
The Sustainable Adoption of

Industry 4.0 & Machine Learning in

the Automotive Industry

by

James Flynn

Thesis submitted to

Swansea University

In fulfillment of the requirements

For the Doctorate of Engineering

Eng.D

Department

Mechanical Engineering

2023

Copyright: The Author, James Flynn, 2023.

j.s.whitney
Cronfa



Supervisors

The following acted as the academic and industrial supervisors for this thesis.

Academic Supervisor (1): Cinzia Giannetti,

Professor, Dept. of Engineering,

Swansea University

Academic Supervisor (2): Christian Griffiths,

Associate Professor, Dept. of Engineering,

Swansea University

Industrial Supervisor: Steven Buck,

PTO Business Manager,

Dunton Technical Centre,

Ford Motor Company

iii



Author’s Declaration

This work has not previously been accepted in substance for any degree and is not

being concurrently submitted in candidature for any degree.

Signed........ ..................................

Date......................................................................

This thesis is the result of my own investigations, except where otherwise stated. Other

sources are acknowledged by footnotes giving explicit references. A bibliography is ap-

pended.

Signed.......... ....................................

Date......................................................................

I hereby give my consent for my work, if relevant and accepted, to be available for

photocopying and for inter-library loans after expiry of a bar on access approved by the

University.

Signed........ .....................................

Date......................................................................

The University’s ethical procedures have been followed and, where appropriate, that

ethical approval has been granted.

Signed......... ...................................

Date......................................................................

iv

12.06.23

12.06.23

12.06.23

12.06.23



Abstract

The automotive industry is undergoing a major transformation. New environmental leg-

islation, changing consumer requirements, Industry 4.0 technologies, and advancements

in battery technologies, have contributed to an industry-wide shift towards electric pow-

ertrain. To remain competitive in this rapidly changing environment, automotive manu-

facturers must ensure high levels of technical and organisational innovation to transition

towards digital and data-driven business practices.

This research aims to address these growth opportunities and manage ongoing change in

three steps. First, the literature on machine learning applications in automotive manu-

facturing is critically reviewed and the barriers to developing and implementing machine

learning are discussed. Secondly, a structured framework is developed to assess the indus-

try 4.0 maturity of automotive manufacturing operations and guide digital transformation

at the factory level. In the third and final step of this research, two machine learning

projects identified by the assessment are presented in detail. The first case study presents

an anomaly detection solution to identify process errors in engine assembly. This research

introduces multiple advancements in anomaly detection in manufacturing, including the

introduction of the Anomaly No Concern class. The second case study is a greenfield

project to explore new digital value chains to add value to EV customers and explore data-

as-a-service business models. This case study uses a combination of Google Street View

data and GIS data to identify houses suitable for EV charging and represents a major

advancement towards fully automated remote surveying of the built environment.

To conclude, multiple advancements are presented that contribute to the academic lit-

erature. Clear stepwise frameworks support the proposed industrial solutions to develop,

implement and replicate these solutions across the business. These contributions have been

used to support ongoing digitalisation efforts, implement state-of-the-art anomaly detec-

tion solutions, and explore new data-as-a-service business models in one of the world’s

largest automotive companies.
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Chapter 1

Introduction

The automotive industry is undergoing a major technological revolution. Contributing

factors to this disruption include emerging manufacturing technologies, environmental leg-

islation, and changing consumer requirements. These factors, combined with improve-

ments in lithium-ion battery technologies, digitalisation, and automation, have resulted in

an industry-wide shift towards electric powertrain as an alternative to traditional internal

combustion engines that have dominated the market for nearly a century. A major driver

of this change was the Paris Climate Agreement, in November 2016 outlined ambitious

targets to cut global greenhouse emissions. While many hybrid and EV products existed

before the Paris Climate Agreement, this global call to environmental action resulted in

many leading economies introducing legislation to ban the sale of new internal combustion

engine vehicles over the coming decades [7].

More recently, automakers have faced new supply chain disruptions following the COVID-

19 pandemic, the Russian invasion of Ukraine, and the subsequent geopolitical and global

economic instability [8]. The resultant energy crisis has meant many counties are putting

new policies and guidelines in place to motivate consumers to reduce their reliance on

fossil fuels further [8]. These recent market disruptions introduce new risks to automotive

manufacturers due to supply chain disruptions, global trade tensions, fluctuating sales, and

political uncertainty [9, 8]. There remains some uncertainty around how regional policies

will affect the global EV market, with EV sales slowing in some markets, including the US

and China, in recent years [9]. However, as emissions regulations become more stringent,

battery technologies advance and EV products become cheaper with longer ranges, experts

predict that EV models will emerge as the dominant mode of powertrain in the near future

[9].
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In addition to the challenges of transition towards electric powertrain, the automotive

industry also finds itself amid a wider technological revolution affecting the whole man-

ufacturing sector, referred to as ’Industry 4.0’. The term Industry 4.0 was first used to

demonstrate the impact of Smart Systems and the Internet of Things (IoT) on the German

manufacturing sector and set the basis for the German government’s “High-Tech Strategy

2020 Action Plan”[10, 11]. Since then, the term has evolved to describe various emerging

technologies and business practices that are redefining the manufacturing sector as indus-

tries shift towards increased digitalisation and automation. Such technologies include big

data analytics, IoT, Cyber-Physical Systems (CPSs), wearable technologies, additive man-

ufacturing, cloud computing, advanced robotics, and machine learning. The application

of Industry 4.0 is not confined to manufacturing technologies but also considers organisa-

tional innovation. As organisations digitalise and integrate all areas of business operations

throughout the product life-cycle, new business models are enabled to deliver added value

to customers [12].

1.1 A Brief History of the Industrial Revolutions

Industry 4.0 is an abbreviation of ’the fourth industrial revolution’. Before discussing

this further, a brief overview of the previous industrial revolutions is presented. Entire

books have been dedicated to understanding the causes of each separate revolution, and

therefore the discussion is limited to a high-level overview in relation to advancements in

manufacturing to provide some background and context for the reader. For further details

on the first and second revolutions, the reader is refered to books by P.M.Deane and R.

Joel Mokyr respectively [13, 14].

The three previous industrial revolutions were all triggered by various innovations, the

first of which can be traced back to Manchester, Great Britain, in the 18th century [11].

Innovations during this era often had little to no scientific base, with discoveries often

arising serendipitously through the practical application of the engineering, medical, and

agricultural knowledge base of the time [15]. During the mid-18th century where the

mechanisation of the textile industry was made possible by the introduction of water- and

steam-powered manufacturing processes such as the Roberts Loom [11]. Before the Roberts

Loom, workers manually powered machinery using foot pedals while repeatedly weaving

through a taught matrix of tightly strung threads. By mechanising these processes, the

physical limitations of the human body were overcome, allowing less skilled users to oper-
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ate the looms, making the process considerably faster and cheaper. Similar machine tools

and technologies began emerging throughout the late 18th and early 19th century, bringing

with it a new era of industrialisation that quickly spread across the globe, transforming

what was previously an agricultural society into a new industrial society [15].

The second industrial revolution can be traced back to multiple innovations in manufactur-

ing between the 1870s and 1920s that addressed the changing nature of organisation and

production, and their associated technologies [15]. During this period, technologies such as

railroads, telegraph networks, and city infrastructures were expanded massively thanks to

various technological advancements that enabled the mass production of steel, chemicals,

and oil [15]. New systems, such as electric power, were also introduced that helped further

improve mass production systems [11]. However, the second industrial revolution is not

defined by these new technologies but rather by the new approaches to the organisation

of production and more scientific approaches to innovation. The economy of scale became

increasingly important as high-volume manufacturing became widespread and giant corpo-

rations began to rise, such as Carnegie Steel, Dupont, Ford Motors, and General Electric

[15]. One of the most significant advancements in manufacturing during this era was the

introduction of the moving assembly line, which was first introduced in 1870 to improve

the process efficiency of meat production in slaughterhouses [11]. The concept was later

popularised by Henry Ford, who proved that combining the concepts of division of labour,

continuous flow processes, and interchangeable parts made it possible to produce highly

complex products at low prices [15].

There is a large crossover between Industry 1.0 and Industry 2.0. Both revolutions in-

volved improved manufacturing processes and technologies, spurring new eras of economic

and societal growth. However, the second industrial revolution is distinguished by two

main factors. Firstly, the new approaches to production organisation and a greater focus

on systematic, scientific approaches to innovation and process optimisation. Secondly, in-

dustrialisation spread much quicker during Industry 2.0 thanks to improved transport and

communication networks, and growth spread outside of the British Isles into the United

States, Germany, and other countries across Europe [15, 16].

The major technological advancement that marked the beginning of the third industrial

revolution was the development of the first Programmable Logic Controller (PLC) in 1968

[17]. This enabled users to digitally reprogram a computer to perform multiple operations

and kickstarted the information and communication technology (ICT) age which quickly

spread across the world, redefining the way that companies operated [17]. Rapid devel-
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opment over the following decades led to smaller, more affordable computers aimed at

both consumers and large companies. The introduction of personal computers drastically

changed the way people worked and lived. As the world became evermore connected, per-

sonal computers quickly shifted from being a luxury item to a necessity in much of the

western world.

Industry 4.0 is widely regarded by scholars and industry as an evolution from the third in-

dustrial revolution, in the same way, that the second was a continuation of the first [11, 15].

In terms of technological advancement, the rise of the Internet triggered the fourth indus-

trial revolution, the subsequent development of Cyber-Physical Systems (CPS) and the

creation of a digital value chain [17, 18, 19]. CPSs are the mechanism that combines ele-

ments of both the physical world and digital software, providing a means for components,

objects, devices, and other things to communicate information [18]. During the beginning

of the 21st century, the popularity of these wireless, networked devices grew significantly

in both industrial and commercial applications. The widespread distribution of CPS is the

main distinguishing aspect of the fourth industrial revolution. With further miniaturisa-

tion and improved infrastructures such as cloud computing, these technologies soon evolved

into a wider system of connected physical CPSs termed ‘The Internet of Things’ (IoTs),

a major enabling technology of the fourth stage of the industrial revolution [11]. The key

difference between IoT and CPS is that CPS involves integrating software, computation,

networking, and physical processes, not necessarily via the internet. In contrast, IoT refers

to physical objects and systems connected through internet networks.

By integrating CPSs and IoTs into every aspect of a production line with the appropriate

framework, manufacturers can work towards a fully networked factory with the poten-

tial to develop a self-organising factory environment, often referred to as a Smart Factory

which represents the pinnacle of the Industry 4.0 manufacturing environment [20]. These

highly automated manufacturing environments require high levels of digital skills and new

management approaches and business models that challenge well-established manufactur-

ing practices. To address these challenges, change management, business intelligence, and

automated production management are among the most common research topics in the

Industry 4.0 literature [21, 22, 23, 12]. Industry 4.0 is a human-centric philosophy in

which digitalisation and automation are explored in a socially sustainable way as a means

to empower the existing workforce to drive innovation while minimising the negative so-

cial impact. However, some researchers raise concerns that in real-world applications, the

human-centric concepts of Industry 4.0 are not well-understood [24].
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There are many similarities between the transition from Industry 1.0 and Industry 2.0

compared to that between Industry 3.0 and Industry 4.0. The first industrial revolution

resulted from technological innovations that overcame the physical limitations of the hu-

man body in production environments and radically increased production rates. This, in

turn, led to a new era of high-volume production across various industries demanding new

approaches to business organisation and production management to manage this new sup-

ply chain. Similarly, in the third industrial revolution, technologies such as PLCs, advanced

data analytics, robotics, and CPSs allowed users to overcome further physical limitations

of the human body but, more importantly, overcome the analytical limitations of the hu-

man mind. Organisations are again seeing how technical innovations in automated data

analytics are changing approaches to business organisation and production management.

1.2 Machine learning in the Factory of the Future

In the modern automotive industry, data and human resources are two of the most valuable

assets to a company. As the workforce is upskilled and manufacturing environments become

increasingly integrated, data becomes increasingly valuable [25, 26]. This value creation

lies in the ability to apply data analytics and generate insights into integrated systems and

processes to users throughout the value chain, leading to new organisational and techni-

cal knowledge which can deliver competitive advantage and drive further innovation [25].

Value is assigned not only to data but also to the integrated systems, technologies, and

people allowing for its collection, integration, and exploitation.

As manufacturers continue to improve data collection and integration by installing cheap

sensors and networked IoT systems, new challenges arise in analysing these data. Manu-

facturers must adapt to deal with high volumes of high-dimensional manufacturing data

that do not follow Gaussian distributions. Existing analytic toolsets commonly used in

automotive manufacturing environments, such as Six Sigma and Excel, will become in-

creasingly ill-suited to analyse these data. Manufacturing organsiations must recognise the

limitations of the current analytical tools and adopt new approaches to data management

and analytics.

Machine learning has emerged as a powerful tool to analyse big manufacturing data with

various applications discussed in the reviewed literature across all aspects of manufacturing

production and the broader organisation [27, 28]. Research in machine learning in automo-
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tive manufacturing has increased considerably in the last five years. While machine learning

applications are already fairly widely employed in the manufacturing sector, much of this

research into automotive applications has focused on proof-of-concept solutions, with few

papers demonstrating application readiness. This highlights a major opportunity for both

further academic research and industrial application of these technologies in the automo-

tive sector.

Machine learning presents tremendous growth opportunities through increased automation

and business intelligence. Autonomous production systems driven by machine learning

models can support production managers to predict production progress, react quickly to

issues and provide prescriptive analytics to support root cause analysis [29]. At the process

level, various machine learning applications can deliver quality improvements, time sav-

ings, and cost savings. Algorithms can monitor in-built sensors to predict tool breakages

in machining processes, to automatically schedule maintenance and reduce machine down-

time [30]. Anomaly detection systems can monitor processes and automatically report

when processes exceed limits, reducing the requirements for manual inspection and des-

ignate products for repair [31]. Integrating engineering processes throughout the product

life-cycle allows production to be tailored to meet fluctuating consumer demand of mul-

tiple product families. This delivers added customer value through highly customisable

products while also reducing lead times [27]. Flexible manufacturing systems enabled by

machine learning can also react quickly to changes in the local manufacturing environment

to deliver reduced labour costs, improved inventory management, reduced lead times, and

reduced manufacturing costs [27]. As data produced by automotive products become in-

creasingly integrated, added value can be delivered to customers through machine learning

enabled services such as predictive and prescriptive maintenance. By monitoring vehicle

data in-service, a customer can be notified if maintenance is required improving safety,

reducing cost, and improving customer experience [32].

Managing the transition toward implementing machine learning technologies can be chal-

lenging. This transition requires a well-structured long-term strategy that challenges exist-

ing organisational cultures [33, 34, 35]. It requires investment in new technologies, practices

for which Return on Investment (ROI) is difficult to quantify [33, 34, 35]. Research shows

that the use of machine learning in automotive manufacturing applications has been lim-

ited until recent years [36, 37]. Researchers and industry practitioners are still working to

understand how best to create value from the combination of machine learning and other

Industry 4.0 technologies, given that many of these technologies are still in their infancy
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[37]. The application of machine learning requires careful selection of the suitable use case,

requiring both technical knowledge of advanced data analytics and domain-specific knowl-

edge of the target process. Gaps in organisational knowledge in automotive manufacturers

have resulted in a reluctance to embrace machine learning and its enabling technologies due

to the challenges of complexity, technical expertise, and uncertainty of investment require-

ments [38]. Previous research has also explained the slow adoption of machine learning

enabling technologies due to the limited availability of skills and poor change management

[39].

To address these challenges and support organisational change, considerable research has

been done in developing Industry 4.0 maturity assessments to measure progress towards in-

dustry 4.0 and develop roadmaps to guide this transformation [12, 40, 41, 42, 43, 44, 45, 46].

These self-assessment maturity models allow organisations to compare technological and

organisational aspects of operations against a well-defined benchmark to quantify progress

toward Industry 4.0 and highlight areas to improve. Industries with high technological

readiness levels supported by well-communicated sustainable automation strategies will

achieve higher process scores and Industry 4.0 readiness. Despite research in Industry 4.0

change management, research shows that the full realisation of machine learning and its en-

abling technologies is yet to be realised in the automotive manufacturing industry [47, 48].

Further research is required to understand how organisations should manage the transi-

tion towards increased digitalisation and automation and how to prioritize investments in

emerging technologies to maximize value creation.

1.3 Business Models of Industry 4.0

Innovation is critical to successfully managing this change and requires a strong under-

standing of the most recent challenges, and opportunities of Industry 4.0 technologies

[49]. Innovation is required not only in technological research and development but also

in organisational aspects as new business models emerge as a result of new integrated

Industry 4.0 technologies [37, 50]. Digitalisation is a key enabler of new business mod-

els, where novel digital platforms create new digital markets and embrace consumer in-

volvement in the product and service innovation process [51]. These business models in-

clude ’The Sharing Economy, ’On-Demand Services’, ’Manufacturing-as-a-Service’, ’Data-

as-a-Service’, ’Mobility-as-a-Service’, and Circular Economy [52, 53, 54, 55, 56]. As new

products and services are introduced, and data are integrated vertically and horizontally
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throughout the organisation, machine learning and Big Data analytics will play a critical

role in the business strategy [57]. Predictive analytics and automated process control sup-

port real-time prescriptive analytics mitigating risks such as unpredictable raw material

quantity, quality, availability variations, and constantly changing market trends and con-

sumer behavior [57].

Customer behavior analytics presents a significant opportunity for automotive manufac-

turers to improve their understanding of the potential value of different customer segments

through analysing external data sources such as social media and internal sources [58].

This knowledge can be used to strategically target new customers as well as improve cus-

tomer experience and ensure the loyalty of existing customers [58]. Big data analytics

of consumer data also significantly improve manufacturing process agility and flexibility,

allowing production and procurement to adapt to changing markets. By gathering and

analysing real-time data from an automaker’s fleet and warranty data, cloud-based big

data processing will enable new after-market services for customers. Examples include

predictive and preventative maintenance of products, various infotainment services, and

self-driving support services such as autopilot and collision prevention that are already

found in many modern vehicles [59].

Like many automotive companies, Ford Motor Company recently began offering Mobility-

as-a-Service. Mobility-as-a-Service models involve customers paying an upfront fee, fol-

lowed by weekly payments to access a vehicle with all-inclusive service, including insur-

ance, MOTs, servicing, and maintenance [60]. Non-ownership and sharing of vehicles are

not limited to passenger transport, with recent research in the Mobility-as-a-Service model

also highlighting the potential for opportunities in freight transport. As the fixed cost of

ownership is replaced with variable costs of travel use, electric vehicles and autonomous

driving become major enablers of these services [56, 61].

A key challenge of business model innovation is understanding how to identify, select, and

implement digital innovations [37]. This is particularly true in areas where innovations are

neither a product nor a service but instead promise to add additional value for customers.

These innovations are difficult to develop a business case and equally difficult to measure

the impact of outcomes [37]. Further research is required to understand business model

innovations at both the organisational and technical levels [37].
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1.4 Objectives

The overall aim of this thesis is to present and critically review the application of machine

learning in the automotive industry and develop various methodologies to support the

further uptake of these technologies to deliver increased quality and value creation in

various organisational settings within the automotive industry. To achieve this goal, we

outline the following main objectives:

1. Identify the main machine learning technologies used in automotive manufacturing

and identify the barriers and opportunities for further sustainable growth and value

creation in this field.

2. Development of a strategic framework to support the future uptake of machine learn-

ing in the automotive industry with a focus on sustainability.

3. Using the proposed framework, develop machine learning solutions to create value

from existing data sources in the automotive industry.

1.5 Thesis Layout

This thesis is structured as follows. Chapter 2 introduces and critically reviews the main

body of the literature on machine learning applications in automotive manufacturing. It

includes descriptions of the various machine learning approaches with detailed descriptions

and examples of the most commonly used models and architectures. The barriers to devel-

oping and implementing machine learning and its enabling technologies are also discussed.

With human-centered design and sustainability being one of the main pillars of Industry

4.0, particular focus is placed on understanding the social implications of machine learning

and its enabling technologies and managerial practices.

Realising the value of machine learning in manufacturing requires investment in emerg-

ing technologies and adopting new business practices that challenge cultural norms. This

transition must be supported by well-structured step-wise change management strategies

communicated to the entire workforce. These challenges are addressed in Chapter 3, in

which an Industry 4.0 maturity assessment tool is presented. This structured framework is

aimed at automotive manufacturers to self-assess the technological, strategic, and cultural
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maturity of production facilities. By reviewing these areas against a well-defined bench-

mark, growth opportunities can be identified to create added value from existing data. A

roadmap toward the organisations’ vision of Industry 4.0 can be then be developed. As

organisations increase their industry 4.0 maturity level, further opportunities are created

to add value through data analytics and machine learning solutions to improve flexibility,

productivity, and efficiency.

Chapter 4 presents a machine learning-based In-Process Anomaly Detection system in an

engine assembly plant. This project was identified as a result of an Industry 4.0 assessment

at Ford Motor Company and demonstrates how machine learning solutions can automate

tasks and deliver quality and process improvements following a sustainable approach. This

research includes the first instance in the reviewed literature where anomaly detection is

applied to time-series data gathered from manual production processes. Manual produc-

tion data presents challenges such as process staging, human-induced variability, and the

subjectivity and ambiguity of the anomalous class. Multiple novel concepts are introduced

to overcome these challenges, including the first use of an ’Anomaly No Concern’ anomaly

class in the literature. Furthermore, to address the lack of publicly available datasets to

develop anomaly detection approaches in production settings, the datasets used in this

study are made public to support future research.

As automotive manufacturers reach the highest levels of Industry 4.0 readiness, new

data-as-a-service business opportunities emerge, enabled by machine learning technologies.

Chapter 5 presents a novel method of surveying the built environment using automated

machine-learning approaches to identify houses suitable for EV charging. Automotive prod-

ucts are changing how we live and function as a society and play a major role in ensuring a

sustainable future. By exploring novel methods such as these to gain insights into the fu-

ture uptake of electric vehicles, organisations can become better connected with customers,

react quicker to market changes, and explore data-as-a-service business opportunities.

1.6 Industrial Impact and Research Outputs

Some of the research outputs of this doctorate thesis have been disseminated by publishing

papers in international research journals and international conferences. This research has

also contributed to the completion of several industrial projects, delivering cost savings of

over £10m per annum at Ford Motor Company.
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1.6.1 International Research Journal Publications

The following papers have been peer-reviewed and published in international research jour-

nals:

• Flynn J, Giannetti C. Using Convolutional Neural Networks to Map Houses Suitable

for Electric Vehicle Home Charging. Ai. 2021;2(1):135–49.

• Borghini E, Giannetti C, Flynn J, Todeschini G. Data-Driven Energy Storage Schedul-

ing to Minimise Peak Demand on Distribution Systems with PV Generation. Energies

2021;14:3453.

• Flynn J., Giannetti C., van Dijk H., Anomaly Detection of DC Nut Runner Processes

in Engine Assembly. AI. 2023 Feb 7;4(1):234-54.

1.6.2 International Conference Papers and Presentations

The following papers have been reviewed and published in conference proceedings:

• Flynn J, Brealy E, Giannetti C. Making Green Transport a Reality: A Classification

Based Data Analysis Method to Identify Properties Suitable for Electric Vehicle

Charging Point Installation. 2021 IEEE Int Geosci Remote Sens Symp IGARSS.

2021;(2018):6229–32.

• E. Brealy, J. Flynn and A. Luckman, ”Multi-Criteria Approach Using Neural Net-

works, GIS, and Remote Sensing to Identify Households Suitable for Electric Vehicle

Charging,” IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing

Symposium, 2022, pp. 283-286, doi: 10.1109/IGARSS46834.2022.9884517.

• J. Flynn, Machine Learning Anomaly Detection for In-Process Quality Assurance,

2022 M2A Annual Conference, 2022

1.6.3 Industrial Projects

Project ADAPT

The work carried out during this EngD has contributed to successfully delivering the

ADAPT project, a machine learning strategy to address production anomalies and en-
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hance quality in powertrain manufacturing. The author worked as part of a global cross-

functional team to develop and implement the anomaly detection solution presented in

Chapter 4. Project ADAPT has been successfully implemented in two trials at Ford’s

Dagenham engine plant and is estimated to deliver greater than £10m per annum savings

per plant. Following the success of these trials, the anomaly detection method has demon-

strated application readiness and is planned to be rolled out globally within Ford Motor

Companies’ manufacturing operations. As a subject matter expert in machine learning

within Ford’s Power Train Manufacturing Engineering team, the author continues to work

on project ADAPT to explore further opportunities for cost savings and quality improve-

ments elsewhere within the company. Further applications of the authors’ contribution to

the ADAPT project have since been identified in vehicle assembly operations, with ongoing

collaboration with the Cologne Vehicle Assembly plant to deliver further process optimi-

sation.

As part of this research, a major gap was identified in the company’s machine learning de-

velopment strategy. Prior to this research, no standardised method was in place to support

data labelling tasks within the company. Data labelling is a critical stage in model devel-

opment to produce high-quality training and testing datasets. To address this, software

was developed to provide engineers with a dashboard interface to label data and minimise

the time taken to label large amounts of time series data. This dashboard has since been

adopted by Ford Motor Company to support additional internal projects, including a re-

cent project exploring new approaches to deal with disagreement in labelled production

data.

Industry 4.0 Assessment

In Chapter 3, an Industry 4.0 maturity assessment tool is presented. This tool supports

automotive manufacturers in identifying growth opportunities in the technological, strate-

gic, and cultural aspects of current operations. As well as identifying specific industrial

projects, this assessment tool helps develop a roadmap toward long-term Industry 4.0 goals.

Following the success of two assessments at Ford’s UK manufacturing sites, the company

has adopted this assessment methodology to perform further internal assessments and

manage ongoing change towards increased digitisation and automation. Most recently, an

Industry 4.0 assessment was performed at Halewood Transmission Plant following £230m
investment into new electric vehicle transmission lines. The Industry 4.0 assessment sup-
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ported identifying and prioritising digitalisation projects in the warranty, logistics, and

production departments. The outcome of this assessment led to new business strategies

adopted on-site, including introducing new business metrics to measure progress toward

digitalisation. The assessment findings also led to changes in training strategies to up-

skill the existing workforce using socially sustainable approaches. In addition to guiding

investments into human resources, subsequent investments were also made into emerging

technologies as a direct result of this assessment. As Ford Motor Company continues to

invest in electrification in EU markets and new production lines are launched, other Indus-

try 4.0 Assessments are planned to manage this organisational change at manufacturing

sites across Europe.

1.6.4 Awards

As part of a team of 5 data science and engineering researchers, the author achieved

3rd place in the 2021 International Open Data Challenge Series hosted by the Energy

Systems Catapult and Western Power Distribution. The goal of the Open Data Challenge

was to generate innovative and sustainable open-data solutions to social problems. The

author’s contributions include model construction, validation, experimentation, and result

visualisation of the state-of-the-art machine learning approaches used in this research.

These models are tuned and combined with ad hoc and convex optimisation techniques

to maximize peak load shaving and power storage. This research led to a journal article

published in Energies as part of the Special Issue Forecasting and Management Systems

for Smart Grid Applications.

1.6.5 External Factors

There have been multiple external factors outside the control of the university and spon-

sor company that has had some effect on this EngD. This doctorate research topic was

originally sponsored by Ford’s Bridgend Engine Plant to explore the development and

implementation of Industry 4.0 technologies on-site. In June 2019, the Bridgend plant

announced its closure which resulted in considerable work on the development of machine

learning implementation being unable to continue. As a result, the candidate’s industrial

supervisor and other industry contacts could no longer provide support for the project. For

almost a year, the EngD project’s future was uncertain. During this time, it was decided
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to change the scope to explore a new topic that relied on open-source data and would

not require the input of a sponsor company. This led to the development of the project

presented in Chapter 5 to map houses suitable for EV charging using Google Street View

data.

It was not until Feb 2020, when Dagenham Engine Plant agreed to continue funding the

EngD that a new industrial supervisor was arranged. At this time, the scope of the EngD

was to return to that outlined initially. Given the success of the Industry 4.0 Assessment

Tool at Bridgend, plans were made to expand this project to replicate this methodology

at Dagenham and other European plants. The ongoing works on mapping EV charging

locations were socialised with Ford UK teams and work was also agreed to continue in this

area. However, shortly after reestablishing regular contact with the sponsor company, the

COVID-19 pandemic in March 2020 caused further delays to the project. Site visits were

banned, forcing the project scope to be reviewed once more and the focus of work returned

to EV charging. It was not until Feb 2021 that work with Ford was able to continue once

more, working with new teams at Dunton Technical Center where the candidate could

contribute to projects working remotely. Further work on the Industry 4.0 assessment was

not able to continue until June 2022.
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Chapter 2

Machine Learning in the Automotive

Industry

2.1 Summary

This chapter introduces the main body of the literature related to the use of machine

learning in the automotive industry. A systematic review is conducted using the PRISMA

framework to answer the following research question: ”How are machine learning tech-

nologies and practices used to create value in automotive manufacturing environments, and

what are the barriers to their development and implementation?” . In answering this re-

search question, a range of machine learning approaches are discussed, as well as the most

common models researchers use to explore novel manufacturing solutions. Enabling tech-

nologies in manufacturing are also discussed, including a range of Industry 4.0 technologies

such as IoT, Big Data analytics, Flexible Manufacturing Systems, Digital Twin, Cloud and

Edge computing. In addition to discussing the technical aspects of machine learning and

their associated challenges, this review also explores cultural and organisational challenges.

These findings are used to inform the development of a strategic framework outlined in the

following chapter to support the future uptake of machine learning and other Industry 4.0

technologies and practices. Furthermore, these findings are also used to guide research in

Chapters 4 and 5 into specific case studies to implement machine learning in automotive

applications.

The literature review is structured as follows. Section 2.3 presents the research question,

describes the methods used to search the literature, and details the inclusion and exclusion
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criteria. This section includes a description of the data extraction sheet used to gather

the quantitative and qualitative information from the reviewed literature and is referred

to throughout the study. Section 2.4 presents a summary of the results gathered from

the data extraction sheet, including key topics, types of data used, data collection meth-

ods, common machine learning models, hyperparameter tuning methods, and evaluation

metrics. Section 2.4 also includes an overview of the various machine learning training

approaches discussed in the reviewed literature and the most commonly used models to

provide a foundation of knowledge to which to refer later in answering the research question.

