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Abstract

The automotive industry is undergoing a major transformation. New environmental leg-
islation, changing consumer requirements, Industry 4.0 technologies, and advancements
in battery technologies, have contributed to an industry-wide shift towards electric pow-
ertrain. To remain competitive in this rapidly changing environment, automotive manu-
facturers must ensure high levels of technical and organisational innovation to transition
towards digital and data-driven business practices.

This research aims to address these growth opportunities and manage ongoing change in
three steps. First, the literature on machine learning applications in automotive manu-
facturing is critically reviewed and the barriers to developing and implementing machine
learning are discussed. Secondly, a structured framework is developed to assess the indus-
try 4.0 maturity of automotive manufacturing operations and guide digital transformation
at the factory level. In the third and final step of this research, two machine learning
projects identified by the assessment are presented in detail. The first case study presents
an anomaly detection solution to identify process errors in engine assembly. This research
introduces multiple advancements in anomaly detection in manufacturing, including the
introduction of the Anomaly No Concern class. The second case study is a greenfield
project to explore new digital value chains to add value to EV customers and explore data-
as-a-service business models. This case study uses a combination of Google Street View
data and GIS data to identify houses suitable for EV charging and represents a major
advancement towards fully automated remote surveying of the built environment.

To conclude, multiple advancements are presented that contribute to the academic lit-
erature. Clear stepwise frameworks support the proposed industrial solutions to develop,
implement and replicate these solutions across the business. These contributions have been
used to support ongoing digitalisation efforts, implement state-of-the-art anomaly detec-
tion solutions, and explore new data-as-a-service business models in one of the world’s

largest automotive companies.
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Chapter 1
Introduction

The automotive industry is undergoing a major technological revolution. Contributing
factors to this disruption include emerging manufacturing technologies, environmental leg-
islation, and changing consumer requirements. These factors, combined with improve-
ments in lithium-ion battery technologies, digitalisation, and automation, have resulted in
an industry-wide shift towards electric powertrain as an alternative to traditional internal
combustion engines that have dominated the market for nearly a century. A major driver
of this change was the Paris Climate Agreement, in November 2016 outlined ambitious
targets to cut global greenhouse emissions. While many hybrid and EV products existed
before the Paris Climate Agreement, this global call to environmental action resulted in
many leading economies introducing legislation to ban the sale of new internal combustion
engine vehicles over the coming decades [7].

More recently, automakers have faced new supply chain disruptions following the COVID-
19 pandemic, the Russian invasion of Ukraine, and the subsequent geopolitical and global
economic instability [§]. The resultant energy crisis has meant many counties are putting
new policies and guidelines in place to motivate consumers to reduce their reliance on
fossil fuels further [§]. These recent market disruptions introduce new risks to automotive
manufacturers due to supply chain disruptions, global trade tensions, fluctuating sales, and
political uncertainty [9, 8]. There remains some uncertainty around how regional policies
will affect the global EV market, with EV sales slowing in some markets, including the US
and China, in recent years [9]. However, as emissions regulations become more stringent,
battery technologies advance and EV products become cheaper with longer ranges, experts

predict that EV models will emerge as the dominant mode of powertrain in the near future

[9].



In addition to the challenges of transition towards electric powertrain, the automotive
industry also finds itself amid a wider technological revolution affecting the whole man-
ufacturing sector, referred to as 'Industry 4.0’. The term Industry 4.0 was first used to
demonstrate the impact of Smart Systems and the Internet of Things (IoT) on the German
manufacturing sector and set the basis for the German government’s “High-Tech Strategy
2020 Action Plan”[I0} [11]. Since then, the term has evolved to describe various emerging
technologies and business practices that are redefining the manufacturing sector as indus-
tries shift towards increased digitalisation and automation. Such technologies include big
data analytics, IoT, Cyber-Physical Systems (CPSs), wearable technologies, additive man-
ufacturing, cloud computing, advanced robotics, and machine learning. The application
of Industry 4.0 is not confined to manufacturing technologies but also considers organisa-
tional innovation. As organisations digitalise and integrate all areas of business operations
throughout the product life-cycle, new business models are enabled to deliver added value

to customers [12].

1.1 A Brief History of the Industrial Revolutions

Industry 4.0 is an abbreviation of ’the fourth industrial revolution’. Before discussing
this further, a brief overview of the previous industrial revolutions is presented. Entire
books have been dedicated to understanding the causes of each separate revolution, and
therefore the discussion is limited to a high-level overview in relation to advancements in
manufacturing to provide some background and context for the reader. For further details
on the first and second revolutions, the reader is refered to books by P.M.Deane and R.
Joel Mokyr respectively [13] [14].

The three previous industrial revolutions were all triggered by various innovations, the
first of which can be traced back to Manchester, Great Britain, in the 18th century [I1].
Innovations during this era often had little to no scientific base, with discoveries often
arising serendipitously through the practical application of the engineering, medical, and
agricultural knowledge base of the time [I5]. During the mid-18th century where the
mechanisation of the textile industry was made possible by the introduction of water- and
steam-powered manufacturing processes such as the Roberts Loom [11]. Before the Roberts
Loom, workers manually powered machinery using foot pedals while repeatedly weaving
through a taught matrix of tightly strung threads. By mechanising these processes, the

physical limitations of the human body were overcome, allowing less skilled users to oper-



ate the looms, making the process considerably faster and cheaper. Similar machine tools
and technologies began emerging throughout the late 18th and early 19th century, bringing
with it a new era of industrialisation that quickly spread across the globe, transforming
what was previously an agricultural society into a new industrial society [15].

The second industrial revolution can be traced back to multiple innovations in manufactur-
ing between the 1870s and 1920s that addressed the changing nature of organisation and
production, and their associated technologies [15]. During this period, technologies such as
railroads, telegraph networks, and city infrastructures were expanded massively thanks to
various technological advancements that enabled the mass production of steel, chemicals,
and oil [I5]. New systems, such as electric power, were also introduced that helped further
improve mass production systems [I1]. However, the second industrial revolution is not
defined by these new technologies but rather by the new approaches to the organisation
of production and more scientific approaches to innovation. The economy of scale became
increasingly important as high-volume manufacturing became widespread and giant corpo-
rations began to rise, such as Carnegie Steel, Dupont, Ford Motors, and General Electric
[15]. One of the most significant advancements in manufacturing during this era was the
introduction of the moving assembly line, which was first introduced in 1870 to improve
the process efficiency of meat production in slaughterhouses [11]. The concept was later
popularised by Henry Ford, who proved that combining the concepts of division of labour,
continuous flow processes, and interchangeable parts made it possible to produce highly
complex products at low prices [15].

There is a large crossover between Industry 1.0 and Industry 2.0. Both revolutions in-
volved improved manufacturing processes and technologies, spurring new eras of economic
and societal growth. However, the second industrial revolution is distinguished by two
main factors. Firstly, the new approaches to production organisation and a greater focus
on systematic, scientific approaches to innovation and process optimisation. Secondly, in-
dustrialisation spread much quicker during Industry 2.0 thanks to improved transport and
communication networks, and growth spread outside of the British Isles into the United
States, Germany, and other countries across Europe [15], [16].

The major technological advancement that marked the beginning of the third industrial
revolution was the development of the first Programmable Logic Controller (PLC) in 1968
[T7]. This enabled users to digitally reprogram a computer to perform multiple operations
and kickstarted the information and communication technology (ICT) age which quickly

spread across the world, redefining the way that companies operated [17]. Rapid devel-



opment over the following decades led to smaller, more affordable computers aimed at
both consumers and large companies. The introduction of personal computers drastically
changed the way people worked and lived. As the world became evermore connected, per-
sonal computers quickly shifted from being a luxury item to a necessity in much of the
western world.

Industry 4.0 is widely regarded by scholars and industry as an evolution from the third in-
dustrial revolution, in the same way, that the second was a continuation of the first [11}, [15].
In terms of technological advancement, the rise of the Internet triggered the fourth indus-
trial revolution, the subsequent development of Cyber-Physical Systems (CPS) and the
creation of a digital value chain [I7, [I8, 19]. CPSs are the mechanism that combines ele-
ments of both the physical world and digital software, providing a means for components,
objects, devices, and other things to communicate information [I8]. During the beginning
of the 21st century, the popularity of these wireless, networked devices grew significantly
in both industrial and commercial applications. The widespread distribution of CPS is the
main distinguishing aspect of the fourth industrial revolution. With further miniaturisa-
tion and improved infrastructures such as cloud computing, these technologies soon evolved
into a wider system of connected physical CPSs termed ‘The Internet of Things’ (IoTs),
a major enabling technology of the fourth stage of the industrial revolution [I1]. The key
difference between IoT and CPS is that CPS involves integrating software, computation,
networking, and physical processes, not necessarily via the internet. In contrast, loT refers
to physical objects and systems connected through internet networks.

By integrating CPSs and IoTs into every aspect of a production line with the appropriate
framework, manufacturers can work towards a fully networked factory with the poten-
tial to develop a self-organising factory environment, often referred to as a Smart Factory
which represents the pinnacle of the Industry 4.0 manufacturing environment [20]. These
highly automated manufacturing environments require high levels of digital skills and new
management approaches and business models that challenge well-established manufactur-
ing practices. To address these challenges, change management, business intelligence, and
automated production management are among the most common research topics in the
Industry 4.0 literature [21], 22, 23, 12]. Industry 4.0 is a human-centric philosophy in
which digitalisation and automation are explored in a socially sustainable way as a means
to empower the existing workforce to drive innovation while minimising the negative so-
cial impact. However, some researchers raise concerns that in real-world applications, the

human-centric concepts of Industry 4.0 are not well-understood [24].



There are many similarities between the transition from Industry 1.0 and Industry 2.0
compared to that between Industry 3.0 and Industry 4.0. The first industrial revolution
resulted from technological innovations that overcame the physical limitations of the hu-
man body in production environments and radically increased production rates. This, in
turn, led to a new era of high-volume production across various industries demanding new
approaches to business organisation and production management to manage this new sup-
ply chain. Similarly, in the third industrial revolution, technologies such as PLCs, advanced
data analytics, robotics, and CPSs allowed users to overcome further physical limitations
of the human body but, more importantly, overcome the analytical limitations of the hu-
man mind. Organisations are again seeing how technical innovations in automated data

analytics are changing approaches to business organisation and production management.

1.2 Machine learning in the Factory of the Future

In the modern automotive industry, data and human resources are two of the most valuable
assets to a company. As the workforce is upskilled and manufacturing environments become
increasingly integrated, data becomes increasingly valuable [25 26]. This value creation
lies in the ability to apply data analytics and generate insights into integrated systems and
processes to users throughout the value chain, leading to new organisational and techni-
cal knowledge which can deliver competitive advantage and drive further innovation [25].
Value is assigned not only to data but also to the integrated systems, technologies, and
people allowing for its collection, integration, and exploitation.

As manufacturers continue to improve data collection and integration by installing cheap
sensors and networked IoT systems, new challenges arise in analysing these data. Manu-
facturers must adapt to deal with high volumes of high-dimensional manufacturing data
that do not follow Gaussian distributions. Existing analytic toolsets commonly used in
automotive manufacturing environments, such as Six Sigma and Excel, will become in-
creasingly ill-suited to analyse these data. Manufacturing organsiations must recognise the
limitations of the current analytical tools and adopt new approaches to data management
and analytics.

Machine learning has emerged as a powerful tool to analyse big manufacturing data with
various applications discussed in the reviewed literature across all aspects of manufacturing

production and the broader organisation [27, 28]. Research in machine learning in automo-



tive manufacturing has increased considerably in the last five years. While machine learning
applications are already fairly widely employed in the manufacturing sector, much of this
research into automotive applications has focused on proof-of-concept solutions, with few
papers demonstrating application readiness. This highlights a major opportunity for both
further academic research and industrial application of these technologies in the automo-
tive sector.

Machine learning presents tremendous growth opportunities through increased automation
and business intelligence. Autonomous production systems driven by machine learning
models can support production managers to predict production progress, react quickly to
issues and provide prescriptive analytics to support root cause analysis [29]. At the process
level, various machine learning applications can deliver quality improvements, time sav-
ings, and cost savings. Algorithms can monitor in-built sensors to predict tool breakages
in machining processes, to automatically schedule maintenance and reduce machine down-
time [30]. Anomaly detection systems can monitor processes and automatically report
when processes exceed limits, reducing the requirements for manual inspection and des-
ignate products for repair [31]. Integrating engineering processes throughout the product
life-cycle allows production to be tailored to meet fluctuating consumer demand of mul-
tiple product families. This delivers added customer value through highly customisable
products while also reducing lead times [27]. Flexible manufacturing systems enabled by
machine learning can also react quickly to changes in the local manufacturing environment
to deliver reduced labour costs, improved inventory management, reduced lead times, and
reduced manufacturing costs [27]. As data produced by automotive products become in-
creasingly integrated, added value can be delivered to customers through machine learning
enabled services such as predictive and prescriptive maintenance. By monitoring vehicle
data in-service, a customer can be notified if maintenance is required improving safety,
reducing cost, and improving customer experience [32].

Managing the transition toward implementing machine learning technologies can be chal-
lenging. This transition requires a well-structured long-term strategy that challenges exist-
ing organisational cultures [33, 34, 35]. It requires investment in new technologies, practices
for which Return on Investment (ROI) is difficult to quantify [33] [34] [35]. Research shows
that the use of machine learning in automotive manufacturing applications has been lim-
ited until recent years [36] B7]. Researchers and industry practitioners are still working to
understand how best to create value from the combination of machine learning and other

Industry 4.0 technologies, given that many of these technologies are still in their infancy



[37]. The application of machine learning requires careful selection of the suitable use case,
requiring both technical knowledge of advanced data analytics and domain-specific knowl-
edge of the target process. Gaps in organisational knowledge in automotive manufacturers
have resulted in a reluctance to embrace machine learning and its enabling technologies due
to the challenges of complexity, technical expertise, and uncertainty of investment require-
ments [38]. Previous research has also explained the slow adoption of machine learning
enabling technologies due to the limited availability of skills and poor change management
[39].

To address these challenges and support organisational change, considerable research has
been done in developing Industry 4.0 maturity assessments to measure progress towards in-
dustry 4.0 and develop roadmaps to guide this transformation [12], 40, [41), 42, 43 144}, 45], [46).
These self-assessment maturity models allow organisations to compare technological and
organisational aspects of operations against a well-defined benchmark to quantify progress
toward Industry 4.0 and highlight areas to improve. Industries with high technological
readiness levels supported by well-communicated sustainable automation strategies will
achieve higher process scores and Industry 4.0 readiness. Despite research in Industry 4.0
change management, research shows that the full realisation of machine learning and its en-
abling technologies is yet to be realised in the automotive manufacturing industry [47, 48].
Further research is required to understand how organisations should manage the transi-
tion towards increased digitalisation and automation and how to prioritize investments in

emerging technologies to maximize value creation.

1.3 Business Models of Industry 4.0

Innovation is critical to successfully managing this change and requires a strong under-
standing of the most recent challenges, and opportunities of Industry 4.0 technologies
[49]. Innovation is required not only in technological research and development but also
in organisational aspects as new business models emerge as a result of new integrated
Industry 4.0 technologies [37, 50]. Digitalisation is a key enabler of new business mod-
els, where novel digital platforms create new digital markets and embrace consumer in-
volvement in the product and service innovation process [51]. These business models in-
clude 'The Sharing Economy, ’On-Demand Services’, 'Manufacturing-as-a-Service’, 'Data-
as-a-Service’, "Mobility-as-a-Service’, and Circular Economy [52], 53], 54, 55, 56]. As new

products and services are introduced, and data are integrated vertically and horizontally



throughout the organisation, machine learning and Big Data analytics will play a critical
role in the business strategy [57]. Predictive analytics and automated process control sup-
port real-time prescriptive analytics mitigating risks such as unpredictable raw material
quantity, quality, availability variations, and constantly changing market trends and con-
sumer behavior [57].

Customer behavior analytics presents a significant opportunity for automotive manufac-
turers to improve their understanding of the potential value of different customer segments
through analysing external data sources such as social media and internal sources [58].
This knowledge can be used to strategically target new customers as well as improve cus-
tomer experience and ensure the loyalty of existing customers [58]. Big data analytics
of consumer data also significantly improve manufacturing process agility and flexibility,
allowing production and procurement to adapt to changing markets. By gathering and
analysing real-time data from an automaker’s fleet and warranty data, cloud-based big
data processing will enable new after-market services for customers. Examples include
predictive and preventative maintenance of products, various infotainment services, and
self-driving support services such as autopilot and collision prevention that are already
found in many modern vehicles [59].

Like many automotive companies, Ford Motor Company recently began offering Mobility-
as-a-Service. Mobility-as-a-Service models involve customers paying an upfront fee, fol-
lowed by weekly payments to access a vehicle with all-inclusive service, including insur-
ance, MOTs, servicing, and maintenance [60]. Non-ownership and sharing of vehicles are
not limited to passenger transport, with recent research in the Mobility-as-a-Service model
also highlighting the potential for opportunities in freight transport. As the fixed cost of
ownership is replaced with variable costs of travel use, electric vehicles and autonomous
driving become major enablers of these services [56, [61].

A key challenge of business model innovation is understanding how to identify, select, and
implement digital innovations [37]. This is particularly true in areas where innovations are
neither a product nor a service but instead promise to add additional value for customers.
These innovations are difficult to develop a business case and equally difficult to measure
the impact of outcomes [37]. Further research is required to understand business model

innovations at both the organisational and technical levels [37].



1.4 Objectives

The overall aim of this thesis is to present and critically review the application of machine
learning in the automotive industry and develop various methodologies to support the
further uptake of these technologies to deliver increased quality and value creation in
various organisational settings within the automotive industry. To achieve this goal, we

outline the following main objectives:

1. Identify the main machine learning technologies used in automotive manufacturing
and identify the barriers and opportunities for further sustainable growth and value

creation in this field.

2. Development of a strategic framework to support the future uptake of machine learn-

ing in the automotive industry with a focus on sustainability.

3. Using the proposed framework, develop machine learning solutions to create value

from existing data sources in the automotive industry.

1.5 Thesis Layout

This thesis is structured as follows. Chapter 2 introduces and critically reviews the main
body of the literature on machine learning applications in automotive manufacturing. It
includes descriptions of the various machine learning approaches with detailed descriptions
and examples of the most commonly used models and architectures. The barriers to devel-
oping and implementing machine learning and its enabling technologies are also discussed.
With human-centered design and sustainability being one of the main pillars of Industry
4.0, particular focus is placed on understanding the social implications of machine learning
and its enabling technologies and managerial practices.

Realising the value of machine learning in manufacturing requires investment in emerg-
ing technologies and adopting new business practices that challenge cultural norms. This
transition must be supported by well-structured step-wise change management strategies
communicated to the entire workforce. These challenges are addressed in Chapter 3, in
which an Industry 4.0 maturity assessment tool is presented. This structured framework is

aimed at automotive manufacturers to self-assess the technological, strategic, and cultural
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maturity of production facilities. By reviewing these areas against a well-defined bench-
mark, growth opportunities can be identified to create added value from existing data. A
roadmap toward the organisations’ vision of Industry 4.0 can be then be developed. As
organisations increase their industry 4.0 maturity level, further opportunities are created
to add value through data analytics and machine learning solutions to improve flexibility,
productivity, and efficiency.

Chapter 4 presents a machine learning-based In-Process Anomaly Detection system in an
engine assembly plant. This project was identified as a result of an Industry 4.0 assessment
at Ford Motor Company and demonstrates how machine learning solutions can automate
tasks and deliver quality and process improvements following a sustainable approach. This
research includes the first instance in the reviewed literature where anomaly detection is
applied to time-series data gathered from manual production processes. Manual produc-
tion data presents challenges such as process staging, human-induced variability, and the
subjectivity and ambiguity of the anomalous class. Multiple novel concepts are introduced
to overcome these challenges, including the first use of an ’Anomaly No Concern” anomaly
class in the literature. Furthermore, to address the lack of publicly available datasets to
develop anomaly detection approaches in production settings, the datasets used in this
study are made public to support future research.

As automotive manufacturers reach the highest levels of Industry 4.0 readiness, new
data-as-a-service business opportunities emerge, enabled by machine learning technologies.
Chapter 5 presents a novel method of surveying the built environment using automated
machine-learning approaches to identify houses suitable for EV charging. Automotive prod-
ucts are changing how we live and function as a society and play a major role in ensuring a
sustainable future. By exploring novel methods such as these to gain insights into the fu-
ture uptake of electric vehicles, organisations can become better connected with customers,

react quicker to market changes, and explore data-as-a-service business opportunities.

1.6 Industrial Impact and Research Outputs

Some of the research outputs of this doctorate thesis have been disseminated by publishing
papers in international research journals and international conferences. This research has
also contributed to the completion of several industrial projects, delivering cost savings of

over £10m per annum at Ford Motor Company.
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1.6.1 International Research Journal Publications

The following papers have been peer-reviewed and published in international research jour-

nals:

e Flynn J, Giannetti C. Using Convolutional Neural Networks to Map Houses Suitable
for Electric Vehicle Home Charging. Ai. 2021;2(1):135-49.

e Borghini E, Giannetti C, Flynn J, Todeschini G. Data-Driven Energy Storage Schedul-
ing to Minimise Peak Demand on Distribution Systems with PV Generation. Energies
2021;14:3453.

e Flynn J., Giannetti C., van Dijk H., Anomaly Detection of DC Nut Runner Processes
in Engine Assembly. Al. 2023 Feb 7;4(1):234-54.

1.6.2 International Conference Papers and Presentations

The following papers have been reviewed and published in conference proceedings:

e Flynn J, Brealy E, Giannetti C. Making Green Transport a Reality: A Classification
Based Data Analysis Method to Identify Properties Suitable for Electric Vehicle
Charging Point Installation. 2021 IEEE Int Geosci Remote Sens Symp IGARSS.
2021;(2018):6229-32.

e E. Brealy, J. Flynn and A. Luckman, ”Multi-Criteria Approach Using Neural Net-
works, GIS, and Remote Sensing to Identify Households Suitable for Electric Vehicle
Charging,” IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing
Symposium, 2022, pp. 283-286, doi: 10.1109/IGARSS46834.2022.9884517.

e J. Flynn, Machine Learning Anomaly Detection for In-Process Quality Assurance,
2022 M2A Annual Conference, 2022

1.6.3 Industrial Projects
Project ADAPT

The work carried out during this EngD has contributed to successfully delivering the

ADAPT project, a machine learning strategy to address production anomalies and en-
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hance quality in powertrain manufacturing. The author worked as part of a global cross-
functional team to develop and implement the anomaly detection solution presented in
Chapter 4. Project ADAPT has been successfully implemented in two trials at Ford’s
Dagenham engine plant and is estimated to deliver greater than £10m per annum savings
per plant. Following the success of these trials, the anomaly detection method has demon-
strated application readiness and is planned to be rolled out globally within Ford Motor
Companies’ manufacturing operations. As a subject matter expert in machine learning
within Ford’s Power Train Manufacturing Engineering team, the author continues to work
on project ADAPT to explore further opportunities for cost savings and quality improve-
ments elsewhere within the company. Further applications of the authors’ contribution to
the ADAPT project have since been identified in vehicle assembly operations, with ongoing
collaboration with the Cologne Vehicle Assembly plant to deliver further process optimi-
sation.

As part of this research, a major gap was identified in the company’s machine learning de-
velopment strategy. Prior to this research, no standardised method was in place to support
data labelling tasks within the company. Data labelling is a critical stage in model devel-
opment to produce high-quality training and testing datasets. To address this, software
was developed to provide engineers with a dashboard interface to label data and minimise
the time taken to label large amounts of time series data. This dashboard has since been
adopted by Ford Motor Company to support additional internal projects, including a re-
cent project exploring new approaches to deal with disagreement in labelled production

data.

Industry 4.0 Assessment

In Chapter 3, an Industry 4.0 maturity assessment tool is presented. This tool supports
automotive manufacturers in identifying growth opportunities in the technological, strate-
gic, and cultural aspects of current operations. As well as identifying specific industrial
projects, this assessment tool helps develop a roadmap toward long-term Industry 4.0 goals.
Following the success of two assessments at Ford’s UK manufacturing sites, the company
has adopted this assessment methodology to perform further internal assessments and
manage ongoing change towards increased digitisation and automation. Most recently, an
Industry 4.0 assessment was performed at Halewood Transmission Plant following £230m

investment into new electric vehicle transmission lines. The Industry 4.0 assessment sup-
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ported identifying and prioritising digitalisation projects in the warranty, logistics, and
production departments. The outcome of this assessment led to new business strategies
adopted on-site, including introducing new business metrics to measure progress toward
digitalisation. The assessment findings also led to changes in training strategies to up-
skill the existing workforce using socially sustainable approaches. In addition to guiding
investments into human resources, subsequent investments were also made into emerging
technologies as a direct result of this assessment. As Ford Motor Company continues to
invest in electrification in EU markets and new production lines are launched, other Indus-
try 4.0 Assessments are planned to manage this organisational change at manufacturing

sites across Furope.

1.6.4 Awards

As part of a team of 5 data science and engineering researchers, the author achieved
3rd place in the 2021 International Open Data Challenge Series hosted by the Energy
Systems Catapult and Western Power Distribution. The goal of the Open Data Challenge
was to generate innovative and sustainable open-data solutions to social problems. The
author’s contributions include model construction, validation, experimentation, and result
visualisation of the state-of-the-art machine learning approaches used in this research.
These models are tuned and combined with ad hoc and convex optimisation techniques
to maximize peak load shaving and power storage. This research led to a journal article
published in Energies as part of the Special Issue Forecasting and Management Systems

for Smart Grid Applications.

1.6.5 External Factors

There have been multiple external factors outside the control of the university and spon-
sor company that has had some effect on this EngD. This doctorate research topic was
originally sponsored by Ford’s Bridgend Engine Plant to explore the development and
implementation of Industry 4.0 technologies on-site. In June 2019, the Bridgend plant
announced its closure which resulted in considerable work on the development of machine
learning implementation being unable to continue. As a result, the candidate’s industrial
supervisor and other industry contacts could no longer provide support for the project. For

almost a year, the EngD project’s future was uncertain. During this time, it was decided
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to change the scope to explore a new topic that relied on open-source data and would
not require the input of a sponsor company. This led to the development of the project
presented in Chapter 5 to map houses suitable for EV charging using Google Street View
data.

It was not until Feb 2020, when Dagenham Engine Plant agreed to continue funding the
EngD that a new industrial supervisor was arranged. At this time, the scope of the EngD
was to return to that outlined initially. Given the success of the Industry 4.0 Assessment
Tool at Bridgend, plans were made to expand this project to replicate this methodology
at Dagenham and other European plants. The ongoing works on mapping EV charging
locations were socialised with Ford UK teams and work was also agreed to continue in this
area. However, shortly after reestablishing regular contact with the sponsor company, the
COVID-19 pandemic in March 2020 caused further delays to the project. Site visits were
banned, forcing the project scope to be reviewed once more and the focus of work returned
to EV charging. It was not until Feb 2021 that work with Ford was able to continue once
more, working with new teams at Dunton Technical Center where the candidate could
contribute to projects working remotely. Further work on the Industry 4.0 assessment was

not able to continue until June 2022.
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Chapter 2

Machine Learning in the Automotive

Industry

2.1 Summary

This chapter introduces the main body of the literature related to the use of machine
learning in the automotive industry. A systematic review is conducted using the PRISMA
framework to answer the following research question: “How are machine learning tech-
nologies and practices used to create value in automotive manufacturing environments, and
what are the barriers to their development and implementation?” . In answering this re-
search question, a range of machine learning approaches are discussed, as well as the most
common models researchers use to explore novel manufacturing solutions. Enabling tech-
nologies in manufacturing are also discussed, including a range of Industry 4.0 technologies
such as IoT, Big Data analytics, Flexible Manufacturing Systems, Digital Twin, Cloud and
Edge computing. In addition to discussing the technical aspects of machine learning and
their associated challenges, this review also explores cultural and organisational challenges.
These findings are used to inform the development of a strategic framework outlined in the
following chapter to support the future uptake of machine learning and other Industry 4.0
technologies and practices. Furthermore, these findings are also used to guide research in
Chapters 4 and 5 into specific case studies to implement machine learning in automotive
applications.

The literature review is structured as follows. Section presents the research question,

describes the methods used to search the literature, and details the inclusion and exclusion
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criteria. This section includes a description of the data extraction sheet used to gather
the quantitative and qualitative information from the reviewed literature and is referred
to throughout the study. Section presents a summary of the results gathered from
the data extraction sheet, including key topics, types of data used, data collection meth-
ods, common machine learning models, hyperparameter tuning methods, and evaluation
metrics. Section also includes an overview of the various machine learning training
approaches discussed in the reviewed literature and the most commonly used models to
provide a foundation of knowledge to which to refer later in answering the research question.
The discussion of these results is presented in section 2.5 In this section, the emerging
technologies of Industry 4.0, as presented in the reviewed literature, are introduced con-
cerning a wide range of research into their industrial applications in manufacturing. The
challenges and opportunities for value creation in manufacturing are discussed and how
they are used to support machine learning applications. Three main topics are identified
in the reviewed literature: digital skills, computer vision, and management. These main
topics are discussed to structure the discussion on these various technological, organisa-
tional, and cultural challenges and opportunities and their respective implications on social
sustainability. These key themes are digital skills, management, and computer vision and
were chosen because they were the most common recurring topics throughout the reviewed

literature. Finally, the research conclusions are presented in section [2.6]

2.2 Introduction

The automotive industry is undergoing significant technical, organisational, and cultural
change, driven by global environmental policies, changing consumer demands, and a wide
range of Industry 4.0 technologies. Innovation is critical to successfully managing this
change and requires a strong understanding of the most recent challenges and opportunities
of Industry 4.0 technologies [49]. Innovation is required not only in technological research
and development but also in organisational aspects as new business models emerge as a
result of new integrated Industry 4.0 technologies [37, [50].

As manufacturing environments become increasingly integrated, data becomes a significant
asset [25], 26]. This value creation lies in the ability to apply data analytics and generate
insights into integrated systems and processes to users throughout the value chain, leading
to new organisational and technical knowledge which can deliver competitive advantage,

and innovation [25]. Value is assigned not only to data but also to the integrated systems,
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technologies, and people allowing for its collection, integration, and exploitation. Machine
learning has emerged as a powerful tool to analyze big manufacturing data with various
applications discussed in the reviewed literature across all aspects of manufacturing pro-
duction and the broader organisation [27) 28].

Developing machine learning solutions requires people with advanced data analytics skill
sets to analyze large volumes of integrated data easily accessible through networked in-
frastructures. To provide these high levels of data collection, integration and accessibility,
multiple enabling technologies of machine learning are discussed in the literature, includ-
ing: IoT [62], Big Data analytics [52], Flexible Manufacturing Systems [27, 29], Digital
Twin [63, [64], Cloud and Edge computing [28, [65 57]. Machine learning solutions can be
implemented at the functional level without the widespread adoption of these technolo-
gies. However, as companies reach high maturity levels in these enabling technologies,
the opportunities for value creation using machine learning increase significantly as new
enterprise-level opportunities are created to deliver business intelligence [12].

Research shows that the full realisation of Industry 4.0 technologies is yet to be realised in
the manufacturing industry [47, [48]. This is particularly true for machine learning, with
research showing its use in manufacturing applications has been limited until recent years
[36]. Consequently, there are gaps in organisational knowledge leading to a reluctance to
embrace machine learning and its enabling technologies due to the challenges of complex-
ity, technical expertise, and uncertainty of investment requirements [38]. Previous research
has also explained the slow adoption of Industry 4.0 due to the limited availability of skills
and poor change management [39].

