link, the inertial rigid coupling does not alter the total degrees
of freedom of a unit cell; hence, an IALRM unit cell will only have two degrees of freedom
similar to the DPnC and LRM. In figure 3.19, φ is the inertial-amplifier angle, which is the
angle between the rigid links and the baseline.

The forces on the base mass and the locally resonant mass in the central unit cell, i.e.,
the nth unit cell shown in figure 3.19(b), under free vibration can be aggregated, and the
governing equations pertaining to the central unit cell can be written as

m1ẍn
1 +χ(m3(ẍn

1 − ẍn−1
1 ))−χ(m3(ẍn+1

1 − ẍn
1))+ c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )

+c2(ẋn
1 − ẋn

2)+ k1(2xn
1 − xn−1

1 − xn+1
1 )+ k2(xn

1 − xn
2) = 0, (3.200)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1) = 0, (3.201)

where, from system kinematics [48], χ =
1

4tan2 φ
. The detailed derivation of equation

(3.200) is presented in section 6.2.2 of chapter 6.
Substituting equation (3.51) in equations (3.200) and (3.201) yields the following Bloch-

transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2:

(m1 +χm3(2− e−iκa − eiκa)) ¨̃x1 +(c1(2− e−iκa − eiκa)+ c2) ˙̃x1 +(−c2) ˙̃x2

+(k1(2− e−iκa − eiκa)+ k2)x̃1 +(−k2)x̃2 = 0, (3.202)

m2 ¨̃x2 + c2 ˙̃x2 +(−c2) ˙̃x1 + k2x̃2 +(−k2)x̃1 = 0. (3.203)
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Figure 3.19: Schematic of (a) an inertially amplified locally resonant metamaterial (IALRM)
chain without grounding and (b) the associated unit cell.

Equations (3.202) and (3.203) can be assembled into a matrix form as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃ = 0, (3.204)
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where

X̃ =

(
x̃1

x̃2

)
; M =

(
m1 +

m3

4
(2− e−iκa − eiκa)cot2 φ 0

0 m2

)
;

C(κ) =

(
c1(2− e−iκa − eiκa)+ c2 −c2

−c2 c2

)
;

and K(κ) =

(
k1(2− e−iκa − eiκa)+ k2 −k2

−k2 k2

)
. (3.205)

The dispersion relation can now be formulated by subjecting equation (3.204) to a state-space
transformation of the form given in equation (3.4), where

A =

(
0 I
M C(κ)

)
; B =

(
−I 0
0 K(κ)

)
; and Y =

( ˙̃X
X̃

)
, (3.206)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields a
fourth-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs.

3.11.2 With grounding

Figure 3.20 presents the schematics of an IALRM chain under free vibration with grounding
and the associated unit cell as lumped-parameter models. This case is representative of a
scenario where the IALRM chain is attached to bars; i.e., the base mass m1 in a unit cell is
attached to a bar. For the sake of simplification, the bars are simply modelled as damped
oscillators as shown in figure 3.20.

The forces on the base mass and the locally resonant mass in the central unit cell, i.e.,
the nth unit cell shown in figure 3.20(b), under free vibration can be aggregated, and the
governing equations pertaining to the central unit cell can be written as

m1ẍn
1 +χ(m3(ẍn

1 − ẍn−1
1 ))−χ(m3(ẍn+1

1 − ẍn
1))+ c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )

+(c2 + c3)ẋn
1 − c2ẋn

2 + k1(2xn
1 − xn−1

1 − xn+1
1 )+(k2 + k3)xn

1 − k2xn
2 = 0, (3.207)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1) = 0. (3.208)
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Figure 3.20: Schematic of (a) an inertially amplified-locally resonant-metamaterial (IALRM)
chain with grounding and (b) the associated unit cell.

Substituting equation (3.51) in equations (3.207) and (3.208) yields the following Bloch-
transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2:

(m1 +χm3(2− e−iκa − eiκa)) ¨̃x1 +(c1(2− e−iκa − eiκa)+ c2 + c3) ˙̃x1

+(−c2) ˙̃x2 +(k1(2− e−iκa − eiκa)+ k2 + k3)x̃1 +(−k2)x̃2 = 0, (3.209)

m2 ¨̃x2 + c2 ˙̃x2 +(−c2) ˙̃x1 + k2x̃2 +(−k2)x̃1 = 0. (3.210)
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Equations (3.209) and (3.210) can be compacted into a matrix form as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃ = 0, (3.211)

where

X̃ =

(
x̃1

x̃2

)
; M =

(
m1 +

m3

4
(2− e−iκa − eiκa)cot2 φ 0

0 m2

)
;

C(κ) =

(
c1(2− e−iκa − eiκa)+ c2 + c3 −c2

−c2 c2

)
;

and K(κ) =

(
k1(2− e−iκa − eiκa)+ k2 + k3 −k2

−k2 k2

)
. (3.212)

The dispersion relation can now be formulated by subjecting equation (3.211) to a state-space
transformation of the form given in equation (3.4), where

A =

(
0 I
M C(κ)

)
; B =

(
−I 0
0 K(κ)

)
; and Y =

( ˙̃X
X̃

)
, (3.213)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields a
fourth-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs.

3.12 Inertially amplified locally resonant piezoelectric
metamaterials

This section delves into the application of generalized Bloch’s theorem to different configura-
tions of inertially amplified locally resonant piezoelectric metamaterials (IALRPMs). The
configurations addressed in this section are, essentially, the piezoelectric counterparts of the
configurations addressed in section 3.11.

3.12.1 Without grounding

Figure 3.21 presents the schematics of an IALRPM chain under free vibration without any
grounding and the associated unit cell as lumped-parameter models.
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Figure 3.21: Schematic of (a) an inertially amplified locally resonant piezoelectric metamate-
rial (IALRPM) chain without grounding and (b) the associated unit cell.

Shunt circuit without an inductor

The governing electromechanical equations pertaining to the nth unit cell under free vibration
consisting of piezoelectric elements with a shunt circuit devoid of an inductor can be written



3.12 Inertially amplified locally resonant piezoelectric metamaterials 97

as

m1ẍn
1 +χ(m3(ẍn

1 − ẍn−1
1 ))−χ(m3(ẍn+1

1 − ẍn
1))+ c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )

+c2(ẋn
1 − ẋn

2)+ k1(2xn
1 − xn−1

1 − xn+1
1 )+ k2(xn

1 − xn
2)+θ1vn

1 −θ1vn+1
1 −θ2vn

2 = 0, (3.214)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1)+θ2vn

2 = 0, (3.215)

−θ1(ẋn
1 − ẋn−1

1 )+Cp1 v̇n
1 +

1
R1

vn
1 = 0, (3.216)

−θ2(ẋn
2 − ẋn

1)+Cp2 v̇n
2 +

1
R2

vn
2 = 0. (3.217)

Substituting equations (3.51) and (3.31) in equations (3.214)–(3.217) yields the following
Bloch-transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2 and
the voltage amplitudes ṽ1 and ṽ2:

(m1 +χm3(2− e−iκa − eiκa)) ¨̃x1 +(c1(2− e−iκa − eiκa)+ c2) ˙̃x1 +(−c2) ˙̃x2

+(k1(2− e−iκa − eiκa)+ k2)x̃1 +(−k2)x̃2 +(θ1 −θ1eiκa)ṽ1 +(−θ2)ṽ2 = 0, (3.218)

m2 ¨̃x2 + c2 ˙̃x2 +(−c2) ˙̃x1 + k2x̃2 +(−k2)x̃1 +θ2ṽ2 = 0, (3.219)

(−θ1 +θ1e−iκa) ˙̃x1 +Cp1
˙̃v1 +

1
R1

ṽ1 = 0, (3.220)

−θ2 ˙̃x2 +θ2 ˙̃x1 +Cp2
˙̃v2 +

1
R2

ṽ2 = 0. (3.221)

Equations (3.218)–(3.221) can be compacted into matrix equations as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃+T1(κ)Ṽ = 0, (3.222)

T2(κ)
˙̃X+Cp

˙̃V+RṼ = 0, (3.223)
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where

X̃ =

(
x̃1

x̃2

)
; Ṽ =

(
ṽ1

ṽ2

)
; M =

(
m1 +

m3

4
(2− e−iκa − eiκa)cot2 φ 0

0 m2

)
;

C(κ) =

(
c1(2− e−iκa − eiκa)+ c2 −c2

−c2 c2

)
;

K(κ) =

(
k1(2− e−iκa − eiκa)+ k2 −k2

−k2 k2

)
;

T1(κ) =

(
θ1 −θ1eiκa −θ2

0 θ2

)
; T2(κ) =

(
−θ1 +θ1e−iκa 0

θ2 −θ2

)
;

Cp =

(
Cp1 0
0 Cp2

)
; and R =

(
1

R1
0

0 1
R2

)
. (3.224)

The dispersion relation can now be derived by subjecting equations (3.222) and (3.223) to a
state-space transformation of the form given in equation (3.4), where

A =

 0 I 0
M C(κ) 0
0 T2(κ) Cp

 ; B =

−I 0 0
0 K(κ) T1(κ)

0 0 R

 ; and Y =


˙̃X
X̃
Ṽ

 , (3.225)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields a
sixth-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs and two real roots.

Shunt circuit with an inductor

The governing electromechanical equations pertaining to the nth unit cell under free vibration
consisting of piezoelectric elements with a shunt circuit equipped with an inductor can be
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written as

m1ẍn
1 +χ(m3(ẍn

1 − ẍn−1
1 ))−χ(m3(ẍn+1

1 − ẍn
1))+ c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )

+c2(ẋn
1 − ẋn

2)+ k1(2xn
1 − xn−1

1 − xn+1
1 )+ k2(xn

1 − xn
2)+θ1vn

1 −θ1vn+1
1 −θ2vn

2 = 0, (3.226)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1)+θ2vn

2 = 0, (3.227)

−θ1(ẍn
1 − ẍn−1

1 )+Cp1 v̈n
1 +

1
R1

v̇n
1 +

1
L1

vn
1 = 0, (3.228)

−θ2(ẍn
2 − ẍn

1)+Cp2 v̈n
2 +

1
R2

v̇n
2 +

1
L2

vn
2 = 0. (3.229)

Substituting equations (3.51) and (3.31) in equations (3.226)–(3.229) yields the following
Bloch-transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2 and
the voltage amplitudes ṽ1 and ṽ2:

(m1 +χm3(2− e−iκa − eiκa)) ¨̃x1 +(c1(2− e−iκa − eiκa)+ c2) ˙̃x1 +(−c2) ˙̃x2

+(k1(2− e−iκa − eiκa)+ k2)x̃1 +(−k2)x̃2 +(θ1 −θ1eiκa)ṽ1 +(−θ2)ṽ2 = 0, (3.230)

m2 ¨̃x2 + c2 ˙̃x2 +(−c2) ˙̃x1 + k2x̃2 +(−k2)x̃1 +θ2ṽ2 = 0, (3.231)

(−θ1 +θ1e−iκa) ¨̃x1 +Cp1
¨̃v1 +

1
R1

˙̃v1 +
1
L1

ṽ1 = 0, (3.232)

−θ2 ¨̃x2 +θ2 ¨̃x1 +Cp2
¨̃v2 +

1
R2

˙̃v2 +
1
L2

ṽ2 = 0. (3.233)

Equations (3.230)–(3.233) can be compactly written in a matrix format as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃+T1(κ)Ṽ = 0, (3.234)

T2(κ)
¨̃X+Cp

¨̃V+R ˙̃V+LṼ = 0, (3.235)
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where

X̃ =

(
x̃1

x̃2

)
; Ṽ =

(
ṽ1

ṽ2

)
; M =

(
m1 +

m3

4
(2− e−iκa − eiκa)cot2 φ 0

0 m2

)
;

C(κ) =

(
c1(2− e−iκa − eiκa)+ c2 −c2

−c2 c2

)
;

K(κ) =

(
k1(2− e−iκa − eiκa)+ k2 −k2

−k2 k2

)
;

T1(κ) =

(
θ1 −θ1eiκa −θ2

0 θ2

)
; T2(κ) =

(
−θ1 +θ1e−iκa 0

θ2 −θ2

)
;

Cp =

(
Cp1 0
0 Cp2

)
; R =

 1
R1

0

0
1

R2

 ; and L =

 1
L1

0

0
1
L2

 . (3.236)

Equations (3.234) and (3.235) can be further compacted into a single matrix equation as

Z1
¨̃E+Z2

˙̃E+Z3Ẽ = 0, (3.237)

where

Z1 =

(
M 0

T2(κ) Cp

)
; Z2 =

(
C(κ) 0

0 R

)
; Z3 =

(
K(κ) T1(κ)

0 L

)
;

and Ẽ =

(
X̃
Ṽ

)
. (3.238)

The dispersion relation can now be formulated by subjecting equation (3.237) to a state-space
transformation of the form given in equation (3.4), where

A =

(
0 I

Z1 Z2

)
; B =

(
−I 0
0 Z3

)
; and Y =

( ˙̃E
Ẽ

)
, (3.239)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields an
eight-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs and four real roots.
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3.12.2 With grounding

Figure 3.22 presents the schematics of an IALRPM chain under free vibration with grounding
and the associated unit cell as lumped-parameter models.
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Figure 3.22: Schematic of (a) an inertially amplified locally resonant piezoelectric metamate-
rial (IALRPM) chain with grounding and (b) the associated unit cell.
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Shunt circuit without an inductor

The governing electromechanical equations pertaining to the nth unit cell under free vibration
consisting of piezoelectric elements with a purely resistive shunt circuit can be written as

m1ẍn
1 +χ(m3(ẍn

1 − ẍn−1
1 ))−χ(m3(ẍn+1

1 − ẍn
1))+ c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )

+(c2 + c3)ẋn
1 − c2ẋn

2 + k1(2xn
1 − xn−1

1 − xn+1
1 )+(k2 + k3)xn

1 − k2xn
2

+θ1vn
1 −θ1vn+1

1 −θ2vn
2 +θ3vn

3 = 0, (3.240)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1)+θ2vn

2 = 0, (3.241)

−θ1(ẋn
1 − ẋn−1

1 )+Cp1 v̇n
1 +

1
R1

vn
1 = 0, (3.242)

−θ2(ẋn
2 − ẋn

1)+Cp2 v̇n
2 +

1
R2

vn
2 = 0, (3.243)

−θ3ẋn
1 +Cp3 v̇n

3 +
1

R3
vn

3 = 0. (3.244)

Substituting equations (3.51) and (3.31) in equations (3.240)–(3.244) yields the following
Bloch-transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2 and
the voltage amplitudes ṽ1, ṽ2, and ṽ3:

(m1 +χm3(2− e−iκa − eiκa)) ¨̃x1 +(c1(2− e−iκa − eiκa)+ c2 + c3) ˙̃x1

+(−c2) ˙̃x2 +(k1(2− e−iκa − eiκa)+ k2 + k3)x̃1 +(−k2)x̃2

+(θ1 −θ1eiκa)ṽ1 +(−θ2)ṽ2 +θ3ṽ3 = 0, (3.245)

m2 ¨̃x2 + c2 ˙̃x2 +(−c2) ˙̃x1 + k2x̃2 +(−k2)x̃1 +θ2ṽ2 = 0, (3.246)

(−θ1 +θ1e−iκa) ˙̃x1 +Cp1
˙̃v1 +

1
R1

ṽ1 = 0, (3.247)

−θ2 ˙̃x2 +θ2 ˙̃x1 +Cp2
˙̃v2 +

1
R2

ṽ2 = 0, (3.248)

−θ3 ˙̃x1 +Cp3
˙̃v3 +

1
R3

ṽ3 = 0. (3.249)
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The dispersion relation can now be formulated by subjecting equations (3.245)–(3.249) to a
state-space transformation of the form given in equation (3.4), where

A =



0 1 0 0 0 0 0
0 0 0 1 0 0 0

m1 +
m3

4
bcot2 φ c1b+ c2 + c3 0 −c2 0 0 0

0 −c2 m2 c2 0 0 0
0 −θ1 +θ1e−iκa 0 0 Cp1 0 0
0 θ2 0 −θ2 0 Cp2 0
0 −θ3 0 0 0 0 Cp3


;

B =



−1 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 k1b+ k2 + k3 0 −k2 θ1 −θ1eiκa −θ2 θ3

0 −k2 0 k2 0 θ2 0

0 0 0 0
1

R1
0 0

0 0 0 0 0
1

R2
0

0 0 0 0 0 0
1

R3


;

and Y =



˙̃x1

x̃1
˙̃x2

x̃2

ṽ1

ṽ2

ṽ3


, (3.250)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields
a seventh-order equation in terms of λ , which, upon solving, gives four complex roots
appearing as two complex-conjugate pairs and three real roots. In A and B in equation
(3.250), the term b = 2− e−iκa − eiκa.

Shunt circuit with an inductor

The governing electromechanical equations pertinent to the nth unit cell under free vibration
consisting of piezoelectric elements with a shunt circuit including an inductor can be written
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as

m1ẍn
1 +χ(m3(ẍn

1 − ẍn−1
1 ))−χ(m3(ẍn+1

1 − ẍn
1))+ c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )

+(c2 + c3)ẋn
1 − c2ẋn

2 + k1(2xn
1 − xn−1

1 − xn+1
1 )+(k2 + k3)xn

1 − k2xn
2

+θ1vn
1 −θ1vn+1

1 −θ2vn
2 +θ3vn

3 = 0, (3.251)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1)+θ2vn

2 = 0, (3.252)

−θ1(ẍn
1 − ẍn−1

1 )+Cp1 v̈n
1 +

1
R1

v̈n
1 +

1
L1

vn
1 = 0, (3.253)

−θ2(ẍn
2 − ẍn

1)+Cp2 v̈n
2 +

1
R2

v̈n
2 +

1
L2

vn
2 = 0, (3.254)

−θ3ẍn
1 +Cp3 v̈n

3 +
1

R3
v̇n

3 +
1
L3

vn
3 = 0. (3.255)

Substituting equations (3.51) and (3.31) in equations (3.251)–(3.255) yields the following
Bloch-transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2 and
the voltage amplitudes ṽ1, ṽ2, and ṽ3:

(m1 +χm3(2− e−iκa − eiκa)) ¨̃x1 +(c1(2− e−iκa − eiκa)+ c2 + c3) ˙̃x1

+(−c2) ˙̃x2 +(k1(2− e−iκa − eiκa)+ k2 + k3)x̃1 +(−k2)x̃2

+(θ1 −θ1eiκa)ṽ1 +(−θ2)ṽ2 +θ3ṽ3 = 0, (3.256)

m2 ¨̃x2 + c2 ˙̃x2 +(−c2) ˙̃x1 + k2x̃2 +(−k2)x̃1 +θ2ṽ2 = 0, (3.257)

(−θ1 +θ1e−iκa) ¨̃x1 +Cp1
¨̃v1 +

1
R1

˙̃v1 +
1
L1

ṽ1 = 0, (3.258)

−θ2 ¨̃x2 +θ2 ¨̃x1 +Cp2
¨̃v2 +

1
R2

˙̃v2 +
1
L2

ṽ2 = 0, (3.259)

−θ3 ¨̃x1 +Cp3
¨̃v3 +

1
R3

˙̃v3 +
1
L3

ṽ3 = 0. (3.260)

Equations (3.256)–(3.260) can be fused into a matrix form as

Z1
¨̃E+Z2

˙̃E+Z3Ẽ = 0, (3.261)
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where

Z1 =


m1 +

m3

4
bcot2 φ 0 0 0 0

0 m2 0 0 0
−θ1 +θ1e−iκa 0 Cp1 0 0

θ2 −θ2 0 Cp2 0
−θ3 0 0 0 Cp3

 ;

Z2 =



c1b+ c2 + c3 −c2 0 0 0
−c2 c2 0 0 0

0 0
1

R1
0 0

0 0 0
1

R2
0

0 0 0 0
1

R3


;

Z3 =



k1b+ k2 + k3 −k2 θ1 −θ1eiκa −θ2 θ3

−k2 k2 0 θ2 0

0 0
1
L1

0 0

0 0 0
1
L2

0

0 0 0 0
1
L3


; and Ẽ =


x̃1

x̃2

ṽ1

ṽ2

ṽ3

 . (3.262)

In Z1, Z2, and Z3, the term b = 2 − e−iκa − eiκa. The dispersion relation can now be
formulated by subjecting equation (3.261) to a state-space transformation of the form given
in equation (3.4), where

A =

(
0 I

Z1 Z2

)
; B =

(
−I 0
0 Z3

)
; and Y =

( ˙̃E
Ẽ

)
, (3.263)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (3.6). Expanding equation (3.6) for this particular case yields a
tenth-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs and six real roots.
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3.13 Wave-propagation and dissipation characteristics of
inertially amplified locally resonant metamaterials
and piezoelectric metamaterials

This section presents the wave-propagation and dissipation characteristics of the different
configurations of IALRMs and IALRPMs discussed so far in a graphical comparative format.

3.13.1 Without grounding

Table 3.13 details the parameters utilized in the computation of the dispersion (band structure)
and damping-ratio characteristics of the IALRM and IALRPMs without grounding. The
electrical parameters of the shunt circuit are non-dimensionalized in a fashion similar to the
case of DPPnC without grounding.

Table 3.13: Mechanical and dimensionless electrical parameters employed in the inertially
amplified locally resonant metamaterial (IALRM) and inertially amplified locally resonant
piezoelectric metamaterials (IALRPMs) without grounding.

Parameter IALRM
IALRPM IALRPM

Unit
without an inductor with an inductor

a 1 1 1 m
m1 0.0080 0.0080 0.0080 Kg
m2 0.0340 0.0340 0.0340 Kg
m3 0.0090 0.0090 0.0090 Kg
k1 3×104 3×104 3×104 Nm−1

k2 1.5000×104 1.5000×104 1.5000×104 Nm−1

c1 2 2 2 Nsm−1

c2 2 2 2 Nsm−1

φ 70 70 70 degree
α1 — 0.2324 0.2324 —
α2 — 0.3188 0.3188 —
β1 — — 1.2750 —
β2 — — 0.6000 —

kcoeff1
2 — 0.1333 0.1333 —

kcoeff2
2 — 0.5333 0.5333 —

Figure 3.23 depicts the normalized damped frequencies, damping ratios, and cumula-
tive damping ratios for the IALRM and IALRPMs without grounding in the IBZ, i.e., for

µ ∈ [0,π]. The damped frequencies are normalized with respect to ω̄1 =

√
k1

m1
; i.e., the



3.13 Wave-propagation and dissipation characteristics of inertially amplified locally resonant
metamaterials and piezoelectric metamaterials 107

(c)

Dimensionless wavenumber, μ 

C
um

ul
at

iv
e 

da
m

pi
ng

ra
tio

, ζ
 cu

m

0.8

0.4

0.2

00 1 2 3 0 1 2 3 0 1 2 3

(b)

D
am

pi
ng

 ra
tio

, ζ

0.20
0.15

0.05

0.25

0

(a)

Fr
eq

ue
nc

y,
 Ω

1.5

1.0

0.5

2.0

0

IALRM IALRPM
without inductor

IALRPM
with inductor

ζ2

ζ1

ζsum

Ω1
Ω2

ζ2

ζ1

ζsum

cum

cum

cum
0.6

0.30

2.5

0.10

1.0

ø = 70˚ ø = 90˚

0.35

Figure 3.23: (a) Frequency band structure, (b) damping-ratio diagrams, and (c) cumulative-
damping-ratio diagrams for the inertially amplified locally resonant metamaterial (IALRM)
and inertially amplified locally resonant piezoelectric metamaterials (IALRPMs) without
grounding.

plots depict Ωl =
ωdl

ω̄1
, where l=1 (acoustic branch), 2 (optical branch). The IALRM and

IALRPMs without grounding exhibit a wider second transmission band as opposed to the
first transmission band. The three periodic media have a roughly similar band structure
except that the IALRM depicts a marginally lower second transmission band. For dispersion
band structures that are approximately similar, figure 3.23(b) shows a significant distinction
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in the damping ratio curves. It is observed that, in comparison to the IALRM, the IALRPMs
show higher levels of ζl (l=1, 2, or sum). In figure 3.23(c), the IALRPMs indicate a much
higher rate of increase of ζ cum

l (l=1, 2, or sum) in comparison to the IALRM. The value of
ζ tot

l (l=1, 2, or sum) is the highest for the IALRPM with an inductor. Table 3.14 details the
ζ tot

l values for the three periodic media.

Table 3.14: Total values of damping ratios of the inertially amplified locally resonant
metamaterial (IALRM) and inertially amplified locally resonant piezoelectric metamaterials
(IALRPMs) without grounding.

Parameter IALRM
IALRPM IALRPM

Unit
without an inductor with an inductor

ζ tot
1 0.0930 0.2356 0.2437 —

ζ tot
2 0.3795 0.5534 0.5836 —

ζ tot
sum 0.4725 0.7890 0.8273 —

3.13.2 With grounding

Table 3.15 details the parameters utilized in the computation of the dispersion (band struc-
ture) and damping-ratio characteristics of the IALRM and IALRPMs with grounding. The
electrical parameters of the shunt circuit are non-dimensionalized in a fashion similar to the
case of LRPM with grounding.

Figure 3.24 depicts the normalized damped frequencies, damping ratios, and cumulative
damping ratios for the IALRM and IALRPMs without grounding in the IBZ, i.e., for µ ∈
[0,π]. The damped frequencies are normalized with respect to ω̄1; i.e., the plots depict

Ωl =
ωdl

ω̄1
, where l=1 (acoustic branch), 2 (optical branch). It is noticed in figure 3.24(a)

that the IALRM and IALRPMs with grounding exhibit a wider second transmission band
as opposed to the first transmission band. The periodic media have approximately similar
band structures except that the IALRM presents a lower second transmission band. In figure
3.24(b), the IALRPMs portray higher levels of ζl (l=1, 2, or sum) in comparison to the
IALRM. In figure 3.24(c), the IALRPMs present a considerably higher rate of increase
of ζ cum

l (l=1, 2, or sum) in comparison to the IALRM. The IALRPM with an inductor
demonstrates the highest values of ζ tot

l (l=1, 2, or sum) as evidenced in table 3.16.



3.14 Summary and conclusions 109

Table 3.15: Mechanical and dimensionless electrical parameters employed in the inertially
amplified locally resonant metamaterial (IALRM) and inertially amplified locally resonant
piezoelectric metamaterials (IALRPMs) with grounding.

Parameter IALRM
IALRPM IALRPM

Unit
without inductor with inductor

a 1 1 1 m
m1 0.0080 0.0080 0.0080 Kg
m2 0.0340 0.0340 0.0340 Kg
m3 0.0090 0.0090 0.0090 Kg
k1 5×103 5×103 5×103 Nm−1

k2 10×103 10×103 10×103 Nm−1

k3 5×103 5×103 5×103 Nm−1

c1 2 2 2 Nsm−1

c2 2 2 2 Nsm−1

c3 2 2 2 Nsm−1

φ 70 70 70 degree
α1 — 0.0949 0.0949 —
α2 — 0.2603 0.2603 —
α3 — 0.0949 0.0949 —
β1 — — 0.5000 —
β2 — — 0.9412 —
β3 — — 0.5000 —

kcoeff1
2 — 0.8000 0.8000 —

kcoeff2
2 — 0.8000 0.8000 —

kcoeff3
2 — 0.8000 0.8000 —

Table 3.16: Total values of damping ratios of the inertially amplified locally resonant
metamaterial (IALRM) and inertially amplified locally resonant piezoelectric metamaterials
(IALRPMs) with grounding.

Parameter IALRM
IALRPM IALRPM

Unit
without inductor with inductor

ζ tot
1 0.1816 0.3334 0.3385 —

ζ tot
2 0.8293 1.2288 1.2615 —

ζ tot
sum 1.0109 1.5622 1.6000 —

3.14 Summary and conclusions

In this chapter, three classes of one-dimensional periodic media, namely, phononic crystals,
locally resonant elastic metamaterials, and inertially amplified metamaterials with local
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Figure 3.24: (a) Frequency band structure, (b) damping-ratio diagrams, and (c) cumulative-
damping-ratio diagrams for the inertially amplified locally resonant metamaterial (IALRM)
and inertially amplified locally resonant piezoelectric metamaterials (IALRPMs) with ground-
ing.

resonance, are studied within a Bloch framework for the propagation of elastic waves as an
introductory overview. Subsequently, the piezoelectric counterparts of the aforementioned
periodic media are analysed. After applying the plane-wave Bloch solution to the governing
equations, the resulting Bloch-transformed equation/s is/are cast as a first-order equation via
a state-space formulation, and consequently, an eigenvalue problem is established, which is
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solved in MATLAB to obtain the eigenvalues. From the complex eigenvalue solution, the
wavenumber dependent damped frequencies and damping ratios are extracted and presented
for the periodic media and piezoelectric media for a quantitative comparison. By performing
Bloch analysis of an infinite piezoelectric periodic media, in the absence of forcing and
boundary conditions, with shunted energy harvesters, the piezoelectric periodic media can be
analysed as a material rather than a finite structure; i.e., the wave-propagation and dissipation
characteristics obtained are intrinsic in nature. This chapter essentially serves the purpose
of familiarizing the reader with the Bloch analysis of different types of one-dimensional
piezoelectric periodic media and the type of relevant results to be expected in chapters 5, 6,
and 7, where they are employed to develop conceptual metrics.