The discussion of these results is presented in section 2.5. In this section, the emerging

technologies of Industry 4.0, as presented in the reviewed literature, are introduced con-

cerning a wide range of research into their industrial applications in manufacturing. The

challenges and opportunities for value creation in manufacturing are discussed and how

they are used to support machine learning applications. Three main topics are identified

in the reviewed literature: digital skills, computer vision, and management. These main

topics are discussed to structure the discussion on these various technological, organisa-

tional, and cultural challenges and opportunities and their respective implications on social

sustainability. These key themes are digital skills, management, and computer vision and

were chosen because they were the most common recurring topics throughout the reviewed

literature. Finally, the research conclusions are presented in section 2.6.

2.2 Introduction

The automotive industry is undergoing significant technical, organisational, and cultural

change, driven by global environmental policies, changing consumer demands, and a wide

range of Industry 4.0 technologies. Innovation is critical to successfully managing this

change and requires a strong understanding of the most recent challenges and opportunities

of Industry 4.0 technologies [49]. Innovation is required not only in technological research

and development but also in organisational aspects as new business models emerge as a

result of new integrated Industry 4.0 technologies [37, 50].

As manufacturing environments become increasingly integrated, data becomes a significant

asset [25, 26]. This value creation lies in the ability to apply data analytics and generate

insights into integrated systems and processes to users throughout the value chain, leading

to new organisational and technical knowledge which can deliver competitive advantage,

and innovation [25]. Value is assigned not only to data but also to the integrated systems,
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technologies, and people allowing for its collection, integration, and exploitation. Machine

learning has emerged as a powerful tool to analyze big manufacturing data with various

applications discussed in the reviewed literature across all aspects of manufacturing pro-

duction and the broader organisation [27, 28].

Developing machine learning solutions requires people with advanced data analytics skill

sets to analyze large volumes of integrated data easily accessible through networked in-

frastructures. To provide these high levels of data collection, integration and accessibility,

multiple enabling technologies of machine learning are discussed in the literature, includ-

ing: IoT [62], Big Data analytics [52], Flexible Manufacturing Systems [27, 29], Digital

Twin [63, 64], Cloud and Edge computing [28, 65, 57]. Machine learning solutions can be

implemented at the functional level without the widespread adoption of these technolo-

gies. However, as companies reach high maturity levels in these enabling technologies,

the opportunities for value creation using machine learning increase significantly as new

enterprise-level opportunities are created to deliver business intelligence [12].

Research shows that the full realisation of Industry 4.0 technologies is yet to be realised in

the manufacturing industry [47, 48]. This is particularly true for machine learning, with

research showing its use in manufacturing applications has been limited until recent years

[36]. Consequently, there are gaps in organisational knowledge leading to a reluctance to

embrace machine learning and its enabling technologies due to the challenges of complex-

ity, technical expertise, and uncertainty of investment requirements [38]. Previous research

has also explained the slow adoption of Industry 4.0 due to the limited availability of skills

and poor change management [39].

This chapter aims to overcome these organisational knowledge gaps by providing a com-

prehensive overview of the machine learning technologies and practices currently used in

automotive manufacturing environments. The barriers to developing and implementing

machine learning and its critical enabling technologies are also discussed. With human-

centered design and sustainability being one of the main pillars of Industry 4.0, particular

focus is placed on understanding the social implications of machine learning and its en-

abling technologies and managerial practices.

2.3 Search method and strategy

This section introduces the research question and describes the methods used to search

the literature. The search methodology used in this chapter is based upon the PRISMA
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framework, a commonly used systematic literature review approach widely used in the

medical literature that has recently been adopted by software engineering researchers also

[66].

Research Questions

The research question for this literature review is defined as follows:

”How are machine learning technologies and practices used to create value in automotive

manufacturing environments, and what are the barriers to their development and imple-

mentation?”

Inclusion and Exclusion Criteria

This literature limits searches to peer-reviewed, published works. The searches are limited

to publications from 2011 onwards, as this was when Industry 4.0 was first presented in

the literature. Due to the scope defined by the industrial partners, research related to the

development of autonomous robotics is excluded from this review. The automotive industry

relies heavily on automated manufacturing robots and already has access to considerable

talent in developing and implementing machine learning solutions for these systems. Given

that this project’s scope is focused on opportunities for increasing the usage of existing

data sources, research on augmented / virtual reality, additive manufacturing, supply chain,

and cyber security are excluded. After the initial screening, papers that did not include

sufficient detail on the methodology were also excluded. The complete exclusion criteria

are as follows :

• Papers published before 2011.

• Papers that are not related to manufacturing production.

• Papers for which the primary topic is augmented / virtual reality, additive manufac-

turing, robotics, supply chain, or cyber-security.

• Papers that focused specifically on Small or Medium Enterprises.

• Papers not in English.

• Papers not peer-reviewed.
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• Papers with no methodology included

While this review excludes papers not related to manufacturing, the author includes papers

in the searches that include relevant developments in data analytics or machine learning

that could be applied in manufacturing settings, even if this is not the main topic of the

presented use case. These additional sources are mainly from the reference list of research

papers included in the review. For transparency, topics that include additional sources

outside the primary literature searches are highlighted to the reader.

Figure 2.1: A flow diagram outlining the main steps of the literature seraches.

Searching the literature and the Screening Process

The literature search uses three academic databases: Semantic Scholar, Science Direct,

and Scopus. The following search string is used to obtain results from these databases:
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”((”Industry 4.0” OR ”Industry 4” OR ”fourth industrial revolution” OR ”4th industrial

revolution”) AND (Automotive) AND (Manufacturing OR Production)) AND (”Artificial

Intelligence” OR ”machine learning” OR ”Deep Learning”)”

The initial search returned 401 records from Science Direct, 110 from Semantic Scholar,

and 33 from Scopus, giving a total of 544 records to be included in the screening process.

After removing duplicates, the title and abstracts of 539 papers were read to determine

their suitability according to our inclusion and exclusion criteria. Three hundred sixty-

three papers were excluded during the initial screening. The remaining 176 papers were

read entirely, and an additional 86 papers were excluded, leaving 90 records to be included

in the final review. To gather some quantitative data for comparisons and visualisations, an

Excel spreadsheet was used to extract data on several fields, including critical topics, types

of data used, data collection methods, machine learning models compared, hyperparameter

tuning methods, evaluation metrics, experiment results, and industrial impact.

In addition to the literature search results, this study also includes some additional sources

to provide further context into specific topics where necessary, i.e., citing the original paper

on network architecture.

2.4 Search results

This section includes a summary of the quantitative results gathered from the data ex-

traction sheet, including: key topics, types of data used, and data collection methods.

Details on common machine learning models, hyperparameter tuning methods, and eval-

uation metrics are discussed in section 2.5. By presenting these results and describing the

machine learning technologies and practices presented in the literature and the primary

data sources, this chapter aims to provide a foundation of knowledge for the thesis to refer

to later in answering the research question. While the data extraction sheet also includes

additional fields such as experimental results, industrial impact, economic appraisal, and

methodology critique, these fields are not reviewed in this section as they are discussed in

detail in the discussion in section 2.5.
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2.4.1 Data Extraction Fields

Key Topics

Figure 2.2 shows the publication year of each of the papers returned by the searches, as

well as the type of publication, i.e., conference paper or journal article.

The key topics discussed in the reviewed literature include: quality assurance, computer

vision, management, automation strategies, supervised learning, Big Data, predictive main-

tenance (PdM), and Flexible Manufacturing Systems (FMS). A chord diagram in Figure

2.3 shows how these key topics and others relate. This diagram highlights that one of the

most common research topics in the reviewed literature is using computer vision systems

for anomaly detection/fault detection as part of a quality assurance process in manufac-

turing. Management approaches to Industry 4.0 are also widely discussed, with social

sustainability and workforce digital skills being the most common topic in the Industry

4.0 management literature [67, 39, 48, 68, 69, 47]. Digitisation change management in the

automotive manufacturing sector is also widely discussed [70, 71, 72, 73].

Figure 2.2: Graphs showing the year of publication of the 90 papers returned by the

searches (left) and a visualisation of the ratio of journal articles to conference papers

(right).

Types of Data and Data Collection

Of the 46 papers that included machine learning experiments, 48% used image data as

inputs, while the remaining 52% of papers used time series such as torque, vibration, or
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Figure 2.3: A pie chart (Top) shows the most common topics discussed in the reviewed

literature. Note that one paper may include multiple key topics. A chord diagram (Bottom)

shows the relationship between these key topics. The bar width between two topics is

proportional to the number of times those topics appear in the same research paper. For

example, papers discussing computer vision also often discuss quality assurance but rarely

discuss unsupervised learning, as indicated by the wide and thin bars.
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audio. Most time series data are uni-variate, with only a few papers exploring multivariate

time series analysis [74, 75, 76, 77, 29]. The most common methods to evaluate time series

data include SVM [78, 79, 80, 81, 82], k-NN[78, 80, 81, 76], RF [78, 75, 79, 81, 83, 76],

ANN[78, 79], Auto-Encoders [74, 75, 84]. Given the significant research on computer vi-

sion for industrial quality inspection, some papers used techniques to transform time series

data into 2D representations to exploit the use of CNN to classify the resultant images

[81, 82, 84]. The data collection methods vary significantly depending on the type of data

and machine learning models used. In most machine learning experiments in the reviewed

literature, data are gathered from real-world production settings to demonstrate some proof

of concept in off-line experiments. Many researchers highlight the challenge of collecting or

accessing sufficient labelled anomaly data in industrial settings. In many cases, additional

data are generated synthetically to increase the diversity of the minority class, and address

data imbalance [85, 86, 87, 84, 88, 89] while others rely on publicly available data [6]. Only

one instance was identified where researchers rely entirely on synthetic data to create both

training and testing data [90]. Proof of concept experiments that require off-line develop-

ment, such as data-driven production management systems or scheduling systems, often use

historical data to train, and test models to avoid impacting production [29, 74] . Alterna-

tively, digital twins can be used to simulate production data for these use cases [64, 91, 92].

2.5 Discussion

In this section, various enabling technologies of machine learning in manufacturing are dis-

cussed, and a critical review of the literature is presented. Fields from the data extraction

sheet referred to in this discussion include experimental results, industrial impact, economic

appraisal, methodology critique, and further details on other extraction fields discussed in

the previous section. Throughout the review, reference is made to the research question,

and the barriers and opportunities to machine learning in automotive manufacturing are

discussed.

Machine Learning Approaches in Manufacturing

Table 2.1 lists all papers in the reviewed literature for which machine learning experiments

are conducted to provide an overview of how different machine learning methods are ap-
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plied across various manufacturing use cases. This table also summarises any critiques of

these research papers which are expanded upon further in the discussion in section 2.5.

Table 2.1: A list of all papers in the reviewed literature for which machine learning ex-

periments are conducted, as well as an overview of the research topic and any critiques

identified by the author.

Ref’ Description Critique Manufacutring

Use Case

Data Analysis

Methods
[93] Real time analysis of RFID production data

using a combination of unsupervised clustering

and gradient decent.

Little information is given about the origins of the

datasets, or the targeted end use of the proposed unsu-

pervised clustering workflow. It’s not clear how manufac-

turers might apply this technology to add value.

Big Data, Unsu-

pervised

K-means, gradi-

ent decent

[94] Aim to develop a zero defect manufacturing

solution to identify defects in rubber parts.

Very small sample size for supervised training and testing

datasets.

Computer Vi-

sion, Quality

Assurance

ANN, PCA,

Physics based

methods
[85] GAN used to create synthetic images of dis-

continuity and blob defects in an adhesive ap-

plication process and improve the performance

of a computer vision system for quality assur-

ance.

Evaluation metrics not discussed. Computer Vi-

sion, Fault

Detection, Su-

pervised

YOLOv4-Tiny,

GAN

[86] This paper expands on the same use case as

[85], showing how including GAN generated

images in a training dataset can increase per-

formance.

This article goes into further detail on training approach,

although details still missing on the testing and validation

datasets used.

Computer Vi-

sion, Fault

Detection, Su-

pervised

YOLOv4-Tiny,

GAN

[95] Proof of concept using computer vision tech-

niques and point cloud detection to develop an

unsupervised approach for image based qual-

ity assurance.

Not compared with supervised approaches it aims to re-

place. Not clear that the proposed approach achieves bet-

ter accuracy, or saves time.

Computer Vi-

sion, Quality

Assurance

Domain- Ad-

versarial Neu-

ral Network

(DANN).
[96] Vision based classification models to deter-

mine suitability of damaged automotive com-

ponents for remanufacturing.

Limited information on data labelling methodology, such

as time taken and required personnel.

Computer Vi-

sion, Quality

Assurance, Cir-

cular Economy

CNN (AlexNet,

CaffeNet),

GMM, key

point-based
[90] Aims to categorise the suitability of automo-

tive frames for remanufacturing. Training and

testing dataset was created using CAD data.

Tested using synthetic data and needs to be validated in

real-world scenarios. Not clear how well the accuracies

found in this study will translate to real world. Some

similarity with [95] that should be considered in future

research.

Computer Vi-

sion, Quality

Assurance, Cir-

cular Economy

CNN

[89] Evaluates three object detection approaches

and their performance in detecting workpieces

and ability to recognise failure situations.

Clear detailed methodology on training / validation /

testing / optimisation approach. Only two types of fail-

ures are simulated. Not clear how this will perform in real

world scenarios, particularly where unknown errors might

occur. No consideration of the economic benefits / cost

benefit analysis of this project. No consideration of the

required skills to implement this solution nor time taken

to gather and label data.

Computer Vi-

sion, Quality

Assurance, Fault

Detection

YOLO, PANet,

CSPResNeXt50,

[97] Computer vision system to defect defects in

automotive break components using a bespoke

algorithm based on a sliding window approach.

The paper presents an accuracy of 92%, however, they

do not account for the high dataset imbalance. F-score

would have been a more appropriate evaluation metric.

It’s also unclear if the small sample used to demonstrate

the method is representative of the anomaly actual dis-

tribution of the manufactured parts. No detail in the

exact methods used to calculate the anomaly threshold

value. Don’t compare their bespoke algorithm with cur-

rent state-of-the-art approaches i.e. CNN.

Computer Vi-

sion, Quality

Assurance, Fault

Detection

Bespoke Defect

Detection Algo-

rithm, Sliding

Window

[98] Supervised learning approach to inspect qual-

ity of soldering of electronic components. Aug-

mented or simulated data used to overcome

data imbalance.

Good example of how synthetic data can be used to im-

prove performance.

Computer Vi-

sion, Quality

Assurance, Fault

Detection

CNN

[87] Semantic segmentation is used to identify de-

fects in images of a canyoner head manufac-

turing.

Very small sample of defective parts for cylinder head in-

spection (10 images). Defects were created synthetically

using scrap parts. The paper seems to use GAN to gener-

ate a further 16000 images for training and testing. How-

ever, the exact method of testing and evaluation is un-

clear, with no results included in the final F-score of the

proposed method.

Computer Vi-

sion, Quality

Assurance, FMS,

Process Control,

Supervised

VGG, GAN

[99] Deep learning approach to identify manufac-

turing defects in gears based on photos taken

at multiple angles.

Good details of how datasets were built and good overview

on the industrial impact of the solution. However, only

use a single model to detect one type of defect.

Computer Vi-

sion, Quality

Assurance, Su-

pervised

Faster R-CNN
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[100] supervised computer vision system to ensure

quality of informative labels on automotive

parts in final assembly.

Good example of a human centric approach to ML imple-

mentation where the was to assist operators, not replace

them. However, lacks technical information. Methods for

labelling data not discussed. No details on model optimi-

sation.

Computer Vi-

sion, Quality

Assurance, Su-

pervised

YOLOv5,

YOLOX

[28] An iPad app is developed to document images

of vehicles at the end of the line into a total

of 100 categories. The author states that the

main contribution of this paper is the creation

of an automotive dataset, that allows users to

learn and automatically recognize different ve-

hicle properties.

The purpose of the visual inspection is not discussed with

no end goal. No details on how training data was obtained

/ no methodology for the training data. Given that one

of the main contributions of this paper was the dataset,

without a clear methodology describing how it was built

the quality of this data is in question.

Computer Vi-

sion, Supervised

Alexnet,

Googlenet,

Inception

[101] The paper aimed to demonstrate that hand-

crafted features in DL lead to improvements in

performance when analysing fracture surfaces

for root cause analysis of industrial processes

i.e. tools, parts.

The benchmark selected for this study used databases

have small samples with only 81 and 108 images per class.

These datasets are too small to be reliable. The authors

note the lack of large datasets for texture and fracture

use cases. The results for the second experiment are more

reliable given the increased dataset size and rigorous qual-

ity assurance processes. However, only explored one CNN

(VGG).

Computer Vi-

sion, Supervised

VGG

[102] Quality assurance of bodywork painting using

spectrometers.

Lack of methodology throughout. Not clear what evalu-

ation metrics used. Little information provided on how

training and testing data was gathered and validated.

Quality Assur-

ance

PCA, ANN

[81] Quality assurance of wiring harness connector

assembly in automotive manufacturing using

ultrasonic microphone.

While the method was demonstrated to work with high

degree of success in lab settings, when tested in real world

scenarios there were no instances of failures to validate

these findings. Further work required with a larger testing

sample that includes anomalies to fully demonstrate the

accuracy of this method.

Quality As-

surance, Fault

Detection, Su-

pervised,

CNN, MLP,

KNN, SVM, RF

[38] Statistical process control and process moni-

toring in flexible machining processes to in-

crease part quality and reduce scrap.

While no comparison with state-of-the-art ML techniques,

this is one of the few papers that successfully applies the

proposed solution in a real world setting.

Quality As-

surance, FMS,

Digital Skills,

PdM,

Mean, Stdv,

Median Abso-

lute Deviation,

Threshold Limits
[75] Supervised classification task trained on eight

separate torque testing processes to identify in

process faults on highly imbalanced data.

Good overview of dealing with imbalanced data, however,

no information on how the anomaly threshold limits are

determined. This would make these approaches difficult

to replicate. No economic appraisal.

Quality Assur-

ance, Supervised

RF, AutoML, AE

[103] Anomaly detection in discrete manufacturing

using self-learning.

The paper presents an unsupervised method but provides

little detail on how the test datasets were developed. Test

datasets were not validated by domain experts.

Fault Detection LSTM Auto-

encoder with

SVM, K means
[78] Supervised fault detection on time series data

in elective drive systems. Data is collected

from a real world system for which various

faulty components can be installed.

No cost benefit analysis. Not clear how this system will

perform at identifying unforeseen failures. Some detail of

engineering requirements to develop this solution beyond

that considered by most other works, although further de-

tail on specific requirements would be useful i.e. time,

human resources, capital, software, data preparation, etc.

Fault Detection KNN, SVM, RF,

XGBoost, ANN

[104] A novel approach to analyse vibration data

from a doser pump system to develop a pre-

dictive maintenance solution.

No consideration of the economic impact of this solution.

Only explored 1 method: GMM unsupervised clustering.

No testing data is used to assess the accuracy of the model

and it’s effectives to identify process failures is not dis-

cussed.

Fault Detec-

tion, Circular

Economy, Man-

agement, Big

Data,

k-means

[84] Anomaly detection on refiguration units using

low cost directional microphone arrays.

Unclear how the anomaly data was generated for the test-

ing dataset.

Fault Detection,

Unsupervised

AE, VAE, GAN

[88] Process monitoring of installing connectors

in automotive assembly. Uses data collected

from gloves with embedded sensors.

Experiments conducted in lab environment based on a

rough estimate of the failure distribution, as actual dis-

tribution not known. No methods of how models are opti-

mised. No details on time taken to collect and label data.

Digital Skills,

Culture, Super-

vised

CNN

[79] 16 data warehouses from various companies

are used to train machine learning models to

demonstrate data driven decisions related to

Stock-Keeping Units profiling, inventory pro-

filing, workload profiling, layout profiling.

Good comparison of big data analytics models for vertical

and horizontal integration of manufacturing data sources.

Management,

Big Data

ANN, Decision

Tree, SVM,

RF, regression,

perceptron, Ad-

aboost, gradient

boosting, bag-

gin Tree, Näıve

Bayes,
[29] Propose a method to predict production

progress for IoT factory environments and

support in identifying when production plans

are executed incorrectly.

While the data set is very large, this method has only been

tested in 1 real world scenario. Little detail was included

on the manufacturing site in which this was implemented.

It would be interesting to compare this across multiple

locations, particularly those with FMS. Without a good

understanding of the manufacturing process and the flex-

ibility of production and how these data are collected, it’s

makes this method difficult to replicate.

Management,

Process con-

trol, Supervised,

Forecasting, Big

Data

DAE, DBN,

DNN, PCA

[105] A 1D CNN used to predict the quality of an

assembly screwing process.

Limited information provided on how the data was la-

belled / gathered and how he quality of this data was

validated.

PdM, Qual-

ity Assurance,

Supervised,

1D CNN
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[106] RUL prediction on conveyor chains at an en-

gine assembly line for maintenance strategy

identification and maintenance planning.

No information included on how failure data are collected,

how many types of faults are analysed, and how these data

are used to set the failure threshold limits. This lack of

information would make the solution difficult to replicate

in practice.

PdM, RUL LSTM, ARIMA,

Halt-Winter

[80] Quality diagnostics approach for milling com-

posite honeycomb cores. Two fault modes are

considered: tears and uncut fibres.

No detail given on the amount of time taken to label data

or other challenges of data acquisition. Training and test-

ing data sizes not give, only percentages. Not clear on the

imbalance of the testing datasets.

PdM, Supervised KNN, DT, SVM

[74] Proposes a conditional variational autoen-

coder to determine machine degradation. Un-

supervised method is applied to two datasets:

NASA Turbofan, and FMS production data.

This method requires unsupervised training data with a

low number of failure events and therefore relies on the

failure rates and distributions of historic unlabelled data

being well understood. This presents a challenge in in-

dustrial use cases where long term failure data are often

difficult to access.

PdM, Unsuper-

vised

AE (CVAE)

[77] Unsupervised clustering approach for PdM on

a waterjet cutting process.

Good study with a range of methods compared and evalu-

ated using visual inspection. Industrial impact of solution

not discussed.

PdM, Unsu-

pervised, Fault

Detection

PCA, MLHL,

CMLHL, CMDS,

SM, FA, k-

means, agglom-

erative clustering
[91] Reinforcement learning for statistical process

control for a manufacturing production line.

While this is a good overview of the technical barri-

ers, the results were tested and validated using synthetic

data. Further work required to understand the additional

strategic, organisational and cultural barriers to imple-

ment this. Initial iterations of complex machine learning

models like this have the possibility to significantly im-

pact production in early stages of implementation. Care-

ful economic appraisal of the long term ROI of needs to

be better understood.

Process Control RL, transfer

learning

[107] Authors work closely with domain experts to

develop an unsupervised, hierarchical cluster-

ing approach to detect throughput bottlenecks

on a automotive CNC machining line.

A good example of an unsupervised application using real

world data with good description of the challenges this

data presents.

Simulation /

Digital Twin,

Unsupervised

Clustering

Hierarchical

[83] Data on wiring harness manufacturing pro-

cesses is used to predict key performance indi-

cators using multiple ML models to allow man-

agers to proactively address production issues.

The problem definition is also not well defined an it’s not

clear how the proposed prediction model can support root

cause analysis. While the proposed ML methods do accu-

rately predict OEE, It’s to clear how this method improves

on traditional methods of measuring cycle time distribu-

tions of specific processes and setting alerts if these pro-

cesses exceed some limit. Given the fact that this data is

normally distributed, it seems more simplistic statistical

techniques would be easier to implement, even basic Six

Sigma DMAIC technotes.

Supervised SVR, RF, XGB,

DL

[76] A test bench of a permanent magnet syn-

chronous motor was used to collect 139 hours

of multivariate time series data across a range

of operating parameters. A range of machine

learning models are trained to predict the tem-

perature of the magnets inside motors and

compare results with predictions made using

thermodynamic calculations. Ml models gave

similar results.

The author notes that this was a limited study on 1 type

of motor. Further work required to explore the transfer-

ability of this approach.

Supervised KNN, RF, SVR,

ET, LPTN (ther-

mal model),

RNN, MLP,

OLS, CNN

The reviewed literature discusses five main types of machine learning: Supervised,

Unsupervised, Semi-supervised, Reinforcement learning, and Transfer learning. Only two

papers in the reviewed literature include details on these learning approaches; even in these

cases, information is limited. For further information on these machine learning settings,

the reader is referred to section .1.1 of the appendix where these topics are described in

detail.

In supervised learning settings, the most common machine learning approaches in the

reviewed literature is the Convolutional Neural Network (CNN) due to its wide use in

computer vision for quality inspection [94, 96, 89, 97, 108, 98, 100, 85, 109]. Other popu-
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lar machine learning algorithms include Support-Vector Machine (SVM), Random Forest

(RF), Artificial Neural Networks (ANN), Auto-Encoders (AE).

The most common unsupervised learning approaches in the reviewed literature apply di-

mensional reduction approaches such as PCA and t-SNE to transform higher dimensional

data into 2D or 3D feature space, followed by cluster analysis techniques such as k-means to

identify outliers in the reduced feature space [30, 64, 103]. Many researchers highlight that

unsupervised methods lend themselves to anomaly detection in as they enable a system’s

normal behavior to be learned, and any deviations from the norm can be assumed to be

anomalies [30, 63, 75]. However, in real-world settings, some labelled data are still required

to validate and test the accuracy of any trained model against some known ground truth

[30].

Reinforcement learning has been a key technology in the automotive industry over the past

few decades as it has been an enabling factor in autonomous driving; however, applica-

tions of reinforcement learning in manufacturing and production environments are limited

[30]. Only four papers are identified in the reviewed literature exploring reinforcement

learning solutions in manufacturing [83, 91, 30, 110]. Mathematical details of the common

machine learning models outlined above can be found in section .1.1 of the appendix, as

well as details on the evaluation metrics and optimisation approaches presented in the

reviewed literature. Reinforcement learning approaches require commitment by many par-

ties to develop complex and robust reward functions relevant to the target domain [91].

Viharos et al. discuss the complexity of setting up these models, which requires an in-

depth understanding of failure distributions of relevant processes and careful tuning of

reward functions in initial model setup [91]. Despite these challenges, Theissler 2021 high-

lights reinforcement learning as a promising opportunity in PdM applications due to the

minimal labelled data requirements compared to supervised and unsupervised approaches

[30]. Gankin et al. and Viharos et al. demonstrate how reinforcement learning can be

used to optimise production scheduling digital twin environments [91, 110]. However, no

research in the reviewed literature discusses the use of reinforcement learning in real-world

production settings. The author suggests future research explore frameworks to implement

these systems in real-world production environments. Further research is also required to

understand the additional strategic and cultural barriers to the users’ trust in the system’s

ability and how best to define reward functions.

Regression is a supervised setting which aims to understand the relationships between de-

pendent and independent variables of continuous data to predict future observations based
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on these trends. Examples of regression in the reviewed literature include prediction of

jobs remaining [29], predicting due-date of wafer fabrication [29], Remaining Useful Life

(RUL) prediction of a cutting tool [64] and RUL of conveyor chains [106]. However, some

of these papers lack sufficient description of the methods used to develop the training and

testing datasets. For example, when using autoregressive models to predict RUL of con-

veyor chains, Einabadi 2022 include no information on how failure data are collected, how

many types of faults are analysed, and how these data are used to set the failure threshold

limits. This lack of information would make the solution difficult to replicate in practice.

[106]

In their 2021 literature review, Viharos et al. find that autoregression, linear regression,

and quasi-linear autoregressive models are the most popular approaches for statistical pro-

cess control. However, this finding is based on only two cited examples [91]. The only

significant example of regression used in manufacturing settings in the reviewed literature

is by Hassani et al., in which the Support Vector Regression model was used to predict

Overall Equipment Effectiveness (OEE) [83]. However, in this paper, the problem defini-

tion is not well defined, and it is unclear how the proposed prediction model can support

root cause analysis and identify the actual problem [29]. While the proposed ML methods

accurately predict OEE, it is unclear how this method improves on traditional methods of

measuring cycle time distributions and setting alerts if these processes exceed some limit.

Furthermore, there is a lack of detail on the data acquisition methods, the distributions of

the quality and performance data, and how the extracted features of the data were used

to make the final predictions.

Research by Theissler et al. finds a large number of research on regression in a range of

PdM settings [30]. The notable difference between the two papers is that the vast majority

of research into predictive maintenance relies on historical data to train models rather than

synthetic data generated from Digital Twins [30]. van Dinter et al. highlight that Digital

Twins are costly to develop and require expert domain knowledge to extract the required

data. The author also argues that synthetic data’s trustability will likely impact its use in

real-world PdM cases.

Limited applications of regression models were identified within the scope of this review and

therefore are not discussed at further length. However, regression is a valuable tool for man-

ufacturing applications for which there is considerable research. The author refers readers

to the following papers where various examples of regression are presented [111, 112, 113].

Further research should explore the use of regression models in the automotive industry.
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In the reviewed literature, Generative Adversarial Networks (GAN) are often used to over-

come a lack of high-quality labelled data by generating new synthetic data to expand ex-

isting datasets [85, 86, 87, 84, 90, 88]. This is particularly true for fault detection/anomaly

detection problems where datasets are highly imbalanced due to limited availability of la-

belled failure instances [85, 86, 87, 84]. Peres et al. present a good use case where GAN are

used to create synthetic images of discontinuity and blob defects in an adhesive application

process [86, 85]. This data was then used to train a YOLO network to achieve accuracies

of up to 93% for the two fault types [86, 85]. Including an additional 4000 synthetic image

data on top of the 88 real training dataset improved the performance of the anomaly de-

tection system significantly when compared to using only synthetic data or only real data

[86, 85]. The research shows that GAN should not be used to create entire training and

testing datasets, but rather as a means of enriching and expanding existing high-quality

labelled datasets by generating additional images to increase the diversity of the training

data further [86, 85].