This chapter aims to overcome these organisational knowledge gaps by providing a com-
prehensive overview of the machine learning technologies and practices currently used in
automotive manufacturing environments. The barriers to developing and implementing
machine learning and its critical enabling technologies are also discussed. With human-
centered design and sustainability being one of the main pillars of Industry 4.0, particular
focus is placed on understanding the social implications of machine learning and its en-

abling technologies and managerial practices.

2.3 Search method and strategy

This section introduces the research question and describes the methods used to search

the literature. The search methodology used in this chapter is based upon the PRISMA
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framework, a commonly used systematic literature review approach widely used in the
medical literature that has recently been adopted by software engineering researchers also
[66].

Research Questions

The research question for this literature review is defined as follows:
"How are machine learning technologies and practices used to create value in automotive
manufacturing environments, and what are the barriers to their development and imple-

mentation?”

Inclusion and Exclusion Criteria

This literature limits searches to peer-reviewed, published works. The searches are limited
to publications from 2011 onwards, as this was when Industry 4.0 was first presented in
the literature. Due to the scope defined by the industrial partners, research related to the
development of autonomous robotics is excluded from this review. The automotive industry
relies heavily on automated manufacturing robots and already has access to considerable
talent in developing and implementing machine learning solutions for these systems. Given
that this project’s scope is focused on opportunities for increasing the usage of existing
data sources, research on augmented / virtual reality, additive manufacturing, supply chain,
and cyber security are excluded. After the initial screening, papers that did not include
sufficient detail on the methodology were also excluded. The complete exclusion criteria

are as follows :

e Papers published before 2011.
e Papers that are not related to manufacturing production.

e Papers for which the primary topic is augmented / virtual reality, additive manufac-

turing, robotics, supply chain, or cyber-security.
e Papers that focused specifically on Small or Medium Enterprises.
e Papers not in English.

e Papers not peer-reviewed.

19



e Papers with no methodology included

While this review excludes papers not related to manufacturing, the author includes papers
in the searches that include relevant developments in data analytics or machine learning
that could be applied in manufacturing settings, even if this is not the main topic of the
presented use case. These additional sources are mainly from the reference list of research
papers included in the review. For transparency, topics that include additional sources

outside the primary literature searches are highlighted to the reader.

Records idetnified through Additional Records from
database searches other sources
(n=544) (n=0)

— ——

Total records identified

(n=544)
Duplicates Removed
(n=175)
r
Initial screening
(title and abstract)
(n=539)
Records Excluded
» (n=363)
h 4

Full text articles assessed for
eligibility
(n=176)

Further Records Excluded
»| with reasons

(n=86)

Studies included in qualitative
systematic review
(meta-analysis)

[ Included ] [ Eligibility ] [ Screening ] [Identiﬁecation]

Figure 2.1: A flow diagram outlining the main steps of the literature seraches.

Searching the literature and the Screening Process

The literature search uses three academic databases: Semantic Scholar, Science Direct,

and Scopus. The following search string is used to obtain results from these databases:
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“(("Industry 4.0”7 OR "Industry 47 OR "fourth industrial revolution” OR ”4th industrial
revolution”) AND (Automotive) AND (Manufacturing OR Production)) AND (”Artificial
Intelligence” OR "machine learning” OR ”Deep Learning”)”

The initial search returned 401 records from Science Direct, 110 from Semantic Scholar,
and 33 from Scopus, giving a total of 544 records to be included in the screening process.
After removing duplicates, the title and abstracts of 539 papers were read to determine
their suitability according to our inclusion and exclusion criteria. Three hundred sixty-
three papers were excluded during the initial screening. The remaining 176 papers were
read entirely, and an additional 86 papers were excluded, leaving 90 records to be included
in the final review. To gather some quantitative data for comparisons and visualisations, an
Excel spreadsheet was used to extract data on several fields, including critical topics, types
of data used, data collection methods, machine learning models compared, hyperparameter
tuning methods, evaluation metrics, experiment results, and industrial impact.

In addition to the literature search results, this study also includes some additional sources
to provide further context into specific topics where necessary, i.e., citing the original paper

on network architecture.

2.4 Search results

This section includes a summary of the quantitative results gathered from the data ex-
traction sheet, including: key topics, types of data used, and data collection methods.
Details on common machine learning models, hyperparameter tuning methods, and eval-
uation metrics are discussed in section [2.5] By presenting these results and describing the
machine learning technologies and practices presented in the literature and the primary
data sources, this chapter aims to provide a foundation of knowledge for the thesis to refer
to later in answering the research question. While the data extraction sheet also includes
additional fields such as experimental results, industrial impact, economic appraisal, and
methodology critique, these fields are not reviewed in this section as they are discussed in

detail in the discussion in section 2.5l
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2.4.1 Data Extraction Fields
Key Topics

Figure shows the publication year of each of the papers returned by the searches, as
well as the type of publication, i.e., conference paper or journal article.

The key topics discussed in the reviewed literature include: quality assurance, computer
vision, management, automation strategies, supervised learning, Big Data, predictive main-
tenance (PdM), and Flexible Manufacturing Systems (FMS). A chord diagram in Figure
[2.3] shows how these key topics and others relate. This diagram highlights that one of the
most common research topics in the reviewed literature is using computer vision systems
for anomaly detection/fault detection as part of a quality assurance process in manufac-
turing. Management approaches to Industry 4.0 are also widely discussed, with social
sustainability and workforce digital skills being the most common topic in the Industry
4.0 management literature [67, 39, 48, [68], (69, [47]. Digitisation change management in the

automotive manufacturing sector is also widely discussed [70] [71], [72, [73].
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Figure 2.2: Graphs showing the year of publication of the 90 papers returned by the

searches (left) and a visualisation of the ratio of journal articles to conference papers
(right).

Types of Data and Data Collection

Of the 46 papers that included machine learning experiments, 48% used image data as

inputs, while the remaining 52% of papers used time series such as torque, vibration, or
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Figure 2.3: A pie chart (Top) shows the most common topics discussed in the reviewed
literature. Note that one paper may include multiple key topics. A chord diagram (Bottom)
shows the relationship between these key topics. The bar width between two topics is
proportional to the number of times those topics appear in the same research paper. For
example, papers discussing computer vision also often discuss quality assurance but rarely

discuss unsupervised learning, as indicated by the wide and thin bars.
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audio. Most time series data are uni-variate, with only a few papers exploring multivariate
time series analysis [74], [75], [76], [77, 29]. The most common methods to evaluate time series
data include SVM [78], [79], [80l, 8T, [82], k-NN|78, 80, 81 [76], RF [78, [75, [79, 81l 83, [76],
ANNI78, [79], Auto-Encoders [74, [75], [84]. Given the significant research on computer vi-
sion for industrial quality inspection, some papers used techniques to transform time series
data into 2D representations to exploit the use of CNN to classify the resultant images
[81, 82, 84]. The data collection methods vary significantly depending on the type of data
and machine learning models used. In most machine learning experiments in the reviewed
literature, data are gathered from real-world production settings to demonstrate some proof
of concept in off-line experiments. Many researchers highlight the challenge of collecting or
accessing sufficient labelled anomaly data in industrial settings. In many cases, additional
data are generated synthetically to increase the diversity of the minority class, and address
data imbalance [85], 80}, [87] 84, [88], 89] while others rely on publicly available data [6]. Only
one instance was identified where researchers rely entirely on synthetic data to create both
training and testing data [90]. Proof of concept experiments that require off-line develop-
ment, such as data-driven production management systems or scheduling systems, often use
historical data to train, and test models to avoid impacting production [29, [74] . Alterna-

tively, digital twins can be used to simulate production data for these use cases [64], [91], 092].

2.5 Discussion

In this section, various enabling technologies of machine learning in manufacturing are dis-
cussed, and a critical review of the literature is presented. Fields from the data extraction
sheet referred to in this discussion include experimental results, industrial impact, economic
appraisal, methodology critique, and further details on other extraction fields discussed in
the previous section. Throughout the review, reference is made to the research question,
and the barriers and opportunities to machine learning in automotive manufacturing are

discussed.

Machine Learning Approaches in Manufacturing

Table [2.1] lists all papers in the reviewed literature for which machine learning experiments

are conducted to provide an overview of how different machine learning methods are ap-
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plied across various manufacturing use cases. This table also summarises any critiques

of

these research papers which are expanded upon further in the discussion in section [2.5

Table 2.1: A list of all papers in the reviewed literature for which machine learning ex-

periments are conducted, as well as an overview of the research topic and any critiques

identified by the author.

Ref” Description Critique Manufacutring Data Analysis
Use Case Methods
193] Real time analysis of RFID production data Little information is given about the origins of the Big Data, Unsu- K-means, gradi-
using a combination of unsupervised clustering datasets, or the targeted end use of the proposed unsu- pervised ent decent
and gradient decent. pervised clustering workflow. It’s not clear how manufac-
turers might apply this technology to add value.

94] Aim to develop a zero defect manufacturing Very small sample size for supervised training and testing Computer Vi- ANN, PCA,

solution to identify defects in rubber parts. datasets. sion, Quality Physics based
Assurance methods

185] GAN used to create synthetic images of dis- Evaluation metrics not discussed. Computer Vi- YOLOv4-Tiny,
continuity and blob defects in an adhesive ap- sion, Fault GAN
plication process and improve the performance Detection, Su-
of a computer vision system for quality assur- pervised

86] %ril(:igpaper expands on the same use case as This article goes into further detail on training approach, Computer Vi- YOLOv4-Tiny,
[85], showing how including GAN generated although details still missing on the testing and validation sion, Fault GAN
images in a training dataset can increase per- datasets used. Detection, Su-
formance. pervised

[95] Proof of concept using computer vision tech- Not compared with supervised approaches it aims to re- Computer Vi- Domain- Ad-
niques and point cloud detection to develop an place. Not clear that the proposed approach achieves bet- sion, Quality versarial Neu-
unsupervised approach for image based qual- ter accuracy, or saves time. Assurance ral Network
ity assurance. (DANN).

[96] Vision based classification models to deter- Limited information on data labelling methodology, such Computer Vi- CNN (AlexNet,
mine suitability of damaged automotive com- as time taken and required personnel. sion, Quality CaffeNet),
ponents for remanufacturing. Assurance, Cir- GMM, key

cular Economy point-based

190] Aims to categorise the suitability of automo- Tested using synthetic data and needs to be validated in Computer Vi- CNN
tive frames for remanufacturing. Training and real-world scenarios. Not clear how well the accuracies sion, Quality
testing dataset was created using CAD data. found in this study will translate to real world. Some Assurance, Cir-

similarity with [95] that should be considered in future cular Economy
research.

189] Evaluates three object detection approaches Clear detailed methodology on training / validation / Computer Vi- YOLO, PANet,
and their performance in detecting workpieces testing / optimisation approach. Only two types of fail- sion, Quality CSPResNeXt50,
and ability to recognise failure situations. ures are simulated. Not clear how this will perform in real Assurance, Fault

world scenarios, particularly where unknown errors might Detection
occur. No consideration of the economic benefits / cost

benefit analysis of this project. No consideration of the

required skills to implement this solution nor time taken

to gather and label data.

(8)d | Computer vision system to defect defects in The paper presents an accuracy of 92%, however, they Computer Vi- Bespoke Defect
automotive break components using a bespoke do not account for the high dataset imbalance. F-score sion, Quality Detection Algo-
algorithm based on a sliding window approach. would have been a more appropriate evaluation metric. Assurance, Fault rithm, Sliding

It’s also unclear if the small sample used to demonstrate Detection ‘Window
the method is representative of the anomaly actual dis-

tribution of the manufactured parts. No detail in the

exact methods used to calculate the anomaly threshold

value. Don’t compare their bespoke algorithm with cur-

rent state-of-the-art approaches i.e. CNN.

98] Supervised learning approach to inspect qual- Good example of how synthetic data can be used to im- Computer Vi- CNN
ity of soldering of electronic components. Aug- prove performance. sion, Quality
mented or simulated data used to overcome Assurance, Fault
data imbalance. Detection

87] Semantic segmentation is used to identify de- Very small sample of defective parts for cylinder head in- Computer Vi- VGG, GAN
fects in images of a canyoner head manufac- spection (10 images). Defects were created synthetically sion, Quality
turing. using scrap parts. The paper seems to use GAN to gener- Assurance, FMS,

ate a further 16000 images for training and testing. How- Process Control,
ever, the exact method of testing and evaluation is un- Supervised
clear, with no results included in the final F-score of the

proposed method.

199] Deep learning approach to identify manufac- Good details of how datasets were built and good overview Computer Vi- Faster R-CNN
turing defects in gears based on photos taken on the industrial impact of the solution. However, only sion, Quality
at multiple angles. use a single model to detect one type of defect. Assurance, Su-

pervised
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[105]

supervised computer vision system to ensure
quality of informative labels on automotive
parts in final assembly.

An iPad app is developed to document images
of vehicles at the end of the line into a total
of 100 categories. The author states that the
main contribution of this paper is the creation
of an automotive dataset, that allows users to
learn and automatically recognize different ve-

hicle properties.
The paper aimed to demonstrate that hand-

crafted features in DL lead to improvements in
performance when analysing fracture surfaces
for root cause analysis of industrial processes
i.e. tools, parts.

Quality assurance of bodywork painting using
spectrometers.

Quality assurance of wiring harness connector
assembly in automotive manufacturing using

ultrasonic microphone.

Statistical process control and process moni-
toring in flexible machining processes to in-

crease part quality and reduce scrap.

Supervised classification task trained on eight
separate torque testing processes to identify in
process faults on highly imbalanced data.

Anomaly detection in discrete manufacturing
using self-learning.

Supervised fault detection on time series data
in elective drive systems. Data is collected
from a real world system for which various

faulty components can be installed.

A novel approach to analyse vibration data
from a doser pump system to develop a pre-

dictive maintenance solution.

Anomaly detection on refiguration units using

low cost directional microphone arrays.
Process monitoring of installing connectors

in automotive assembly. Uses data collected

from gloves with embedded sensors.

16 data warehouses from various companies
are used to train machine learning models to
demonstrate data driven decisions related to
Stock-Keeping Units profiling, inventory pro-
filing, workload profiling, layout profiling.

Propose a method to predict production
progress for IoT factory environments and
support in identifying when production plans

are executed incorrectly.

A 1D CNN used to predict the quality of an

assembly screwing process.

Good example of a human centric approach to ML imple-
mentation where the was to assist operators, not replace
them. However, lacks technical information. Methods for
labelling data not discussed. No details on model optimi-

sation.
The purpose of the visual inspection is not discussed with

no end goal. No details on how training data was obtained
/ no methodology for the training data. Given that one
of the main contributions of this paper was the dataset,
without a clear methodology describing how it was built

the quality of this data is in question.

The benchmark selected for this study used databases
have small samples with only 81 and 108 images per class.
The authors

note the lack of large datasets for texture and fracture

These datasets are too small to be reliable.

use cases. The results for the second experiment are more
reliable given the increased dataset size and rigorous qual-

ity assurance processes. However, only explored one CNN

VGQG).
Lack of methodology throughout. Not clear what evalu-
ation metrics used. Little information provided on how

training and testing data was gathered and validated.
While the method was demonstrated to work with high

degree of success in lab settings, when tested in real world
scenarios there were no instances of failures to validate
these findings. Further work required with a larger testing
sample that includes anomalies to fully demonstrate the

accuracy of this method.
‘While no comparison with state-of-the-art ML techniques,

this is one of the few papers that successfully applies the
proposed solution in a real world setting.

Good overview of dealing with imbalanced data, however,
no information on how the anomaly threshold limits are
determined. This would make these approaches difficult

to replicate. No economic appraisal.
The paper presents an unsupervised method but provides

little detail on how the test datasets were developed. Test

datasets were not validated by domain experts.
No cost benefit analysis. Not clear how this system will

perform at identifying unforeseen failures. Some detail of
engineering requirements to develop this solution beyond
that considered by most other works, although further de-
tail on specific requirements would be useful i.e. time,

human resources, capital, software, data preparation, etc.
No consideration of the economic impact of this solution.

Only explored 1 method: GMM unsupervised clustering.
No testing data is used to assess the accuracy of the model
and it’s effectives to identify process failures is not dis-

cussed.
Unclear how the anomaly data was generated for the test-

ing dataset.
Experiments conducted in lab environment based on a

rough estimate of the failure distribution, as actual dis-
tribution not known. No methods of how models are opti-

mised. No details on time taken to collect and label data.
Good comparison of big data analytics models for vertical

and horizontal integration of manufacturing data sources.

‘While the data set is very large, this method has only been
tested in 1 real world scenario. Little detail was included
on the manufacturing site in which this was implemented.
It would be interesting to compare this across multiple
locations, particularly those with FMS. Without a good
understanding of the manufacturing process and the flex-
ibility of production and how these data are collected, it’s

makes this method difficult to replicate.
Limited information provided on how the data was la-

belled / gathered and how he quality of this data was
validated.
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RUL prediction on conveyor chains at an en-
gine assembly line for maintenance strategy
identification and maintenance planning.

Quality diagnostics approach for milling com-
posite honeycomb cores. Two fault modes are

considered: tears and uncut fibres.

Proposes a conditional variational autoen-
coder to determine machine degradation. Un-
supervised method is applied to two datasets:
NASA Turbofan, and FMS production data.

Unsupervised clustering approach for PdM on

a waterjet cutting process.

Reinforcement learning for statistical process

control for a manufacturing production line.

Authors work closely with domain experts to
develop an unsupervised, hierarchical cluster-
ing approach to detect throughput bottlenecks

on a automotive CNC machining line.
Data on wiring harness manufacturing pro-

cesses is used to predict key performance indi-
cators using multiple ML models to allow man-
agers to proactively address production issues.

A test bench of a permanent magnet syn-
chronous motor was used to collect 139 hours
of multivariate time series data across a range
of operating parameters. A range of machine
learning models are trained to predict the tem-
perature of the magnets inside motors and
compare results with predictions made using
thermodynamic calculations. Ml models gave

similar results.

No information included on how failure data are collected,
how many types of faults are analysed, and how these data
This lack of
information would make the solution difficult to replicate

are used to set the failure threshold limits.

in practice.
No detail given on the amount of time taken to label data

or other challenges of data acquisition. Training and test-
ing data sizes not give, only percentages. Not clear on the

imbalance of the testing datasets.
This method requires unsupervised training data with a

low number of failure events and therefore relies on the
failure rates and distributions of historic unlabelled data
being well understood. This presents a challenge in in-
dustrial use cases where long term failure data are often

difficult to access.
Good study with a range of methods compared and evalu-

ated using visual inspection. Industrial impact of solution

not discussed.

‘While this is a good overview of the technical barri-
ers, the results were tested and validated using synthetic
data. Further work required to understand the additional
strategic, organisational and cultural barriers to imple-
ment this. Initial iterations of complex machine learning
models like this have the possibility to significantly im-
pact production in early stages of implementation. Care-
ful economic appraisal of the long term ROI of needs to

be better understood.
A good example of an unsupervised application using real

world data with good description of the challenges this

data presents.

The problem definition is also not well defined an it’s not
clear how the proposed prediction model can support root
cause analysis. While the proposed ML methods do accu-
rately predict OEE, It’s to clear how this method improves
on traditional methods of measuring cycle time distribu-
tions of specific processes and setting alerts if these pro-
cesses exceed some limit. Given the fact that this data is
normally distributed, it seems more simplistic statistical
techniques would be easier to implement, even basic Six

Sigma DMAIC technotes.
The author notes that this was a limited study on 1 type

of motor. Further work required to explore the transfer-
ability of this approach.

PdM, RUL

PdM, Supervised
PdM, Unsuper-
vised

PdM, Unsu-
pervised, Fault
Detection

Process Control

Simulation /
Digital Twin,
Unsupervised
Clustering
Supervised

Supervised

LSTM, ARIMA,
Halt-Winter

KNN, DT, SVM

AE (CVAE)

PCA, MLHL,
CMLHL, CMDS,
SM, FA, k-
means, agglom-

erative clustering
RL, transfer

learning

Hierarchical

SVR, RF, XGB,
DL

KNN, RF, SVR,
ET, LPTN (ther-

mal model),
RNN, MLP,
OLS, CNN

The reviewed literature discusses five main types of machine learning: Supervised,

Unsupervised, Semi-supervised, Reinforcement learning, and Transfer learning. Only two

papers in the reviewed literature include details on these learning approaches; even in these

cases, information is limited. For further information on these machine learning settings,

the reader is referred to section .1.1 of the appendix where these topics are described in
detail.

In supervised learning settings, the most common machine learning approaches in the

reviewed literature is the Convolutional Neural Network (CNN) due to its wide use in
computer vision for quality inspection [94] 96| 89, 07, T08, 08, [100], 85, 109]. Other popu-
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lar machine learning algorithms include Support-Vector Machine (SVM), Random Forest
(RF), Artificial Neural Networks (ANN), Auto-Encoders (AE).

The most common unsupervised learning approaches in the reviewed literature apply di-
mensional reduction approaches such as PCA and t-SNE to transform higher dimensional
data into 2D or 3D feature space, followed by cluster analysis techniques such as k-means to
identify outliers in the reduced feature space [30, [64], [103]. Many researchers highlight that
unsupervised methods lend themselves to anomaly detection in as they enable a system’s
normal behavior to be learned, and any deviations from the norm can be assumed to be
anomalies [30], [63, [75]. However, in real-world settings, some labelled data are still required
to validate and test the accuracy of any trained model against some known ground truth
[30].

Reinforcement learning has been a key technology in the automotive industry over the past
few decades as it has been an enabling factor in autonomous driving; however, applica-
tions of reinforcement learning in manufacturing and production environments are limited
[30]. Only four papers are identified in the reviewed literature exploring reinforcement
learning solutions in manufacturing [83], 9] B0 1T0]. Mathematical details of the common
machine learning models outlined above can be found in section .1.1 of the appendix, as
well as details on the evaluation metrics and optimisation approaches presented in the
reviewed literature. Reinforcement learning approaches require commitment by many par-
ties to develop complex and robust reward functions relevant to the target domain [91].
Viharos et al. discuss the complexity of setting up these models, which requires an in-
depth understanding of failure distributions of relevant processes and careful tuning of
reward functions in initial model setup [91]. Despite these challenges, Theissler 2021 high-
lights reinforcement learning as a promising opportunity in PAM applications due to the
minimal labelled data requirements compared to supervised and unsupervised approaches
[30]. Gankin et al. and Viharos et al. demonstrate how reinforcement learning can be
used to optimise production scheduling digital twin environments [91] [1T0]. However, no
research in the reviewed literature discusses the use of reinforcement learning in real-world
production settings. The author suggests future research explore frameworks to implement
these systems in real-world production environments. Further research is also required to
understand the additional strategic and cultural barriers to the users’ trust in the system’s
ability and how best to define reward functions.

Regression is a supervised setting which aims to understand the relationships between de-

pendent and independent variables of continuous data to predict future observations based
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on these trends. Examples of regression in the reviewed literature include prediction of
jobs remaining [29], predicting due-date of wafer fabrication [29], Remaining Useful Life
(RUL) prediction of a cutting tool [64] and RUL of conveyor chains [106]. However, some
of these papers lack sufficient description of the methods used to develop the training and
testing datasets. For example, when using autoregressive models to predict RUL of con-
veyor chains, Einabadi 2022 include no information on how failure data are collected, how
many types of faults are analysed, and how these data are used to set the failure threshold
limits. This lack of information would make the solution difficult to replicate in practice.
[106]

In their 2021 literature review, Viharos et al. find that autoregression, linear regression,
and quasi-linear autoregressive models are the most popular approaches for statistical pro-
cess control. However, this finding is based on only two cited examples [91]. The only
significant example of regression used in manufacturing settings in the reviewed literature
is by Hassani et al., in which the Support Vector Regression model was used to predict
Overall Equipment Effectiveness (OEE) [83]. However, in this paper, the problem defini-
tion is not well defined, and it is unclear how the proposed prediction model can support
root cause analysis and identify the actual problem [29]. While the proposed ML methods
accurately predict OEE, it is unclear how this method improves on traditional methods of
measuring cycle time distributions and setting alerts if these processes exceed some limit.
Furthermore, there is a lack of detail on the data acquisition methods, the distributions of
the quality and performance data, and how the extracted features of the data were used
to make the final predictions.

Research by Theissler et al. finds a large number of research on regression in a range of
PdM settings [30]. The notable difference between the two papers is that the vast majority
of research into predictive maintenance relies on historical data to train models rather than
synthetic data generated from Digital Twins [30]. van Dinter et al. highlight that Digital
Twins are costly to develop and require expert domain knowledge to extract the required
data. The author also argues that synthetic data’s trustability will likely impact its use in
real-world PdM cases.

Limited applications of regression models were identified within the scope of this review and
therefore are not discussed at further length. However, regression is a valuable tool for man-
ufacturing applications for which there is considerable research. The author refers readers
to the following papers where various examples of regression are presented [111], 112, [113].

Further research should explore the use of regression models in the automotive industry.
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In the reviewed literature, Generative Adversarial Networks (GAN) are often used to over-
come a lack of high-quality labelled data by generating new synthetic data to expand ex-
isting datasets [85], [86), 87, 84, 0] [88]. This is particularly true for fault detection/anomaly
detection problems where datasets are highly imbalanced due to limited availability of la-
belled failure instances [85], [86, 87, [84]. Peres et al. present a good use case where GAN are
used to create synthetic images of discontinuity and blob defects in an adhesive application
process |86, [85]. This data was then used to train a YOLO network to achieve accuracies
of up to 93% for the two fault types [86] 85]. Including an additional 4000 synthetic image
data on top of the 88 real training dataset improved the performance of the anomaly de-
tection system significantly when compared to using only synthetic data or only real data
[86), 85]. The research shows that GAN should not be used to create entire training and
testing datasets, but rather as a means of enriching and expanding existing high-quality
labelled datasets by generating additional images to increase the diversity of the training
data further [86, 85].

Mazzetti et al. discuss how in addition to generating synthetic data, GANs can also be used
as a means of anomaly detection for image data [87]. The proposed method first involves
training a GAN network using images of non-defective parts to generate additional images
of parts with no surface defects [87]. A new unlabelled image is then given as the real
sample for the pre-trained network to compare with the generated normal sample. Calcu-
lating the difference between the images by measuring the residual loss in the image space
allows users to create a heat map using the residual image to identify specific regions in the
new image of possible anomalous regions. While Mazzetti et al. present a good theoretical
description of this method, its application in the two case studies lacks key information
on the methods used to label the normal training data [87]. Furthermore, no anomalous
test data was included to evaluate the model’s performance, and no quantitative results
are included in the paper.

Hatanaka et al. present a similar GAN-based anomaly detection used to identify potential
faults in refrigeration systems by training only on normal audio data transformed into
a 2D spectrogram [84]. While this paper does include quantitative results to compare
anomaly detection performance with other image-based anomaly detection methods, this
paper lacks detail on how the testing data was gathered or produced [84]. The paper states
in the introduction that no failure records are available for the refrigeration system and yet
includes 275 "abnormal” images in the testing data without any detail on how this anoma-

lous testing data was gathered or generated [84]. Based on these works, future research
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directions should consider testing GAN in anomaly detection settings using high-quality
training and testing data representative of real-world industrial data.

Another notable finding in GAN research is the contrasting nomenclature used by re-
searchers. Both Mazzetti et al. and Hatanaka et al. present GANs as unsupervised
approaches despite relying on large amounts of high-quality training data, with up to
16000 normal images used to train Mazzetti et al.’s discriminator [87, [84]. In contrast,
Peres et al present GAN as a semi-supervised approach due to these training requirements
[86]. The original paper in which GAN networks are first proposed does not address which
category the network falls under [114]. However, the paper highlights its suitability for
semi-supervised settings in suggestions for future works [I14]. Given the growing popular-
ity of these training approaches to overcome data imbalance in developing quality assurance
systems, the author argues that establishing a clear definition for this is not a trivial mat-
ter to ensure training and testing best practices are well defined for each of the various
approaches. The author finds that in the context of anomaly detection described above,
GANSs fall under the description of a semi-supervised, or clean-semi-supervised approach
as outlined in section [ 1.1} Future research in this field should consider best practices on

implementing semi-supervised solutions outlined in [IT5].

2.5.1 Enabling Technologies of Machine Learning in Manufac-

turing

The reviewed literature discusses various applications of machine learning solutions, in-
cluding Visual Inspection, social media analytics, autonomous driving, advanced robotics,
process control, predictive maintenance and scheduling, prescriptive analytics, anomaly
detection, supply chain optimisation [27, 28]. Developing machine learning solutions such
as these requires people with advanced data analytics skill sets to analyze large volumes
of integrated data that are easily accessible through networked infrastructures. Due to
the complexity of developing and implementing these solutions, this requires high lev-
els of collaboration between technical experts and domain experts supported by effective
digital communication channels [I07, 116]. To provide these high levels of data collec-
tion, data integration, data accessibility, and other ICT infrastructures, various enabling
technologies of Industry 4.0 are discussed in the literature, including IoT, Big Data ana-
lytics, Flexible Manufacturing Systems, Digital Twin, Cloud, and Edge computing. Many

machine learning solutions mentioned above can be implemented at the functional level
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without the widespread adoption of these technologies. However, as companies reach high
maturity levels in these enabling technologies, the opportunities for value creation using
machine learning increase significantly as new enterprise-level opportunities are created to
deliver business intelligence [12]. In this subsection, the author refers to various additional
references as few papers returned from the literature search included details on IoT infras-

tructures and challenges in manufacturing environments.

The Industrial Internet of Things

The Internet of Things (IoT) describes the latest evolution of the conventional Internet,
where World Wide Web (Web) technologies are becoming integrated into everyday ap-
pliances, devices, and services. The Web and the internet are two different technologies.
The Internet is a global computer network infrastructure with a wide range of information
resources and services. The Web is one of these services and currently the main internet
platform, providing browsing capability through technologies such as Hypertext Markup
Language (HTML), Uniform Resource Locator (URL), and Hypertext Transfer Protocol
(HTTP) [62]. The IoT expands the capabilities of Web-based protocols by enabling in-
ternet presence for a wide range of devices, appliances, places, people, and other 'things’
[62]. This bridge between the physical world and the Web is referred to as the Physical
Web, which represents a new way that consumers and businesses can use the internet to
access, monitor, and control the world around them and the connected things within it
[62]. IoT products enable real-time data collection, which companies can use to understand
consumer behavior better and offer added value through data-driven services that are fully
integrated with the customer [12].

[oT is one of the key elements driving digital transformation around the world. While IoT
technologies can be found almost everywhere in modern society, they generally fall under
two main categories: The Internet of Things (IoT), and The Industrial Internet of Things
(IToT). IIoT is the adoption of IoT within industrial and manufacturing applications with
an emphasis on improving the connectivity and integration of machines and real-time data
collection and utilisation. The data collected through the end-to-end integration of IIoT
throughout the manufacturing process and in-service use is a key enabler of machine learn-
ing and other data driven manufacturing solutions such as business intelligence, Big Data
analytics, cloud computing, edge computing, and flexible production systems [34], 117].