Chapter 4

Wave Propagation in Two-Dimensional
Phononic Crystals and Piezoelectric
Phononic Crystals

4.1 Introduction

As a premise, chapter 3 delved into the free-vibration analysis of the propagation of
elastic waves through various configurations of one-dimensional periodic media, namely,
monoatomic and diatomic phononic crystals, locally resonant metamaterial, and inertially am-
plified locally resonant metamaterial, and their piezoelectric counterparts. In this chapter, the
application of the generalized Bloch’s theorem is extended to two-dimensional monoatomic
phononic-crystal (MPnC) and monoatomic piezoelectric phononic-crystal (MPPnC) lattices
in order to gain an insight into their intrinsic wave-propagation and dissipation character-
istics as the lattices are assumed to be under free vibration, independent of structural size
(infinite in the x- and y-directions), and independent of boundary conditions. Unlike the
one-dimensional cases, which were subjected to wavenumbers only along the x-direction, a
two-dimensional lattice must be subjected to wavenumbers in the x- and y-directions; hence
the lattice is analysed in a wavevector space (κκκ-space or reciprocal space) comprised of
wavevectors with x-components κx and y-components κy. Propagation of plane waves in
an elastic lattice material follows periodic patterns which are dictated by the type of lattice
symmetry and the mechanical configuration of the unit cell, which is dictated by the number
of masses, stiffness elements (springs), and damping elements (viscous dashpots) in a unit
cell and their values. The lattices are presented as lumped-parameter models in detailed
schematics shown in the figures. The theoretical framework adopted in this chapter is akin to
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the one used in chapter 3; i.e., the analysis of the propagation of elastic waves through infinite
linear elastic periodic lattice under free vibration and with and without energy harvesters is
investigated by employing a generalized Bloch’s theorem for two-dimensional plane waves
followed by a state-space transformation to solve the governing system of equations. In doing
so, the dispersion relations are derived and the mathematical definition of the solution, eigen-
values, is given. Consequently, the mathematical definitions of the wave-propagation and
dissipation characteristics are extracted; i.e., the definitions of the wavenumber-dependent
damped frequencies and damping ratios are extracted.

The layout of the chapter is as follows. Unlike chapter 3, this chapter only delves into
two-dimensional MPnC and MPPnCs for simplicity. With regards to the energy harvesters,
cases of shunt circuit without an inductor and with an inductor are both considered. For the
MPnC, MPPnC without an inductor, and MPPnC with an inductor lattices, the most general
case of fully damped is considered as in real world applications an undamped system is
unrealistic to realize. For the three configurations, the damped frequencies and damping ratios
are presented in the irreducible Brillouin Zone and the first Brillouin zone in a comparative
format.

4.2 Monoatomic phononic crystal

In this section, the application of generalized Bloch’s theorem to a two-dimensional monoatomic
phononic-crystal (MPnC) lattice [122] is presented as a review in order to study the propaga-
tion of plane waves through the lattice.

Figure 4.1, presents the schematics of a MPnC lattice under free vibration and the
associated unit cell as lumped-parameter models. The mass in each unit cell is connected to
its neighbouring masses in all directions via springs and viscous dashpots. In figure 4.1(b),
p and q are used to identify and refer to the central unit cell under consideration along the
x- and y-directions, respectively, and can be any non-zero positive integer in a finite lattice;
m denotes the mass; k... and c... denote the stiffness coefficients of the linear springs and
the damping coefficients of the viscous dashpots, respectively, x(p,q)(t) and y(p,q)(t) are the
displacements, with respect to time t, of a mass in the x- and y-directions, respectively; and ax

and ay are the unit-cell dimensions or lattice spacings in the x- and y-directions, respectively.
Moving in the anti-clockwise direction with respect to the horizontal direction, the elastic
springs and viscous dashpots are placed at 0◦, 45◦, 90◦, and 135◦, which correspond to the
subscripts 1, 2, 3, and 4, respectively, of the spring stiffness and damping coefficients.

The forces on the mass in the central unit cell, i.e., the (p,q)th unit cell shown in figure
4.1(b), under free vibration can be aggregated in the x- and y-directions, and the governing
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Figure 4.1: Schematic of (a) a monoatomic phononic-crystal (MPnC) lattice and (b) the
associated unit cell.

equations pertaining to the two-dimensional motion of the mass in the central unit cell can
be written as
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mẍ(p,q)+ c1

(
ẋ(p,q)− ẋ(p+1,q)+ ẋ(p,q)− ẋ(p−1,q)

)
+

1
2

c2

(
ẋ(p,q)− ẋ(p+1,q+1)+ ẋ(p,q)− ẋ(p−1,q−1)+ ẏ(p,q)− ẏ(p+1,q+1)+ ẏ(p,q)− ẏ(p−1,q−1)

)
+

1
2

c4

(
ẋ(p,q)− ẋ(p−1,q+1)+ ẋ(p,q)− ẋ(p+1,q−1)− ẏ(p,q)+ ẏ(p−1,q+1)− ẏ(p,q)+ ẏ(p+1,q−1)

)
+k1

(
x(p,q)− x(p+1,q)+ x(p,q)− x(p−1,q)

)
+

1
2

k2

(
x(p,q)− x(p+1,q+1)+ x(p,q)− x(p−1,q−1)+ y(p,q)− y(p+1,q+1)+ y(p,q)− y(p−1,q−1)

)
+

1
2

k4

(
x(p,q)− x(p−1,q+1)+ x(p,q)− x(p+1,q−1)− y(p,q)+ y(p−1,q+1)− y(p,q)+ y(p+1,q−1)

)
= 0,

(4.1)

mÿ(p,q)+ c3

(
ẏ(p,q)− ẏ(p,q+1)+ ẏ(p,q)− ẏ(p,q−1)

)
+

1
2

c2

(
ẏ(p,q)− ẏ(p+1,q+1)+ ẏ(p,q)− ẏ(p−1,q−1)+ ẋ(p,q)− ẋ(p+1,q+1)+ ẋ(p,q)− ẋ(p−1,q−1)

)
+

1
2

c4

(
ẏ(p,q)− ẏ(p−1,q+1)+ ẏ(p,q)− ẏ(p+1,q−1)− ẋ(p,q)+ ẋ(p−1,q+1)− ẋ(p,q)+ ẋ(p+1,q−1)

)
+k3

(
y(p,q)− y(p,q+1)+ y(p,q)− y(p,q−1)

)
+

1
2

k2

(
y(p,q)− y(p+1,q+1)+ y(p,q)− y(p−1,q−1)+ x(p,q)− x(p+1,q+1)+ x(p,q)− x(p−1,q−1)

)
+

1
2

k4

(
y(p,q)− y(p−1,q+1)+ y(p,q)− y(p+1,q−1)− x(p,q)+ x(p−1,q+1)− x(p,q)+ x(p+1,q−1)

)
= 0,

(4.2)

where (p+1,q), (p−1,q), (p,q+1), (p,q−1), (p+1,q+1), (p−1,q+1), (p−1,q−1),
and (p+ 1,q− 1) refer to the unit cells to the right, left, top, bottom, top-right, top-left,
bottom-left, and bottom-right, respectively, of the (p,q)th unit cell (central unit cell under
consideration) and the number of overhead dots indicates the order of derivative with respect
to time.

Considering that a two-dimensional lattice or grid must be subjected to wavenumbers
in the x- and y-directions, i.e., the lattice must be analysed in a wavevector space (κκκ-space
or reciprocal space) comprised of wavevectors with x- and y-components, the plane-wave
solution for the displacements of a mass in a periodic unit cell is given by

U(p+g1,q+g2)(rrr,κκκ; t) = Ũ(t)ei[κx(p+g1)ax+κy(q+g2)ay], (4.3)
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where U(p+g1,q+g2) =
(

x(p+g1,q+g2),y(p+g1,q+g2)
)T

is the displacement vector; g1 ∈ [−∞,∞]

and g2 ∈ [−∞,∞] are integers used to locate a particular unit cell, relative to the (p,q)th unit
cell, in the x- and y-directions, respectively;

rrr = paxi+qayj (4.4)

is the two-dimensional position vector of the (p,q)th unit cell with the x- and y-components
given by pax and qay, respectively;

κκκ = κxi+κyj (4.5)

is the wavevector; Ũ = (x̃, ỹ)T is the displacement-amplitude vector; and i =
√
−1 is the

imaginary unit. For the central unit cell under consideration, i.e., the (p,q)th unit cell,
g1 = g2 = 0, and table 4.1 details the position of, values of g1 and g2 for, and location of all
the neighbouring unit cells, shown in figure 4.1(a), relative to the (p,q)th unit cell.

Table 4.1: Position of, values of g1 and g2 for, and location of all the unit cells, shown in
figure 4.1(a), in reference to the (p,q)th unit cell at the centre.

Position g1 g2
Location relative to the

(p,q)th unit cell

(p+1,q) 1 0 right
(p−1,q) -1 0 left
(p,q+1) 0 1 top
(p,q−1) 0 -1 bottom

(p+1,q+1) 1 1 top-right
(p−1,q+1) -1 1 top-left
(p−1,q−1) -1 -1 bottom-left
(p+1,q−1) 1 -1 bottom-right

Substituting equation (4.3) in equations (4.1) and (4.2) yields the following Bloch-
transformed homogeneous equations for the displacement amplitudes x̃ and ỹ:

m ¨̃x+ ˙̃x(c1b1 + c2b2 + c4b3)+ ˙̃y(c2b2 − c4b3)+ x̃(k1b1 + k2b2 + k4b3)

+ỹ(k2b2 − k4b3) = 0, (4.6)

m ¨̃y+ ˙̃y(c3b4 + c2b2 + c4b3)+ ˙̃x(c2b2 − c4b3)+ ỹ(k3b4 + k2b2 + k4b3)

+x̃(k2b2 − k4b3) = 0. (4.7)
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In the aforementioned Bloch-transformed equations,

b1 = 2− e−iκxax − eiκxax, (4.8)

b2 = 1− 1
2

e−i(κxax+κyay)− 1
2

ei(κxax+κyay), (4.9)

b3 = 1− 1
2

e−i(κxax−κyay)− 1
2

ei(κxax−κyay), (4.10)

b4 = 2− e−iκyay − eiκyay. (4.11)

Equations (4.6) and (4.7) can be assembled into the matrix form

M ¨̃U+C(κκκ) ˙̃U+K(κκκ)Ũ = 0, (4.12)

where

M =

(
m 0
0 m

)
; C(κκκ) =

(
c1b1 + c2b2 + c4b3 c2b2 − c4b3

c2b2 − c4b3 c3b4 + c2b2 + c4b3

)
;

and K(κκκ) =

(
k1b1 + k2b2 + k4b3 k2b2 − k4b3

k2b2 − k4b3 k3b4 + k2b2 + k4b3

)
. (4.13)

Equation (4.12) can now be converted into a first order problem, through a state-space
transformation [119–121] of the form

AẎ+BY = 0, (4.14)

where

A =

(
0 I
M C(κκκ)

)
; B =

(
−I 0
0 K(κκκ)

)
; and Y =

( ˙̃U
Ũ

)
. (4.15)

For equation (4.14), a solution of the form Y = Ỹλ eλ t is assumed, where Ỹλ is a complex-
amplitude state-space vector corresponding to eigenvalue λ . The dispersion relation and,
consequently, the wave-propagation and dissipation characteristics can now be obtained by
implementing the solution in equation (4.14) and solving the resulting eigenvalue problem
given by ∣∣A−1B+λ I

∣∣= 0. (4.16)

Expanding equation (4.16) for this particular case yields a fourth-order equation in terms of
λ , which, upon solving, gives four complex roots appearing as two complex-conjugate pairs.
The complex solution for the eigenvalue problem, in this case, at a given value of κκκ can be
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expressed as

λl(κ) =−ζs(κ)ωrl(κ)± iωdl(κ) =−ζl(κ)ωrl(κ)± iωrl(κ)
√

1−ζl(κ)2, (4.17)

where the subscript l identifies the complex-conjugate pairs and, consequently, the mode or
branch number. All two-dimensional monoatomic cases, on account of the two complex-
conjugate pairs, exhibit two modes or branches: the transverse (l = 1) branch and the
longitudinal (l = 2) branch. In the expression above, ωrl is the wavenumber-dependent
resonant frequency which is defined as

ωrl(κ) = Abs[λl(κ)]; (4.18)

ωdl is the wavenumber-dependent damped frequency which is defined as

ωdl(κ) = Im[λl(κ)]; (4.19)

and ζl(κ) is the wavenumber-dependent damping ratio which is defined as

ζl(κ) =− Re[λl(κ)]

Abs[λl(κ)]
. (4.20)

The phase and group velocities can also be obtained by using the definitions

Cphl
=

ωdl

κ
and Cgl =

∂ωdl

∂κ
, (4.21)

respectively.

4.3 Piezoelectric monoatomic phononic crystals

This section delves into the study of the propagation of plane waves through a two-dimensional
MPPnC lattice with energy harvesters comprising of shunt circuits that are either purely
resistive or are equipped with an inductor by means of the application of generalized Bloch’s
theorem to a two-dimensional MPPnC lattice with energy harvesters comprising of shunt
circuits that are either purely resistive or equipped with an inductor.

Figure 4.2, presents the schematics of a MPPnC lattice under free vibration and the
associated unit cell as lumped-parameter models. In figure 4.2, θ... are the electromechanical
coupling values and v(p,q)

... (t) are the voltages generated in a unit cell. An energy harvester,
e.g., a piezoelectric patch, is placed between the mass in each unit cell and each of the
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Figure 4.2: Schematic of (a) a monoatomic piezoelectric phononic-crystal (MPPnC) lattice
and (b) the associated unit cell.

masses in the adjacent unit cells in all directions for the sake of considering a full-fledged
piezoelectric lattice.
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4.3.1 Shunt circuit without an inductor

In the set comprising of the governing electromechanical equations pertaining to the (p,q)th

unit cell, the governing mechanical equations can be formulated by aggregating all the forces
on the mass, due to the springs and dashpots in the unit cell, in the x- and y-directions.
The governing mechanical equations, including the effects of the piezoelectric elements,
pertaining to the (p,q)th unit cell under free vibration consisting of piezoelectric elements
with shunt circuits lacking an inductor can be written as

mẍ(p,q)+ c1

(
ẋ(p,q)− ẋ(p+1,q)+ ẋ(p,q)− ẋ(p−1,q)

)
+

1
2

c2

(
ẋ(p,q)− ẋ(p+1,q+1)+ ẋ(p,q)− ẋ(p−1,q−1)+ ẏ(p,q)− ẏ(p+1,q+1)+ ẏ(p,q)− ẏ(p−1,q−1)

)
+

1
2

c4

(
ẋ(p,q)− ẋ(p−1,q+1)+ ẋ(p,q)− ẋ(p+1,q−1)− ẏ(p,q)+ ẏ(p−1,q+1)− ẏ(p,q)+ ẏ(p+1,q−1)

)
+k1

(
x(p,q)− x(p+1,q)+ x(p,q)− x(p−1,q)

)
+

1
2

k2

(
x(p,q)− x(p+1,q+1)+ x(p,q)− x(p−1,q−1)+ y(p,q)− y(p+1,q+1)+ y(p,q)− y(p−1,q−1)

)
+

1
2

k4

(
x(p,q)− x(p−1,q+1)+ x(p,q)− x(p+1,q−1)− y(p,q)+ y(p−1,q+1)− y(p,q)+ y(p+1,q−1)

)
+θ1v(p−1,q)

1 −θ1v(p,q)
1 +

θ2

2
v(p−1,q−1)

2 − θ2

2
v(p,q)

2 − θ4

2
v(p+1,q−1)

4 +
θ4

2
v(p,q)

4 = 0,

(4.22)

mÿ(p,q)+ c3

(
ẏ(p,q)− ẏ(p,q+1)+ ẏ(p,q)− ẏ(p,q−1)

)
+

1
2

c2

(
ẏ(p,q)− ẏ(p+1,q+1)+ ẏ(p,q)− ẏ(p−1,q−1)+ ẋ(p,q)− ẋ(p+1,q+1)+ ẋ(p,q)− ẋ(p−1,q−1)

)
+

1
2

c4

(
ẏ(p,q)− ẏ(p−1,q+1)+ ẏ(p,q)− ẏ(p+1,q−1)− ẋ(p,q)+ ẋ(p−1,q+1)− ẋ(p,q)+ ẋ(p+1,q−1)

)
+k3

(
y(p,q)− y(p,q+1)+ y(p,q)− y(p,q−1)

)
+

1
2

k2

(
y(p,q)− y(p+1,q+1)+ y(p,q)− y(p−1,q−1)+ x(p,q)− x(p+1,q+1)+ x(p,q)− x(p−1,q−1)

)
+

1
2

k4

(
y(p,q)− y(p−1,q+1)+ y(p,q)− y(p+1,q−1)− x(p,q)+ x(p−1,q+1)− x(p,q)+ x(p+1,q−1)

)
+θ3v(p,q−1)

3 −θ3v(p,q)
3 +

θ2

2
v(p−1,q−1)

2 − θ2

2
v(p,q)

2 − θ4

2
v(p+1,q−1)

4 +
θ4

2
v(p,q)

4 = 0.

(4.23)

The governing electrical equations pertaining to the (p,q)th unit cell under free vibration
consisting of piezoelectric elements with shunt circuits lacking an inductor [73] can be
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written as

−θ1

(
ẋ(p+1,q)− ẋ(p,q)

)
+Cp1 v̇(p,q)

1 +
1

R1
v(p,q)

1 = 0, (4.24)

−θ2

2

(
ẋ(p+1,q+1)− ẋ(p,q)

)
− θ2

2

(
ẏ(p+1,q+1)− ẏ(p,q)

)
+Cp2 v̇(p,q)

2 +
1

R2
v(p,q)

2 = 0, (4.25)

−θ3

(
ẏ(p,q+1)− ẏ(p,q)

)
+Cp3 v̇(p,q)

3 +
1

R3
v(p,q)

3 = 0, (4.26)

−θ4

2

(
ẋ(p,q)− ẋ(p−1,q+1)

)
− θ4

2

(
ẏ(p,q)− ẏ(p−1,q+1)

)
+Cp4 v̇(p,q)

4 +
1

R4
v(p,q)

4 = 0. (4.27)

Analogous to equation (4.3), the plane-wave solution for the voltages generated in a
periodic unit-cell can be written as

v(p+g1,q+g2)
l (rrr,κκκ; t) = ṽl(t)ei[κx(p+g1)ax+κy(q+g2)ay], (4.28)

where l=1,2,3,4 is an index corresponding to the voltages generated by the four piezoelectric
elements in a unit cell. Substituting equations (4.3) and (4.28) in equations (4.22)–(4.27)
yields the following Bloch-transformed homogeneous equations for the displacement ampli-
tudes x̃ and ỹ and the voltage amplitudes ṽ1, ṽ2, ṽ3, and ṽ4:

m ¨̃x+ ˙̃x(c1b1 + c2b2 + c4b3)+ ˙̃y(c2b2 − c4b3)+ x̃(k1b1 + k2b2 + k4b3)

+ỹ(k2b2 − k4b3)+ ṽ1

(
θ1e−iκxax −θ1

)
+ ṽ2

(
θ2

2
e−i(κxax+κyay)− θ2

2

)
+ṽ4

(
θ4

2
− θ4

2
ei(κxax−κyay)

)
= 0, (4.29)

m ¨̃y+ ˙̃y(c3b4 + c2b2 + c4b3)+ ˙̃x(c2b2 − c4b3)+ ỹ(k3b4 + k2b2 + k4b3)

+x̃(k2b2 − k4b3)+ ṽ3

(
θ3e−iκyay −θ3

)
+ ṽ2

(
θ2

2
e−i(κxax+κyay)− θ2

2

)
+ṽ4

(
θ4

2
− θ4

2
ei(κxax−κyay)

)
= 0, (4.30)

˙̃x
(

θ1 −θ1eiκxax
)
+Cp1

˙̃v1 +
1

R1
ṽ1 = 0, (4.31)

˙̃x
(

θ2

2
− θ2

2
ei(κxax+κyay)

)
+ ˙̃y
(

θ2

2
− θ2

2
ei(κxax+κyay)

)
+Cp2

˙̃v2 +
1

R2
ṽ2 = 0, (4.32)

˙̃y
(

θ3 −θ3eiκyay
)
+Cp3

˙̃v3 +
1

R3
ṽ3 = 0, (4.33)

˙̃x
(

θ4

2
e−i(κxax−κyay)− θ4

2

)
+ ˙̃y
(

θ4

2
e−i(κxax−κyay)− θ4

2

)
+Cp4

˙̃v4 +
1

R4
ṽ4 = 0. (4.34)
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The coefficients b1, b2, b3, and b4 used in the aforementioned Bloch-transformed equations
are stated in equations (4.8)–(4.11). Equations (4.29)–(4.34) can be compacted into a matrix
form as

M ¨̃U+C(κκκ) ˙̃U+K(κκκ)Ũ+Tperpd
1 (κκκ)Ṽperpd +Tdiag

1 (κκκ)Ṽdiag = 0, (4.35)

Tperpd
2 (κκκ) ˙̃U+Cperpd

p
˙̃V

perpd
+RperpdṼperpd = 0, (4.36)

Tdiag
2 (κκκ) ˙̃U+Cdiag

p
˙̃V

diag
+RdiagṼdiag = 0, (4.37)

where

Ṽperpd =

(
ṽ1

ṽ3

)
; Ṽdiag =

(
ṽ2

ṽ4

)
; M =

(
m 0
0 m

)
;

C(κκκ) =

(
c1b1 + c2b2 + c4b3 c2b2 − c4b3

c2b2 − c4b3 c3b4 + c2b2 + c4b3

)
;

K(κκκ) =

(
k1b1 + k2b2 + k4b3 k2b2 − k4b3

k2b2 − k4b3 k3b4 + k2b2 + k4b3

)
;

Tperpd
1 (κκκ) =

(
θ1e−iκxax −θ1 0

0 θ3e−iκyay −θ3

)
;

Tperpd
2 (κκκ) =

(
θ1 −θ1eiκxax 0

0 θ3 −θ3eiκyay

)
;

Tdiag
1 (κκκ) =


θ2

2
e−i(κxax+κyay)− θ2

2
θ4

2
− θ4

2
ei(κxax−κyay)

θ2

2
e−i(κxax+κyay)− θ2

2
θ4

2
− θ4

2
ei(κxax−κyay)

 ;

Tdiag
2 (κκκ) =


θ2

2
− θ2

2
ei(κxax+κyay)

θ2

2
− θ2

2
ei(κxax+κyay)

θ4

2
e−i(κxax−κyay)− θ4

2
θ4

2
e−i(κxax−κyay)− θ4

2

 ;

Cperpd
p =

(
Cp1 0
0 Cp3

)
; Cdiag

p =

(
Cp2 0
0 Cp4

)
;

Rperpd =

 1
R1

0

0
1

R3

 ; and Rdiag =

 1
R2

0

0
1

R4

 . (4.38)

Note that the superscript “perpd” is used to refer to the matrices consisting of electrical
parameters of the piezoelectric elements in the horizontal and vertical directions and the



4.3 Piezoelectric monoatomic phononic crystals 123

superscript “diag” is used to refer to the matrices consisting of electrical parameters of the
piezoelectric elements diagonal to the mass. The dispersion relation can now be formulated
by subjecting equations (4.35)–(4.37) to a state-space transformation of the form given in
equation (4.14), where

A =


0 I 0 0
M C(κκκ) 0 0
0 Tperpd

2 (κκκ) Cperpd
p 0

0 Tdiag
2 (κκκ) 0 Cdiag

p

 ;

B =


−I 0 0 0
0 K(κκκ) Tperpd

1 (κκκ) Tdiag
1 (κκκ)

0 0 Rperpd 0
0 0 0 Rdiag

 ; and Y =


˙̃U
Ũ

Ṽperpd

Ṽdiag

 , (4.39)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (4.16). Expanding equation (4.16) for this particular case
yields an eight-order equation in terms of λ , which, upon solving, gives four complex roots
appearing as two complex-conjugate pairs and four real roots.

4.3.2 Shunt circuit with an inductor

The governing mechanical equations, including the effects of the piezoelectric elements,
pertaining to the (p,q)th unit cell under free vibration consisting of piezoelectric elements
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with shunt circuits consisting of an inductor can be written as

mẍ(p,q)+ c1

(
ẋ(p,q)− ẋ(p+1,q)+ ẋ(p,q)− ẋ(p−1,q)

)
+

1
2

c2

(
ẋ(p,q)− ẋ(p+1,q+1)+ ẋ(p,q)− ẋ(p−1,q−1)+ ẏ(p,q)− ẏ(p+1,q+1)+ ẏ(p,q)− ẏ(p−1,q−1)

)
+

1
2

c4

(
ẋ(p,q)− ẋ(p−1,q+1)+ ẋ(p,q)− ẋ(p+1,q−1)− ẏ(p,q)+ ẏ(p−1,q+1)− ẏ(p,q)+ ẏ(p+1,q−1)

)
+k1

(
x(p,q)− x(p+1,q)+ x(p,q)− x(p−1,q)

)
+

1
2

k2

(
x(p,q)− x(p+1,q+1)+ x(p,q)− x(p−1,q−1)+ y(p,q)− y(p+1,q+1)+ y(p,q)− y(p−1,q−1)

)
+

1
2

k4

(
x(p,q)− x(p−1,q+1)+ x(p,q)− x(p+1,q−1)− y(p,q)+ y(p−1,q+1)− y(p,q)+ y(p+1,q−1)

)
+θ1v(p−1,q)

1 −θ1v(p,q)
1 +

θ2

2
v(p−1,q−1)

2 − θ2

2
v(p,q)

2 − θ4

2
v(p+1,q−1)

4 +
θ4

2
v(p,q)

4 = 0,

(4.40)

mÿ(p,q)+ c3

(
ẏ(p,q)− ẏ(p,q+1)+ ẏ(p,q)− ẏ(p,q−1)

)
+

1
2

c2

(
ẏ(p,q)− ẏ(p+1,q+1)+ ẏ(p,q)− ẏ(p−1,q−1)+ ẋ(p,q)− ẋ(p+1,q+1)+ ẋ(p,q)− ẋ(p−1,q−1)

)
+

1
2

c4

(
ẏ(p,q)− ẏ(p−1,q+1)+ ẏ(p,q)− ẏ(p+1,q−1)− ẋ(p,q)+ ẋ(p−1,q+1)− ẋ(p,q)+ ẋ(p+1,q−1)

)
+k3

(
y(p,q)− y(p,q+1)+ y(p,q)− y(p,q−1)

)
+

1
2

k2

(
y(p,q)− y(p+1,q+1)+ y(p,q)− y(p−1,q−1)+ x(p,q)− x(p+1,q+1)+ x(p,q)− x(p−1,q−1)

)
+

1
2

k4

(
y(p,q)− y(p−1,q+1)+ y(p,q)− y(p+1,q−1)− x(p,q)+ x(p−1,q+1)− x(p,q)+ x(p+1,q−1)

)
+θ3v(p,q−1)

3 −θ3v(p,q)
3 +

θ2

2
v(p−1,q−1)

2 − θ2

2
v(p,q)

2 − θ4

2
v(p+1,q−1)

4 +
θ4

2
v(p,q)

4 = 0.