Mazzetti et al. discuss how in addition to generating synthetic data, GANs can also be used

as a means of anomaly detection for image data [87]. The proposed method first involves

training a GAN network using images of non-defective parts to generate additional images

of parts with no surface defects [87]. A new unlabelled image is then given as the real

sample for the pre-trained network to compare with the generated normal sample. Calcu-

lating the difference between the images by measuring the residual loss in the image space

allows users to create a heat map using the residual image to identify specific regions in the

new image of possible anomalous regions. While Mazzetti et al. present a good theoretical

description of this method, its application in the two case studies lacks key information

on the methods used to label the normal training data [87]. Furthermore, no anomalous

test data was included to evaluate the model’s performance, and no quantitative results

are included in the paper.

Hatanaka et al. present a similar GAN-based anomaly detection used to identify potential

faults in refrigeration systems by training only on normal audio data transformed into

a 2D spectrogram [84]. While this paper does include quantitative results to compare

anomaly detection performance with other image-based anomaly detection methods, this

paper lacks detail on how the testing data was gathered or produced [84]. The paper states

in the introduction that no failure records are available for the refrigeration system and yet

includes 275 ”abnormal” images in the testing data without any detail on how this anoma-

lous testing data was gathered or generated [84]. Based on these works, future research
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directions should consider testing GAN in anomaly detection settings using high-quality

training and testing data representative of real-world industrial data.

Another notable finding in GAN research is the contrasting nomenclature used by re-

searchers. Both Mazzetti et al. and Hatanaka et al. present GANs as unsupervised

approaches despite relying on large amounts of high-quality training data, with up to

16000 normal images used to train Mazzetti et al.’s discriminator [87, 84]. In contrast,

Peres et al present GAN as a semi-supervised approach due to these training requirements

[86]. The original paper in which GAN networks are first proposed does not address which

category the network falls under [114]. However, the paper highlights its suitability for

semi-supervised settings in suggestions for future works [114]. Given the growing popular-

ity of these training approaches to overcome data imbalance in developing quality assurance

systems, the author argues that establishing a clear definition for this is not a trivial mat-

ter to ensure training and testing best practices are well defined for each of the various

approaches. The author finds that in the context of anomaly detection described above,

GANs fall under the description of a semi-supervised, or clean-semi-supervised approach

as outlined in section .1.1. Future research in this field should consider best practices on

implementing semi-supervised solutions outlined in [115].

2.5.1 Enabling Technologies of Machine Learning in Manufac-

turing

The reviewed literature discusses various applications of machine learning solutions, in-

cluding Visual Inspection, social media analytics, autonomous driving, advanced robotics,

process control, predictive maintenance and scheduling, prescriptive analytics, anomaly

detection, supply chain optimisation [27, 28]. Developing machine learning solutions such

as these requires people with advanced data analytics skill sets to analyze large volumes

of integrated data that are easily accessible through networked infrastructures. Due to

the complexity of developing and implementing these solutions, this requires high lev-

els of collaboration between technical experts and domain experts supported by effective

digital communication channels [107, 116]. To provide these high levels of data collec-

tion, data integration, data accessibility, and other ICT infrastructures, various enabling

technologies of Industry 4.0 are discussed in the literature, including IoT, Big Data ana-

lytics, Flexible Manufacturing Systems, Digital Twin, Cloud, and Edge computing. Many

machine learning solutions mentioned above can be implemented at the functional level
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without the widespread adoption of these technologies. However, as companies reach high

maturity levels in these enabling technologies, the opportunities for value creation using

machine learning increase significantly as new enterprise-level opportunities are created to

deliver business intelligence [12]. In this subsection, the author refers to various additional

references as few papers returned from the literature search included details on IoT infras-

tructures and challenges in manufacturing environments.

The Industrial Internet of Things

The Internet of Things (IoT) describes the latest evolution of the conventional Internet,

where World Wide Web (Web) technologies are becoming integrated into everyday ap-

pliances, devices, and services. The Web and the internet are two different technologies.

The Internet is a global computer network infrastructure with a wide range of information

resources and services. The Web is one of these services and currently the main internet

platform, providing browsing capability through technologies such as Hypertext Markup

Language (HTML), Uniform Resource Locator (URL), and Hypertext Transfer Protocol

(HTTP) [62]. The IoT expands the capabilities of Web-based protocols by enabling in-

ternet presence for a wide range of devices, appliances, places, people, and other ’things’

[62]. This bridge between the physical world and the Web is referred to as the Physical

Web, which represents a new way that consumers and businesses can use the internet to

access, monitor, and control the world around them and the connected things within it

[62]. IoT products enable real-time data collection, which companies can use to understand

consumer behavior better and offer added value through data-driven services that are fully

integrated with the customer [12].

IoT is one of the key elements driving digital transformation around the world. While IoT

technologies can be found almost everywhere in modern society, they generally fall under

two main categories: The Internet of Things (IoT), and The Industrial Internet of Things

(IIoT). IIoT is the adoption of IoT within industrial and manufacturing applications with

an emphasis on improving the connectivity and integration of machines and real-time data

collection and utilisation. The data collected through the end-to-end integration of IIoT

throughout the manufacturing process and in-service use is a key enabler of machine learn-

ing and other data driven manufacturing solutions such as business intelligence, Big Data

analytics, cloud computing, edge computing, and flexible production systems [34, 117].

The main barrier to developing and integrating IoT technologies is the limited research
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on safety and security, and the associated challenges of confidentiality and data protection

[118, 119]. From a cybersecurity perspective, the IoT architecture consists of 4 layers:

the sensing layer, network layer, middle-ware layer and the application layer [120]. While

each layer has its own vulnerabilities and associated attacks, most of the discussion in the

available literature surrounds those associated with the network layer. IoT-based applica-

tions are particularly vulnerable at the network layer as communication is often wireless.

The network layer uses technologies such as Wi-Fi, Bluetooth, 4G to allow data trans-

mission and routing between IoT devices over Internet and mobile networks [120]. Radio

Frequency Identification tags (RFID) are another common networking technology used in

manufacturing that provides a read-write capability to record and track the birth history of

a product through the assembly process. These open network gateways are susceptible to a

range of both passive and active attacks, including man-in-the-middle and denial-of-service

attacks [119, 120, 121]. The network layer is especially vulnerable to man-in-the-middle

attacks, which describe a range of ways a poorly secured network transmission can be

intercepted and decrypted [120]. Eavesdropping is a man-in-the-middle attack, otherwise

known as spoofing, that takes advantage of unsecured networks, allowing data transmis-

sion to be intercepted and stolen [121]. Advanced protocols, software, and hardware can

be implemented in devices to detect network security threats and keep devices secure, such

as HTTPS or Secure Shell. However, the more devices integrated within the same network

increases the risk of attack [120]. For further details on these vulnerabilities and attack

vectors, the author refers the reader to Lu 2018 and Roberts 2006 [120, 121].

It is agreed among the reviewed literature that there needs to be more focus by both

industry and academia on the issues surrounding cyber security in IoT systems. In man-

ufacturing, this requires increased collaboration between IT, manufacturing production,

and innovation teams to ensure IoT manufacturing solutions consider the legal, security,

and network infrastructure requirements during the early stages of pilot projects involving

IIoT.

Big Data Analytics

The term ’Big Data’ originated from Silicon Graphics Inc. in the mid-1990s, although

it was only at the turn of the 21st century that significant academic references began to

emerge [122]. Distributed Smart Systems and the Internet of Things were becoming in-

creasingly widespread, and the digitisation of systems, services, and processes resulted in

vast amounts of data being generated daily. Existing computing and service modes were

33



struggling to meet the high demands for network bandwidth, response speed, and data

storage, driving the development of cloud computing and data center networking, key en-

abling technologies of Big Data analytics [123].

In an increasingly digital world, data generation continues to be produced from various

sources at unprecedented rates. Every website, digital system, process, sensor, and con-

nected device produces data that, if analysed correctly, can be used to generate tremendous

value for businesses. However, these huge volumes of data are often presented in semi-

structured or completely unstructured formats making traditional data analysis techniques

inefficient. Over the past decade, powerful new technologies and advanced algorithms have

been developed to deal with the complexity of modern Big Data sets. Following huge

amounts of academic and business interest, it was not long before Big Data became its

own field of study.

Big Data refers to a broad field of interdisciplinary study and has no single definition due to

its widespread usage. Different industries use different data sets, each of which will require

very different analysis methods, for example, tabular data versus image data. Applications

range from social media analytics to government monitoring to medical diagnosis, each of

which will have its perspective on Big Data [124]. The product-oriented, process-oriented,

cognition-oriented, and social-oriented perspectives will consider different features of their

data, as well as the respective methods of analysis [52]. Furthermore, in terms of capacity,

what may be considered ’big’ by one industry may not be by others, and as technology

progresses, the same data may not meet the threshold for Big Data in the future. While

definitions vary between industries, most data scientists and experts describe Big Data by

referring to ’the 3 V’s’: volume, velocity, and variety [125, 52, 126].

Big Data sets are typically in the range of tens of terabytes to multiple petabytes [127, 128].

The volume of data continues to increase at rates faster than current tools can process [129].

A common challenge of machine learning applications in the automotive industry is the

storage and processing of large volumes of data and the associated challenges of dealing

with unstructured Big Data [28].

Velocity measures the speed at which data is generated, streamed, pre-processed, and

processed [130]. Depending on the data velocity, there are different processing methods:

batch, near-time, real-time, and stream [52]. Some Big Data applications have strict time

requirements, such as social media or weather forecasting, and require real-time or stream

processing. High throughput batch-oriented processing of Big Data sets is not suitable for

online processing demands as it may take several hours or days to process [131]. However,
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batch processing provides an efficient way to analyze higher volumes of data collected over

a time period [132]. This makes batch processing superior for applications such as training

predictive models. A hybrid approach is often used to benefit from real-time and batch

processing advantages. Data velocity management is much more than just a bandwidth

issue, it is also an ingest issue relying on Extract, Transform, Load (ETL) processes to

gather, organise and centralize data [130].

Data is generated from various sources and formats, such as images, text, audio, sensor

signals, graph, logs, and many more. Big Data sets are often made up of incompatible data

formats that may be structured, semi-structured or unstructured, public or private, com-

plete or incomplete, etc. Structured data includes spreadsheets, relational databases, and

others with fixed fields. Semi-structured data is harder to define and loosely describes data

that is neither raw data nor strictly laid out in fixed fields [133]. Tags or other markers give

semi-structured data some order, capturing some elements of the data such as Extensible

Mark-up Language (XML) or Hyper Text Mark-up Language (HTML) [134]. Unstructured

data sets such as raw sensor data or interactions of consumers on social media have no

fixed fields or format. From an analytic perspective, unstructured data in various formats

with non-aligned data structures or inconsistent data semantics pose a significant challenge

to effectively using large volumes of data [134, 130].

While the 3 V’s are often described slightly differently in the context of different industries,

they are widely used to define Big Data. Some scholars and businesses extend this definition

to include dimensions such as variability, value, veracity, and complexity [129, 130, 135].

With the 3 V’s already well established, these additions are usually discussed separately,

used to highlight the importance of other characteristics and properties inherent in Big

Data that are more difficult to quantify.

The variability of Big Data combines both velocity and variety and is used to describe

the constantly changing structure, meaning, and/or flow rate of incoming data [129, 130].

Analysing and predicting these changes has become increasingly important with the in-

creased use of social media, the internet, and connected devices [124, 130]. Given that these

systems are highly anthropocentric, the variety and velocity of data vary significantly with

human behavior. For example, certain events may cause a sudden increase or decrease

in social media usage, similar to how energy usage across the national power grid varies

throughout the day as people go about their activities. Variability adds further variety to

Big Data, providing unexpected, valuable information hidden within the data.

Veracity in the context of Big Data refers to its quality, particularly its uncertainty and
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unreliability. Before the Big Data revolution and Industry 4.0, data in the scientific and

academic community was often assumed to be clean and precise, a view also found in tradi-

tional data warehouses [136]. In modern Big Data projects, cleaning up the data can make

up to 80% of an analytics project [137]. Uncertainty is often inherent in unstructured Big

Data sets due to incompleteness, ambiguity, variety, and latency and the approximations

of the techniques used to analyze it [134, 52]. These factors all reduce the veracity of data

which in turn can significantly reduce the predictability of the data. This aspect is critical

for applications such as epidemiology, medicine, and healthcare [138, 139]. In terms of the

results of the outcome of Big Data analytics, many scholars and data scientists agree that

veracity is becoming, if not already, the most important of the many ’V’s’ presented in the

literature [136, 137, 140, 141].

The value of Big Data lies in the ability to analyze and extract useful business information

and varies greatly depending on the application. The potential of analytics to generate

value for automotive manufactures lies in areas such as: customer behavior analytics, mar-

keting spend management, global supply chain management, and predictive analytics.

Complexity is inherent in unstructured Big Data due to the variety and variability of data

[52, 142]. Identifying, linking and transforming relevant data between different systems

and sources poses a huge challenge for practitioners [125]. To deal with this complexity,

advanced data analysis techniques, such as neural networks are often required [125]. As

well as requiring high levels of skills in data science disciplines, the development and imple-

mentation of such techniques also requires high computational costs and complexity that

can be difficult to integrate into existing systems.

Expanding the common 3 V’s definition to include these essential features provides a much

clearer insight into the challenges and opportunities presented by Big Data. While a for-

mal definition is yet to be agreed upon, based on these characteristics that are by far the

most widely discussed in the literature the following definition coined by De Mauro et al

seems most appropriate: ”Big Data is the Information asset characterised by such a High

Volume, Velocity, and Variety to require specific Technology and Analytical Methods for

its transformation into Value” [143].

Data usage and Big Data analytics feature heavily in the Industry 4.0 discussion and the

available literature presents many opportunities for many industries and organisations to

increase productivity, reduce waste and reduce costs. These benefits are often discussed

regarding the new innovative business models that Big Data and other Industry 4.0 con-

cepts are enabled. These business models include ’The Sharing Economy, ’On-Demand
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Services’ and many circular economy models presented in the ReSOLVE framework by

The Ellen MacArthur Foundation, which has been gaining much attention recently years

[52, 53, 54]. These models focus heavily on collaboration and identify Big Data as a major

enabling technology. Several external uncertainties can have adverse effects on manufac-

turers, many of which are difficult to identify without appropriate predictive analytics

and control strategies [57]. Examples include unpredictable raw material quantity, qual-

ity, availability variations, and constantly changing market trends and consumer behavior.

Customer behavior analytics presents a significant opportunity for automotive manufac-

turers to improve their understanding of the potential value of different customer segments

through analysing external data sources such as social media and internal sources [58].

This knowledge can be used to strategically target new customers as well as improve cus-

tomer experience and ensure the loyalty of existing customers [58]. Big Data analytics of

consumer data also plays a major role in improving manufacturing processes’ agility and

flexibility, allowing production and procurement to adapt to changing markets. By gather-

ing and analysing real-time data from an automaker’s fleet and warranty data, cloud-based

Big Data processing will enable new after-market services for customers. Examples include

predictive and preventative maintenance of products, various infotainment services, and

self-driving support services such as autopilot and collision prevention that are already

found in many modern vehicles [59].

Big Data is still an emerging technology requiring significant research and development.

The literature presents a multitude of barriers to the full realisation of Big Data bene-

fits across all applications. These barriers generally fall under two categories: internal

technological constraints and cultural barriers. The Big Data life cycle consists of data

generation, storage, and processing, each of which faces significant technological challenges

[144, 145]. As the volume and velocity of Big Data continue to increase, high demands are

placed on networks, and servers [135]. Cloud computing is often used to outsource data

storage and processing to avoid new data management systems’ capital and organisational

expenditure [145]. Not only does this lead to numerous privacy and security issues but as

data generation increases in the order of exabytes, current daily networks cannot handle

data sets of this scale. A 2018 report by IBM revealed that while 80% of senior technology

executives recognised the competitive advantage of IT infrastructures, less than 10% of

organisations said that their existing infrastructures were able to meet the demands of Big

Data, cloud computing, social media, and mobile technology [146].

To industries yet to fully embrace Big Data, these technological challenges may seem of
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little concern at the early stage of development. However, this highlights the additional cul-

tural barriers to the implementation of Big Data analytics discussed across the literature.

These cultural barriers are widely considered a greater challenge than those of a technical

nature. Organisational culture is defined as ”The visible and less visible norms, values

and behaviour that are shared by a group of employees which shape the group’s sense of

what is acceptable and valid.” [147]. In many industries, adopting Big Data represents a

significant change to current organisational culture requiring new managerial approaches

and structures. As organisations rely increasingly on data to drive business decisions, it is

crucial that this information is made available in an accurate, complete, and timely man-

ner to ensure business intelligence and productivity improvements [135]. This will require

companies to share data in a standardised manner with other businesses, and government

agencies outside of their organisational boundaries [12]. This level of external collaboration

is an important part of the Industry 4.0 strategy.

Flexible manufacturing Systems

The concept of a high volume, high variability manufacturing production environment has

existed since Industry 3.0. Recent developments in Industry 4.0 technologies such as IoT,

Cloud computing, machine learning, and digital twin, have resulted in these systems be-

coming increasingly widespread in industrial settings [27]. During industry 4.0, flexible

automation emerged as an extension of programmable automation where reprogramming

is done off-line, resulting in no downtime during reconfiguration [87]. By combining the

above technologies in manufacturing environments through lean management practices, a

new type of assembly line emerged known as the Flexible Manufacturing Systems (FMS).

In a typical FMS, workstations are arranged more freely on-site in a modular arrange-

ment, with AGVs automatically routing products to the required workstation. Tracking

technologies such as RFID enable individual processes to be controlled by an automated

production system to select the appropriate production process for the incoming part. This

highly automated data-driven process allows production to be tailored to meet fluctuating

consumer demand of multiple product families and deliver highly customizable product

variants. As well as reacting quickly to market changes, FMS can react quickly to changes

in the local manufacturing environment, such as processing changes, material changes, or

new product variants [87]. FMS results in less space, reduced operational headcount, im-

proved inventory management, reduced lead times, and reduced manufacturing costs [27].

The concept of a fully integrated factory with ubiquitous integration of Industry 4.0 tech-
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nologies throughout the entire business is widely referred to as a ’Smart Factory’, although

other terms such as ’Intelligent Factory’, ’Intelligent manufacturing’, ’Ubiquitous Factory’

or ’Real-Time Factory’ are also used. Research finds that organisations investing in Smart

Factory projects report increases of up to 12% manufacturing production, factory utilisa-

tion, and labor productivity [27]. Despite the numerous benefits of FMS presented in the

literature, there are several challenges in developing, implementing, and maintaining these

systems. FMS requires high initial investment both in physical assets and personnel with

the required automation and digitisation skills to deal with the high complexity of these

systems [27].

Researchers present novel machine learning approaches to support automation in FMS in

the reviewed literature. Huang et al. propose a system to support production managers

through a machine learning-based system to predict production progress for IoT factory

environments [29]. A two-layer transfer learning approach using a combination of Deep

Auto encoders and Deep Belief Network (DAE-DBN-TL) is trained on historical data using

a bootstrap sampling approach. The proposed method was tested using real-world histor-

ical data over 15 orders with 1118 features. The experiment finds that the DAE-DBN-TL

method achieves high performance (R2̂ > 87%) in predicting production progress based

on historical production data. The author argues that as well as monitoring and analysing

production progress, this model can also identify instances where production plans are ex-

ecuted incorrectly and support root cause analysis of these abnormalities. While the data

set used in this study is very large, this method has only been tested in one real-world sce-

nario. Little detail was included on the manufacturing site in which this was implemented.

By comparing the DAE-DBN-TL across multiple locations and understanding its appli-

cability in FMS environments, it is easier to determine the validity of these results [29].

Future research should further examine the human-centric implementation of production

process prediction systems in FMS and consider the effects on the workplace experience of

production managers.

Horizontal, Vertical and End-to-End Integration

Horizontal and vertical integration are terms that already have a variety of meanings in IT,

marketing, and business applications. In the machine learning and Industry 4.0 literature,

end-to-end integration is widely discussed as a key requirement of flexible manufacturing

environments [148, 149].
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External collaboration is an important part of the industry 4.0 strategy and is often dis-

cussed in terms of the horizontal integration of a company’s value networks. By cooper-

ating with suppliers and other organisations by exchanging real-time information, data,

and resources, companies can drive innovation and growth while mitigating risks [148].

This external collaboration also extends to customers through technologies such as IoT

and other smart devices that offer real-time data transfer throughout the value network

allowing companies to react quickly to changes in the market and customised production.

Moreover, connected devices can provide a foundation on which new service-orientated

business models can be developed to deliver added value to customers [148].

The integration between ICT systems within an organisation is called vertical integration.

This considers information exchange throughout all functional layers of the business hierar-

chy from the asset layer, which includes the physical subsystems such as robots, machines,

personnel, etc., all the way through to the business layer, where production management

and corporate planning take place [92]. While vertical integration requires a high level

of digitisation, the result is a fully networked manufacturing system that promotes intra-

company collaboration and improves process efficiency and flexibility through real-time

availability of process data throughout the hierarchy [92]. The third kind of integration

focuses on the digital integration of engineering throughout the product life-cycle, from

product design and development through the entire value chain to end-of-life considera-

tions. By engineering smart products to gather and transmit real-time data throughout

manufacturing production and in-service use, individual products in some sectors will have

the ability to automatically control the stages of their life cycle [134]. The Cloud-based

design manufacturing model is a good example of end-to-end integration applicable to the

automotive industry [134]. Cloud-based design manufacturing is a service-orientated prod-

uct development model that uses in-service vehicle data to provide additional services for

customers and gives engineers access to real-time data on individual product performance.

By integrating this data with engineering teams, Big Data analytics can be used to pre-

dict faults and automatically schedule maintenance based on equipment conditions. This

increases customer value in a horizontally and vertically integrated factory environment.

This information can help improve the smart factory’s design, logistics, production, and

management processes.
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Digital Twin

Digital Twins are a key enabling technology of Industry 4.0 and are presented as one

of the main tools to manage the complexity of FMS [63]. Digital twin is an evolution

of traditional simulation methods that encompass increased data availability, ubiquitous

connectivity, and new user requirements that enable manufacturers to model complex be-

haviors of production processes based on real-time and historical data. Digital twin plays

an important role in planning when new lines are being designed and developed, using

historical process data from previous systems to simulate and optimize the proposed lay-

out. These accurate digital representations of the manufacturing environment can be used

to analyze real-time behaviors of the system and can be reconfigured off-line to optimize

throughput and address challenges that may not have been modeled in advance [63].

Vinter et al. provide a rigorous systematic literature review on Predictive maintenance

using digital twins [64]. Researchers found that the most common application of these

combined technologies was in the manufacturing sector on systems such as CNC machines

and industrial robotics, where parts experience rapid wear due to components such as

rolling bearings and gearboxes [64]. The main machine learning approaches used for PdM

in digital twin environments are SVM, regression, decision tree, RF, K-means, and PCA

[64]. The researchers highlight that the complexity and high computational requirements

of both digital twin and machine learning models present a challenge, impacting the cost-

effectiveness, delivery time, and energy requirements of these methods [64]. Another major

challenge of applying machine learning in digital twin environments is the requirement for

high quality and a wide variety of data [64]. Digital twins can be used to generate syn-

thetic data to train machine learning models for many use cases, however, they require

high-quality historical data and supporting data. For example, in a predictive mainte-

nance setting, data is required on healthy, semi-healthy, and faulty machine performance

and data of the failure distribution [64].

Although the initial set-up requirements for digital twin systems are high, once developed,

they are a key enabling technology of applied machine learning to deliver a high level of

automation through PdM and process control [150, 64, 110]. Research shows that adopting

digital twin predictive maintenance frameworks can increase machine up-time by 10 to 20

percent [150]. Mourtzis et al. present an edge-based architecture that uses SVM model to

classify time-series production data and update digital twin systems in real-time to predict

the remaining useful life of critical components [150]. By processing data in edge environ-

ments, the researchers overcome the high bandwidth requirements of real-time prognostics
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and predictive analytics.

Gankin et al. propose a production control system to address the scheduling challenges of

AGV routing between FMS modules in a digital twin environment based on a real-world

automotive case study of 25 workstations [110]. AGV routing is a complex problem that

involves optimising vehicle management, workstation management, deviation management,

routing control, and job release control [110]. In the author’s own experience, simulation

AGV routing in digital twin environments results in similar data acquisition challenges

outlined by VanDinter et al [64]. Digital twin models for AGV routing require high-quality

data on AGV systems, with a detailed understanding of speed distributions, effects of inter-

ference and collision detection systems and battery charging requirements. The researchers

propose a Deep Reinforcement Learning Multi-Agent System approach that uses reward

design incentivising agents to achieve maximal throughput in a digital twin environment

[110]. The reward-based learning approach of deep reinforcement learning leads to optimis-

ing routing and scheduling problems, and the researchers find that combining this method

with a multi-agent systems approach helps improve the robustness of the solution [110].

These methods have rarely been combined for modular process control. Further research

should explore this topic in other digital twin environments as well as the frameworks to

support the real-world implementation of these systems [110].

Cloud / Edge

Delivering machine learning solutions and managing Big Data requires high levels of IoT

integration and High-Performance Computing (HPC) platforms. While some manufactur-

ers may already have HPC systems in place, significant work is often required to develop

these existing architectures to process large volumes of data in real-time, particularly for

the level required for iterative data-driven machine learning models [112]. Furthermore, it

is expensive and difficult to scale these systems as demand increases overtime[112]. Cloud

solutions can reduce the costs associated with training new personnel to manage, main-

tain, service, and scale these IT infrastructures [55]. Service-oriented networked computing

platforms are a common solution to these challenges due to their scalability and flexibility.

Many organisations have already adopted them to process IoT data [112]. These services

are called Cloud platforms and provide a means for organisations to structure and manage

the functionalities of distributed IoT systems [151].

Cloud-based manufacturing enables the highest integration levels that extend throughout

the entire product life cycle. Production resources and capabilities can be monitored and
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controlled in real-time through integrating tracking technologies such as RFID and sensors

with Zhong et al. describe how Cloud manufacturing is also an enabler of new business

models in which a fully integrated flexible manufacturing environment can provide man-

ufacturing as a service to support cross-business applications [55]. Achieving this level of

Industry 4.0 maturity requires high data integration and management levels to handle the

complexity of service matching, planning, scheduling, and execution [55]. Furthermore,

cloud platforms may also offer additional data analytics services such as predictive main-

tenance, condition-based monitoring, and risk-orientated production planning [151]. By

using these additional services, organisations can reduce costs associated with licensing

new software [55].

Cloud computing cannot meet real-time data analytics and decision-making requirements

due to high Round Trip Latency Time [112]. Many IoT applications are latency sensitive,

and therefore hosting analytics in the Cloud can sometimes compromise the performance

[112]. In some instances, manufacturing analytics can be performed using only locally

stored information, such as inventory management or logistic processes. In these cases,

analytics can be performed locally by networked IoT computing devices such as laptops

and PCs. Researchers have also explored using Raspberry Pi single-board computers to

provide low-cost Edge solutions [150]. However, this is a relatively new concept that re-

quires further research to demonstrate its application readiness [150].

Edge systems are well suited to support computationally intensive and latency-sensitive

machine learning tasks such as speech recognition and face recognition, as edge processing

generally reduces the power requirements and increases processing speed.[152, 112]. Decen-

tralisation is a common theme in Industry 4.0 literature. By decentralising computation

away from the Cloud and using local computing resources, manufacturers can deliver cost

savings through reduced energy costs and service fees [150]. Edge computing can increase

efficiency and decrease power consumption by over 40% more than conventional cloud sys-

tems [112].

In many manufacturers, outdated legacy systems present a major challenge in terms of

data accessibility and data integration, particularly mainframe IT systems. In their review

of key technological requirements for Industry 4.0, Chen et al. discuss Cloud technologies

as a potential solution to mainframe systems [153]. However, they do not provide any

further details or specifics on these solutions [153]. Chen et al. suggest that legacy systems

are reevaluated or replaced for Industry 4.0 to overcome the limitations in data handling

[153]. The author disagrees with these findings due to the high costs that would be as-
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sociated with redeploying existing mainframe systems onto new Cloud-based platforms.

Furthermore, the economic risk of doing so would be considerable, given the distributed

nature of these systems throughout the entire organisation. Chen et al. include no search

methodology, strategy, research aims or research question in their review and include a

very limited number of sources given the wide range of topics considered [153].

Migrating to the Cloud is often a considerable task. Therefore businesses often adopt a

hybrid approach where more innovative areas of the business lead the way and processes

slowly migrate over time. Similar to the challenges of IoT, researchers raise concerns on the

security of communication between Edge and Cloud-based solutions and the legal barriers

of storing personal information on externally managed platforms [150]. The main limiting

factor of Cloud computing is the high costs associated with high-bandwidth transmissions,

a challenge in machine learning applications that require real-time processing [112].

Circular Economy

Since the first industrial revolution, the global industrial economy has always been based on

the same linear model. In this model, raw materials are extracted, transported, processed,

and manufactured into products that serve until their end-of-life when they are disposed of,

usually by incineration or landfill. The circular economy is an alternative economic model

that focuses on the effective use of resources and the elimination of waste by designing

products to be reusable, easily reparable, or upgradeable [154]. When raw materials are

required, they must be obtained from sustainable sources, ensuring no damage is caused

to the natural or human environment. Many scholars, governments, and climate experts

believe that adopting a circular economic model is not only beneficial but critical to our

survival as a species and is already being proven to be possible in many industries and

cities [155, 156].

Industry 4.0 technologies and concepts are key in overcoming the barriers to the circular

economy, and trends in the literature show that the topics have begun to converge in recent

years [54, 157]. Both share the revolutionary vision that existing organisational and oper-

ational systems of production and consumption must change to reflect the changes of the

modern world with a focus on digitisation, recourse efficiency, productivity and collabora-

tion [54]. Digitisation has been a key enabler of the Circular Economy thanks to Industry

4.0 technologies such as IoT, which facilitates better relationships and communication with

customers and provides more sustainable consumer relationships through product-service
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systems. End-to-end integration and engineering are key in facilitating a circular prod-

uct life cycle and product-service systems as it enables smart products to communicate in

real-time with engineers and the wider production management system. Other technolo-

gies such as Big Data, machine learning, digital modelling, and AI are critical to reducing

waste throughout the supply chain by optimising and automating production processes,

and supply chain management [54, 155]. Achieving a circular economy requires revolu-

tionary approaches to production, product design, and organisational culture, which are

directly impacted during the Industry 4.0 transition.