The main barrier to developing and integrating IoT technologies is the limited research
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on safety and security, and the associated challenges of confidentiality and data protection
[118, 119]. From a cybersecurity perspective, the IoT architecture consists of 4 layers:
the sensing layer, network layer, middle-ware layer and the application layer [120]. While
each layer has its own vulnerabilities and associated attacks, most of the discussion in the
available literature surrounds those associated with the network layer. IoT-based applica-
tions are particularly vulnerable at the network layer as communication is often wireless.
The network layer uses technologies such as Wi-Fi, Bluetooth, 4G to allow data trans-
mission and routing between IoT devices over Internet and mobile networks [120]. Radio
Frequency Identification tags (RFID) are another common networking technology used in
manufacturing that provides a read-write capability to record and track the birth history of
a product through the assembly process. These open network gateways are susceptible to a
range of both passive and active attacks, including man-in-the-middle and denial-of-service
attacks [119, 120, 121]. The network layer is especially vulnerable to man-in-the-middle
attacks, which describe a range of ways a poorly secured network transmission can be
intercepted and decrypted [120]. Eavesdropping is a man-in-the-middle attack, otherwise
known as spoofing, that takes advantage of unsecured networks, allowing data transmis-
sion to be intercepted and stolen [121]. Advanced protocols, software, and hardware can
be implemented in devices to detect network security threats and keep devices secure, such
as HT'TPS or Secure Shell. However, the more devices integrated within the same network
increases the risk of attack [120]. For further details on these vulnerabilities and attack
vectors, the author refers the reader to Lu 2018 and Roberts 2006 [120] 121].

It is agreed among the reviewed literature that there needs to be more focus by both
industry and academia on the issues surrounding cyber security in [oT systems. In man-
ufacturing, this requires increased collaboration between IT, manufacturing production,
and innovation teams to ensure IoT manufacturing solutions consider the legal, security,
and network infrastructure requirements during the early stages of pilot projects involving
IIoT.

Big Data Analytics

The term 'Big Data’ originated from Silicon Graphics Inc. in the mid-1990s, although
it was only at the turn of the 21st century that significant academic references began to
emerge [122]. Distributed Smart Systems and the Internet of Things were becoming in-
creasingly widespread, and the digitisation of systems, services, and processes resulted in

vast amounts of data being generated daily. Existing computing and service modes were
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struggling to meet the high demands for network bandwidth, response speed, and data
storage, driving the development of cloud computing and data center networking, key en-
abling technologies of Big Data analytics [123].

In an increasingly digital world, data generation continues to be produced from various
sources at unprecedented rates. Every website, digital system, process, sensor, and con-
nected device produces data that, if analysed correctly, can be used to generate tremendous
value for businesses. However, these huge volumes of data are often presented in semi-
structured or completely unstructured formats making traditional data analysis techniques
inefficient. Over the past decade, powerful new technologies and advanced algorithms have
been developed to deal with the complexity of modern Big Data sets. Following huge
amounts of academic and business interest, it was not long before Big Data became its
own field of study.

Big Data refers to a broad field of interdisciplinary study and has no single definition due to
its widespread usage. Different industries use different data sets, each of which will require
very different analysis methods, for example, tabular data versus image data. Applications
range from social media analytics to government monitoring to medical diagnosis, each of
which will have its perspective on Big Data [124]. The product-oriented, process-oriented,
cognition-oriented, and social-oriented perspectives will consider different features of their
data, as well as the respective methods of analysis [52]. Furthermore, in terms of capacity,
what may be considered ’big’ by one industry may not be by others, and as technology
progresses, the same data may not meet the threshold for Big Data in the future. While
definitions vary between industries, most data scientists and experts describe Big Data by
referring to 'the 3 V’s”: volume, velocity, and variety [125], 52 [126].

Big Data sets are typically in the range of tens of terabytes to multiple petabytes [127, 128].
The volume of data continues to increase at rates faster than current tools can process [129].
A common challenge of machine learning applications in the automotive industry is the
storage and processing of large volumes of data and the associated challenges of dealing
with unstructured Big Data [2§].

Velocity measures the speed at which data is generated, streamed, pre-processed, and
processed [130]. Depending on the data velocity, there are different processing methods:
batch, near-time, real-time, and stream [52]. Some Big Data applications have strict time
requirements, such as social media or weather forecasting, and require real-time or stream
processing. High throughput batch-oriented processing of Big Data sets is not suitable for

online processing demands as it may take several hours or days to process [131]. However,
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batch processing provides an efficient way to analyze higher volumes of data collected over
a time period [132]. This makes batch processing superior for applications such as training
predictive models. A hybrid approach is often used to benefit from real-time and batch
processing advantages. Data velocity management is much more than just a bandwidth
issue, it is also an ingest issue relying on Extract, Transform, Load (ETL) processes to
gather, organise and centralize data [130].

Data is generated from various sources and formats, such as images, text, audio, sensor
signals, graph, logs, and many more. Big Data sets are often made up of incompatible data
formats that may be structured, semi-structured or unstructured, public or private, com-
plete or incomplete, etc. Structured data includes spreadsheets, relational databases, and
others with fixed fields. Semi-structured data is harder to define and loosely describes data
that is neither raw data nor strictly laid out in fixed fields [133]. Tags or other markers give
semi-structured data some order, capturing some elements of the data such as Extensible
Mark-up Language (XML) or Hyper Text Mark-up Language (HTML) [134]. Unstructured
data sets such as raw sensor data or interactions of consumers on social media have no
fixed fields or format. From an analytic perspective, unstructured data in various formats
with non-aligned data structures or inconsistent data semantics pose a significant challenge
to effectively using large volumes of data [134] [130].

While the 3 V’s are often described slightly differently in the context of different industries,
they are widely used to define Big Data. Some scholars and businesses extend this definition
to include dimensions such as variability, value, veracity, and complexity [129] 130} 135].
With the 3 V’s already well established, these additions are usually discussed separately,
used to highlight the importance of other characteristics and properties inherent in Big
Data that are more difficult to quantify.

The variability of Big Data combines both velocity and variety and is used to describe
the constantly changing structure, meaning, and/or flow rate of incoming data [129] [130].
Analysing and predicting these changes has become increasingly important with the in-
creased use of social media, the internet, and connected devices [124] 130]. Given that these
systems are highly anthropocentric, the variety and velocity of data vary significantly with
human behavior. For example, certain events may cause a sudden increase or decrease
in social media usage, similar to how energy usage across the national power grid varies
throughout the day as people go about their activities. Variability adds further variety to
Big Data, providing unexpected, valuable information hidden within the data.

Veracity in the context of Big Data refers to its quality, particularly its uncertainty and
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unreliability. Before the Big Data revolution and Industry 4.0, data in the scientific and
academic community was often assumed to be clean and precise, a view also found in tradi-
tional data warehouses [136]. In modern Big Data projects, cleaning up the data can make
up to 80% of an analytics project [I37]. Uncertainty is often inherent in unstructured Big
Data sets due to incompleteness, ambiguity, variety, and latency and the approximations
of the techniques used to analyze it [134] [52]. These factors all reduce the veracity of data
which in turn can significantly reduce the predictability of the data. This aspect is critical
for applications such as epidemiology, medicine, and healthcare [I138, 139]. In terms of the
results of the outcome of Big Data analytics, many scholars and data scientists agree that
veracity is becoming, if not already, the most important of the many 'V’s’ presented in the
literature [136, 137, 140], 141].

The value of Big Data lies in the ability to analyze and extract useful business information
and varies greatly depending on the application. The potential of analytics to generate
value for automotive manufactures lies in areas such as: customer behavior analytics, mar-
keting spend management, global supply chain management, and predictive analytics.
Complexity is inherent in unstructured Big Data due to the variety and variability of data
[52, 142). Identifying, linking and transforming relevant data between different systems
and sources poses a huge challenge for practitioners [125]. To deal with this complexity,
advanced data analysis techniques, such as neural networks are often required [125]. As
well as requiring high levels of skills in data science disciplines, the development and imple-
mentation of such techniques also requires high computational costs and complexity that
can be difficult to integrate into existing systems.

Expanding the common 3 V’s definition to include these essential features provides a much
clearer insight into the challenges and opportunities presented by Big Data. While a for-
mal definition is yet to be agreed upon, based on these characteristics that are by far the
most widely discussed in the literature the following definition coined by De Mauro et al
seems most appropriate: ”Big Data is the Information asset characterised by such a High
Volume, Velocity, and Variety to require specific Technology and Analytical Methods for
its transformation into Value” [143].

Data usage and Big Data analytics feature heavily in the Industry 4.0 discussion and the
available literature presents many opportunities for many industries and organisations to
increase productivity, reduce waste and reduce costs. These benefits are often discussed
regarding the new innovative business models that Big Data and other Industry 4.0 con-

cepts are enabled. These business models include "The Sharing Economy, 'On-Demand
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Services’” and many circular economy models presented in the ReSOLVE framework by
The Ellen MacArthur Foundation, which has been gaining much attention recently years
[52, 53, 54]. These models focus heavily on collaboration and identify Big Data as a major
enabling technology. Several external uncertainties can have adverse effects on manufac-
turers, many of which are difficult to identify without appropriate predictive analytics
and control strategies [57]. Examples include unpredictable raw material quantity, qual-
ity, availability variations, and constantly changing market trends and consumer behavior.
Customer behavior analytics presents a significant opportunity for automotive manufac-
turers to improve their understanding of the potential value of different customer segments
through analysing external data sources such as social media and internal sources [58].
This knowledge can be used to strategically target new customers as well as improve cus-
tomer experience and ensure the loyalty of existing customers [58]. Big Data analytics of
consumer data also plays a major role in improving manufacturing processes’ agility and
flexibility, allowing production and procurement to adapt to changing markets. By gather-
ing and analysing real-time data from an automaker’s fleet and warranty data, cloud-based
Big Data processing will enable new after-market services for customers. Examples include
predictive and preventative maintenance of products, various infotainment services, and
self-driving support services such as autopilot and collision prevention that are already
found in many modern vehicles [59].

Big Data is still an emerging technology requiring significant research and development.
The literature presents a multitude of barriers to the full realisation of Big Data bene-
fits across all applications. These barriers generally fall under two categories: internal
technological constraints and cultural barriers. The Big Data life cycle consists of data
generation, storage, and processing, each of which faces significant technological challenges
[144), 145]. As the volume and velocity of Big Data continue to increase, high demands are
placed on networks, and servers [135]. Cloud computing is often used to outsource data
storage and processing to avoid new data management systems’ capital and organisational
expenditure [I45]. Not only does this lead to numerous privacy and security issues but as
data generation increases in the order of exabytes, current daily networks cannot handle
data sets of this scale. A 2018 report by IBM revealed that while 80% of senior technology
executives recognised the competitive advantage of IT infrastructures, less than 10% of
organisations said that their existing infrastructures were able to meet the demands of Big
Data, cloud computing, social media, and mobile technology [146].

To industries yet to fully embrace Big Data, these technological challenges may seem of
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little concern at the early stage of development. However, this highlights the additional cul-
tural barriers to the implementation of Big Data analytics discussed across the literature.
These cultural barriers are widely considered a greater challenge than those of a technical
nature. Organisational culture is defined as ”"The visible and less visible norms, values
and behaviour that are shared by a group of employees which shape the group’s sense of
what is acceptable and valid.” [147]. In many industries, adopting Big Data represents a
significant change to current organisational culture requiring new managerial approaches
and structures. As organisations rely increasingly on data to drive business decisions, it is
crucial that this information is made available in an accurate, complete, and timely man-
ner to ensure business intelligence and productivity improvements [I35]. This will require
companies to share data in a standardised manner with other businesses, and government
agencies outside of their organisational boundaries [I2]. This level of external collaboration

is an important part of the Industry 4.0 strategy.

Flexible manufacturing Systems

The concept of a high volume, high variability manufacturing production environment has
existed since Industry 3.0. Recent developments in Industry 4.0 technologies such as [oT,
Cloud computing, machine learning, and digital twin, have resulted in these systems be-
coming increasingly widespread in industrial settings [27]. During industry 4.0, flexible
automation emerged as an extension of programmable automation where reprogramming
is done off-line, resulting in no downtime during reconfiguration [87]. By combining the
above technologies in manufacturing environments through lean management practices, a
new type of assembly line emerged known as the Flexible Manufacturing Systems (FMS).
In a typical FMS, workstations are arranged more freely on-site in a modular arrange-
ment, with AGVs automatically routing products to the required workstation. Tracking
technologies such as RFID enable individual processes to be controlled by an automated
production system to select the appropriate production process for the incoming part. This
highly automated data-driven process allows production to be tailored to meet fluctuating
consumer demand of multiple product families and deliver highly customizable product
variants. As well as reacting quickly to market changes, FMS can react quickly to changes
in the local manufacturing environment, such as processing changes, material changes, or
new product variants [87]. FMS results in less space, reduced operational headcount, im-
proved inventory management, reduced lead times, and reduced manufacturing costs [27].

The concept of a fully integrated factory with ubiquitous integration of Industry 4.0 tech-
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nologies throughout the entire business is widely referred to as a 'Smart Factory’, although
other terms such as 'Intelligent Factory’, "Intelligent manufacturing’, "Ubiquitous Factory’
or 'Real-Time Factory’ are also used. Research finds that organisations investing in Smart
Factory projects report increases of up to 12% manufacturing production, factory utilisa-
tion, and labor productivity [27]. Despite the numerous benefits of FMS presented in the
literature, there are several challenges in developing, implementing, and maintaining these
systems. FMS requires high initial investment both in physical assets and personnel with
the required automation and digitisation skills to deal with the high complexity of these
systems [27].

Researchers present novel machine learning approaches to support automation in FMS in
the reviewed literature. Huang et al. propose a system to support production managers
through a machine learning-based system to predict production progress for IoT factory
environments [29]. A two-layer transfer learning approach using a combination of Deep
Auto encoders and Deep Belief Network (DAE-DBN-TL) is trained on historical data using
a bootstrap sampling approach. The proposed method was tested using real-world histor-
ical data over 15 orders with 1118 features. The experiment finds that the DAE-DBN-TL
method achieves high performance (RQ > 87%) in predicting production progress based
on historical production data. The author argues that as well as monitoring and analysing
production progress, this model can also identify instances where production plans are ex-
ecuted incorrectly and support root cause analysis of these abnormalities. While the data
set used in this study is very large, this method has only been tested in one real-world sce-
nario. Little detail was included on the manufacturing site in which this was implemented.
By comparing the DAE-DBN-TL across multiple locations and understanding its appli-
cability in FMS environments, it is easier to determine the validity of these results [29].
Future research should further examine the human-centric implementation of production
process prediction systems in FMS and consider the effects on the workplace experience of

production managers.

Horizontal, Vertical and End-to-End Integration

Horizontal and vertical integration are terms that already have a variety of meanings in IT,
marketing, and business applications. In the machine learning and Industry 4.0 literature,
end-to-end integration is widely discussed as a key requirement of flexible manufacturing

environments [148], [149)].
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External collaboration is an important part of the industry 4.0 strategy and is often dis-
cussed in terms of the horizontal integration of a company’s value networks. By cooper-
ating with suppliers and other organisations by exchanging real-time information, data,
and resources, companies can drive innovation and growth while mitigating risks [148].
This external collaboration also extends to customers through technologies such as IoT
and other smart devices that offer real-time data transfer throughout the value network
allowing companies to react quickly to changes in the market and customised production.
Moreover, connected devices can provide a foundation on which new service-orientated
business models can be developed to deliver added value to customers [14§].

The integration between ICT systems within an organisation is called vertical integration.
This considers information exchange throughout all functional layers of the business hierar-
chy from the asset layer, which includes the physical subsystems such as robots, machines,
personnel, etc., all the way through to the business layer, where production management
and corporate planning take place [92]. While vertical integration requires a high level
of digitisation, the result is a fully networked manufacturing system that promotes intra-
company collaboration and improves process efficiency and flexibility through real-time
availability of process data throughout the hierarchy [92]. The third kind of integration
focuses on the digital integration of engineering throughout the product life-cycle, from
product design and development through the entire value chain to end-of-life considera-
tions. By engineering smart products to gather and transmit real-time data throughout
manufacturing production and in-service use, individual products in some sectors will have
the ability to automatically control the stages of their life cycle [134]. The Cloud-based
design manufacturing model is a good example of end-to-end integration applicable to the
automotive industry [I34]. Cloud-based design manufacturing is a service-orientated prod-
uct development model that uses in-service vehicle data to provide additional services for
customers and gives engineers access to real-time data on individual product performance.
By integrating this data with engineering teams, Big Data analytics can be used to pre-
dict faults and automatically schedule maintenance based on equipment conditions. This
increases customer value in a horizontally and vertically integrated factory environment.
This information can help improve the smart factory’s design, logistics, production, and

management processes.
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Digital Twin

Digital Twins are a key enabling technology of Industry 4.0 and are presented as one
of the main tools to manage the complexity of FMS [63]. Digital twin is an evolution
of traditional simulation methods that encompass increased data availability, ubiquitous
connectivity, and new user requirements that enable manufacturers to model complex be-
haviors of production processes based on real-time and historical data. Digital twin plays
an important role in planning when new lines are being designed and developed, using
historical process data from previous systems to simulate and optimize the proposed lay-
out. These accurate digital representations of the manufacturing environment can be used
to analyze real-time behaviors of the system and can be reconfigured off-line to optimize
throughput and address challenges that may not have been modeled in advance [63].
Vinter et al. provide a rigorous systematic literature review on Predictive maintenance
using digital twins [64]. Researchers found that the most common application of these
combined technologies was in the manufacturing sector on systems such as CNC machines
and industrial robotics, where parts experience rapid wear due to components such as
rolling bearings and gearboxes [64]. The main machine learning approaches used for PdM
in digital twin environments are SVM, regression, decision tree, RF, K-means, and PCA
[64]. The researchers highlight that the complexity and high computational requirements
of both digital twin and machine learning models present a challenge, impacting the cost-
effectiveness, delivery time, and energy requirements of these methods [64]. Another major
challenge of applying machine learning in digital twin environments is the requirement for
high quality and a wide variety of data [64]. Digital twins can be used to generate syn-
thetic data to train machine learning models for many use cases, however, they require
high-quality historical data and supporting data. For example, in a predictive mainte-
nance setting, data is required on healthy, semi-healthy, and faulty machine performance
and data of the failure distribution [64].

Although the initial set-up requirements for digital twin systems are high, once developed,
they are a key enabling technology of applied machine learning to deliver a high level of
automation through PAM and process control [150, 64, [1T0]. Research shows that adopting
digital twin predictive maintenance frameworks can increase machine up-time by 10 to 20
percent [I50]. Mourtzis et al. present an edge-based architecture that uses SVM model to
classify time-series production data and update digital twin systems in real-time to predict
the remaining useful life of critical components [I50]. By processing data in edge environ-

ments, the researchers overcome the high bandwidth requirements of real-time prognostics
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and predictive analytics.

Gankin et al. propose a production control system to address the scheduling challenges of
AGYV routing between FMS modules in a digital twin environment based on a real-world
automotive case study of 25 workstations [I10]. AGV routing is a complex problem that
involves optimising vehicle management, workstation management, deviation management,
routing control, and job release control [110]. In the author’s own experience, simulation
AGYV routing in digital twin environments results in similar data acquisition challenges
outlined by VanDinter et al [64]. Digital twin models for AGV routing require high-quality
data on AGV systems, with a detailed understanding of speed distributions, effects of inter-
ference and collision detection systems and battery charging requirements. The researchers
propose a Deep Reinforcement Learning Multi-Agent System approach that uses reward
design incentivising agents to achieve maximal throughput in a digital twin environment
[T10]. The reward-based learning approach of deep reinforcement learning leads to optimis-
ing routing and scheduling problems, and the researchers find that combining this method
with a multi-agent systems approach helps improve the robustness of the solution [110].
These methods have rarely been combined for modular process control. Further research
should explore this topic in other digital twin environments as well as the frameworks to

support the real-world implementation of these systems [110].

Cloud / Edge

Delivering machine learning solutions and managing Big Data requires high levels of IoT
integration and High-Performance Computing (HPC) platforms. While some manufactur-
ers may already have HPC systems in place, significant work is often required to develop
these existing architectures to process large volumes of data in real-time, particularly for
the level required for iterative data-driven machine learning models [112]. Furthermore, it
is expensive and difficult to scale these systems as demand increases overtime[112]. Cloud
solutions can reduce the costs associated with training new personnel to manage, main-
tain, service, and scale these IT infrastructures [55]. Service-oriented networked computing
platforms are a common solution to these challenges due to their scalability and flexibility.
Many organisations have already adopted them to process IoT data [112]. These services
are called Cloud platforms and provide a means for organisations to structure and manage
the functionalities of distributed IoT systems [I51].

Cloud-based manufacturing enables the highest integration levels that extend throughout

the entire product life cycle. Production resources and capabilities can be monitored and
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controlled in real-time through integrating tracking technologies such as RFID and sensors
with Zhong et al. describe how Cloud manufacturing is also an enabler of new business
models in which a fully integrated flexible manufacturing environment can provide man-
ufacturing as a service to support cross-business applications [55]. Achieving this level of
Industry 4.0 maturity requires high data integration and management levels to handle the
complexity of service matching, planning, scheduling, and execution [55]. Furthermore,
cloud platforms may also offer additional data analytics services such as predictive main-
tenance, condition-based monitoring, and risk-orientated production planning [I51]. By
using these additional services, organisations can reduce costs associated with licensing
new software [55].

Cloud computing cannot meet real-time data analytics and decision-making requirements
due to high Round Trip Latency Time [I12]. Many IoT applications are latency sensitive,
and therefore hosting analytics in the Cloud can sometimes compromise the performance
[112]. In some instances, manufacturing analytics can be performed using only locally
stored information, such as inventory management or logistic processes. In these cases,
analytics can be performed locally by networked IoT computing devices such as laptops
and PCs. Researchers have also explored using Raspberry Pi single-board computers to
provide low-cost Edge solutions [I50]. However, this is a relatively new concept that re-
quires further research to demonstrate its application readiness [150].

Edge systems are well suited to support computationally intensive and latency-sensitive
machine learning tasks such as speech recognition and face recognition, as edge processing
generally reduces the power requirements and increases processing speed.[152, [112]. Decen-
tralisation is a common theme in Industry 4.0 literature. By decentralising computation
away from the Cloud and using local computing resources, manufacturers can deliver cost
savings through reduced energy costs and service fees [150]. Edge computing can increase
efficiency and decrease power consumption by over 40% more than conventional cloud sys-
tems [112].

In many manufacturers, outdated legacy systems present a major challenge in terms of
data accessibility and data integration, particularly mainframe I'T systems. In their review
of key technological requirements for Industry 4.0, Chen et al. discuss Cloud technologies
as a potential solution to mainframe systems [I53]. However, they do not provide any
further details or specifics on these solutions [I53]. Chen et al. suggest that legacy systems
are reevaluated or replaced for Industry 4.0 to overcome the limitations in data handling

[153]. The author disagrees with these findings due to the high costs that would be as-
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sociated with redeploying existing mainframe systems onto new Cloud-based platforms.
Furthermore, the economic risk of doing so would be considerable, given the distributed
nature of these systems throughout the entire organisation. Chen et al. include no search
methodology, strategy, research aims or research question in their review and include a
very limited number of sources given the wide range of topics considered [153].

Migrating to the Cloud is often a considerable task. Therefore businesses often adopt a
hybrid approach where more innovative areas of the business lead the way and processes
slowly migrate over time. Similar to the challenges of IoT, researchers raise concerns on the
security of communication between Edge and Cloud-based solutions and the legal barriers
of storing personal information on externally managed platforms [I50]. The main limiting
factor of Cloud computing is the high costs associated with high-bandwidth transmissions,

a challenge in machine learning applications that require real-time processing [112].

Circular Economy

Since the first industrial revolution, the global industrial economy has always been based on
the same linear model. In this model, raw materials are extracted, transported, processed,
and manufactured into products that serve until their end-of-life when they are disposed of,
usually by incineration or landfill. The circular economy is an alternative economic model
that focuses on the effective use of resources and the elimination of waste by designing
products to be reusable, easily reparable, or upgradeable [I54]. When raw materials are
required, they must be obtained from sustainable sources, ensuring no damage is caused
to the natural or human environment. Many scholars, governments, and climate experts
believe that adopting a circular economic model is not only beneficial but critical to our
survival as a species and is already being proven to be possible in many industries and
cities [155], [156].

Industry 4.0 technologies and concepts are key in overcoming the barriers to the circular
economy, and trends in the literature show that the topics have begun to converge in recent
years [54], [157]. Both share the revolutionary vision that existing organisational and oper-
ational systems of production and consumption must change to reflect the changes of the
modern world with a focus on digitisation, recourse efficiency, productivity and collabora-
tion [54]. Digitisation has been a key enabler of the Circular Economy thanks to Industry
4.0 technologies such as [oT, which facilitates better relationships and communication with

customers and provides more sustainable consumer relationships through product-service
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systems. End-to-end integration and engineering are key in facilitating a circular prod-
uct life cycle and product-service systems as it enables smart products to communicate in
real-time with engineers and the wider production management system. Other technolo-
gies such as Big Data, machine learning, digital modelling, and AT are critical to reducing
waste throughout the supply chain by optimising and automating production processes,
and supply chain management [54, [I55]. Achieving a circular economy requires revolu-
tionary approaches to production, product design, and organisational culture, which are
directly impacted during the Industry 4.0 transition.

Digitisation is already revolutionising the way modern manufacturers and other industries
conduct business as technologies and concepts such as [0T, vertical and horizontal inte-
gration, and predictive analytics provide opportunities for new innovative circular business
models [37]. The Ellen MacArthur Foundation is a global charity that focuses on accel-
erating the transition to a circular economy. In a 2015 report, the charity presented the
ReSOLVE framework, a tool for businesses and governments to use to develop circular
strategies and initiatives [I58]. The tool identifies six business actions that will accelerate

a company’s transition to circular economy:

e Regenerate: Firstly, businesses must shift away from relying on fossil fuels and
increasing scarce raw materials towards renewable energy and more sustainable ma-

terial usage through circular value chains.

e Share: In a sharing economy, the product life cycle is extended through designing
products to be easily maintainable and upgradeable. Moreover, goods, assets, and

services should be shared between consumers.

e Optimise: By utilising new technologies like Big Data, Al, IoT, and other Industry
4.0 technologies, production processes can be optimised to remove waste from the

supply chain.

e Loop: Manufactures must focus on designing for a product’s end-of-life by engineer-

ing products and components to be re-manufacturable, repairable, or recyclable.

e Virtualise: Servitisation of products enables companies to remove material elements
directly and indirectly. This can be achieved by virtualising the business through

online models such as internet shopping.

e Exchange: Old non-renewable materials, processes, and goods must be identified

and replaced with more advanced solutions and technologies.
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Since its conception, this framework has been developed further by Lopes de Sousa Jabbour
et al, who combine the six elements of the tool with a range of Industry 4.0 technologies
that can guide manufacturers towards more sustainable and intelligent production [54].
Servitisation is a common theme, and throughout the Industry 4.0 literature, it is dis-
cussed that businesses should move away from product-orientated business models and
towards providing products as a service [37, 158 [159]. In these Product service systems,
the customer enters into a contract to rent or lease a product, such as a washing machine
or a car to establish a long-term, mutually beneficial arrangement with the provider [160].
Product service system models help achieve the highest level of end-to-end integration to
gain valuable insight into customer behaviour and the quality and performance of prod-
ucts throughout the life-cycle, including end-of-life. Because customers are paying regular
instalments for a product as a service, this continues even if the product breaks down. By
considering the end-of-life of a product at the development stage, products can be designed
and engineered for assembly and reassembly, making repair and re-manufacturing a quicker

and cheaper option to waste [160].

2.5.2 Digital Skills

Data is collected at all levels of the ICT hierarchy, from the production process and con-
trol on the line to factory-level manufacturing execution systems and enterprise resource
planning systems [161]. Manufacturing data are becoming increasingly valuable as im-
provements in data-driven systems create new opportunities to leverage and integrate this
information to improve decision-making throughout all stages of the product life-cycle [161].
Traditional approaches to data-driven decision-making, such as Six Sigma, lean manufac-
turing, and discreet event models, are becoming increasingly ill-suited to create meaningful
insights from these data [161], 107]. In Industry 4.0 and the age of Big Data, the main
technical skill requirements to enable manufacturing are data science, which in the context
of the manufacturing environment includes: data analytics, statistics, programming, data
mining/data management, optimisation, computer science, and machine learning [47, 148].
The manufacturing sector has the third highest demand for these roles after the profes-
sional services and finance sectors, as managing the transition towards Industry 4.0 relies
on workers who have an in-depth understanding of applied data science in manufacturing
[47]. Among the main barriers to implementing data science in automotive manufacturing,

particularly the implementation of machine learning, is the shortage of the aforementioned
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data science skills [162, 48], [163], 36} 47]. The lack of workforce skills has limited the de-
velopment and implementation of machine learning and other Industry 4.0 technologies in
manufacturing. Despite this widely recognised skills gap, the reviewed literature highlights

that manufacturers are yet to address this through education and training programs fully
[47, 138].

Human-in-the-Loop Automation

In their research into Statistical Process Control (SPC) of flexible manufacturing cells,
Martinez-Arellano et al. suggest that a key factor in successfully implementing Industry
4.0 technologies is adequate training and support for users through internal education or in-
ternal advisors [38]. Research finds that the complexity of the analytics skill-sets required
to implement machine learning solutions such as data processing, model selection, and
training make these solutions inaccessible to most industrial practitioners [38]. Martinez-
Arellano et al. state that despite the considerable research into Industry 4.0 technologies
and their industrial applications, industrial practitioners remain hesitant to embrace these
technologies [38]. This is largely due to a need for more organisational knowledge on the
ROI, implementation requirements, human resource/skills requirements, and capital re-
quirements [38]. The authors’ own research in Chapter 3 supports this finding.

To address the social sustainability challenges of Industry 4.0, Martinez-Arellano et al. pro-
pose a series of machine condition monitoring dashboards and visualisations implemented
in a flexible manufacturing cell at a BMW Group production facility [38]. The researchers
highlight throughout the development of the solution the importance of human-centered
design, focusing on delivering a solution that improves the workplace experience of the end
user. Following the implementation of the dashboard and integrated statistical tools, the
researchers report the immediate time savings on root-cause fault analysis and highlight
the positive impact on the workers’ workplace experience by freeing up time to focus on
more intricate problems. Workers became an integral part of the SPC feedback process by
focusing on a tool that improved workplace experience rather than headcount reduction.
They developed skill sets in feature extraction processes which positively impacted trust
in predictive maintenance systems [38]. In addition to this project’s social and cultural
benefits, the system also led to a 97% reduction in waste. This project is an example of
human-in-the-loop innovation. Many scholars present this approach as a medium- to long-

term solution for automotive companies to address various technical and cultural challenges
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while managing the transition to increased automation and Digitisation [70], 36}, 161, 107].
Fahle et al. discuss a lack of machine learning training opportunities in the manufacturing
industry and highlight a research gap in the use of ’learning factories’ to support the de-
velopment of these skills in both industrial and academic settings [36]. A learning factory
is a physical, realistic manufacturing environment at a very small scale used for training,
education, and research that is well suited to understanding the application and implemen-
tation of machine learning [36]. This paper finds gaps in the research on frameworks and
systems to support education and training using learning factory environments [36]. The
researchers also state that these are important tools for increasing the uptake of machine
learning in manufacturing [36]. These research findings, however, are solely based on the
authors’ review of the literature, and no primary evidence was gathered from manufactur-
ers to support these findings [36]. The set-up costs, set-up times, and other factors that
could impact production are also not considered in this review. The feasibility of learning
factory environments as an effective means of training employees in advanced analytics
requires further research.

Research by Suvarna et al. also discusses the benefits of human-in-the-loop cyber produc-
tion systems in delivering improved flexibility, control, decision-making ability of the user,
and improved reaction and response times [161]. Suvarna et al. also discusses the impact
on workplace experience and how this synergy between advanced data-driven models and
workers can lead to reductions in stress and improved safety [161].