(4.41)

The governing electrical equations pertaining to the (p,q)th unit cell under free vibration
consisting of piezoelectric elements with shunt circuits including an inductor [73] can be
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written as

−θ1

(
ẍ(p+1,q)− ẍ(p,q)

)
+Cp1 v̈(p,q)

1 +
1

R1
v̇(p,q)

1 +
1
L1

v(p,q)
1 = 0, (4.42)

−θ2

2

(
ẍ(p+1,q+1)− ẍ(p,q)

)
− θ2

2

(
ÿ(p+1,q+1)− ÿ(p,q)

)
+Cp2 v̈(p,q)

2 +
1

R2
v̇(p,q)

2

+
1
L2

v(p,q)
2 = 0, (4.43)

−θ3

(
ÿ(p,q+1)− ÿ(p,q)

)
+Cp3 v̈(p,q)

3 +
1

R3
v̇(p,q)

3 +
1
L3

v(p,q)
3 = 0, (4.44)

−θ4

2

(
ẍ(p,q)− ẍ(p−1,q+1)

)
− θ4

2

(
ÿ(p,q)− ÿ(p−1,q+1)

)
+Cp4 v̈(p,q)

4 +
1

R4
v̇(p,q)

4

+
1
L4

v(p,q)
4 = 0. (4.45)

Substituting equations (4.3) and (4.28) in equations (4.40)–(4.45) yields the following
Bloch-transformed homogeneous equations for the displacement amplitudes x̃ and ỹ and the
voltage amplitudes ṽ1, ṽ2, ṽ3, and ṽ4:

m ¨̃x+ ˙̃x(c1b1 + c2b2 + c4b3)+ ˙̃y(c2b2 − c4b3)+ x̃(k1b1 + k2b2 + k4b3)

+ỹ(k2b2 − k4b3)+ ṽ1

(
θ1e−iκxax −θ1

)
+ ṽ2

(
θ2

2
e−i(κxax+κyay)− θ2

2

)
+ṽ4

(
θ4

2
− θ4

2
ei(κxax−κyay)

)
= 0, (4.46)

m ¨̃y+ ˙̃y(c3b4 + c2b2 + c4b3)+ ˙̃x(c2b2 − c4b3)+ ỹ(k3b4 + k2b2 + k4b3)

+x̃(k2b2 − k4b3)+ ṽ3

(
θ3e−iκyay −θ3

)
+ ṽ2

(
θ2

2
e−i(κxax+κyay)− θ2

2

)
+ṽ4

(
θ4

2
− θ4

2
ei(κxax−κyay)

)
= 0, (4.47)

¨̃x
(

θ1 −θ1eiκxax
)
+Cp1

¨̃v1 +
1

R1
˙̃v1 +

1
L1

ṽ1 = 0, (4.48)

¨̃x
(

θ2

2
− θ2

2
ei(κxax+κyay)

)
+ ¨̃y
(

θ2

2
− θ2

2
ei(κxax+κyay)

)
+Cp2

¨̃v2 +
1

R2
˙̃v2 +

1
L2

ṽ2 = 0, (4.49)

¨̃y
(

θ3 −θ3eiκyay
)
+Cp3

¨̃v3 +
1

R3
˙̃v3 +

1
L3

ṽ3 = 0, (4.50)

¨̃x
(

θ4

2
e−i(κxax−κyay)− θ4

2

)
+ ¨̃y
(

θ4

2
e−i(κxax−κyay)− θ4

2

)
+Cp4

¨̃v4 +
1

R4
˙̃v4

+
1
L4

ṽ4 = 0. (4.51)
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The coefficients b1, b2, b3, and b4 used in the aforementioned Bloch-transformed equations
are stated in equations (4.8)–(4.11). Equations (4.46)–(4.51) can be fused into a matrix form
as

M ¨̃U+C(κκκ) ˙̃U+K(κκκ)Ũ+Tperpd
1 (κκκ)Ṽperpd +Tdiag

1 (κκκ)Ṽdiag = 0, (4.52)

Tperpd
2 (κκκ) ¨̃U+Cperpd

p
¨̃V

perpd
+Rperpd ˙̃V

perpd
+LperpdṼperpd = 0, (4.53)

Tdiag
2 (κκκ) ¨̃U+Cdiag

p
¨̃V

diag
+Rdiag ˙̃V

diag
+LdiagṼdiag = 0, (4.54)

where

Ṽperpd =

(
ṽ1

ṽ3

)
; Ṽdiag =

(
ṽ2

ṽ4

)
; M =

(
m 0
0 m

)
;

C(κκκ) =

(
c1b1 + c2b2 + c4b3 c2b2 − c4b3

c2b2 − c4b3 c3b4 + c2b2 + c4b3

)
;

K(κκκ) =

(
k1b1 + k2b2 + k4b3 k2b2 − k4b3

k2b2 − k4b3 k3b4 + k2b2 + k4b3

)
;

Tperpd
1 (κκκ) =

(
θ1e−iκxax −θ1 0

0 θ3e−iκyay −θ3

)
;

Tperpd
2 (κκκ) =

(
θ1 −θ1eiκxax 0

0 θ3 −θ3eiκyay

)
;

Tdiag
1 (κκκ) =


θ2

2
e−i(κxax+κyay)− θ2

2
θ4

2
− θ4

2
ei(κxax−κyay)

θ2

2
e−i(κxax+κyay)− θ2

2
θ4

2
− θ4

2
ei(κxax−κyay)

 ;

Tdiag
2 (κκκ) =


θ2

2
− θ2

2
ei(κxax+κyay)

θ2

2
− θ2

2
ei(κxax+κyay)

θ4

2
e−i(κxax−κyay)− θ4

2
θ4

2
e−i(κxax−κyay)− θ4

2

 ;

Cperpd
p =

(
Cp1 0
0 Cp3

)
; Cdiag

p =

(
Cp2 0
0 Cp4

)
;

Rperpd =

 1
R1

0

0
1

R3

 ; Rdiag =

 1
R2

0

0
1

R4

 ;
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Lperpd =

 1
L1

0

0
1
L3

 ; and Ldiag =

 1
L2

0

0
1
L4

 . (4.55)

Equations (4.52)–(4.54) can be further merged into a single matrix equation as

Z1
¨̃E+Z2

˙̃E+Z3Ẽ = 0, (4.56)

where

Z1 =

 M 0 0
Tperpd

2 (κκκ) Cperpd
p 0

Tdiag
2 (κκκ) 0 Cdiag

p

 ; Z2 =

C(κκκ) 0 0
0 Rperpd 0
0 0 Rdiag

 ;

Z3 =

K(κκκ) Tperpd
1 (κκκ) Tdiag

1 (κκκ)

0 Lperpd 0
0 0 Lperpd

 ; and Ẽ =

 Ũ
Ṽperpd

Ṽdiag

 . (4.57)

The dispersion relation can now be formulated by subjecting equation (4.56) to a state-space
transformation of the form given in equation (4.14), where

A =

(
0 I

Z1 Z2

)
; B =

(
−I 0
0 Z3

)
; and Y =

( ˙̃E
Ẽ

)
, (4.58)

implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (4.16). Expanding equation (4.16) for this particular case
yields a twelfth-order equation in terms of λ , which, upon solving, gives four complex roots
appearing as two complex-conjugate pairs and eight real roots.

4.4 Wave-propagation and dissipation analysis of
monoatomic phononic crystal and piezoelectric
phononic crystals

This section presents the wave-propagation and dissipation characteristics of MPnC and
MPPnCs, discussed above, in a graphical comparative format. All the results are shown in a
dimensionless-wavevector space (µµµ-space) comprised of dimensionless wavevectors with x-
components µx = κxax and y-components µy = κyay. Table 3.7 details the parameters utilized
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in the computation of the dispersion (band structure) and damping-ratio characteristics of the
MPnC and MPPnCs.

Table 4.2: Mechanical and dimensionless electrical parameters employed in the monoatomic
phononic crystal (MPnC) and monoatomic piezoelectric phononic crystals (MPPnCs).

Parameter MPnC
MPPnC MPPnC

Unit
without an inductor with an inductor

ax 1 1 1 m
ay 1 1 1 m
m1 0.0170 0.0170 0.0170 Kg
k1 5×103 5×103 5×103 Nm−1

k2 5×103 5×103 5×103 Nm−1

k3 5×103 5×103 5×103 Nm−1

k4 5×103 5×103 5×103 Nm−1

c1 0.2180 0.2180 0.2180 Nsm−1

c2 0.2180 0.2180 0.2180 Nsm−1

c3 0.2180 0.2180 0.2180 Nsm−1

c4 0.2180 0.2180 0.2180 Nsm−1

α1 — 0.1302 0.1302 —
α2 — 0.1302 0.1302 —
α3 — 0.1302 0.1302 —
α4 — 0.1302 0.1302 —
β1 — — 0.2353 —
β2 — — 0.2353 —
β3 — — 0.2353 —
β4 — — 0.2353 —

kcoeff1
2 — 0.6250 0.6250 —

kcoeff2
2 — 0.6250 0.6250 —

kcoeff3
2 — 0.6250 0.6250 —

kcoeff4
2 — 0.6250 0.6250 —

The electrical parameters of the shunting mechanism associated with a piezoelectric
element (piezoelectric patch), namely, electromechanical coupling, resistance, capacitance,
and inductance, are non-dimensionalized and presented in table 4.2, in accordance with the
existing literature [87–89], as

αl = ω̄lCpl Rl, (4.59a)

βl = ω̄
2
l Cpl Ll, (4.59b)

kcoeffl
2 =

θ 2
l

klCpl

, (4.59c)
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where l = 1,2,3,4 is an index corresponding to the parameters of the four piezoelectric

elements and the frequencies obtained from the four springs: ω̄1 =

√
k1

m
, ω̄2 =

√
k2

m
,

ω̄3 =

√
k3

m
, and ω̄4 =

√
k4

m
.

(-�,0) Χ: (�,0)Г: (0,0)

Μ: (�,�)

(�,-�)(0,-�)(-�,-�)

(-�,�) (0,�)
First Brillouin 

Zone (FBZ)
Irreducible Brillouin 

Zone (IBZ)

dimensionless wavevector 
path around the IBZ

μx=κxax

μx: x-component of the dimensionless wavevector
μy: y-component of the dimensionless wavevector

μy=κyay

dimensionless wavevector

Figure 4.3: Dimensionless-wavevector space (µµµ-space) including the First Brillouin Zone
(FBZ) shown as green-shaded area, Irreducible Brillouin Zone (IBZ) shown as red-shaded
area, dimensionless-wavevector path around the IBZ highlighted by the red-contoured right-
angle triangle, and dimensionless-wavevectors shown by red lines with black arrows, which
point towards the vector direction, for two-dimensional dispersion characteristics.

Figure 4.3 depicts the dimensionless-wavevector space (µµµ-space) comprising of relevant
zones which are used to present two-dimensional wave-propagation and dissipation charac-
teristics. For two-dimensional lattices of the type addressed in this chapter, there exists only
one Brillouin zone, the First Brillouin Zone (FBZ) shown as green-shaded area, which is
periodic in the x- and y-directions. For the FBZ, µx = [−π,π], and µy = [−π,π]. The FBZ
can be reduced to a zone which is symmetric about the origin and cannot be reduced any
further; this zone is referred to as the Irreducible Brillouin Zone (IBZ), which is illustrated as
the red-shaded area in figure 4.3. The damped-frequencies (dispersion diagram) and damping
ratios for two-dimensional lattices can be easily presented as contour and surface plots in the
FBZ, but in order to illustrate them as curves on a plot, the dimensionless-wavevector path
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around the IBZ is chosen; as shown in figure 4.3, this path is highlighted by the red-contoured
right-angle triangle and consists of µµµ-points comprising of µx = κxax and µy = κyay values.
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Figure 4.4: (a) Normalized-damped-frequency band structure, (b) damping-ratio diagrams,
and (c) cumulative-damping-ratio diagrams for the monoatomic phononic crystal (MPnC)
and monoatomic piezoelectric phononic crystals (MPPnCs).

Figure 4.4 illustrates the normalized (non-dimensional) damped frequencies and damping
ratios corresponding to the transverse and longitudinal modes associated with the MPnC
and MPPnCs along the wavevector path Γ → X → M → Γ. Transverse mode corresponds
to unit-cell motion that is along the xy-plane and perpendicular to the direction of wave
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propagation along the xy-plane, and longitudinal mode corresponds to unit-cell motion that
is along the xy-plane and collinear to the direction of wave propagation along the xy-plane.
For both modes, the unit-cell motion and direction of wave propagation are restricted to the
xy-plane. Transverse and longitudinal modes are identified by plotting the eigenvectors, i.e.,
mode shapes, and observing the direction of motion of the unit-cell mass. A total of 339
points are chosen along the dimensionless-wavevector path to produce the results depicted in
figure 4.4. The damped frequencies are normalized with respect to ω̄1; i.e., the plots depict
Ωl =

ωdl

ω̄1
, where l=1 (transverse mode), 2 (longitudinal mode). Figure 4.4(a) presents almost

similar dispersion band structures for the three periodic media. For dispersion band structures
that are approximately similar, figure 4.4(b) contrarily shows a huge disparity between the
damping ratios associated with the MPnC and MPPnCs. It is observed that, in comparison to
the MPnC, the MPPnCs portray significantly higher levels of dissipation; i.e., significantly
higher levels of damping ratios ζ1 and ζ2. For a better comparison, the summation of the
two damping ratio curves, ζsum, is also plotted to show the total dimensionless-wavevector-
dependent damping ratio in the IBZ. As the intrinsic quantity that is of paramount interest and
the subject of investigation in this work is the dimensionless-wavevector-dependent damping
ratio which is the rate of dissipation, the damping-ratio modes are effectively quantified as a
single value as done in chapter 3. This is realized, firstly, by cumulatively integrating the
damping ratio and, secondly, by obtaining the total value upon complete integration along the
dimensionless-wavevector path Γ → X → M → Γ. As two-dimensional wave-propagation
and dissipation analysis involves wavevectors (dimensional or dimensionless), the cumulative
and complete integration is performed with unit spacing. In figure 4.4(c), the MPPnCs
present a considerably higher rate of increase of ζ cum

l (l=1, 2, or sum) in comparison to the
MPnC.

Table 4.3: Total values of damping ratios associated with the monoatomic phononic crystal
(MPnC) and monoatomic piezoelectric phononic crystals (MPPnCs) with grounding.

Parameter MPnC
MPPnC MPPnC

Unit
without an inductor with an inductor

ζ tot
1 5.9385 21.0378 21.7867 —

ζ tot
2 8.7078 28.5923 30.6229 —

ζ tot
sum 14.0093 49.6301 52.4096 —

Table 4.3 details the ζ tot values for the three periodic media. The MPPnC with an inductor
demonstrates the highest values of ζ tot

1 , ζ tot
2 , and ζ tot

sum as evidenced in table 4.3.
Figures 4.5 and 4.6 illustrate the contour and surface plots, respectively, in the FBZ for

the two normalized-damped-frequency and damping-ratio modes associated with the MPnC
and MPPnCs. Figures 4.5(c), 4.5(d), 4.6(c), and 4.6(d) show a significant difference in the
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Figure 4.5: Contour plots: (a) Transverse mode of normalized damped frequency, (b)
Longitudinal mode of normalized damped frequency, (c) Transverse mode of damping ratio,
and (d) Longitudinal mode of damping ratio for the monoatomic phononic crystal (MPnC)
and monoatomic piezoelectric phononic crystals (MPPnCs).

damping-ratio modes associated with the MPnC and MPPnCs, which is in agreement with
figures 4.4(c) and 4.4(d).
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Figure 4.6: Surface plots: (a) Transverse mode of normalized damped frequency, (b) Longi-
tudinal mode of normalized damped frequency, (c) Transverse mode of damping ratio, and
(d) Longitudinal mode of damping ratio for the monoatomic phononic crystal (MPnC) and
monoatomic piezoelectric phononic crystals (MPPnCs).

4.5 Summary and conclusions

In this chapter, two-dimensional MPnC and MPPnCs with and without inductor are investi-
gated within a Bloch framework for free waves. The governing mechanical equations, for
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the MPnC, and electromechanical equations, for the MPPnC, are derived and treated with
two-dimensional plane-wave Bloch solution. The resulting Bloch-transformed equation/s
is/are cast into a first-order equation via a state-space formulation, and consequently, an
eigenvalue problem is established, which is solved in MATLAB to obtain the eigenvalues.
From the complex eigenvalue solution, the wavevector-dependent damped frequencies and
damping ratios are extracted and presented for the periodic media and piezoelectric media
for a quantitative comparison in dimensionless-wavevector space. By performing Bloch
analysis of a two-dimensional infinite piezoelectric periodic media, in the absence of forcing
and boundary conditions, with shunted energy harvesters, the piezoelectric periodic media
can be treated as a material rather than a finite structure; i.e., the wave-propagation and
dissipation characteristics obtained are intrinsic in nature, which allows for effective analysis,
comparative study, and physical-modelling decisions at the most fundamental level. This
chapter, essentially, is an extension of one-dimensional Bloch analysis and serves the purpose
of establishing the fact that any quantitative or qualitative study involving the utilization
of one-dimensional results, of the type discussed in chapter 3, can also be replicated for
two-dimensional cases.



Chapter 5

Brillouin-zone characterization of
piezoelectric-material intrinsic
energy-harvesting availability

5.1 Introduction

-The merger of the research-intensive fields of artificially structured materials such as
phononic crystals (PnCs), locally resonant metamaterials (LRMs), and inertially ampli-
fied locally resonant metamaterials (IALRMs) and energy harvesting—periodic-media-based
energy harvesting—has recently emerged as a promising research area within the broader
domain of dynamics of materials. Incorporation of piezoelectricity into phononic crystals for
active tuning or energy harvesting has been the focus of numerous studies [57–65, 123, 124].
Similarly, elastic metamaterials have been linked with energy harvesting as surveyed in the
review by Chen et al [68]. An attractive feature in this context is the ability to use piezoelec-
tricity to actively tune the local resonance properties for attenuation [70], waveguiding [71],
or energy harvesting [69]. Simultaneous vibration suppression and energy harvesting may
also be realized, as demonstrated by Hu et al [73, 74]. The theoretical and experimental stud-
ies of harnessing energy and generating power efficiently from artificial structures based on
phononic crystals and acoustic/elastic metamaterials continue to receive significant attention
and carry an immense amount of scope and future potential.

While some of the research mentioned above has examined the dispersion characteristics
considering a combination of elastic and piezoelectric properties [1, 2, 4, 19], when it comes
to analysis of the actual energy-harvesting capacity/availability, this has been done at the
structural level where the focus is on the structural dynamics of the systems presented. In
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this chapter, a new formal approach is presented for the characterization of energy-harvesting
availability that is fundamentally at the material level rather than the structural or device level.
Monoatomic and diatomic PnCs with integrated piezoelectric elements are considered and
modelled as damped media within a Bloch wave-propagation analysis framework [46, 47].
The wavenumber-dependent damping ratio—which is a rigorous measure of dissipation
capacity—is obtained within the irreducible Brillouin zone (IBZ) and compared directly
with that of the same PnC without the piezoelectric elements. The dissipation curves for the
latter, the non-piezoelectric medium, give a direct indication of the “raw” dissipation which
represents unexploited/lost energy. On the other hand, the difference in the dissipation curves
between the two systems—the PnC with piezoelectric elements versus the PnC without
piezoelectric elements—provides a formal intrinsic wavenumber-dependent representation of
the amount of energy available for harvesting. This Brillouin-zone-based approach for energy-
harvesting-availability characterization directly follows the characterization framework for
the concept of “metadamping” [79], where the wavenumber-dependent dissipation of two
statically equivalent waveguides are directly compared to produce a formal measure of either
enhanced [79, 125] or reduced [125] dissipation (or damping capacity).

The layout of the chapter is divided as follows. In section 5.2, an example of a piezo-
electric phononic crystal modelled from a materials perspective is presented conceptually,
considering both monoatomic and diatomic configurations. In section 5.3, the application of
Bloch’s theorem to a monoatomic PnC and a diatomic PnC is presented. The application
of Bloch’s theorem to piezoelectric PnCs (PPnCs) is then followed in section 5.4. Wave
propagation and dissipation characteristics and the calculation of the representative energy-
harvesting availability is detailed in section 5.5. A parametric study is provided in section
5.6, followed by concluding remarks in section 5.7.

5.2 Examples of piezoelectric phononic crystals modelled
as materials with intrinsic properties

In this section, physical conceptualizations of two configurations of piezoelectric PnCs
featuring monoatomic and diatomic periodicities are introduced.

Figure 5.1 depicts concept designs for monoatomic (figure 5.1(a)) and diatomic (figure
5.1(b)) PnC periodic media and the corresponding unit cells (figures 5.1(c) and 5.1(d)).
These configurations are selected for their suitability for future experimental realization;
however, they serve only as example configurations. The monoatomic piezoelectric phononic
crystal (MPPnC) configuration comprises of a periodic arrangement of equally sized masses,



5.2 Examples of piezoelectric phononic crystals modelled as materials with intrinsic
properties 137

Figure 5.1: (a) Physical conceptualization/configuration of a periodic chain of a monoatomic
piezoelectric phononic crystal (MPPnC) with piezoelectric patches and (b) the corresponding
monoatomic unit cell. (c) Physical conceptualization/configuration of a periodic chain of
a diatomic piezoelectric phononic crystal (DPPnC) with piezoelectric patches and (d) the
corresponding diatomic unit cell. Both configurations represent an infinite medium exhibiting
intrinsic properties.

each suspended by a longitudinal bar. Each of the bars is equipped with a unimorph
piezoelectric patch consisting of a shunt circuit that is either purely resistive or equipped
with an inductor; this patch performs the energy-harvesting function. The piezoelectric patch
shown in figure 1 can use polyvinylderylene fluoride (PVDF) films, which are known to
have a high d31 coefficient [1]. Each mass has one degree of freedom; i.e., motion of the
masses is restricted only to the x-direction. The masses are interconnected by springs and
viscous damping elements (dashpots). The diatomic piezoelectric phononic crystal (DPPnC)
configuration comprises of a periodic arrangement of alternating small and large masses each
also suspended by a longitudinal bar. The rest of the set-up is similar to the monoatomic
configuration. In analysing each case, a generalized form of Bloch’s theorem is applied
on a single representative unit cell to accommodate complex frequencies [46, 47] and then
obtain the wavenumber-dependent dispersion and damping-ratio diagrams for a specific set
of parameters. For simplicity, lumped-parameter mass-spring-dashpot models have been
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utilized in this investigation; see section 5.3 for details on the models and the application of
Bloch’s theorem.

5.3 Brief overview of phononic crystal models

5.3.1 Monoatomic phononic crystal

The grounded MPnC chain without energy harvesters (piezoelectric patches) and the corre-
sponding unit cell are represented as lumped-model parameters by the schematics shown in
figures 5.2(a) and 5.2(b), respectively. This case is representative of a scenario where the PnC
chain is attached to grounding mechanisms, which could be longitudinal bars, comprising of
springs and viscous dashpots; i.e., each unit cell is attached to the grounding mechanism.
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Figure 5.2: Schematic of (a) a monoatomic phononic-crystal (MPnC) chain with grounding
and (b) the associated unit cell.
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In figure 5.2(a), n is used to identify and refer to the central unit cell under consideration
and can be any non-zero positive integer in a finite lattice; (n+1) and (n−1) are used to
identify and refer to the unit cells to the right and left of the central (nth) unit cell, respectively;
m denotes the mass; k... and c... denote the stiffness coefficients of the linear springs and
the damping coefficients of the viscous dashpots, respectively; xn(t) and xn±1(t) are the
displacements of the masses, with respect to time t, in the nth, (n+1)th, and (n−1)th unit
cells, respectively; and a is the length of a unit-cell or lattice spacing.

The governing equation of motion for mass m in the nth unit cell is written as

mẍn + c2(2ẋn − ẋn−1 − ẋn+1)+ c1ẋn + k2(2xn − xn−1 − xn+1)+ k1xn = 0, (5.1)

where the number of overhead dots indicates the order of derivative with respect to time.
A plane-wave Bloch solution [119] of the form

xn+g(r,κ; t) = x̃(t)eiκ(n+g)a (5.2)

is imposed, where x is the displacement; g ∈ [−∞,∞] is an integer used to locate and refer
to any unit cell relative to the central unit cell under consideration, i.e., the nth unit cell
shown in figure 5.2(b); r is the one-dimensional position vector of the nth unit cell given by
r = na; κ is the wavenumber; x̃ is the displacement amplitude in the wavenumber domain;
and i =

√
−1 is the imaginary unit. For the central unit cell under consideration, g = 0 (nth

unit cell), and for the unit cells towards the left and right of the central unit cell, g =−1, and
g =+1, respectively; i.e., they are the (n−1)th and (n+1)th unit cells. Substituting equation
(5.2) in equation (5.1) yields a homogeneous equation for the displacement amplitude, x̃,
which can be written as

m ¨̃x+(c2(2− e−iκa − eiκa)+ c1) ˙̃x+(k2(2− e−iκa − eiκa)+ k1)x̃ = 0. (5.3)

Equation (5.3) can now be converted into a first order problem through a state-space transfor-
mation [119–121] of the form

AẎ+BY = 0, (5.4)
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where the system matrices and the state vector are

A =

(
0 1
m c2(2− e−iκa − eiκa)+ c1

)
;

B =

(
−1 0
0 k2(2− e−iκa − eiκa)+ k1

)
; and Y =

(
˙̃x
x̃

)
. (5.5)

For equation (5.4), a solution of the form Y = Ỹλ eλ t is assumed, where Ỹλ is a complex-
amplitude state-space vector corresponding to eigenvalue λ . The dispersion relation and,
consequently, the wave-propagation and dissipation characteristics can now be obtained by
substituting the solution in equation (5.4) and solving the resulting eigenvalue problem given
by ∣∣A−1B+λ I

∣∣= 0. (5.6)

Expanding equation (5.6) for this particular case yields a second-order equation in terms of
λ (shown in equation (5.12)), which, upon solving, gives two complex roots appearing as a
complex-conjugate pair. The complex solution for the eigenvalue problem at a given value of
κ can be expressed as [29]

λl(κ) =−ζl(κ)ωrl(κ)± iωdl(κ) =−ζl(κ)ωrl(κ)± iωrl(κ)
√

1−ζl(κ)2, (5.7)

where the subscript l identifies the complex-conjugate pairs and, consequently, the mode
or branch number; for all monoatomic models, l=1 as they give rise to only one complex-
conjugate pair. In equation (5.7), the wavenumber-dependent resonant frequency ωrl defined
as

ωrl(κ) = Abs[λl(κ)], (5.8)

the wavenumber-dependent damped frequency ωdl defined as

ωdl(κ) = Im[λl(κ)], (5.9)

and the wavenumber-dependent damping ratio ζl(κ) defined as

ζl(κ) =− Re[λl(κ)]

Abs[λl(κ)]
(5.10)



5.3 Brief overview of phononic crystal models 141

can be extracted. The phase and group velocities corresponding to a particular mode or
branch can also be obtained by using the definitions

Cphl
=

ωdl

κ
and Cgl =

∂ωdl

∂κ
, (5.11)

respectively.
The second-order equation for the MPnC model obtained in terms of λ by solving

equation (5.6) can be non-dimensionalized by some parametric manipulation. Solving
equation (5.6) and using the identities eiκa + e−iκa = 2cosκa and 1− cosκa = 2sin2 κa

2
yields

λ
2 +

(
4c2 sin2 (κa

2

)
m

+
c1

m

)
λ +

4k2 sin2 (κa
2

)
m

+
k1

m
= 0. (5.12)

The lumped-model parameters of the MPnC are used to facilitate the non-dimensionalization,
and the following definitions are introduced:

k1 = k,

k2 = γ1k,

c1 = c,

c2 = γ2c,

λ = iω. (5.13)

In the definition λ = iω , the branch index l has been dropped for brevity, and ω is introduced
to denote a complex frequency as the general solution of a characteristic equation derived
from the state-space eigenvalue problem of the form specified in equation (5.6). The following
quantities are also defined to aid the non-dimensionalization process:

Ω =
ω

ω̄
, (5.14a)

ω̄ =

√
k
m
, (5.14b)

and ζ̄ =
c

2mω̄
. (5.14c)

In the aforementioned definitions, Ω denotes non-dimensional damped frequency; ω̄ is a
characteristic frequency defined in terms of k and m; and ζ̄ is a damping factor. Substituting
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equation (5.13) in equation (5.12) gives

(iω)2 +
c
m

4γ2 sin2
(

κa
2

)
(iω)+

k
m

4γ1 sin2
(

κa
2

)
= 0. (5.15)

Dividing equation (5.15) by ω̄2 and using equation (5.14) produces

(iΩ)2 +a1(iΩ)+a2 = 0. (5.16)

Equation (5.16) has two complex roots appearing as a complex conjugate pair. The non-
dimensional damped frequency and the damping ratio, same as obtained using equation (5.10),

can be obtained by using the definitions Ωl = Im[(iΩ)l(κ)] and ζl(κ) = − Re[(iΩ)l(κ)]

Abs[(iΩ)l(κ)]
,

respectively. The coefficients of non-dimensional equation (5.16) are given in appendix
A.1. In section 5.5, the main results are presented while defining all the parameters in their
dimensional form in the MATLAB code written to compute the roots/eigenvalues; however,
the non-dimensional version provides a more general presentation of the characteristic
equation. This interchangeable approach of use of either dimensional or non-dimensional
notation will be used where appropriate in this chapter.

5.3.2 Diatomic phononic crystal

The grounded DPnC chain without energy harvesters (piezoelectric patches) and the corre-
sponding unit cell are represented as lumped-model parameters using the schematics shown
in figures 5.3(a) and 5.3(b), respectively.