Digitisation is already revolutionising the way modern manufacturers and other industries

conduct business as technologies and concepts such as IoT, vertical and horizontal inte-

gration, and predictive analytics provide opportunities for new innovative circular business

models [37]. The Ellen MacArthur Foundation is a global charity that focuses on accel-

erating the transition to a circular economy. In a 2015 report, the charity presented the

ReSOLVE framework, a tool for businesses and governments to use to develop circular

strategies and initiatives [158]. The tool identifies six business actions that will accelerate

a company’s transition to circular economy:

• Regenerate: Firstly, businesses must shift away from relying on fossil fuels and

increasing scarce raw materials towards renewable energy and more sustainable ma-

terial usage through circular value chains.

• Share: In a sharing economy, the product life cycle is extended through designing

products to be easily maintainable and upgradeable. Moreover, goods, assets, and

services should be shared between consumers.

• Optimise: By utilising new technologies like Big Data, AI, IoT, and other Industry

4.0 technologies, production processes can be optimised to remove waste from the

supply chain.

• Loop: Manufactures must focus on designing for a product’s end-of-life by engineer-

ing products and components to be re-manufacturable, repairable, or recyclable.

• Virtualise: Servitisation of products enables companies to remove material elements

directly and indirectly. This can be achieved by virtualising the business through

online models such as internet shopping.

• Exchange: Old non-renewable materials, processes, and goods must be identified

and replaced with more advanced solutions and technologies.
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Since its conception, this framework has been developed further by Lopes de Sousa Jabbour

et al, who combine the six elements of the tool with a range of Industry 4.0 technologies

that can guide manufacturers towards more sustainable and intelligent production [54].

Servitisation is a common theme, and throughout the Industry 4.0 literature, it is dis-

cussed that businesses should move away from product-orientated business models and

towards providing products as a service [37, 158, 159]. In these Product service systems,

the customer enters into a contract to rent or lease a product, such as a washing machine

or a car to establish a long-term, mutually beneficial arrangement with the provider [160].

Product service system models help achieve the highest level of end-to-end integration to

gain valuable insight into customer behaviour and the quality and performance of prod-

ucts throughout the life-cycle, including end-of-life. Because customers are paying regular

instalments for a product as a service, this continues even if the product breaks down. By

considering the end-of-life of a product at the development stage, products can be designed

and engineered for assembly and reassembly, making repair and re-manufacturing a quicker

and cheaper option to waste [160].

2.5.2 Digital Skills

Data is collected at all levels of the ICT hierarchy, from the production process and con-

trol on the line to factory-level manufacturing execution systems and enterprise resource

planning systems [161]. Manufacturing data are becoming increasingly valuable as im-

provements in data-driven systems create new opportunities to leverage and integrate this

information to improve decision-making throughout all stages of the product life-cycle [161].

Traditional approaches to data-driven decision-making, such as Six Sigma, lean manufac-

turing, and discreet event models, are becoming increasingly ill-suited to create meaningful

insights from these data [161, 107]. In Industry 4.0 and the age of Big Data, the main

technical skill requirements to enable manufacturing are data science, which in the context

of the manufacturing environment includes: data analytics, statistics, programming, data

mining/data management, optimisation, computer science, and machine learning [47, 48].

The manufacturing sector has the third highest demand for these roles after the profes-

sional services and finance sectors, as managing the transition towards Industry 4.0 relies

on workers who have an in-depth understanding of applied data science in manufacturing

[47]. Among the main barriers to implementing data science in automotive manufacturing,

particularly the implementation of machine learning, is the shortage of the aforementioned
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data science skills [162, 48, 163, 36, 47]. The lack of workforce skills has limited the de-

velopment and implementation of machine learning and other Industry 4.0 technologies in

manufacturing. Despite this widely recognised skills gap, the reviewed literature highlights

that manufacturers are yet to address this through education and training programs fully

[47, 38].

Human-in-the-Loop Automation

In their research into Statistical Process Control (SPC) of flexible manufacturing cells,

Martinez-Arellano et al. suggest that a key factor in successfully implementing Industry

4.0 technologies is adequate training and support for users through internal education or in-

ternal advisors [38]. Research finds that the complexity of the analytics skill-sets required

to implement machine learning solutions such as data processing, model selection, and

training make these solutions inaccessible to most industrial practitioners [38]. Martinez-

Arellano et al. state that despite the considerable research into Industry 4.0 technologies

and their industrial applications, industrial practitioners remain hesitant to embrace these

technologies [38]. This is largely due to a need for more organisational knowledge on the

ROI, implementation requirements, human resource/skills requirements, and capital re-

quirements [38]. The authors’ own research in Chapter 3 supports this finding.

To address the social sustainability challenges of Industry 4.0, Martinez-Arellano et al. pro-

pose a series of machine condition monitoring dashboards and visualisations implemented

in a flexible manufacturing cell at a BMW Group production facility [38]. The researchers

highlight throughout the development of the solution the importance of human-centered

design, focusing on delivering a solution that improves the workplace experience of the end

user. Following the implementation of the dashboard and integrated statistical tools, the

researchers report the immediate time savings on root-cause fault analysis and highlight

the positive impact on the workers’ workplace experience by freeing up time to focus on

more intricate problems. Workers became an integral part of the SPC feedback process by

focusing on a tool that improved workplace experience rather than headcount reduction.

They developed skill sets in feature extraction processes which positively impacted trust

in predictive maintenance systems [38]. In addition to this project’s social and cultural

benefits, the system also led to a 97% reduction in waste. This project is an example of

human-in-the-loop innovation. Many scholars present this approach as a medium- to long-

term solution for automotive companies to address various technical and cultural challenges
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while managing the transition to increased automation and Digitisation [70, 36, 161, 107].

Fahle et al. discuss a lack of machine learning training opportunities in the manufacturing

industry and highlight a research gap in the use of ’learning factories’ to support the de-

velopment of these skills in both industrial and academic settings [36]. A learning factory

is a physical, realistic manufacturing environment at a very small scale used for training,

education, and research that is well suited to understanding the application and implemen-

tation of machine learning [36]. This paper finds gaps in the research on frameworks and

systems to support education and training using learning factory environments [36]. The

researchers also state that these are important tools for increasing the uptake of machine

learning in manufacturing [36]. These research findings, however, are solely based on the

authors’ review of the literature, and no primary evidence was gathered from manufactur-

ers to support these findings [36]. The set-up costs, set-up times, and other factors that

could impact production are also not considered in this review. The feasibility of learning

factory environments as an effective means of training employees in advanced analytics

requires further research.

Research by Suvarna et al. also discusses the benefits of human-in-the-loop cyber produc-

tion systems in delivering improved flexibility, control, decision-making ability of the user,

and improved reaction and response times [161]. Suvarna et al. also discusses the impact

on workplace experience and how this synergy between advanced data-driven models and

workers can lead to reductions in stress and improved safety [161].

Subramaniyan et al. propose a generic, unsupervised machine learning-based hierarchical

clustering approach to detect throughput bottlenecks in a real-world automotive produc-

tion line [107]. In this study, researchers work closely with domain experts to utilize their

understanding of the underlying system requirements during model development. This

close collaboration during the development phase led to more innovative solutions and re-

sulted in highly applicable models that deliver improved workplace experience compared to

traditional siloed approaches [107]. Furthermore, a two-way transfer of knowledge occurs

between process domain experts and data scientists.

Domain experts learn how to participate in new data science projects and improve their

understanding of the importance of gathering labelled data and developing testing and

training datasets. Depending on their skill level, domain experts can participate in these

processes and further develop their technical skills in feature extraction and statistical

modelling. At the same time, data scientists gain a more in-depth knowledge of real-world

systems and improve their understanding of human-centred design concepts that will in-
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crease the usability of future interfaces to improve further data-driven solutions[107]. While

the primary aim of this research by Subramaniyan et al. is to reduce bottlenecks and in-

crease throughput, the researchers highlight the importance of developing a solution to

improve the workplace experience by reducing the workload for the domain expert as fo-

cusing on developing organisational knowledge.

Social Sustainability

Some researchers explain the slow adoption of Industry 4.0 due to the limited availability

of skills, poor change management, and a lack of organisational knowledge [39]. Some

researchers further suggest that this problem is more complex than just a skills shortage,

but that the Industry 4.0 paradigm at its core needs to be better aligned with social sus-

tainability goals [39]. In their research on social sustainability in the age of Digitisation,

Grybauskas et al. find evidence to suggest that both high-skill and low-skill jobs are equally

at risk in Industry 4.0 [39]. The review highlights studies that suggest 40%-60% of jobs are

at risk from technological change [39]. These findings are supported by further research

that warns 47% of jobs are at risk of computerisation and 24% of UK jobs are at high risk

of automation [39]. While those most at risk are manual workers performing repetitive

tasks, highly skilled engineering jobs are also at risk [39]. Machine learning systems have

been proven to outperform human performance in image recognition, prediction, and diag-

nostics in certain domains [39]. There is some debate on this topic as Boavida et al. find in

their literature review that automation creates jobs, and as capital investment increases,

so does employment [68]. Parida et al. also find that digitalisation is an essential enabler

for sustainable business practices in the long term by enabling new business models aligned

with goals of circular economy [37]. Evidence from interviews at various automotive manu-

facturing companies in Portugal supports this, where human-in-the-loop systems are used

to support workers to increase efficiency by leveraging the combined benefits of both the

domain expert and data-driven systems [68]. On the other hand, multiple cases were found

in these companies where workers were displaced from their jobs. As a result, there was

some resistance to automation technologies from lower-level employees [68]. Management

was also found to be resistant to change in some instances. Boavida et al. identify one ex-

ample where automation solutions do not consider the end user, and resulting dashboards

create more work for the manager due to poor user interfaces [68].

Grybauskas et al. argue that these social sustainability challenges can be addressed through
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government intervention to regulate the implementation of Industry 4.0 through taxation,

education, and labour relationships [39]. This hypothesis is well supported by the outcomes

of legislation passed in South Africa, where organisations are scored on their workforce

skills [48]. A low score may limit organisations with whom they can do business, therefore

incentivising investment in workforce skills [48]. This legislation positively improved the

workforce Digitisation skills in South Africa’s automotive industry and led to increased

uptake of Big Data analytics, and AI solutions [48]. However, Bag et al. note that this

research is limited to a single country where digitisation skill levels are generally low [48].

While there is some argument that government intervention may be an effective approach

at the macro level, this is clearly outside the individual organisation’s control and not

considered further in this review.

It is important to note that when discussing education, training, and up-skilling, this does

not mean all employees across the board should re-train and gain new qualifications in pro-

gramming, data science, and advanced analytics. This is both infeasible and impractical,

as some employees may need the prerequisite technical or soft skill requirements, or this

level of advanced training may not be relevant to their job function. However, all workforce

members should be trained and educated to support automation and digitisation projects

where required. For example, a common issue identified in the literature is the lack of

high-quality datasets, a topic discussed further in section 2.5.4. This issue could be solved

through basic training on the importance of gathering high-quality labelled data and how

to identify and report opportunities where data collection could be improved.

Digital Skills Conclusion

To conclude, research shows that the full realisation of Industry 4.0 is yet to be realised

in the manufacturing industry and that one of the main barriers is a lack of data science

skills. Consequently, there are gaps in organisational knowledge leading to a reluctance to

embrace emerging technologies due to complexity, technical expertise, and uncertainty of

investment requirements [38].

For manufacturers to manage the transformation towards increased automation through

machine learning, organisations must shift hiring strategies to focus on data analytics and

data science skill-sets and develop digital skills in the existing workforce [69]. This up-

skilling of the existing workforce must be approached with careful consideration of the

impacts on the workforce through the application of human-centered management ap-

proaches. The available research suggests that an effective solution to overcome these
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barriers is to begin by exploring short-to-medium term innovation pilots to implement

human-in-the-loop analytics projects that focus on improving workplace experience rather

than headcount reduction. Human-in-the-loop innovation in data analytics has been shown

to deliver high economic returns [38]. More importantly, it builds organisational knowledge

and improves trust in these systems, thereby encouraging further innovation and replication

of these technologies [38]. This human-centric approach to innovation addresses organisa-

tional and technological barriers associated with developing and implementing Industry 4.0

technologies. Companies beginning this journey or unsure where to focus efforts should ex-

plore systems for which considerable research is available and ROI can be easily quantified,

such as: PdM, quality assurance, and anomaly detection.

2.5.3 Management

Management Approaches in Industry 2.0 and 3.0

During the early 20th century, following the introduction of mass manufacturing, tradi-

tional management approaches operated in functional silos and strict hierarchical man-

agement structures where the main focus was to deliver high predictability, and efficiency

[164]. This was achieved through the introduction, and gradual optimisation of the mov-

ing assembly line, where workstations are fixed in position and parts are moved between

stations to deliver high production rates and low labor costs at the expense of low product

variability. This type of assembly is now referred to as a transfer line. Over the years,

the concept of a transfer line has been extended to modern-day production systems. It

now refers to production systems where automated processes are hard programmed into

machines and systems [87].

Throughout the latter half of the 20th century, as competition in the automotive indus-

try grew, automotive companies began adopting more consumer-centric approaches and

differentiating products to meet various consumer needs to maintain a competitive edge

[165, 164]. [87] In response to the increasing demand by consumers for a diverse range of

products, Toyota introduced the Toyota Production System between the late ’60s and early

’70s. The Toyota Production System was a production philosophy focused on delivering

increased consumer value by minimising lead times in production and increasing the re-

sponse times from suppliers to the customer [166]. This is achieved through the continuous

improvement of production and business processes by adapting or eliminating aspects of

that process that results in lost time or money. From the authors’ own experience, a key
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principle of lean manufacturing is the concept of creating a continuous workflow for each

department and minimising bottlenecks. This requires effective cross-functional collabora-

tion between departments and represents a significant change from the traditionally siloed

workstreams of Industry 2.0. This ’just-in-time’ philosophy encompassed by the Toyota

Production System was the precursor to the modern-day lean management practices widely

used throughout the automotive industry and other sectors [166].

Throughout Industry 3.0, following the introduction of consumer-centric and lean man-

agement approaches, bureaucratic-hierarchical structures emerged to define fixed lean pro-

cesses that could be well coordinated throughout the organisation [164]. This bureaucracy

also made large-scale planning and coordination of multiple product families more pre-

dictable and easily managed by a centralised control group through a top-down manage-

ment approach [164]. Project management approaches during this period are characterised

by systematic and rigid processes such as stage-gate and waterfall methodologies. Tar-

geted goals must be reached at set project stages before progress can continue [167]. These

phase-based models enable management to monitor and effectively control project progress

throughout development and are still widely used today in the automotive industry [167].

Throughout the 1970s and 1980s, increased amounts of data became available through

new digitalised production systems and improved ICT infrastructures. As companies be-

gan to recognise the value of this data, data analytics became an increasingly important

part of improving individual production processes to meet performance metrics, improve

product quality and reduce lead times. During this era, programmable automation sys-

tems were introduced where production systems could be reprogrammed to accommodate

batched production. However, this reprogramming would usually result in machine down-

time during changeover [87]. By the 1990s, the maturity of manufacturing systems had

developed enough that programmable systems were becoming commonplace in automotive

manufacturing environments. Manufacturers began introducing new project management

approaches, such as Six Sigma, that focused on creating value from the large amounts of

process data produced by these systems.

In the reviewed literature, the origins of Six Sigma are not discussed, and therefore re-

fer the reader to an additional reference by Hahn et al. on the evolution of Six Sigma

for further information [168]. Six Sigma is a top-down management philosophy originally

introduced by Motorola in the 1980s to improve product and process quality using a dis-

ciplined data-driven process [168]. Traditionally, Six Sigma ’Champions’ are appointed

by senior leadership who facilitate implementing and deploying the strategy within their
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business area. At the process level, ’Process Owners’ are responsible for managing the Six-

Sigma project, which involves SMART goal setting for quality objectives, monitoring the

progress towards these goals, and training and mentoring other team members. Project

team members are then tasked with implementing the strategy within their respective

workflows. A Six Sigma project was originally designed to follow four key stages: Define,

Measure, Analyze, Improve, and Control. This approach is called DMAIC, which is used

to improve existing processes.

Six Sigma has since been adopted by many industries that have further developed these

methodologies into other areas, including process design (DMADVO), product servicing,

and non-manufacturing business applications. For a detailed description of the DMAIC

and DMADVO stages, as well as the evolution of Six Sigma in business, see [168]. Even as

the Six Sigma method was adapted and generalised, the focus remains on using disciplined,

quantitative approaches to improve process quality. Six Sigma continues to be the leading

approach for quality management at the world’s largest manufacturers like Sony, Lockheed

Martin, Nokia, Ford, and GE. For many of these companies remains a standard for data

and analytic skills training to guide process improvements [168].

Management Approaches in Industry 4.0

Like the revolutions that preceded it, Industry 4.0 brings new opportunities for organisa-

tions to increase productivity, flexibility, and customer value by embracing new technolo-

gies, business models, and management practices. High levels of machine learning-driven

automation in FMS environments challenge well-established organisational structures and

require increased collaboration between production, simulation, and data science teams

to optimize production offline and explore new automated management and control pro-

cesses. This not only requires a significant long-term investment in physical assets and

human resources to build organisational knowledge but also cultural changes to ensure the

workforce is empowered to support ongoing innovation. Various management strategies

are presented in the literature to manage the ongoing cultural, and technological changes

in the automotive industry at various levels of the organisational management hierarchy

[70, 72, 166, 169].

The journey towards the digitisation and automation of production should be viewed as

a continuous evolution as opposed to a revolution, one that is driven by operating costs

and improving productivity [33]. This should not require a complete overhaul of outdated

systems to be replaced with the latest technologies. Instead, the Industry 4.0 philosophy
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is to optimise, digitalised and integrate existing processes using technologies such as IoT,

Big Data analytics, and cloud-based systems to create further value from existing Industry

3.0 based technologies [33]. To adopt Industry 4.0 technologies and remain competitive in

a world of digitalisation, considerable amount of long-term investment is needed at both

the corporate level and the supply chain level to achieve Industry 4.0 goals. Management

needs to be open to this investment and ensure the long-term business strategy is well

communicated throughout all levels the workforce. Effective downward vertical communi-

cation of the ongoing organisational changes ensures supervisors and managers have the

best possible understanding of the future technological and human resource requirements

in their respective areas. This in turn enables managers and supervisors to put together

clear business cases for required investments to be communicated back up the management

chain, allowing businesses to act quickly to change.

A bottom-up approach to Industry 4.0 is ineffective, whereby an organisation invests in

Industry 4.0 technologies used by their competitors or within internal innovation hubs and

then implements them without having global goals or specific problems to solve [70, 33].

Instead, it is argued that digital transformation should begin with an organisation under-

standing its long-term vision and objectives. Once these goals are established, organisations

should explore top-down solutions that focus on addressing business-level goals, prioritising

those that offer the highest long-term ROI [70]. Albukhitan et al. suggests that during the

final stages of implementing business goals relating to digital transformation, organisations

should then consider adjustments in organisational culture and infrastructure requirements.

This can be achieved by reviewing training, qualification requirements, or hiring strategies

to meet the new demands of changes in high-level objectives or organisational change [70].

Albukhitan et al. argues that this top-down approach helps develop a holistic strategy

to transform all aspects of an organisation that can be implemented while avoiding the

inefficiencies of functional silos [70].

In contrast, Kulvisaechana et al. find in their research on change management that if a

strategic change is to succeed, changes should initially take place in the cultural beliefs and

assumptions of the organisation, thus leading to the cultivation of workforce commitment

in later structural changes [116]. This finding seems to contradict Albukhitan et al.’s sug-

gested approach. However, Kulvisaechana et al. later conclude that to effectively manage

organisational change while promoting a culture of innovation, management must think

and act holistically and make changes on several fronts in careful alignment [116].

Research shows that employees do not resist all organisational changes, only that which
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has not been well communicated or is perceived as psychologically or economically threat-

ening [116]. Communication strategies are identified in the literature as a key mechanism

to facilitate organisational change and should support a systematic change management

process that considers both changes in culture and organisational structure [70, 116]. This

requires careful consideration of changing internal environmental pressures that dictate

employee behavior, motivation, and performance of teams. Decentralised agile manage-

ment approaches are regarded by scholars as one of the most effective management models

in this regard, as it enables lower levels of management to be more embedded in their local

environments and respond faster to changes [170, 171].

Agile management is a project management process originally popularised in software de-

velopment but has recently become widely adopted in the manufacturing sector [47]. The

agile methodology promotes continuous development and testing during the whole life cy-

cle of a project to deliver benefits throughout the process rather than just at the end.

This iterative approach to developing and implementing manufacturing solutions enables

management to adapt quickly to changing environmental requirements and deliver highly

flexible solutions [47, 69, 162]. This management approach is particularly applicable for

machine learning, as the optimal solution will likely change throughout the product life cy-

cle due to data availability. For example, consider an anomaly detection system for quality

assurance of an automotive manufacturing process. Due to data availability limitations in

the initial development phases, early model iterations may be fully unsupervised or rely

heavily on synthetic data. This solution could be implemented in early pilots to demon-

strate concept readiness while high-quality data are still being collected. Through later

development stages, engineers may decide to transition towards new semi-supervised or su-

pervised approaches that utilize these new data to deliver increased reliability. This decen-

tralised approach to project management challenges well-established phase-based models

and requires higher levels of communication and collaboration between teams [170, 171].

Some research shows that agile methodologies can be challenging to apply in manufactur-

ing environments as this flexible management approach challenges traditional routines and

work processes of Industry 3.0 that are culturally embedded in factories [69]. Despite these

challenges, research in hiring trends in manufacturing shows that organisations recognise

the benefits of agile methodologies as experience in agile management is among the sector’s

most sought-after skills [47].

Agile management approaches are widely regarded as the most effective management ap-

proach to manage the requirements for many Industry 4.0 projects due to the agile method-
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ologies’ ability to deliver high flexibility, adaptability, and faster time to market [69].

Maturity Models

Throughout the transition towards increased levels of digitisation and automation, the

specific challenges and opportunities of any given solution will continuously change as or-

ganisations build the required organisational knowledge to develop and implement these

solutions successfully. This presents a complex management challenge due to the wide range

of emerging technologies and organisational changes that must be considered carefully to

deliver this transition successfully. Various digital maturity assessments are presented in

the literature as a change management tool for organisations to manage the technological

and organisational requirements throughout this journey. Various maturity models were

identified in the reviewed literature to help assess an organisation’s maturity relating to

Industry 4.0 objectives [172, 72, 69].

In their 2005 paper titled ’Understanding the Main Phases of Developing a Maturity As-

sessment Model’, Bruin and Freeze argue that any maturity assessment tool fits into 3

general categories: descriptive, prescriptive, and comparative [173]. A descriptive tool is

used to define the current state of a business, providing no means of improvement or re-

lationships between the current state and key performance metrics. A prescriptive tool

provides further insight into how the current state of a business relates to key performance

indicators, highlighting which areas can be improved to deliver value. Finally, a compar-

ative model compares maturity across industries, providing insight into the differences in

business practices and how this relates to value generation in different environments. A

comparative model requires many assessments to be carried out across various industries

to gather sufficient data to draw these relationships.

The author also argues that although a wide range of maturity models can be found in the

available literature, despite their claims, these models are not well suited to give actionable

feedback to management to guide specific process improvements and wider organisational

change. Limited qualitative and no quantitative evidence supports the argument that or-

ganisations benefit from performing an Industry 4.0 maturity assessment. This claim is

discussed further in Chapter 3.

The maturity models included in this review give little direction on how the assessment

should be conducted, what personnel should be involved, and who should take responsibil-

ity for delivering the resultant roadmap. In their discussion on digital transformation and

change management approaches, Albukhitan et al. find that successful digital transfor-
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mation requires support from all stakeholders, including top-level executives, employees,

and customers [70]. The author suggests that future research into maturity models focus

on addressing the suggestions of Albukhitan et al. by developing new maturity models

that consider the involvement of these key personnel throughout the assessment process.

Further research should also consider the real-world application of maturity assessments

within an organisation.

Regardless of the usability of existing maturity models to deliver useful roadmaps to Indus-

try 4.0, the importance of developing a structured roadmap to support change management

is not contested.

Management Conclusions

The automotive industry is in the midst of major organisational change due to various

emerging technologies and business practices that challenge well-established business mod-

els at both the strategic and operational levels. Research shows that to manage this organi-

sational change successfully, automotive manufacturers must think and act holistically and

make changes on several fronts in careful alignment [116]. Because of this holistic approach

discussed throughout the literature, the barriers to developing and implementing machine

learning solutions aligned with the more general challenges of Industry 4.0 change manage-

ment. These include a need for increased communication both vertically and horizontally

to facilitate effective collaboration between teams to deliver cross-functional manufactur-

ing solutions. Automotive manufacturers must learn from the lessons of Industry 3.0 and

recognise that investment should not be limited to manufacturing technologies, but also

into developing good organisational structures and communication channels to support

the effective management of human resources [33]. Senior management must take steps to

communicate the business strategy to all levels of the workforce to identify future skill re-

quirements across different functional areas and ensure they have sufficient personnel with

the right digital skill sets to support the operation and future development of Industry 4.0

systems. Agile methodologies are presented as an effective way to manage these projects

at the process level and particularly lend themselves to projects exploring machine learn-

ing solutions. Given that this project management approach challenges well-established

methods such as lean, stage-gate, and waterfall, organisations should ensure that good

communication structures are in place to address these new models’ cultural barriers.

Managing the large-scale organisational transformation of the workforce, processes, strat-
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egy, and culture requires well-structured step-wise approaches [172, 72, 69].

2.5.4 Computer Vision

Computer vision is a field of machine learning in which algorithms are trained to inter-

pret the image or video data and perform tasks such as object detection or classification.

Computer vision applications in manufacturing settings include quality testing, safety su-

pervision, inventory management, and process monitoring [27]. If implemented correctly,

machine vision systems can optimize quality assurance processes as they are quicker, more

objective, and continually functioning compared to human inspectors [27]. This leads

to lean improvements, reduced labour costs, improved part quality, waste reduction, and

improved traceability [24]. Combined with the predictive and prescriptive process manage-

ment approaches, integrated vision systems collect data on important production metrics

for analysis [27]. Computer vision can be combined with other machine learning technolo-

gies to optimize processes and deliver business intelligence [27].

In the reviewed literature, 18 papers were identified for which the main topic is the de-

velopment of a novel computer vision approach or a novel application of an existing sys-

tem. Of these papers, only 3 papers were found to have been actually implemented in

a production setting [28, 86, 97], while 12 were a proof of concept or a literature review

[94, 96, 174, 95, 27, 24, 89, 108, 175, 87, 101, 99], and 3 were unclear whether a solution was

implemented or not [98, 100, 85]. Most of the reviewed literature focuses on computer vision

systems for quality assurance in which inspection tasks are automated or semi-automated

and deliver a pass/fail result to the production control system, guiding routing and rework

requirements accordingly. Other use cases for computer vision in manufacturing include

bar-code checking [27], supervision [27], tracking and reporting [27], condition monitoring

[27] and inventory management [27].

Computer Vision Environmental Conditions

A common challenge in the computer vision literature is the variation of environmental

conditions such as changing light conditions, colour, background, object placement, and

orientation [24, 87]. Flexible manufacturing environments present a challenge for computer

vision systems which work optimally in environments where variation in light conditions,

texture, scale, and position are minimised. FMS may require reconfiguration of the line,
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affecting these lighting conditions, and variation in the produced parts require more train-

ing datasets and higher levels of integration to identify the incoming part and perform the

correct analysis.

Schluter et al. use weight and image data as input to vision-based classification models

to determine the suitability of damaged automotive components for re-manufacturing [96].

To overcome the challenges of lighting conditions, the researchers suggest using an enclosed

lighting rig with a uniform white background to place the part inside for the highest pos-

sible accuracy of the computer vision system, achieving accuracies of 98%. In this study,

training and testing data are collected from the automotive manufacturer, considering the

variability of how different workers might place objects in the lighting set-up. This paper

also includes the only identified use case where additional data on the weight of the com-

ponents, in addition to images, as part of the classification input. However, the paper’s

methodology lacks detail on the datasets as well as the industrial impact of the final sys-

tem. No information is provided on the set-up cost of this system, nor the amount of time

taken to label the datasets, however, the researchers do discuss that future work will focus

on automating this process of data acquisition.

Courville et al. use a similar approach to overcome lighting challenges when identifying

manufacturing defects in gears [99]. The paper uses a novel image acquisition approach

where photos of the gear are taken at multiple angles. The vision system only flags the

part as defective if the defect is identified on multiple images. A predetermined threshold

of the number of required defective images to return an anomalous result. Image data are

collected using a high-resolution camera and within a similar enclosed inspection cell to

minimize the impact of changing environmental conditions. A single-axis gripper rotates

at a rate that ensures every tooth of the gear is scanned multiple times. This process

ensures consistent rotation angles and constant lighting to ensure high-quality data and

repeatable results. This paper includes good details on the data labelling approach, in

which a ground truth dataset was built by having a domain expert manually label the

parts’ state before scanning to assign labels. Courville et al. state that each gear scan

took about 90 seconds using this method, and further optimisation of this process could

reduce this to 20s per gear [99]. Parts were randomly selected from the line to be scanned,

resulting in a dataset of 193 gears, 93 of which had some defect present, and no instances

were found where two defects occurred on the same part. Because of this random selection,

this suggests that this is representative of the actual anomaly distribution. From all images

of the scanning process from the 193 parts, 3172 images of defects were labelled by the
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domain expert. This paper is a good example of the required level in developing training

and testing datasets that many papers fail to include. Labelling data is time-consuming,

and understanding the estimated time commitment is important for reproducing computer

vision researchers in both academic and real-world manufacturing settings. Courville et

al. also give an estimate of the solution’s impact, finding that their approach could reduce

the requirements for manual quality inspection by 66% [99]. Few researchers consider the

real-world impact of machine learning solutions and no papers in the reviewed literature

comment on the estimated economic impact of their solutions.