Subramaniyan et al. propose a generic, unsupervised machine learning-based hierarchical
clustering approach to detect throughput bottlenecks in a real-world automotive produc-
tion line [I07]. In this study, researchers work closely with domain experts to utilize their
understanding of the underlying system requirements during model development. This
close collaboration during the development phase led to more innovative solutions and re-
sulted in highly applicable models that deliver improved workplace experience compared to
traditional siloed approaches [107]. Furthermore, a two-way transfer of knowledge occurs
between process domain experts and data scientists.

Domain experts learn how to participate in new data science projects and improve their
understanding of the importance of gathering labelled data and developing testing and
training datasets. Depending on their skill level, domain experts can participate in these
processes and further develop their technical skills in feature extraction and statistical
modelling. At the same time, data scientists gain a more in-depth knowledge of real-world

systems and improve their understanding of human-centred design concepts that will in-
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crease the usability of future interfaces to improve further data-driven solutions[I07]. While
the primary aim of this research by Subramaniyan et al. is to reduce bottlenecks and in-
crease throughput, the researchers highlight the importance of developing a solution to
improve the workplace experience by reducing the workload for the domain expert as fo-

cusing on developing organisational knowledge.

Social Sustainability

Some researchers explain the slow adoption of Industry 4.0 due to the limited availability
of skills, poor change management, and a lack of organisational knowledge [39]. Some
researchers further suggest that this problem is more complex than just a skills shortage,
but that the Industry 4.0 paradigm at its core needs to be better aligned with social sus-
tainability goals [39]. In their research on social sustainability in the age of Digitisation,
Grybauskas et al. find evidence to suggest that both high-skill and low-skill jobs are equally
at risk in Industry 4.0 [39]. The review highlights studies that suggest 40%-60% of jobs are
at risk from technological change [39]. These findings are supported by further research
that warns 47% of jobs are at risk of computerisation and 24% of UK jobs are at high risk
of automation [39]. While those most at risk are manual workers performing repetitive
tasks, highly skilled engineering jobs are also at risk [39]. Machine learning systems have
been proven to outperform human performance in image recognition, prediction, and diag-
nostics in certain domains [39]. There is some debate on this topic as Boavida et al. find in
their literature review that automation creates jobs, and as capital investment increases,
so does employment [68]. Parida et al. also find that digitalisation is an essential enabler
for sustainable business practices in the long term by enabling new business models aligned
with goals of circular economy [37]. Evidence from interviews at various automotive manu-
facturing companies in Portugal supports this, where human-in-the-loop systems are used
to support workers to increase efficiency by leveraging the combined benefits of both the
domain expert and data-driven systems [68]. On the other hand, multiple cases were found
in these companies where workers were displaced from their jobs. As a result, there was
some resistance to automation technologies from lower-level employees [68]. Management
was also found to be resistant to change in some instances. Boavida et al. identify one ex-
ample where automation solutions do not consider the end user, and resulting dashboards
create more work for the manager due to poor user interfaces [68].

Grybauskas et al. argue that these social sustainability challenges can be addressed through
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government intervention to regulate the implementation of Industry 4.0 through taxation,
education, and labour relationships [39]. This hypothesis is well supported by the outcomes
of legislation passed in South Africa, where organisations are scored on their workforce
skills [48]. A low score may limit organisations with whom they can do business, therefore
incentivising investment in workforce skills [48]. This legislation positively improved the
workforce Digitisation skills in South Africa’s automotive industry and led to increased
uptake of Big Data analytics, and Al solutions [48]. However, Bag et al. note that this
research is limited to a single country where digitisation skill levels are generally low [48].
While there is some argument that government intervention may be an effective approach
at the macro level, this is clearly outside the individual organisation’s control and not
considered further in this review.

It is important to note that when discussing education, training, and up-skilling, this does
not mean all employees across the board should re-train and gain new qualifications in pro-
gramming, data science, and advanced analytics. This is both infeasible and impractical,
as some employees may need the prerequisite technical or soft skill requirements, or this
level of advanced training may not be relevant to their job function. However, all workforce
members should be trained and educated to support automation and digitisation projects
where required. For example, a common issue identified in the literature is the lack of
high-quality datasets, a topic discussed further in section This issue could be solved
through basic training on the importance of gathering high-quality labelled data and how

to identify and report opportunities where data collection could be improved.

Digital Skills Conclusion

To conclude, research shows that the full realisation of Industry 4.0 is yet to be realised
in the manufacturing industry and that one of the main barriers is a lack of data science
skills. Consequently, there are gaps in organisational knowledge leading to a reluctance to
embrace emerging technologies due to complexity, technical expertise, and uncertainty of
investment requirements [38].

For manufacturers to manage the transformation towards increased automation through
machine learning, organisations must shift hiring strategies to focus on data analytics and
data science skill-sets and develop digital skills in the existing workforce [69]. This up-
skilling of the existing workforce must be approached with careful consideration of the
impacts on the workforce through the application of human-centered management ap-

proaches. The available research suggests that an effective solution to overcome these
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barriers is to begin by exploring short-to-medium term innovation pilots to implement
human-in-the-loop analytics projects that focus on improving workplace experience rather
than headcount reduction. Human-in-the-loop innovation in data analytics has been shown
to deliver high economic returns [38]. More importantly, it builds organisational knowledge
and improves trust in these systems, thereby encouraging further innovation and replication
of these technologies [3§]. This human-centric approach to innovation addresses organisa-
tional and technological barriers associated with developing and implementing Industry 4.0
technologies. Companies beginning this journey or unsure where to focus efforts should ex-
plore systems for which considerable research is available and ROI can be easily quantified,

such as: PdM, quality assurance, and anomaly detection.

2.5.3 Management
Management Approaches in Industry 2.0 and 3.0

During the early 20th century, following the introduction of mass manufacturing, tradi-
tional management approaches operated in functional silos and strict hierarchical man-
agement structures where the main focus was to deliver high predictability, and efficiency
[164]. This was achieved through the introduction, and gradual optimisation of the mov-
ing assembly line, where workstations are fixed in position and parts are moved between
stations to deliver high production rates and low labor costs at the expense of low product
variability. This type of assembly is now referred to as a transfer line. Over the years,
the concept of a transfer line has been extended to modern-day production systems. It
now refers to production systems where automated processes are hard programmed into
machines and systems [87].

Throughout the latter half of the 20th century, as competition in the automotive indus-
try grew, automotive companies began adopting more consumer-centric approaches and
differentiating products to meet various consumer needs to maintain a competitive edge
[165], [164]. [87] In response to the increasing demand by consumers for a diverse range of
products, Toyota introduced the Toyota Production System between the late '60s and early
"70s. The Toyota Production System was a production philosophy focused on delivering
increased consumer value by minimising lead times in production and increasing the re-
sponse times from suppliers to the customer [166]. This is achieved through the continuous
improvement of production and business processes by adapting or eliminating aspects of

that process that results in lost time or money. From the authors’ own experience, a key
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principle of lean manufacturing is the concept of creating a continuous workflow for each
department and minimising bottlenecks. This requires effective cross-functional collabora-
tion between departments and represents a significant change from the traditionally siloed
workstreams of Industry 2.0. This ’just-in-time’ philosophy encompassed by the Toyota
Production System was the precursor to the modern-day lean management practices widely
used throughout the automotive industry and other sectors [166].

Throughout Industry 3.0, following the introduction of consumer-centric and lean man-
agement approaches, bureaucratic-hierarchical structures emerged to define fixed lean pro-
cesses that could be well coordinated throughout the organisation [164]. This bureaucracy
also made large-scale planning and coordination of multiple product families more pre-
dictable and easily managed by a centralised control group through a top-down manage-
ment approach [164]. Project management approaches during this period are characterised
by systematic and rigid processes such as stage-gate and waterfall methodologies. Tar-
geted goals must be reached at set project stages before progress can continue [167]. These
phase-based models enable management to monitor and effectively control project progress
throughout development and are still widely used today in the automotive industry [167].
Throughout the 1970s and 1980s, increased amounts of data became available through
new digitalised production systems and improved ICT infrastructures. As companies be-
gan to recognise the value of this data, data analytics became an increasingly important
part of improving individual production processes to meet performance metrics, improve
product quality and reduce lead times. During this era, programmable automation sys-
tems were introduced where production systems could be reprogrammed to accommodate
batched production. However, this reprogramming would usually result in machine down-
time during changeover [87]. By the 1990s, the maturity of manufacturing systems had
developed enough that programmable systems were becoming commonplace in automotive
manufacturing environments. Manufacturers began introducing new project management
approaches, such as Six Sigma, that focused on creating value from the large amounts of
process data produced by these systems.

In the reviewed literature, the origins of Six Sigma are not discussed, and therefore re-
fer the reader to an additional reference by Hahn et al. on the evolution of Six Sigma
for further information [I6§]. Six Sigma is a top-down management philosophy originally
introduced by Motorola in the 1980s to improve product and process quality using a dis-
ciplined data-driven process [168]. Traditionally, Six Sigma 'Champions’ are appointed
by senior leadership who facilitate implementing and deploying the strategy within their
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business area. At the process level, 'Process Owners’ are responsible for managing the Six-
Sigma project, which involves SMART goal setting for quality objectives, monitoring the
progress towards these goals, and training and mentoring other team members. Project
team members are then tasked with implementing the strategy within their respective
workflows. A Six Sigma project was originally designed to follow four key stages: Define,
Measure, Analyze, Improve, and Control. This approach is called DMAIC, which is used
to improve existing processes.

Six Sigma has since been adopted by many industries that have further developed these
methodologies into other areas, including process design (DMADVO), product servicing,
and non-manufacturing business applications. For a detailed description of the DMAIC
and DMADVO stages, as well as the evolution of Six Sigma in business, see [168]. Even as
the Six Sigma method was adapted and generalised, the focus remains on using disciplined,
quantitative approaches to improve process quality. Six Sigma continues to be the leading
approach for quality management at the world’s largest manufacturers like Sony, Lockheed
Martin, Nokia, Ford, and GE. For many of these companies remains a standard for data

and analytic skills training to guide process improvements [168].

Management Approaches in Industry 4.0

Like the revolutions that preceded it, Industry 4.0 brings new opportunities for organisa-
tions to increase productivity, flexibility, and customer value by embracing new technolo-
gies, business models, and management practices. High levels of machine learning-driven
automation in FMS environments challenge well-established organisational structures and
require increased collaboration between production, simulation, and data science teams
to optimize production offline and explore new automated management and control pro-
cesses. This not only requires a significant long-term investment in physical assets and
human resources to build organisational knowledge but also cultural changes to ensure the
workforce is empowered to support ongoing innovation. Various management strategies
are presented in the literature to manage the ongoing cultural, and technological changes
in the automotive industry at various levels of the organisational management hierarchy
[70, [72, 166, [169].

The journey towards the digitisation and automation of production should be viewed as
a continuous evolution as opposed to a revolution, one that is driven by operating costs
and improving productivity [33]. This should not require a complete overhaul of outdated

systems to be replaced with the latest technologies. Instead, the Industry 4.0 philosophy

53



is to optimise, digitalised and integrate existing processes using technologies such as IoT,
Big Data analytics, and cloud-based systems to create further value from existing Industry
3.0 based technologies [33]. To adopt Industry 4.0 technologies and remain competitive in
a world of digitalisation, considerable amount of long-term investment is needed at both
the corporate level and the supply chain level to achieve Industry 4.0 goals. Management
needs to be open to this investment and ensure the long-term business strategy is well
communicated throughout all levels the workforce. Effective downward vertical communi-
cation of the ongoing organisational changes ensures supervisors and managers have the
best possible understanding of the future technological and human resource requirements
in their respective areas. This in turn enables managers and supervisors to put together
clear business cases for required investments to be communicated back up the management
chain, allowing businesses to act quickly to change.

A bottom-up approach to Industry 4.0 is ineffective, whereby an organisation invests in
Industry 4.0 technologies used by their competitors or within internal innovation hubs and
then implements them without having global goals or specific problems to solve [70} 33].
Instead, it is argued that digital transformation should begin with an organisation under-
standing its long-term vision and objectives. Once these goals are established, organisations
should explore top-down solutions that focus on addressing business-level goals, prioritising
those that offer the highest long-term ROI [70]. Albukhitan et al. suggests that during the
final stages of implementing business goals relating to digital transformation, organisations
should then consider adjustments in organisational culture and infrastructure requirements.
This can be achieved by reviewing training, qualification requirements, or hiring strategies
to meet the new demands of changes in high-level objectives or organisational change [70].
Albukhitan et al. argues that this top-down approach helps develop a holistic strategy
to transform all aspects of an organisation that can be implemented while avoiding the
inefficiencies of functional silos [70].

In contrast, Kulvisaechana et al. find in their research on change management that if a
strategic change is to succeed, changes should initially take place in the cultural beliefs and
assumptions of the organisation, thus leading to the cultivation of workforce commitment
in later structural changes [116]. This finding seems to contradict Albukhitan et al.’s sug-
gested approach. However, Kulvisaechana et al. later conclude that to effectively manage
organisational change while promoting a culture of innovation, management must think
and act holistically and make changes on several fronts in careful alignment [116].

Research shows that employees do not resist all organisational changes, only that which
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has not been well communicated or is perceived as psychologically or economically threat-
ening [116]. Communication strategies are identified in the literature as a key mechanism
to facilitate organisational change and should support a systematic change management
process that considers both changes in culture and organisational structure [70, 116]. This
requires careful consideration of changing internal environmental pressures that dictate
employee behavior, motivation, and performance of teams. Decentralised agile manage-
ment approaches are regarded by scholars as one of the most effective management models
in this regard, as it enables lower levels of management to be more embedded in their local
environments and respond faster to changes [170], [171].

Agile management is a project management process originally popularised in software de-
velopment but has recently become widely adopted in the manufacturing sector [47]. The
agile methodology promotes continuous development and testing during the whole life cy-
cle of a project to deliver benefits throughout the process rather than just at the end.
This iterative approach to developing and implementing manufacturing solutions enables
management to adapt quickly to changing environmental requirements and deliver highly
flexible solutions [47, 69 162]. This management approach is particularly applicable for
machine learning, as the optimal solution will likely change throughout the product life cy-
cle due to data availability. For example, consider an anomaly detection system for quality
assurance of an automotive manufacturing process. Due to data availability limitations in
the initial development phases, early model iterations may be fully unsupervised or rely
heavily on synthetic data. This solution could be implemented in early pilots to demon-
strate concept readiness while high-quality data are still being collected. Through later
development stages, engineers may decide to transition towards new semi-supervised or su-
pervised approaches that utilize these new data to deliver increased reliability. This decen-
tralised approach to project management challenges well-established phase-based models
and requires higher levels of communication and collaboration between teams [170, 171].
Some research shows that agile methodologies can be challenging to apply in manufactur-
ing environments as this flexible management approach challenges traditional routines and
work processes of Industry 3.0 that are culturally embedded in factories [69]. Despite these
challenges, research in hiring trends in manufacturing shows that organisations recognise
the benefits of agile methodologies as experience in agile management is among the sector’s
most sought-after skills [47].

Agile management approaches are widely regarded as the most effective management ap-

proach to manage the requirements for many Industry 4.0 projects due to the agile method-
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ologies’ ability to deliver high flexibility, adaptability, and faster time to market [69].

Maturity Models

Throughout the transition towards increased levels of digitisation and automation, the
specific challenges and opportunities of any given solution will continuously change as or-
ganisations build the required organisational knowledge to develop and implement these
solutions successfully. This presents a complex management challenge due to the wide range
of emerging technologies and organisational changes that must be considered carefully to
deliver this transition successfully. Various digital maturity assessments are presented in
the literature as a change management tool for organisations to manage the technological
and organisational requirements throughout this journey. Various maturity models were
identified in the reviewed literature to help assess an organisation’s maturity relating to
Industry 4.0 objectives [172] [72] 69)].

In their 2005 paper titled 'Understanding the Main Phases of Developing a Maturity As-
sessment Model’, Bruin and Freeze argue that any maturity assessment tool fits into 3
general categories: descriptive, prescriptive, and comparative [I73]. A descriptive tool is
used to define the current state of a business, providing no means of improvement or re-
lationships between the current state and key performance metrics. A prescriptive tool
provides further insight into how the current state of a business relates to key performance
indicators, highlighting which areas can be improved to deliver value. Finally, a compar-
ative model compares maturity across industries, providing insight into the differences in
business practices and how this relates to value generation in different environments. A
comparative model requires many assessments to be carried out across various industries
to gather sufficient data to draw these relationships.

The author also argues that although a wide range of maturity models can be found in the
available literature, despite their claims, these models are not well suited to give actionable
feedback to management to guide specific process improvements and wider organisational
change. Limited qualitative and no quantitative evidence supports the argument that or-
ganisations benefit from performing an Industry 4.0 maturity assessment. This claim is
discussed further in Chapter 3.

The maturity models included in this review give little direction on how the assessment
should be conducted, what personnel should be involved, and who should take responsibil-
ity for delivering the resultant roadmap. In their discussion on digital transformation and

change management approaches, Albukhitan et al. find that successful digital transfor-

56



mation requires support from all stakeholders, including top-level executives, employees,
and customers [70]. The author suggests that future research into maturity models focus
on addressing the suggestions of Albukhitan et al. by developing new maturity models
that consider the involvement of these key personnel throughout the assessment process.
Further research should also consider the real-world application of maturity assessments
within an organisation.

Regardless of the usability of existing maturity models to deliver useful roadmaps to Indus-
try 4.0, the importance of developing a structured roadmap to support change management

is not contested.

Management Conclusions

The automotive industry is in the midst of major organisational change due to various
emerging technologies and business practices that challenge well-established business mod-
els at both the strategic and operational levels. Research shows that to manage this organi-
sational change successfully, automotive manufacturers must think and act holistically and
make changes on several fronts in careful alignment [I16]. Because of this holistic approach
discussed throughout the literature, the barriers to developing and implementing machine
learning solutions aligned with the more general challenges of Industry 4.0 change manage-
ment. These include a need for increased communication both vertically and horizontally
to facilitate effective collaboration between teams to deliver cross-functional manufactur-
ing solutions. Automotive manufacturers must learn from the lessons of Industry 3.0 and
recognise that investment should not be limited to manufacturing technologies, but also
into developing good organisational structures and communication channels to support
the effective management of human resources [33]. Senior management must take steps to
communicate the business strategy to all levels of the workforce to identify future skill re-
quirements across different functional areas and ensure they have sufficient personnel with
the right digital skill sets to support the operation and future development of Industry 4.0
systems. Agile methodologies are presented as an effective way to manage these projects
at the process level and particularly lend themselves to projects exploring machine learn-
ing solutions. Given that this project management approach challenges well-established
methods such as lean, stage-gate, and waterfall, organisations should ensure that good
communication structures are in place to address these new models’ cultural barriers.

Managing the large-scale organisational transformation of the workforce, processes, strat-
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egy, and culture requires well-structured step-wise approaches [172} [72], 69].

2.5.4 Computer Vision

Computer vision is a field of machine learning in which algorithms are trained to inter-
pret the image or video data and perform tasks such as object detection or classification.
Computer vision applications in manufacturing settings include quality testing, safety su-
pervision, inventory management, and process monitoring [27]. If implemented correctly,
machine vision systems can optimize quality assurance processes as they are quicker, more
objective, and continually functioning compared to human inspectors [27]. This leads
to lean improvements, reduced labour costs, improved part quality, waste reduction, and
improved traceability [24]. Combined with the predictive and prescriptive process manage-
ment approaches, integrated vision systems collect data on important production metrics
for analysis [27]. Computer vision can be combined with other machine learning technolo-
gies to optimize processes and deliver business intelligence [27].

In the reviewed literature, 18 papers were identified for which the main topic is the de-
velopment of a novel computer vision approach or a novel application of an existing sys-
tem. Of these papers, only 3 papers were found to have been actually implemented in
a production setting [28, 86, O7], while 12 were a proof of concept or a literature review
[941, [96], 1774, [95], 27, 241, 89, 108, [175], 87, 10T],99], and 3 were unclear whether a solution was
implemented or not [98], 100, [85]. Most of the reviewed literature focuses on computer vision
systems for quality assurance in which inspection tasks are automated or semi-automated
and deliver a pass/fail result to the production control system, guiding routing and rework
requirements accordingly. Other use cases for computer vision in manufacturing include
bar-code checking [27], supervision [27], tracking and reporting [27], condition monitoring

[27] and inventory management [27].

Computer Vision Environmental Conditions

A common challenge in the computer vision literature is the variation of environmental
conditions such as changing light conditions, colour, background, object placement, and
orientation [24] 87]. Flexible manufacturing environments present a challenge for computer
vision systems which work optimally in environments where variation in light conditions,

texture, scale, and position are minimised. FMS may require reconfiguration of the line,

58



affecting these lighting conditions, and variation in the produced parts require more train-
ing datasets and higher levels of integration to identify the incoming part and perform the
correct analysis.

Schluter et al. use weight and image data as input to vision-based classification models
to determine the suitability of damaged automotive components for re-manufacturing [96].
To overcome the challenges of lighting conditions, the researchers suggest using an enclosed
lighting rig with a uniform white background to place the part inside for the highest pos-
sible accuracy of the computer vision system, achieving accuracies of 98%. In this study,
training and testing data are collected from the automotive manufacturer, considering the
variability of how different workers might place objects in the lighting set-up. This paper
also includes the only identified use case where additional data on the weight of the com-
ponents, in addition to images, as part of the classification input. However, the paper’s
methodology lacks detail on the datasets as well as the industrial impact of the final sys-
tem. No information is provided on the set-up cost of this system, nor the amount of time
taken to label the datasets, however, the researchers do discuss that future work will focus
on automating this process of data acquisition.

Courville et al. use a similar approach to overcome lighting challenges when identifying
manufacturing defects in gears [99]. The paper uses a novel image acquisition approach
where photos of the gear are taken at multiple angles. The vision system only flags the
part as defective if the defect is identified on multiple images. A predetermined threshold
of the number of required defective images to return an anomalous result. Image data are
collected using a high-resolution camera and within a similar enclosed inspection cell to
minimize the impact of changing environmental conditions. A single-axis gripper rotates
at a rate that ensures every tooth of the gear is scanned multiple times. This process
ensures consistent rotation angles and constant lighting to ensure high-quality data and
repeatable results. This paper includes good details on the data labelling approach, in
which a ground truth dataset was built by having a domain expert manually label the
parts’ state before scanning to assign labels. Courville et al. state that each gear scan
took about 90 seconds using this method, and further optimisation of this process could
reduce this to 20s per gear [99]. Parts were randomly selected from the line to be scanned,
resulting in a dataset of 193 gears, 93 of which had some defect present, and no instances
were found where two defects occurred on the same part. Because of this random selection,
this suggests that this is representative of the actual anomaly distribution. From all images

of the scanning process from the 193 parts, 3172 images of defects were labelled by the
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domain expert. This paper is a good example of the required level in developing training
and testing datasets that many papers fail to include. Labelling data is time-consuming,
and understanding the estimated time commitment is important for reproducing computer
vision researchers in both academic and real-world manufacturing settings. Courville et
al. also give an estimate of the solution’s impact, finding that their approach could reduce
the requirements for manual quality inspection by 66% [99]. Few researchers consider the
real-world impact of machine learning solutions and no papers in the reviewed literature
comment on the estimated economic impact of their solutions.

Papavasileiou et al. also discusses the importance of stable lighting when computer vision
detects manufacturing defects in automotive brake components. In this instance, the chal-
lenge was overcome without using an enclosed lighting rig, instead using a bright white
LED strip with careful orientation of the inspected part controlled using a robotic arm
[97]. In addition to the lighting conditions, the resolution of the camera is also important
[99, 87]. Mazzetti et al. find that this causes challenges when using video to detect quality

defects in brake components as the resolution is too low to detect surface defects [87].

Data Availibility and Computer Vision

The challenge of limited available data is common among the reviewed litterature [97] 87,
107, 95, O8]. Some researchers overcome this through generating synthetic images using
GAN networks as discussed in section[.1.2] although this approach is complex and requires
high levels of machine learning skills as well as a high-quality sample of training data. Some
researchers rely on publically available datasets to validate their models, however, these
open-source datasets are also often limited in size [I01]. In their research on visual analysis
of fracture surfaces for root cause analysis of industrial processes, Bastidas-Rodriguez et
al. aim to demonstrate that handcrafted features in deep learning lead to improvements
in performance [I0I]. The benchmark selected for this study used databases with small
samples of only 81 and 108 images per class in the KTH-TIPS and KTH-TIPS2-B datasets,
respectively, resulting in very small sample sizes with only 70 for training and 11 for test-
ing. The authors note the lack of large datasets for texture and fracture use cases.

In their research on quality inspection of soldering of electronic components, Schwebig et al.
study the impact of adding augmented training data to overcome training data imbalance.
This rigorous study compares multiple training datasets on multiple testing datasets with
various fault types. The common image data augmentation approach is to perform geo-

metric and colour variations through rotations and translations, filtering techniques [98].
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This approach is much simpler than using GANs to generate synthetic data, as discussed
in section By comparing the F-score of training datasets that include augmented
data, researchers could significantly increase computer vision performance compared to
non-augmented datasets [98]. The researchers found that in all test cases, high-quality and
diverse training data are the most significant factor that impacts successful implementation
[98].

Malburg et al. evaluate three CNN object detection methods and their performance in
detecting workpieces and recognising failure situations [89]. This proof of concept shows
how this technology could be applied to identify workpiece misalignment. However, only
two failures are simulated by manually misaligning the parts and collecting image data. It
is unclear how the accuracy of this model trained using manually simulated data will per-
form in real-world scenarios, particularly where unknown errors might occur. This limited
information on the real-world use of this system means the researchers do not consider this
project’s economic benefits/cost-benefit analysis. Once again, no consideration is given to
the required skills to implement this solution nor the time taken to gather and label the
synthetic data.

Papavasileiou et al. present an image-based system to detect manufacturing defects in au-
tomotive brake components [97]. A bespoke unsupervised algorithm uses a sliding window
process to measure brightness variation in a greyscale image and classify parts as either
OK, Minor defects, or, Not OK [97]. While some papers consider different fault occur-
rences, this is the only example in the reviewed literature where an algorithm indicates the
severity of a single fault. During model development, domain experts observed the sliding
window results to determine anomaly threshold values manually, however, little detail on
the exact methods used to calculate these thresholds is presented. The solution was im-
plemented at an automotive manufacturer with processing done locally and presented to
the user in an online dashboard. The paper presents an accuracy of 92%, although this
is not compared with other methods such as CNN or ANN [97]. F-score would have been
a more appropriate evaluation metric given the high imbalance of the testing dataset. A
small sample size of only 25 parts for the testing dataset is unclear if this sample is repre-
sentative of the actual anomaly distribution of the manufactured parts.

Luckow et al. present an automotive use case of a computer vision system in supporting
walk-around quality inspection of the final product [28]. The paper includes considerable
detail on the integrated system architecture used to enable data collection using hand-held

[oT devices before a fine-tune transfer learning approach performs classification in the

61



Cloud [28]. The researchers state that the main contribution of this paper is the creation
of an automotive dataset to learn and recognise different vehicle properties [28]. Despite
this primary aim of the paper, the end use of the loT-supported computer vision system is
not discussed beyond its use for visual inspection. The paper goes beyond other works in
describing how long it took to build the test dataset, which took multiple workers weeks to
build [28]. Without a clear insight into the labelling process, the definition of labels, and
who was assigning the labels, it’s difficult to replicate this. Without a clear methodology,
the quality of this data and the results are in question [28].

In addition to 2D inspection approaches, many companies now also use 3D scanners in
combination with computer vision to deliver quality improvements [27]. One such exam-
ple is presented by Zhu et al., who propose a 3D scanning system for quality assurance
using point cloud detection [95]. Point clouds of manufactured parts are generated using a
cobot-mounted camera system and are compared with point clouds generated using CAD
data to identify manufacturing defects. The paper shows that unsupervised approaches
can be used to generate point clouds that are representative of those produced by CAD
data, negating the need to develop supervised training and testing datasets. However, the
proposed solution is complex to set up in comparison to the supervised alternative. The
author speculates that developing a supervised dataset would take less time than what
would be required to replicate the complex point cloud detection approach. Further re-
search is needed to compare the time requirements of both solutions and directly compare
the performance of both methods in detecting a wider range of defects. Stavropoulos et
al. propose a remanufacturing cell to robotized the remanufacturing of automotive frames
for which training and testing dataset was created using CAD data [90]. The proposed
approach is only tested using synthetic data, with further work required to validate the
results in real-world scenarios as it’s not clear how well the accuracies found in this study
will translate. Given the similarities between this case study and that of Zhu et al. there
are opportunities to improve both methods by combining these findings.

Runeson et al. discuss the data management challenges of machine learning in industry
and the requirements for large volumes of high-quality data [I76]. Open Data Exosystems
(ODEs) is presented as a potential solution to this challenge [176]. An ODE is a network of
community actors consisting of both organisations and individuals that collaborate on de-
veloping datasets and related resources to foster innovation, create value, and support new
business [I76]. This research is presented as a wider solution to enterprise-level challenges,

however, this collaborative sharing of both knowledge and data could also be applied to
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solve limited data availability in computer vision settings. ODEs challenges the existing
culture of competition and secrecy within the automotive industry and presents new legal,
organisational, and technical challenges. Researchers conducted 5 focus groups with 27
experts across 22 organisations to survey ODEs [I76]. Participants raised concerns that
sharing data requires giving away business value and would rather collaborate with busi-
nesses that are not competitors. Furthermore, these organisations recognise that many
challenges can be overcome through collaboration but raise concerns about security, legal
barriers, authenticity, standardisation, quality, and trust. Kauffman et al. discuss these
legal challenges in their research on intellectual property in Industry 4.0, highlighting that
in the newly interconnected manufacturing environments, data is of high value and worthy
of protection [25]. This value creation lies in the ability to gain insights into integrated
smart objects through data analytics, thus generating new organisational and technical
knowledge which can deliver competitive advantage and innovation [25].

While there remains some debate on ODEs, the author would add that in the automotive
industry, this concept should also be considered when collaborating with organisations or
other manufacturing sites within the same company. In large-scale automotive companies,
different sites may view each other as competitors when bidding for new contracts and,
therefore may be resistant to sharing information on innovation projects. Runeson et al.’s
research is limited in highlighting how Open Data Exosystem culture varies between in-
dustries and what specific barriers need to be overcome in individual sectors, and further
research is needed to understand the value proposition of ODE. Theissler et al. include fur-
ther information on the organisational challenges of data-driven topics in the automotive
sector [30]. Research finds that engineers often have access to data in automotive settings
due to political and bureaucratic barriers [30]. Furthermore, researchers find that a lack of
understanding and support in gathering labelled data on faults in production environments

makes developing machine learning models difficult [30].

Social Sustainability in Computer Vision Research

Social sustainability in the context of manufacturing refers to the ability of the organisa-
tion to promote social well-being and equity, while also minimizing negative social impacts
across all aspects of operations. This includes considering the well-being of workers, the
community, and society at large, as well as the ethical and responsible use of resources.

Babic et al. present a systematic review of computer vision systems for quality inspection

in which they find the majority of the literature focuses on comparing the accuracy between
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human operators and autonomous systems [24]. Only 4% of the surveyed results compare
existing systems with improved methods [24]. This is supported by the author’s research
findings and suggests that these systems are not currently widely used in manufacturing,
with many processes still largely relying on some manual process for quality assurance.
Babic et al. find that in Computer vision quality inspection, most researchers either devel-
oped bespoke software or did not mention what software was used [24]. Of those that did,
CAD and MATLAB was the most popular choice for computer vision inspection. CAD was
used in instances where 3D representations were required, while common machine learning
methods for computer vision include ANN and object segmentation [24]. These findings
differ from the results of this study which finds the most common machine learning method
for computer vision to be CNN’s such as YOLO, Alexnet, GoogleNet, VGG. When con-
sidering variants of the YOLO network, such as YOLOv4, YOLOv5, and YOLOX, this
network is by far the most common CNN variant in the reviewed literature.