The governing equations of motion for masses m1 and m2 in the nth unit cell can be
written as

m1ẍn
1 +(c1 + c2 + c4)ẋn

1 − c4ẋn−1
2 − c2ẋn

2 +(k1 + k2 + k4)xn
1 − k4xn−1

2 − k2xn
2 = 0, (5.17)

m2ẍn
2 +(c2 + c3 + c4)ẋn

2 − c4ẋn+1
1 − c2ẋn

1 +(k2 + k3 + k4)xn
2 − k4xn+1

1 − k2xn
1 = 0. (5.18)

The plane-wave Bloch solution for the displacements in the diatomic case can be written
with a slight modification to the solution in the monoatomic case as

xn+g
l (r,κ; t) = x̃l(t)eiκ(n+g)a, (5.19)

where l = 1,2 is an index corresponding to the two masses in a unit cell. Substituting equation
(5.19) in equations (5.17) and (5.18) yields the following Bloch-transformed homogeneous
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Figure 5.3: Schematic of (a) a diatomic phononic-crystal (DPnC) chain with grounding and
(b) the associated unit cell.

equations for the displacement amplitudes x̃1 and x̃2:

m1 ¨̃x1 +(c1 + c2 + c4) ˙̃x1 +(−c2 − c4e−iκa) ˙̃x2 +(k1 + k2 + k4)x̃1

+(−k2 − k4e−iκa)x̃2 = 0, (5.20)

m2 ¨̃x2 +(c2 + c3 + c4) ˙̃x2 +(−c2 − c4eiκa) ˙̃x1 +(k2 + k3 + k4)x̃2

+(−k2 − k4eiκa)x̃1 = 0. (5.21)

Equations (5.20) and (5.21) can be compacted into a matrix form as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃ = 0, (5.22)

where

X̃ =

(
x̃1

x̃2

)
; M =

(
m1 0
0 m2

)
; C(κ) =

(
c1 + c2 + c4 −c2 − c4e−iκa

−c2 − c4eiκa c2 + c3 + c4

)
;

and K(κ) =

(
k1 + k2 + k4 −k2 − k4e−iκa

−k2 − k4eiκa k2 + k3 + k4

)
. (5.23)
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The dispersion relation can now be formulated by subjecting equation (5.22) to a state-space
transformation of the form given in equation (5.4), where

A =

(
0 I
M C(κ)

)
; B =

(
−I 0
0 K(κ)

)
; and Y =

( ˙̃X
X̃

)
. (5.24)

For equation (5.4) corresponding to this case, a solution of the form Y = Ỹλ eλ t is assumed,
where Ỹλ is a complex-amplitude state-space vector corresponding to eigenvalue λ . The
dispersion relation and, consequently, the wave-propagation and dissipation characteristics
can now be obtained by employing the solution in equation (5.4) for this case and solving the
resulting eigenvalue problem of the form given in equation (5.6). Expanding equation (5.6)
for this particular case yields a fourth-order equation in terms of λ , which, upon solving,
gives four complex roots appearing as two complex-conjugate pairs. Given that the unit
cell is diatomic, a physical root corresponding to the acoustic branch (l = 1), which is the
lower/first branch, and a physical root corresponding to the optical branch (l = 2), which is
the higher/second branch, is obtained using equation (5.7).

In order to non-dimensionalize the diatomic model’s fourth-order equation, in terms
of λ , in a manner similar to the monoatomic case, m1 and the lumped-model parameters
representing the longitudinal bar attached to it are utilized, and the following definitions are
introduced:

m1 = m,

m2 = γ1m,

k1 = k,

k2 = γ2k,

k3 = γ3k,

k4 = γ4k,

c1 = c,

c2 = γ5c,

c3 = γ6c,

c4 = γ7c,

λ = iω. (5.25)
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Substituting equation (5.25), dividing the resulting equation by ω̄4, and using equation (5.14)
yields the characteristic equation

(iΩ)4 +a1(iΩ)3 +a2(iΩ)2 +a3(iΩ)+a4 = 0. (5.26)

Equation (5.26) has four complex roots appearing as two complex conjugate pairs. The
coefficients of the non-dimensional equation (5.26) can be found in appendix A.2.

5.4 Piezoelectric phononic crystals

In this section, purely resistive and inductor-equipped MPPnCs and DPPnCs are introduced
and subjected to Bloch analysis to treat the displacement and voltage fields. The piezoelectric
elements (patches) are attached on the grounding mechanisms, which are modelled as damped
oscillators.

5.4.1 Monoatomic piezoelectric phononic crystals

This section expands on the MPPnC configurations.

Shunt circuit without an inductor

Figure 5.4 presents the schematics of an MPPnC chain under free vibration comprising of
energy harvesters with shunt circuits that are purely resistive and the associated unit cell as
lumped-parameter models.

In figure 5.4, vn(t) and vn±1(t) are the voltages, with respect to time t, generated by
the shunted piezoelectric elements, and R and θ are the resistance and electromechanical
coupling of the shunt circuits, respectively.

The coupled governing electromechanical equations [87] pertaining to the nth unit cell
under free vibration and consisting of a piezoelectric element with a purely resistive shunt
circuit are written as

mẍn + c2(2ẋn − ẋn−1 − ẋn+1)+ c1ẋn + k2(2xn − xn−1 − xn+1)+ k1xn −θvn = 0, (5.27)

θ ẋn +Cpv̇n +
1
R

vn = 0, (5.28)

where Cp is the capacitance of the shunt circuit.
Analogous to the displacement (equation (5.2)), the voltage generated in a periodic

monoatomic unit cell can be mathematically treated with a plane-wave solution given by a
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Figure 5.4: Schematic of (a) a monoatomic piezoelectric phononic-crystal (MPPnC) chain
comprising of energy harvesters with shunt circuits that are purely resistive and (b) the
associated unit cell.

generalized Bloch’s theorem, which can be written as

vn+g(r,κ; t) = ṽ(t)eiκ(n+g)a, (5.29)

where ṽ is the voltage amplitude in the wavenumber domain. Substituting equations (5.2) and
(5.29) in equations (5.27) and (5.28) yields the following Bloch-transformed homogeneous
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equations for the displacement and voltage amplitudes x̃ and ṽ, respectively:

m ¨̃x+(c2(2− e−iκa − eiκa)+ c1) ˙̃x+(k2(2− e−iκa − eiκa)+ k1)x̃−θ ṽ = 0, (5.30)

θ ˙̃x+Cp ˙̃v+
1
R

ṽ = 0. (5.31)

Converting equations (5.30) and (5.31) to a first-order equation via a state-space transforma-
tion results in equation (5.4), for which the system matrices and the state vector are

A =

0 1 0
m c1 + c2(2− eiκa − e−iκa) 0
0 θ Cp

 ;

B =


−1 0 0
0 k1 + k2(2− eiκa − e−iκa) −θ

0 0
1
R

 ; and Ŷ =

 ˙̃x
x̃
ṽ

 . (5.32)

Similar to the MPnC model, the damped-frequency and damping-ratio band structures are
obtained by applying a solution of the form Y = Ỹλ eλ t and solving the associated eigenvalue
problem of the form given in equation (5.6). From equation (5.6) for the current MPPnC
model, a third-order equation in terms of λ is obtained, which has a real root and two complex
roots appearing as a complex conjugate pair ; hence, this particular case exhibits only one
branch.

In order to non-dimensionalize the present MPPnC model’s third-order equation in terms
of λ , the lumped-model parameters of the longitudinal bar are chosen in the manner described
in equation (5.13). The following non-dimensional electrical parameters, incorporating and
simultaneously non-dimensionalizing the electrical parameters of the shunt circuit, are also
introduced for the purpose of non-dimensionalization:

α = ω̄CpR, (5.33a)

kcoeff
2 =

θ 2

mω̄2Cp
=

θ 2

kCp
. (5.33b)

In equation (5.33), α can be referred to as the non-dimensional resistor constant, and kcoeff
2

can be referred to as the electromechanical coupling coefficient. The non-dimensional
resistor constant, α , is also referred to as dimensionless time constant in some literature
[87]. Substituting equation (5.13) in the MPPnC model’s third-order equation in terms of
λ , dividing the resulting equation by ω̄3, and using equations (5.14) and (5.33) yields the



5.4 Piezoelectric phononic crystals 148

characteristic equation
(iΩ)3 +a1(iΩ)2 +a2(iΩ)+a3 = 0. (5.34)

Equation (5.34) has a real root and two complex roots appearing as a complex conjugate pair.
The coefficients of the non-dimensional equation (5.34) can be found in appendix A.3.

Shunt circuit with an inductor

Figure 5.5 presents the schematics of an MPPnC chain under free vibration comprising of
energy harvesters with shunt circuits that are equipped with an inductor and the associated
unit cell as lumped-parameter models. In figure 5.5, L denotes the inductance of the shunt
circuit.
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Figure 5.5: Schematic of (a) a monoatomic piezoelectric phononic-crystal (MPPnC) chain
comprising of energy harvesters with shunt circuits that are purely resistive and (b) the
associated unit cell.
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The coupled governing electromechanical equations [87] pertaining to the nth unit cell
under free vibration and consisting of a piezoelectric element with an inductor-equipped
shunt circuit are written as

mẍn + c2(2ẋn − ẋn−1 − ẋn+1)+ c1ẋn + k2(2xn − xn−1 − xn+1)+ k1xn −θvn = 0, (5.35)

θ ẍn +Cpv̈n +
1
Rl

v̇n +
1
L

vn = 0. (5.36)

Substituting equations (5.2) and (5.29) in equations (5.35) and (5.36) yields the following
Bloch-transformed homogeneous equations for the displacement and voltage amplitudes x̃
and ṽ, respectively:

m ¨̃x+(c2(2− e−iκa − eiκa)+ c1) ˙̃x+(k2(2− e−iκa − eiκa)+ k1)x̃−θ ṽ = 0, (5.37)

θ ¨̃x+Cp ¨̃v+
1
R

˙̃v+
1
L

ṽ = 0. (5.38)

Equations (5.37) and (5.38) can be compactly written in a matrix form as

Z1
¨̃E+Z2

˙̃E+Z3Ẽ = 0, (5.39)

where

Z1 =

(
m 0
θ Cp

)
; Z2 =

c1 + c2(2− eiκa − e−iκa) 0

0
1
R

 ;

Z3 =

k1 + k2(2− eiκa − e−iκa) −θ

0
1
L

 ; and Ẽ =

(
x̃
ṽ

)
. (5.40)

Converting equations (5.39) to a first-order equation via a state-space transformation results
in equation (5.4), for which the system matrices and the state vector are

A =

(
0 I

Z1 Z2

)
; B =

(
−I 0
0 Z3

)
; and Y =

( ˙̃E
Ẽ

)
. (5.41)

The damped-frequency and damping-ratio band structures are now obtained by applying a
solution of the form Y = Ỹλ eλ t and solving the associated eigenvalue problem of the form
given in equation (5.6). From equation (5.6) for the current MPPnC model, a fourth-order
equation in terms of λ is obtained, which, depending on the choice of parameters, either
has two complex roots appearing as a complex-conjugate pair and two real roots or four



5.4 Piezoelectric phononic crystals 150

complex roots appearing as two complex conjugate pairs. For the purpose of obtaining
wave-propagation and dissipation characteristics, the set of electrical parameters must be
carefully selected in order to obtain two complex roots appearing as a complex-conjugate
pair and two real roots.

Non-dimensionalization of the present MPPnC model’s fourth-order equation in terms of
λ is carried out by using an approach similar to the previous case. In addition to equation
(5.33), another non-dimensional electrical parameter defined as

β = ω̄
2CpL (5.42)

is introduced to realize the non-dimensionalization process. In the definition given in
equation (5.42), β can be referred to as a non-dimensional inductor constant. Substituting
equation (5.13) in the current MPPnC model’s fourth-order equation in terms of λ , dividing
the resulting equation by ω̄4, and using equations (5.14), (5.33), and (5.42) yields the
characteristic equation

(iΩ)4 +a1(iΩ)3 +a2(iΩ)2 +a3(iΩ)+a4 = 0. (5.43)

Equation (5.43), for an appropriately selected set of non-dimensional electrical parameters,
has two real roots and two complex roots appearing as a complex conjugate pair. The
coefficients of the non-dimensional equation (5.43) can be found in appendix A.4.

5.4.2 Diatomic piezoelectric phononic crystals

This section expands on the DPPnC configurations.

Shunt circuit without an inductor

The diatomic configuration consisting of shunted piezoelectric elements (patches) where the
shunt circuits do not consist of an inductor is represented using the schematic shown in figure
5.6.

The coupled governing electromechanical equations pertaining to the nth unit cell under
free vibration consisting of piezoelectric elements with shunt circuits lacking an inductor are
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Figure 5.6: Schematic of (a) a diatomic piezoelectric phononic-crystal (DPPnC) chain
comprising of energy harvesters with shunt circuits that are purely resistive and (b) the
associated unit cell.

written as

m1ẍn
1 +(c1 + c2 + c4)ẋn

1 − c4ẋn−1
2 − c2ẋn

2 +(k1 + k2 + k4)xn
1 − k4xn−1

2 − k2xn
2

−θ1vn
1 = 0, (5.44)

m2ẍn
2 +(c2 + c3 + c4)ẋn

2 − c4ẋn+1
1 − c2ẋn

1 +(k2 + k3 + k4)xn
2 − k4xn+1

1 − k2xn
1

−θ2vn
2 = 0, (5.45)

θ1ẋn
1 +Cp1 v̇n

1 +
1

R1
vn

1 = 0, (5.46)

θ2ẋn
2 +Cp2 v̇n

2 +
1

R2
vn

2 = 0. (5.47)

The plane-wave Bloch solution for the voltages in the diatomic case can be written with
a slight modification to the solution in the monoatomic case in the following manner:

vn+g
l (r,κ; t) = v̂l(t)eiκ(n+g)a, (5.48)
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where l = 1,2 is an index corresponding to the voltages generated in the two piezoelectric ele-
ments in a unit cell. Substituting equations (5.19) and (5.48) in equations (5.44)–(5.47) yields
the following Bloch-transformed homogeneous equations for the displacement amplitudes x̃1

and x̃2 and the voltage amplitudes ṽ1 and ṽ2:

m1 ¨̃x1 +(c1 + c2 + c4) ˙̃x1 +(−c2 − c4e−iκa) ˙̃x2 +(k1 + k2 + k4)x̃1

+(−k2 − k4e−iκa)x̃2 −θ1ṽ1 = 0, (5.49)

m2 ¨̃x2 +(c2 + c3 + c4) ˙̃x2 +(−c2 − c4eiκa) ˙̃x1 +(k2 + k3 + k4)x̃2

+(−k2 − k4eiκa)x̃1 −θ2ṽ2 = 0, (5.50)

θ1 ˙̃x1 +Cp1
˙̃v1 +

1
R1

ṽ1 = 0, (5.51)

θ2 ˙̃x2 +Cp2
˙̃v2 +

1
R2

ṽ2 = 0. (5.52)

Equations (5.49)–(5.52) can be compacted into matrix equations as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃−TṼ = 0, (5.53)

T ˙̃X+Cp
˙̃V+RṼ = 0, (5.54)

where

X̃ =

(
x̃1

x̃2

)
; Ṽ =

(
ṽ1

ṽ2

)
; M =

(
m1 0
0 m2

)
;

C(κ) =

(
c1 + c2 + c4 −c4e−iκa − c2

−c4eiκa − c2 c2 + c3 + c4

)
;

K(κ) =

(
k1 + k2 + k4 −k4e−iκa − k2

−k4eiκa − k2 k2 + k3 + k4

)
;

T =

(
θ1 0
0 θ2

)
; Cp =

(
Cp1 0
0 Cp2

)
; and R =

 1
R1

0

0
1

R2

 . (5.55)

The dispersion relation can now be formulated by subjecting equations (5.53) and (5.54) to a
state-space transformation of the form given in equation (5.4), where

A =

 0 I 0
M C(κ) 0
0 T Cp

 , B =

−I 0 0
0 K(κ) −T
0 0 R

 , and Y =


˙̃X
X̃
Ṽ

 . (5.56)
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The damped-frequency band structure and damping-ratio diagrams are then obtained by
applying a solution of the form Y = Ỹλ eλ t and solving the associated eigenvalue problem
of the form given in equation (5.6). Solving equation (5.6) for this particular case yields a
sixth-order equation in terms of λ , which has two real roots and four complex roots appearing
as two complex conjugate pairs.

In order to non-dimensionalize the sixth-order equation of the present DPPnC model in
terms of λ , m1, the lumped-model parameters of the longitudinal bar attached to it, and the
electrical parameters of the shunted piezoelectric patch bonded to that bar are selected in the
manner described in equation (5.25). In addition to the definitions given in equation (5.25),
the following definitions are introduced:

θ1 = θ ,

θ2 = γ8θ ,

Cp1 =Cp,

Cp2 = γ9Cp,

R1 = R,

R2 = γ10R. (5.57)

Substituting equations (5.25) and (5.57) in the present DPPnC model’s sixth-order equation
in terms of λ , dividing the resulting equation by ω̄6, and using equations (5.14) and (5.33)
yields the characteristic equation

(iΩ)6 +a1(iΩ)5 +a2(iΩ)4 +a3(iΩ)3 +a4(iΩ)2 +a5(iΩ)+a6 = 0. (5.58)

Equation (5.58) has two real roots and four complex roots appearing as two complex-
conjugate pairs. The coefficients of the non-dimensional equation (5.58) are available in
appendix A.5.

Shunt circuit with an inductor

Finally, the diatomic configuration consisting of shunted piezoelectric elements (patches)
where the shunt circuits are equipped with an inductor is represented using the schematic
shown in figure 5.7.

The coupled governing electromechanical equations pertaining to the nth unit cell under
free vibration consisting of piezoelectric elements with shunt circuits equipped with an
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Figure 5.7: Schematic of (a) a diatomic piezoelectric phononic-crystal (DPPnC) chain
comprising of energy harvesters with shunt circuits that are purely resistive and (b) the
associated unit cell.

inductor are written as

m1ẍn
1 +(c1 + c2 + c4)ẋn

1 − c4ẋn−1
2 − c2ẋn

2 +(k1 + k2 + k4)xn
1 − k4xn−1

2 − k2xn
2

−θ1vn
1 = 0, (5.59)

m2ẍn
2 +(c2 + c3 + c4)ẋn

2 − c4ẋn+1
1 − c2ẋn

1 +(k2 + k3 + k4)xn
2 − k4xn+1

1 − k2xn
1

−θ2vn
2 = 0, (5.60)

θ1ẍn
1 +Cp1 v̈n

1 +
1

R1
v̇n

1 +
1
L1

vn
1 = 0, (5.61)

θ2ẍn
2 +Cp2 v̈n

2 +
1

R2
v̇n

2 +
1
L2

vn
2 = 0. (5.62)

Substituting equations (5.19) and (5.48) in equations (5.59)–(5.62) yields the following
Bloch-transformed homogeneous equations for the displacement amplitudes x̃1 and x̃2 and
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the voltage amplitudes ṽ1 and ṽ2:

m1 ¨̃x1 +(c1 + c2 + c4) ˙̃x1 +(−c2 − c4e−iκa) ˙̃x2 +(k1 + k2 + k4)x̃1

+(−k2 − k4e−iκa)x̃2 −θ1ṽ1 = 0 (5.63)

m2 ¨̃x2 +(c2 + c3 + c4) ˙̃x2 +(−c2 − c4eiκa) ˙̃x1 +(k2 + k3 + k4)x̃2

+(−k2 − k4eiκa)x̃1 −θ2ṽ2 = 0 (5.64)

θ1 ¨̃x1 +Cp1
¨̃v1 +

1
R1

˙̃v1 +
1
L1

ṽ1 = 0 (5.65)

θ2 ¨̃x2 +Cp2
¨̃v2 +

1
R2

˙̃v2 +
1
L2

ṽ2 = 0. (5.66)

Equations (5.63)–(5.66) can be compacted into matrix equations as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃−TṼ = 0, (5.67)

T ¨̃X+Cp
¨̃V+R ˙̃V+LṼ = 0, (5.68)

where

X̃ =

(
x̃1

x̃2

)
; Ṽ =

(
ṽ1

ṽ2

)
; M =

(
m1 0
0 m2

)
;

C(κ) =

(
c1 + c2 + c4 −c4e−iκa − c2

−c4eiκa − c2 c2 + c3 + c4

)
;

K(κ) =

(
k1 + k2 + k4 −k4e−iκa − k2

−k4eiκa − k2 k2 + k3 + k4

)
;

T =

(
θ1 0
0 θ2

)
; Cp =

(
Cp1 0
0 Cp2

)
; R =

 1
R1

0

0
1

R2

 ; and L =

 1
L1

0

0
1
L2

 . (5.69)

Equations (5.67) and (5.68) can be further compacted into a single matrix equation as

Z1
¨̃E+Z2

˙̃E+Z3Ẽ = 0, (5.70)

where

Z1 =

(
M 0
T Cp

)
; Z2 =

(
C(κ) 0

0 R

)
; Z3 =

(
K(κ) −T

0 L

)
; and Ẽ =

(
X̃
Ṽ

)
. (5.71)
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The dispersion relation can now be formulated by subjecting equation (5.70) to a state-space
transformation of the form given in equation (5.4), implementing a solution of the form
Y = Ỹλ eλ t , and solving the resulting eigenvalue problem of the form given in equation (5.6).
The state-space matrices and the state vector in equation (5.4) for the current DPPnC model
are

A =

(
0 I

Z1 Z2

)
; B =

(
−I 0
0 Z3

)
; and Y =

( ˙̃E
Ẽ

)
. (5.72)

Upon solving equation (5.6) for the current DPPnC model, an eight-order equation in terms
of λ is obtained, which, depending on the choice of parameters, either has four complex
roots appearing as two complex-conjugate pairs and four real roots or eight complex roots
appearing as four complex-conjugate pairs. For the purpose of obtaining wave-propagation
and dissipation characteristics, the set of electrical parameters must be carefully selected in
order to obtain four complex roots appearing as a complex-conjugate pair and four real roots.

Non-dimensionalization of the present DPPnC model’s eight-order equation in terms of
λ iss carried out in a fashion similar to the previous DPPnC model without an inductor. As
the present model incorporates an inductor, the following definitions are added:

L1 = L,

L2 = γ11L. (5.73)

Substituting equations (5.25), (5.57) and (5.73) in the present DPPnC model’s eight-order
equation in terms of λ , dividing the resulting equation by ω̄8, and using equations (5.14),
(5.33), and (5.42) yields the characteristic equation

(iΩ)8 +a1(iΩ)7 +a2(iΩ)6 +a3(iΩ)5 +a4(iΩ)4 +a5(iΩ)3 +a6(iΩ)2 +a7(iΩ)

+a8 = 0. (5.74)

Equation (5.74), for an appropriately selected set of non-dimensional electrical parameters,
has four real roots and four complex roots appearing as two complex-conjugate pairs. The
coefficients of the non-dimensional equation (5.74) can be found in appendix A.6.
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5.5 Wave-propagation and dissipation characteristics of
piezoelectric phononic crystals: damped frequencies,
raw dissipation, and energy-harvesting availability

In this section, the wave-propagation and dissipation characteristics of the monoatomic and
diatomic configurations with and without energy harvesters are examined: namely, MPnC,
MPPnC without an inductor, MPPnC with an inductor, DPnC, DPPnC without an inductor,
and DPPnC with an inductor. For each case, the damped-dispersion and damping-ratio
diagrams are computed first. The wavenumber-dependent damping ratios of the non-piezo
PnCs are then subtracted from those of the corresponding piezo PnCs to quantify the energy-
harvesting availability for each model. The analysis is performed for both the monoatomic
and diatomic models.

5.5.1 Monoatomic configurations

This section sets forth the investigation of the characteristics of all the monoatomic models by
comparing the frequency and damping-ratio band structures of the MPnC, MPPnC without
an inductor, and MPPnC with an inductor across the irreducible Brillouin Zone (IBZ). All the
results in this section are generated for µ ∈ [0,π], i.e., the IBZ, where µ is the dimensionless
wavenumber defined as µ = κa. The parameters used to generate the plots are given in table
5.1.

Table 5.1: Parameters employed in the monoatomic phononic crystal (MPnC) and
monoatomic piezoelectric phononic crystals (MPPnCs).

Parameter MPnC
MPPnC MPPnC

Unit
without an inductor with an inductor

a 1 1 1 m
m 0.0170 0.0170 0.0170 Kg
k1 4.1000×103 4.1000×103 4.1000×103 Nm−1

k2 2.0500×103 2.0500×103 2.0500×103 Nm−1

α — 0.2323 0.2323 —
β — — 0.8296 —
θ — −8.5700×10−3 −8.5700×10−3 NV−1

The parameters have been taken from a previous study [88] which investigates vibrational
energy harvesting using a cantilever beam with a tip mass submerged in a vortex flow field.
Concerning the damping prescription for the three monoatomic systems, only the special
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case where the two dashpots in each system have the same prescribed damping-coefficient
value is considered, i.e., η = c1 = c2. Three levels of damping are analysed, namely, no
damping (η = 0 Nsm−1), a low damping level (η = 0.218 Nsm−1), and a high damping
level (η = 0.436 Nsm−1). The damping levels, i.e., damping coefficients, η = 0.218 Nsm−1

and η = 0.436 Nsm−1 are loosely termed as low and high, respectively, as simply doubling
the lower value gives a good estimation of a high value in order to avoid overestimation and
the system becoming overdamped. The aim here is to investigate the effect of increasing the
damping level in the three systems on their damping ratios obtained after Bloch analysis.
Later on in section 5.6.1, the maximum value that the damping levels in the MPPnCs can
take before making them overdamped are shown in figure 5.14. In table 5.1, α = ω̄1CpR, and
β = ω̄2

1CpL. As the piezoelectric element is attached to the longitudinal bar modelled by the

damped oscillator with spring stiffness k1 and ω̄1 =

√
k1

m
, ω̄1 is used to compute α and β .
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Figure 5.8: Monoatomic models: Normalized damped-frequency band structures for the
(a) monoatomic phononic crystal (MPnC), (b) monoatomic piezoelectric phononic crystal
(MPPnC) without an inductor, and (c) monoatomic piezoelectric phononic crystal (MPPnC)
with an inductor as a function of wavenumber for the prescribed damping levels η = 0
Nsm−1, η = 0.218 Nsm−1, and η = 0.436 Nsm−1.

Figure 5.8 depicts a comparison of the wavenumber-dependent normalized damped-
frequency (dispersion) curves for the three monoatomic configurations at the three selected
damping levels. The damped frequency of each monoatomic model, at each of the three
prescribed damping levels, is normalized (non-dimensionalized) with respect to ω̄1 (stated
above); i.e., the plots depict Ω =

ωd

ω̄1
, where ωd is the dimensional (rad/sec) wavenumber-

dependent damped frequency. Note that the frequency obtained for the MPnC at η = 0
Nsm−1 is undamped. Figure 5.8(a) illustrates a near overlap of the frequencies across the
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IBZ as η varies for the MPnC. In figure 5.8(b), a modest drop in the frequencies is noticed
for the MPPnC without an inductor across the entire IBZ as η increases. In figure 5.8(c), a
more noticeable drop in the frequencies across the entire IBZ is observed for the MPPnC
with an inductor, particularly in the interval µ = [0,1], as η increases. Since the mechanical
parameters are the same, the three systems are statically equivalent; i.e., the slope of their
dispersion curves (group velocity Cg) in the long-wave limit is the same. Since the three
monoatomic chains developed for this study are grounded (i.e., attached to a frame as depicted
in figures 5.2, 5.4, and 5.5), the frequencies in the long-wave limit lim µ → 0 are non-zero.
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Figure 5.9: Monoatomic models: damping-ratio diagrams for the monoatomic phononic
crystal (MPnC), monoatomic piezoelectric phononic crystal (MPPnC) without an inductor,
and monoatomic piezoelectric phononic crystal (MPPnC) with an inductor as a function of
wavenumber for the prescribed damping levels (a) η = 0 Nsm−1, (b) η = 0.218 Nsm−1, and
(c) η = 0.436 Nsm−1.

Figure 5.9 illustrates a comparison of damping ratio ζ between the MPnC, MPPnC
without an inductor, and MPPnC with an inductor at the three prescribed damping levels.
When η = 0 Nsm−1, ζ = 0 for the MPnC for all dimensionless wavenumbers (µ ∈ [0,π]),
but figure 5.9(a) shows non-zero dissipation in the other systems. This directly demonstrates
that adding piezoelectric elements introduces dissipation into a system, which is in fact
consistent with the very nature of the energy-harvesting aspect since it is the dissipated
energy that provides the source for harvesting. For the three prescribed damping levels, a
significantly higher damping ratio is exhibited by the MPPnC without an inductor and more
so by the MPPnC with an inductor when compared to the non-piezo MPnC. As η increases,
the damping ratio of all three models increase as expected. For the MPPnC with an inductor,
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a discernible change can be seen in the interval µ = [0,0.5]. For the three prescribed damping
levels, the areas under the curves have been shaded with colours of varying intensities in
order to distinguish between the regions of different damping-ratio intensities. The bottom
shaded regions for the damped (η ̸= 0 Nsm−1) cases are directly attributed to the "raw
system damping" since these regions are not associated with the presence of piezoelectric
elements. The darker coloured regions above are, therefore, attributed to the dissipation
made "available" for harvesting by the addition of the piezoelectric elements (without or with
an inductor); i.e., the darker coloured regions are intrinsically representative of the energy
"available" for harvesting. These dissipation regions associated with the piezoelectric PnCs
are intrinsic in nature; i.e., they are dependent only on the unit-cell properties including the
electromechanical coupling, θ , and the electrical parameters of the piezoelectric-element
shunt circuit and not on the dimensions and boundary conditions of a finite structure or any
external forcing.