Papavasileiou et al. also discusses the importance of stable lighting when computer vision

detects manufacturing defects in automotive brake components. In this instance, the chal-

lenge was overcome without using an enclosed lighting rig, instead using a bright white

LED strip with careful orientation of the inspected part controlled using a robotic arm

[97]. In addition to the lighting conditions, the resolution of the camera is also important

[99, 87]. Mazzetti et al. find that this causes challenges when using video to detect quality

defects in brake components as the resolution is too low to detect surface defects [87].

Data Availibility and Computer Vision

The challenge of limited available data is common among the reviewed litterature [97, 87,

101, 95, 98]. Some researchers overcome this through generating synthetic images using

GAN networks as discussed in section .1.2, although this approach is complex and requires

high levels of machine learning skills as well as a high-quality sample of training data. Some

researchers rely on publically available datasets to validate their models, however, these

open-source datasets are also often limited in size [101]. In their research on visual analysis

of fracture surfaces for root cause analysis of industrial processes, Bastidas-Rodriguez et

al. aim to demonstrate that handcrafted features in deep learning lead to improvements

in performance [101]. The benchmark selected for this study used databases with small

samples of only 81 and 108 images per class in the KTH-TIPS and KTH-TIPS2-B datasets,

respectively, resulting in very small sample sizes with only 70 for training and 11 for test-

ing. The authors note the lack of large datasets for texture and fracture use cases.

In their research on quality inspection of soldering of electronic components, Schwebig et al.

study the impact of adding augmented training data to overcome training data imbalance.

This rigorous study compares multiple training datasets on multiple testing datasets with

various fault types. The common image data augmentation approach is to perform geo-

metric and colour variations through rotations and translations, filtering techniques [98].
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This approach is much simpler than using GANs to generate synthetic data, as discussed

in section .1.2. By comparing the F-score of training datasets that include augmented

data, researchers could significantly increase computer vision performance compared to

non-augmented datasets [98]. The researchers found that in all test cases, high-quality and

diverse training data are the most significant factor that impacts successful implementation

[98].

Malburg et al. evaluate three CNN object detection methods and their performance in

detecting workpieces and recognising failure situations [89]. This proof of concept shows

how this technology could be applied to identify workpiece misalignment. However, only

two failures are simulated by manually misaligning the parts and collecting image data. It

is unclear how the accuracy of this model trained using manually simulated data will per-

form in real-world scenarios, particularly where unknown errors might occur. This limited

information on the real-world use of this system means the researchers do not consider this

project’s economic benefits/cost-benefit analysis. Once again, no consideration is given to

the required skills to implement this solution nor the time taken to gather and label the

synthetic data.

Papavasileiou et al. present an image-based system to detect manufacturing defects in au-

tomotive brake components [97]. A bespoke unsupervised algorithm uses a sliding window

process to measure brightness variation in a greyscale image and classify parts as either

OK, Minor defects, or, Not OK [97]. While some papers consider different fault occur-

rences, this is the only example in the reviewed literature where an algorithm indicates the

severity of a single fault. During model development, domain experts observed the sliding

window results to determine anomaly threshold values manually, however, little detail on

the exact methods used to calculate these thresholds is presented. The solution was im-

plemented at an automotive manufacturer with processing done locally and presented to

the user in an online dashboard. The paper presents an accuracy of 92%, although this

is not compared with other methods such as CNN or ANN [97]. F-score would have been

a more appropriate evaluation metric given the high imbalance of the testing dataset. A

small sample size of only 25 parts for the testing dataset is unclear if this sample is repre-

sentative of the actual anomaly distribution of the manufactured parts.

Luckow et al. present an automotive use case of a computer vision system in supporting

walk-around quality inspection of the final product [28]. The paper includes considerable

detail on the integrated system architecture used to enable data collection using hand-held

IoT devices before a fine-tune transfer learning approach performs classification in the
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Cloud [28]. The researchers state that the main contribution of this paper is the creation

of an automotive dataset to learn and recognise different vehicle properties [28]. Despite

this primary aim of the paper, the end use of the IoT-supported computer vision system is

not discussed beyond its use for visual inspection. The paper goes beyond other works in

describing how long it took to build the test dataset, which took multiple workers weeks to

build [28]. Without a clear insight into the labelling process, the definition of labels, and

who was assigning the labels, it’s difficult to replicate this. Without a clear methodology,

the quality of this data and the results are in question [28].

In addition to 2D inspection approaches, many companies now also use 3D scanners in

combination with computer vision to deliver quality improvements [27]. One such exam-

ple is presented by Zhu et al., who propose a 3D scanning system for quality assurance

using point cloud detection [95]. Point clouds of manufactured parts are generated using a

cobot-mounted camera system and are compared with point clouds generated using CAD

data to identify manufacturing defects. The paper shows that unsupervised approaches

can be used to generate point clouds that are representative of those produced by CAD

data, negating the need to develop supervised training and testing datasets. However, the

proposed solution is complex to set up in comparison to the supervised alternative. The

author speculates that developing a supervised dataset would take less time than what

would be required to replicate the complex point cloud detection approach. Further re-

search is needed to compare the time requirements of both solutions and directly compare

the performance of both methods in detecting a wider range of defects. Stavropoulos et

al. propose a remanufacturing cell to robotized the remanufacturing of automotive frames

for which training and testing dataset was created using CAD data [90]. The proposed

approach is only tested using synthetic data, with further work required to validate the

results in real-world scenarios as it’s not clear how well the accuracies found in this study

will translate. Given the similarities between this case study and that of Zhu et al. there

are opportunities to improve both methods by combining these findings.

Runeson et al. discuss the data management challenges of machine learning in industry

and the requirements for large volumes of high-quality data [176]. Open Data Exosystems

(ODEs) is presented as a potential solution to this challenge [176]. An ODE is a network of

community actors consisting of both organisations and individuals that collaborate on de-

veloping datasets and related resources to foster innovation, create value, and support new

business [176]. This research is presented as a wider solution to enterprise-level challenges,

however, this collaborative sharing of both knowledge and data could also be applied to

62



solve limited data availability in computer vision settings. ODEs challenges the existing

culture of competition and secrecy within the automotive industry and presents new legal,

organisational, and technical challenges. Researchers conducted 5 focus groups with 27

experts across 22 organisations to survey ODEs [176]. Participants raised concerns that

sharing data requires giving away business value and would rather collaborate with busi-

nesses that are not competitors. Furthermore, these organisations recognise that many

challenges can be overcome through collaboration but raise concerns about security, legal

barriers, authenticity, standardisation, quality, and trust. Kauffman et al. discuss these

legal challenges in their research on intellectual property in Industry 4.0, highlighting that

in the newly interconnected manufacturing environments, data is of high value and worthy

of protection [25]. This value creation lies in the ability to gain insights into integrated

smart objects through data analytics, thus generating new organisational and technical

knowledge which can deliver competitive advantage and innovation [25].

While there remains some debate on ODEs, the author would add that in the automotive

industry, this concept should also be considered when collaborating with organisations or

other manufacturing sites within the same company. In large-scale automotive companies,

different sites may view each other as competitors when bidding for new contracts and,

therefore may be resistant to sharing information on innovation projects. Runeson et al.’s

research is limited in highlighting how Open Data Exosystem culture varies between in-

dustries and what specific barriers need to be overcome in individual sectors, and further

research is needed to understand the value proposition of ODE. Theissler et al. include fur-

ther information on the organisational challenges of data-driven topics in the automotive

sector [30]. Research finds that engineers often have access to data in automotive settings

due to political and bureaucratic barriers [30]. Furthermore, researchers find that a lack of

understanding and support in gathering labelled data on faults in production environments

makes developing machine learning models difficult [30].

Social Sustainability in Computer Vision Research

Social sustainability in the context of manufacturing refers to the ability of the organisa-

tion to promote social well-being and equity, while also minimizing negative social impacts

across all aspects of operations. This includes considering the well-being of workers, the

community, and society at large, as well as the ethical and responsible use of resources.

Babic et al. present a systematic review of computer vision systems for quality inspection

in which they find the majority of the literature focuses on comparing the accuracy between
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human operators and autonomous systems [24]. Only 4% of the surveyed results compare

existing systems with improved methods [24]. This is supported by the author’s research

findings and suggests that these systems are not currently widely used in manufacturing,

with many processes still largely relying on some manual process for quality assurance.

Babic et al. find that in Computer vision quality inspection, most researchers either devel-

oped bespoke software or did not mention what software was used [24]. Of those that did,

CAD and MATLAB was the most popular choice for computer vision inspection. CAD was

used in instances where 3D representations were required, while common machine learning

methods for computer vision include ANN and object segmentation [24]. These findings

differ from the results of this study which finds the most common machine learning method

for computer vision to be CNN’s such as YOLO, Alexnet, GoogLeNet, VGG. When con-

sidering variants of the YOLO network, such as YOLOv4, YOLOv5, and YOLOX, this

network is by far the most common CNN variant in the reviewed literature.

Within the context of Industry 4.0, Babic et al. also raise concerns that the human-centric

concepts of Industry 4.0 are not well understood in applications where computer vision

is being used for quality inspection [24]. Researchers found that the knowledge of indus-

try 4.0 needs to be more widespread with regards to human inclusion but do not include

examples of where this has been done well, nor guidance on how this could be improved

[24]. The authors’ findings agree with this. Some studies mention workplace experience,

automating non-value added work processes, and improving safety [100, 108, 175]. How-

ever, these examples do not explore the qualitative or quantitative impact of automation

on workplace experience[100, 108, 175].

Rosa et al. propose an IoT network architecture for computer vision systems to inspect the

quality of wiring harness parts, however, the proposed solutions still need to be tested or

implemented [174]. The research also discusses using other IoT technologies to support in-

creased data collection and integration, such as RFID cards to monitor employee behavior.

In this example, little consideration is given to the IoT security challenges of safely storing

this personal information, nor consideration to how this data collection might conflict with

union requirements in real-world applications.

Torres et al. demonstrate a use case in which a supervised learning approach is used to

train a CNN to classify different types of wiring harness connectors received from a supplier

in an unsorted box [108]. The system then classifies and sorts the connectors while sepa-

rating faulty instances to reduce waste and improve the workers’ experience by automating

a highly repetitive and time-consuming task. In instances such as these, where an entire
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process or sub-process is automated, the desired outcome of the end system must be well

communicated to the workers following guidance on change management, as outlined in

section 2.5.3.

Ferreira et al. present a computer vision system to inspect informative labels in vehicle

assembly, a process previously performed through manual inspection using a paper-based

checklist [100]. With increased product variety, quality inspection of these labels becomes

increasingly complex, and researchers find that mental fatigue, physical fatigue, and the

lack of experience can lead to a reduction in performance that could lead to safety-critical

production errors [100]. Instead of fully automating this process, Ferreira et al. present a

solution to assist operators in the quality inspection process [100].

Javaid et al. suggests that such systems can be implemented in a socially sustainable and

human-centric manner without resulting in job losses [27]. Instead, automation should ad-

dress high-priority work while workers have more opportunities to learn more demanding

skills from their cognitive point of view [27]. The author would add that workers may not

want to be upskilled or may not have the prerequisite skill requirements to learn more

advanced skills to support computer vision systems.

Computer Vision Conclusions

Given the rapid advancement of these technologies in academic and industrial settings in

recent years, there are significant opportunities for further research and industrial appli-

cation of these systems. Multiple instances are identified where previous researchers have

faced environmental challenges relating to computer vision systems, such as changing light

conditions, colour, background, object placement, and orientation [24].

In the reviewed literature, ODEs are identified as a potential organisational solution to this

challenge, in which automotive industries need good digital communication channels to col-

laborate between internal and external organisations to develop high-quality datasets. This

concept of ODE extends beyond computer vision and offers a solution to improve other

datasets, such as time series for condition-based monitoring as well as enterprise data

[176]. ODEs are a relatively new concept and challenge existing cultures and organisa-

tional practices of the automotive industry, with the main barriers to ODEs being political

and bureaucratic processes [30]. Furthermore, researchers find that a lack of understand-

ing and support in gathering labelled data on faults in production environments makes

the development of machine learning solutions difficult [30]. Organisations must recognise

these cultural barriers and address them through structured change management strate-
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gies supported by high levels of communication of these systems’ social, environmental,

and economic benefits to the workforce [116].

A common technical solution to lighting and environmental challenges is to use a robotic

arm to accurately control the orientation of the inspected part inside an enclosed lighting

rig [97]. Environment enclosure for vision systems is required even where lighting con-

ditions seem constant as additional light from opening shutter doors, windows, etc may

affect performance [87]. Even in highly controlled conditions, research shows that the

most significant factor that impacts successful implementation is the quality and diversity

of training data [98]. In instances where position and lighting solutions are not practical

due to limited available capital, or physical space, larger training datasets may be required

to account for the increased variability of the inspected parts. Very bright lights in a fixed

position may also be used to minimise the impact of changing environmental lighting. In

all cases, researchers highlight the importance of using cameras with sufficiently high res-

olution to identify the respective defects.

A research gap is also identified in exploring the social sustainability of these systems.

A key consideration of Industry 4.0 is the impact that innovations in digitalisation and

automation technologies have on the workforce, and how any negative impacts should be

managed. Further research is required to develop frameworks to support the implementa-

tion of computer vision systems in a socially-sustainable way that considers these aspects.

This finding is supported by prior research in computer vision systems in manufacturing

[24]. Future research focusing on human-centric applications of computer vision should use

questionnaires to explore these systems’ cultural and social impact on management and

line workers in automotive manufacturing settings.

2.5.5 Key Findings of Machine Learning Opportunities and Bar-

riers

For the reader’s convenience, this subsection includes a brief summary of the key findings

of the key topics discussed above. Various machine learning solutions in automotive man-

ufacturing are discussed in the reviewed literature, with the most common applications

including computer vision for quality inspection, automated process control, predictive

maintenance, automated scheduling, and anomaly detection. In all these cases, limited

organisational knowledge of machine learning requirements at the managerial and process
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levels is one of the main barriers found in the reviewed literature. Researchers found that

the limited understanding of the potential value creation and return on investment of ma-

chine learning technologies results in a lack of support in gathering high-quality labelled

data on faults in production environments [30]. This is a common theme throughout the lit-

erature that makes developing machine learning solutions difficult [30]. Organisations must

recognise these cultural barriers and address them through structured change management

strategies supported by high levels of communication of these systems’ social, environmen-

tal, and economic benefits to the workforce [116]. Maturity models are presented as a tool

to support this change management by helping to develop a roadmap towards improving

the technological readiness of key enabling machine learning technologies, however, this

research finds little evidence to show that maturity models lead to measurable change in

organisations Industry 4.0 maturity. Further research is required to quantify the impact

of these tools.

Only a few papers in the reviewed literature discuss the potential economic impact of the

proposed machine-learning solutions. Communicating the business case for industrial ap-

plications of machine learning is critical to help address the knowledge gaps within the

automotive industry. Future works should focus more on the economic appraisal of real-

world implementation of machine learning solutions to support replication in industrial

settings.

This oversight on communicating the business case of proposed solutions is largely be-

cause most papers in the reviewed literature present a proof of concept rather than an

application-ready solution. As shown in Fig 2.2, research in this field has increased consid-

erably in the last 5 years. This suggests that many of these technologies are still in their

infancy and suggests a wide range of opportunities for both further academic research and

industrial application of these technologies.

Computer vision systems for quality assurance are the most common research topic in

the reviewed literature. Multiple instances are identified where previous researchers have

faced environmental challenges relating to computer vision systems, such as changing light

conditions, colour, background, object placement, and orientation [24].

Many researchers highlight the challenge of collecting or accessing sufficient labelled anomaly

data in industrial settings. In many cases, additional data are generated synthetically to in-

crease diversity of the minority class and address data imbalance [85, 86, 87, 84, 88, 89] while

others rely on publicly available data [6]. These approaches present further challenges re-

lating to the reliability, accuracy, and replicability of results [30, 85, 86, 87, 84, 88, 89]. De-
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spite the challenges of gathering high-quality labelled data, Theissler et al. find that most

machine learning research explores supervised solutions, a finding supported by our own

research [30]. Future research should therefore explore unsupervised or semi-supervised

solutions to existing challenges and the best approaches to engage domain experts and

process owners in collecting high-quality labelled data.

Social sustainability and workforce digital skills being the most common topic in the In-

dustry 4.0 management literature [67, 39, 48, 68, 69, 47]. Some researchers explain the

slow adoption of industry 4.0 due to the limited availability of skills, poor change manage-

ment, and a lack of organisational knowledge. Other researchers further suggest that this

problem is not as simple as just a skills shortage but that the Industry 4.0 paradigm at

its core is not well aligned with social sustainability goals [39]. There is some evidence to

support this claim, and while social sustainability and workforce digital skills are one of

the most common topics in the Industry 4.0 management literature, little consideration is

given to the social impact of machine learning solutions when developing and implement-

ing real-world manufacturing. No papers in the reviewed literature explore the qualitative

or quantitative impact of automation on workplace experience, and a lack of structured

frameworks exist to support the implementation of these systems in a socially-sustainable

way. This finding is supported by prior research in computer vision systems in manufactur-

ing [24]. Future research should consider using questionnaires and face-to-face meetings to

understand the social impact of machine learning and its associated technologies on both

management and line workers.

The available research suggests that an effective solution to overcome both the technological

and organisational barriers of machine learning innovation is to begin by exploring short-

to-medium term innovation pilots to implement human-in-the-loop analytics projects that

focus on improving workplace experience rather than on headcount reduction. Human-in-

the-loop innovation in data analytics has been shown to deliver high economic returns [38].

More importantly, it builds organisational knowledge and improves trust in these systems,

thereby encouraging further innovation and replication of these technologies [38]. This

human-centric approach to innovation addresses organisational and technological barriers

associated with developing and implementing Industry 4.0 technologies.

Companies beginning the journey towards increased automation and digitisation who are

unsure where to focus efforts should explore human-in-the-loop innovation in systems and

technologies for which considerable research is available and the value proposition is eas-

ily quantified. Predictive maintenance of manufacturing systems and computer vision for
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quality assurance are the most widely researched topics in the reviewed literature with a

wide range range of use cases presented. A research gap is identified in understanding

the social impact on line workers who may be displaced by automation and digitisation.

The author suggests that future research in automotive manufacturing settings focus on

implementing real-world solutions of predictive maintenance and computer vision. This

research should focus on understanding the end solution’s economic impact and measuring

the social impact on the workforce through surveys.

2.6 Conclusion

This systematic literature review applies a rigorous search methodology to provide a com-

prehensive overview of the machine learning technologies and practices currently used in

automotive manufacturing environments and the barriers to their development and imple-

mentation. In answering this research question, a range of machine learning approaches

are discussed, as well as the most common models researchers use to explore novel man-

ufacturing solutions. Enabling machine learning technologies in manufacturing are also

discussed, including a range of Industry 4.0 technologies such as IoT, Big Data analytics,

Flexible Manufacturing Systems, Digital Twin, Cloud and Edge computing.

Computer vision is the most widely researched topic in the reviewed literature. A key

finding is that while various papers discuss the importance of high-quality training data

[98, 100, 108, 87], few papers include insufficient information on how data are collected,

labelled, cleaned and validated, which often makes these studies difficult to replicate. Re-

serach studies on anomaly detection also often lack information on how threshold limits

are set, making it difficult to replicate these solutions [106, 75, 97]. Future research must

include this information to ensure research is easy to replicate. These findings help guide

our labelling methodologies, threshold limits, and validation approaches in chapters 4 and

5, ensuring our methods could be easily replicated and that our data are validated by

domain experts to ensure the data are of sufficiently high quality.

In addition to discussing the technical aspects of machine learning and their associated

challenges, the cultural and organisational challenges are also discussed. Research shows

that the full realisation of Industry 4.0 technologies is yet to be realised in the manufac-

turing industry, with one of the main barriers being a lack of data science skills [47, 48].

Consequently, there are gaps in organisational knowledge leading to a reluctance to em-

brace emerging technologies due to complexity, technical expertise, and uncertainty of
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investment requirements [38]. The majority of papers in the reviewed literature focus on

proof-of-concept solutions, with few instances where machine learning solutions are imple-

mented in real-world manufacturing settings, with the exception of computer vision for

quality assurance. Future research should give more consideration to the economic impact

of machine learning solutions in order to support the uptake of these technologies in in-

dustry to drive further sustainable growth. This is considered in Chapters 4 and 5 where

two machine learning case studies are presented, each of which gives careful consideration

to the economic aspects of the projects.

Agile methodologies are presented as an effective way to manage machine learning projects

at the process level, however, these project management approaches challenge well-established

methods such as lean, stage-gate, and waterfall methods that are embedded in the automo-

tive manufacturing culture [47, 69, 162]. In order to maximize the value creation of machine

learning in automotive manufacturing, research shows that well-structured human-centric

change management approaches must be in place at the early stage of an organisation’s

digital transformation to address these cultural barriers and create an environment that

promotes innovation and develops trust in new technologies [172, 72, 69]. These findings

are used to inform the development of a strategic framework outlined in Chapter 3 which

encompasses change management best practices presented by Kulvisaechana 2001, and fo-

cuses on human-centric innovation to support the future uptake of machine learning and

other Industry 4.0 technologies and practices [116].

A key finding is that limited knowledge of the machine learning requirements at the man-

agerial and process levels are one of the main barriers in the reviewed literature. Re-

searchers find that the limited understanding of the potential value creation and return

on investment of machine learning technologies results in a lack of support in gathering

high-quality labelled data on faults in production environments [30]. This is a common

theme throughout the literature that makes developing machine learning solutions diffi-

cult [30]. Organisations must recognise these cultural barriers and address them through

structured change management strategies supported by high levels of communication of

these systems’ social, environmental, and economic benefits to the workforce [116]. These

research findings are an important consideration in the assessment methodology presented

in Chapter 3 which ensures the involvement of management throughout all stages of the

assessment process in order to transfer knowledge on machine learning and Industry 4.0

technologies. Furthermore, these findings also led to the development of ’Bite Sized Train-

ing’ as a secondary outcome of Chapter 3, in which short training content is developed
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for senior management to further address the knowledge gaps that present a barrier to

machine learning uptake.

In addition to education and training efforts, the available research suggests that an effec-

tive solution to overcome cultural and organisational knowledge gaps of machine learning

is to explore short-to-medium term innovation pilots that focus on improving workplace

experience rather than headcount reduction. Human-in-the-loop innovation in data ana-

lytics has been shown to deliver high economic returns [38]. More importantly, it builds

organisational knowledge and improves trust in these systems, thereby encouraging fur-

ther innovation and replication of these technologies [38]. This human-centric approach to

innovation addresses organisational and technological barriers associated with developing

and implementing Industry 4.0 technologies. Companies beginning this journey or unsure

where to focus efforts should explore systems for which considerable research is available

and ROI can be easily quantified, such as: PdM, quality assurance, and anomaly detection.
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Chapter 3

Industry 4.0 Readiness Assessment

3.1 Summary

The transition to Industry 4.0 and the adoption of machine learning technologies is a

complex process, requiring organisational changes that challenge well-established business

practices. Increased levels of digitalisation and automation will present new social chal-

lenges and require careful change leadership to maintain an innovative culture that supports

ongoing digital growth. Ford Motor Company recognises these changes, however, there are

gaps in the current Industry 4.0 strategy to guide low-level changes at the factory level.

To address these challenges, this chapter presents a strategic framework to support man-

agement at the factory level in guiding digital growth. The proposed framework builds

on previous research on Industry 4.0 maturity assessments. It considers technological, or-

ganisational, strategic and cultural aspects, and presents user-friendly tools to measure

progress in these areas against a well-defined benchmark. To design the tool, a wide range

of maturity models are critically reviewed and reserach is conducted into best practices in

maturity model design and questionnaire design.

The assessment tool is used to perform three assessments at Ford’s UK manufacturing

sites. These findings are compiled in this chapter to provide a comprehensive assessment

of digitalisaion and automation strategy across Fords UK operations. The key findings

of this research highlight growth opportunities in various aspects of the business strat-

egy. Skills gaps are identified in IT and data analytics which present a barrier to IoT

development and implementation and prevent the site from maximising value creation

of existing data sources. A lack of metrics surrounding digitalisation and automation is
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discussed, making it difficult to measure progress towards the company’s own long-term

digitalisation objectives. It is also highlighted that while most sites are quick to identify

and replicate technological successes, less consideration is given to organisational innova-

tion opportunities, and further cultural barriers prevent strategic-level innovation changes.

These findings are discussed in detail, and various innovation projects, project manage-

ment tools, and strategic changes are proposed to overcome these barriers to innovation.

The assessments resulted in various outcomes that have had a direct impact on the com-

pany. Some of these proposed innovation projects have since been implemented at the

company, and are also described in detail as well as their impact on the company. For ex-

ample, one of the assessments identified an opportunity to create further value from AGV

monitoring data and error logs. This resulted in a short-term data science project that

provided on-site innovation teams with new insights into the route causes of AGV errors,

as well as direct actions that could be taken to mitigate these instances on-site and reduce

cycle times of material handling processes on site. Furthermore, these findings were also

used to update the company’s simulation models to improve the accuracy of AGV simu-

lations when planning future replication of these technologies. This is but one example of

the numerous projects that resulted from the research in this chapter.

The value of these assessments to measure and guide Industry 4.0 strategy as the com-

pany continues to expand into EV markets is been recognised by Ford Motor Company

who have since adopted the assessment methodology as an internal tool to perform regular

assessments at European manufacturing sites. The Simulation and Process Optimisation

team at Ford’s R&D Center in Dunton, UK has taken ownership of this tool with plans to

perform further assessments at Valencia and Cologne manufacturing sites. In addition to

full assessments, the company also uses the questionnaire as a means of measuring ongoing

progress following the initial assessment by comparing responses change over time. This

provides senior management with a new way to assess cultural changes at the factory level,

something that had not yet been explored within the company.

3.2 Introduction

Industry 4.0 brings tremendous growth opportunities through increased automation, dig-

italisation, and business intelligence. Research shows that companies focusing on data-

driven solutions deliver higher productivity than other companies [26]. However, man-

aging the transition towards implementing highly automated data-driven manufacturing
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solutions can be challenging. This is particularly true during the early stages of digital

transformation as organisations may not yet understand the value add of emerging digital

solutions. Prior research into measuring progress towards Industry 4.0 in the manufacturing

sector finds a lack of clear metrics devoted to key Industry 4.0 technologies such as digital-

isation, automation, cyber security, talent acquisition, and data analytics [177, 178, 179].

This lack of metrics and limited organisational knowledge makes it difficult to estimate

the ROI of emerging Industry 4.0 technologies, and as a result, organisations are often

reluctant to invest in digitalisation as the economic benefits of individual investments are

often unclear [180]. This has resulted in a strategic dichotomy in Ford’s UK manufactur-

ing sites, where long-term business objectives envision a highly productive and automated

Smart Factory, while risk-averse investment strategies at the factory level prevent the high

levels of innovation and digital growth required to realise this vision. The shift towards

Industry 4.0 practices is not only driven by investment in new technologies, but also re-

quires a changes in business strategy, organisational structure, and workplace cultures.

This presents further challenges, long-term objectives in these areas are more difficult to

define and progress is difficult to measure.

At Ford Motor Company, there are multiple business strategies to guide digitalisation and

automation strategy. The ’Factory of Tomorrow’ is Ford’s equivalent of the ’Smart fac-

tory’ discussed in Chapter 2, and outlines the company’s technological vision of a highly

automated manufacturing site. In the EU, Fords Powertrain Manufacturing Engineering

(PTME) team oversees the launch of new production lines with a dedicated Industry 4.0

team to guide and support digitaliaiton and automation solutions such as IoT, AGVs, and

collaborative robotics. To guide changes in workplace culture ’Ford+’ presents a com-

prehensive list of the behaviours and values that are required to ensure the success of

organisational changes. Despite these various high level strategies, visions, and business

units, this research finds that Fords UK manufacturing sites are not well aligned with these

objectives. Senior management report that while they are aware of these long term goals,

they lack the low-level step-wise strategies and roadmaps to drive changes at the functional

level.

These challenges are not limited to Ford Motor Company. Considerable research has been

done to address these challenges across the manufacturing industry to support organisa-

tional change, with much of this research focusing on developing Industry 4.0 maturity

assessments [12, 40, 41, 42, 43, 44, 45, 46]. Industry 4.0 maturity models are presented

as a tool that businesses can use to quantify digitalisation progress and understand their
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current maturity compared to a well-defined benchmark. Assessment tools also present

opportunities for management to justify investment portfolios, improve project manage-

ment, better understand strengths and weaknesses, learn from past mistakes, and review

business strategies [181]. However, upon reviewing existing Industry 4.0 maturity tools and

exploring how previous maturity models have been used at Ford Motor Company, it was

found that existing tools are not well suited to deliver these goals in automotive settings.

Existing tools lack clear guidance on the step-wise process of performing a self-assessment.

For example, current maturity models lack information on which personnel should carry

out the assessment, the scope of the assessment, what levels of management should par-

ticipate, how many people should participate, and how long the assessment should take.

Without this information, applying these assessment tools in large multinational organisa-

tions is challenging, particularly in organisations at the early stages of their Industry 4.0

transformation. Previous research has shown that companies tend to assume their Indus-

try 4.0 maturity is higher than it actually is [46], a finding supported by our research at

Ford Motor Company. Therefore, without clear, detailed guidance on correctly performing

a given maturity assessment, results may be skewed by confirmation bias in favour of the

optimistic perception of current readiness, leading to roadmaps that miss key growth op-

portunities. Furthermore, existing assessment tools cover a very wide scope, often aiming

to be used by multiple organisations and industries. While this approach may be useful

in providing high-level strategic guidance, it fails to provide specific low-level actions to

enact change and develop a roadmap to Industry 4.0.