Within the context of Industry 4.0, Babic et al. also raise concerns that the human-centric
concepts of Industry 4.0 are not well understood in applications where computer vision
is being used for quality inspection [24]. Researchers found that the knowledge of indus-
try 4.0 needs to be more widespread with regards to human inclusion but do not include
examples of where this has been done well, nor guidance on how this could be improved
[24]. The authors’ findings agree with this. Some studies mention workplace experience,
automating non-value added work processes, and improving safety [100] [108], 175]. How-
ever, these examples do not explore the qualitative or quantitative impact of automation
on workplace experience[100, [108], [175].

Rosa et al. propose an IoT network architecture for computer vision systems to inspect the
quality of wiring harness parts, however, the proposed solutions still need to be tested or
implemented [174]. The research also discusses using other IoT technologies to support in-
creased data collection and integration, such as RFID cards to monitor employee behavior.
In this example, little consideration is given to the IoT security challenges of safely storing
this personal information, nor consideration to how this data collection might conflict with
union requirements in real-world applications.

Torres et al. demonstrate a use case in which a supervised learning approach is used to
train a CNN to classify different types of wiring harness connectors received from a supplier
in an unsorted box [I08]. The system then classifies and sorts the connectors while sepa-
rating faulty instances to reduce waste and improve the workers’ experience by automating

a highly repetitive and time-consuming task. In instances such as these, where an entire
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process or sub-process is automated, the desired outcome of the end system must be well
communicated to the workers following guidance on change management, as outlined in
section 2.5.3]

Ferreira et al. present a computer vision system to inspect informative labels in vehicle
assembly, a process previously performed through manual inspection using a paper-based
checklist [I00]. With increased product variety, quality inspection of these labels becomes
increasingly complex, and researchers find that mental fatigue, physical fatigue, and the
lack of experience can lead to a reduction in performance that could lead to safety-critical
production errors [100]. Instead of fully automating this process, Ferreira et al. present a
solution to assist operators in the quality inspection process [100].

Javaid et al. suggests that such systems can be implemented in a socially sustainable and
human-centric manner without resulting in job losses [27]. Instead, automation should ad-
dress high-priority work while workers have more opportunities to learn more demanding
skills from their cognitive point of view [27]. The author would add that workers may not
want to be upskilled or may not have the prerequisite skill requirements to learn more

advanced skills to support computer vision systems.

Computer Vision Conclusions

Given the rapid advancement of these technologies in academic and industrial settings in
recent years, there are significant opportunities for further research and industrial appli-
cation of these systems. Multiple instances are identified where previous researchers have
faced environmental challenges relating to computer vision systems, such as changing light
conditions, colour, background, object placement, and orientation [24].

In the reviewed literature, ODEs are identified as a potential organisational solution to this
challenge, in which automotive industries need good digital communication channels to col-
laborate between internal and external organisations to develop high-quality datasets. This
concept of ODE extends beyond computer vision and offers a solution to improve other
datasets, such as time series for condition-based monitoring as well as enterprise data
[I76]. ODEs are a relatively new concept and challenge existing cultures and organisa-
tional practices of the automotive industry, with the main barriers to ODEs being political
and bureaucratic processes [30]. Furthermore, researchers find that a lack of understand-
ing and support in gathering labelled data on faults in production environments makes
the development of machine learning solutions difficult [30]. Organisations must recognise

these cultural barriers and address them through structured change management strate-
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gies supported by high levels of communication of these systems’ social, environmental,
and economic benefits to the workforce [116].

A common technical solution to lighting and environmental challenges is to use a robotic
arm to accurately control the orientation of the inspected part inside an enclosed lighting
rig [97]. Environment enclosure for vision systems is required even where lighting con-
ditions seem constant as additional light from opening shutter doors, windows, etc may
affect performance [87]. Even in highly controlled conditions, research shows that the
most significant factor that impacts successful implementation is the quality and diversity
of training data [98]. In instances where position and lighting solutions are not practical
due to limited available capital, or physical space, larger training datasets may be required
to account for the increased variability of the inspected parts. Very bright lights in a fixed
position may also be used to minimise the impact of changing environmental lighting. In
all cases, researchers highlight the importance of using cameras with sufficiently high res-
olution to identify the respective defects.

A research gap is also identified in exploring the social sustainability of these systems.
A key consideration of Industry 4.0 is the impact that innovations in digitalisation and
automation technologies have on the workforce, and how any negative impacts should be
managed. Further research is required to develop frameworks to support the implementa-
tion of computer vision systems in a socially-sustainable way that considers these aspects.
This finding is supported by prior research in computer vision systems in manufacturing
[24]. Future research focusing on human-centric applications of computer vision should use
questionnaires to explore these systems’ cultural and social impact on management and

line workers in automotive manufacturing settings.

2.5.5 Key Findings of Machine Learning Opportunities and Bar-

riers

For the reader’s convenience, this subsection includes a brief summary of the key findings
of the key topics discussed above. Various machine learning solutions in automotive man-
ufacturing are discussed in the reviewed literature, with the most common applications
including computer vision for quality inspection, automated process control, predictive
maintenance, automated scheduling, and anomaly detection. In all these cases, limited

organisational knowledge of machine learning requirements at the managerial and process
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levels is one of the main barriers found in the reviewed literature. Researchers found that
the limited understanding of the potential value creation and return on investment of ma-
chine learning technologies results in a lack of support in gathering high-quality labelled
data on faults in production environments [30]. This is a common theme throughout the lit-
erature that makes developing machine learning solutions difficult [30]. Organisations must
recognise these cultural barriers and address them through structured change management
strategies supported by high levels of communication of these systems’ social, environmen-
tal, and economic benefits to the workforce [116]. Maturity models are presented as a tool
to support this change management by helping to develop a roadmap towards improving
the technological readiness of key enabling machine learning technologies, however, this
research finds little evidence to show that maturity models lead to measurable change in
organisations Industry 4.0 maturity. Further research is required to quantify the impact
of these tools.

Only a few papers in the reviewed literature discuss the potential economic impact of the
proposed machine-learning solutions. Communicating the business case for industrial ap-
plications of machine learning is critical to help address the knowledge gaps within the
automotive industry. Future works should focus more on the economic appraisal of real-
world implementation of machine learning solutions to support replication in industrial
settings.

This oversight on communicating the business case of proposed solutions is largely be-
cause most papers in the reviewed literature present a proof of concept rather than an
application-ready solution. As shown in Fig[2.2] research in this field has increased consid-
erably in the last 5 years. This suggests that many of these technologies are still in their
infancy and suggests a wide range of opportunities for both further academic research and
industrial application of these technologies.

Computer vision systems for quality assurance are the most common research topic in
the reviewed literature. Multiple instances are identified where previous researchers have
faced environmental challenges relating to computer vision systems, such as changing light
conditions, colour, background, object placement, and orientation [24].

Many researchers highlight the challenge of collecting or accessing sufficient labelled anomaly
data in industrial settings. In many cases, additional data are generated synthetically to in-
crease diversity of the minority class and address data imbalance [85], 86}, 87, 84 [88], [8I] while
others rely on publicly available data [6]. These approaches present further challenges re-
lating to the reliability, accuracy, and replicability of results [30, 85, [86, [87, [84], 88, [89]. De-
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spite the challenges of gathering high-quality labelled data, Theissler et al. find that most
machine learning research explores supervised solutions, a finding supported by our own
research [30]. Future research should therefore explore unsupervised or semi-supervised
solutions to existing challenges and the best approaches to engage domain experts and
process owners in collecting high-quality labelled data.

Social sustainability and workforce digital skills being the most common topic in the In-
dustry 4.0 management literature [67) 39, 48|, 68, 69, 47]. Some researchers explain the
slow adoption of industry 4.0 due to the limited availability of skills, poor change manage-
ment, and a lack of organisational knowledge. Other researchers further suggest that this
problem is not as simple as just a skills shortage but that the Industry 4.0 paradigm at
its core is not well aligned with social sustainability goals [39]. There is some evidence to
support this claim, and while social sustainability and workforce digital skills are one of
the most common topics in the Industry 4.0 management literature, little consideration is
given to the social impact of machine learning solutions when developing and implement-
ing real-world manufacturing. No papers in the reviewed literature explore the qualitative
or quantitative impact of automation on workplace experience, and a lack of structured
frameworks exist to support the implementation of these systems in a socially-sustainable
way. This finding is supported by prior research in computer vision systems in manufactur-
ing [24]. Future research should consider using questionnaires and face-to-face meetings to
understand the social impact of machine learning and its associated technologies on both
management and line workers.

The available research suggests that an effective solution to overcome both the technological
and organisational barriers of machine learning innovation is to begin by exploring short-
to-medium term innovation pilots to implement human-in-the-loop analytics projects that
focus on improving workplace experience rather than on headcount reduction. Human-in-
the-loop innovation in data analytics has been shown to deliver high economic returns [3§].
More importantly, it builds organisational knowledge and improves trust in these systems,
thereby encouraging further innovation and replication of these technologies [38]. This
human-centric approach to innovation addresses organisational and technological barriers
associated with developing and implementing Industry 4.0 technologies.

Companies beginning the journey towards increased automation and digitisation who are
unsure where to focus efforts should explore human-in-the-loop innovation in systems and
technologies for which considerable research is available and the value proposition is eas-

ily quantified. Predictive maintenance of manufacturing systems and computer vision for
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quality assurance are the most widely researched topics in the reviewed literature with a
wide range range of use cases presented. A research gap is identified in understanding
the social impact on line workers who may be displaced by automation and digitisation.
The author suggests that future research in automotive manufacturing settings focus on
implementing real-world solutions of predictive maintenance and computer vision. This
research should focus on understanding the end solution’s economic impact and measuring

the social impact on the workforce through surveys.

2.6 Conclusion

This systematic literature review applies a rigorous search methodology to provide a com-
prehensive overview of the machine learning technologies and practices currently used in
automotive manufacturing environments and the barriers to their development and imple-
mentation. In answering this research question, a range of machine learning approaches
are discussed, as well as the most common models researchers use to explore novel man-
ufacturing solutions. Enabling machine learning technologies in manufacturing are also
discussed, including a range of Industry 4.0 technologies such as IoT, Big Data analytics,
Flexible Manufacturing Systems, Digital Twin, Cloud and Edge computing.

Computer vision is the most widely researched topic in the reviewed literature. A key
finding is that while various papers discuss the importance of high-quality training data
[98, 100l 108, 87], few papers include insufficient information on how data are collected,
labelled, cleaned and validated, which often makes these studies difficult to replicate. Re-
serach studies on anomaly detection also often lack information on how threshold limits
are set, making it difficult to replicate these solutions [106] 75, [07]. Future research must
include this information to ensure research is easy to replicate. These findings help guide
our labelling methodologies, threshold limits, and validation approaches in chapters 4 and
5, ensuring our methods could be easily replicated and that our data are validated by
domain experts to ensure the data are of sufficiently high quality.

In addition to discussing the technical aspects of machine learning and their associated
challenges, the cultural and organisational challenges are also discussed. Research shows
that the full realisation of Industry 4.0 technologies is yet to be realised in the manufac-
turing industry, with one of the main barriers being a lack of data science skills [47, 148].
Consequently, there are gaps in organisational knowledge leading to a reluctance to em-

brace emerging technologies due to complexity, technical expertise, and uncertainty of
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investment requirements [38]. The majority of papers in the reviewed literature focus on
proof-of-concept solutions, with few instances where machine learning solutions are imple-
mented in real-world manufacturing settings, with the exception of computer vision for
quality assurance. Future research should give more consideration to the economic impact
of machine learning solutions in order to support the uptake of these technologies in in-
dustry to drive further sustainable growth. This is considered in Chapters 4 and 5 where
two machine learning case studies are presented, each of which gives careful consideration
to the economic aspects of the projects.

Agile methodologies are presented as an effective way to manage machine learning projects
at the process level, however, these project management approaches challenge well-established
methods such as lean, stage-gate, and waterfall methods that are embedded in the automo-
tive manufacturing culture [47, 69 162]. In order to maximize the value creation of machine
learning in automotive manufacturing, research shows that well-structured human-centric
change management approaches must be in place at the early stage of an organisation’s
digital transformation to address these cultural barriers and create an environment that
promotes innovation and develops trust in new technologies [172] [72, [69]. These findings
are used to inform the development of a strategic framework outlined in Chapter 3 which
encompasses change management best practices presented by Kulvisaechana 2001, and fo-
cuses on human-centric innovation to support the future uptake of machine learning and
other Industry 4.0 technologies and practices [116].

A key finding is that limited knowledge of the machine learning requirements at the man-
agerial and process levels are one of the main barriers in the reviewed literature. Re-
searchers find that the limited understanding of the potential value creation and return
on investment of machine learning technologies results in a lack of support in gathering
high-quality labelled data on faults in production environments [30]. This is a common
theme throughout the literature that makes developing machine learning solutions diffi-
cult [30]. Organisations must recognise these cultural barriers and address them through
structured change management strategies supported by high levels of communication of
these systems’ social, environmental, and economic benefits to the workforce [116]. These
research findings are an important consideration in the assessment methodology presented
in Chapter 3 which ensures the involvement of management throughout all stages of the
assessment process in order to transfer knowledge on machine learning and Industry 4.0
technologies. Furthermore, these findings also led to the development of 'Bite Sized Train-

ing’ as a secondary outcome of Chapter 3, in which short training content is developed
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for senior management to further address the knowledge gaps that present a barrier to
machine learning uptake.

In addition to education and training efforts, the available research suggests that an effec-
tive solution to overcome cultural and organisational knowledge gaps of machine learning
is to explore short-to-medium term innovation pilots that focus on improving workplace
experience rather than headcount reduction. Human-in-the-loop innovation in data ana-
lytics has been shown to deliver high economic returns [38]. More importantly, it builds
organisational knowledge and improves trust in these systems, thereby encouraging fur-
ther innovation and replication of these technologies [38]. This human-centric approach to
innovation addresses organisational and technological barriers associated with developing
and implementing Industry 4.0 technologies. Companies beginning this journey or unsure
where to focus efforts should explore systems for which considerable research is available

and ROI can be easily quantified, such as: PdM, quality assurance, and anomaly detection.
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Chapter 3

Industry 4.0 Readiness Assessment

3.1 Summary

The transition to Industry 4.0 and the adoption of machine learning technologies is a
complex process, requiring organisational changes that challenge well-established business
practices. Increased levels of digitalisation and automation will present new social chal-
lenges and require careful change leadership to maintain an innovative culture that supports
ongoing digital growth. Ford Motor Company recognises these changes, however, there are
gaps in the current Industry 4.0 strategy to guide low-level changes at the factory level.
To address these challenges, this chapter presents a strategic framework to support man-
agement at the factory level in guiding digital growth. The proposed framework builds
on previous research on Industry 4.0 maturity assessments. It considers technological, or-
ganisational, strategic and cultural aspects, and presents user-friendly tools to measure
progress in these areas against a well-defined benchmark. To design the tool, a wide range
of maturity models are critically reviewed and reserach is conducted into best practices in
maturity model design and questionnaire design.

The assessment tool is used to perform three assessments at Ford’s UK manufacturing
sites. These findings are compiled in this chapter to provide a comprehensive assessment
of digitalisaion and automation strategy across Fords UK operations. The key findings
of this research highlight growth opportunities in various aspects of the business strat-
egy. Skills gaps are identified in IT and data analytics which present a barrier to IoT
development and implementation and prevent the site from maximising value creation

of existing data sources. A lack of metrics surrounding digitalisation and automation is
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discussed, making it difficult to measure progress towards the company’s own long-term
digitalisation objectives. It is also highlighted that while most sites are quick to identify
and replicate technological successes, less consideration is given to organisational innova-
tion opportunities, and further cultural barriers prevent strategic-level innovation changes.
These findings are discussed in detail, and various innovation projects, project manage-
ment tools, and strategic changes are proposed to overcome these barriers to innovation.
The assessments resulted in various outcomes that have had a direct impact on the com-
pany. Some of these proposed innovation projects have since been implemented at the
company, and are also described in detail as well as their impact on the company. For ex-
ample, one of the assessments identified an opportunity to create further value from AGV
monitoring data and error logs. This resulted in a short-term data science project that
provided on-site innovation teams with new insights into the route causes of AGV errors,
as well as direct actions that could be taken to mitigate these instances on-site and reduce
cycle times of material handling processes on site. Furthermore, these findings were also
used to update the company’s simulation models to improve the accuracy of AGV simu-
lations when planning future replication of these technologies. This is but one example of
the numerous projects that resulted from the research in this chapter.

The value of these assessments to measure and guide Industry 4.0 strategy as the com-
pany continues to expand into EV markets is been recognised by Ford Motor Company
who have since adopted the assessment methodology as an internal tool to perform regular
assessments at European manufacturing sites. The Simulation and Process Optimisation
team at Ford’s R&D Center in Dunton, UK has taken ownership of this tool with plans to
perform further assessments at Valencia and Cologne manufacturing sites. In addition to
full assessments, the company also uses the questionnaire as a means of measuring ongoing
progress following the initial assessment by comparing responses change over time. This
provides senior management with a new way to assess cultural changes at the factory level,

something that had not yet been explored within the company.

3.2 Introduction

Industry 4.0 brings tremendous growth opportunities through increased automation, dig-
italisation, and business intelligence. Research shows that companies focusing on data-
driven solutions deliver higher productivity than other companies [26]. However, man-

aging the transition towards implementing highly automated data-driven manufacturing
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solutions can be challenging. This is particularly true during the early stages of digital
transformation as organisations may not yet understand the value add of emerging digital
solutions. Prior research into measuring progress towards Industry 4.0 in the manufacturing
sector finds a lack of clear metrics devoted to key Industry 4.0 technologies such as digital-
isation, automation, cyber security, talent acquisition, and data analytics [177, 178, 179].
This lack of metrics and limited organisational knowledge makes it difficult to estimate
the ROI of emerging Industry 4.0 technologies, and as a result, organisations are often
reluctant to invest in digitalisation as the economic benefits of individual investments are
often unclear [I80]. This has resulted in a strategic dichotomy in Ford’s UK manufactur-
ing sites, where long-term business objectives envision a highly productive and automated
Smart Factory, while risk-averse investment strategies at the factory level prevent the high
levels of innovation and digital growth required to realise this vision. The shift towards
Industry 4.0 practices is not only driven by investment in new technologies, but also re-
quires a changes in business strategy, organisational structure, and workplace cultures.
This presents further challenges, long-term objectives in these areas are more difficult to
define and progress is difficult to measure.

At Ford Motor Company, there are multiple business strategies to guide digitalisation and
automation strategy. The 'Factory of Tomorrow’ is Ford’s equivalent of the 'Smart fac-
tory’” discussed in Chapter 2, and outlines the company’s technological vision of a highly
automated manufacturing site. In the EU, Fords Powertrain Manufacturing Engineering
(PTME) team oversees the launch of new production lines with a dedicated Industry 4.0
team to guide and support digitaliaiton and automation solutions such as IoT, AGVs, and
collaborative robotics. To guide changes in workplace culture 'Ford+’ presents a com-
prehensive list of the behaviours and values that are required to ensure the success of
organisational changes. Despite these various high level strategies, visions, and business
units, this research finds that Fords UK manufacturing sites are not well aligned with these
objectives. Senior management report that while they are aware of these long term goals,
they lack the low-level step-wise strategies and roadmaps to drive changes at the functional
level.

These challenges are not limited to Ford Motor Company. Considerable research has been
done to address these challenges across the manufacturing industry to support organisa-
tional change, with much of this research focusing on developing Industry 4.0 maturity
assessments [12] 40, [41) [42] 43| 144) [45] [46]. Industry 4.0 maturity models are presented

as a tool that businesses can use to quantify digitalisation progress and understand their
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current maturity compared to a well-defined benchmark. Assessment tools also present
opportunities for management to justify investment portfolios, improve project manage-
ment, better understand strengths and weaknesses, learn from past mistakes, and review
business strategies [I81]. However, upon reviewing existing Industry 4.0 maturity tools and
exploring how previous maturity models have been used at Ford Motor Company, it was
found that existing tools are not well suited to deliver these goals in automotive settings.
Existing tools lack clear guidance on the step-wise process of performing a self-assessment.
For example, current maturity models lack information on which personnel should carry
out the assessment, the scope of the assessment, what levels of management should par-
ticipate, how many people should participate, and how long the assessment should take.
Without this information, applying these assessment tools in large multinational organisa-
tions is challenging, particularly in organisations at the early stages of their Industry 4.0
transformation. Previous research has shown that companies tend to assume their Indus-
try 4.0 maturity is higher than it actually is [46], a finding supported by our research at
Ford Motor Company. Therefore, without clear, detailed guidance on correctly performing
a given maturity assessment, results may be skewed by confirmation bias in favour of the
optimistic perception of current readiness, leading to roadmaps that miss key growth op-
portunities. Furthermore, existing assessment tools cover a very wide scope, often aiming
to be used by multiple organisations and industries. While this approach may be useful
in providing high-level strategic guidance, it fails to provide specific low-level actions to
enact change and develop a roadmap to Industry 4.0.

To address these challenges and address gaps in Ford’s Industry 4.0 strategy, this chapter
presents an Industry 4.0 assessment tool aimed at automotive manufacturers. This tool
addresses gaps in the company’s current strategy to deliver Industry 4.0 and drive digital
growth at the factory level following Ford+ objectives. The assessment tool was developed
by critically reviewing a wide range of existing maturity models and following current best
practices in maturity model design and questionnaire design. The assessment is designed
to be performed over 6 stages, with information gathered primarily through question-
naires and 1-to-1 interviews with employees and management. Assessors are provided with
user-friendly supporting documents with detailed guidance on each process stage. Three
assessments were performed at Ford Motor Companies UK manufacturing sites, including
two engine manufacturing and assembly plants and one transmission manufacturing and
assembly plant. An iterative design process was followed to develop the finalised design

working closely with industrial partners throughout. The company is now using this assess-

75



ment tool to guide Industry 4.0 strategy across Fords European manufacturing operations.
The chapter is structured as follows. Section includes a review of existing Industry 4.0
assessment tools highlighting key research gaps in this field and providing a foundation for

which to develop our own tool. This section also introduces the latest research in maturity

model design and questionnaire design, in sections |3.3.1| and [3.3.1| respectively. Section

describes the methodology used to develop our assessment tool, as well as details of the
iterative design process that led to the final application-ready version.

In Sections and the assessment tool is presented. Section [3.5] includes a descrip-
tion of the 6 stages that assessors should follow to perform an assessment. Each stage
includes information such as required personnel, estimated timelines, scope, legal require-
ments, and other key considerations for industrial applications that previous assessment
tools have failed to consider. This section also includes references to supporting documents
such as questionnaires, scoring tables, and workshop guides.

Section [3.6|includes a detailed description of each of the 11 areas considered in the assess-
ment, summarising the industry benchmark for each respective area. This section is also
intended to be used as a source of further information for assessors to refer to in the scoring
process to assess their findings against the current Industry 4.0 benchmark defined by the
current state-of-the-art literature. These 11 areas of assessment are split into 2 general
focus areas: 'Manufacturing Production’, and 'Strategy, Organisation, and Culture’. Sec-
tion .2 presents the results from three assessments carried out at Ford’s UK manufacturing
sites. Section 7?7 presents the various innovation projects and other outcomes of these as-
sessments and their impact to the company. Based on these combined findings, section 77
outlines the Industry 4.0 roadmap for Fords UK operations to guide further digitalisation

and automation efforts. Finally, research conclusions are presented in section [3.8|
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3.3 Related Research

As outlined in the conclusion of Chapter 2, Industry 4.0 is a new concept with wide-reaching
scope for which academics are yet to agree on a specific definition. Industry 4.0 contin-
ually evolves as emerging technologies, practices and concepts are refined, evaluated and
reassessed. Furthermore, Industry 4.0 is widely described as a vision that varies between
companies based on size, available capital, and industries. Because of this wide-reaching
scope, developing a single tool for any company to use to assess Industry 4.0 readiness is
challenging, and different authors take various approaches.

Some assessment tools address the wide scope of Industry 4.0 by presenting highly gen-
eralised tools that any company can use to provide limited, high-level direction towards
digitalisation and automation [12] [42] [44]. In their 2010 paper, Steenbergen et al. describe
these types of assessments as fixed-level maturity models, which typically cover approxi-
mately 5 key areas of assessment [I82]. This approach is beneficial as an assessment can
be performed by a small team, or even an individual in a matter of hours or days, making
it an approach accessible to a wide range of industries and companies. However, because
this approach is so generalised, many areas of assessment will inevitably not apply to all
companies, which can lead to confusion when performing the self-assessment and any resul-
tant guidance will be limited, and subject to interpretation. Steenbergen et al. argue that
while many of these fixed-level tools are presented as a means of developing a roadmap
to guide future improvements, these tools fall short of these promises [I82]. This idea is
supported by our own research, which finds that when Ford Motor Company has tried to
use generalised tools such as these in the past, the tools have had to be adapted to such
an extent that the comparison with the benchmark is no longer valid, and no actionable
outcomes were identified. This is discussed further in section 3.3.1l

Steenbergen et al. also discuss the second category of maturity models with a narrower
scope, referred to as focus area maturity models. These assessments are specific to a partic-
ular functional domain within an organisation and are more useful for identifying specific
actions to make improvements [I82]. Since this research was published, a wide range of
maturity models have been introduced that blur the lines between Steenbergen’s descrip-
tion of fixed-level and focus area maturity models, however, in general, those more narrow
in scope tend to provide clearer guidance to develop a roadmap to increase the maturity
of any given area [182].

An alternative approach is to develop an assessment methodology that can be tailored to

the desired scope and Industry 4.0 vision of the company that is being assessed. Only 2
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such assessments have been identified in the literature, both produced by private compa-
nies for which limited information is available [40} [41]. Assessments following this approach
will take considerably longer to perform due to the added complexity of defining the In-
dustry 4.0 vision, and providing specific guidance on multiple areas of operations and how
to overcome existing barriers. This requires the team of assessors to develop a strong un-
derstanding of the Industry 4.0 vision of the respective departments, as well as support
from senior management to commit these resources and review findings. Some external
providers that offer assessments of this type dedicate 3-5 months to gathering this infor-
mation [40], while others provide self-assessment guidance on how to effectively gather this
information internally through workshops and guided questionnaires [41].

An example of a fixed-level tool is the Warwick University Industry 4.0 Readiness Tool
developed in collaboration with Crimson & Co and Pinsent Masons adopts an intuitive self-
assessment approach that requires the assessor to review tables of varying readiness criteria
for various aspects of business and rank these aspects from 1 to 4 [12]. The assessment
covers 6 different areas of business including products and services, manufacturing and op-
erations, strategy and organization, supply chain, business model and legal considerations.
Each of these sections is in turn, broken down further into sub-dimensions resulting in a
total of 37 different areas for a business to rank its Industry 4.0 readiness. The tool itself is
simple to use and includes the results of 53 other assessments performed on a wide range of
companies for assessors to compare the results of their assessment to other similar compa-
nies [12]. However, a major challenge of this tool lies in its simplicity. The sub-dimensions
in this tool each include single-sentence descriptions of the requirements for a company
to achieve level 1, 2, 3 and 4 readiness. The vague nature of these descriptions makes it
challenging to accurately rank a business as a whole as there are likely to be some areas
of the business that meet level 4 descriptions, while others that are yet to achieve level 1.
This is particularly true for Small and Medium Enterprises (SMEs) for whom many of the
sub-dimensions are irrelevant [I83]. Removing sub-dimensions in the assessment makes
it difficult to assign scores and compare maturity with the benchmark. Researchers have
addressed the difficulties of Industry 4.0 assessment in SMEs and presented alternative
tools specifically for these smaller organisations [183], and [184]. Despite its limitations,
the Warwick assessment tool has been highly cited and other studies have since adopted
this style of self-assessment [I85]. In contrast to the Warwick assessment tool, Engineering
USA present an Industry 4.0 assessment that is designed to be more flexible, tailored to

the client’s 3-5 year vision of Industry 4.0 and designed to be carried out over a 3-5 month
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period [40].

Engineering USA is a private company that offers Industry 4.0 consulting services. Al-
though this assessment was developed to be provided as a private service, and therefore
does not share the full details of the assessment process, it does contain useful information
on their general methodology, outlined in their white paper and website [40]. The assess-
ment is designed to maximise production metrics such as quality and throughput through
the use of digital tools, as well as focusing on the effective utilisation of data on the manu-
facturing floor, and integrating these data throughout different levels of the organisation.
Furthermore, emphasis is placed on digital manufacturing technologies such as simulation,
[oT, process monitoring and control, and system integration. From the information pro-
vided, the assessment does not appear to address other key aspects of Industry 4.0 outside
of production settings such as human resource management, management practices, and
supply chain. This approach is extensive, requiring significant time and personnel com-
mitments by both parties to plan, scope, write up, and review findings to deliver a clear
actionable roadmap.

A tool that sits in between the simple and user-friendly Warwick assessment, and com-
prehensive Engineering USA assessment is the Acatech Industry 4.0 Maturity Index [41].
Acatech is a national academy in Germany which specialises in delivering science and en-
gineering advice to policymakers, businesses, and society through independent research.
Acatech’s tool for assessing Industry 4.0 readiness is described in a six-stage ”Maturity
Index” focusing on 4 main areas of the business: Resources, Information Systems, Organ-
isational Structure, and Culture. The process is split into 6 stages designed to be carried
out step-by-step over several years to guide companies towards implementing some level of
autonomy and self-optimisation in production settings. Similar to the Warwick University
assessment, Acatech’s tool provides a single, generalised document that any company can
use as a self-assessment to support the development and integration of digital technologies
in production. Acatech takes a highly qualitative approach, describing in detail their vision
of Industry 4.0 and how each stage of deployment will create value for the company using
real-world examples and case studies to demonstrate how these stages can be applied in
various environments.

The six stages towards Industry 4.0 maturity described in the Acatech tool are related
to data strategy and include: Computerisation, Connectivity, Visibility, Transparency,
Predictive Capacity, and Adaptability. As described by these stages, the main focus of

this report is on the effective collection, integration, and utilisation of data. The report

79



also includes limited guidance on the necessary approaches to change management in this
journey towards flexible production environments, highlighting the need for agile project
management strategies, structured communication channels, revised training programs,
and collaboration.

While Acatech’s report is the most comprehensive tool reviewed in this section, there is a
large amount of detail that is not included such as initial assessment questionnaires, work-
shop guides, estimated time, and a list of required personnel to perform the assessment.
The lack of this information makes the maturity index difficult to replicate in industry.
Many maturity models give few details on the design methodologies used to develop their
tool, with the exception of the DREAMY toolkit [42]. The Digital Readiness Assessment
Maturity (DREAMY) toolkit was developed using the maturity assessment design philoso-
phies presented by Bruin et al. [I73] and incorporates maturity principles proposed by
Carnegie Mellon University in their Capability Maturity Model Integration (CMMI) frame-
work [186]. The CMMI maturity model was originally designed to assess the maturity of
a businesses software development practices against 5 levels of maturity, with a particular
focus on maintenance, flexibility, and innovation and has been widely used by maturity
models focusing on assessing the maturity of software process capability [116, 182, [181].
The DREAMY toolkit re-purposes the five-levels of CMMI to provide a generalised ranking
of a company’s digital readiness by evaluating both the technological and organisational
aspects of the business. Similar to the original work by CMMI, the DREAMY assessment
also focuses on identifying growth opportunities in process control and maintenance.