To provide a compact numerical quantification of the useful dissipation (level of energy-
harvesting availability) added to the MPnC due to the utilization of piezoelectric elements,
the following wavenumber-dependent metric referred to as the energy-harvesting-availability
metric is defined:

Z|∗(µ) = ζ |∗(µ)−ζ |MPnC(µ) (µ ∈ [0,π]). (5.75)

In equation (5.75), the subscript “∗” indicates MPPnC without an inductor or MPPnC with
an inductor. The cumulative and total value of Z(µ)|∗ are also defined as

Zcum|∗(µ) =
∫

µ

0
Z|∗ dµ (µ ∈ [0,π]), (5.76)

and
Ztot|∗= Zcum|∗(π), (5.77)

respectively. The total value is computed to quantify the overall difference in the damping ra-
tio ζ and, hence, arrive at a single number to represent the total energy-harvesting availability
for a given model.

Figure 5.10 displays the energy-harvesting availability metrics Z(µ)|∗ (subscript "*"
indicating MPPnC without an inductor or MPPnC with an inductor) and their cumulative
values Zcum|∗(µ) and also gives their total values Ztot|∗ (a single total representative quantity)
across the IBZ at the three damping levels. Higher values of Ztot are observed for the MPPnC
with an inductor compared to the MPPnC without an inductor at all damping levels; this
quantifies the inductor’s role in improving the energy-harvesting availability. A small increase
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Figure 5.10: Monoatomic models: energy-harvesting availability metric Z(µ) and its cu-
mulative value Zcum(µ) for the prescribed damping levels (a) η = 0 Nsm−1, (b) η = 0.218
Nsm−1, and (c) η = 0.436 Nsm−1.

in Ztot is noticed for the MPPnCs as the damping level increases. This, in turn, indicates that
the prescribed damping level in a piezoelectric PnC affects the energy-harvesting availability.

5.5.2 Diatomic configurations

In this section, similar calculations as in the monoatomic case are performed for the diatomic
configurations: DPnC, DPPnC without an inductor, and DPPnC with an inductor. All the
results in this section are generated for µ ∈ [0,π], i.e., the IBZ. The parameters used for
the diatomic models are given in table 5.2. Similar to the investigation carried out for the
monoatomic models, only the special case where the four dashpots in each system have the
same prescribed damping value is considered; i.e., η = c1 = c2 = c3 = c4. The same three
levels of damping as for the monoatomic case are used for the diatomic case.

The non-dimensional electrical parameters stated in table 5.2 are defined as

αl = ω̄lCpl Rl, (5.78a)

βl = ω̄
2
l Cpl Ll, (5.78b)

where l = 1,2 is an index corresponding to the parameters of the two piezoelectric elements

and the frequencies obtained from the two bar-mass pairs: ω̄1 =

√
k1

m1
and ω̄2 =

√
k3

m2
.

Figure 5.11 depicts a comparison of the damped-dispersion curves for the three diatomic
configurations at the three prescribed damping levels. Both the damped frequencies of
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Table 5.2: Parameters employed in the diatomic phononic crystal (DPnC) and diatomic
piezoelectric phononic crystals (DPPnCs).

Parameter DPnC
DPPnC DPPnC

Unit
without an inductor with an inductor

a 1 1 1 m
m1 0.0170 0.0170 0.0170 Kg
m2 0.0255 0.0255 0.0255 Kg
k1 4.1000×103 4.1000×103 4.1000×103 Nm−1

k2 1.0250×103 1.0250×103 1.0250×103 Nm−1

k3 4.1000×103 4.1000×103 4.1000×103 Nm−1

k4 2.0500×103 2.0500×103 2.0500×103 Nm−1

α1 — 0.2534 0.2534 —
α2 — 0.2069 0.2069 —
β1 — — 1.0371 —
β2 — — 0.6914 —
θ1 — −8.5700×10−3 −8.5700×10−3 NV−1

θ2 — −8.5700×10−3 −8.5700×10−3 NV−1
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Figure 5.11: Diatomic models: Normalized damped-frequency band structures for the (a)
diatomic phononic crystal (DPnC), (b) diatomic piezoelectric phononic crystal (DPPnC)
without an inductor, and (c) diatomic piezoelectric phononic crystal (DPPnC) with an inductor
as a function of wavenumber for the prescribed damping levels η = 0 Nsm−1, η = 0.218
Nsm−1, and η = 0.436 Nsm−1.

each diatomic model, at each of the three prescribed damping levels, are normalized (non-
dimensionalized) with respect to ω̄1 (stated above); i.e., the plots depict Ωl =

ωdl

ω̄1
, where ωdl

is the dimensional (rad/sec) wavenumber-dependent damped frequency and l=1 (acoustic
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branch), 2 (optical branch). Note that the frequencies obtained for the DPnC at η = 0
Nsm−1 are undamped. Similar to the monoatomic case, it is seen in figure 5.11(a) that
for the DPnC the frequencies associated with the acoustic and the optical branches nearly
overlap at the three damping levels. In figure 5.11(b) for the MPPnC without an inductor, a
noticeable uniform drop in both branches is observed as η increases. For the MPPnC with
an inductor, figure 5.11(c) depicts even stronger drops, especially, for the acoustic branch at
lower wavenumbers. Since the mechanical parameters are the same across the three systems,
they are statically equivalent, which again provides an appropriate comparison between the
three cases. Similar to the monoatomic models, the acoustic-branch frequencies of the three
diatomic models in the long-wave limit (lim µ → 0) are non-zero due to the periodic media
being grounded as depicted in figures 5.3, 5.6, and 5.7.

Figure 5.9 provides a comparison of the damping ratios ζ1 (acoustic branch) and ζ2

(optical branch) and their summation ζsum between the DPnC, DPPnC without an inductor,
and DPPnC with an inductor at the three prescribed damping levels. When η = 0 Nsm−1,
ζ1, ζ2, and ζsum are equal to zero for the DPnC since it is not damped. In contrast, the
DPPnC models exhibit dissipation even in the absence of prescribed damping. As previously
explained for the monoatomic models, this is a direct indication of the energy-harvesting
character of the piezoelectric models as this dissipation stems exclusively from the electrome-
chanical couplings and electrical parameters of the shunt circuits attached to the piezoelectric
elements. For the three prescribed damping levels, significantly higher damping ratios are
exhibited by the DPPnC without an inductor and more so by the DPPnC with an inductor
when compared to the non-piezo DPnC. For the three configurations, a significant increase in
ζ1, ζ2, and ζsum is seen as η increases. Analogous to the monoatomic results, the bottom
shaded region for the damped (η ̸= 0 Nsm−1) cases are directly attributed to the "raw system
damping" since this region is not associated with the presence of piezoelectric elements.
The darker coloured regions above, on the other hand, are representative of the intrinsic
energy-harvesting availability.

For the diatomic models, the wavenumber-dependent energy-harvesting-availability
metric is slightly modified from that for the monoatomic models to account for the presence
of two branches; it is therefore written as

Zl|∗(µ) = ζl|∗(µ)−ζl|DPnC(µ) (l = 1, 2, or sum; µ ∈ [0,π]). (5.79)

In equation (5.79), the subscript “*” indicates DPPnC without an inductor or DPPnC with
an inductor; l = 1 indicates the acoustic branch; and l = 2 indicates the optical branch. An
alternative representation (not adopted here) is to replace the “sum” by an average; i.e.,
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Figure 5.12: Diatomic models: Damping ratios ζ1 (acoustic branch) and ζ2 (optical branch)
and summation of the two branches ζsum of the diatomic phononic crystal (DPnC), diatomic
piezoelectric phononic crystal (DPPnC) without an inductor, and diatomic piezoelectric
phononic crystal (DPPnC) with an inductor as a function of wavenumber for the prescribed
damping levels η = 0 Nsm−1 (first column), η = 0.218 Nsm−1 (second column), and
η = 0.436 Nsm−1 (third column).

Zavg|∗(µ) =
∑

2
l=1 Zl|∗(µ)

2
. The cumulative and total value of Zl(µ)|∗ are also defined as

Zcum
l |∗(µ) =

∫
µ

0
Zl|∗ dµ (µ ∈ [0,π]), (5.80)
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and
Ztot

l |∗= Zcum
l |∗(π), (5.81)

respectively.
Figures 5.9 depicts the wavenumber-dependent energy-harvesting-availability metrics,

their cumulative values, and their total values corresponding to the acoustic-branch damp-
ing ratio ζ1, optical-branch damping ratio ζ2, and their summation ζsum. Similar to the
monoatomic models, higher values of Ztot

l (l = 1, 2, or sum) are noticed for the DPPnC with
an inductor compared to the DPPnC without an inductor at the three prescribed damping
levels. A relatively small increase is seen in Ztot

l |∗ (l = 1, 2, or sum) for both the DPPnCs as
the damping level increases, again, indicating that the level of prescribed damping has a rela-
tively modest but noticeable effect on the performance of the piezoelectric elements. Upon
comparing between Z1 and Z2 for the two DPPnCs, it is observed that Z1, corresponding to
the acoustic-branch damping ratio, decreases slightly with the dimensionless wavenumber µ

as in the monoatomic case, but, in contrast, Z2, corresponding to the optical-branch damping
ratio, increases slightly with µ . This behaviour has implications for frequency-dependent
energy harvesting since the optical branch corresponds to higher frequencies.

5.6 Parametric analysis of the
energy-harvesting-availability metric

The energy-harvesting-availability metric introduced in this chapter represents a novel in-
trinsic characterization method. In this section, the effects of the various piezoelectric
design parameters on this metric are examined. The behaviour of the total energy-harvesting-
availability metric, Ztot (monoatomic) and Ztot

sum (diatomic), for varying values of the non-
dimensional electrical parameters is investigated. This enables one to undertake methodical
exploration of the design space associated to periodic energy-harvesting media and gain
insights on parameter-based optimal performance.

5.6.1 Monoatomic piezoelectric phononic crystals

In this section, a parametric analysis of the MPPnC models, purely resistive and inductor-
equipped, is elaborated at the three selected prescribed damping levels, namely, η = 0
Nsm−1, η = 0.218 Nsm−1, and η = 0.436 Nsm−1. The analysis is performed for variation
in the non-dimensional resistor constant α , the non-dimensional inductor constant β , and
the electromechanical coupling θ . The two constants are chosen as the resistor and the
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Figure 5.13: Diatomic models: energy-harvesting availability metrics Z1(µ), Z2(µ), and
Zsum(µ) and the corresponding cumulative values Zcum

1 (µ), Zcum
2 (µ), and Zcum

sum (µ) associated
with the damping ratios ζ1 (acoustic branch) and ζ2 (optical branch) and summation of the
two branches ζsum, respectively. The results are presented for prescribed damping levels (a)
η = 0 Nsm−1, (b) η = 0.218 Nsm−1, and (c) η = 0.436 Nsm−1.

inductor are key components within a shunt circuit, and the electromechanical coupling is
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chosen as it influences the conversion efficiency of the useful dissipative energy, i.e., the
mechanical/vibrational energy, into electrical energy.
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Figure 5.14: Monoatomic models: Variation of the total energy-harvesting-availability metric
Ztot with the prescribed damping level η (η =C1 =C2) for the monoatomic piezoelectric
phononic crystal (MPPnC) without an inductor and the monoatomic piezoelectric phononic
crystal (MPPnC) with an inductor.

Figure 5.14 shows the variation of Ztot with changes in the prescribed damping level η

while keeping fixed all the other parameters given in table 5.1. As observed in figure 5.10, it
is evident that increasing the level of prescribed damping improves the energy-harvesting
availability and the rate of this improvement is higher when the MPPnC incorporates an
inductor. The prescribed damping levels have been carefully chosen for the analysis such
that the MPPnCs do not become overdamped and remain in the regime of oscillatory free
vibrations. An η value that renders the MPPnCs overdamped is considered as the cut-off
prescribed damping threshold. It is observed that this threshold is η = 2.92 Nsm−1 for the
MPPnC without an inductor and η = 1.07 Nsm−1 for the MPPnC with an inductor. This
points to the ability of the MPPnC chain consisting of piezoelectric elements with purely
resistive shunt circuits to endure more prescribed damping than the MPPnC chain consisting
of piezoelectric elements with inductor-equipped shunt circuits while still sustaining a vibra-
tory response character. However, as noted earlier, the presence of an inductor significantly
increases the energy-harvesting availability.

Figure 5.15 shows the variation of Ztot as a function of the non-dimensional resistor
constant α for the MPPnCs. Since this quantity is defined as α = ω̄CpR, its value is varied
by altering the value of the resistance R while keeping the rest of the parameters in table
5.1 constant. The value of R is varied between 10000 Ohms to 500000 Ohms in steps of
1000. Table 5.3 presents the optimal values of α and the corresponding maximum Ztot values
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Figure 5.15: Monoatomic models: variation of the total energy-harvesting-availability metric
Ztot with the non-dimensional resistor constant α for the monoatomic piezoelectric phononic
crystal (MPPnC) without an inductor and the monoatomic piezoelectric phononic crystal
(MPPnC) with an inductor at prescribed damping levels (a) η = 0 Nsm−1, (b) η = 0.218
Nsm−1, and (c) η = 0.436 Nsm−1.

Table 5.3: Monoatomic models: optimal values of the non-dimensional resistor constant α

for the monoatomic piezoelectric phononic crystal (MPPnC) without an inductor and the
monoatomic piezoelectric phononic crystal (MPPnC) with an inductor at the three prescribed
damping levels η .

MPPnC η (Nsm−1) optimal α maximum Ztot

without an inductor
0 0.2978 1.2999

0.218 0.2935 1.3041
0.436 0.2893 1.3084

with an inductor
0 0.2513 1.7249

0.218 0.2471 1.7345
0.436 0.2450 1.7446

for the two MPPnCs at the three chosen prescribed damping levels. It is noticed that for
all three levels, the optimal value of α for the MPPnC with an inductor is lower compared
to the MPPnC without an inductor, and as η increases, the optimal value of α decreases
slightly for the two MPPnC models. As for the maximum Ztot value for the two MPPnC
models, its value appears to increase but fairly modestly with increase in η . From α ≈ 0.6
onwards, it can be noticed in figure 5.15 that Ztot|MPPnC without an inductor begins to increase
as η increases and appears to be on a trajectory to surpass Ztot|MPPnC with an inductor at higher
prescribed damping levels.
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Figure 5.16: Monoatomic models: variation of the total energy-harvesting-availability
metric Ztot with the non-dimensional inductor constant β for the monoatomic piezoelectric
phononic crystal (MPPnC) with an inductor at prescribed damping levels (a) η = 0 Nsm−1,
(b) η = 0.218 Nsm−1, and (c) η = 0.436 Nsm−1.

Table 5.4: Monoatomic models: optimal values of the non-dimensional inductor constant β

for the monoatomic piezoelectric phononic crystal (MPPnC) with an inductor at the three
prescribed damping levels η .

MPPnC η (Nsm−1) optimal β maximum Ztot

with an inductor
0 0.3111 2.1631

0.218 0.3111 2.2604
0.436 0.3111 2.1451

Figure 5.16 shows the variation of Ztot as the dimensionless inductor constant β varies
for the MPPnCs. Since β = ω̄2CpL, the value of β is varied by changing the value of the
inductance L while keeping the rest of the parameters in table 5.1 constant. The value of L
is varied between 100 H to 5000 H in steps of 100. Table 5.4 presents the optimal values
of β and the corresponding maximum Ztot values for the MPPnC with an inductor at the
three chosen prescribed damping levels. It is seen that, for the chosen parameter set, the
optimal value of β is 0.3111 for the three selected prescribed damping levels. As η increases,
there is no unique trend in the maximum values of Ztot|MPPnC with an inductor. The relationship
between L and η is important due to the fact that coupling any inductance with a high
damping level has a tendency to push the system towards critical damping and eventually
make the system overdamped. The figures broach that, for the case of MPPnC with an
inductor, favourable energy-harvesting availability can be achieved at lower β values and
low to moderate prescribed damping levels.
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Figure 5.17: Monoatomic models: variation of the total energy-harvesting-availability metric
Ztot with the electromechanical coupling θ for the monoatomic piezoelectric phononic crystal
(MPPnC) without an inductor and the monoatomic piezoelectric phononic crystal (MPPnC)
with an inductor at prescribed damping levels (a) η = 0 Nsm−1, (b) η = 0.218 Nsm−1, and
(c) η = 0.436 Nsm−1.

Table 5.5: Monoatomic models: optimal values of the electromechanical coupling θ for
the monoatomic piezoelectric phononic crystal (MPPnC) without an inductor and the
monoatomic piezoelectric phononic crystal (MPPnC) with an inductor at the three prescribed
damping levels η .

MPPnC η (Nsm−1) optimal θ
(
NV−1) maximum Ztot

without an inductor
0 0.0116 1.8365

0.218 0.0114 1.8123
0.436 0.0112 1.7888

with an inductor
0 0.0104 1.9509

0.218 0.0101 1.9271
0.436 0.0099 1.9044

Figure 5.17 shows the variation of Ztot as the electromechanical coupling θ varies for the
MPPnCs. The value of θ , while keeping constant the rest of the parameters in table 5.1, is
varied from −1×10−3 NV−1 to −20×10−3 NV−1 in steps of −0.1×10−3. Table 5.5 shows
the optimal values of θ and the corresponding maximum Ztot values for the two MPPnCs
at the three selected prescribed damping levels. For both the MPPnCs, it is observed that,
as η increases, the optimal θ decreases but insignificantly and the maximum Ztot decreases
slightly. For all the three prescribed damping levels, optimal θ is lower for the MPPnC with
an inductor than the MPPnC without an inductor. Beyond the optimal value of θ for the
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MPPnC without an inductor, the maximum Ztot is higher for the MPPnC without an inductor
compared to the MPPnC with an inductor indicating higher energy-harvesting availability.
From these results, it can be deduced that it is favourable to use an MPPnC with an inductor at
lower values of θ ; although, the decrease in performance at higher values of θ , in comparison
to an MPPnC without an inductor, is only relatively small.

5.6.2 Diatomic piezoelectric phononic crystals

In this section, the behaviour of Ztot
sum associated to the DPPnC models, purely resistive and

inductor-equipped, is elaborated at the three selected prescribed damping levels, namely, η =

0 Nsm−1, η = 0.218 Nsm−1, and η = 0.436 Nsm−1. The parametric analysis is performed
for variation in the non-dimensional resistor constants α1 and α2, the non-dimensional
inductor constants β1 and β2, and the electromechanical coupling values θ1 and θ2.
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Figure 5.18: Diatomic models: Variation of the total energy-harvesting-availability met-
ric Ztot

sum with the prescribed damping level η (η = C1 = C2 = C2 = C4) for the diatomic
piezoelectric phononic crystal (DPPnC) without an inductor and the diatomic piezoelectric
phononic crystal (DPPnC) with an inductor.

Figure 5.18 shows the variation of Ztot
sum sum, as η changes, while the other parameters

given in table 5.2 remain unaltered. It is discerned that the cut-off value for the prescribed
damping level is 2.63 Nsm−1 for the DPPnC without an inductor and 0.98 Nsm−1 for the
DPPnC with an inductor. It is again shown that higher useful dissipation is achieved by using
a shunt circuit with an inductor at a relatively lower damping level (half of that required for
the DPPnC without an inductor).

Figure 5.19 shows the variation of Ztot
sum as α1 and α2 varies for the DPPnCs. Proce-

dure similar to the monoatomic case is employed to obtain the optimal values; i.e, R1 and
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Figure 5.19: Diatomic models: variation of the total energy-harvesting-availability metric
Ztot

sum with the non-dimensional resistor constants α1 and α2 for the diatomic piezoelectric
phononic crystal (DPPnC) without an inductor and the diatomic piezoelectric phononic crystal
(DPPnC) with an inductor at prescribed damping levels (a) η = 0 Nsm−1, (b) η = 0.218
Nsm−1, and (c) η = 0.436 Nsm−1.

R2 are simultaneously and equally varied from 10000 Ohms to 500000 Ohms in steps of
1000. Table 5.5 displays the optimal values of α1 and α2 and the corresponding maxi-
mum Ztot

sum values for the two DPPnCs at the three damping levels. A trend similar to
the monoatomic case is observed. For the three damping levels, the optimal values of
α1 and α2 for the DPPnC with an inductor are lower compared to the DPPnC without an
inductor. As η increases, the optimal values of α1 and α2 slightly decrease; the maxi-
mum values of Ztot

sum|DPPnC without an inductor slightly decrease; and the maximum values of
Ztot

sum|DPPnC with an inductor marginally increase. However, it can be noticed in figure 5.19 that
from α ≈ 0.6 onwards, Ztot

sum|DPPnC without an inductor begins to increase and appears to be on a
trajectory to surpass Ztot

sum|DPPnC with an inductor at higher η values.
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Table 5.6: Diatomic models: optimal values of the non-dimensional resistor constants α1
and α2 for the diatomic piezoelectric phononic crystal (DPPnC) without an inductor and the
diatomic piezoelectric phononic crystal (DPPnC) with an inductor at the three prescribed
damping levels η .

DPPnC η (Nsm−1) optimal α1 optimal α2 maximum Ztot
sum

without an inductor
0 0.3273 0.2673 2.7599

0.218 0.3231 0.2638 2.7598
0.436 0.3189 0.2604 2.7587

with an inductor
0 0.2745 0.2241 3.7051

0.218 0.2703 0.2207 3.7132
0.436 0.2661 0.2173 3.7184

Table 5.7: Diatomic models: optimal values of the non-dimensional inductor constants β1
and β2 for the diatomic piezoelectric phononic crystal (DPPnC) with an inductor at the three
prescribed damping levels η .

DPPnC η (Nsm−1) optimal β1 optimal β2 maximum Ztot
sum

with an inductor
0 0.3111 0.2074 4.5976

0.218 0.3111 0.2074 4.4154
0.436 0.4148 0.2765 4.5744

Figure 5.20 shows the variation of Ztot
sum as β1 and β2 vary for the diatomic piezoelectric

PnCs. An exercise similar to the monoatomic case is carried out to obtain the optimal values;
i.e, L1 and L2 are simultaneously and equally varied from 100 H to 5000 H in steps of 100.
Table 5.7 shows the optimal values of β1 and β2 and the corresponding maximum Ztot

sum values
for the DPPnC with an inductor at the three prescribed damping levels. The optimal β1

and β2 are the same for η = 0 Nsm−1 and η = 0.218 Nsm−1 but increase for η = 0.436
Nsm−1, which shows that as the prescribed raw damping level increases considerably, the
optimal values of β1 and β2 will also increase. As η increases, there is no consistent trend
in the maximum values of Ztot

sum|DPPnC with an inductor. The figures indicate that favourable
energy-harvesting availability can be achieved at lower β values and prescribed damping
levels.

Finally, figure 5.21 presents the variation of Ztot
sum as a function of θ for the two DPPnC

models. An exercise similar to the monoatomic case is carried out to obtain the optimal
values; i.e, θ1 and θ2 are simultaneously and equally varied from −1× 10−3 NV−1 to
−20×10−3 NV−1 in steps of −0.1×10−3. Table 5.8 lists the optimal values of θ1 and θ2

and the corresponding maximum Ztot
sum values for the two DPPnCs at the three prescribed
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Figure 5.20: Diatomic models: variation of the total energy-harvesting-availability metric
Ztot

sum with the non-dimensional inductor constants β1 and β2 for the diatomic piezoelectric
phononic crystal (DPPnC) with an inductor at prescribed damping levels (a) η = 0 Nsm−1,
(b) η = 0.218 Nsm−1, and (c) η = 0.436 Nsm−1.

damping levels. For both the DPPnCs, it is observed that, as η increases, the optimal values
of θ1 and θ2 and the maximum Ztot

sum values decrease, although, insignificantly. At all the
three prescribed damping levels, the optimal θ1 and θ2 values are insignificantly lower for the
DPPnC with an inductor compared to the DPPnC without an inductor. Beyond the optimal
values of θ1 and θ2 for the DPPnC without an inductor, Ztot

sum is higher for the DPPnC without
an inductor, indicating higher energy-harvesting availability compared to the DPPnC with
an inductor. From the plots, it can be inferred that it is favourable to use a DPPnC with an
inductor at lower values of θ1 and θ2 with very modest comparative gains; nonetheless, the
decrease in performance at higher values of θ1 and θ2, in comparison to a DPPnC without an
inductor, is only relatively small.
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Figure 5.21: Diatomic models: variation of the total energy-harvesting-availability metric
Ztot

sum with the electromechanical coupling values θ1 and θ2 for the diatomic piezoelectric
phononic crystal (DPPnC) without an inductor and the diatomic piezoelectric phononic crystal
(DPPnC) with an inductor at prescribed damping levels (a) η = 0 Nsm−1, (b) η = 0.218
Nsm−1, and (c) η = 0.436 Nsm−1.

Table 5.8: Diatomic models: optimal values of the electromechanical coupling values θ1
and θ2 for the diatomic piezoelectric phononic crystal (DPPnC) without an inductor and the
diatomic piezoelectric phononic crystal (DPPnC) with an inductor at the three prescribed
damping levels η .

DPPnC η (Nsm−1) optimal θ1
(
NV−1) optimal θ2

(
NV−1) maximum Ztot

sum

without an inductor
0 0.0121 0.0121 3.9136

0.218 0.0119 0.0119 3.8053
0.436 0.0117 0.0117 3.7863

with an inductor
0 0.0107 0.0107 4.2564

0.218 0.0105 0.0105 4.1938
0.436 0.0104 0.0104 4.1309

5.7 Summary and Conclusions

Phononic crystals (PnCs) with piezoelectric patches are capable of harvesting energy from
natural and artificial vibrations. In this chapter, an original approach is proposed for quantify-
ing the intrinsic energy-harvesting availability—a new measure—for a given phononic crystal
unit-cell configuration with shunted piezoelectric-elements. This is done by analytically eval-
uating the difference between the wavenumber-dependent damping ratio for a piezoelectric
PnC and a corresponding statically equivalent non-piezoelectric PnC. This represents a rigor-
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ous BZ characterization approach. The intrinsic energy-harvesting availability is a quantity
representative of the intrinsic energy available for harvesting in the form of useful dissipa-
tion introduced by the shunted piezoelectric elements. Unlike the prevailing approach that
examines the extrinsic piezoelectric energy-harvesting capacity—performance—of forced
finite structures, the proposed approach is based on a material’s perspective; i.e., no forcing
is considered nor are the overall structure size and global boundary conditions.

Four unique cases have been investigated by way of demonstration of the new measure,
namely, monoatomic piezoelectric PnC (MPPnC) without an inductor, monoatomic piezo-
electric PnC (MPPnC) with an inductor, diatomic piezoelectric PnC (DPPnC) without an
inductor, and diatomic piezoelectric PnC (DPPnC) with an inductor. All PnC models are
suspended, but the analysis is not restricted to suspended systems. The intrinsic analysis
described in the present chapter can be imposed upon other well-known types of periodic
media with and without a grounding or suspension mechanism, for example, locally reso-
nant metamaterial (LRM) and inertially amplified locally resonant metamaterial (IALRM),
introduced in chapter 3. The characteristic equation corresponding to each of the cases
has been obtained in closed form. It is shown that the addition of piezoelectric elements
(piezo patches) to the monoatomic and diatomic PnCs admitting free wave motion introduces
“useful” dissipation, which is essentially the measure mentioned above as a representation of
the amount of energy intrinsically available for harvesting (i.e., the energy that otherwise
would be dissipated into the environment). The amount of raw dissipation introduced by
means of prescribed damping has also been quantified (i.e., the energy that gets dissipated
into the environment in any case). The specific technical contributions in this chapter are
summarized as follows:

• Using Bloch’s theorem, a formal characterization of the intrinsic energy-harvesting
availability—expressed using the Z(µ) metric—of piezoelectric PnCs under free wave
motion has been presented.

• Cut-off prescribed damping levels for the piezoelectric PnCs to maintain vibration
oscillations have been quantified for a given set of parameters.

• Introduction of an inductor in the shunt circuits of the piezoelectric elements attached
to the PnCs is demonstrated to substantially increase the energy-harvesting availability.