To address these challenges and address gaps in Ford’s Industry 4.0 strategy, this chapter

presents an Industry 4.0 assessment tool aimed at automotive manufacturers. This tool

addresses gaps in the company’s current strategy to deliver Industry 4.0 and drive digital

growth at the factory level following Ford+ objectives. The assessment tool was developed

by critically reviewing a wide range of existing maturity models and following current best

practices in maturity model design and questionnaire design. The assessment is designed

to be performed over 6 stages, with information gathered primarily through question-

naires and 1-to-1 interviews with employees and management. Assessors are provided with

user-friendly supporting documents with detailed guidance on each process stage. Three

assessments were performed at Ford Motor Companies UK manufacturing sites, including

two engine manufacturing and assembly plants and one transmission manufacturing and

assembly plant. An iterative design process was followed to develop the finalised design

working closely with industrial partners throughout. The company is now using this assess-
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ment tool to guide Industry 4.0 strategy across Fords European manufacturing operations.

The chapter is structured as follows. Section 3.3 includes a review of existing Industry 4.0

assessment tools highlighting key research gaps in this field and providing a foundation for

which to develop our own tool. This section also introduces the latest research in maturity

model design and questionnaire design, in sections 3.3.1 and 3.3.1 respectively. Section 3.4

describes the methodology used to develop our assessment tool, as well as details of the

iterative design process that led to the final application-ready version.

In Sections 3.5 and 3.6 the assessment tool is presented. Section 3.5 includes a descrip-

tion of the 6 stages that assessors should follow to perform an assessment. Each stage

includes information such as required personnel, estimated timelines, scope, legal require-

ments, and other key considerations for industrial applications that previous assessment

tools have failed to consider. This section also includes references to supporting documents

such as questionnaires, scoring tables, and workshop guides.

Section 3.6 includes a detailed description of each of the 11 areas considered in the assess-

ment, summarising the industry benchmark for each respective area. This section is also

intended to be used as a source of further information for assessors to refer to in the scoring

process to assess their findings against the current Industry 4.0 benchmark defined by the

current state-of-the-art literature. These 11 areas of assessment are split into 2 general

focus areas: ’Manufacturing Production’, and ’Strategy, Organisation, and Culture’. Sec-

tion .2 presents the results from three assessments carried out at Ford’s UK manufacturing

sites. Section ?? presents the various innovation projects and other outcomes of these as-

sessments and their impact to the company. Based on these combined findings, section ??

outlines the Industry 4.0 roadmap for Fords UK operations to guide further digitalisation

and automation efforts. Finally, research conclusions are presented in section 3.8.
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3.3 Related Research

As outlined in the conclusion of Chapter 2, Industry 4.0 is a new concept with wide-reaching

scope for which academics are yet to agree on a specific definition. Industry 4.0 contin-

ually evolves as emerging technologies, practices and concepts are refined, evaluated and

reassessed. Furthermore, Industry 4.0 is widely described as a vision that varies between

companies based on size, available capital, and industries. Because of this wide-reaching

scope, developing a single tool for any company to use to assess Industry 4.0 readiness is

challenging, and different authors take various approaches.

Some assessment tools address the wide scope of Industry 4.0 by presenting highly gen-

eralised tools that any company can use to provide limited, high-level direction towards

digitalisation and automation [12, 42, 44]. In their 2010 paper, Steenbergen et al. describe

these types of assessments as fixed-level maturity models, which typically cover approxi-

mately 5 key areas of assessment [182]. This approach is beneficial as an assessment can

be performed by a small team, or even an individual in a matter of hours or days, making

it an approach accessible to a wide range of industries and companies. However, because

this approach is so generalised, many areas of assessment will inevitably not apply to all

companies, which can lead to confusion when performing the self-assessment and any resul-

tant guidance will be limited, and subject to interpretation. Steenbergen et al. argue that

while many of these fixed-level tools are presented as a means of developing a roadmap

to guide future improvements, these tools fall short of these promises [182]. This idea is

supported by our own research, which finds that when Ford Motor Company has tried to

use generalised tools such as these in the past, the tools have had to be adapted to such

an extent that the comparison with the benchmark is no longer valid, and no actionable

outcomes were identified. This is discussed further in section 3.3.1.

Steenbergen et al. also discuss the second category of maturity models with a narrower

scope, referred to as focus area maturity models. These assessments are specific to a partic-

ular functional domain within an organisation and are more useful for identifying specific

actions to make improvements [182]. Since this research was published, a wide range of

maturity models have been introduced that blur the lines between Steenbergen’s descrip-

tion of fixed-level and focus area maturity models, however, in general, those more narrow

in scope tend to provide clearer guidance to develop a roadmap to increase the maturity

of any given area [182].

An alternative approach is to develop an assessment methodology that can be tailored to

the desired scope and Industry 4.0 vision of the company that is being assessed. Only 2
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such assessments have been identified in the literature, both produced by private compa-

nies for which limited information is available [40, 41]. Assessments following this approach

will take considerably longer to perform due to the added complexity of defining the In-

dustry 4.0 vision, and providing specific guidance on multiple areas of operations and how

to overcome existing barriers. This requires the team of assessors to develop a strong un-

derstanding of the Industry 4.0 vision of the respective departments, as well as support

from senior management to commit these resources and review findings. Some external

providers that offer assessments of this type dedicate 3-5 months to gathering this infor-

mation [40], while others provide self-assessment guidance on how to effectively gather this

information internally through workshops and guided questionnaires [41].

An example of a fixed-level tool is the Warwick University Industry 4.0 Readiness Tool

developed in collaboration with Crimson & Co and Pinsent Masons adopts an intuitive self-

assessment approach that requires the assessor to review tables of varying readiness criteria

for various aspects of business and rank these aspects from 1 to 4 [12]. The assessment

covers 6 different areas of business including products and services, manufacturing and op-

erations, strategy and organization, supply chain, business model and legal considerations.

Each of these sections is in turn, broken down further into sub-dimensions resulting in a

total of 37 different areas for a business to rank its Industry 4.0 readiness. The tool itself is

simple to use and includes the results of 53 other assessments performed on a wide range of

companies for assessors to compare the results of their assessment to other similar compa-

nies [12]. However, a major challenge of this tool lies in its simplicity. The sub-dimensions

in this tool each include single-sentence descriptions of the requirements for a company

to achieve level 1, 2, 3 and 4 readiness. The vague nature of these descriptions makes it

challenging to accurately rank a business as a whole as there are likely to be some areas

of the business that meet level 4 descriptions, while others that are yet to achieve level 1.

This is particularly true for Small and Medium Enterprises (SMEs) for whom many of the

sub-dimensions are irrelevant [183]. Removing sub-dimensions in the assessment makes

it difficult to assign scores and compare maturity with the benchmark. Researchers have

addressed the difficulties of Industry 4.0 assessment in SMEs and presented alternative

tools specifically for these smaller organisations [183], and [184]. Despite its limitations,

the Warwick assessment tool has been highly cited and other studies have since adopted

this style of self-assessment [185]. In contrast to the Warwick assessment tool, Engineering

USA present an Industry 4.0 assessment that is designed to be more flexible, tailored to

the client’s 3-5 year vision of Industry 4.0 and designed to be carried out over a 3-5 month

78



period [40].

Engineering USA is a private company that offers Industry 4.0 consulting services. Al-

though this assessment was developed to be provided as a private service, and therefore

does not share the full details of the assessment process, it does contain useful information

on their general methodology, outlined in their white paper and website [40]. The assess-

ment is designed to maximise production metrics such as quality and throughput through

the use of digital tools, as well as focusing on the effective utilisation of data on the manu-

facturing floor, and integrating these data throughout different levels of the organisation.

Furthermore, emphasis is placed on digital manufacturing technologies such as simulation,

IoT, process monitoring and control, and system integration. From the information pro-

vided, the assessment does not appear to address other key aspects of Industry 4.0 outside

of production settings such as human resource management, management practices, and

supply chain. This approach is extensive, requiring significant time and personnel com-

mitments by both parties to plan, scope, write up, and review findings to deliver a clear

actionable roadmap.

A tool that sits in between the simple and user-friendly Warwick assessment, and com-

prehensive Engineering USA assessment is the Acatech Industry 4.0 Maturity Index [41].

Acatech is a national academy in Germany which specialises in delivering science and en-

gineering advice to policymakers, businesses, and society through independent research.

Acatech’s tool for assessing Industry 4.0 readiness is described in a six-stage ”Maturity

Index” focusing on 4 main areas of the business: Resources, Information Systems, Organ-

isational Structure, and Culture. The process is split into 6 stages designed to be carried

out step-by-step over several years to guide companies towards implementing some level of

autonomy and self-optimisation in production settings. Similar to the Warwick University

assessment, Acatech’s tool provides a single, generalised document that any company can

use as a self-assessment to support the development and integration of digital technologies

in production. Acatech takes a highly qualitative approach, describing in detail their vision

of Industry 4.0 and how each stage of deployment will create value for the company using

real-world examples and case studies to demonstrate how these stages can be applied in

various environments.

The six stages towards Industry 4.0 maturity described in the Acatech tool are related

to data strategy and include: Computerisation, Connectivity, Visibility, Transparency,

Predictive Capacity, and Adaptability. As described by these stages, the main focus of

this report is on the effective collection, integration, and utilisation of data. The report
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also includes limited guidance on the necessary approaches to change management in this

journey towards flexible production environments, highlighting the need for agile project

management strategies, structured communication channels, revised training programs,

and collaboration.

While Acatech’s report is the most comprehensive tool reviewed in this section, there is a

large amount of detail that is not included such as initial assessment questionnaires, work-

shop guides, estimated time, and a list of required personnel to perform the assessment.

The lack of this information makes the maturity index difficult to replicate in industry.

Many maturity models give few details on the design methodologies used to develop their

tool, with the exception of the DREAMY toolkit [42]. The Digital Readiness Assessment

Maturity (DREAMY) toolkit was developed using the maturity assessment design philoso-

phies presented by Bruin et al. [173] and incorporates maturity principles proposed by

Carnegie Mellon University in their Capability Maturity Model Integration (CMMI) frame-

work [186]. The CMMI maturity model was originally designed to assess the maturity of

a businesses software development practices against 5 levels of maturity, with a particular

focus on maintenance, flexibility, and innovation and has been widely used by maturity

models focusing on assessing the maturity of software process capability [116, 182, 181].

The DREAMY toolkit re-purposes the five-levels of CMMI to provide a generalised ranking

of a company’s digital readiness by evaluating both the technological and organisational

aspects of the business. Similar to the original work by CMMI, the DREAMY assessment

also focuses on identifying growth opportunities in process control and maintenance.

The DREAMY maturity lacks detail on the specific process a user should take to perform

the self-assessment and what aspects of a business’s operations should be considered in

the assessment. Instead, the DREAMY assessment focuses on addressing an important

research finding from their literature review, in which they state that the majority of prior

maturity models fail to provide detail on the theoretical basis and methodology that was

used to develop the tool.

Another popular and highly cited tool in recent years is the Industry 4.0 Maturity Model

[43]. This maturity model for assessing Industry 4.0 readiness and maturity of manufac-

turing enterprises covers a wide scope, with a total of 62 areas of assessment grouped into

nine core dimensions: Strategy, Leadership, Customers, Products, Operations, Culture,

People, Governance, and Technology. A self-assessed questionnaire is used to rank each of

the 62 areas on a scale of 1 to 5, e.g. ”On a scale of 1 to 5, one being strongly disagree and

5 being strongly agree, do you use a roadmap for the planning of Industry 4.0 activities in
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your enterprise?”.

The assessment notes that the model’s accuracy is largely dependent on the participants

having some understanding of Industry 4.0 to understand the questions. This type of am-

biguous questioning is found across many Industry 4.0 maturity models and goes against

the best practices of questionnaire design outlined by Kronsnick et al., which is discussed

further in section 3.3.1 [187]. Schumacher et al. discuss how the ambiguity of key terms

and other knowledge gaps between the assessor and participants can be addressed through

either external consulting or group sessions prior to the questionnaire [43].

The Industry 4.0-MM provides a high-level description of the 5 levels of Industry 4.0 ca-

pability by presenting a range of technologies and best practices. Similar to the Warwick

university assessment tool, without a clearly defined scope and guidance to apply this as-

sessment assessors may unintentionally cherry-pick examples from more innovative areas

of a business, particularly in larger organisations, which may make it difficult to identify

opportunities to further develop such topics within less mature areas of an organisation.

Assessment tools such as the TDWI assessment that are more narrow in scope tend to give

more consideration to supporting materials, such as personnel requirements, user guide-

lines, ISO documentation [44, 188].

The TDWI maturity assessment uses a series of questions to rank five general areas of as-

sessment: Organisation, Data Infrastructure, Resources, Analytics, and Governance. This

assessment has a narrow scope, focusing specifically on these five areas within the context

of business intelligence. By narrowing the scope, the assessment ensures that those taking

ownership of the tool will likely have the required domain knowledge to act upon any op-

portunities identified in the process.

The TDWI maturity tool improves upon other assessment tools by providing some infor-

mation and guidance on who should take the assessment, stating that it should be used by

business and IT professionals involved in both new programs for analytics and older pro-

grams. This is beneficial when compared to other more general tools where findings might

lay outside of the area of expertise of the assessor which can make it difficult to interpret

results and develop a roadmap to guide organisational improvements. The TDWI approach

also improves on other questionnaire-based assessments by including a short assessment

guide to help assessors interpret results and highlight some potential areas for improvement.
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Table 3.1: A comparison between the various existing approaches to assessing the Industry

4.0 readiness of a company. *Limited information available.

Assessment
Name

Areas of
Focus

Assessment
Method Advantages Disadvantages

Warwick
Uni

Production
BI

Supply Chain

Strategy

Management
Self-assessment
Scoring matrix

Simple, yet holistic

coverage of the key

themes of Industry 4.0

Lack of information in
each of the criteria

makes it difficult to distinguish

between levels in many areas.

Engineering

USA*
Production

BI

External
Certified

Practitioner

Comprehensive review to

define a roadmap to

implement digital manufacturing

solutions with long-term
vision

Limited to manufacturing

aspects of the business

and doesn’t address many

other key themes

of Industry 4.0

Acatech

Development

Production
Logistics

Services
Marketing

Third Party

Assisted

Highly detailed supporting

material with examples

and case studies.

Key details for

self-assessment not included
i.e. questionnaires, required

personnel

DREAMY

Design

Production
Quality

Maintenance
Logistics Self-assessment Detailed design methodology

Highly generalised.

Lacks detail on the
specific process to

perform the assessment

Industry 4.0

-MM

Management

Customers
Products

Culture
Technology

Self assessment
Questionnaire Detailed scoring methodology

Lack of supporting

materials, i.e.
questionnaires,

assessment process

TDWI
BI

Analytics
Self assessment
Questionnaire

includes an assessment
guide to help assessors

interpret results

Lacks detail on the
specific process to

perform the assessment

SIMMI 4.0 IT Systems

Self-assessment
Scoring matrix

Questionnaire Includes supporting material

general and

abstract questions

3.3.1 Assessment Tools Limitations

The tools outlined above assess different aspects of an organisation’s Industry 4.0 maturity,

some focusing entirely on specific Industry 4.0 goals like business intelligence, while others

cover a much broader scope. Of these reviewed maturity models, the Acatech tool provides

the most detailed direction to the reader on the specific steps to take to apply the tool

and perform an assessment of a business [41]. However, these directions still lack key

information such as which specialities should carry out the assessment, what levels of

management should participate, how many people should participate in each of the stages,

how long the assessment should take, ect. Furthermore, the methods used to score a plant’s

maturity are complex compared to other tools. Although this is designed to give a more

tailored roadmap than other tools, this complexity and the lack of supporting information

make this tool not user-friendly. Research by Schumacher et al. finds that maturity models

tend to fail if they are too complex [43]. On the other hand, Steenbergen et al. discuss
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that while simpler tools with generic fixed maturity levels can be useful to benchmark

companies, they are not well suited to highlighting opportunities for improvement [182].

Overall, the evidence suggests that although Industry 4.0 maturity models are widespread,

these models do not lead to improved project success or other quantifiable improvements

within the respective organisation to gain a competitive advantage [181].

In the past 5 years, two instances were identified where Ford Motor Company has used

maturity models to guide Industry 4.0 strategy: Warwick University Assessment, and

TDWI. In both cases, the application of these tools failed to result in any actions taken.

Upon investigating this with those involved in the assessment, two main reasons were

identified for this: 1. The feedback from the tools was too general, 2. The assessment

did not have input from senior leadership to support proposed changes. For example,

the findings of the TDWI assessment found opportunities for growth in the ’Organistation’

section. This was presented in a score out of 20, and the information in the assessment guide

was limited and too general to draw identify specific actions. As a result, the assessment

relied heavily on the experience and knowledge of the assessor to interpret this score and

identify actions through their own extensive literature review. This process is not only

time-consuming, but the action items identified required input by persons in more senior

management positions than suggested by the TDWI guidance. For these reasons, it is

critical that senior management who have the power and influence to enact some level of

organisational change, however small, are included at some level in the assessment process.

This involvement is required to ensure the assessment is performed within a clear scope

for which changes can be implemented, as well as delegating key tasks within the relevant

teams to deliver this.

Similar results resulted from using the Warwick Uni assessment at Ford Motor Company’s

Bridgend Engine Assembly plant. The tool was again found to be too general to provide a

clear roadmap for change and also failed to address key areas of interest, a finding which

supports research by Steenbergen et al. [182]. To overcome this, the assessor attempted

to add their own areas of assessment based on the design principles of the tool, as well as

removing several areas that did not apply. This resulted in biased and skewed scores and

the results of the assessment presented to senior management were very high compared to

the Industry 4.0 benchmark, despite our own assessment identifying multiple areas where

on-site technology and organisation fell below the current Industry 4.0 outlined in Chapter

2. In this instance, the lack of guidance and direction of the Warwick University tool led to

a clear selection bias and confirmation bias by the assessor. This is supported by previous
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research finds that companies have a tendency to assume that their Industry 4.0 maturity

is higher than what is calculated using questionnaire-based maturity assessments [46].

Types of Assessment Tools

In their 2005 paper titled ’Understanding the Main Phases of Developing a Maturity As-

sessment Model’, Bruin and Freeze review several popular assessment tools and present a

single methodology outlining the main phases of developing these models [173]. Since then,

this methodology has been used by researchers to develop a wide range of Industry 4.0 as-

sessments [42, 116, 182]. Bruin and Freeze argue that any maturity assessment tool fits

into 3 general categories: descriptive, prescriptive, and comparative [173]. A descriptive

tool is used to define the current state of a business, providing no means of improvement

or relationships between the current state and key performance metrics. The Warwick

university tool is an example of a purely descriptive tool. A prescriptive tool provides

further insight into how the current state of a business relates to key performance indica-

tors, highlighting which areas can be improved to deliver value. The Acatech tool is an

example of a prescriptive tool, focusing on developing a roadmap to add business value

through Industry 4.0. Finally, a comparative model compares maturity across industries,

providing insight into the differences in business practices between industries and how this

relates to value generation in disparate industries. A comparative model requires many

assessments to be carried out across various industries to gather sufficient data to draw

these relationships.

Bruin and Freeze suggest that these different types of tools also describe the evolution and

design phases of a maturity model. As a descriptive tool is used to gather an in-depth

understanding of maturity within a specific domain, this knowledge can provide guidance

and insight and evolve towards a prescriptive model. As this model is improved it can

be used across domains to become comparative. Each of these different types of tools has

its uses. For example, a single comparative maturity rating is useful to benchmark and

track progress across organisations, but in large multinationals, different business functions

will vary in their organisation, strategy, culture, and technological readiness. Therefore,

at the functional level, the same comparative tool may give very different results. This

is a common challenge with generalised assessment tools where opportunities for localised

improvements may be overlooked or roadmaps may only apply to certain functional areas

[182].

84



Questionnaire Design

Most assessment tools rely on some form of questionnaire as a primary information gath-

ering source [189, 44, 46, 190, 45], often relying entirely on score-based questionnaires to

provide final scores on various aspects of operations. Despite the wide use of question-

naires, few maturity models include details on the design frameworks or methodologies

used to guide the design of these questionnaires. Without full details of the processes used

to communicate the questionnaire to participants, and without the questionnaire itself, the

accuracy of these maturity models is difficult to assess.

Only one data analytics maturity model was identified where the authors describe how

their questionnaire was designed in which researchers studied 4 other questionnaires from

related maturity models to develop their self-assessment [45].

In 2018, Kronsnick et al. published ’Questionnaire Design’, a book detailing best practices

on designing questionnaires for research purposes and has since been highly cited by re-

searchers [187]. Krosnick et al. state that questionnaires should use simple, familiar words,

avoid ambiguous meanings that different respondents may interpret in different ways, and

avoid general and abstract questions [187]. Of the reviewed maturity models for which

questionnaires are openly available, some do not follow these best practices [46, 44]. This

is especially true for fixed-level maturity models for which questionnaires are highly gener-

alised so they can be applied to a wide target audience across multiple industries. Research

also shows that as they become increasingly fatigued, respondents are more likely to select

answers presented early in a multiple-choice list which can impact the reliability of a ques-

tionnaire [187]. The effects of fatigue become more prominent in lengthy questionnaires or

as questions become more difficult [187]. However, this can be minimised by ensuring items

at the very beginning of the survey bear a strong connection to the topic and purpose of

the overall study [187]. The TDWI questionnaire is an example of a very long and complex

questionnaire with over 100 questions with many detailed multiple choice answers [44].

In practice, previous Industry 4.0 research has shown that high questionnaire response rates

can be achieved by ensuring that the questionnaire is sent from an institutional email, with

follow-up emails to chase up results after 2 weeks [191]. Frank et al. also suggest liaising

with industrial partners to ensure the technical language of the assessment is aligned with

that of the company, as well as getting multiple responses from each functional area that

is considered to avoid common method bias [191].

A common finding among Industry 4.0 assessment questionnaires is the use of closed ques-

tions with ranked answers from 1 - very low / strongly disagree, to 5 or 7 - very high/
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strongly agree [191, 44, 190] or multiple choice answers with detailed descriptions for each

answer [44, 189]. Krosnick et al. find that the optimal number of points on questionnaire

rating scales is most often a 7-point scale for visually administrated questionnaires [187].

Most assessment tools and Industry 4.0 readiness studies avoid using text input descrip-

tive answers or rely on face-to-face interviews or workshops to gain further insights into

questionnaire responses [181, 68, 48].

3.3.2 Summary of Key Findings

To conclude, a wide range of Industry 4.0 maturity models are presented in the literature

ranging from highly specific focus area assessments that focus on specific functional ar-

eas [44, 46], to highly generic fixed-level assessments that cover Industry 4.0 as a whole

[189, 190, 42, 12, 43]. Regardless of scope, all of these tools consider both the adoption

of emerging technologies and how these technologies should be coordinated strategically

throughout the businesses to deliver Industry 4.0 objectives. This focus on strategy, organ-

isation, and culture is a reoccurring theme throughout all tools referring to various themes

discussed in chapter 2, including: vertical and horizontal integration, change management,

shifts in culture, and agile management approaches.

Another common theme throughout existing tools are challenges of measuring short-term

quantitative progress in areas relating to increased automation, digitisation, and data

utilisation. Therefore these tools rely heavily on qualitative assessment often through self-

assessed questionnaires. The use of questionnaires also ensures the simplicity of the assess-

ment tool, as researchers suggest that maturity models tend to fail if they are too complex

[43]. However, in striving for simplicity and generalisation, most existing assessment tools

lack the key information required to replicate results and apply these assessments in indus-

trial settings. This is particularly the case for the lack of information on the exact process

that should be followed to ensure the right personnel are included in the assessment to en-

sure the scope of the assessment is appropriate to deliver actionable results. In some cases,

researchers also do not include key resources such as questionnaires that are required to

apply their proposed assessment methodologies in practice [41, 43]. Assessment tools such

as the TDWI assessment that are more narrow in scope tend to give more consideration to

supporting materials, such as personnel requirements, user guidelines, ISO documentation,

[44, 188].

Overall, evidence suggests that although Industry 4.0 maturity models are widespread,
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these models do not lead to improved project success or other quantifiable improvements

within the respective organisation to gain a competitive advantage [181]. This finding is

supported by the author’s own internal research at Ford Motor Company where previous

attempts to apply these assessment tools have been unsuccessful, and assessors suggested

that increasing the involvement with senior management would have helped overcome this.

To address these challenges, a new assessment tool should tread a careful balance between

being general enough to cover a wide range of growth opportunities relating to technological

and organisational aspects of digitisation and automation, while also being specific enough

that the quantitative results can be interpreted by the user to provide clear direction for

improvements within these areas. This balance must also be achieved through a simple,

user-friendly design and should include supporting documentation to provide details on

the exact process that should be followed to complete the various stages of the assessment.

Based on the available literature, the best approach to deliver this is a flexible methodology

that can be tailored to meet the goals and requirements of the organisation, similar to those

used by private consulting firms [40]. The assessment should consider using questionnaires

sent to a large and diverse sample, including multiple people in each functional area to be

assessed with clear direction to the assessor on selecting the appropriate participants [191].

While they are a useful information-gathering tool, questionnaires should not be the only

method used to gather information and assessors should also make use of workshops, site

visits, and face-to-face interviews to discuss opportunities and previous successes relating

to technology adoption, business strategy, and culture [41, 40, 191].
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3.4 Methodology

The end goal of this research is to develop a tool for Ford Motor Company and other

engine manufacturers to self-assess their Industry 4.0 readiness. The proposed tool should

compare current technologies, and practices against a pre-defined Industry 4.0 benchmark

so that areas falling short of this benchmark can be identified. Once identified, the pro-

posed tool must also provide specific actions and guidance to senior management to help

develop a roadmap to support the transition to increased digitalisation and autonomy.

The proposed tool should be easy to use and adaptable so that it can be tailored for use

at different Ford sites and other companies where the scope and Industry 4.0 vision may

vary. With these aims and objectives in mind, a detailed prescriptive assessment tool is

presented that focuses on qualitative assessment to be carried out over multiple stages.

This research was carried out through close collaboration with senior management at Ford

Motor Company to ensure the tool is well suited for industrial application.

The final tool is designed to be conducted in five stages of assessment, including a kick-off

workshop, questionnaires, one-to-one interviews, assignment of scores, and a de-brief work-

shop. Each of these stages is discussed in detail in section 3.5 in which the full assessment

tool is presented. This section describes the design process that was used to develop this

proposed assessment tool and outlines the motivation for this 5 staged structure based on

research findings from both the academic literature and through collaboration with indus-

trial partners. It is discussed how this unique assessment structure overcomes challenges

of previous maturity models to result in an assessment that results in a specific roadmap

towards Industry 4.0.

3.4.1 Design Approach

The proposed assessment tool is developed using design principles by Bruin and Freeze,

and involves splitting the design phase into 5 stages: inception, elaboration, construction,

deployment, and adaptation [173]. These design stages are the foundations on which the

stages of assessment are developed.

Phase 1: Inception

In the inception phase, an in-depth literature review of Industry 4.0 is conducted, as pre-

sented in Chapter 2 and section 3.3. A second shorter review was also conducted to identify
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Figure 3.1: An iterative approach was taken when designing the assessment tool, using

feedback from industrial partners to guide the design process throughout.

other Industry 4.0 assessment tools, discussed in section 3.3. The information gathered on

common themes, research gaps, current state-of-the-art technologies, and proven maturity

model methods are then considered in the initial development of the first iteration of the

assessment tool.

During the inception phase, the authors toured two of Ford Motor Company’s engine manu-

facturing and assembly plants at which the assessment was to be carried out. The site tours

were led by production engineering managers and other senior managers to understand the

current technologies and practices on the line, identify any pilot innovation projects, and

get some understanding of the long-term vision that managers had for different areas within

the plant. In addition to these site tours, meetings took place with production managers

and senior managers to understand the existing technologies, strategies and culture within

the engine plant. These informal conversations provided considerable information that not

only helped guide the design of the tool but also was used to a large extent in the final

report following the assessment. This was also true for further conversations with industry

partners in the construction and adaptation phases.

Given the value of these conversations in identifying Industry 4.0 readiness, it was decided

early on to rely on one-to-one meetings with key personnel as our primary information-

gathering stage of the assessment. While this method of information gathering is much

more time-consuming than other assessments, this approach enables a large amount of

specific information to be gathered to provide detailed insight into the differing cultures
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between departments, organisational barriers, investment opportunities, and novel inno-

vation projects identified during the interview process. This approach of using meetings

and interviews has been successfully used by other maturity models that use meetings in

selected parts of the assessment process [41, 68]. Schuh et al. suggest including group

sessions prior to the information-gathering stages to address knowledge gaps, define key

terms, and work with management to guide the scoring process using guided handouts

[41]. Boavida et al. use interviews with experts in automotive R&D to understand trends

in automation technologies in the automotive industry [68].

Phase 2: Elaboration

In the elaboration phase, the knowledge gained in the inception phase is applied to develop

a first iteration of the assessment tool. It was decided to incorporate multiple elements

of different maturity models such as questionnaires, qualitative ranking tables, and group

sessions into a single assessment that is designed to be carried out in multiple stages,

each stage diving deeper into information gathered from those previous. Each of the

stages include detailed supporting material to provide guidance and direction for assessors

throughout the assessment process. These supporting materials also provide definitions of

key terms with real world case study examples to clarify any ambiguity. In order to narrow

the scope of the assessment it was decided to focus mainly on data analytics, digitisation,

and automation.

To ensure this interview stage can be conducted within a reasonable time frame, it was

decided to use a questionnaire to identify key participants for the interview stages. This

selection process was done by reviewing responses to questions designed to identify par-

ticipants who are involved in innovation projects, those who regularly use advanced data

analytics tools, those that work with key Industry 4.0 technologies such as cloud com-

puting, discrete event simulation, machine learning, IoT, predictive analytics, automation,

change management. The questionnaire also includes questions relating to the partici-

pant’s views towards innovation and automation to gain insight into aspects of workplace

culture. Management may also identify key personnel to include in the interview stage in

the kick-off meeting.