The DREAMY maturity lacks detail on the specific process a user should take to perform
the self-assessment and what aspects of a business’s operations should be considered in
the assessment. Instead, the DREAMY assessment focuses on addressing an important
research finding from their literature review, in which they state that the majority of prior
maturity models fail to provide detail on the theoretical basis and methodology that was
used to develop the tool.

Another popular and highly cited tool in recent years is the Industry 4.0 Maturity Model
[43]. This maturity model for assessing Industry 4.0 readiness and maturity of manufac-
turing enterprises covers a wide scope, with a total of 62 areas of assessment grouped into
nine core dimensions: Strategy, Leadership, Customers, Products, Operations, Culture,
People, Governance, and Technology. A self-assessed questionnaire is used to rank each of
the 62 areas on a scale of 1 to 5, e.g. "On a scale of 1 to 5, one being strongly disagree and

5 being strongly agree, do you use a roadmap for the planning of Industry 4.0 activities in
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your enterprise?”.

The assessment notes that the model’s accuracy is largely dependent on the participants
having some understanding of Industry 4.0 to understand the questions. This type of am-
biguous questioning is found across many Industry 4.0 maturity models and goes against
the best practices of questionnaire design outlined by Kronsnick et al., which is discussed
further in section m [187]. Schumacher et al. discuss how the ambiguity of key terms
and other knowledge gaps between the assessor and participants can be addressed through
either external consulting or group sessions prior to the questionnaire [43].

The Industry 4.0-MM provides a high-level description of the 5 levels of Industry 4.0 ca-
pability by presenting a range of technologies and best practices. Similar to the Warwick
university assessment tool, without a clearly defined scope and guidance to apply this as-
sessment assessors may unintentionally cherry-pick examples from more innovative areas
of a business, particularly in larger organisations, which may make it difficult to identify
opportunities to further develop such topics within less mature areas of an organisation.
Assessment tools such as the TDWI assessment that are more narrow in scope tend to give
more consideration to supporting materials, such as personnel requirements, user guide-
lines, ISO documentation [44] [18§].

The TDWI maturity assessment uses a series of questions to rank five general areas of as-
sessment: Organisation, Data Infrastructure, Resources, Analytics, and Governance. This
assessment has a narrow scope, focusing specifically on these five areas within the context
of business intelligence. By narrowing the scope, the assessment ensures that those taking
ownership of the tool will likely have the required domain knowledge to act upon any op-
portunities identified in the process.

The TDWI maturity tool improves upon other assessment tools by providing some infor-
mation and guidance on who should take the assessment, stating that it should be used by
business and IT professionals involved in both new programs for analytics and older pro-
grams. This is beneficial when compared to other more general tools where findings might
lay outside of the area of expertise of the assessor which can make it difficult to interpret
results and develop a roadmap to guide organisational improvements. The TDWI approach
also improves on other questionnaire-based assessments by including a short assessment

guide to help assessors interpret results and highlight some potential areas for improvement.
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Table 3.1: A comparison between the various existing approaches to assessing the Industry

4.0 readiness of a company. *Limited information available.

Assessment Areas of Assessment
Name Focus Method Advantages Disadvantages
Production
BI Lack of information in
Supply Chain Simple, yet holistic each of the criteria
‘Warwick Strategy Self-assessment coverage of the key makes it difficult to distinguish
Uni Management Scoring matrix themes of Industry 4.0 between levels in many areas.
Comprehensive review to Limited to manufacturing
define a roadmap to aspects of the business
External implement digital manufacturing and doesn’t address many
Engineering Production Certified solutions with long-term other key themes
USA* BI Practitioner vision of Industry 4.0
Development
Production Key details for
Logistics Highly detailed supporting self-assessment not included
Services Third Party material with examples i.e. questionnaires, required
Acatech Marketing Assisted and case studies. personnel
Design
Production Highly generalised.
Quality Lacks detail on the
Maintenance specific process to
DREAMY Logistics Self-assessment Detailed design methodology perform the assessment
Management
Customers Lack of supporting
Products materials, i.e.
Industry 4.0 Culture Self assessment questionnaires,
-MM Technology Questionnaire Detailed scoring methodology assessment process
includes an assessment Lacks detail on the
BI Self assessment guide to help assessors specific process to
TDWI Analytics Questionnaire interpret results perform the assessment
Self-assessment
Scoring matrix general and
SIMMI 4.0 IT Systems Questionnaire Includes supporting material abstract questions

3.3.1 Assessment Tools Limitations

The tools outlined above assess different aspects of an organisation’s Industry 4.0 maturity,
some focusing entirely on specific Industry 4.0 goals like business intelligence, while others
cover a much broader scope. Of these reviewed maturity models, the Acatech tool provides
the most detailed direction to the reader on the specific steps to take to apply the tool
and perform an assessment of a business [41]. However, these directions still lack key
information such as which specialities should carry out the assessment, what levels of
management should participate, how many people should participate in each of the stages,
how long the assessment should take, ect. Furthermore, the methods used to score a plant’s
maturity are complex compared to other tools. Although this is designed to give a more
tailored roadmap than other tools, this complexity and the lack of supporting information
make this tool not user-friendly. Research by Schumacher et al. finds that maturity models

tend to fail if they are too complex [43]. On the other hand, Steenbergen et al. discuss
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that while simpler tools with generic fixed maturity levels can be useful to benchmark
companies, they are not well suited to highlighting opportunities for improvement [182].
Overall, the evidence suggests that although Industry 4.0 maturity models are widespread,
these models do not lead to improved project success or other quantifiable improvements
within the respective organisation to gain a competitive advantage [181].

In the past 5 years, two instances were identified where Ford Motor Company has used
maturity models to guide Industry 4.0 strategy: Warwick University Assessment, and
TDWI. In both cases, the application of these tools failed to result in any actions taken.
Upon investigating this with those involved in the assessment, two main reasons were
identified for this: 1. The feedback from the tools was too general, 2. The assessment
did not have input from senior leadership to support proposed changes. For example,
the findings of the TDWI assessment found opportunities for growth in the ’Organistation’
section. This was presented in a score out of 20, and the information in the assessment guide
was limited and too general to draw identify specific actions. As a result, the assessment
relied heavily on the experience and knowledge of the assessor to interpret this score and
identify actions through their own extensive literature review. This process is not only
time-consuming, but the action items identified required input by persons in more senior
management positions than suggested by the TDWI guidance. For these reasons, it is
critical that senior management who have the power and influence to enact some level of
organisational change, however small, are included at some level in the assessment process.
This involvement is required to ensure the assessment is performed within a clear scope
for which changes can be implemented, as well as delegating key tasks within the relevant
teams to deliver this.

Similar results resulted from using the Warwick Uni assessment at Ford Motor Company’s
Bridgend Engine Assembly plant. The tool was again found to be too general to provide a
clear roadmap for change and also failed to address key areas of interest, a finding which
supports research by Steenbergen et al. [I82]. To overcome this, the assessor attempted
to add their own areas of assessment based on the design principles of the tool, as well as
removing several areas that did not apply. This resulted in biased and skewed scores and
the results of the assessment presented to senior management were very high compared to
the Industry 4.0 benchmark, despite our own assessment identifying multiple areas where
on-site technology and organisation fell below the current Industry 4.0 outlined in Chapter
2. In this instance, the lack of guidance and direction of the Warwick University tool led to

a clear selection bias and confirmation bias by the assessor. This is supported by previous
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research finds that companies have a tendency to assume that their Industry 4.0 maturity

is higher than what is calculated using questionnaire-based maturity assessments [46].

Types of Assessment Tools

In their 2005 paper titled "Understanding the Main Phases of Developing a Maturity As-
sessment Model’, Bruin and Freeze review several popular assessment tools and present a
single methodology outlining the main phases of developing these models [I73]. Since then,
this methodology has been used by researchers to develop a wide range of Industry 4.0 as-
sessments [42) [116] 182]. Bruin and Freeze argue that any maturity assessment tool fits
into 3 general categories: descriptive, prescriptive, and comparative [I73]. A descriptive
tool is used to define the current state of a business, providing no means of improvement
or relationships between the current state and key performance metrics. The Warwick
university tool is an example of a purely descriptive tool. A prescriptive tool provides
further insight into how the current state of a business relates to key performance indica-
tors, highlighting which areas can be improved to deliver value. The Acatech tool is an
example of a prescriptive tool, focusing on developing a roadmap to add business value
through Industry 4.0. Finally, a comparative model compares maturity across industries,
providing insight into the differences in business practices between industries and how this
relates to value generation in disparate industries. A comparative model requires many
assessments to be carried out across various industries to gather sufficient data to draw
these relationships.

Bruin and Freeze suggest that these different types of tools also describe the evolution and
design phases of a maturity model. As a descriptive tool is used to gather an in-depth
understanding of maturity within a specific domain, this knowledge can provide guidance
and insight and evolve towards a prescriptive model. As this model is improved it can
be used across domains to become comparative. Fach of these different types of tools has
its uses. For example, a single comparative maturity rating is useful to benchmark and
track progress across organisations, but in large multinationals, different business functions
will vary in their organisation, strategy, culture, and technological readiness. Therefore,
at the functional level, the same comparative tool may give very different results. This
is a common challenge with generalised assessment tools where opportunities for localised

improvements may be overlooked or roadmaps may only apply to certain functional areas
[182].
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Questionnaire Design

Most assessment tools rely on some form of questionnaire as a primary information gath-
ering source [189] [44] [46], 190], 45], often relying entirely on score-based questionnaires to
provide final scores on various aspects of operations. Despite the wide use of question-
naires, few maturity models include details on the design frameworks or methodologies
used to guide the design of these questionnaires. Without full details of the processes used
to communicate the questionnaire to participants, and without the questionnaire itself, the
accuracy of these maturity models is difficult to assess.

Only one data analytics maturity model was identified where the authors describe how
their questionnaire was designed in which researchers studied 4 other questionnaires from
related maturity models to develop their self-assessment [45].

In 2018, Kronsnick et al. published 'Questionnaire Design’, a book detailing best practices
on designing questionnaires for research purposes and has since been highly cited by re-
searchers [187]. Krosnick et al. state that questionnaires should use simple, familiar words,
avoid ambiguous meanings that different respondents may interpret in different ways, and
avoid general and abstract questions [I87]. Of the reviewed maturity models for which
questionnaires are openly available, some do not follow these best practices [46, 44]. This
is especially true for fixed-level maturity models for which questionnaires are highly gener-
alised so they can be applied to a wide target audience across multiple industries. Research
also shows that as they become increasingly fatigued, respondents are more likely to select
answers presented early in a multiple-choice list which can impact the reliability of a ques-
tionnaire [I87]. The effects of fatigue become more prominent in lengthy questionnaires or
as questions become more difficult [I87]. However, this can be minimised by ensuring items
at the very beginning of the survey bear a strong connection to the topic and purpose of
the overall study [I87]. The TDWTI questionnaire is an example of a very long and complex
questionnaire with over 100 questions with many detailed multiple choice answers [44].

In practice, previous Industry 4.0 research has shown that high questionnaire response rates
can be achieved by ensuring that the questionnaire is sent from an institutional email, with
follow-up emails to chase up results after 2 weeks [I91]. Frank et al. also suggest liaising
with industrial partners to ensure the technical language of the assessment is aligned with
that of the company, as well as getting multiple responses from each functional area that
is considered to avoid common method bias [191].

A common finding among Industry 4.0 assessment questionnaires is the use of closed ques-

tions with ranked answers from 1 - very low / strongly disagree, to 5 or 7 - very high/
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strongly agree [191], 44], [190] or multiple choice answers with detailed descriptions for each
answer [44 [189]. Krosnick et al. find that the optimal number of points on questionnaire
rating scales is most often a 7-point scale for visually administrated questionnaires [I87].
Most assessment tools and Industry 4.0 readiness studies avoid using text input descrip-
tive answers or rely on face-to-face interviews or workshops to gain further insights into

questionnaire responses [181], [68], [48].

3.3.2 Summary of Key Findings

To conclude, a wide range of Industry 4.0 maturity models are presented in the literature
ranging from highly specific focus area assessments that focus on specific functional ar-
eas [44) [46], to highly generic fixed-level assessments that cover Industry 4.0 as a whole
[189, 190, 42, 12, 43]. Regardless of scope, all of these tools consider both the adoption
of emerging technologies and how these technologies should be coordinated strategically
throughout the businesses to deliver Industry 4.0 objectives. This focus on strategy, organ-
isation, and culture is a reoccurring theme throughout all tools referring to various themes
discussed in chapter 2, including: vertical and horizontal integration, change management,
shifts in culture, and agile management approaches.

Another common theme throughout existing tools are challenges of measuring short-term
quantitative progress in areas relating to increased automation, digitisation, and data
utilisation. Therefore these tools rely heavily on qualitative assessment often through self-
assessed questionnaires. The use of questionnaires also ensures the simplicity of the assess-
ment tool, as researchers suggest that maturity models tend to fail if they are too complex
[43]. However, in striving for simplicity and generalisation, most existing assessment tools
lack the key information required to replicate results and apply these assessments in indus-
trial settings. This is particularly the case for the lack of information on the exact process
that should be followed to ensure the right personnel are included in the assessment to en-
sure the scope of the assessment is appropriate to deliver actionable results. In some cases,
researchers also do not include key resources such as questionnaires that are required to
apply their proposed assessment methodologies in practice [41] [43]. Assessment tools such
as the TDWI assessment that are more narrow in scope tend to give more consideration to
supporting materials, such as personnel requirements, user guidelines, ISO documentation,
[44) [188].

Overall, evidence suggests that although Industry 4.0 maturity models are widespread,
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these models do not lead to improved project success or other quantifiable improvements
within the respective organisation to gain a competitive advantage [I181]. This finding is
supported by the author’s own internal research at Ford Motor Company where previous
attempts to apply these assessment tools have been unsuccessful, and assessors suggested
that increasing the involvement with senior management would have helped overcome this.
To address these challenges, a new assessment tool should tread a careful balance between
being general enough to cover a wide range of growth opportunities relating to technological
and organisational aspects of digitisation and automation, while also being specific enough
that the quantitative results can be interpreted by the user to provide clear direction for
improvements within these areas. This balance must also be achieved through a simple,
user-friendly design and should include supporting documentation to provide details on
the exact process that should be followed to complete the various stages of the assessment.
Based on the available literature, the best approach to deliver this is a flexible methodology
that can be tailored to meet the goals and requirements of the organisation, similar to those
used by private consulting firms [40]. The assessment should consider using questionnaires
sent to a large and diverse sample, including multiple people in each functional area to be
assessed with clear direction to the assessor on selecting the appropriate participants [191].
While they are a useful information-gathering tool, questionnaires should not be the only
method used to gather information and assessors should also make use of workshops, site
visits, and face-to-face interviews to discuss opportunities and previous successes relating

to technology adoption, business strategy, and culture [41], 40, 197].
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3.4 Methodology

The end goal of this research is to develop a tool for Ford Motor Company and other
engine manufacturers to self-assess their Industry 4.0 readiness. The proposed tool should
compare current technologies, and practices against a pre-defined Industry 4.0 benchmark
so that areas falling short of this benchmark can be identified. Once identified, the pro-
posed tool must also provide specific actions and guidance to senior management to help
develop a roadmap to support the transition to increased digitalisation and autonomy.
The proposed tool should be easy to use and adaptable so that it can be tailored for use
at different Ford sites and other companies where the scope and Industry 4.0 vision may
vary. With these aims and objectives in mind, a detailed prescriptive assessment tool is
presented that focuses on qualitative assessment to be carried out over multiple stages.
This research was carried out through close collaboration with senior management at Ford
Motor Company to ensure the tool is well suited for industrial application.

The final tool is designed to be conducted in five stages of assessment, including a kick-off
workshop, questionnaires, one-to-one interviews, assignment of scores, and a de-brief work-
shop. Each of these stages is discussed in detail in section in which the full assessment
tool is presented. This section describes the design process that was used to develop this
proposed assessment tool and outlines the motivation for this 5 staged structure based on
research findings from both the academic literature and through collaboration with indus-
trial partners. It is discussed how this unique assessment structure overcomes challenges
of previous maturity models to result in an assessment that results in a specific roadmap

towards Industry 4.0.

3.4.1 Design Approach

The proposed assessment tool is developed using design principles by Bruin and Freeze,
and involves splitting the design phase into 5 stages: inception, elaboration, construction,
deployment, and adaptation [I73]. These design stages are the foundations on which the

stages of assessment are developed.

Phase 1: Inception

In the inception phase, an in-depth literature review of Industry 4.0 is conducted, as pre-

sented in Chapter 2 and section[3.3] A second shorter review was also conducted to identify
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Research into key themes of Industry
4.0 and other assessment tools.

Based on the latest research,
define the aims and scope of the
assessment for a specific site.

1. Inception

Elaborate

Collect feedback on the [ASGAEIEN
assessment and adapt the

tool accordingl )
ey Revise the assessment tool

through a series of workshops,
interviews, and discussions.

Deployment

Use the revised tool to
perform an assessment and
deliver findings.

Figure 3.1: An iterative approach was taken when designing the assessment tool, using

feedback from industrial partners to guide the design process throughout.

other Industry 4.0 assessment tools, discussed in section [3.3] The information gathered on
common themes, research gaps, current state-of-the-art technologies, and proven maturity
model methods are then considered in the initial development of the first iteration of the
assessment tool.

During the inception phase, the authors toured two of Ford Motor Company’s engine manu-
facturing and assembly plants at which the assessment was to be carried out. The site tours
were led by production engineering managers and other senior managers to understand the
current technologies and practices on the line, identify any pilot innovation projects, and
get some understanding of the long-term vision that managers had for different areas within
the plant. In addition to these site tours, meetings took place with production managers
and senior managers to understand the existing technologies, strategies and culture within
the engine plant. These informal conversations provided considerable information that not
only helped guide the design of the tool but also was used to a large extent in the final
report following the assessment. This was also true for further conversations with industry
partners in the construction and adaptation phases.

Given the value of these conversations in identifying Industry 4.0 readiness, it was decided
early on to rely on one-to-one meetings with key personnel as our primary information-
gathering stage of the assessment. While this method of information gathering is much
more time-consuming than other assessments, this approach enables a large amount of

specific information to be gathered to provide detailed insight into the differing cultures
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between departments, organisational barriers, investment opportunities, and novel inno-
vation projects identified during the interview process. This approach of using meetings
and interviews has been successfully used by other maturity models that use meetings in
selected parts of the assessment process [41) [68]. Schuh et al. suggest including group
sessions prior to the information-gathering stages to address knowledge gaps, define key
terms, and work with management to guide the scoring process using guided handouts
[41]. Boavida et al. use interviews with experts in automotive R&D to understand trends

in automation technologies in the automotive industry [68].

Phase 2: Elaboration

In the elaboration phase, the knowledge gained in the inception phase is applied to develop
a first iteration of the assessment tool. It was decided to incorporate multiple elements
of different maturity models such as questionnaires, qualitative ranking tables, and group
sessions into a single assessment that is designed to be carried out in multiple stages,
each stage diving deeper into information gathered from those previous. FEach of the
stages include detailed supporting material to provide guidance and direction for assessors
throughout the assessment process. These supporting materials also provide definitions of
key terms with real world case study examples to clarify any ambiguity. In order to narrow
the scope of the assessment it was decided to focus mainly on data analytics, digitisation,
and automation.

To ensure this interview stage can be conducted within a reasonable time frame, it was
decided to use a questionnaire to identify key participants for the interview stages. This
selection process was done by reviewing responses to questions designed to identify par-
ticipants who are involved in innovation projects, those who regularly use advanced data
analytics tools, those that work with key Industry 4.0 technologies such as cloud com-
puting, discrete event simulation, machine learning, IoT, predictive analytics, automation,
change management. The questionnaire also includes questions relating to the partici-
pant’s views towards innovation and automation to gain insight into aspects of workplace
culture. Management may also identify key personnel to include in the interview stage in
the kick-off meeting.

This approach differs from most maturity models. Our questionnaire is sent out to a wide
range of employees throughout the site rather than a single individual tasked with per-
forming the assessment. By increasing the sample size and diversity of the questionnaire,

participants assessors can see how responses vary between departments and functional
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teams and highlight specific opportunities for improvements through direct comparison of
results. The questionnaire is developed by applying best practices in questionnaire design
outlined by Krosnick et al. [I87] as well as more specific guidance on Industry 4.0 ques-
tionnaires presented by Frank et al. [I91]. Furthermore, inspiration is drawn from other

assessment tools for which questionnaires are available [189] 44] [46), 190], 45].

Phase 3: Construction

In the construction phase, the author worked closely with Ford Motor Company to review
initial tool designs through a series of workshops and discussions, continually iterating the
tool’s design. This design phase focused less on developing and incorporating research
findings and theoretical frameworks, but instead on the tool’s usability in an industrial
setting. For example, it was decided to include a planning stage at the beginning of the as-
sessment process to provide time for administrative activities such as scheduling meetings
with stakeholders and communicating the project to the relevant union representatives. A
suggested participant list is also included in the supporting documentation that includes
departments and individual job roles that should be included in the questionnaire and
interview stages. This ensures that the assessment considers participants across a range of
departments and throughout the management hierarchy. This list of suggested job roles is
outlined in Table B.2]

To ensure the assessment covers both technological and strategic aspects of Industry 4.0,
the assessment is split into two main areas: 'Manufacturing Technology’ and ’Strategy,
Organisation and Culture’. These two areas are broken down into multiple sub-dimensions
addressing key Industry 4.0 topics to assess what technologies are being implemented on-
site to deliver digitisation and automation and how the skills of the organisation’s workforce
are being utilised to create the greatest value from these technologies. To score these areas,
a similar 4-level description to that presented by Warwick University was used, as it was
found to be the most user-friendly [12]. A detailed supporting document is also provided
to elaborate on each sub-dimension to provide assessors with direction and guidance to
assign scores through case studies and supporting research.

In addition to the planning, questionnaire and interview stages, it was also decided to in-
clude two workshop stages at the beginning and end of the assessment that would consist
of senior leadership and other relevant stakeholders. This ensures the involvement of se-
nior management throughout the assessment process while minimising time commitments.

These workshops also provide an opportunity for senior leadership to provide direction on
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specific areas to focus assessment efforts, i.e. investments in new technology, organisational
changes, and workplace skills shortages. This is not to say these are the only areas that
assessors should focus on, but alignment with senior management and key stakeholders on
specific areas of interest and ongoing strategies increases the likelihood that assessment
findings will result in actions taken. This addresses the limitations of other assessment
tools that need to specify who should take ownership of the assessment findings or suggest
how these findings should be used to enact organisational change. A diagram summarising

each of these stages of assessment is included in Figure [3.2]

Phase 4: Deployment

Once the tool is refined, we enter the development stage in which a full assessment is carried
out and our findings are delivered in the required format. This begins with an assessment of
Bridgend Engine Plant (BEP), an engine manufacturing and assembly plant that produced
two engine families. This plant was chosen as these two lines vary significantly, one being
a brand new installation with some of Ford’s most advanced manufacturing systems, while
the other was decades old and approaching the end of it’s operation. The contrast of
the two lines provided an opportunity to test the maturity model in identifying known
investment and growth opportunities in the older lines, as well as exploring state-of-the-
art manufacturing technologies and the extent of which current organisational practices
and cultural norms were suited to create the greatest value from these systems. Further
details of the deployment is included in section [3.5]

Phase 5: Adaptation

Upon discussing the results of the BEP assessment findings with senior management and
department managers various changes were made to the tool in order to streamline the
assessment process, make information gathering more efficient, and ensure the results were
presented in a suitable format for senior management to use to guide future changes. A
discussion on suggested tool modifications is included in the de-brief workshop in which
all workshop participants are encouraged to critique the methodology in order to make
improvements for future assessments elsewhere in the organisation. The author notes that
limited information on the actual implementation of the proposed changes will be available
at this stage and therefore the conversation should be focused on the assessment process

and not the proposed roadmap. The assessors should take notes on this feedback and
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included a section in the report for future assessors to consider during their own respective

planning phases.

» Select organisational function to assess

» Identifying key stakeholders

+ Union considerations

» Estimate Timings

. * Travel planning (site visit)

Planning Phase + Infrastructure set up (online questionnaires)

* Kick-off workshop with senior management and
other key stakeholders to clarify scope and
objectives.

+ Send out questionnaires to participants
+ Use questionnaire responses to plan interview
+ Not all questionnaire participants need be interviewed

+ 1-to-1 Interviews (in person or web conferencing)

+ Assessors discuss findings

* Assign scores based on scoring matrix

Scores + chort + Reflect on the usefulness of the tool and suggest changes
* ~10-15 page report summarising key findings

+ De-brief workshop with senior management and key
stakeholders to review results, identify action items, and
define next steps

Figure 3.2: A description of each of the six stages of assessment and the key tasks associated

with each stage.
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3.5 An Industry 4.0 Assessment tool for Automotive

Manufacturers

This section introduces the assessment tool and describes in detail the 6 stages of as-
sessment. This section also provides supporting documentation for assessors to use when
performing an Industry 4.0 readiness assessment. The first stage of the assessment is the
planning stage which takes place in the weeks leading up to the start of the assessment
process and mainly includes administrative tasks. Stage 2 is the workshop, in which the
designated assessors meet with senior management to define the scope and objectives. In
stage 3, questionnaires are sent out to the relevant teams to gather key information. In
stage 4, a series of meetings are scheduled to gather further information on any opportu-
nities identified from the questionnaire responses. In stage 5, those leading the assessment
assign scores based on the findings of all previous stages before providing a de-brief of
these scores and findings to senior management in the 6th and final assessment stage. This

assessment process is summarised in Figure [3.2]

3.5.1 Planning

Once a manufacturing facility is identified to perform an Industry 4.0 assessment, some
planning and preparation are required before performing the assessment. Administrative
tasks at this stage may include travel planning for site visits, project scheduling, and
selecting the assessment team, and socialising the project with the senior management
team. It is recommended that at least two assessors are required to deliver the assessment
with some knowledge of Industry 4.0 and change management. The literature review
presented in Chapter 2 covers many of these topics which may be useful to revise the
current state-of-the-art.

For companies and organisations performing their first assessment, it’s important to make
sure the assessment process is aligned with GDPR (or equivalent) rules on fair data usage
and personal information that are required to be gathered in the questionnaire phases.
Consideration should also be given to ensure the assessment process is compliant with
workers union requirements.

If a previous assessment of this type has been carried out by the organisation, assessors

should request to read the appendix of the most recent assessment carried out. This will
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include any details of proposed changes to the assessment tool made by previous assessors.
This step is important to ensure the continued development of the methodology as new
technologies and best practices are identified, as well as ensuring the tool is up to date
with any changes in company strategies.

Weeks

Activity Estimated Time 1 2 3 4 5 6 7 8 9 10
Planning 2-3 weeks

Site Visit 2 days

Kick-Off Meeting <1 day

Questionnaire 3-5 days

Interviews 2-3 weeks

Additional Interviews 1-2 weeks

Scoring / Report Writing 3-5 weeks

Debrief Meeting <1 day

Adaptions 1-3 days

Figure 3.3: An timeline for the assessment to take place was proposed during the planning

phase and agreed during the workshop.

3.5.2 Workshops

This assessment is designed to be extensive, covering 11 different aspects of manufacturing
operations. When performing an assessment, time and resource constraints will make it
challenging to provide highly specific low-level feedback in all of these areas to improve
technological maturity, Industry 4.0 strategy, organisational structure, and culture. There-
fore, a workshop session is included in the initial stages of the assessment. Workshops and
group sessions are a popular approach in previous research to engage senior management
and align the scope with current long-term goals [43], 41].

The aim of the Kick-Off Workshop is to brief the management team on the aims and scope
of the assessment, identify particular areas of interest, and gain support in organising the
questionnaire and interview stages. Including departmental managers and other senior
leadership in the assessment process is critical to ensure any proposed actions can be re-
viewed and acted upon, as well as communicating requirements for wider organisational
change vertically upwards.

The Kick-Off Workshop is an informal workshop chaired by the primary assessor and can
be done remotely or in person and is estimated to take 1 hour. The following discussion

points are suggested to encourage a discussion on current readiness:
e What comes to mind when we think about Industry 4.07
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e What are we excited about when thinking about Industry 4.07
e What are we apprehensive about when thinking about Industry 4.07
e What are the main opportunities for Industry 4.0 on-site?

e What is the current long-term vision of digitalisation and automation on-site? How

are we currently measuring progress towards these goals? How could we improve
this?

e In which areas do we lack metrics and how could we improve this?

In addition to understanding management’s current perception of Industry 4.0 readiness,
this workshop allows the assessors to understand any limiting factors that may affect
the assessment, such as unavailable personnel or time constraints, and adjust the scope

accordingly. The suggested outcomes for the workshop are as follows:

e Clarify Scope: Leadership will already have some understanding of the maturity
of different departments. Understanding this may help assessors focus their efforts
on a particular area of the site from the start. Areas with the lowest Industry 4.0

maturity represent the greatest opportunity for growth.

e Specific Objectives: This workshop provides an opportunity to identify and review
current Industry 4.0 strategies, or Industry 4.0 goals. For example, the site may be
aiming to establish itself as a center of excellence in a specific technology, investing
heavily in a specific emerging technology, or experimenting with new business models.
Understanding these goals of senior leadership provides direction and specificity for
the assessors. If specific goals are identified, assessors should use this workshop to
understand what steps are being taken to realise these goals, how these goals are
communicated on-site, how progress is measured, and how this progress compares to

other sites.

e Suggested Timeline: The delivery time for the assessment largely depends on the
number of assessors, the number of participants to be included, and their availability
during the interview stage. To minimise this time, we suggest that senior leadership
ensure that the requirements of the assessment are well communicated to all partici-
pants to ensure interviews are scheduled within a short space of time. For reference,

an assessment carried out using the finalised tool included 54 participants who were
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interviewed over a 3-week period. Two assessors working 3 days a week took 4 weeks

to finish the report.

e Next Steps: Following the workshop, questionnaires are sent out to all departments
before the interview stage. Input is required from senior leadership to distribute ques-
tionnaire links to the participants. At this stage, key personnel to be included in the
interview stage are likely to be already identified e.g. innovation leads, production
managers, data analysts, and cloud engineers. These interviews can be scheduled im-
mediately, and it should be decided how the remaining interviews are to be arranged
and who takes responsibility for scheduling these meetings. A list of suggested job

roles for various departments is presented in Table [3.2]

Table 3.2: The following suggested interview list was shared with senior management

during the planning phase.

Production and Assembly Engineering | Productivity and Forward Planning

Senior Process Engineer, Engineering Change Coordinator,
Senior Production Engineer, Launch Manager,

Senior Manufacturing Engineer, Forward Planning Manager,
Production Team Manager, Senior Productivity Engineer,
Senior Controls Manager, Senior Industrial Engineer,
Tooling Engineer, Simulation Engineer / Manager,
Systems Engineer, Process Optimisation Engineer

Maintenance and Scheduling Organiser,
Test Engineer
Supply Cain and Inventory Control Emerging Technologies

Supply Chain Manager,
Material Handling Manager,
Inventory Audit Supervisor,
Logistics Manager

Innovation Manager,

IoT Engineer,

Emerging Technologies Engineer,
Data Analyst,

Software Engineer,

Senior Data Analyst

Human Resources

Hiring Mananger,
Training Coordinator

IT

Software Engineer,

IT Manager,

Senior IT Engineer,
Network Engineer,

Cloud Engineer

Quality and Product Development

Senior Quality Engineer,
Quality Engineer,
Quality Manager

Finance

Plant Controller,
Finance Manager,
Finance Analyst




3.5.3 Questionnaires

With the aims and scope of the assessment defined, assessors can begin the information-
gathering stage by distributing the questionnaires. The questionnaire for this assessment
is included in section 3 of the appendix. The questionnaire includes a data protection
statement, followed by a series of questions on key Industry 4.0 topics, including automa-
tion, data analytics, data management, software usage, communication and collaboration,
role and responsibilities, ongoing projects, ect. This information is quick to gather and
provides useful quantitative information to support the qualitative feedback in the final
report. Furthermore, with a sufficient sample, assessors can provide feedback on how cul-
tures vary between departments.