• For maximum energy-harvesting availability, optimal values of key non-dimensional
electrical design parameters, widely employed in the piezoelectric energy-harvesting
literature, and the electromechanical coupling have been computed. This parameter
search was driven by the new measure of energy-harvesting availability.
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• For the parameters chosen, the DPPnC generally exhibits higher intrinsic energy-
harvesting availability than the MPPnC when comparing the first damping-ratio branch
of the former with the sole damping-ratio branch of the latter, particularly at high
dimensionless wavenumbers.

The proposed theory provides a fundamental intrinsic characterization method for the
design and/or selection of piezoelectric energy-harvesting materials from which struc-
tures/devices may be formed. The underlying approach for quantifying intrinsic energy-
harvesting availability will be useful in formally and generally comparing, categorising,
and designing future energy-harvesting phononic materials, including other novel types of
phononic crystals and elastic metamaterials.

Different configurations from among the vast body of research investigating phononic
crystals and elastic metamaterials [29–31, 126] may be investigated for intrinsic energy-
harvesting availability. Chapter 7 delves into quantifying this intrinsic quantity for a locally
resonant piezoelectric metamaterial (LRPM) and an inertially amplified locally resonant
piezoelectric metamaterial (IALRPM) and comparing it with that of a statically equivalent
DPPnC in order to assess the inherent superiority of a specific piezoelectric periodic mate-
rial/media; this process can significantly influence the design process of energy-harvesting
electromechanical structures. The proposed concept of energy-harvesting availability may
also be investigated in various types of piezoelectric periodic media with other types of raw
damping, e.g., viscoelastic damping in polymers and hystereric materials. For viscoelastic
analysis, the governing equations pertaining to the piezoelectric periodic media can be treated
with the state-space formulation in the manner described in the work by Frazier et al. [115]
to obtain an eigenvalue problem and, consequently, create dispersion and damping-ratio
diagrams. However, given the inferior dissipation performance of viscoelastic damping
compared to viscous damping, as shown by Frazier et al., it can be deduced that piezoelectric
periodic media with raw damping of the former type will exhibit a higher energy-harvesting
availability compared to the same piezoelectric periodic media with raw damping of the latter
type.

While the concept configurations presented appear large-scale and bulky and only lumped-
parameter models are investigated, future research will easily adapt this new characterization
method to (1) small-scale miniaturized piezoelectric-material systems and (2) more complex
models. The existing literature on energy harvesting generally involves a finite structure
that is exposed to either a harmonic or impulse excitation and perhaps subject to boundary
conditions. In this chapter, the investigation has been carried out and the results have been
presented from a theoretical perspective instead of an experimental perspective; i.e., the
piezoelectric phononic crystals are considered to be independent of sizing, forcing, and
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boundary conditions. All the piezoelectric models discussed in this chapter are linear, so
scaling the electrical parameters, within reasonable limits, in any direction would lead to
a linear variation in the results. The objective of the present chapter has been to visually
elaborate a new criterion for analysing energy harvesting by looking at the problem from
a periodic material’s perspective (with no defined boundaries) rather than from a finite
periodic structure’s perspective; hence, the system parameters have been carefully chosen to
demonstrate a marked difference between the results for the piezoelectric PnCs without an
inductor and the piezoelectric PnCs with an inductor. The contents of the present chapter are
contained within the following peer-reviewed publication:

• Patrick I, Adhikari S, and Hussein MI. Brillouin-zone characterization of piezoelectric
material intrinsic energy-harvesting availability. Smart Materials and Structures,
30(8):085022, 2021, doi.org/10.1088/1361-665X/ac0c2c.



Chapter 6

Metadamping in inertially amplified
materials: Trade-off between spatial
attenuation and temporal attenuation

6.1 Introduction

In structural dynamics, dissipation control and its means of implementation are key design
factors. Dissipation is a measure of loss of energy as a function of time. In a finite structure,
the dissipation characteristics have a spatial and frequency, i.e., spatio-temporal, dependency.
In an infinite medium, such as a waveguide or a structured material, dissipation also ex-
hibits a wavenumber (reader may refer to chapter 3) or wavevector (reader may refer to
chapter 4) dependency [46, 119, 127, 128]. Representation of dissipation as an intrinsic
wavenumber-dependent quantity provides a fundamental measure independent of global
dimensions, boundary conditions, and nature of forcing. This measure is obtained by consid-
ering a representative unit cell of the medium of interest, applying Bloch’s theorem to the
governing equations of motion, and calculating the wavenumber-dependent damping ratio
alongside the wavenumber-dependent damped frequency. Upon complete integration of each
damping ratio branch over the irreducible Brillouin zone (IBZ), a cumulatively computed
total measure of dissipation is obtained, which provides a measure of the branch-specific
total damping capacity of the medium or material under consideration [79]. Upon performing
the aforementioned exercise after summing over all the damping-ratio branches, the overall
damping capacity of the medium or material under consideration is obtained.

The investigation of dissipation in periodic (phononic) materials carries significant impor-
tance with regards to energy harvesting as the inherent (intrinsic) dissipation characteristics
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Figure 6.1: Unit-cell schematics of (a) a diatomic phononic crystal (PnC), (b)a locally
resonant metamaterial (LRM), (c) an inertially amplified material (IAM), and (d) an inertially
amplified locally resonant metamaterial (IALRM).

of a material determine the energy-harvesting capabilities of an electromechanical struc-
ture constructed from the same material. Diverse categories of phononic materials exhibit
distinct levels of inherent dissipation, which is dependent upon the material’s internal con-
figuration or microstructure. This quantity of intrinsic dissipation is referred to as “loss”
and inevitably dissipates during the energy-harvesting process within a piezoelectric elec-
tromechanical structure designed using a particular phononic material, thereby remaining
unharnessed. Nonetheless, a higher degree of intrinsic dissipation within the phononic
material corresponds to enhanced energy-harvesting performance. This elevated level of
intrinsic dissipation implies that the phononic material possesses an inherent disposition to
effectively absorb and conceivably harvest a significant amount of vibrational energy, beyond
the amount that is represented by the inherent dissipation. Consequently, this chapter serves



6.1 Introduction 181

as a comprehensive review, demonstrating an emergence of intrinsic dissipation, known as
metadamping, in a locally resonant metamaterial (LRM). Additionally, it highlights the phe-
nomenon of an augmented emergence of intrinsic dissipation, i.e., enhanced metadamping,
observed in an inertially amplified material (IAM) and inertially amplified locally resonant
metamaterial (IALRM). Metadamping is the phenomenon of either enhanced or diminished
intrinsic dissipation in a material stemming from the material’s internal structural dynamics.
It has previously been shown that an LRM, of the type depicted in figure 6.1(b), may be
designed to exhibit higher or lower dissipation compared to a statically equivalent phononic
crystal (PnC), of the type depicted in figure 6.1(a), with the same amount of prescribed
damping. In the present chapter, it is revealed that even further dissipation, or alternatively
further reduction of loss, may be achieved in an IAM and IALRM, of the types depicted in
figures 6.1(c) and 6.1(d), respectively, compared to a statically equivalent PnC and LRM
with the same amount of prescribed damping.

In the lumped-parameter models depicted in figure 6.1, n is used to identify the central
unit cell under consideration and can be any non-zero positive integer in a finite lattice; M
and m... denote masses; K... and k... are the spring stiffness constants of the linear springs;
C and c are the damping coefficients of the viscous dashpots; un(t), wn(t), and vn(t) are
displacements; φ is the angle between the rigid links and the central axis of the inertially
amplified metamaterial; and a is the length of the unit-cells or the lattice spacing.

The current chapter investigates metadamping in an IAM [52–54, 56] and an IALRM. In-
ertial amplification contrasts with local resonance in that it involves a mechanical mechanism
to provide a magnification of the “effective inertia” of the massive portions or components of
the system. Unlike local resonance, an IALRM will exhibit a band gap also affected by an
inertial coupling. This concept may be manifested using a lever-arm effect that allows the
inertia of a given mass to be magnified to a degree proportional to the arm length. It is shown
that an IALRM may be passively tuned to exhibit a significant further boost in the damping
capacity (positive metadamping) or in the reduction of loss (negative metadamping) compared
to the improvements attained by a statically equivalent locally resonant elastic metamaterial.
This behaviour is examined in a one-dimensional chain model that encompasses both an
inertial-amplifier mass and a local-resonance mass separately attached to the baseline mass
[55]. This configuration yields a two degrees-of-freedom system with a bounded band gap
that features two coupled resonances. In addition to the extreme metadamping behaviour, this
configuration yields a novel regime whereby a trade-off between the intensities of temporal
attenuation (dissipation) and spatial attenuation (band-gap behaviour) manifests. These
findings have potentially far-reaching implications on the design of future phononic materials
with tailored spatio-temporal attenuation characteristics.
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6.2 Inertially amplified chains: physical configurations
and mathematical models

6.2.1 Physical configurations

A one-dimensional infinite IAM, periodic chain, is considered, where the unit cell consists
of a baseline mass M connected to the adjacent baseline masses by springs with stiffness
KIAM and viscous damping dashpots with damping constant C; the spring and dashpot act
in parallel. Each baseline mass is also connected to its neighbour by an inertial-amplifier
attachment, which comprises of an auxiliary mass ma, referred to as the inertial-amplifier
mass, and rigid links; thus, the inertial-amplifier mass is connected to a pair of baseline
masses by the rigid links. This inertial-amplifier mass plays the key role of inducing inertial
amplification as its acceleration is amplified owing to the lever-based connecting mechanism.

In the one-dimensional infinite IALRM, the unit cell consists of a baseline mass M
connected to the adjacent baseline masses by springs with stiffness KIALRM and viscous
damping dashpots with damping constant C. Each baseline mass has the same inertial-
amplifier attachment described above. In addition, a single-degree-of-freedom linear mass
resonator, comprising of a spring and viscous damping dashpot arranged in parallel, is
attached to the baseline mass in a unit cell. The mass, spring stiffness, and damping
coefficient associated with the resonator are m, kIALRM, and c, respectively. The resonator’s
modal degree-of-freedom couples with the modal degree-of-freedom associated with the
inertially amplified baseline mass; this creates a band gap with a double-attenuation peak in
the imaginary part of the complex dispersion diagram; this aspect is discussed and analysed
in the results sections.

6.2.2 Mathematical models

Forces on the baseline mass from the inertial-amplifier mass

For the nth unit cell, the kinematic relationship between the acceleration of the auxiliary
mass, main mass, and mass in the preceding unit cell, i.e., v̈n (shown in figures 6.1(c) and
6.1(d)), ün, and ün−1, respectively, is expressed as

v̈n =
(ün − ün−1)

2
cotφ , (6.1)

where φ is the angle between the central axis of the inertially amplified chains and the rigid
links of the inertial-amplifier attachment. In equation (6.1), the number of overhead dots
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indicates the order of derivative with respect to time. If F(n,n−1) is the force in the rigid links
due to the net movement of the baseline masses in the nth and (n−1)th unit cells then the net
force on the rigid links is calculated by balancing the forces on the inertial-amplifier mass in
the following manner:

2F(n,n−1) sinφ = mav̈n = ma (ün − ün−1)
cotφ

2
. (6.2)

Isolating F(n,n−1) in equation (6.2) yields

F(n,n−1) =
ma (ün − ün−1)

4sinφ tanφ
. (6.3)

The component of the force acting from the inertial-amplifier mass onto the baseline mass
stemming from the net movement of the baseline masses in the nth and (n−1)th unit cells
along the direction of the wave propagation is

F̃(n,n−1) = F(n,n−1) cosφ =
ma (ün − ün−1)cosφ

4sinφ tanφ
= χma (ün − ün−1) , (6.4)

where χ =
1

4tan2 φ
. Similar to equation (6.4), by following the steps above, the component

of the force acting from the inertial-amplifier mass onto the baseline mass owing to the net
movement of the baseline masses in the nth and (n+1)th unit cells along the direction of the
wave propagation is

F̃(n+1,n) = F(n+1,n) cosφ =
ma (ün+1 − ün)cosφ

4sinφ tanφ
= χma (ün+1 − ün) . (6.5)

Equations of motion for the unit cells

The governing equation of motion for the baseline mass in the nth unit cell of the IALRM is

Mün +C
(
2u̇n − u̇n−1 − u̇n+1

)
+ c(u̇n − ẇn)+KIALRM

(
2un −un−1 −un+1

)
+kIALRM (un −wn)+ F̃(n,n−1)− F̃(n+1,n) = 0. (6.6)

Substituting equations (6.4) and (6.5) in equation (6.6) produces

Mün +C
(
2u̇n − u̇n−1 − u̇n+1

)
+ c(u̇n − ẇn)+KIALRM

(
2un −un−1 −un+1

)
+kIALRM (un −wn)+χ (ma(ün − ün−1))−χ (ma (ün+1 − ün)) = 0. (6.7)
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The governing equation of motion for the resonating mass in the nth unit cell of the IALRM
is

mẅn + c(ẇn − u̇n)+ kIALRM (wn −un) = 0. (6.8)

Equations (6.7) and (6.8) together constitute the governing equations for the nth unit cell,
depicted in figure 6.1(d), of the IALRM. By slightly modifying equation (6.7), the governing
equation of motion for the baseline mass in the nth unit cell, depicted in figure 6.1(c), of the
IAM can be written as

Mün +C
(
2u̇n − u̇n−1 − u̇n+1

)
+KIALRM

(
2un −un−1 −un+1

)
+χ (ma(ün − ün−1))

−χ (ma (ün+1 − ün)) = 0. (6.9)

To characterize the metadamping performance of the IAM and IALRM, a statically equivalent
PnC and a statically equivalent LRM are considered. The governing equations for the nth

unit cell of the PnC depicted in figure 6.1(a) can be written as

m1ün +(C+ c) u̇n − cẇn −Cẇn−1 +(KPnC + kPnC)un − kPnCwn −KPnCwn−1 = 0, (6.10)

m2ẅn +(C+ c) ẇn − cu̇n −Cu̇n+1 +(KPnC + kPnC)wn − kPnCun −KPnCun+1 = 0. (6.11)

The governing equations for the nth unit cell of the LRM depicted in figure 6.1(b) can be
written as

m1ün +C (2u̇n − u̇n−1 − u̇n+1)+ c(u̇n − ẇn)+KLRM(2un −un−1 −un+1)

+kLRM(un −wn) = 0, (6.12)

m2ẅn + c(ẇn − u̇n)+ kLRM(wn −un) = 0. (6.13)

As per Bloch’s theorem, the plane-wave solution for the displacements of masses in a
periodic unit cell can be written as

un+g(r,κ; t) = ũ(t)eiµ(n+g), (6.14)

wn+g(r,κ; t) = w̃(t)eiµ(n+g), (6.15)

where g ∈ [−∞,∞] is an integer used to locate and refer to any unit cell relative to the
central unit cell under consideration, i.e., the nth unit cell shown in figure 6.1; r is the
one-dimensional position vector of the nth unit cell; i =

√
−1 is the imaginary unit; and µ is

the dimensionless wavenumber, which can be written as µ = κa, where κ (rad m−1) is the
wavenumber, and a (m) is the length of the lattice unit cell as described in figure 6.1. For
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the central unit cell under consideration, g = 0 (nth unit cell), and for the unit cells towards
the left and right of the central unit cell, g =−1, and g =+1, respectively; i.e., they are the
(n−1)th and (n+1)th unit cells.

Substituting equations (6.14) and (6.15) in equations (6.7) and (6.8), i.e., the govern-
ing equations for the nth unit cell of the IALRM, yields the following Bloch-transformed
homogeneous matrix equation for the displacement amplitudes ũ and w̃:M+

1
2

ma(1− cos µ)cot2 φ 0

0 m

( ¨̃un

¨̃wn

)
+

(
c+2C(1− cos µ) −c

−c c

)(
˙̃un

˙̃wn

)

+

(
kIA +2KIA(1− cos µ) −kIA

−kIA kIA

)(
ũn

w̃n

)
=

(
0
0

)
. (6.16)

Substituting equations (6.14) and (6.15) in equations (6.10) and (6.11), i.e., the governing
equations for the nth unit cell of the PnC, yields the following Bloch-transformed homoge-
neous matrix equation for the displacement amplitudes ũ and w̃:(

m1 0
0 m2

)(
¨̃un

¨̃wn

)
+

(
C+ c −c−Ce−iµ

−c−Ceiµ C+ c

)(
˙̃un

˙̃wn

)

+

(
KPnC + kPnC −kPnC −KPnCe−iµ

−kPnC −KPnCeiµ KPnC + kPnC

)(
ũn

w̃n

)
=

(
0
0

)
. (6.17)

Substituting equations (6.14) and (6.15) in equations (6.12) and (6.13), i.e., the govern-
ing equations for the nth unit cell of the LRM, yields the following Bloch-transformed
homogeneous matrix equation for the displacement amplitudes ũ and w̃:(

m1 0
0 m2

)(
¨̃un

¨̃wn

)
+

(
c+2C(1− cos µ) −c

−c c

)(
˙̃un

˙̃wn

)

+

(
kLRM +2KLRM(1− cos µ) −kLRM

−kLRM kLRM

)(
ũn

w̃n

)
=

(
0
0

)
. (6.18)

Each of the matrix equations (6.16), (6.17) and (6.18) can be compactly written as

M ¨̃U+C(µ) ˙̃U+K(µ)Ũ = 0, (6.19)

where Ũ = (ũn w̃n)
T (superscript “T” indicates a transpose operation), and the M, C(µ), and

K(µ) matrices are evident. Note that for the IALRM unit cell, the M matrix is also a function
of µ . Equation (6.19) for the three cases can now be converted into a first-order problem,
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through a state-space transformation [119–121] of the form

AẎ+BY = 0, (6.20)

where

A =

(
0 I
M C(κ)

)
; B =

(
−I 0
0 K(κ)

)
; and Y =

( ˙̃X
X̃

)
. (6.21)

For equation (6.20), a solution of the form Y = Ỹλ eλ t is assumed, where Ỹλ is a complex-
amplitude state-space vector corresponding to eigenvalue λ . The dispersion relation and,
consequently, the wave-propagation and dissipation characteristics can now be obtained by
implementing the solution in equation (6.20) and solving the resulting eigenvalue problem
given by ∣∣A−1B+λ I

∣∣= 0. (6.22)

The dispersion relations of all the models are computed from the corresponding Bloch-
transformed system of equations for values of the dimensionless wavenumber ranging from
µ = 0 → π . The solution for the eigenvalue problem for a given µ is written as

λl(µ) =−ζl(µ)ωrl(µ)± iωdl(µ), (6.23)

where ωrl and ωdl are the resonant and damped frequencies, respectively, and ζl is the
wavenumber-dependent damping ratio. The subscript l = 1,2 refers to the acoustic and optical
branches, respectively.

6.3 Extreme levels of positive and negative metadamping

The qualitative analysis carried out in this chapter can be broadly divided into two parts: the
first part involving the IAM, PnC, and LRM and the second part involving the IALRM, PnC,
and LRM. The parameters used for all the models in the two parts are given in table 6.1.

The IAM, similar to the one in the analysis presented in [118], is investigated in the first
part, and the dispersion and dissipation characteristics are detailed in figure 6.2. The unit
cell for this model is depicted in the third, fourth, and fifth columns of figure 6.2 for, three
different inertial-amplifier angles, φ = 13◦, 24◦, and 43◦, respectively. These angles are
chosen arbitrarily to represent qualitatively varying behaviours. For comparison, a standard
diatomic PnC model and a mass-in-mass LRM model, each with the same long-wave speed
of sound as the IAM, Cg = 0.99, are considered. This set up yields five distinct chains that
are all statically equivalent. In this first part of the investigation involving the IAM, PnC,
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Table 6.1: Parameters employed for the unit-cell models examined in figures 6.2, 6.3, and
6.6.

Parameter Figure 6.2 Figure 6.3 Unit

a 1 1 m
M 1 1 Kg
m — 0.1 Kg
ma 0.1 0.1 Kg

KPnC 120 120 Nm−1

kPnC 1320 1200 Nm−1

KLRM 110 109 Nm−1

kLRM 179 179 Nm−1

KIAM 100 — Nm−1

KIALRM — 100 Nm−1

kIALRM — 40 Nm−1

kIALRM∗ — 500 Nm−1

C 2 2 Nsm−1

c 0 2 Nsm−1

and LRM, for the PnC and LRM, m1 = M, and m2 = ma. The damped-frequency dispersion
diagrams and corresponding damping-ratio diagrams for each of the five systems are given
in figures 6.2(b) and 6.2(c), respectively. In all the damped-frequency band-structure figures,

the non-dimensional quantity Ω =
ωd

ωb
is plotted, where ωb =

√
KPnC

M
is defined as the base

frequency. The complex dispersion curves for the undamped version of all the models are
also provided to show the frequency-dependent profile of spatial attenuation for each chain
[55]. In figures 6.2(d) and 6.2(e), the wavenumber-dependent damping-emergence metric Z,
which is a measure of metadamping, is plotted; this metric is defined as [79]

Zl(µ)|∗= ζl(µ)|∗−ζl(µ)|PnC (l = 1, 2, or sum; µ ∈ [0,π]), (6.24)

where the subscript“*” indicates LRM or IAMs. It represents the difference between the
damping ratio of the LRM or each of the IAMs and that of the reference PnC case. The index
l indicates the acoustic branch (l = 1), optical branch (l = 2), and summation (l = sum) of
the two branches. Any rise in Z(µ) above zero is indicative of positive metadamping, and in
contrast, a drop in Z(µ) below zero is indicative of negative metadamping. The cumulative
and total value of Z(µ) defined as

Zcum
l |∗(µ) =

∫
µ

0
Zl|∗ dµ (l = 1, 2, or sum; µ ∈ [0,π]), (6.25)
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Figure 6.2: Analysis of the inertially amplified material (IAM) with no resonating mass.
(a) Unit-cell schematics of statically equivalent chains, including a phononic crystal (PnC),
locally resonant metamaterial (LRM), and three variations of the IAM exhibiting φ = 13◦,
24◦, and 43◦, respectively. All the inertial-amplifier masses are restricted to motion in only
the vertical direction. (b) Frequency band structure for the undamped and damped unit cells;
results for the damped unit cells are shown only for real wave numbers. (c) Damping-ratio
diagrams for the damped unit cells. (d) Damping-emergence metric Z: for the LRM, the sum
of the two damping-ratio branches of the PnC has been used as the reference quantity (ζsum),
and for the IAMs, the average of the two damping-ratio branches of the PnC (ζsum/2) has
been used as the reference quantity as distinguished by the asterisk applied to the subscript 1.
(e) Damping-emergence metric Z for the IAMs, where the damping ratio corresponding to
the acoustic branch of the PnC is used as the reference quantity. In sub-figures (b) and (c),
the subscripts “1”, “2”, and “sum” indicate the acoustic branch, optical branch, and sum of
the two branches, respectively.
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and
Ztot

l |∗= Zcum
l |∗(π) (l = 1, 2, or sum), (6.26)

respectively, are also utilized to further quantify the difference in the damping ratio. The
quantity Zcum

l represents the integrated value of Zl over the irreducible Brillouin zone (IBZ),
and upon complete integration over the IBZ, the total value of Zl , which is Ztot

l , is calculated
to give an overall quantification of the positive or negative damping capacity with respect
to the reference PnC. Since the IAM has only one branch, the Z quantity indicated as Z1∗

in figure 6.2(d) is obtained by comparing the damping ratio of that branch with the average

of the two damping-ratio branches,
ζsum

2
, of the PnC. Alternatively, in figure 6.2(e), the

comparison is made with the damping ratio of the first branch of the PnC. From the results, it
is observed that for the parameters selected, as listed in table 6.1, the IAM exhibits positive
metadamping with increasing levels of the inertial-amplifier angle φ .

The IALRM is investigated next in the second part, and the dispersion and dissipation
characteristics are detailed in figure 6.3. In the second part of the investigation involving the
IALRM, PnC, and LRM, for the PnC and LRM, m1 = M +ma, and m2 = m. This allows
the consideration of models with the same number of dispersion branches, and, importantly,
generates an IALRM configuration that may exhibit a bounded band gap, as would an
experimentally realizable material that is modelled as a continuum. An undamped version
of this model has been recently investigated for spatial attenuation characteristics [55]. A
monotonic increase is observed in positive metadamping, as expressed by the quantity Ztot

sum,
while progressing from LRM to IALRM with increasing values of the inertial-amplifier angle
φ . This demonstrates an extreme level of positive metadamping significantly exceeding what
is realized by an LRM. A special case is considered where IALRM-13◦ to IA-13◦∗ by only
increasing the local-resonator stiffness from kIALRM = 40 Nm−1 to kIALRM = 500 Nm−1; by
doing so, the IALRM, which remains statically equivalent to the PnC, shows a significant
reduction in the total dissipation at φ = 13◦ to the point where it starts to exhibit negative
metadamping as evidenced by the orange curves in figure 6.3. By considering this special
case, it is illustrated that the level of metadamping for a given inertial-amplifier angle in an
IALRM can be controlled and significantly altered by varying the value of the local-resonator
stiffness while keeping the long-wave speed of sound unaltered.

Figure 6.4 extends the analysis of the IAM to a broad range of quasi-static speeds
extending well beyond the values considered in figure 6.2; this provides an Ashby-like map
for the damping capacity versus the long-wave speed, which is representative of the effective
quasi-static stiffness of the chain. The damping capacity is presented for different periodic
media at different values of the effective quasi-static stiffness, i.e., group velocities, to give a
comprehensive picture of their dissipative performances. The damping capacity is obtained
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Figure 6.3: Analysis of the inertially amplified locally resonant metamaterial (IALRM), i.e.,
with a resonating mass. (a) Unit-cell schematics of statically equivalent chains, including a
phononic crystal (PnC), locally resonant metamaterial (LRM), and three variations of the
IALRM exhibiting φ = 13◦, 24◦, and 43◦, respectively. All the inertial-amplifier masses are
restricted to motion in only the vertical direction. (b) Frequency band structure for the un-
damped and damped unit cells; results for the damped unit cells are only shown for real wave
numbers. (c) Damping-ratio diagrams for the damped unit cells. (d) Damping-emergence
metric Z. In sub-figures (a) and (b), the subscripts “1”, “2”, and “sum” indicate the acoustic
branch, optical branch, and sum of the two branches, respectively. The orange curves in the
third column are the results for the special case IALRM-13◦∗, which is statically equivalent
to the PnC and obtained by only increasing the local-resonator stiffness of IALRM-13◦

from kIALRM = 40 Nm−1 to kIALRM∗ = 500 Nm−1, presented for the purpose of illustrating
negative metadamping at φ = 13◦.

by integrating the damping ratio over the IBZ and calculating its total value in the following
manner:

ζ
cum
l (µ) =

∫
µ

0
ζl dµ (l = 1or sum; µ ∈ [0,π]), (6.27)

ζ
tot
l = ζ

cum
l (π) (l = 1or sum). (6.28)
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Figure 6.4: Illustration of metadamping: total damping ratio based on the first branch,
ζ tot

1 , versus long-wave speed of sound Cg in the periodic chains. (a) Positive or negative
metadamping (depending on value of φ ) exhibited in the case of inertially amplified material
(IAM) with no resonating mass; blue- and green-shaded areas represent regions of positive
and negative metadamping, respectively. Maximum positive and negative metadamping
are reached at IAM-90◦ and IAM-10◦, respectively. The intensity of positive metadamping
increases as the color of the blue shaded areas gets darker.

As the IAMs considered in figure 6.2 have only one damping-ratio branch, for a fair com-
paritive analysis, only the first damping-ratio branch of the PnC and LRM are considered in
figure 6.4. It is noticed in figure 6.4 that the LRM exhibits positive metadamping throughout
the parameter range shown. It is also observed that the IAM exhibits even more positive
metadamping for φ = 43◦; however, the level of metadamping decreases as φ decreases.
Eventually, for φ = 13◦, the metadamping is illustrated to be strongly negative, i.e., the
IAM exhibits less total loss compared to the statically equivalent PnC. A maximum value of
negative metadamping is reached at φ = 10◦; at angles below 10◦, the static equivalence is
no longer maintained.