This approach differs from most maturity models. Our questionnaire is sent out to a wide

range of employees throughout the site rather than a single individual tasked with per-

forming the assessment. By increasing the sample size and diversity of the questionnaire,

participants assessors can see how responses vary between departments and functional
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teams and highlight specific opportunities for improvements through direct comparison of

results. The questionnaire is developed by applying best practices in questionnaire design

outlined by Krosnick et al. [187] as well as more specific guidance on Industry 4.0 ques-

tionnaires presented by Frank et al. [191]. Furthermore, inspiration is drawn from other

assessment tools for which questionnaires are available [189, 44, 46, 190, 45].

Phase 3: Construction

In the construction phase, the author worked closely with Ford Motor Company to review

initial tool designs through a series of workshops and discussions, continually iterating the

tool’s design. This design phase focused less on developing and incorporating research

findings and theoretical frameworks, but instead on the tool’s usability in an industrial

setting. For example, it was decided to include a planning stage at the beginning of the as-

sessment process to provide time for administrative activities such as scheduling meetings

with stakeholders and communicating the project to the relevant union representatives. A

suggested participant list is also included in the supporting documentation that includes

departments and individual job roles that should be included in the questionnaire and

interview stages. This ensures that the assessment considers participants across a range of

departments and throughout the management hierarchy. This list of suggested job roles is

outlined in Table 3.2.

To ensure the assessment covers both technological and strategic aspects of Industry 4.0,

the assessment is split into two main areas: ’Manufacturing Technology’ and ’Strategy,

Organisation and Culture’. These two areas are broken down into multiple sub-dimensions

addressing key Industry 4.0 topics to assess what technologies are being implemented on-

site to deliver digitisation and automation and how the skills of the organisation’s workforce

are being utilised to create the greatest value from these technologies. To score these areas,

a similar 4-level description to that presented by Warwick University was used, as it was

found to be the most user-friendly [12]. A detailed supporting document is also provided

to elaborate on each sub-dimension to provide assessors with direction and guidance to

assign scores through case studies and supporting research.

In addition to the planning, questionnaire and interview stages, it was also decided to in-

clude two workshop stages at the beginning and end of the assessment that would consist

of senior leadership and other relevant stakeholders. This ensures the involvement of se-

nior management throughout the assessment process while minimising time commitments.

These workshops also provide an opportunity for senior leadership to provide direction on
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specific areas to focus assessment efforts, i.e. investments in new technology, organisational

changes, and workplace skills shortages. This is not to say these are the only areas that

assessors should focus on, but alignment with senior management and key stakeholders on

specific areas of interest and ongoing strategies increases the likelihood that assessment

findings will result in actions taken. This addresses the limitations of other assessment

tools that need to specify who should take ownership of the assessment findings or suggest

how these findings should be used to enact organisational change. A diagram summarising

each of these stages of assessment is included in Figure 3.2.

Phase 4: Deployment

Once the tool is refined, we enter the development stage in which a full assessment is carried

out and our findings are delivered in the required format. This begins with an assessment of

Bridgend Engine Plant (BEP), an engine manufacturing and assembly plant that produced

two engine families. This plant was chosen as these two lines vary significantly, one being

a brand new installation with some of Ford’s most advanced manufacturing systems, while

the other was decades old and approaching the end of it’s operation. The contrast of

the two lines provided an opportunity to test the maturity model in identifying known

investment and growth opportunities in the older lines, as well as exploring state-of-the-

art manufacturing technologies and the extent of which current organisational practices

and cultural norms were suited to create the greatest value from these systems. Further

details of the deployment is included in section 3.5.

Phase 5: Adaptation

Upon discussing the results of the BEP assessment findings with senior management and

department managers various changes were made to the tool in order to streamline the

assessment process, make information gathering more efficient, and ensure the results were

presented in a suitable format for senior management to use to guide future changes. A

discussion on suggested tool modifications is included in the de-brief workshop in which

all workshop participants are encouraged to critique the methodology in order to make

improvements for future assessments elsewhere in the organisation. The author notes that

limited information on the actual implementation of the proposed changes will be available

at this stage and therefore the conversation should be focused on the assessment process

and not the proposed roadmap. The assessors should take notes on this feedback and
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included a section in the report for future assessors to consider during their own respective

planning phases.

Figure 3.2: A description of each of the six stages of assessment and the key tasks associated

with each stage.
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3.5 An Industry 4.0 Assessment tool for Automotive

Manufacturers

This section introduces the assessment tool and describes in detail the 6 stages of as-

sessment. This section also provides supporting documentation for assessors to use when

performing an Industry 4.0 readiness assessment. The first stage of the assessment is the

planning stage which takes place in the weeks leading up to the start of the assessment

process and mainly includes administrative tasks. Stage 2 is the workshop, in which the

designated assessors meet with senior management to define the scope and objectives. In

stage 3, questionnaires are sent out to the relevant teams to gather key information. In

stage 4, a series of meetings are scheduled to gather further information on any opportu-

nities identified from the questionnaire responses. In stage 5, those leading the assessment

assign scores based on the findings of all previous stages before providing a de-brief of

these scores and findings to senior management in the 6th and final assessment stage. This

assessment process is summarised in Figure 3.2.

3.5.1 Planning

Once a manufacturing facility is identified to perform an Industry 4.0 assessment, some

planning and preparation are required before performing the assessment. Administrative

tasks at this stage may include travel planning for site visits, project scheduling, and

selecting the assessment team, and socialising the project with the senior management

team. It is recommended that at least two assessors are required to deliver the assessment

with some knowledge of Industry 4.0 and change management. The literature review

presented in Chapter 2 covers many of these topics which may be useful to revise the

current state-of-the-art.

For companies and organisations performing their first assessment, it’s important to make

sure the assessment process is aligned with GDPR (or equivalent) rules on fair data usage

and personal information that are required to be gathered in the questionnaire phases.

Consideration should also be given to ensure the assessment process is compliant with

workers union requirements.

If a previous assessment of this type has been carried out by the organisation, assessors

should request to read the appendix of the most recent assessment carried out. This will
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include any details of proposed changes to the assessment tool made by previous assessors.

This step is important to ensure the continued development of the methodology as new

technologies and best practices are identified, as well as ensuring the tool is up to date

with any changes in company strategies.

Figure 3.3: An timeline for the assessment to take place was proposed during the planning

phase and agreed during the workshop.

3.5.2 Workshops

This assessment is designed to be extensive, covering 11 different aspects of manufacturing

operations. When performing an assessment, time and resource constraints will make it

challenging to provide highly specific low-level feedback in all of these areas to improve

technological maturity, Industry 4.0 strategy, organisational structure, and culture. There-

fore, a workshop session is included in the initial stages of the assessment. Workshops and

group sessions are a popular approach in previous research to engage senior management

and align the scope with current long-term goals [43, 41].

The aim of the Kick-Off Workshop is to brief the management team on the aims and scope

of the assessment, identify particular areas of interest, and gain support in organising the

questionnaire and interview stages. Including departmental managers and other senior

leadership in the assessment process is critical to ensure any proposed actions can be re-

viewed and acted upon, as well as communicating requirements for wider organisational

change vertically upwards.

The Kick-Off Workshop is an informal workshop chaired by the primary assessor and can

be done remotely or in person and is estimated to take 1 hour. The following discussion

points are suggested to encourage a discussion on current readiness:

• What comes to mind when we think about Industry 4.0?
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• What are we excited about when thinking about Industry 4.0?

• What are we apprehensive about when thinking about Industry 4.0?

• What are the main opportunities for Industry 4.0 on-site?

• What is the current long-term vision of digitalisation and automation on-site? How

are we currently measuring progress towards these goals? How could we improve

this?

• In which areas do we lack metrics and how could we improve this?

In addition to understanding management’s current perception of Industry 4.0 readiness,

this workshop allows the assessors to understand any limiting factors that may affect

the assessment, such as unavailable personnel or time constraints, and adjust the scope

accordingly. The suggested outcomes for the workshop are as follows:

• Clarify Scope: Leadership will already have some understanding of the maturity

of different departments. Understanding this may help assessors focus their efforts

on a particular area of the site from the start. Areas with the lowest Industry 4.0

maturity represent the greatest opportunity for growth.

• Specific Objectives: This workshop provides an opportunity to identify and review

current Industry 4.0 strategies, or Industry 4.0 goals. For example, the site may be

aiming to establish itself as a center of excellence in a specific technology, investing

heavily in a specific emerging technology, or experimenting with new business models.

Understanding these goals of senior leadership provides direction and specificity for

the assessors. If specific goals are identified, assessors should use this workshop to

understand what steps are being taken to realise these goals, how these goals are

communicated on-site, how progress is measured, and how this progress compares to

other sites.

• Suggested Timeline: The delivery time for the assessment largely depends on the

number of assessors, the number of participants to be included, and their availability

during the interview stage. To minimise this time, we suggest that senior leadership

ensure that the requirements of the assessment are well communicated to all partici-

pants to ensure interviews are scheduled within a short space of time. For reference,

an assessment carried out using the finalised tool included 54 participants who were
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interviewed over a 3-week period. Two assessors working 3 days a week took 4 weeks

to finish the report.

• Next Steps: Following the workshop, questionnaires are sent out to all departments

before the interview stage. Input is required from senior leadership to distribute ques-

tionnaire links to the participants. At this stage, key personnel to be included in the

interview stage are likely to be already identified e.g. innovation leads, production

managers, data analysts, and cloud engineers. These interviews can be scheduled im-

mediately, and it should be decided how the remaining interviews are to be arranged

and who takes responsibility for scheduling these meetings. A list of suggested job

roles for various departments is presented in Table 3.2.

Table 3.2: The following suggested interview list was shared with senior management

during the planning phase.

Production and Assembly Engineering

sample

Productivity and Forward Planning

sample

Senior Process Engineer,

Senior Production Engineer,

Senior Manufacturing Engineer,

Production Team Manager,

Senior Controls Manager,

Tooling Engineer,

Systems Engineer,

Maintenance and Scheduling Organiser,

Test Engineer

Engineering Change Coordinator,

Launch Manager,

Forward Planning Manager,

Senior Productivity Engineer,

Senior Industrial Engineer,

Simulation Engineer / Manager,

Process Optimisation Engineer

sample

sample
Supply Cain and Inventory Control

sample

Emerging Technologies

sample
Supply Chain Manager,

Material Handling Manager,

Inventory Audit Supervisor,

Logistics Manager

sample

sample

Innovation Manager,

IoT Engineer,

Emerging Technologies Engineer,

Data Analyst,

Software Engineer,

Senior Data Analyst
Human Resources
sample

IT
sample

Hiring Mananger,

Training Coordinator

sample

sample

sample

Software Engineer,

IT Manager,

Senior IT Engineer,

Network Engineer,

Cloud Engineer
Quality and Product Development

sample text of specific length
Finance
sample

Senior Quality Engineer,

Quality Engineer,

Quality Manager

Plant Controller,

Finance Manager,

Finance Analyst
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3.5.3 Questionnaires

With the aims and scope of the assessment defined, assessors can begin the information-

gathering stage by distributing the questionnaires. The questionnaire for this assessment

is included in section 3 of the appendix. The questionnaire includes a data protection

statement, followed by a series of questions on key Industry 4.0 topics, including automa-

tion, data analytics, data management, software usage, communication and collaboration,

role and responsibilities, ongoing projects, ect. This information is quick to gather and

provides useful quantitative information to support the qualitative feedback in the final

report. Furthermore, with a sufficient sample, assessors can provide feedback on how cul-

tures vary between departments.

A well-designed questionnaire is a useful tool that many maturity models have relied on

to assess companies against existing benchmarks [43, 44, 45], however, in this assessment,

the questionnaire is also used to prepare for the interview stage.

3.5.4 Interviews

As questionnaire responses are gathered, assessors should review each of the responses and

identify participants who may be able to give insight into specific areas in the scoring

matrix. Due to time constraints, interviews in this research are limited to 30 minutes,

so assessors should also use the questionnaire responses to prepare discussion points and

questions to gather information as efficiently as possible. Any additional questions to the

participant can then be sent in an email after the interview, or follow-up meetings can be

arranged. Interviews may be carried out either face-to-face or remotely.

Given that many participants will be interviewed, it is important for assessors to take

notes throughout the interview stage to make information retrieval easier when writing the

report. After each interview, it is recommended that assessors use the simplified scoring

matrix to assign scores for each individual participant. When writing the report, these will

allow assessors to quickly identify departments and individuals demonstrating high or low

readiness. The simplified scoring matrix is included in the following section.

It is important to note that not all participants will be able to provide information on

all topics on the scoring matrix. Throughout the interview stage, the ’Interview Record

Sheet’ can be used to identify areas of assessment where further information is required,

and identify participants to fill these knowledge gaps based on the questionnaire responses.

Assessors should also use the spreadsheet to note down examples of high maturity, low
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maturity, ongoing innovation projects, and opportunities for innovation projects.

3.5.5 Scores and Report Writing

When reviewing the scores of the individual interviews after the interview stages, there will

likely be some variation in the results. Some departments may have higher maturity in

certain areas of assessment compared to other departments. There may also be variations

within departments. Assessors should identify these variations and include this information

in the report to highlight areas of excellence as well as opportunities for organisational

growth, technological innovation, and replication.

Scores are not calculated but rather determined through a qualitative assessment process.

However, averaging the scores across all interviews may be usefull to provide an initial

guide for scoring. Using these initial scores, assessors should use the scoring matrix to

determine if this score is appropriate or not for the whole site. In some cases, further

infomation may be required that what is provided in the scoring matrix. Therefore, this

chapter includes further guidance in section 3.6 where further detail is provided for each

area of assessment including references to additional academic resources and case studies.

In practice, even with this supporting information, it is unlikely that for a specific area of

assessment, all areas of an organisation’s operations will be perfectly described by a single

maturity level. Therefore, assessors are recommended to select a score which they decide

is the most appropriate fit for the site as a whole and use any discrepancies to highlight

growth opportunities. For example, in instances where a higher score is given, but some

areas of operations fall below this level, this highlights growth opportunities that can be

included in the roadmap. Similarly, areas that demonstrate a maturity level higher than

the final score can be highlighted as replication opportunities to advance other areas of the

business.

The final report is targeted at the management team, and therefore assessors should use

clear, concise language making use of bullet points, graphics, and visualisations of the

results. If any modifications are suggested based on changes in company strategy, or new

technologies, these changes should be included in the appendix. Additional documentation

identified during the assessment process that may be useful for management to enact change

should be included in a separate folder to be distributed with the report. Examples may

include internal documents, process standards, new corporate strategies, and scientific

papers.
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3.5.6 De-brief

Once the report is finished and distributed to the management team, the final stage in

the assessment process useful-brief meeting. The same people who attended the initial

workshop should attend the debrief to discuss findings and identify the next steps. This

is an opportunity for assessors to expand on the findings presented in the report and

answer any questions about the roadmap. Any additional documentation should also be

presented and described. Potential innovation projects should also be discussed and if

feasible, process owners should be identified or assigned. This meeting should also explore

opportunities to improve the assessment tool. Assessors should request feedback from

management teams on how the assessment was conducted and document any feedback to

be used by future assessors.
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3.6 Areas of Assessment

This section includes a detailed description of each area of assessment. Assessors may find

this information useful when preparing interview questions, assigning scores, and iden-

tifying growth opportunities. This section is split into two main areas of assessment:

’Manufacturing Technology’, and ’Strategy, Organisation, and Culture’.

3.6.1 Manufacturing Technology Readiness

Industry 4.0 is a technological revolution characterised by highly integrated digital man-

ufacturing technologies, including Big Data analytics, machine learning, IoT, Cloud com-

puting, intelligent robotics, [92]. This section provides detailed information to assess the

current readiness levels of an organization’s manufacturing technologies. This informa-

tion can also be used to help identify examples of current practices that are aligned with

Industry 4.0 goals. This assessment aims not to suggest a complete overhaul of existing

technologies to align with the current Industry 4.0 standard but rather to identify the key

opportunities for growth to support further digitalisation and automation efforts utilising

the existing technologies. This should be achieved by maximising the value creation of

existing data value chains through improvements in data collection, data integration, and

data analytics. Depending on the organisation’s current equipment readiness, some in-

vestment may be required to upgrade existing systems to enable these data requirements.

Manufacturing and Operations are broken down into a total of 6 sub-dimensions: Au-

tomation, Equipment Readiness, Automation of Material Handling, Data Collection and

Integration, Data Analytics, and Cloud Solutions.

Process Automation

Process automation considers both hardware and software automation opportunities. Hard-

ware solutions will often be in relation to automating manufacturing production and as-

sembly processes and the line. These opportunities may be identified during the site

visit. When considering hardware opportunities, assessors should look for examples where

operators perform highly repetitive tasks that could be performed by six-axis robots, col-

laborative robots, vision systems, machining systems, or other hardware solutions. These

systems require high investment, however, they are well-established technologies in auto-

motive manufacturing with clear standards to guide purchasing, infrastructure setup, and

101



Table 3.3: A simplified version of the scoring matrix for manufacturing technology.
Readiness

Level

Level 1 Level 2 Level 3 Level 4

Automation Some automated ma-

chines and processes.

A large number of pro-

cesses are still manual,

with no plans in place to

address this.

Widespread automation

of manufacturing process

with evidence of automa-

tion pilots in more com-

plex areas i.e. inventory

management, and qual-

ity assurance.

Automation across the

majority of production

processes, scheduling,

data management,

quality assurance, and

product testing. The

workforce largely sup-

ports innovation and

automation.

Flexible production pro-

cesses are managed and

controlled by high lev-

els of automation with

widespread data collec-

tion to deliver business

intelligence.

Equipment

Readiness

Significant overhaul of all

systems and processes is

required to meet indus-

try 4 requirements.

Few systems have M2M

capability, and multi-

ple instances of outdated

legacy systems prevent

widespread data integra-

tion. No plans to up-

date or integrate these

systems.

M2M across most ma-

chines and systems.

Some legacy systems

are still in place but

workarounds have been

developed to integrate

these systems and

further updates are

planned.

The vast majority of ma-

chines and systems al-

ready meet all future re-

quirements of Industry

4.0 and are regularly re-

viewed to explore further

integration.

Automation

of Material

Handling

Manual material han-

dling throughout the

business.

Some automation in se-

lected areas, but rout-

ing is linear and deliv-

ers no product flexibility.

Low digitalisation of in-

ventory management.

Material handling is

mostly automated using

AMHS. Inventory man-

agement is supported by

IoT systems.

AMHS support flexible

production through

automated material

handling that adapts

to changing supply de-

mands to deliver a high

variety of products with

high efficiency.

Data

Collection

and

Integration

Multiple instances of

manual data collection

across departments with

few plans to digitalise

these areas. Data are

not widely integrated.

Multiple instances of

manual data collection

and integration oppor-

tunities. These barriers

are well understood,

with work ongoing to

automate and integrate

data collection.

Comprehensive digital

data collection through-

out production and

backroom processes with

plans to address any

gaps. Data are widely

integrated, including

those stored and col-

lected on legacy systems.

Comprehensive data col-

lection across the entire

business with data inte-

grated across Cloud plat-

forms to enable real-time

analysis and business in-

telligence.

Data

Analytics

Data is rarely analysed

other than for quality

and regulatory purposes.

Data collection is very

high, but most data are

not well used to create

value. Multiple barri-

ers exist at departmen-

tal levels preventing data

analytics.

Widespread data an-

alytics throughout all

departments. Depart-

ments understand what

data are not being well

utilised with pilots in

place to address these

gaps.

Cloud-based data ana-

lytics delivers high lev-

els of process automation

and business intelligence.

Multiple pilots are un-

derway to address under-

utilised data.

Cloud

Solutions

Some innovation pilot

projects exist using

Cloud solutions in more

advanced areas of the

business.

Migration to Cloud-

based services is part

of the current business

strategy, with multiple

examples of Cloud-based

solutions in place across

the business.

Cloud solutions are

widely used to deliver

real-time data analytics

and high levels of data

integration, automation

and business intelligence.

Work is ongoing to ex-

plore Edge solutions.

Both Cloud and Edge

solutions delivered high

levels of data integration,

automation and business

intelligence.
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installation. These automation solutions lend themselves to delivering cost savings through

headcount efficiencies and improving production performance metrics. Other hardware so-

lutions include IoT devices that can digitalise current processes on the factory floor. This

includes systems like handheld tablets or AR systems for improved access to data and

information. These IoT hardware solutions can deliver a wide range of process improve-

ments. IoT solutions generally have a lower initial investment, however, the ROI is often

difficult to calculate as many benefits of these systems are not quantitative. For example,

the IoT systems mentioned above include benefits such as improved workplace experience,

improved data collection, and improved data access, improved ergonomics. To drive dig-

italisation and automation, businesses must have clear digital growth metrics to guide

investment in these systems. This is discussed further in the Investments sub-section.

Hardware automation opportunities to improve material handling, and inventory manage-

ment through technologies such as AGVs, gantries, conveyors, and RFID are considered in

the Automation of Material Handling area of assessment.

In addition to hardware solutions, process automation can also be delivered through

software-based digitalisation and automation solutions. Examples may include automating

reporting processes, automating data-driven Excel workflows, automating data transfer and

data management between software, and automating maintenance scheduling using PdM

and CMB. Software-based automation solutions often add value through time-savings and

reducing non-value-added administration time. Software-based solutions can be challeng-

ing for businesses in the early stages of digital transformation as departments may not

have access to the digital skills in the relevant software to identify, prioritise and deliver

these solutions. The Internal Robotic Process Automation (I-RPA) activity is presented

as an opportunity to support this digital growth. I-RPA is an exercise to be carried at the

department level in which teams review the current digital workflows carried out regularly

and evaluate the potential time and cost savings opportunities and establish the feasibility

of automating these processes. I-RPA is discussed in further detail in section ?? .

For both hardware and software-based solutions, the available research suggests that an

effective solution to overcome organisational and technical barriers of Industry 4.0 is to ex-

plore short-to-medium term innovation pilots to implement human-in-the-loop innovation

[70, 36, 161, 107]. Human-in-the-loop innovation focuses on socially sustainable solutions

driven by an aim to improve workplace experience. It has been shown to deliver high

economic returns as successful solutions not only deliver short-medium term cost savings

and productivity improvements but also contribute to long-term digital growth through
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building organisational knowledge and establishing a workplace culture that supports dig-

ital growth and seeks out innovation [38]. For examples of human-in-the-loop innovation

to deliver automation in manufacturing, refer to Chapter 2, Section 2.5.2.

In level 1 organisations, many machines and processes will be controlled using automation

including machining processes, material handling and gantries, however, a large number of

processes are still manual with no plans in place to address this. In level 1 organisations,

both management and employees are resistant to change. At Level 2, assessors should find

widespread automation of manufacturing processes with evidence of automation pilots in

more complex areas such as inventory management and quality assurance. Management

demonstrates a clear drive to automate manufacturing processes but this is mainly moti-

vated by cost reduction and focus on headcount reduction to deliver this. Because of this,

employees are more likely to resist further automation and innovation in their respective

workstreams. Management’s vision of automation does not extend to administrative tasks

and other off-line manufacturing areas. Level 2 organisations are likely to find that poor

data management and limited access to data and analytics skills make it difficult to extract

and gain insights from more complex sources to deliver business intelligence. As a result,

analytics may be predominantly descriptive rather than diagnostic, predictive or prescrip-

tive. Examples of Level 2 automation practices include instances where simple repetitive

tasks are performed such as data being manually transferred between spreadsheets to anal-

yse data or to generate reports on a weekly basis.

Level 3 organisations should demonstrate a good understanding of the value of data

throughout all departments with the ROI of various automation projects and pilots under-

stood with multiple pilots in place to automate existing processes. Data-driven decisions

should be used to automate most instances of production processes, scheduling, data man-

agement, quality assurance, and product testing. In more challenging cases, opportunities

to develop predictive and prescriptive automation solutions should be identified with pilots

in place. Some instances of human-centerd automation with lower levels of employees more

open to the idea of automation in their workstreams. In Level 4 organisations, flexible pro-

duction processes are managed and controlled by high levels of automation with widespread

data collection to deliver business intelligence. Management maintain a human-centric view

of automation throughout the organisation with multiple examples of Human-In-The-Loop

automation identified. The social sustainability of automation processes should be a key

consideration when beginning new pilots. As a result, level 4 organisations will find that

most employees throughout the organisation support automation and view it as an oppor-

104



tunity to improving workplace experience in addition to the economic benefits to the wider

company.

Equipment Readiness

Manufacturing solutions will continue to evolve as new processes and systems are devel-

oped, and systems become increasingly integrated. To ensure businesses can maximise the

value creation of integrated data-driven solutions, outdated machines and systems that

present barriers to the digital value chain should be well understood with actions in place

to mitigate the impact of these barriers. Organisations should also be quick to recognise

emerging technologies within the industry and make efforts to better understand the po-

tential ROI in these technologies and how they can be best utilised within the existing

business strategy.

Examples of outdated systems may include software or hardware. For example, outdated

machining systems with no capability to record the birth history of the outputted part,

or systems where data cannot be integrated and must be recorded manually from human

machine interfaces on the machine. Instances of outdated technologies should be identi-

fied and their impact on the ongoing digitalisation strategy should be well understood. If

possible, workarounds should be put in place to mitigate these impacts.

A common example of such barriers found in automotive companies established before the

1990s are Mainframes and Legacy Systems. Many core business applications continue to

run on these mainframe systems as they are often reliable, secure, and represent decades

of investment. However, companies often have multiple mainframe systems across differ-

ent areas of business running on outdated hardware, languages, and frameworks making

them very expensive to maintain [192]. Other technological barriers include old manufac-

turing machines running on outdated operating systems, or manufacturing machines and

systems where vendors have ended support. These examples present serious operational

risks related to cyber-security as software updates may no longer be available making

systems venerable to new exploits. Furthermore, mainframe systems often present major

challenges to data access and data integration. Many of these challenges can be overcome

by developing middleman software to automate workflows requiring regular interactions

with mainframe systems. Solutions may range from simple data management software like

PowerBI, to more advanced software development solutions in C# or Javascript. When

identifying examples of outdated software and hardware, assessors should look for previous

solutions to address these challenges as well as any ongoing works.
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Level 1 organisations are reluctant to invest in new technologies and only update existing

systems and processes when absolutely necessary. In these cases, a significant overhaul of

existing systems would be required to meet industry 4 requirements. Level 2 organisations

demonstrate some level of investment in updating equipment to deliver automation in se-

lected areas of production. Multiple outdated systems are identified that present major

barriers to Industry 4.0 objectives being met. In cases where assessors identify Level 2

readiness, assessors should make use of the ’Industry 4.0 Metrics’ and Industry 4.0 Invest-

ments’ sub-dimensions to better understand these barriers and identify opportunities to

improve the current Industry 4.0 strategy. To achieve level 3, departments should not only

demonstrate a good understanding of any current machines and systems that are outdated

but also be able to quantify the impact that these outdated systems have on key business

metrics. In instance where outdated systems cannot be updated, actions should be in

place to mitigate the impact through use of alternative means. For example, modernising

an outdated mainframe systems using could-based services to integrate these data-sources

across the business.

To achieve level 4, the vast majority of machines and systems should be integrated to

deliver high levels of business intelligence. Level 4 business should have an excellent un-

derstanding of how any outdated systems are impacting KPIs and other metrics related to

Industry 4.0.

In instances where organisations demonstrate a level 3 or 4 equipment readiness, asses-

sors should consider how the organisations current human resources and digital skill-sets

are managed to create the greatest value from these technologies and how the current

businesses strategy coordinates these assets to deliver Industry 4.0 objectives.

Automation of Material Handling

By combining the above technologies in manufacturing environments through lean manage-

ment practices, a new type of assembly line emerged known as the Flexible Manufacturing

Systems (FMS). In a typical FMS, workstations are arranged more freely on-site in a modu-

lar arranagement, with AGVs automatically routing products to the required workstation.

Tracking technologies such as RFID enable individual processes to be controlled by an au-

tomated production system to select the appropriate production process for the incoming

part. This highly automated data-driven process allows production to be tailored to meet

fluctuating consumer demand of multiple product families and deliver highly customizable

product variants. As well as reacting quickly to market changes, FMS can react quickly
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to changes in the local manufacturing environment, such as processing changes, material

changes, or new product variants [87]. FMS results in less space, reduced operational head-

count, improved inventory management, reduced lead times, and reduced manufacturing

costs [27].

The concept of a fully integrated factory with ubiquitous integration of Industry 4.0 tech-

nologies throughout the entire business is widely referred to as a ’Smart Factory’, although

other terms such as ’Intelligent Factory’, ’Intelligent manufacturing’, ’Ubiquitous Factory’

or ’Real-Time Factory’ are also used. Research finds that organizations investing in Smart

factory projects report increases of up to 12% manufacturing production, factory utiliza-

tion, and labor productivity [27]. Despite the numerous benefits of FMS presented in the

literature, there are several challenges in developing, implementing, and maintaining these

systems. FMS requires high initial investment both in physical assets and personnel with

the required automation and digitization skills to deal with the high complexity of these

systems [27].

Researchers present novel machine learning approaches to support automation in FMS in

the reviewed literature. Huang et al. propose a system to support production managers

through a machine learning-based system to predict production progress for IoT factory

environments [29]. A two-layer transfer learning approach using a combination of Deep

Auto encoders and Deep Belief Network (DAE-DBN-TL) is trained on historical data us-

ing a bootstrap sampling approach. The proposed method was tested using real-world

historical data over 15 orders with 1118 features. The experiment finds that the DAE-

DBN-TL method achieves high performance (R2̂ ¿ 87%) in predicting production progress

based on historical production data. The author speculates that as well as monitoring

and analyzing production progress, this model can also identify instances where produc-

tion plans are executed incorrectly and support root cause analysis of these abnormalities.

While the data set used in this study is very large, this method has only been tested in 1

real-world scenario. Little detail was included on the manufacturing site in which this was

implemented. By comparing the DAE-DBN-TL across multiple locations and understand-

ing its applicability in FMS environments, it is easier to determine the validity of these

results [29]. Future research should further examine the human-centric implementation of

production process prediction systems in FMS and consider the effects on the workplace

experience of production managers.

This sub-dimension involves the in-plant management of material, plattents, and other

stock. A key aspect of Industry 4.0 is the concept of Flexible Production Systems (FMS)
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where high levels of equipment readiness, systems integration, and business intelligence

allow production to adapt quickly to changes in supply and demand of multiple product

variants [193]. Automated material handling systems (AMHS) manage how materials are

transported and guided through the use of tracking technologies such as RFID, barcoding,

and near-field communication, in combination with material transport systems such as

conveyors, elevators, gantries, and Autonomously Guided Vehicles (AGVs).