A well-designed questionnaire is a useful tool that many maturity models have relied on
to assess companies against existing benchmarks [43] 44, [45], however, in this assessment,

the questionnaire is also used to prepare for the interview stage.

3.5.4 Interviews

As questionnaire responses are gathered, assessors should review each of the responses and
identify participants who may be able to give insight into specific areas in the scoring
matrix. Due to time constraints, interviews in this research are limited to 30 minutes,
so assessors should also use the questionnaire responses to prepare discussion points and
questions to gather information as efficiently as possible. Any additional questions to the
participant can then be sent in an email after the interview, or follow-up meetings can be
arranged. Interviews may be carried out either face-to-face or remotely.

Given that many participants will be interviewed, it is important for assessors to take
notes throughout the interview stage to make information retrieval easier when writing the
report. After each interview, it is recommended that assessors use the simplified scoring
matrix to assign scores for each individual participant. When writing the report, these will
allow assessors to quickly identify departments and individuals demonstrating high or low
readiness. The simplified scoring matrix is included in the following section.

It is important to note that not all participants will be able to provide information on
all topics on the scoring matrix. Throughout the interview stage, the 'Interview Record
Sheet” can be used to identify areas of assessment where further information is required,
and identify participants to fill these knowledge gaps based on the questionnaire responses.

Assessors should also use the spreadsheet to note down examples of high maturity, low
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maturity, ongoing innovation projects, and opportunities for innovation projects.

3.5.5 Scores and Report Writing

When reviewing the scores of the individual interviews after the interview stages, there will
likely be some variation in the results. Some departments may have higher maturity in
certain areas of assessment compared to other departments. There may also be variations
within departments. Assessors should identify these variations and include this information
in the report to highlight areas of excellence as well as opportunities for organisational
growth, technological innovation, and replication.

Scores are not calculated but rather determined through a qualitative assessment process.
However, averaging the scores across all interviews may be usefull to provide an initial
guide for scoring. Using these initial scores, assessors should use the scoring matrix to
determine if this score is appropriate or not for the whole site. In some cases, further
infomation may be required that what is provided in the scoring matrix. Therefore, this
chapter includes further guidance in section where further detail is provided for each
area of assessment including references to additional academic resources and case studies.
In practice, even with this supporting information, it is unlikely that for a specific area of
assessment, all areas of an organisation’s operations will be perfectly described by a single
maturity level. Therefore, assessors are recommended to select a score which they decide
is the most appropriate fit for the site as a whole and use any discrepancies to highlight
growth opportunities. For example, in instances where a higher score is given, but some
areas of operations fall below this level, this highlights growth opportunities that can be
included in the roadmap. Similarly, areas that demonstrate a maturity level higher than
the final score can be highlighted as replication opportunities to advance other areas of the
business.

The final report is targeted at the management team, and therefore assessors should use
clear, concise language making use of bullet points, graphics, and visualisations of the
results. If any modifications are suggested based on changes in company strategy, or new
technologies, these changes should be included in the appendix. Additional documentation
identified during the assessment process that may be useful for management to enact change
should be included in a separate folder to be distributed with the report. Examples may
include internal documents, process standards, new corporate strategies, and scientific

papers.
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3.5.6 De-brief

Once the report is finished and distributed to the management team, the final stage in
the assessment process useful-brief meeting. The same people who attended the initial
workshop should attend the debrief to discuss findings and identify the next steps. This
is an opportunity for assessors to expand on the findings presented in the report and
answer any questions about the roadmap. Any additional documentation should also be
presented and described. Potential innovation projects should also be discussed and if
feasible, process owners should be identified or assigned. This meeting should also explore
opportunities to improve the assessment tool. Assessors should request feedback from
management teams on how the assessment was conducted and document any feedback to

be used by future assessors.
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3.6 Areas of Assessment

This section includes a detailed description of each area of assessment. Assessors may find
this information useful when preparing interview questions, assigning scores, and iden-
tifying growth opportunities. This section is split into two main areas of assessment:

"Manufacturing Technology’, and "Strategy, Organisation, and Culture’.

3.6.1 Manufacturing Technology Readiness

Industry 4.0 is a technological revolution characterised by highly integrated digital man-
ufacturing technologies, including Big Data analytics, machine learning, IoT, Cloud com-
puting, intelligent robotics, [02]. This section provides detailed information to assess the
current readiness levels of an organization’s manufacturing technologies. This informa-
tion can also be used to help identify examples of current practices that are aligned with
Industry 4.0 goals. This assessment aims not to suggest a complete overhaul of existing
technologies to align with the current Industry 4.0 standard but rather to identify the key
opportunities for growth to support further digitalisation and automation efforts utilising
the existing technologies. This should be achieved by maximising the value creation of
existing data value chains through improvements in data collection, data integration, and
data analytics. Depending on the organisation’s current equipment readiness, some in-
vestment may be required to upgrade existing systems to enable these data requirements.
Manufacturing and Operations are broken down into a total of 6 sub-dimensions: Au-
tomation, Equipment Readiness, Automation of Material Handling, Data Collection and

Integration, Data Analytics, and Cloud Solutions.

Process Automation

Process automation considers both hardware and software automation opportunities. Hard-
ware solutions will often be in relation to automating manufacturing production and as-
sembly processes and the line. These opportunities may be identified during the site
visit. When considering hardware opportunities, assessors should look for examples where
operators perform highly repetitive tasks that could be performed by six-axis robots, col-
laborative robots, vision systems, machining systems, or other hardware solutions. These
systems require high investment, however, they are well-established technologies in auto-

motive manufacturing with clear standards to guide purchasing, infrastructure setup, and

101



Table 3.3: A simplified version of the scoring matrix for manufacturing technology.

Readiness Level 1 Level 2 Level 3 Level 4
Level
Automation Some automated ma- Widespread automation Automation across the Flexible production pro-
chines and processes. of manufacturing process majority of production cesses are managed and
A large number of pro- with evidence of automa- processes, scheduling, controlled by high lev-
cesses are still manual, tion pilots in more com- data management, els of automation with
with no plans in place to plex areas i.e. inventory quality assurance, and widespread data collec-
address this. management, and qual- product testing. The tion to deliver business
ity assurance. workforce largely sup- intelligence.
ports innovation and
automation.
Equipment Significant overhaul of all Few systems have M2M M2M across most ma- The vast majority of ma-
Readiness systems and processes is capability, and multi- chines and systems. chines and systems al-
required to meet indus- ple instances of outdated Some legacy systems ready meet all future re-
try 4 requirements. legacy systems prevent are still in place but quirements of Industry
widespread data integra- workarounds have been 4.0 and are regularly re-
tion. No plans to up- developed to integrate viewed to explore further
date or integrate these these systems and integration.
systems. further  updates are
planned.
Automation Manual material han- Some automation in se- Material handling is AMHS support flexible
of Material dling throughout the lected areas, but rout- mostly automated using production through
Handling business. ing is linear and deliv- AMHS. Inventory man- automated material
ers no product flexibility. agement is supported by handling that adapts
Low digitalisation of in- IoT systems. to changing supply de-
ventory management. mands to deliver a high
variety of products with
high efficiency.
Data Multiple instances of Multiple instances of Comprehensive digital Comprehensive data col-
Collection manual data collection manual data collection data collection through- lection across the entire
and across departments with and integration oppor- out production and business with data inte-
Integration few plans to digitalise tunities. These barriers backroom processes with grated across Cloud plat-
these areas. Data are are well understood, plans to address any forms to enable real-time
not widely integrated. with work ongoing to gaps. Data are widely analysis and business in-
automate and integrate integrated, including telligence.
data collection. those stored and col-
lected on legacy systems.
Data Data is rarely analysed Data collection is very Widespread data an- Cloud-based data ana-
Analytics other than for quality high, but most data are alytics throughout all lytics delivers high lev-
and regulatory purposes. not well used to create departments. Depart- els of process automation
value.  Multiple barri- ments understand what and business intelligence.
ers exist at departmen- data are not being well Multiple pilots are un-
tal levels preventing data utilised with pilots in derway to address under-
analytics. place to address these utilised data.
gaps.
Cloud Some innovation pilot Migration to Cloud- Cloud solutions are Both Cloud and Edge
Solutions projects  exist using based services is part widely used to deliver solutions delivered high
Cloud solutions in more of the current business real-time data analytics levels of data integration,
advanced areas of the strategy, with multiple and high levels of data automation and business

business.

examples of Cloud-based
solutions in place across

the business.

integration, automation
and business intelligence.
Work is ongoing to ex-

plore Edge solutions.

intelligence.
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installation. These automation solutions lend themselves to delivering cost savings through
headcount efficiencies and improving production performance metrics. Other hardware so-
lutions include IoT devices that can digitalise current processes on the factory floor. This
includes systems like handheld tablets or AR systems for improved access to data and
information. These IoT hardware solutions can deliver a wide range of process improve-
ments. IoT solutions generally have a lower initial investment, however, the ROI is often
difficult to calculate as many benefits of these systems are not quantitative. For example,
the IoT systems mentioned above include benefits such as improved workplace experience,
improved data collection, and improved data access, improved ergonomics. To drive dig-
italisation and automation, businesses must have clear digital growth metrics to guide
investment in these systems. This is discussed further in the Investments sub-section.
Hardware automation opportunities to improve material handling, and inventory manage-
ment through technologies such as AGVs, gantries, conveyors, and RFID are considered in
the Automation of Material Handling area of assessment.

In addition to hardware solutions, process automation can also be delivered through
software-based digitalisation and automation solutions. Examples may include automating
reporting processes, automating data-driven Excel workflows, automating data transfer and
data management between software, and automating maintenance scheduling using PdM
and CMB. Software-based automation solutions often add value through time-savings and
reducing non-value-added administration time. Software-based solutions can be challeng-
ing for businesses in the early stages of digital transformation as departments may not
have access to the digital skills in the relevant software to identify, prioritise and deliver
these solutions. The Internal Robotic Process Automation (I-RPA) activity is presented
as an opportunity to support this digital growth. I-RPA is an exercise to be carried at the
department level in which teams review the current digital workflows carried out regularly
and evaluate the potential time and cost savings opportunities and establish the feasibility
of automating these processes. [-RPA is discussed in further detail in section 7?7 .

For both hardware and software-based solutions, the available research suggests that an
effective solution to overcome organisational and technical barriers of Industry 4.0 is to ex-
plore short-to-medium term innovation pilots to implement human-in-the-loop innovation
[70, 36}, 161, 107]. Human-in-the-loop innovation focuses on socially sustainable solutions
driven by an aim to improve workplace experience. It has been shown to deliver high
economic returns as successful solutions not only deliver short-medium term cost savings

and productivity improvements but also contribute to long-term digital growth through
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building organisational knowledge and establishing a workplace culture that supports dig-
ital growth and seeks out innovation [38]. For examples of human-in-the-loop innovation
to deliver automation in manufacturing, refer to Chapter 2, Section [2.5.2

In level 1 organisations, many machines and processes will be controlled using automation
including machining processes, material handling and gantries, however, a large number of
processes are still manual with no plans in place to address this. In level 1 organisations,
both management and employees are resistant to change. At Level 2, assessors should find
widespread automation of manufacturing processes with evidence of automation pilots in
more complex areas such as inventory management and quality assurance. Management
demonstrates a clear drive to automate manufacturing processes but this is mainly moti-
vated by cost reduction and focus on headcount reduction to deliver this. Because of this,
employees are more likely to resist further automation and innovation in their respective
workstreams. Management’s vision of automation does not extend to administrative tasks
and other off-line manufacturing areas. Level 2 organisations are likely to find that poor
data management and limited access to data and analytics skills make it difficult to extract
and gain insights from more complex sources to deliver business intelligence. As a result,
analytics may be predominantly descriptive rather than diagnostic, predictive or prescrip-
tive. Examples of Level 2 automation practices include instances where simple repetitive
tasks are performed such as data being manually transferred between spreadsheets to anal-
yse data or to generate reports on a weekly basis.

Level 3 organisations should demonstrate a good understanding of the value of data
throughout all departments with the ROI of various automation projects and pilots under-
stood with multiple pilots in place to automate existing processes. Data-driven decisions
should be used to automate most instances of production processes, scheduling, data man-
agement, quality assurance, and product testing. In more challenging cases, opportunities
to develop predictive and prescriptive automation solutions should be identified with pilots
in place. Some instances of human-centerd automation with lower levels of employees more
open to the idea of automation in their workstreams. In Level 4 organisations, flexible pro-
duction processes are managed and controlled by high levels of automation with widespread
data collection to deliver business intelligence. Management maintain a human-centric view
of automation throughout the organisation with multiple examples of Human-In-The-Loop
automation identified. The social sustainability of automation processes should be a key
consideration when beginning new pilots. As a result, level 4 organisations will find that

most employees throughout the organisation support automation and view it as an oppor-
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tunity to improving workplace experience in addition to the economic benefits to the wider

company.

Equipment Readiness

Manufacturing solutions will continue to evolve as new processes and systems are devel-
oped, and systems become increasingly integrated. To ensure businesses can maximise the
value creation of integrated data-driven solutions, outdated machines and systems that
present barriers to the digital value chain should be well understood with actions in place
to mitigate the impact of these barriers. Organisations should also be quick to recognise
emerging technologies within the industry and make efforts to better understand the po-
tential ROI in these technologies and how they can be best utilised within the existing
business strategy.

Examples of outdated systems may include software or hardware. For example, outdated
machining systems with no capability to record the birth history of the outputted part,
or systems where data cannot be integrated and must be recorded manually from human
machine interfaces on the machine. Instances of outdated technologies should be identi-
fied and their impact on the ongoing digitalisation strategy should be well understood. If
possible, workarounds should be put in place to mitigate these impacts.

A common example of such barriers found in automotive companies established before the
1990s are Mainframes and Legacy Systems. Many core business applications continue to
run on these mainframe systems as they are often reliable, secure, and represent decades
of investment. However, companies often have multiple mainframe systems across differ-
ent areas of business running on outdated hardware, languages, and frameworks making
them very expensive to maintain [I92]. Other technological barriers include old manufac-
turing machines running on outdated operating systems, or manufacturing machines and
systems where vendors have ended support. These examples present serious operational
risks related to cyber-security as software updates may no longer be available making
systems venerable to new exploits. Furthermore, mainframe systems often present major
challenges to data access and data integration. Many of these challenges can be overcome
by developing middleman software to automate workflows requiring regular interactions
with mainframe systems. Solutions may range from simple data management software like
PowerBI, to more advanced software development solutions in C# or Javascript. When
identifying examples of outdated software and hardware, assessors should look for previous

solutions to address these challenges as well as any ongoing works.

105



Level 1 organisations are reluctant to invest in new technologies and only update existing
systems and processes when absolutely necessary. In these cases, a significant overhaul of
existing systems would be required to meet industry 4 requirements. Level 2 organisations
demonstrate some level of investment in updating equipment to deliver automation in se-
lected areas of production. Multiple outdated systems are identified that present major
barriers to Industry 4.0 objectives being met. In cases where assessors identify Level 2
readiness, assessors should make use of the 'Industry 4.0 Metrics’ and Industry 4.0 Invest-
ments’ sub-dimensions to better understand these barriers and identify opportunities to
improve the current Industry 4.0 strategy. To achieve level 3, departments should not only
demonstrate a good understanding of any current machines and systems that are outdated
but also be able to quantify the impact that these outdated systems have on key business
metrics. In instance where outdated systems cannot be updated, actions should be in
place to mitigate the impact through use of alternative means. For example, modernising
an outdated mainframe systems using could-based services to integrate these data-sources
across the business.

To achieve level 4, the vast majority of machines and systems should be integrated to
deliver high levels of business intelligence. Level 4 business should have an excellent un-
derstanding of how any outdated systems are impacting KPIs and other metrics related to
Industry 4.0.

In instances where organisations demonstrate a level 3 or 4 equipment readiness, asses-
sors should consider how the organisations current human resources and digital skill-sets
are managed to create the greatest value from these technologies and how the current

businesses strategy coordinates these assets to deliver Industry 4.0 objectives.

Automation of Material Handling

By combining the above technologies in manufacturing environments through lean manage-
ment practices, a new type of assembly line emerged known as the Flexible Manufacturing
Systems (FMS). In a typical FMS, workstations are arranged more freely on-site in a modu-
lar arranagement, with AGVs automatically routing products to the required workstation.
Tracking technologies such as RFID enable individual processes to be controlled by an au-
tomated production system to select the appropriate production process for the incoming
part. This highly automated data-driven process allows production to be tailored to meet
fluctuating consumer demand of multiple product families and deliver highly customizable

product variants. As well as reacting quickly to market changes, FMS can react quickly
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to changes in the local manufacturing environment, such as processing changes, material
changes, or new product variants [87]. FMS results in less space, reduced operational head-
count, improved inventory management, reduced lead times, and reduced manufacturing
costs [27].

The concept of a fully integrated factory with ubiquitous integration of Industry 4.0 tech-
nologies throughout the entire business is widely referred to as a ’Smart Factory’, although
other terms such as 'Intelligent Factory’, 'Intelligent manufacturing’, "Ubiquitous Factory’
or 'Real-Time Factory’ are also used. Research finds that organizations investing in Smart
factory projects report increases of up to 12% manufacturing production, factory utiliza-
tion, and labor productivity [27]. Despite the numerous benefits of FMS presented in the
literature, there are several challenges in developing, implementing, and maintaining these
systems. FMS requires high initial investment both in physical assets and personnel with
the required automation and digitization skills to deal with the high complexity of these
systems [27].

Researchers present novel machine learning approaches to support automation in FMS in
the reviewed literature. Huang et al. propose a system to support production managers
through a machine learning-based system to predict production progress for IoT factory
environments [29]. A two-layer transfer learning approach using a combination of Deep
Auto encoders and Deep Belief Network (DAE-DBN-TL) is trained on historical data us-
ing a bootstrap sampling approach. The proposed method was tested using real-world
historical data over 15 orders with 1118 features. The experiment finds that the DAE-
DBN-TL method achieves high performance (R2 ; 87%) in predicting production progress
based on historical production data. The author speculates that as well as monitoring
and analyzing production progress, this model can also identify instances where produc-
tion plans are executed incorrectly and support root cause analysis of these abnormalities.
While the data set used in this study is very large, this method has only been tested in 1
real-world scenario. Little detail was included on the manufacturing site in which this was
implemented. By comparing the DAE-DBN-TL across multiple locations and understand-
ing its applicability in FMS environments, it is easier to determine the validity of these
results [29]. Future research should further examine the human-centric implementation of
production process prediction systems in FMS and consider the effects on the workplace
experience of production managers.

This sub-dimension involves the in-plant management of material, plattents, and other

stock. A key aspect of Industry 4.0 is the concept of Flexible Production Systems (FMS)
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where high levels of equipment readiness, systems integration, and business intelligence
allow production to adapt quickly to changes in supply and demand of multiple product
variants [193]. Automated material handling systems (AMHS) manage how materials are
transported and guided through the use of tracking technologies such as RFID, barcoding,
and near-field communication, in combination with material transport systems such as
conveyors, elevators, gantries, and Autonomously Guided Vehicles (AGVs).

Many manufacturing sites will fall short of the Industry 4.0 benchmark defined by FMS
capabilities. To assess and guide progress towards this vision, assessors should identify
the extent to which inventory management is digitalised and automated. Assessors should

explore the following:

e How material and stock are ordered.

e How inventory and stock levels are updated when the material arrives on-site and
when outgoing stock leave the site. Both instances should be supported by IoT

scanners to automatically update databases.
e How inventory is stored and the extent to which stores are digitally managed.

e How stock levels are updated throughout production and the extent to which stock

levels are updated automatically in real-time.

e How material is transported between stations. This should be delivered using gantries,
conveyors, elevators with RFID or other tracking systems collecting all infomation

on birth history.

e How material is transported between different lines. This should be done using AGVs

where possible.

Throughout each of these areas, assessors should look for examples where inventory man-
agement is done using paper-based processes indicating digitalisation opportunities. Simi-
larly, instances where IoT devices are used indicate higher levels of readiness and highlight
opportunities to replicate solutions elsewhere on-site.

In Ford Motor Company, AGVs are a key part of the company’s innovation strategy.
These systems are well-established technologies with clear standards for supporting in-
frastructures and well-defined ROI. Assessors should explore. Assessors should identify

opportunities where forklifts and tugs could be automated using AGV systems.
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Level 1 businesses will have considerable opportunities to deliver lean improvements. In-
ventory management is updated manually with a considerable number of paper processes
still in place. To achieve level 2, some digitalisation and automation are identified in some
areas. RFID or other digital systems track the birth history of individual parts. Material
flow is automated by conveyors and gantries on the lines, however, material flow between
lines is still largely manual. Stock levels are updated in real time throughout production.
Pilots in place to digitalise inventory management towards Just-in-Time delivery, adn fur-
ther digital solutions plans improved inventory management throughout production. In
order to achieve level 3, inventory management is largely digital with material handling in
key areas of production automated with AMHS to enable reconfiguration of the produc-
tion line without disruption. AMHS delivers some level of product flexibility. Furthermore,
Level 3 businesses should be able to respond rapidly to changes in demand. Opportuni-
ties to further automate material handling are identified with pilots underway. In order to
achieve a level 4, business should demonstrate FMS production capabilities using advanced
simulation and digital twin environments to manage and control production and in-plant

logistic processes.

Data Collection and Integration

As discussed in the previous chapter, in the modern automotive industry two of the most
valuable assets to a company are data and human resources. Modern OEMs will already
be reliant on sophisticated data collection systems standardised across the wider organisa-
tion to measure various aspects of production relating to products, machines, production
line metrics, quality metrics, human resources, inventory, and enterprise resource planning
systems [I61]. Much of this data will be distributed across multiple databases, including
outdated legacy systems. This sub-dimensions aims to identify opportunities for organisa-
tions to automate existing data collection processes as well as opportunities to integrate
existing data streams into data lakes where there are increased opportunities for value
creation.

Areas that are often more difficult to automate data collection are stations relating to
quality assurance. Assessors should focus on these areas to identify barriers to data col-
lection as well as exploring ways the organisation may have overcome these challenges.
These barriers and challenges may be technological, cultural or both. Technological barri-
ers may include outdated ICT infrastructures, lack of tracability at certain process stages,

or phyical challenges of integrating sensing technologies in complex processes. Cultural
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barriers may include a lack of understanding of the importance of integrated labelled data,
limited of availability of the required digital skills to deliver data collection technologies,
or difficultly of accessing data due to highly bureaucratic processes. Assessors should also
enquire about any legacy systems that are being used on-site and what steps are being
made to ensure these data are well integrated with the wider businesses.

Examples of level 1 and 2 practices may include instances where employees have to man-
ually input data to populate excel spreadsheets when taking inventory, recording quality
metrics, or when producing reports. What distinguishes a level 2 business is that these
instances of manual data collection are identified and plans are in place to digitalise and
automate these processes. In level 2 orgainsations, the vast majority of personnel should
understand the importance of collecting high quality data in their respective work func-
tions. Level 3 organisaitons are expected to have comprehensive data collection across
most areas of the business, with management recognising the value of data and demon-
strating a clear drive to automate and integrate data collection. A good identifier of level
3 businesses are examples where automated reporting has been effectively used to reduce
the administrative burden on departments. Level 3 businesses must also have solutions in
place to integrate data collected and stored on any legacy systems if those systems exist.
Level 4 businesses have a very high level of data integration using Cloud-based platforms

to integrate all relevant data to deliver real time analytics and business intelligence.

Data Analytics

Digitisation is strongly linked to data management and analytics. Not only does effective
data management and analytics provide a means on measuring current processes, but also
sets a foundation for new data-driven digital processes to emerge [I78]. Production teams
should demonstrate a good understanding of the various data sources available to them and
how these data provide insights into production metrics and KPIs. All departments should
demonstrate a good understanding of what data are not being utilised, with pilot studies
in underway to address these gaps. Assessors should aim to identify opportunities for data
analytics where data are not well utilised and understand the barriers preventing this. If
no technological barriers are identified, assessors may use the strategy, Organisation, and
Culture section to help identify additional barriers preventing the widespread uptake of
data analytics. All teams should have the ability to easily access the data relevant to their
job function and have access to people with data analytics skills to support with delivering

further insights using these data.
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In level 1 businesses, data analytics is still widely performed using basic tools but is mostly
focused on improving quality. There is a low understanding of the potential added value
that could be generated from improving analytic capability and as a result, innovation
efforts do not focus on addressing data analytics gaps. Level 2 businesses are identified
as having very high volumes of data available, but the majority of these data are not well
utilised to create value. This is not to say that no data analytics occurs on-site, but rather
that there is no clear data strategy is in place to support and measure progress of ongoing
data analytics projects, nor is there strategy in place to support departments in pursuing
their own data analytics projects. In level 2 businesses, employees may recognise at a de-
partmental level that data are not being well utilised and identify barriers preventing this
realisation i.e. lack of human resources, lack of data analytics skills, poor communication,
ect.

Level 3 is distinguished from level 2 by having a clear data analytics strategy in place
to identify opportunities for data analytics on-site and provide the necessary support for
departments looking to increase data utilisation. Level 3 must also demonstrate that data
analytics is not just limited to manufacturing production, but that these support struc-
tures extend to all departments and backroom processes. High maturity of Cloud-based
solutions, automated reporting, and real-time automated scheduling are indicators that
suggest level 3 readiness. That being said, without a clear data analytics strategy a busi-
ness cannot achieve a level 3, regardless of any individual cases where advanced tools and
analytics are applied.

Level 4 businesses should demonstrate a scaleable data analytics strategy that uses Cloud-
based solutions to deliver high levels of process automation and control, as well as a high
business intelligence. Employees in all departments in a level 4 businesses should demon-
strate a good understanding of what data in there departments could be better utilised

with examples of projects in place to overcome these gaps.

Cloud-based Solutions

Cloud computing is a service based business model that provides online data infrastructures
to efficiency and securely store IoT data as well as a scalable platform for Bid Data anlayt-
ics. Many researchers highlight Cloud computing as one of the most essential technologies
to deliver Industry 4.0 due to its inter-dependent relationship with IIoT and scalable Big
Data analytics [194) [183] [65]. Cloud computing is a key technology that enables the

highest levels of systems integration and automation found in Smart factory environments
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[194] [195], [196]. At these high levels of Cloud technology maturity, organisations are able to
deliver advanced service-oriented business models such as Cloud manufacturing. Assessors
should explore the current Cloud-based solutions used throughout the site and any ongoing
plans to migrate different aspects of manufacturing operations to Cloud models. On site
IT teams should demonstrate high levels of understanding of these plans. All departments
for which Cloud migration is ongoing or planned should understand how this will effect
their future day-to-day work, and supervisors should demonstrate a good understanding
of the future training requirements in I'T and data analytics to create value from new data
sources and digital toolsets availible through Cloud platforms.

Migrating to the Cloud is often a considerable task, and therefore business often adopt a
hybrid approach where more innovative areas of the business lead the way and processes
are slowly migrated over time. Assessors should aim to understand where the company
currently is on this migration journey. Level 1 businesses will be on the start of this
journey, with pilots underway in more advanced areas of the business Cloud solutions but
Cloud migration is not a key target for senior management. Companies yet to begin this
journey with no implementation of Cloud solutions throughout any area of the business
cannot achieve a level 1. To achieve level 2, migration to Cloud-based solutions should
be part of the current business strategy, with multiple examples of Cloud-based solutions
identified within the organisation. Assessors should be able to find multiple examples of
where Cloud solutions are already being used to integrate data, deliver data analytics, or
where opportunities have been identified and places to migrate are ongoing. For Level 3,
Cloud solutions should be widely used throughout the organisation to deliver high levels of
automation and data insights. Assessors should draw on examples in both the production
environment as well as in backroom processes and how these combine to deliver business
intelligence. Level 4 is reserved for businesses who are capable of delivering some level of

service-oriented business models aligned with Cloud manufacturing.

3.6.2 Strategy, Organisation, and Culture

This section focuses more generally on the organisational culture of the business. Assessors
may find that multiple people within a department need to be interviewed before sufficient
information can be gathered to assign a score. Although this section is focused on man-
agerial practices, it is important that assessors assign scores based on responses by all

employees throughout the hierarchy. Assessors should consider how employees responses
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vary throughout this hierarchy to determine how effectively Industry 4.0 strategies are
communicated vertically up and down the chain of command.

When reporting on this section, assessors should identify similarities and differences in
strategy and organisation between departments, drawing upon specific examples from the

Manufacturing Technology Readiness section to communicate these findings.

Industry 4.0 Metrics

As companies digitalise existing processes they are often faced with the challenge of priori-
tising investments in digital solutions, as well as how to estimate the ROI of digitisation
[T78]. This is especially challenging due to a lack of clear metrics devoted to key Industry
4.0 technologies such as digitalisation, automation, cyber security, talent acquisition, and
data analytics [177, 178, [179]. This lack of metrics is one of the main reasons why so many
Industry 4.0 maturity models have emerged in recent years in an attempt to address this
gap. However, maturity models are time consuming to perform making them more suited
to informing long term strategy as opposed to short term measurement of digital growth.
Prior research finds that companies are often aware of the importance of data to deliver
process insights and data-driven decisions, but often lack metrics to measure the value
potential of this information asset, as well as the efficiency of data value chains [26]. This
is particularly difficult during the early stages of digital transformation as organisations
may not have understanding of the ROI of digital solutions. To build this organisational
knowledge, ongoing innovation efforts require detailed measurement of any required inputs
and resultant impact of innovation projects. Inputs may include, Human resources, skills,
training requirements, data requirements, external support, I'T requirements. Project out-
comes may include techinical barriers, organsiational barriers, ongoing maintenance re-
quirements, time savingins, new data availibe, cost savings impacts, impact on production
metrics. These findings should be communicated across departments regardless of their
success to support replication and understand common barriers to innvoation.

A major requto sucessfully mangage the transition towards increased levels of digitlisaiton
and automation is to deliver training requirements, aquire new tallent to upskill the work-
force to maximise value creation of new highly integrated systems and the data they pro-
duce. This requries departmental managers to have a good understanding of future skill

requirements and clear metrics to assess ongoing efforts to address skills gaps.
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Table 3.4: Simplified version of the scoring matrix for Strategy, Organisation, and Culture.

Readiness Level Level 1 Level 2 Level 3 Level 4
Industry 0 KPIs and other A structured set of busi- Some departments have New business metrics
Metrics business metrics are ness metrics are well un- targets or metrics related have been adopted to
inconsistent, not re- derstood but metrics re- to I4 concepts, i.e. digital understand the impacts
viewed on a regular lating to Industry 4.0 ob- training, data collection. of digitalisation and
basis, and do not jectives are not included automation at a depart-
relate to Industry at a departmental level. ment and organisational
4.0 objectives. level and are regularly

reviewed.
Investments The business is re- Multiple investments in Management are open to Multiple examples
luctant to invest in Industry 4.0 but limited long-term ROI innovation of both short- and
new technologies. to manufacturing pro- projects but investments long-term Industry 4
duction areas. Manage- are generally limited to investments across a
ment are reluctant to in- manufacturing production. range of departments
vest in long term innova- Barriers to 14 that require with dedicated innova-
tion projects. large investment are well tion teams focused on
understood. the development and
integration of emerging

technologies.