Figure 6.5 extends the analysis of the IALRM to a broad range of quasi-static speeds
extending well beyond the values considered in figure 6.3. In figure 6.5, positive metadamping
is observed with increasing intensity as the inertial-amplifier angle φ increases. In figures 6.4
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Figure 6.5: Illustration of metadamping: total damping ratio based on the sum of the two
damping-ratio branches, ζ tot

sum, i.e., overall total damping capacity. (b) Positive metadamping
exhibited in the case of inertially amplified locally resonant metamaterial (IALRM); blue-
shaded area represents the region of positive metadamping. Maximum positive metadamping
is reached at IA-90◦. The intensity of positive metadamping increases as the color of the blue
shaded areas gets darker. The orange curves are the results for the special cases IALRM-10◦∗,
IALRM-13◦∗, and IALRM-90◦∗, which are also statically equivalent to the PnC and obtained
by only increasing the local-resonator stiffness of the IALRMs from kIALRM = 40 Nm−1 to
kIALRM∗ = 500 Nm−1, presented for the purpose of illustrating negative metadamping, which
reaches its maximum at φ = 10◦.

and 6.5, the performance of the IAM and IALRM is also shown at φ = 90◦; such an angle
is practically unrealizable, but it gives the maximum theoretical limit for the metadamping
level shown by the IAM and IALRM. The special case IA-13◦∗ considered in figure 6.2 is
also extended and shown in 6.5 along with two more special cases for IA-10◦ and IA-90◦

similarly represented by IA-10◦∗ and IA-90◦∗, respectively.
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6.4 Regime displaying trade-off between temporal
attenuation and spatial attenuation

Figure 6.6: Performance characteristics for the inertially amplified locally resonant meta-
material (IALRM). (a) Temporal-attenuation intensity: total damping ratio ζ tot

sum versus
inertial-amplifier angle φ . (b) Spatial-attenuation intensity: minimum attenuation µmin versus
φ ; inset depicts a schematic that illustrates the µmin quantity. (c) Minimum attenuation µmin
versus total damping ratio ζ tot

sum; inset in sub-figure (c) shows an enlarged version of the
trade-off region. The points A-E, corresponding to five different values of φ , have been
specifically chosen and used to illustrate the evolution of the temporal- and spatial-attenuation
properties with φ whereby a region is identified that features a trade-off between the temporal
and spatial attenuation intensities.

In figure 6.6, the examination of IALRM, using the same parameters listed in table 6.1, is
extended to examine the effects of the inertial-amplifier angle φ on the total damping ratio;
i.e., on the intensity of the temporal attenuation, which is a measure of the total dissipation.
However, its effect is also examined on the imaginary-wave-propagation-constant part of
the spectrum, which represents the spatial attenuation. As shown in [55], for a certain range
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of φ , the attenuation peak associated with the inertial-amplifier mechanism couples with
the attenuation peak associated with the local-resonance mechanism. This yields a coupled
double-attenuation peak, within a bounded band gap, in the imaginary-wavenumber part
of the dispersion diagram. The strength of this spatial attenuation can be quantified by
evaluating the minimum value of the imaginary dimensionless wavenumber bounded by the
two peaks; this quantity is represented by µmin (see inset of figure 6.6(b) [55]).

Using ζ tot
sum and µmin, figures 6.6(a) and 6.6(b), respectively, show the variation of the

temporal- and spatial- attenuation intensities with the inertial-amplifier angle φ . Figure
6.6(c) combines these two relations in one plot, showing the temporal attenuation versus the
spatial attenuation. It is observed that ζ tot

sum increases monotonically with φ ; however, µmin

increases monotonically up to a specific angle, φ = 17.532◦; as the angle increases further, a
trade-off is observed between the temporal- and spatial-atenuation intensities. This represents
an unprecedented spatio-temporal attenuation trade-off phenomenon for an elastodynamic
medium. This tradeoff is observed until φ = 18.348◦ beyond which the coupled double-peak
feature in the spatial-attenuation spectrum no longer exists; hence, the µmin measure is no
longer valid. Figures 6.7(a) and 6.7(b) show, respectively, the frequency and damping-ratio
diagrams for a selection of points in the parameter space, as marked in figures 6.6(a) and
6.6(b).

The dispersion and attenuation characteristics of the IALRM is intricately dependent
on the unit cell’s various design parameters. Using figure 6.8, certain non-dimensional
parameters associated with an IALRM unit cell is introduced. The parameter ε =

ma

M
is

the ratio of the inertial-amplifier mass to the baseline mass, and δ =
ε

4tan2 φ
=

ma

4M tan2 φ

represents the same ratio with the influence of the inertial-amplifier angle φ . Thus, the
parameter δ directly represents the level of the effective inertial amplification by the inertial-
amplifier mass due to a variation of the inertial-amplifier angle. It can be seen that the
value of δ drastically increases as φ decreases and nearly linearly increases with ε . In the
unamplified static state, the effective value of ma is equal to the given value of ma. The
factor 4 tan2 φ in the definition of δ indicates the level of inertial amplification; the higher
this level, the higher the effective value of ma and the stronger the impact on the dispersion
and attenuation characteristics.

6.5 Summary and conclusions

In the present chapter, the dissipation characteristics of conventional elastic materials, namely,
PnC and LRM are analysed and compared with two types of inertially amplified materials,
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Figure 6.7: (a) Frequency band structure (first column), illustrating the spatial attenuation,
and (b) damping-ratio diagrams (second column), illustrating the temporal attenuation,
corresponding to the five chosen values of φ ; insets in column (a) show the corresponding
plots with the y-axis reproduced in a log scale. Results for the damped IALRMs are shown
only for real dimensionless wavenumbers.
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Figure 6.8: Non-dimensional parameter δ as a function of inertial-amplifier mass ratio (ratio
of the inertial-amplifier mass to the baseline mass) ε and the inertial-amplifier angle φ .

i.e., without (IAM) and with a local resonator (IALRM). The governing equations for all
the periodic media are presented and treated with Bloch’s theorem in order to set up an
eigenvalue problem which yields the damped frequencies and damping-ratios, which are
presented as a function of non-dimensional dimensionless wavenumber in the real-number
spectrum. The undamped frequencies for all the periodic media are also shown for real as
well as imaginary non-dimensional wave-propagation constants. The dissipation in the LRM,
IAM, and IALRM is compared with that in the PnC, and the difference in dissipation, its
cumulative integration, and its total integration as a single-valued quantity are presented in
the IBZ. The overall total damping ratio, which is a single-valued quantity obtained after
total integration of the summation of all the damping-ratio branches, is computed for all the
periodic media at a range of quasi-static speeds.

In this chapter, it is demonstrated that inertial amplification provides a route to effectively
designing a structured material with simultaneously high stiffness and high damping capacity
(positive metadamping) or low stiffness and low loss (negative metadamping). The levels of
positive or negative metadamping attained are elevated and well exceed the performance of
conventional elastic metamaterials. These attributes extend the boundaries of viscoelastic
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dynamical properties of state-of-the-art structured-material systems. Furthermore, when
combining inertial amplification with local resonance, i.e., in the IALRM, the unique phe-
nomenon of a trade-off between the temporal- and spatial-attenuation intensities associated
with the material properties is observed for a given range of the inertial-amplifier angle, φ .
This is accomplished by only changing the inertial-amplifier angle in the IALRM, i.e., via
passive tuning. By suitable adjustment of this angle, another regime is also realized that
exhibits monotonic increase in both the attenuation types. These traits open the way for the
design of future phononic materials with tailored spatio-temporal attenuation characteristics
and could have significant implications on topological phononics and other currently existing
areas within phononic engineering. The contents of the present chapter are contained within
the following peer-reviewed “Rapid Communication” publication:

• Hussein MI, Patrick I, Banerjee A, and Adhikari S. Metadamping in inertially am-
plified metamaterials: Trade-off between spatial attenuation and temporal attenuation.
Journal of Sound and Vibration, page 116977, 2022, doi.org/10.1016/j.jsv.2022.116977.



Chapter 7

Metaharvesting: Emergent intrinsic
energy harvesting by piezoelectric
metamaterials

7.1 Introduction

The harvesting of useful dissipative energy, arising due to structural vibrations that a wide
range of mechanical systems encounter, using diverse types of shunted piezoelectric systems
such as patches and stacks has continued to receive widespread attention since the past few
decades, which has resulted in significant advancements in the specialized areas of piezo-
electricity, energy-harvesting electromechanical design and piezoelectric vibration-energy
harvesting (PVEH). A fairly new class of material, locally resonant (elastic) metamaterial
(LRM), has proved to be quite effective in low-frequency energy harvesting as suggested in
the reviews by Chen et al. [68] and Lee et al. [66]. In a mass-in-mass elastic-metamaterial,
i.e., an LRM, model statically equivalent to a PnC model, in a local-resonance state, the
effective mass can become negative near the resonant frequency; and the dynamic response
results in an out-of-phase oscillation. As the resultant force approaches zero at the resonant
frequency as a result of out-of-phase oscillations, the net displacement is considerably sup-
pressed; and the accumulated wave energy localizes within the resonators. By installing
an appropriate piezoelectric element at the site of wave-energy localization, the harvesting
efficiency achieved is higher than that of a conventional piezoelectric substrate [72]. LRMs,
with an augmented mass, are better equipped for efficient PVEH as a result of the high
Q-factor associated with the local-resonance mechanism and the relatively narrow range
of the resonating frequency. As a consequence of the aforementioned reasons, LRMs can



7.1 Introduction 199

portray simultaneous dual functionalities of vibration attenuation and energy harvesting and
have been demonstrated to do so [73–76]. Considering that the enhanced PVEH performance
of an LRM stems from the local-resonance mechanism, inertial amplification of the main
mass and the local-resonator mass could result in even further enhancement. Adhikari et al.
[77] showed that a configuration comprising of a cantilever beam with bimorph piezoelectric
layers and an inertially amplified tip mass resulted in enhanced low-frequency PVEH.

Similar to the premise of chapter 5, while the research works mentioned above have
examined the electromechanical dispersion characteristics, the focus has purely been on
energy-harvesting capacity of the electromechanical structure; i.e., the analysis is performed
at the structural level, where the focus is on the structural dynamics/performance, and the
electromechanical structure is constrained by factors such as global dimensions, boundary
conditions, and nature of forcing. Chapter 6 [82] expounded upon the intrinsic—independent
of forcing, structure size, and boundary conditions—characterization of the amount of
dissipative energy available for harvesting in suspended piezoelectric phononic crystals
(PPnCs) under free vibration and comprising of either purely resistive or inductor-equipped
shunt circuits by comparing their dissipation characteristics to that of their non-piezoelectric
versions, PnCs, with the same amount of prescribed (raw) damping and, thus, introduced the
concept of intrinsic energy-harvesting availability in a piezoelectric material. This concept is
a new formal approach for the characterization of the amount of useful energy available for
harvesting that is fundamentally at the material level rather than the structural or device level.
By considering the PPnCs as a material and solely studying the effects of the piezoelectric
parameters, it was demonstrated that the PPnCs exhibited higher wavenumber-dependent
dissipation, where the difference in dissipation is a representation of the useful dissipative
energy intrinsically available for harvesting. In doing so, a formal wavenumber-dependent
intrinsic representation of the amount of useful dissipative energy available for harvesting
was presented. The current chapter presents a comprehensive analysis of the dissipation
characteristics of non-piezoelectric and piezoelectric periodic media at a material level, i.e.,
an in-depth intrinsic analysis. The format of the detailed analysis is laid out in figure 7.1.

In the present chapter:

1. an overview of metadamping in LRM and inertially amplified locally resonant (elastic)
metamaterial (IALRM) is presented by comparing them to a statically equivalent—
same long-wave speed of sound—PnC as indicated by the horizontal arrow at the top
of the intrinsic energetics schematics in figure 7.1;

2. an overview of the energy-harvesting availability in a piezoelectric phononic crystal
(PPnC) is presented as indicated by the vertical arrow on the left side of the intrinsic
energetics schematics in figure 7.1;
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Figure 7.1: An overview of the unit-cell comparisons addressed in this work in a wave-
propagation and dissipation framework and at a material level. The unit cells addressed
in this work are phononic crystal (PnC), locally resonant metamaterial (LRM), inertially
amplified locally resonant metamaterial (IALRM), piezoelectric phononic crystal (PPnC),
locally resonant piezoelectric metamaterial (LRPM), and inertially amplified locally resonant
piezoelectric metamaterial (IALRPM), which are statically equivalent to each other.

3. the energy-harvesting availability in a locally resonant piezoelectric metamaterial
(LRPM) and an inertially amplified locally resonant piezoelectric metamaterial (IAL-
RPM) is quantified as indicated by the two vertical arrows on the right side of the
intrinsic energetics schematics in figure 7.1; and

4. upon comparing the intrinsic energy-harvesting availability of the LRPM and IALRPM
with that of the statically equivalent PPnC, an emergence of intrinsic energy-harvesting
availability, a phenomenon referred to as “metaharvesting,” is introduced as indicated
by the horizontal arrow at the bottom of the intrinsic energetics schematics in figure
7.1.

The phenomenon of metaharvesting is analogous to the concept of metadamping except the
quantity evaluated is associated with intrinsic piezoelectric energy harvesting rather than
total dissipation. In the present work, only shunted circuits with an inductor are considered
for the piezoelectric elements in the piezoelectric periodic media.

The layout of the chapter is as follows. Section 7.2 details the governing equations and
their Bloch transformations for the non-piezoelectric and piezoelectric periodic media. In
section 7.3, a comparative analysis, in the form of graphical results, of the dispersion and
dissipation characteristics of the non-piezoelectric and piezoelectric periodic media is given,
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addressing each of the arrows in figure 7.1. In section 7.4, as a summary, the damping
ratios of all the periodic media addressed in this work and the relationship of their dispersion
branches with the corresponding damping-ratio branches are presented along with concluding
remarks.

7.2 Bloch’s theorem for non-piezoelectric and piezoelectric
periodic media
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Figure 7.2: Unit-cell schematics of statically equivalent (a) phononic crystal (PnC), (b)
locally resonant metamaterial (LRM), (c) inertially amplified locally resonant metamaterial
(IALRM), (d) piezoelectric phononic crystal (PPnC), (e) locally resonant piezoelectric
metamaterial (LRPM), and (f) inertially amplified locally resonant piezoelectric metamaterial
(IALRPM).
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Figure 7.2 illustrates the schematics of the unit cells of the non-piezoelectric and piezo-
electric periodic media, as lumped-parameter models, discussed in the present chapter. In
figure 7.2, a is the length of the lattice unit cell; φ is the angle between the central axis of the
inertially amplified metamaterial and the rigid links of the inertial-amplifier attachment; m...

denote the masses; k... and c... denote the stiffness coefficients of the linear springs and the
damping coefficients of the viscous dashpots, respectively, θ... are the electromechanical cou-
plings of the energy harvesters; n is used to identify the central unit cell under consideration
and can be any non-zero positive integer in a finite lattice; xn

...(t) are the displacements of the
masses, with respect to time t, in the nth unit cell; and vn

...(t) are the voltages, with respect
to time t, generated in the nth unit cell. Note that the inertially amplified locally resonant
metamaterials are similar to the locally resonant metamaterials except that, in addition to
each baseline mass connected to a local resonator, each baseline mass is connected to the
neighbouring baseline masses by inertial-amplifier attachments, each of which comprises of
an auxiliary mass m3 and two rigid links: one for each of the neighbouring baseline masses.

7.2.1 Overview of phononic crystal, locally resonant metamaterial, and
inertially amplified locally resonant metamaterial

Phononic crystal

By collating the forces on the masses, the governing equations pertaining to the nth unit cell
of the diatomic PnC shown in figure 7.2(a) can be written as

m1ẍn
1 +(c1 + c2)ẋn

1 − c2ẋn
2 − c1ẋn−1

2 +(k1 + k2)xn
1 − k2xn

2 − k1xn−1
2 = 0, (7.1)

m2ẍn
2 +(c1 + c2)ẋn

2 − c2ẋn
1 − c1ẋn+1

1 +(k1 + k2)xn
2 − k2xn

1 − k1xn+1
1 = 0, (7.2)

where the number of overhead dots indicates the order of derivative with respect to time, and
(n+1) and (n−1) are used to refer to the unit cells to the right and left of the central (nth)
unit cell, respectively.

As per Bloch’s theorem, the plane-wave solution [119] for the displacements of the
masses in a unit cell is given by

xn+g
l (r,κ; t) = x̃l(t)eiκ(n+g)a, (7.3)

where x is the displacement; l = 1,2 is an index corresponding to the two masses in a
unit cell; g ∈ [−∞,∞] is an integer used to locate and refer to any unit cell relative to the
central unit cell under consideration, i.e., the nth unit cell shown in figure 7.2; r is the
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one-dimensional position vector of the nth unit cell given by r = na; κ is the wavenumber;
x̃l is the displacement wave amplitude; and i =

√
−1 is the imaginary unit. For the central

unit cell under consideration, g = 0 (nth unit cell), and for the unit cells towards the left and
right of the central unit cell, g =−1, and g =+1, respectively; i.e., they are the (n−1)th and
(n+1)th unit cells, respectively. Substituting equation (7.3) in equations (7.1) and (7.2), i.e.,
Bloch-transformation, yields two homogeneous equations for the displacement amplitudes,
x̃1 and x̃2, which can be written in a matrix form as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃ = 0, (7.4)

where

X̃ =

(
x̃1

x̃2

)
; M =

(
m1 0
0 m2

)
; C(κ) =

(
c1 + c2 −c2 − c1e−iκa

−c2 − c1eiκa c1 + c2

)
;

and K(κ) =

(
k1 + k2 −k2 − k1e−iκa

−k2 − k1eiκa k1 + k2

)
. (7.5)

By means of state-space transformation, equation (7.4) is converted into a first-order state-
space equation of the form

AẎ+BY = 0, (7.6)

where

A =

(
0 I
M C(κ)

)
; B =

(
−I 0
0 K(κ)

)
; and Y =

( ˙̃X
X̃

)
. (7.7)

For equation (7.6), a solution of the form Y = Ỹλ eλ t is assumed, where Ỹλ is a complex-
amplitude state-space vector corresponding to eigenvalue λ . The dispersion relation is
obtained by implementing the solution in equation (7.6) and solving the resulting eigenvalue
problem given by ∣∣A−1B+λ I

∣∣= 0. (7.8)

Expanding equation (7.8) yields a fourth-order equation in terms of λ , which, upon solving,
gives four complex roots appearing as two complex-conjugate pairs. The complex solution
for the eigenvalue problem at a given value of κ is expressed as

λl(κ) =−ζl(κ)ωrl(κ)± iωdl(κ) =−ζl(κ)ωrl(κ)± iωrl(κ)
√

1−ζl(κ)2, (7.9)

where the subscript l refers to each complex-conjugate pair and, consequently, the mode
or branch number. Considering that all the unit cells shown in figure 7.2 have two degrees
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of freedom and their complex eigen solution comprises of two complex-conjugate pairs,
they exhibit two modes or branches: the acoustic (lower/first) branch given by l = 1 and the
optical (higher/second) branch given by l = 2. The definitions for the wavenumber-dependent
resonant frequency ωrl , damped frequency ωdl , and damping ratio ζl can be extracted from
equation (7.9) in the following manner:

ωrl(κ) = Abs[λl(κ)], (7.10)

ωdl(κ) = Im[λl(κ)], (7.11)

ζl(κ) =− Re[λl(κ)]

Abs[λl(κ)]
. (7.12)

Locally resonant metamaterial

By aggregating the forces on the masses, the governing equations pertaining to the nth unit
cell of the LRM shown in figure 7.2(b) are written as

m1ẍn
1 + c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )+ c2(ẋn
1 − ẋn

2)+ k1(2xn
1 − xn−1

1 − xn+1
1 )

+k2(xn
1 − xn

2) = 0, (7.13)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1) = 0. (7.14)

Following a Bloch transformation of equations (7.13) and (7.14), the dispersion relation
of the LRM is obtained in a similar manner as for the PnC in section 7.2.1. In equation (7.4)
for the LRM, X̃ and M are the same as in equation (7.5);

C(κ) =

(
c1(2− e−iκa − eiκa)+ c2 −c2

−c2 c2

)
;

and K(κ) =

(
k1(2− e−iκa − eiκa)+ k2 −k2

−k2 k2

)
. (7.15)

Inertially amplified locally resonant metamaterial

In an IALRM unit cell shown in figure 7.2(c), as the auxiliary or inertial-amplifier mass, m3,
is connected to the baseline mass, m1, by a rigid link, the inertial rigid coupling does not
alter the total degrees of freedom of a unit cell; hence, an IALRM unit cell will only exhibit
two degrees of freedom similar to the PnC and LRM. The governing equations pertaining to
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the nth unit cell of the IALRM are

m1ẍn
1 + c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )+ c2(ẋn
1 − ẋn

2)+ k1(2xn
1 − xn−1

1 − xn+1
1 )

+k2(xn
1 − xn

2)+χ(m3(ẍn
1 − ẍn−1

1 ))−χ(m3(ẍn+1
1 − ẍn

1)) = 0, (7.16)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1) = 0, (7.17)

where, from system kinematics, χ =
1

4tan2 φ
.

Following a Bloch transformation of equations (7.16) and (7.17), the dispersion relation
of the IALRM is obtained in a manner similar as for the PnC in section 7.2.1. In equation
(7.4) for the IALRM, X̃ is the same as in equation (7.5); C(κ) and K(κ) are the same as in
equation (7.15); and

M =

(
m1 +

m3

4
(2− e−iκa − eiκa)cot2 φ 0

0 m2

)
. (7.18)

7.2.2 Phononic crystal, locally resonant metamaterial, and inertially
amplified locally resonant metamaterial with shunted
piezoelectric elements

Piezoelectric phononic crystal

The governing electromechanical equations pertaining to the nth unit cell of the PPnC shown
in figure 7.2(c) can be written as

m1ẍn
1 +(c1 + c2)ẋn

1 − c2ẋn
2 − c1ẋn−1

2 +(k1 + k2)xn
1 − k2xn

2 − k1xn−1
2

+θ1vn
1 −θ2vn

2 = 0, (7.19)

m2ẍn
2 +(c1 + c2)ẋn

2 − c2ẋn
1 − c1ẋn+1

1 +(k1 + k2)xn
2 − k2xn

1 − k1xn+1
1

+θ2vn
2 −θ1vn+1

1 = 0, (7.20)

−θ1(ẍn
1 − ẍn−1

2 )+Cp1 v̈n
1 +

1
R1

v̇n
1 +

1
L1

vn
1 = 0, (7.21)

−θ2(ẍn
2 − ẍn

1)+Cp2 v̈n
2 +

1
R2

v̇n
2 +

1
L2

vn
2 = 0. (7.22)

In equations (7.21) and (7.22), Cp... , R..., and L... are the capacitance, resistance, and induc-
tance associated with the shunt circuits of the piezoelectric elements, respectively.
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As per Bloch’s theorem, the plane-wave solution for the voltages generated in piezoelec-
tric elements in a periodic unit cell can be written as

vn+g
l (r,κ; t) = ṽl(t)eiκ(n+g)a, (7.23)

where ṽ is the voltage amplitude. Substituting equations (7.3) and (7.23) in equations (7.19)–
(7.22) yields four homogeneous equations, two for the displacement amplitudes x̃1 and x̃2

and two for the voltage amplitudes ṽ1 and ṽ2, which can be written in matrix form as

M ¨̃X+C(κ) ˙̃X+K(κ)X̃+T1(κ)Ṽ = 0, (7.24)

T2(κ)
¨̃X+Cp

¨̃V+R ˙̃V+LṼ = 0. (7.25)

In equations (7.24) and (7.25), X̃, M, C(κ), and K(κ) are the same as in equation (7.5);

Ṽ =

(
ṽ1

ṽ2

)
; T1(κ) =

(
θ1 −θ2

−θ1eiκa θ2

)
; T2(κ) =

(
−θ1 θ1e−iκa

θ2 −θ2

)
;

Cp =

(
Cp1 0
0 Cp2

)
; R =

 1
R1

0

0
1

R2

 ; and L =

 1
L1

0

0
1
L2

 . (7.26)

Equations (7.24) and (7.25) can be compacted into a single matrix equation as

Z1
¨̃E+Z2

˙̃E+Z3Ẽ = 0, (7.27)

where

Z1 =

(
M 0

T2(κ) Cp

)
; Z2 =

(
C(κ) 0

0 R

)
; Z3 =

(
K(κ) T1(κ)

0 L

)
;

and Ẽ =

(
X̃
Ṽ

)
. (7.28)

The dispersion relation can now be formulated by subjecting equation (7.27) to a state-space
transformation of the form given in equation (7.6), where

A =

(
0 I

Z1 Z2

)
; B =

(
−I 0
0 Z3

)
; and Y =

( ˙̃E
Ẽ

)
, (7.29)
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implementing a solution of the form Y= Ỹλ eλ t , and solving the resulting eigenvalue problem
of the form given in equation (7.8). Expanding equation (7.8) for this particular case yields an
eight-order equation in terms of λ , which, upon solving, gives four complex roots appearing
as two complex-conjugate pairs and four real roots.

Locally resonant piezoelectric metamaterial

The governing electromechanical equations pertaining to the nth unit cell of the LRPM shown
in figure 7.2(e) can be written as

m1ẍn
1 + c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )+ c2(ẋn
1 − ẋn

2)+ k1(2xn
1 − xn−1

1 − xn+1
1 )

+k2(xn
1 − xn

2)+θ1vn
1 −θ1vn+1

1 −θ2vn
2 = 0, (7.30)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1)+θ2vn

2 = 0, (7.31)

−θ1(ẍn
1 − ẍn−1

1 )+Cp1 v̈n
1 +

1
R1

v̇n
1 +

1
L1

vn
1 = 0, (7.32)

−θ2(ẍn
2 − ẍn

1)+Cp2 v̈n
2 +

1
R2

v̇n
2 +

1
L2

vn
2 = 0. (7.33)

Following a Bloch transformation of equations (7.30)–(7.33), the dispersion relation for
the LRPM is obtained in a similar manner as for the PPnC in section 7.2.2. In equations
(7.24) and (7.25) for the LRPM, X̃ and M are the same as in equation (7.5); C(κ) and K(κ)

are the same as in equation (7.15); Ṽ, Cp, R, and L are the same as in equation (7.26);

T1(κ) =

(
θ1 −θ1eiκa −θ2

0 θ2

)
; and T2(κ) =

(
−θ1 +θ1e−iκa 0

θ2 −θ2

)
. (7.34)

Inertially amplified locally resonant piezoelectric metamaterial

The governing electromechanical equations pertaining to the nth unit cell of the IALRPM
shown in figure 7.2(f) are

m1ẍn
1 +χ(m3(ẍn

1 − ẍn−1
1 ))−χ(m3(ẍn+1

1 − ẍn
1))+ c1(2ẋn

1 − ẋn−1
1 − ẋn+1

1 )

+c2(ẋn
1 − ẋn

2)+ k1(2xn
1 − xn−1

1 − xn+1
1 )+ k2(xn

1 − xn
2)+θ1vn

1 −θ1vn+1
1 −θ2vn

2 = 0, (7.35)

m2ẍn
2 + c2(ẋn

2 − ẋn
1)+ k2(xn

2 − xn
1)+θ2vn

2 = 0, (7.36)

−θ1(ẍn
1 − ẍn−1

1 )+Cp1 v̈n
1 +

1
R1

v̇n
1 +

1
L1

vn
1 = 0, (7.37)

−θ2(ẍn
2 − ẍn

1)+Cp2 v̈n
2 +

1
R2

v̇n
2 +

1
L2

vn
2 = 0. (7.38)
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Following a Bloch transformation of equations (7.35)–(7.38), the dispersion relation for
the IALRPM is obtained in a manner similar as for the PPnC in section 7.2.2. In equations
(7.24) and (7.25) for the IALRPM, X̃ is the same as in (7.5); M is the same as in equation
(7.18); C(κ) and K(κ) are the same as in equation (7.15); T1(κ) and T2(κ) are the same as
in equation (7.34); and Ṽ, Cp, R, and L are the same as in equation (7.26).

7.3 Wave-propagation and dissipation characteristics of
non-piezoelectric and piezoelectric periodic media:
metadamping, energy-harvesting availability, and
metaharvesting

In this section, the mathematical realizations of metadamping and energy-harvesting availabil-
ity are presented as an overview; the mathematical definition of metaharvesting is presented;
and consequently, each of the arrows shown in figure 7.2 are addressed by comparing the
dissipation characteristics of the periodic media, with the parameters detailed in table 7.1, on
either side of the arrows.

The electrical parameters of the shunt circuits of the piezoelectric elements are presented
in table 7.1 after non-dimensionalizing them in the following manner:

αl = ω̄lCpl Rl, (7.39a)

βl = ω̄
2
l Cpl Ll, (7.39b)

kcoeffl
2 =

θ 2
l

klCpl

, (7.39c)

In the equations above, l = 1,2 is an index corresponding to the parameters of the two
piezoelectric elements and the frequencies obtained from the two spring-mass pairs: ω̄1 =√

k1

m1
and ω̄2 =

√
k2

m2
.

7.3.1 Mathematical definitions of metadamping, energy-harvesting
availability and metaharvesting

To quantify the increase in dissipation in the LRM and IALRM compared to the statically
equivalent PnC, an intrinsic wavenumber-dependent quantity Zemergl [79] is employed, which
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Table 7.1: Mechanical and non-dimensional electrical parameters employed in the piezoelec-
tric unit cells, namely, piezoelectric phononic crystal (PPnC), locally resonant piezoelectric
metamaterial (LRPM), and inertially amplified piezoelectric metamaterial (IAPM), consid-
ered in the present chapter; the mechanical parameters are the same for the non-piezoelectric
and piezoelectric unit cells.

Parameter PPnC LRPM IALRPM Unit

a 1 1 1 m
φ — — 70 degree

m1 0.1 0.1 0.01 Kg
m2 0.3 0.3 0.3 Kg
m3 — — 0.09 Kg
k1 4.7130×105 1.1844×105 0.9131×105 Nm−1

k2 1.5710×105 0.3948×105 3.0437×104 Nm−1

c1 3 3 3 Nsm−1

c2 3 3 3 Nsm−1

α1 0.2605 0.1306 0.3626 —
α2 0.3474 0.1741 0.1529 —
β1 3.7704 0.9475 7.3048 —
β2 1.6757 0.4211 0.3247 —

kcoeff1
2 0.0430 0.1710 0.2218 —

kcoeff2
2 0.0644 0.2565 0.3327 —

is defined as

Zemergl |∗(µ) = ζl|∗(µ)−ζl|PnC(µ)

 l = 1,2, or sum;
∗= LRM or IALRM;

µ ∈ [0,π]

 , (7.40)

where the subscript “emerg” stands for emergence; l is an index referring to the acoustic
branch (l = 1), optical branch (l = 2), or the summation (l = sum) of the two branches; the
subscript ∗ is used to distinguish between the LRM and IALRM; and µ is the dimensionless
wavenumber defined as µ = κa. The quantity Zemergl represents the difference between the
damping ratio of the LRM or IALRM and that of the statically equivalent reference PnC and,
hence, is the intrinsic wavenumber-dependent measure of the emergence of dissipation or
damping in an LRM or IALRM, which illustrates the phenomenon of metadamping. The
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wavenumber-dependent cumulative and total value of Zemergl defined as

Z
cum

emergl
|∗(µ) =

∫
µ

0
Zemergl |∗ dµ

 l = 1,2, or sum;
∗= LRM or IALRM;

µ ∈ [0,π]

 , (7.41)

and

Z
tot

emergl
|∗= Z

cum

emergl
|∗(π) (l = 1,2, or sum; ∗= LRM or IALRM), (7.42)

respectively, are also used to further quantify the emergence in dissipation. The quantity
Z

cum

emergl
represents the cumulatively integrated value of Zemergl over the irreducible Bril-

louin zone (IBZ), and upon complete integration over the IBZ, the total value of Zemergl ,
which is Z

tot

emergl
(Z

cum

emergl
evaluated at µ = π), is calculated to give a single-valued to-

tal quantification of the differential dissipation capacity or metadamping pertaining to the
acoustic branch, optical branch, or their summation for the LRM and IALRM with respect
to the reference PnC. Note that, depending on the choice of the mechanical parameters,
Zemergl ,Z

cum

emergl
, and Z

tot

emergl
could be in the positive [79] or negative [48] regime.

To quantify the increase in dissipation, due to shunted piezoelectric elements, in the
piezoelectric periodic media compared to their corresponding non-piezoelectric counterparts,
an intrinsic wavenumber-dependent quantity ZEHAl [82] is employed, which is defined as

ZEHAl |⊗(µ) = ζl|⊗(µ)−ζl|∗(µ)


l = 1,2, or sum;

⊗= PPnC, LRPM, or IALRPM;
∗= PnC, LRM, or IALRM;

µ ∈ [0,π]

 , (7.43)

where the subscript EHA is an abbreviation for energy-harvesting availability, and the
subscripts ⊗ and ∗ are used to distinguish among the three piezoelectric periodic media and
the corresponding three non-piezoelectric periodic media, respectively. The quantity ZEHAl

represents the difference between the damping ratio of the piezoelectric periodic media and
that of the corresponding reference non-piezoelectric periodic media; i.e., it is a measure of
the useful dissipation arising purely due to the shunted piezoelectric elements and that is
intrinsically available for harvesting by the same shunted piezoelectric elements considering
that the raw dissipation, termed as“loss,” is lost in the viscous damping dashpots with a
prescribed damping. Hence, the measure ZEHAl is defined as the intrinsic wavenumber-
dependent representation or characterization of the amount of useful dissipative energy
available for harvesting in a piezoelectric periodic media and illustrates the concept of
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energy-harvesting availability. The wavenumber-dependent cumulative and total value of
ZEHAl defined as

Z
cum

EHAl
|⊗(µ) =

∫
µ

0
ZEHAl |⊗ dµ

 l = 1,2, or sum;
⊗= PPnC, LRPM, or IALRPM;

µ ∈ [0,π]

 , (7.44)

and

Z
tot

EHAl
|⊗= Z

cum

EHAl
|⊗(π)

(
l = 1,2, or sum;

⊗= PPnC, LRPM, or IALRPM

)
, (7.45)

respectively, are also used to further quantify the energy-harvesting availability in the three
piezoelectric periodic media. The quantity Z

cum

EHAl
represents the cumulatively integrated

value of ZEHAl over the IBZ, and upon complete integration over the IBZ, the total value of
ZEHAl , which is Z

tot

EHAl
(Z

cum

EHAl
evaluated at µ = π), is calculated to give a single-valued

total quantification of the energy-harvesting availability pertaining to the acoustic branch,
optical branch, or their summation for the piezoelectric periodic media.

To quantify the increase in the “useful dissipation” in the LRPM and IALRPM relative
to the statically equivalent PPnC, an intrinsic wavenumber-dependent quantity Zemerg

EHA l
is

employed, which is defined as

Zemerg
EHA l

|⊗(µ) = ZEHAl |⊗(µ)−ZEHAl |PPnC(µ)

 l = 1,2, or sum;
⊗= LRPM, or IALRPM;

µ ∈ [0,π]

 , (7.46)

where the subscript ⊗ is used to distinguish between the LRPM and IALRPM. Note that
on the right-hand side in equation (7.46), the energy-harvesting availability ZEHAl is used
instead of the damping ratio ζl as ZEHAl excludes the dissipation or loss arising due to the
prescribed/raw damping whereas ζl includes it. The quantity Zemerg

EHA l
represents the difference

between the energy-harvesting availability associated to the LRPM or IALRPM and that
associated to the statically equivalent reference PPnC; hence, it is defined as the intrinsic
wavenumber-dependent measure of the emergence of the representative energy-harvesting
availability in an LRPM or IALRPM, which illustrates the phenomenon of metaharvesting.
The cumulative and total value of Zemerg

EHA l
defined as

Zemergcum

EHA l
|⊗(µ) =

∫
µ

0
Zemerg

EHA l
|⊗ dµ

 l = 1,2, or sum;
⊗= PPnC, LRPM, or IALRPM;

µ ∈ [0,π]

 , (7.47)
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and

Zemergtot

EHA l
|⊗= Zemergcum

EHA l
|⊗(π)

(
l = 1,2, or sum;

⊗= PPnC, LRPM, or IALRPM

)
, (7.48)

respectively, are also used to further quantify the emergence in the energy-harvesting avail-
ability. The quantity Zemergcum

EHA l
represents the cumulatively integrated value of Zemerg

EHA l
over the

IBZ, and upon complete integration over the IBZ, the total value of Zemerg
EHA l

, which is Zemergtot

EHA l

(Zemergcum

EHA l
evaluated at µ = π), is calculated to give a single-valued total quantification of the

emergent energy-harvesting availability or metaharvesting pertaining to the acoustic branch,
optical branch, or their summation for the LRPM and IALRPM with respect to the reference
PPnC.

7.3.2 Metadamping: an emergence in dissipation in locally resonant
and inertially amplified locally resonant metamaterials

In this section, the top horizontal arrow, assigned to metadamping in the LRM and IALRM,
in figure 7.2 is addressed through graphical results. Figure 7.3 depicts the unit-cell schematics
of the PnC, LRM, and IALRM, their non-dimensional damped-frequency band structures,
their damping-ratio diagrams, and the quantity Zemergl(l = sum) for the LRM and IALRM. In
all the dispersion diagrams presented in this chapter, the damped-frequencies associated with
the acoustic and optical branches are plotted after non-dimensionalizing them with respect
to ω̄1|PnC; i.e., Ωl =

ωdl

ω̄1|PnC
is plotted, where l = 1 (acoustic), 2 (optical) and ω̄1|PnC=√

k1|PnC

m1|PnC
. All the non-dimensional damped-frequency band structures and damping-ratio

diagrams in this chapter are generated for µ ∈ [0,π], i.e., the IBZ. In figure 7.3(a), the LRM
and IALRM exhibit a narrower first (acoustic) transmission band and a wider second (optical)
transmission band compared to the PnC. In figure 7.3(c), the LRM exhibits higher damping
ratios compared to the PnC; and the IALRM exhibits a further significant increase in the
damping ratios; the increase is remarkable in the optical branch. Figure 7.3(d) shows an
emergence in damping in the LRM and an even higher emergence, i.e., enhanced emergence,
in the IALRM. Figure 7.4 displays metadamping corresponding to the acoustic damping-ratio
branch ζ1, optical damping-ratio branch ζ2, and the summation of the two branches ζsum as
shaded regions to highlight the contrast between the LRM and IALRM. The increase in the
size of the shaded regions, Zemergl (l = 1, 2, and sum), while progressing from the LRM to
the IALRM indicates a significant enhancement in metadamping in the IALRM.
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Figure 7.3: (a) Unit-cell schematics, (b) normalized damped-frequency band structures,
and (c) damping-ratio diagrams for the statically equivalent phononic crystal (PnC), lo-
cally resonant metamaterial (LRM), and inertially amplified locally resonant metamaterial
(IALRM), and (d) damping-emergence quantities for the LRM and IALRM relative to the
PnC corresponding to the summation of the two damping-ratio branches ζsum.

7.3.3 Energy-harvesting availability: intrinsic representation of useful
dissipative energy available for harvesting

In this section, the vertical arrows, assigned to energy-harvesting availability in the three
piezoelectric periodic media, in figure 7.2 are graphically illustrated. Figures 7.5, 7.6, and
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Figure 7.4: Damping-emergence quantities, shown as shaded regions, for the locally resonant
metamaterial (LRM) and inertially amplified locally resonant metamaterial (IALRM) relative
to the phononic crystal (PnC) corresponding to the (a) acoustic damping-ratio branch ζ1, (b)
optical damping-ratio branch ζ2, and (c) summation of the two branches ζsum.

7.7 depict the non-dimensional damped-frequency band structure, damping-ratio diagram,
and energy-harvesting availability ZEHAl(l = sum) for the PPnC, LRPM, and IALRPM,
respectively, in comparison to their non-piezoelectric versions. The results In figures 7.5-7.7,
subfigures (b) depict that the non-dimensional damped frequency band structures for the
non-piezoelectric and piezoelectric periodic media are approximately similar. In figures
7.5-7.7, subfigures (c) show that the piezoelectric periodic media exhibit significantly higher
damping ratios relative to their non-piezoelectric counterpart; in subfigures (d) for the three
piezoelectric periodic media, it can be observed that the total value of the energy-harvesting



7.3 Wave-propagation and dissipation characteristics of non-piezoelectric and piezoelectric
periodic media: metadamping, energy-harvesting availability, and metaharvesting 215

(a)

a
nth unit cell 

c1 c2

k2

m2

PnC

k1

m1

0 1 2 3

0

0.5

1.0

1.5(b)

Fr
eq

ue
nc

y,
 Ω

 

ζ2

ζ1

ζsum

D
am

pi
ng

 ra
tio

, ζ

(c)

0.06

0.04

0.02

00 1 2 3En
er

gy
-h

ar
ve

st
in

g
 a

va
ila

bi
lit

y,
 Z

EH
A

(d)

Dimensionless 
wavenumber, μ 

Z EH
A

   
  | PP

nC
= 

0.
05

41Dimensionless 
wavenumber, μ 

Ω1

Ω2

0.06

0.04

0.02

0

a
nth unit cell 

c1 c2

k2

m2

k1

m1

PPnC

θ1 θ2

to
t

su
m

ZEHA     |PPnC 
cum

sum

ZEHA     |PPnCsum

x2(t)
nx1(t)

n x2(t)
nx1(t)

n

v2(t)
nv1(t)

n

energy harvester 
(piezoelectric patch)

Figure 7.5: (a) Unit-cell schematics, (b) normalized damped-frequency band structures, and
(c) damping-ratio diagrams for the phononic crystal (PnC) and piezoelectric phononic crystal
(PPnC), and (d) energy-harvesting availability in the PPnC relative to the PnC corresponding
to the summation of the two damping-ratio branches ζsum.

availability corresponding to the summation of the two damping-ratio branches (ζsum),
Z

tot

EHAsum
, increases significantly while progressing from the PPnC to LRPM to IALRPM.

Figure 7.8 displays the energy-harvesting availability corresponding to the acoustic damping-
ratio branch ζ1, optical damping-ratio branch ζ2, and the summation of the two branches
ζsum as shaded regions to highlight the contrast among the three piezoelectric periodic media.
The increase in the size of the shaded regions, ZEHAl (l = 1, 2, and sum), while progressing
from the PPnC to LRPM indicates a significant enhancement in the energy-harvesting
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Figure 7.6: (a) Unit-cell schematics, (b) normalized damped-frequency band structures, and
(c) damping-ratio diagrams for the locally resonant metamaterial (LRM) and locally resonant
piezoelectric metamaterial (LRPM), and (d) energy-harvesting availability in the LRPM
relative to the LRM corresponding to the summation of the two damping-ratio branches ζsum.

availability and indicates an even greater enhancement while progressing from the PPnC
to IALRPM. When comparing the intrinsic energy-harvesting availability in the statically
equivalent LRPM and IALRPM, it is evident that inertial amplification results in a significant
improvement. For the IALRPM, results are shown at two different inertial-amplifier angles:
φ = 70◦ and φ = 90◦. An angle of 90◦ is experimentally unrealizable but illustrates the
maximum theoretical limit for quantities associated with an inertially amplified metamaterial.
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Figure 7.7: (a) Unit-cell schematics, (b) normalized damped-frequency band structures,
and (c) damping-ratio diagrams for the inertially amplified locally resonant metamaterial
(IALRM) and inertially amplified locally resonant piezoelectric metamaterial (IALRPM),
and (d) energy-harvesting availability in the IALRPM relative to the IALRM corresponding
to the summation of the two damping-ratio branches ζsum.

It is observed that ζ1 overlaps at φ = 70◦ and φ = 90◦ but ζ2 and ζsum are considerably
higher at φ = 90◦.
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Figure 7.8: Energy-harvesting availability, shown as shaded regions, in the piezoelectric
phononic crystal (PPnC), locally resonant piezoelectric metamaterial (LRPM), and inertially
amplified locally resonant piezoelectric metamaterial (IALRPM) relative to the phononic
crystal (PnC), locally resonant metamaterial (LRM), and inertially amplified locally resonant
metamaterial (IALRM), respectively, corresponding to the (a) acoustic damping-ratio branch
ζ1, (b) optical damping-ratio branch ζ2, and (c) summation of the two branches ζsum.

7.3.4 Metaharvesting: Locally resonant and inertially amplified locally
resonant emergent energy-harvesting availability

In the current section, the bottom horizontal arrow, assigned to metaharvesting in the LRPM
and IALRPM, in figure 7.2 is addressed via graphical illustrations. Figure 7.9 shows the
unit-cell schematics of the PPnC, LRPM, and IALRPM, their non-dimensional damped-
frequency band structures, their damping-ratio diagrams, and the quantity Zemerg

EHA l
(l = sum)
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for the LRPM and IALRPM. In figure 7.9(c), the LRPM exhibits higher damping ratios
compared to the PPnC; and the IALRPM exhibits even higher damping ratios; the increase
is remarkable in the optical damping-ratio branch. It is observed that, among the three
statically equivalent piezoelectric periodic media, the IALRPM exhibits the highest overall
dissipation. Figure 7.9(d) shows an emergence in the energy-harvesting availability in the
LRPM and an even higher emergence, i.e., enhanced emergence, in the energy-harvesting
availability in the IALRPM. Figure 7.10 illustrates the phenomenon of metaharvesting
corresponding to the acoustic damping-ratio branch, optical damping-ratio branch, and
the summation of the branches as shaded regions to highlight the contrast between the
piezoelectric LR and IA metamaterial. The increase in the size of the shaded regions,
Zemerg

EHA l
(l = 1, 2, and sum), while progressing from the LRPM to the IALRPM indicates

a significant enhancement in metaharvesting in the IALRPM, which points towards better
performance of an electromechanical structure made using an IALRPM.

7.4 Summary and conclusions

The current chapter presents, as an overview, the phenomenon of metadamping, discussed in
chapter 6, in an LRM and an IALRM, illustrates the concept of energy-harvesting availability,
introduced in 5, in an LRPM and an IALRPM in addition to a PPnC, all of which were
introduced in 3, and introduces the phenomenon of metaharvesting in an LRPM and an
IALRPM. All the analysis is done at an intrinsic level, i.e., at a material level that is
independent of forcing, sizing, and boundary conditions. The aforementioned statements are
graphically summarized in figures 7.1 and 7.2. The governing equations for all the periodic
media addressed in this chapter are provided and subjected to a Bloch transformation to set
up an eigenvalue problem. Using the conventional eigenvalue solution, the non-dimensional
damped-frequency band structures and damping-ratio diagrams are produced and shown
as a function of the dimensionless wavenumber. The dispersion (frequency band-structure)
and, most importantly, the dissipation characteristics are compared for statically equivalent
non-piezoelectric and piezoelectric periodic media in adherence to the format depicted in
figures 7.1 and 7.2.

Figure 7.11 shows, as a summary, the damping-ratio diagrams of all the non-piezoelectric
and piezoelectric materials addressed in this chapter. The figure foundationally illustrates
metadamping, energy-harvesting availability, and metaharvesting and presents to the reader a
comprehensive summary of the intrinsic energetics framework shown in figures 7.1 and 7.2.

Figure 7.12, for all the periodic media, shows the relation between the non-dimensional
damped frequencies, Ω1 and Ω2, with their corresponding damping ratios, ζ1 and ζ2. Figures
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Figure 7.9: (a) Unit-cell schematics, (b) normalized damped-frequency band structures, and
(c) damping-ratio diagrams for the statically equivalent piezoelectric phononic crystal (PPnC),
locally resonant piezoelectric metamaterial (LRPM), and inertially amplified locally reso-
nant piezoelectric metamaterial (IALRPM), and (d) emergent energy-harvesting availability
(EHA)—metaharvesting—in the LRPM and IALRPM relative to the PPnC corresponding to
the summation of the two damping-ratio branches ζsum.

of the this type have recently been used in literature involving the dispersion and dissipation
analysis of periodic media. It is observed that the rate of the dash-dot curves corresponding to
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Figure 7.10: Emergent energy-harvesting availability or the phenomenon of metaharvesting,
shown as shaded regions, in the locally resonant piezoelectric metamaterial (LRPM) and
inertially amplified locally resonant piezoelectric metamaterial (IALRPM) relative to the
PPnC corresponding to the (a) acoustic damping-ratio branch ζ1, (b) optical damping-ratio
branch ζ2, and (c) summation of the two branches ζsum.

the acoustic branch increases and the level of the dotted curves corresponding to the optical
branch increases in accordance with the direction of the arrows in figures 7.1 and 7.2.

The results presented in this chapter show that the intrinsic energy-harvesting availability
is enhanced by a local-resonance mechanism and even further enhanced by adding an inertial-
amplification mechanism. This enhancement is, essentially, an emergence, which is termed
as metaharvesting. These findings formulate a pathway towards fundamental design of
architectured piezoelectric materials with superior energy harvesting capacity. Investigation
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Figure 7.11: Damping-ratio diagrams for the phononic crystal (PnC), piezoelectric phononic
crystal (PPnC), locally resonant metamaterial (LRM), locally resonant piezoelectric metama-
terial (LRPM), inertially amplified locally resonant metamaterial (IALRM), and inertially
amplified locally resonant piezoelectric metamaterial (IALRPM); the figure above depicts the
phenomenon of metadamping, the concept of energy-harvesting availability, and the newly
introduced phenomenon of metaharvesting as per figures 7.1 and 7.2. Each damping-ratio
diagram depicts the acoustic branch (ζ1), optical branch (ζ2). and the summation of the two
aforementioned branches (ζsum).

of statically equivalent piezoelectric periodic media, of the types discussed in this chapter, at
an intrinsic/material level will facilitate effective performance evaluation, which will result
in effective design-based choices to meet and exceed operational requirements and achieve
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maximum efficiency. The contents of this chapter will potentially form the journal article
titled “Metaharvesting: Emergent energy harvesting by piezoelectric metamaterials.”



Chapter 8

Summary and conclusions

8.1 Thesis summary

Chapter 1 presents a preface to this thesis by succinctly providing a review of the technical
topics relevant to this thesis, stating the motivation (problem statement), laying out the
objectives, and listing the published research outcomes of this thesis.

Chapter 2 further expands on the pertinent technical topics, introduced and briefly
discussed in chapter 1, in a brief literature review.

Chapter 3 presents the introductory theoretical framework for the analysis of the propaga-
tion of elastic waves through different configurations of linear elastic periodic media under
free vibration and with and without energy harvesters by employing a generalized Bloch’s
theorem for plane waves followed by a state-space transformation to set up an eigenvalue
problem. In doing so, the dispersion relations are derived and the mathematical definition of
the solution, i.e., the eigenvalues, is given. The chapter serves the purpose of demonstrating
that the analytical work presented in chapter 5 can be easily implemented for various types
of piezoelectric periodic media, e.g., the types investigated in chapter 3.

Chapter 4 presents the dispersion and dissipation characteristics of a two-dimensional
phononic crystal (PnC) and piezoelectric phononic crystal (PPnC) in a Bloch wave-propagation
framework to demonstrate that the analytical work presented in chapter 5 is also applicable
to two-dimensional cases. For simplicity, only a monoatomic PnC and the corresponding
piezoelectric version are considered.

Chapter 5 proposes the new intrinsic concept of energy-harvesting availability by em-
ploying suspended monoatomic and diatomic PPnCs. The chapter presents a new formal
approach for the characterization of energy-harvesting availability that is fundamentally
at the material level rather than the structural or device level. Monoatomic and diatomic



8.1 Thesis summary 225

PnCs with integrated piezoelectric elements are considered and modelled as damped media
within a Bloch wave-propagation-analysis framework. The wavenumber-dependent damping
ratio—which is a rigorous measure of dissipation capacity—is obtained within the irre-
ducible Brillouin zone (IBZ) and compared directly with that of the same PnC without the
piezoelectric elements. The dissipation curves for the latter, the non-piezoelectric medium,
give a direct indication of the “raw” dissipation which represents unexploited/lost energy.
On the other hand, the difference in the dissipation curves between the two systems—the
PnC with piezoelectric elements versus the PnC without piezoelectric elements—provides a
formal intrinsic wavenumber-dependent representation of the amount of energy available for
harvesting.

Chapter 6 illustrates the phenomena of positive and negative metadamping in an inertially
amplified material (IAM) and an inertially amplified locally resonant metamaterial (IALRM)
by using a statically equivalent PnC and a statically equivalent locally resonant metamaterial
(LRM) as references. All the periodic media are analysed via a generalized Bloch’s theorem
and subjected to a state-space transformation in order to obtain an eigenvalue problem. It is
also shown that by combining inertial amplification with local resonance, i.e., in the IALRM,
and, consequently, coupling the inertially amplified attenuation peak with that of a local-
resonance attenuation peak, the unique phenomenon of a trade-off between the temporal-
and spatial-attenuation intensities associated with the material properties is observed for a
given range of the inertial-amplifier angle, i.e., angle between the rigid links and the central
axis of the metamaterial.

Chapter 7 presents an overview of metadamping in an LRM and an IALRM and demon-
strates the concept of energy-harvesting availability in a locally resonant piezoelectric meta-
material (LRPM) and an inertially amplified locally resonant piezoelectric metamaterial
(IALRPM) and, consequently, an emergence of energy-harvesting availability, i.e., meta-
harvesting, in the LRPM and the IALRPM by comparing the quantity to that of statically
equivalent PPnC. All the periodic media are analysed via a generalized Bloch’s theorem and
subjected to a state-space transformation in order to obtain an eigenvalue problem.

The proposed theory describing the concept of energy-harvesting availability provides a
fundamental intrinsic characterization tool for the design and/or selection of piezoelectric
energy-harvesting materials from which structure/devices may be formed. The underlying
approach for quantifying intrinsic energy-harvesting availability will be useful in formally
and generally comparing, categorising, and designing future energy-harvesting phononic
materials, including other novel types of phononic crystals and elastic metamaterials.

The traits of enhanced positive and negative metadamping will lead to the effective design
of phononic materials with the capability of exhibiting simultaneously high damping and
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load-bearing capacities or simultaneously low damping and load-bearing capacities. The
trade-off in the spatio-temporal intensities open the way for the design of future phononic
materials with tailored spatio-temporal attenuation characteristics and could have significant
implications on topological phononics and other contemporary areas in phononic engineering.

The phenomenon of metaharvesting formulates a pathway towards fundamental design of
architectured piezoelectric materials with superior energy harvesting capacity. Investigation
of statically equivalent piezoelectric periodic media, of the types discussed in this chapter, at
an intrinsic/material level will facilitate effective performance evaluation, which will result
in effective design-based choices to meet and exceed operational requirements and achieve
maximum efficiency.

8.2 Directions for future research

The areas of phononic engineering and piezoelectric vibration-energy harvesting (PVEH)
using phononic materials are rapidly advancing, which is resulting in innovative and efficient
designs with a wide variety of important applications. In terms of potential future works, the
following research tasks can be undertaken:

1. Calculate the exact wavenumber-dependent useful dissipative energy available for
harvesting in the irreducible Brillouin zone (IBZ).

2. Obtain the dispersion and dissipation characteristics and the quantity mentioned above
for a finite discretized version of the piezoelectric periodic media addressed in this
work.

3. Look into obtaining numerical solutions, using an appropriate numerical technique,
e.g., finite element method (FEM), for finite continuous versions of the piezoelectric
periodic media addressed in this work to compare the analytical and numerical results
and reduce computational cost and time.

4. Perform optimization studies for the placement of shunted piezoelectric element (patch)
in a finite continuous version of the piezoelectric periodic media addressed in this
work.
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Appendix A

Coefficients of non-dimensional equations

A.1 Monoatomic phononic crystal

The coefficients of equation (5.16) are as follows:

a1 = 2ζ̄

(
4γ2 sin2 κa

2
+1
)

(A.1)

a2 = 4γ1 sin2 κa
2

+1. (A.2)

A.2 Diatomic phononic crystal

The coefficients of equation (5.26) are as follows:

a1 =
1
γ1

(
2ζ̄ ((γ5 + γ7 +1)γ1 + γ5 + γ6 + γ7)

)
, (A.3)

a2 =
1
γ1

(
16ζ̄

2
γ5γ7 sin2 κa

2
+(4(γ6 +1)γ5 +4(γ6 +1)γ7 +4γ6) ζ̄

2

+(1+ γ2 + γ4)γ1 + γ2 + γ3 + γ4

)
, (A.4)

a3 =
1
γ1
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8ζ̄ γ7γ2 +8γ4ζ̄ γ5

)
sin2 κa

2
+2ζ̄ ((γ6 +1)γ2

+(γ6 +1)γ4 +(γ3 +1)γ5 +(γ3 +1)γ7 + γ6 + γ3)
)
, (A.5)

a4 =
1
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(
4sin2 κa

2
γ2γ4 +(γ3 +1)γ2 +(γ3 +1)γ4 + γ3

)
. (A.6)
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A.3 Monoatomic piezoelectric phononic crystal without
inductor

The coefficients of equation (5.34) are as follows:

a1 =
1
α

(
2αζ̄

(
4γ2 sin2 κa

2
+1
)
+1
)
, (A.7)
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1
α
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4sin2 κa
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(
kcoeff
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+2ζ̄

)
, (A.8)

a3 =
1
α

(
4γ1 sin2 κa

2
+1
)
. (A.9)

A.4 Monoatomic piezoelectric phononic crystal with
inductor

The coefficients of equation (5.43) are as follows:

a1 =
1
α

(
2αζ̄

(
4γ2 sin2 κa

2
+1
)
+1
)
, (A.10)
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4γ1 sin2 κa

2
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)
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A.5 Diatomic piezoelectric phononic crystal without
inductor

The coefficients of equation (5.58) are as follows:

a1 =
1

αγ1γ9γ10

(
2ζ̄ γ9γ10 ((γ1 +1)γ5 +(γ1 +1)γ7 + γ6 + γ1)α

+γ1 (γ10γ9 +1)) , (A.14)
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A.6 Diatomic piezoelectric phononic crystal with inductor

The coefficients of equation (5.74) are as follows:
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