Human Re- Many employees Most teams have the re- All areas of the business Employees with leading
sources and on-site have little or quired skills to deliver have good access to peo- edge digital and data an-

Digital Skills

External Collab-

oration

Communication

Change Manage-
ment and Lead-

ership

no experience with
advanced digital
technologies or data
analytics and have
limited opportuni-
ties to develop such
skills.

Collaboration is
poor between other
sites  within the
company. Little or
no external collab-
oration helps drive

innovation.

Poor communica-

tion of company
strategy throughout
the with

the company oper-

business

ating in functional

silos.

All levels of man-
agement are resis-
tant to any change

within the business.

Industry 4.0 goals al-
though multiple barriers
still need to be over-
come. Reactive recruit-
ment and limited profes-
sional development plans

to develop these skills.

Collaboration is good be-
tween other sites within
the company with fast
replication of innovation
cross the business, how-
ever, limited collabora-
tion with external organ-

isations.
There is good commu-

nication between depart-

ments supported by IT

systems.
Splintered internal
cultures, with  some

departments more open
to ongoing organization
change efforts that oth-

€ers.

with the skills

quired to deliver increased

ple re-
digitalisation and automa-
tion. Proactive recruit-
ment approaches and well-
structured professional de-
velopment plans to address

skills gaps.
Departments are open to

cross company and external
collaboration to drive im-

provements and innovation.

There is some use of IoT to
support departments work-
ing on similar projects and
to communicate company

strategy.

All levels of management
the
strategy to deliver Industry
although

understand current
4.0 objectives,
some resistance to change

by employees is identified.

alytics skills are found
throughout the business
with a focus on collabo-

rative innovation.

Departments are open to
all aspects of cross com-
pany and external collab-
oration to help meet In-
dustry 4.0 objectives and

metrics.

All necessary horizontal
and vertical communica-
tion channels are sup-
ported with a wide range
of IoT technologies en-
abling good collabora-
tion and communication
across all areas of the

business’s operations.
Long term strategic

under-
the
Agile prac-

goals are well

stood throughout
business.
tices support a highly
innovative workforce
that

organisational change.

supports ongoing
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This sub-dimension is somewhat dependant on the Industry 4.0 vision defined in the
workshop stage, and aims to ensure that appropriate metrics are in place to regularly assess
the ongoing transition towards Industry 4.0. For example, in the workshop phase at BEP,
senior and executive management stated that one of their current goals for the medium-
to long-term were: 1) to increased utilisation and value creation of existing data sources,
2) increased automation of production and business processes. When asked what metrics
were currently being used to track progress of these goals, it was found that no quantitative
measures were in place. As a result, this meant that the ROI of any successfully instances
of automation and digitalisation of this vision were not reported on, making it difficult
to justify future projects with longer term ROI. In this case, it was proposed that new
metrics be introduced to measure the share of tasks that are digital, and the share of
jobs that are digital, the volumes of data produced, and percentage of these data being
analysed. By measuring how these measurmeents chagne over time, these metrics can be
used to demostrate digital grwoth to stakkeholders as well as demonstrating organsiatonal
innovation through the introduction of new digitialsition metrics. The author recnosies
that some of these areas are challenging to measure, and futher work is required by the
company to explore exact methods to collect and analyse these metrics.

Level 1 organisations will have inconsistant metrics between departments with individuals
in teams not having a good understanding of their departmental KPIs. Metrics in level
1 organsiations do not relate to Indsutry 4.0 objectives. Level 2 organissations should
have a clear set of business metrics across all departments that are well udnerstood and
regularly reviewed. However, these metrics do not relate to inducstry 4.0 objectives and
multiple imprvements are identifeid ot improve measurement of innovation efforts. In order
to achieve a level 3 readiness, management should be able to give examples of key metrics
that are used to measure the impact of Industry 4.0 solutions and measure digital growth.
Furthermore, department managers should understand areas of business where Industry
4.0 metrics are difficult to define and the plans in place to address this. However, areas are
identified where progress towards some Industry 4.0 goals are not being measured. Further
opporutnties are also identified in communicating these Industry 4.0 goals throughout the
site. In order to achieve a level 4, businesses should have clearly defined metrics to quantify
the impact of digitalisation, automation, and any other key Industry 4.0 metrics outlined
in the workshop stage. These metrics being effectively used to guide business decisions at
both the department and organisational level and are well understood by all mebers of the

workforce.
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I4 Investments

The journey towards the digitization and automation of production should be viewed as
a continuous evolution as opposed to a revolution, one that is driven by reducing operat-
ing costs and improving productivity while humancentric change management approaches.
This doesn’t necessarily require a complete overhaul of outdated systems and extremely
large investments. Instead, the Industry 4.0 philosophy is to optimise, digitalised and
integrate existing processes by using technologies such as IoT, big data analytics, and
Cloud-based systems to create further value from existing Industry 3.0 based technologies.
This can create a challenge for businesses as many of these emerging digital technologies
require significant long-term investment. This makes it difficult to estimate the ROI, and
as a result, business are often reluctant to invest in digitalisation as the economic bene-
fits of individual investments are often unclear [I80]. Organisations must recognise at an
organisational level that some level of risk must be accepted to enable innovation and ex-
perimentation with emerging technologies. Raj et al. suggest that in order to overcome this
barrier, managers should have a clear digital strategy in place and prioritize investment in
digital infrastructures to support future implementation of Industry 4.0 technologies and
mitigate the risks of these systems failing [197]. Department mangagers must have a strong
understanding of this long term strategy to support and direct innovation local innovation
efforts to align with these goals. Sufficient risk capital should be availible to support local
innovation efforts.

This investment process can be split into 3 stages: local innovation, Centers of Excellence,
widespread implementation. These stages are derived from work by Camuffo et al. based
on data from Fiat Auto Co in the mid 1990’s [33]. Stage 1, describes innovation investment
in selected parts of the manufacturing process. At this stage, some aspects of innovation
efforts may still be done in silos. Opportunities may be identified to improve project man-
agement, improve communication of siloed progress, and combine ongoing efforts through
collaborative innovation projects to implement solutions at a larger scale. This stage is
associated with the highest risk as technologies will not always be successful and the ROI
of new technologies can be difficult to estimate. Organisations must accept some level
of financial risk to provide room for experimentation and innovation. Following multiple
successes of innovation in stage 1, and the site develops a wealth of organsiation knowledge
of the respective technology, the site will progress to stage 2. Stage 2 describes large-scale
investment of a technology at the factory level such that the site becomes a center-of-

excellence in developing and implementing the given solutions. At this stage, the ROI of
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these technologies is better understood as well as clear standards and strategies to identify,
prioritise, develop and implement these solutions. Growth opportunities at stage 2 include
collaborating with other sites to replicate these processes. This may highlight wider or-
gansiational barriers where competition between sites may prevent replication across the
business. Other barriers may be identified in bureaucratic processes that also present a
barrier to rapid replication of technological successes. The final stage builds on knowledge
gained from stages 1 and 2 where individual sites are responsible for implementation of the
new technologies and organisational changes, resulting in technological and organisational
homogeneity across the business [33]. These changes are to be carried out with caution,
subject to thorough economic appraisal and evaluation to minimise risk [33].

In reality, these evolutionary stages will coexist as multiple investments and organisational
changes are pursued at once. Technological changes, economic factors and market changes
will vary throughout the evolution of an organisation that may effect these long-term
strategies and lead to inconsistencies between newly implemented technologies and those
previous. A key finding from Industry 3.0 is that companies must recognise that investment
is not limited to manufacturing technologies, but also required to effectively management
human resources to ensure they have sufficient personal with the right digital skill-sets
to support the operation and future development of these systems [33]. Assessors should
identify any particular areas where investments are being prioritised and understand at
which innovation stage the site is. This can then be used to guide next steps to accelerate
the innovation efforts and replication of successes across the company.

Organisations where management are reluctant to invest in new technologies should achieve
a level 1 readiness. To reach level 2, Multiple investments in Industry 4.0 are identified, but
generally limited to short term investments on the factory floor. Management are reluctant
to invest in long term innovation projects and little consideration is given to investing in
digitalising backroom processes. To achieve a level 3, a clear investment strategy should be
in place that supports the transition to increased digitalisation and automation. This data
driven strategy should support the development and integration of new technologies by
placing focus on improved utilisation of human resources through well structured training
options as well as external talent acquisition. Senior management in level 3 organisations
should understand the risks associated with investing in emerging technologies with plans
in place to better understand and mitigate these risks. A level 4 site can be described as a
center of excellence for one or more Industry 4.0 technologies, with high levels of investment

and knowledge in that area including understanding of the ROI of these investments. This
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investment is not limited to technological assets but also assess the investment in human
resources from internal and external sources. Management in level 4 organisations should
recognise the importance of their human resources in creating the greatest value from their
digital investments. Level 4 sites should also be an active part of a wider collaborative

effort to replicate their technologies and transfer their knowledge to other sites.

Digital Skills

In Industry 4.0, the two most valuable assets to a company are data and human resources.
A key finding from research into Fiat Auto Company’s automation strategy by Camuffo
et al. found that pushing the automation of manufacturing processes to the technological
leading-edge does not necessarily result in better quality, higher flexibility and improved
efficiency [33]. Instead the key success factor for competitive manufacturing was instead
reliant on good Organizational structures and processes, as well as the competencies and
commitment of a firm’s personnel. A successful transition to Industry 4.0 is therefore
the result of organisational learning based on internal development, external acquisition,
replication, and selection of technological know-how relating to key digital skills required
to meet Industry 4.0 goals [33]. Without the right distribution and management of data
analytics and other digital skill-sets throughout the company, organisations will fail to
identify and act upon opportunities to enhancing productivity, innovation, cost savings,
and business intelligence made possible by digitisation and data insights. businesses should
anticipate the skill-sets that will be required to remain competitive in the rapidly changing
manufacturing landscape.

This section focuses on assessing how effectively human resources are being utilised to cre-
ate value through automation and data analytics as well as other Industry 4.0 objectives
outlined in the workshop phase. Assessors may find it useful to consider any common
barriers from the ’Data Collection and Integration’ and 'Data Analytics’ sub-dimensions.
In organizations where technological maturity is low, examples of digital skills required to
deliver processes improvements are likely to include advanced Excel knowledge, macros,
visual basic, SQL, and automated reporting and data management tools. These softwares
can be highly effective in delivering quick wins through integrating existing excel spread-
sheets between departments and migrating from paper based data collection to digital
systems. As higher levels of maturity are achieved, digital skills required to digitalise, au-
tomate, and integrate data may include: programming languages such as Python, software

development, automated reporting software, knowledge of data mining or machine learning
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within the context of Big Data, experience with Cloud technologies, and experience with
advanced manufacturing systems such as robotics or additive manufacturing.

Assessors should also consider the extent to which digital skills are available from outside
of the immediate business. For example, some manufactures adopt a centralised approach
to data analytics, digital asset management, innovation, and other Industry 4.0 related
areas of business. Assessors should consider how these centralised, decentralised, or hybrid
business models are effecting the departments to deliver Industry 4.0 goals and ensure
that these departments can effectively access the necessary resources and communication
channels to work collaboratively and deliver digital solutions.

Employees in level 1 businesses have little or no experience with advanced digital tech-
nologies or data analytics and have limited opportunities to develop such skills or access
these skills elsewhere. At level 2, Most teams have access to the right skills to deliver
Industry 4.0 goals although multiple barriers still need to be overcome. To achieve level
2, businesses must have professional development plans in place that offer some oppor-
tunities to develop these skills. At level 3, all areas of the business have good access to
individuals with a high level of digital and data analytics skills required to address gaps in
data collection, automation, and integration. Well structured, personalised, professional
development plans are in place to develop these skills. Level 4, is distinguished by a focus
on on-site innovation made possible by leading edge digital and data analytics skills are
found throughout the business. At level 4, employees have time to apply their skill-sets
to explore novel solutions to problems, and work collaboratively to develop and integrate

digital value chains across the organisation.

Communication

Communication strategies are identified in the literature as a key mechanism to facilitate
organisational change and should support the change management processes by provid-
ing clarity on the ongoing change efforts throughout the business [I16]. Research shows
that employees do not resist all organisation changes, only that which has not been well
communicated or that which is perceived as psychologically or economically threatening
[116]. During the interview stages assessors should understand the extent to which business
strategy is communicated throughout and how participants opinions on the effectiveness
of vertical and horrizontal communication channels. Assessors should also consider how
responses vary between different levels of management and identify any opportunities for

improvement. In cases where employees are dissatisfied with communications, assessors

119



should understand why i.e. adequacy of communication, timeliness of communication,
consistency of communication. Assessors should also explore how senior managers at dif-
ferent management levels perceive the internal communication process surrounding the
strategic goals outlined in the workshop phase. Innovation successes should be well com-
municated throughout the business with good digital channels to support collaboration
efforts to develop and replicate digital solutions.

The communication sub-dimension is not limited to internal communications but also
extends to the efficiency of external communication across the wider business. Communi-
cation strategies should be supported with IoT systems such as web conferencing services,
email, or similar communication platforms to enable engaging and effective communica-
tion with other sites to collaborate, share knowledge and support innovation. Management
must recognise the importance of an effective communication strategy to deliver digitali-
sation and automation and must invest in the necessary infrastructures to support this in
order to maximise the value of human resources and team performance. Instances where
information is communicated through paper based approaches should be identified and
solutions to digitalse these processes should be proposed.

In level 1 organsiaitons, poor communication of company strategy is found throughout the
business. Instances are identified where multiple departments or individuals have produced
the same work, or where work has been delayed, due to lack of communication. Innovation
efforts are done in silos with poor communication of these efforts between departments.
At level 2, there is good communication between departments supported by IT systems in
most areas, however, some opportunities are identified to digitalise communication chan-
nels. In level 2 organisations long term business strategy is not well understood in most
departments. At level 3, IoT is widely used to support good communication across de-
partments and with other sites. Company strategy and on-going organisational change is
well understood at the departmental levels with clear communication of innovation efforts
throughout the site and how these efforts relate to long term business strategies. At Level
4, All necessary horizontal and vertical communication channels are supported with a wide
range of user friendly IoT technologies enabling effective collaboration and communication

across all areas of the business’s operations.

Change Management and Leadership

Industry 4.0 brings with it a number of external forces for change, including market dis-

ruption, legislation, new technologies, and changing consumer behaviors. In response to
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these forces, organisations must act holistically, making changes on multiple fronts in a
continuous process of experimentation and adaptation aimed at matching the organiza-
tion’s capabilities to the needs and dictates of the changing environment. Organisational
changes must be managed with a systematic change management process that considers
both changes in culture and in organisational structure [116]. However, scholars argue that
if strategic change is to succeed, changes should initially take place in the cultural beliefs
and assumptions of the organization, thus leading to the cultivation of employee commit-
ment in later structural changes [116]. This requires careful consideration of changing
internal environmental pressures that dictate employee behavior, motivation, and perfor-
mance of teams. Decentralised agile management approaches are regarded by scholars as
one of the most effective management models in this regard, as it enables lower levels
of management to be more embedded in their local environments and respond faster to
changes [170, 171].

Other scholars highlight the need to consider adjustments in organisational culture and
infrastructure requirements during the final stages of implementing business goals relating
to digital transformation. Examples may include reviewing training, qualification require-
ments, or hiring strategies to meet the new demands of changes in high level objectives
or organisational change [70]. Assessors should aim to identify the reasons for any resis-
tance to change i.e. self-interest, fear of job security, group pressures, poor communication.
Employees should be motivated to actively seek change, challenging the status quo and
looking for opportunities to improve their own working environments through innovative
means of digitalisation and automation. As mentioned in section [3.6.2] department man-
agers must have a strong understanding of this long term strategy to support and direct
innovation local innovation efforts to align with these goals. Furthermore, high levels of
vertical downward communication are required to ensure the workforce are kept up to date
with ongoing organisation and structural changes.

In level 1 organisations, resistance to change is identified across all levels of management
and innovation and proposed changes are actively discouraged. At level 2, the assessment
identifies splintered internal cultures, with some departments more open to ongoing organ-
isation change efforts than others. No metrics exist to incentivise management to drive
changes in their departments to achieve long term goals aligned with Industry 4.0 objec-
tives. In Level 2 organisations, assessors should aim to identify departments where the
current Industry 4.0 strategy has been well communicated and well received and explore

what management practices and cultural differences exist between these teams and others
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who are resistant to change. At level 3, all levels of management understand and support
the current long term strategy to deliver Industry 4.0 objectives, although some resistance
to change by non-managerial employees. Department mangers and supervisors regonsise
this with change management strategies in place to address these cultural barriers. At
level 4, long term strategic goals are well understood throughout all levels of the business.
Agile management approaches support a highly innovative workforce that are empowered

to support ongoing organisational change and digitalisation.
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3.7 Applying the Assessment Tool

Three Industry 4.0 assessments were carried out using the proposed framework. The
first assessment was carried out at Bridgend Engine Plant (BEP) in April 2019 using an
early iteration of the tool. The second assessment was performed at Dagenham Engine
Plant (DEP) in March 2020. The third was performed at Halewood Transmission Plant
in October 2022. At each plant, a report was provided to highlight growth opportunities
relating to Industry 4.0 and machine learning. FEach report also includes a roadmap to
develop and implement these solutions as well as suggesting opportunities for digitalisation
and innovation projects. Given that the results of these assessments are highly specific to
Ford Motor Company and lie somewhat beyond the scope of this chapter, these results
have been compiled in section 2 of the appendix. This section provides a summary of the
insight gained by applying the assessment tool at these locations, as well as the resultant
outcomes and a critical evaluation of the value-add of the complete exercise. Details of the
implementation requirements are also discussed such as resource and time requirements in
order to support further replication efforts. This section also includes a summary of any

shortcomings of the method and plans for improvement.

3.7.1 Summary of the assessments and resultant outcomes

In the initial iteration of the assessment, the aim of the questionnaire was to gather gen-
eral information on the participant’s roles and responsibilities and identify discussion points
for the interviews. Although the questionnaire used in the DEP assessment was an early
iteration, it proved extremely useful to the assessors to identify interview participants,
preparing questions, and structuring the interview process. Furthermore, management
found the quantitative data valuable to gain insights into key Industry 4.0 topics such as
communication, data usage, and collaboration. For example, Figure [3.4] shows that when
asked how important the usage of data analytics is to a participant’s job, 90% stated it
was very important. However, when asked how well their department creates value from
this data, 33% of participants stated value creation was very good, 54% good, and 13%
poor. These data are immediate indicators of opportunities for value creation through the
further application of data analysis on-site.

Given the added value of the initial versions of the questionnaire, a more rigorous design
approach was used to produce the final version, following best practices in questionnaire

design outlined in Section |3.3.1} This finalised questionnaire is presented in section 3 of
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Figure 3.4: Four examples of questionnaire responses related to data usage and availability.

the appendix, as well as a summary of the results of the survey. The questionnaire sent out
at Halewood Transmission Plant was also found to be valuable to the senior management
team in understanding data science knowledge gaps. By increasing the sample size at Hale-
wood, further insights were able to be drawn on how responses varied between different
levels of management. Figure [3.5] shows that those in more senior management positions
have increasingly less access to data when required. This highlights an opportunity to
improve business intelligence which is a major goal of Industry 4.0 [I2]. This insight into
the lack of data access for senior management became a major discussion point during the
de-brief meeting, and led to direct changes in how data science training is delivered to se-
nior management as well as the content of these training pathways. Further questionnaire
findings related to innovation and data science also provided important quantitative in-
formation and data visualisations to support discussions in the de-brief meeting to amend
existing data science hiring strategies. Within 2 weeks of delivering the report, the pro-
posed changes were implemented by the senior management team.

Each interview was conducted by two assessors who independently gave scores based on
the information obtained in each interview. At the end of the interview, these scores were

compared. Any discrepancies in scores were discussed between the assessors, notes were
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| can easily get access to data when | need it. Clear data management practices ensure data are well
managed in my department / team / business function.
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Figure 3.5: An example comparing how some questionnaire responses vary between differ-

ent levels of management.

taken on why there was any disagreement and decided between them what the final score
should be. This dialogue became an important part of the assessment to gather informa-
tion on: the Industry 4.0 maturity, the effectiveness of the tool, and discuss future changes
that may be required. For these reasons, it is highly recommended that at least 2 assessors
are assigned to perform this self-assessment.

Many participants in the interview stage were quick to share their ideas on digitalisation
and automation opportunities in their departments. In these instances, further questions
would be asked on the value proposition, resource requirements, technological barriers, or-
ganisational barriers, and other considerations of the potential business case. It was found
that many participants had promising innovation ideas related to Industry 4.0 technolo-
gies that demonstrated a clear business case. Many of these ideas had been proposed to
supervisors and management but had not been pursued for three main reasons: Lack of
data science skills, limited knowledge of resource requirements and potential ROI of digi-
talisation and data science solutions, and resistance to change.

Firstly, sites didn’t have access to the required data science skills and programming skills
to support the development of digitalisation solutions, such as PdM, Computer Vision,
dashboard development, and low-level administrative process automation. This supports
previous findings by Li 2021 and Bag 2021 who find that a lack of data science skills is one
of the main barriers to Industry 4.0 [47, 4§].

Secondly, management often lacked sufficient understanding of these emerging technologies
which made it difficult to estimate the resource requirements and calculate the ROI for the
proposed solution. These findings are aligned with prior research by Theissler 2021, who

discusses how limited knowledge of the machine learning requirements at the managerial
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and process levels is one of the main barriers to technology implementation [30]. Our find-
ings suggest that this goes beyond machine learning solutions and also applies to complex
data-driven solutions that require programming.

Finally, it was found that many managers were resistant to digital innovation solutions,
with multiple interview participants stating there was a mindset of ‘If it’s not broken, why
fix it’. Upon exploring the cause of this resistance to change, the author finds that one of
the main reasons was due to the frustration of employees dealing with highly bureaucratic
processes required to deviate from well-established company norms. Multiple instances
were identified where bureaucracy presented a barrier to innovation, resulting in consider-
able wasted time for those involved with the respective proposals.

For proposed innovation ideas aligned with Industry 4.0 and where sufficient information
could be gathered to form a business case, these ideas were compiled in the report to
communicate the value proposition to senior management and central R&D teams. As a
result, multiple new projects were identified during the interview stage that went on to
be successfully implemented at the company. For example, one of the questions in the
questionnaire asks participants to state to what extent they agree with the statement:
‘My department / team/ business function is good at identifying instances where data are
not well utilised’. In cases where participants answered ‘strongly disagree’, the assessors
would follow up on this during the interview stage, asking participants to identify which
data they believed were not well utilised. When posing this question to a member of the
logistics department, it was found that vehicle monitoring data and AGV error logs were
not being utilised by AGV teams, off-site simulation teams, or external vendors to help
address AGV downtime. Interviews found that on-site teams were aware that this data was
available, but teams lacked the required skills in SQL and other programming languages
that were required to analyse these data. These findings, as well as a proposed solution,
were included in the report to senior management highlighting this as a potential inno-
vation project. This project has since been completed and led to direct improvements in
AGYV cycle times on-site, as well as providing additional data on AGV routing to improve
simulation models of these systems across the company’s European operations.

In addition to AGV data insights, five other projects were identified from the interview
stages across all three sites. These projects include: digitalising Kanban in warranty de-
partments, new management tools to support process automation, new training initiatives,
Cobot voice command systems, and an anomaly detection solution for nut runner processes.

The details of all six projects are discussed further in section 2.6 of the appendix.
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To summarise, when reflecting upon the information gathering approaches, both the ques-
tionnaire results and interview findings provided valuable insights into various aspects of
Industry 4.0 related to technology, organisation, and culture. In terms of delivering ac-
tionable outcomes at the end of the assessment, the questionnaire was a quick and easy
approach to collect clear quantitative information on the organisational and cultural as-
pects of the factory. These data were valuable to support any proposed changes. While
much more time consuming and resource intensive, the interviews allowed assessors to
assess Industry 4.0 maturity in much more depth as well as gain insight into potential
innovation opportunities at the department or process level.

Following the information gathering stage, the de-brief meeting was found to be the most
important stage in the assessment process. By engaging with the senior management team
and presenting a list of proposed actions, these items were able to be assigned to on-site
personnel to take ownership of delivery. By having members of centralised manufacturing
departments, any deliverables beyond the capability of on-site teams were also able to be
communicated to the relevant teams to support any required next steps. This supports
the authors’ initial hypothesis that many assessments fail to deliver actionable results due
to the lack of engagement of senior management.

In addition to these direct strategic changes related to Industry 4.0 strategy, management
are also able to use these data to demonstrate cultural improvements on-site. By sending
out the questionnaire every six months and comparing the results, management are able
to measure how cultural values are changing over time. The resource requirements for
this are very low, with the questionnaire taking 4 minutes to complete on average, with
results immediately accessible through an online dashboard. This makes this a simple and
cost-effective approach for senior management to demonstrate how corporate-level cultural

objectives are being met.

3.7.2 Time and Resource Involved in Deploying the Method

The following subsection details the time and resource requirements from the Halewood
assessment. A team of 3 people was required to deliver the full assessment. A Ford Motor
Company manager in the Powertrain Manufacturing Engineering was required to support
with organisational aspects during the project planning phase, such as liaising with union
representatives, scheduling meetings, and ensuring GDPR compliance. The remaining two

team members included the author and a data science apprentice at Ford Motor Company

127



to act as the second assessor during the interview stage. Throughout the planning phase,
the necessary arrangements were made via web conferencing via email. From project start,
it took approximately 3 weeks to identify, contact, and schedule meetings with the required
personnel prior to the de-brief meeting. Much of these 3 weeks was waiting for scheduled
meetings and email replies, which required minimal time input from those managing these
arrangements.

Questionnaires were sent out via email using Microsoft Forms. Of the 80 salaried staff at
Halewood that were sent the assessment, a total of 54 responses were returned in total,
all within 5 days. Most quantitative data were available through the MS Forms platform,
however, an estimated two hours of additional work was required to explore further in-
sights into the responses such as the comparison of responses between different levels of
management shown in Figure |3.5]

Using the questionnaire results to identify discussion points and preparing interview ques-
tions was key to structuring the individual interviews to ensure a fast and efficient interview
process. By scheduling and preparing for interviews while the questionnaire responses came
in, the 30 interviews at Halewood were able to be completed by two assessors within a 2
week period alongside other full-time projects. While the interviews were only scheduled
for 30 minutes via web conferencing, following the interview an additional 30 minutes was
often required by the assessors o write up notes and discuss any findings. In some cases,
only 1 assessor was able to be present, in which case the interview was recorded and re-
viewed separately by the absent party. In many cases, interviewees would send supporting
documents, or email additional information relevant to any discussion which would also
require time to review and disseminate.

Some key findings of the interviews were able to be compiled into a draft version of the re-
port as the questionnaire responses and interview findings were being collected. In total, it
is estimated that the final 26-page report took approximately 70 hours to complete, spread
over a 5 week period. If necessary, additional web conferencing meetings were scheduled
during this time to clarify any information.

Based on these findings, the full assessment is estimated to take between 8 and 12 weeks
to complete. These findings were used to produce the proposed project timeline presented
in Figure [3.3] This takes considerably longer than most other assessments in the reviewed
literature, with the exception of the Engineering USA report for which the time estimate
is similar.

This investment of human resources and time is not insignificant. However, given that this
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is the only example in the reviewed literature where an assessment tool can demonstrate
the impact in a manufacturing environment, the author argues that the proposed approach
improves upon prior research in delivering Industry 4.0 objectives. Further work is required
to quantify the long-term value add of the assessment framework and compare this with

other assessment tools.

3.7.3 Qualitative analysis of the assessment outcomes

The objective of the Industry 4.0 assessment tool is to support automotive manufacturing
sites in advancing aspects of the Industry 4.0 strategy with a particular focus on enabling
technologies of machine learning. In order to achieve this, based on findings from Chapter
2, the assessment ensures to engage management throughout the assessment process and,
upon completion, provides a concise report and strategic roadmap to deliver quick wins
and guide long-term strategic change.

Applying the proposed assessment tool using the methodology outlined in this chapter
resulted in multiple outcomes to address a range of human-centric, technology-centric, and
organisational growth opportunities at Ford Motor Company. Table presents a cate-
gorised list of these outcomes. As discussed above, multiple short-term innovation projects
have resulted from performing these assessments at multiple manufacturing sites. These
short-term projects have already yielded tangible improvements in simulation models, pro-
duction efficiency, and upskilling initiatives. Additionally, ongoing projects aim to achieve
further cost savings and enhance product quality. Further information on the Ford-specific
projects highlighted in Table 3.5 are discussed in section .2.6 of the appendix. Due to the
time scale of this research and the impact of COVID-19 during the course of study, further
work is required to continue research in the projects listed as long-term in Table as
well as quantifying the long-term value-add of the short-term solutions.

Although the long-term impact of the Industry 4.0 assessment at the factory level is dif-
ficult to quantify at this stage, this research has significantly influenced Ford’s long-term
strategy in other areas of operations. In 2022, based on the successful outcomes of the
Halewood assessment, Ford’s Powertrain Manufacturing Engineering Department adopted
this assessment tool as part of its Industry 4.0 strategy to support innovation efforts across
European manufacturing operations. Further assessments are currently being planned for
other European manufacturing sites throughout 2023. By quantifying the impact of these

projects identified through the Industry 4.0 assessment tool, the value of conducting such
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assessments can be effectively communicated to other manufacturing plants. This provides

further opportunities to promote digital growth on a global scale.

Table 3.5: A categorised list of outcomes of the Industry 4.0 assessment per-
formed across all of Ford’s UK manufacturing sites. These outcomes are ex-

panded upon further in section 2.6 of the appendix.

Human Centric Technology Centric Organisational / Strategic
Short-
Term e Automation of Kanban to reduce|e AGV Data Insights e Industry 4.0 Assessment Tool
non-value added admin time. e Nut Runner Anomaly|e Quantifying workplace culture using
e Bite-Sized data science training for Detection questionnaire results.
management. e [-RPA - A quantitative assessment
e Updating data science hiring strate- approach to identify and prioritise
gies at Halewood. RPA activities at the department
level.
Long-
Term e New training initiatives related to|e Cobot Voice Command|e Quantifying cultrual change using re-
emerging Al and data science tools. System. peated questionnaires.
e JoT scanners in logis-
tics for inventory man-
agement.

When considering the value of the Industry 4.0 assessment tool, management should
consider not only the economic appraisal of engineering projects but also the added value
of additional data access, knowledge growth, and the social benefits of the proposed solu-
tion. This chapter presents various metrics to evaluate organisational and strategic change
that may be used to measure this impact. This addresses a major gap in the industrial
sponsors’ current business strategy, thus providing a novel means of supporting future sus-
tainable growth. Further work is required to explore the extent of these strategic gaps in
other automotive manufacturers in order to better understand the potential impact of the
proposed assessment tool beyond Ford Motor Company.

As mentioned previously, the assessment process identified multiple innovation projects by
expanding upon questionnaire responses and collaborating with participants during the in-
terview stage to develop robust business cases. While this approach has led to the develop-
ment and implementation of numerous projects, it relies on assessors possessing a detailed
understanding of Industry 4.0 and experience in emerging technology implementation for
relevant solutions. Additionally, assessors need familiarity with existing technologies in
the company to determine resource requirements and identify opportunities for replica-

tion. These knowledge requirements restrict the pool of individuals capable of successfully
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conducting the assessment. However, given that this assessment methodology targets large
automotive manufacturers, it is reasonable to expect that individuals with the necessary
skills can be found within centralized engineering teams dedicated to exploring emerging
manufacturing solutions. These limitations could also be addressed by further improving
the structure of the interview process to provide clear guidance for a non-expert in Industry
4.0 technologies to support the identification of innovation opportunities.

As mentioned above, the full assessment requi