Many manufacturing sites will fall short of the Industry 4.0 benchmark defined by FMS

capabilities. To assess and guide progress towards this vision, assessors should identify

the extent to which inventory management is digitalised and automated. Assessors should

explore the following:

• How material and stock are ordered.

• How inventory and stock levels are updated when the material arrives on-site and

when outgoing stock leave the site. Both instances should be supported by IoT

scanners to automatically update databases.

• How inventory is stored and the extent to which stores are digitally managed.

• How stock levels are updated throughout production and the extent to which stock

levels are updated automatically in real-time.

• Howmaterial is transported between stations. This should be delivered using gantries,

conveyors, elevators with RFID or other tracking systems collecting all infomation

on birth history.

• How material is transported between different lines. This should be done using AGVs

where possible.

Throughout each of these areas, assessors should look for examples where inventory man-

agement is done using paper-based processes indicating digitalisation opportunities. Simi-

larly, instances where IoT devices are used indicate higher levels of readiness and highlight

opportunities to replicate solutions elsewhere on-site.

In Ford Motor Company, AGVs are a key part of the company’s innovation strategy.

These systems are well-established technologies with clear standards for supporting in-

frastructures and well-defined ROI. Assessors should explore. Assessors should identify

opportunities where forklifts and tugs could be automated using AGV systems.
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Level 1 businesses will have considerable opportunities to deliver lean improvements. In-

ventory management is updated manually with a considerable number of paper processes

still in place. To achieve level 2, some digitalisation and automation are identified in some

areas. RFID or other digital systems track the birth history of individual parts. Material

flow is automated by conveyors and gantries on the lines, however, material flow between

lines is still largely manual. Stock levels are updated in real time throughout production.

Pilots in place to digitalise inventory management towards Just-in-Time delivery, adn fur-

ther digital solutions plans improved inventory management throughout production. In

order to achieve level 3, inventory management is largely digital with material handling in

key areas of production automated with AMHS to enable reconfiguration of the produc-

tion line without disruption. AMHS delivers some level of product flexibility. Furthermore,

Level 3 businesses should be able to respond rapidly to changes in demand. Opportuni-

ties to further automate material handling are identified with pilots underway. In order to

achieve a level 4, business should demonstrate FMS production capabilities using advanced

simulation and digital twin environments to manage and control production and in-plant

logistic processes.

Data Collection and Integration

As discussed in the previous chapter, in the modern automotive industry two of the most

valuable assets to a company are data and human resources. Modern OEMs will already

be reliant on sophisticated data collection systems standardised across the wider organisa-

tion to measure various aspects of production relating to products, machines, production

line metrics, quality metrics, human resources, inventory, and enterprise resource planning

systems [161]. Much of this data will be distributed across multiple databases, including

outdated legacy systems. This sub-dimensions aims to identify opportunities for organisa-

tions to automate existing data collection processes as well as opportunities to integrate

existing data streams into data lakes where there are increased opportunities for value

creation.

Areas that are often more difficult to automate data collection are stations relating to

quality assurance. Assessors should focus on these areas to identify barriers to data col-

lection as well as exploring ways the organisation may have overcome these challenges.

These barriers and challenges may be technological, cultural or both. Technological barri-

ers may include outdated ICT infrastructures, lack of tracability at certain process stages,

or phyical challenges of integrating sensing technologies in complex processes. Cultural
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barriers may include a lack of understanding of the importance of integrated labelled data,

limited of availability of the required digital skills to deliver data collection technologies,

or difficultly of accessing data due to highly bureaucratic processes. Assessors should also

enquire about any legacy systems that are being used on-site and what steps are being

made to ensure these data are well integrated with the wider businesses.

Examples of level 1 and 2 practices may include instances where employees have to man-

ually input data to populate excel spreadsheets when taking inventory, recording quality

metrics, or when producing reports. What distinguishes a level 2 business is that these

instances of manual data collection are identified and plans are in place to digitalise and

automate these processes. In level 2 orgainsations, the vast majority of personnel should

understand the importance of collecting high quality data in their respective work func-

tions. Level 3 organisaitons are expected to have comprehensive data collection across

most areas of the business, with management recognising the value of data and demon-

strating a clear drive to automate and integrate data collection. A good identifier of level

3 businesses are examples where automated reporting has been effectively used to reduce

the administrative burden on departments. Level 3 businesses must also have solutions in

place to integrate data collected and stored on any legacy systems if those systems exist.

Level 4 businesses have a very high level of data integration using Cloud-based platforms

to integrate all relevant data to deliver real time analytics and business intelligence.

Data Analytics

Digitisation is strongly linked to data management and analytics. Not only does effective

data management and analytics provide a means on measuring current processes, but also

sets a foundation for new data-driven digital processes to emerge [178]. Production teams

should demonstrate a good understanding of the various data sources available to them and

how these data provide insights into production metrics and KPIs. All departments should

demonstrate a good understanding of what data are not being utilised, with pilot studies

in underway to address these gaps. Assessors should aim to identify opportunities for data

analytics where data are not well utilised and understand the barriers preventing this. If

no technological barriers are identified, assessors may use the strategy, Organisation, and

Culture section to help identify additional barriers preventing the widespread uptake of

data analytics. All teams should have the ability to easily access the data relevant to their

job function and have access to people with data analytics skills to support with delivering

further insights using these data.
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In level 1 businesses, data analytics is still widely performed using basic tools but is mostly

focused on improving quality. There is a low understanding of the potential added value

that could be generated from improving analytic capability and as a result, innovation

efforts do not focus on addressing data analytics gaps. Level 2 businesses are identified

as having very high volumes of data available, but the majority of these data are not well

utilised to create value. This is not to say that no data analytics occurs on-site, but rather

that there is no clear data strategy is in place to support and measure progress of ongoing

data analytics projects, nor is there strategy in place to support departments in pursuing

their own data analytics projects. In level 2 businesses, employees may recognise at a de-

partmental level that data are not being well utilised and identify barriers preventing this

realisation i.e. lack of human resources, lack of data analytics skills, poor communication,

ect.

Level 3 is distinguished from level 2 by having a clear data analytics strategy in place

to identify opportunities for data analytics on-site and provide the necessary support for

departments looking to increase data utilisation. Level 3 must also demonstrate that data

analytics is not just limited to manufacturing production, but that these support struc-

tures extend to all departments and backroom processes. High maturity of Cloud-based

solutions, automated reporting, and real-time automated scheduling are indicators that

suggest level 3 readiness. That being said, without a clear data analytics strategy a busi-

ness cannot achieve a level 3, regardless of any individual cases where advanced tools and

analytics are applied.

Level 4 businesses should demonstrate a scaleable data analytics strategy that uses Cloud-

based solutions to deliver high levels of process automation and control, as well as a high

business intelligence. Employees in all departments in a level 4 businesses should demon-

strate a good understanding of what data in there departments could be better utilised

with examples of projects in place to overcome these gaps.

Cloud-based Solutions

Cloud computing is a service based business model that provides online data infrastructures

to efficiency and securely store IoT data as well as a scalable platform for Bid Data anlayt-

ics. Many researchers highlight Cloud computing as one of the most essential technologies

to deliver Industry 4.0 due to its inter-dependent relationship with IIoT and scalable Big

Data analytics [194, 183, 65]. Cloud computing is a key technology that enables the

highest levels of systems integration and automation found in Smart factory environments
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[194, 195, 196]. At these high levels of Cloud technology maturity, organisations are able to

deliver advanced service-oriented business models such as Cloud manufacturing. Assessors

should explore the current Cloud-based solutions used throughout the site and any ongoing

plans to migrate different aspects of manufacturing operations to Cloud models. On site

IT teams should demonstrate high levels of understanding of these plans. All departments

for which Cloud migration is ongoing or planned should understand how this will effect

their future day-to-day work, and supervisors should demonstrate a good understanding

of the future training requirements in IT and data analytics to create value from new data

sources and digital toolsets availible through Cloud platforms.

Migrating to the Cloud is often a considerable task, and therefore business often adopt a

hybrid approach where more innovative areas of the business lead the way and processes

are slowly migrated over time. Assessors should aim to understand where the company

currently is on this migration journey. Level 1 businesses will be on the start of this

journey, with pilots underway in more advanced areas of the business Cloud solutions but

Cloud migration is not a key target for senior management. Companies yet to begin this

journey with no implementation of Cloud solutions throughout any area of the business

cannot achieve a level 1. To achieve level 2, migration to Cloud-based solutions should

be part of the current business strategy, with multiple examples of Cloud-based solutions

identified within the organisation. Assessors should be able to find multiple examples of

where Cloud solutions are already being used to integrate data, deliver data analytics, or

where opportunities have been identified and places to migrate are ongoing. For Level 3,

Cloud solutions should be widely used throughout the organisation to deliver high levels of

automation and data insights. Assessors should draw on examples in both the production

environment as well as in backroom processes and how these combine to deliver business

intelligence. Level 4 is reserved for businesses who are capable of delivering some level of

service-oriented business models aligned with Cloud manufacturing.

3.6.2 Strategy, Organisation, and Culture

This section focuses more generally on the organisational culture of the business. Assessors

may find that multiple people within a department need to be interviewed before sufficient

information can be gathered to assign a score. Although this section is focused on man-

agerial practices, it is important that assessors assign scores based on responses by all

employees throughout the hierarchy. Assessors should consider how employees responses
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vary throughout this hierarchy to determine how effectively Industry 4.0 strategies are

communicated vertically up and down the chain of command.

When reporting on this section, assessors should identify similarities and differences in

strategy and organisation between departments, drawing upon specific examples from the

Manufacturing Technology Readiness section to communicate these findings.

Industry 4.0 Metrics

As companies digitalise existing processes they are often faced with the challenge of priori-

tising investments in digital solutions, as well as how to estimate the ROI of digitisation

[178]. This is especially challenging due to a lack of clear metrics devoted to key Industry

4.0 technologies such as digitalisation, automation, cyber security, talent acquisition, and

data analytics [177, 178, 179]. This lack of metrics is one of the main reasons why so many

Industry 4.0 maturity models have emerged in recent years in an attempt to address this

gap. However, maturity models are time consuming to perform making them more suited

to informing long term strategy as opposed to short term measurement of digital growth.

Prior research finds that companies are often aware of the importance of data to deliver

process insights and data-driven decisions, but often lack metrics to measure the value

potential of this information asset, as well as the efficiency of data value chains [26]. This

is particularly difficult during the early stages of digital transformation as organisations

may not have understanding of the ROI of digital solutions. To build this organisational

knowledge, ongoing innovation efforts require detailed measurement of any required inputs

and resultant impact of innovation projects. Inputs may include, Human resources, skills,

training requirements, data requirements, external support, IT requirements. Project out-

comes may include techinical barriers, organsiational barriers, ongoing maintenance re-

quirements, time savingins, new data availibe, cost savings impacts, impact on production

metrics. These findings should be communicated across departments regardless of their

success to support replication and understand common barriers to innvoation.

A major requto sucessfully mangage the transition towards increased levels of digitlisaiton

and automation is to deliver training requirements, aquire new tallent to upskill the work-

force to maximise value creation of new highly integrated systems and the data they pro-

duce. This requries departmental managers to have a good understanding of future skill

requirements and clear metrics to assess ongoing efforts to address skills gaps.
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Table 3.4: Simplified version of the scoring matrix for Strategy, Organisation, and Culture.
Readiness Level Level 1 Level 2 Level 3 Level 4
Industry 4.0

Metrics

KPIs and other

business metrics are

inconsistent, not re-

viewed on a regular

basis, and do not

relate to Industry

4.0 objectives.

A structured set of busi-

ness metrics are well un-

derstood but metrics re-

lating to Industry 4.0 ob-

jectives are not included

at a departmental level.

Some departments have

targets or metrics related

to I4 concepts, i.e. digital

training, data collection.

New business metrics

have been adopted to

understand the impacts

of digitalisation and

automation at a depart-

ment and organisational

level and are regularly

reviewed.
Investments The business is re-

luctant to invest in

new technologies.

Multiple investments in

Industry 4.0 but limited

to manufacturing pro-

duction areas. Manage-

ment are reluctant to in-

vest in long term innova-

tion projects.

Management are open to

long-term ROI innovation

projects but investments

are generally limited to

manufacturing production.

Barriers to I4 that require

large investment are well

understood.

Multiple examples

of both short- and

long-term Industry 4

investments across a

range of departments

with dedicated innova-

tion teams focused on

the development and

integration of emerging

technologies.
Human Re-

sources and

Digital Skills

Many employees

on-site have little or

no experience with

advanced digital

technologies or data

analytics and have

limited opportuni-

ties to develop such

skills.

Most teams have the re-

quired skills to deliver

Industry 4.0 goals al-

though multiple barriers

still need to be over-

come. Reactive recruit-

ment and limited profes-

sional development plans

to develop these skills.

All areas of the business

have good access to peo-

ple with the skills re-

quired to deliver increased

digitalisation and automa-

tion. Proactive recruit-

ment approaches and well-

structured professional de-

velopment plans to address

skills gaps.

Employees with leading

edge digital and data an-

alytics skills are found

throughout the business

with a focus on collabo-

rative innovation.

External Collab-

oration

Collaboration is

poor between other

sites within the

company. Little or

no external collab-

oration helps drive

innovation.

Collaboration is good be-

tween other sites within

the company with fast

replication of innovation

cross the business, how-

ever, limited collabora-

tion with external organ-

isations.

Departments are open to

cross company and external

collaboration to drive im-

provements and innovation.

Departments are open to

all aspects of cross com-

pany and external collab-

oration to help meet In-

dustry 4.0 objectives and

metrics.

Communication Poor communica-

tion of company

strategy throughout

the business with

the company oper-

ating in functional

silos.

There is good commu-

nication between depart-

ments supported by IT

systems.

There is some use of IoT to

support departments work-

ing on similar projects and

to communicate company

strategy.

All necessary horizontal

and vertical communica-

tion channels are sup-

ported with a wide range

of IoT technologies en-

abling good collabora-

tion and communication

across all areas of the

business’s operations.
Change Manage-

ment and Lead-

ership

All levels of man-

agement are resis-

tant to any change

within the business.

Splintered internal

cultures, with some

departments more open

to ongoing organization

change efforts that oth-

ers.

All levels of management

understand the current

strategy to deliver Industry

4.0 objectives, although

some resistance to change

by employees is identified.

Long term strategic

goals are well under-

stood throughout the

business. Agile prac-

tices support a highly

innovative workforce

that supports ongoing

organisational change.
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This sub-dimension is somewhat dependant on the Industry 4.0 vision defined in the

workshop stage, and aims to ensure that appropriate metrics are in place to regularly assess

the ongoing transition towards Industry 4.0. For example, in the workshop phase at BEP,

senior and executive management stated that one of their current goals for the medium-

to long-term were: 1) to increased utilisation and value creation of existing data sources,

2) increased automation of production and business processes. When asked what metrics

were currently being used to track progress of these goals, it was found that no quantitative

measures were in place. As a result, this meant that the ROI of any successfully instances

of automation and digitalisation of this vision were not reported on, making it difficult

to justify future projects with longer term ROI. In this case, it was proposed that new

metrics be introduced to measure the share of tasks that are digital, and the share of

jobs that are digital, the volumes of data produced, and percentage of these data being

analysed. By measuring how these measurmeents chagne over time, these metrics can be

used to demostrate digital grwoth to stakkeholders as well as demonstrating organsiatonal

innovation through the introduction of new digitialsition metrics. The author recnosies

that some of these areas are challenging to measure, and futher work is required by the

company to explore exact methods to collect and analyse these metrics.

Level 1 organisations will have inconsistant metrics between departments with individuals

in teams not having a good understanding of their departmental KPIs. Metrics in level

1 organsiations do not relate to Indsutry 4.0 objectives. Level 2 organissations should

have a clear set of business metrics across all departments that are well udnerstood and

regularly reviewed. However, these metrics do not relate to inducstry 4.0 objectives and

multiple imprvements are identifeid ot improve measurement of innovation efforts. In order

to achieve a level 3 readiness, management should be able to give examples of key metrics

that are used to measure the impact of Industry 4.0 solutions and measure digital growth.

Furthermore, department managers should understand areas of business where Industry

4.0 metrics are difficult to define and the plans in place to address this. However, areas are

identified where progress towards some Industry 4.0 goals are not being measured. Further

opporutnties are also identified in communicating these Industry 4.0 goals throughout the

site. In order to achieve a level 4, businesses should have clearly defined metrics to quantify

the impact of digitalisation, automation, and any other key Industry 4.0 metrics outlined

in the workshop stage. These metrics being effectively used to guide business decisions at

both the department and organisational level and are well understood by all mebers of the

workforce.
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I4 Investments

The journey towards the digitization and automation of production should be viewed as

a continuous evolution as opposed to a revolution, one that is driven by reducing operat-

ing costs and improving productivity while humancentric change management approaches.

This doesn’t necessarily require a complete overhaul of outdated systems and extremely

large investments. Instead, the Industry 4.0 philosophy is to optimise, digitalised and

integrate existing processes by using technologies such as IoT, big data analytics, and

Cloud-based systems to create further value from existing Industry 3.0 based technologies.

This can create a challenge for businesses as many of these emerging digital technologies

require significant long-term investment. This makes it difficult to estimate the ROI, and

as a result, business are often reluctant to invest in digitalisation as the economic bene-

fits of individual investments are often unclear [180]. Organisations must recognise at an

organisational level that some level of risk must be accepted to enable innovation and ex-

perimentation with emerging technologies. Raj et al. suggest that in order to overcome this

barrier, managers should have a clear digital strategy in place and prioritize investment in

digital infrastructures to support future implementation of Industry 4.0 technologies and

mitigate the risks of these systems failing [197]. Department mangagers must have a strong

understanding of this long term strategy to support and direct innovation local innovation

efforts to align with these goals. Sufficient risk capital should be availible to support local

innovation efforts.

This investment process can be split into 3 stages: local innovation, Centers of Excellence,

widespread implementation. These stages are derived from work by Camuffo et al. based

on data from Fiat Auto Co in the mid 1990’s [33]. Stage 1, describes innovation investment

in selected parts of the manufacturing process. At this stage, some aspects of innovation

efforts may still be done in silos. Opportunities may be identified to improve project man-

agement, improve communication of siloed progress, and combine ongoing efforts through

collaborative innovation projects to implement solutions at a larger scale. This stage is

associated with the highest risk as technologies will not always be successful and the ROI

of new technologies can be difficult to estimate. Organisations must accept some level

of financial risk to provide room for experimentation and innovation. Following multiple

successes of innovation in stage 1, and the site develops a wealth of organsiation knowledge

of the respective technology, the site will progress to stage 2. Stage 2 describes large-scale

investment of a technology at the factory level such that the site becomes a center-of-

excellence in developing and implementing the given solutions. At this stage, the ROI of
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these technologies is better understood as well as clear standards and strategies to identify,

prioritise, develop and implement these solutions. Growth opportunities at stage 2 include

collaborating with other sites to replicate these processes. This may highlight wider or-

gansiational barriers where competition between sites may prevent replication across the

business. Other barriers may be identified in bureaucratic processes that also present a

barrier to rapid replication of technological successes. The final stage builds on knowledge

gained from stages 1 and 2 where individual sites are responsible for implementation of the

new technologies and organisational changes, resulting in technological and organisational

homogeneity across the business [33]. These changes are to be carried out with caution,

subject to thorough economic appraisal and evaluation to minimise risk [33].

In reality, these evolutionary stages will coexist as multiple investments and organisational

changes are pursued at once. Technological changes, economic factors and market changes

will vary throughout the evolution of an organisation that may effect these long-term

strategies and lead to inconsistencies between newly implemented technologies and those

previous. A key finding from Industry 3.0 is that companies must recognise that investment

is not limited to manufacturing technologies, but also required to effectively management

human resources to ensure they have sufficient personal with the right digital skill-sets

to support the operation and future development of these systems [33]. Assessors should

identify any particular areas where investments are being prioritised and understand at

which innovation stage the site is. This can then be used to guide next steps to accelerate

the innovation efforts and replication of successes across the company.

Organisations where management are reluctant to invest in new technologies should achieve

a level 1 readiness. To reach level 2, Multiple investments in Industry 4.0 are identified, but

generally limited to short term investments on the factory floor. Management are reluctant

to invest in long term innovation projects and little consideration is given to investing in

digitalising backroom processes. To achieve a level 3, a clear investment strategy should be

in place that supports the transition to increased digitalisation and automation. This data

driven strategy should support the development and integration of new technologies by

placing focus on improved utilisation of human resources through well structured training

options as well as external talent acquisition. Senior management in level 3 organisations

should understand the risks associated with investing in emerging technologies with plans

in place to better understand and mitigate these risks. A level 4 site can be described as a

center of excellence for one or more Industry 4.0 technologies, with high levels of investment

and knowledge in that area including understanding of the ROI of these investments. This
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investment is not limited to technological assets but also assess the investment in human

resources from internal and external sources. Management in level 4 organisations should

recognise the importance of their human resources in creating the greatest value from their

digital investments. Level 4 sites should also be an active part of a wider collaborative

effort to replicate their technologies and transfer their knowledge to other sites.

Digital Skills

In Industry 4.0, the two most valuable assets to a company are data and human resources.

A key finding from research into Fiat Auto Company’s automation strategy by Camuffo

et al. found that pushing the automation of manufacturing processes to the technological

leading-edge does not necessarily result in better quality, higher flexibility and improved

efficiency [33]. Instead the key success factor for competitive manufacturing was instead

reliant on good Organizational structures and processes, as well as the competencies and

commitment of a firm’s personnel. A successful transition to Industry 4.0 is therefore

the result of organisational learning based on internal development, external acquisition,

replication, and selection of technological know-how relating to key digital skills required

to meet Industry 4.0 goals [33]. Without the right distribution and management of data

analytics and other digital skill-sets throughout the company, organisations will fail to

identify and act upon opportunities to enhancing productivity, innovation, cost savings,

and business intelligence made possible by digitisation and data insights. businesses should

anticipate the skill-sets that will be required to remain competitive in the rapidly changing

manufacturing landscape.

This section focuses on assessing how effectively human resources are being utilised to cre-

ate value through automation and data analytics as well as other Industry 4.0 objectives

outlined in the workshop phase. Assessors may find it useful to consider any common

barriers from the ’Data Collection and Integration’ and ’Data Analytics’ sub-dimensions.

In organizations where technological maturity is low, examples of digital skills required to

deliver processes improvements are likely to include advanced Excel knowledge, macros,

visual basic, SQL, and automated reporting and data management tools. These softwares

can be highly effective in delivering quick wins through integrating existing excel spread-

sheets between departments and migrating from paper based data collection to digital

systems. As higher levels of maturity are achieved, digital skills required to digitalise, au-

tomate, and integrate data may include: programming languages such as Python, software

development, automated reporting software, knowledge of data mining or machine learning
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within the context of Big Data, experience with Cloud technologies, and experience with

advanced manufacturing systems such as robotics or additive manufacturing.

Assessors should also consider the extent to which digital skills are available from outside

of the immediate business. For example, some manufactures adopt a centralised approach

to data analytics, digital asset management, innovation, and other Industry 4.0 related

areas of business. Assessors should consider how these centralised, decentralised, or hybrid

business models are effecting the departments to deliver Industry 4.0 goals and ensure

that these departments can effectively access the necessary resources and communication

channels to work collaboratively and deliver digital solutions.

Employees in level 1 businesses have little or no experience with advanced digital tech-

nologies or data analytics and have limited opportunities to develop such skills or access

these skills elsewhere. At level 2, Most teams have access to the right skills to deliver

Industry 4.0 goals although multiple barriers still need to be overcome. To achieve level

2, businesses must have professional development plans in place that offer some oppor-

tunities to develop these skills. At level 3, all areas of the business have good access to

individuals with a high level of digital and data analytics skills required to address gaps in

data collection, automation, and integration. Well structured, personalised, professional

development plans are in place to develop these skills. Level 4, is distinguished by a focus

on on-site innovation made possible by leading edge digital and data analytics skills are

found throughout the business. At level 4, employees have time to apply their skill-sets

to explore novel solutions to problems, and work collaboratively to develop and integrate

digital value chains across the organisation.

Communication

Communication strategies are identified in the literature as a key mechanism to facilitate

organisational change and should support the change management processes by provid-

ing clarity on the ongoing change efforts throughout the business [116]. Research shows

that employees do not resist all organisation changes, only that which has not been well

communicated or that which is perceived as psychologically or economically threatening

[116]. During the interview stages assessors should understand the extent to which business

strategy is communicated throughout and how participants opinions on the effectiveness

of vertical and horrizontal communication channels. Assessors should also consider how

responses vary between different levels of management and identify any opportunities for

improvement. In cases where employees are dissatisfied with communications, assessors
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should understand why i.e. adequacy of communication, timeliness of communication,

consistency of communication. Assessors should also explore how senior managers at dif-

ferent management levels perceive the internal communication process surrounding the

strategic goals outlined in the workshop phase. Innovation successes should be well com-

municated throughout the business with good digital channels to support collaboration

efforts to develop and replicate digital solutions.

The communication sub-dimension is not limited to internal communications but also

extends to the efficiency of external communication across the wider business. Communi-

cation strategies should be supported with IoT systems such as web conferencing services,

email, or similar communication platforms to enable engaging and effective communica-

tion with other sites to collaborate, share knowledge and support innovation. Management

must recognise the importance of an effective communication strategy to deliver digitali-

sation and automation and must invest in the necessary infrastructures to support this in

order to maximise the value of human resources and team performance. Instances where

information is communicated through paper based approaches should be identified and

solutions to digitalse these processes should be proposed.

In level 1 organsiaitons, poor communication of company strategy is found throughout the

business. Instances are identified where multiple departments or individuals have produced

the same work, or where work has been delayed, due to lack of communication. Innovation

efforts are done in silos with poor communication of these efforts between departments.

At level 2, there is good communication between departments supported by IT systems in

most areas, however, some opportunities are identified to digitalise communication chan-

nels. In level 2 organisations long term business strategy is not well understood in most

departments. At level 3, IoT is widely used to support good communication across de-

partments and with other sites. Company strategy and on-going organisational change is

well understood at the departmental levels with clear communication of innovation efforts

throughout the site and how these efforts relate to long term business strategies. At Level

4, All necessary horizontal and vertical communication channels are supported with a wide

range of user friendly IoT technologies enabling effective collaboration and communication

across all areas of the business’s operations.

Change Management and Leadership

Industry 4.0 brings with it a number of external forces for change, including market dis-

ruption, legislation, new technologies, and changing consumer behaviors. In response to
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these forces, organisations must act holistically, making changes on multiple fronts in a

continuous process of experimentation and adaptation aimed at matching the organiza-

tion’s capabilities to the needs and dictates of the changing environment. Organisational

changes must be managed with a systematic change management process that considers

both changes in culture and in organisational structure [116]. However, scholars argue that

if strategic change is to succeed, changes should initially take place in the cultural beliefs

and assumptions of the organization, thus leading to the cultivation of employee commit-

ment in later structural changes [116]. This requires careful consideration of changing

internal environmental pressures that dictate employee behavior, motivation, and perfor-

mance of teams. Decentralised agile management approaches are regarded by scholars as

one of the most effective management models in this regard, as it enables lower levels

of management to be more embedded in their local environments and respond faster to

changes [170, 171].

Other scholars highlight the need to consider adjustments in organisational culture and

infrastructure requirements during the final stages of implementing business goals relating

to digital transformation. Examples may include reviewing training, qualification require-

ments, or hiring strategies to meet the new demands of changes in high level objectives

or organisational change [70]. Assessors should aim to identify the reasons for any resis-

tance to change i.e. self-interest, fear of job security, group pressures, poor communication.

Employees should be motivated to actively seek change, challenging the status quo and

looking for opportunities to improve their own working environments through innovative

means of digitalisation and automation. As mentioned in section 3.6.2, department man-

agers must have a strong understanding of this long term strategy to support and direct

innovation local innovation efforts to align with these goals. Furthermore, high levels of

vertical downward communication are required to ensure the workforce are kept up to date

with ongoing organisation and structural changes.

In level 1 organisations, resistance to change is identified across all levels of management

and innovation and proposed changes are actively discouraged. At level 2, the assessment

identifies splintered internal cultures, with some departments more open to ongoing organ-

isation change efforts than others. No metrics exist to incentivise management to drive

changes in their departments to achieve long term goals aligned with Industry 4.0 objec-

tives. In Level 2 organisations, assessors should aim to identify departments where the

current Industry 4.0 strategy has been well communicated and well received and explore

what management practices and cultural differences exist between these teams and others
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who are resistant to change. At level 3, all levels of management understand and support

the current long term strategy to deliver Industry 4.0 objectives, although some resistance

to change by non-managerial employees. Department mangers and supervisors regonsise

this with change management strategies in place to address these cultural barriers. At

level 4, long term strategic goals are well understood throughout all levels of the business.

Agile management approaches support a highly innovative workforce that are empowered

to support ongoing organisational change and digitalisation.
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3.7 Applying the Assessment Tool

Three Industry 4.0 assessments were carried out using the proposed framework. The

first assessment was carried out at Bridgend Engine Plant (BEP) in April 2019 using an

early iteration of the tool. The second assessment was performed at Dagenham Engine

Plant (DEP) in March 2020. The third was performed at Halewood Transmission Plant

in October 2022. At each plant, a report was provided to highlight growth opportunities

relating to Industry 4.0 and machine learning. Each report also includes a roadmap to

develop and implement these solutions as well as suggesting opportunities for digitalisation

and innovation projects. Given that the results of these assessments are highly specific to

Ford Motor Company and lie somewhat beyond the scope of this chapter, these results

have been compiled in section 2 of the appendix. This section provides a summary of the

insight gained by applying the assessment tool at these locations, as well as the resultant

outcomes and a critical evaluation of the value-add of the complete exercise. Details of the

implementation requirements are also discussed such as resource and time requirements in

order to support further replication efforts. This section also includes a summary of any

shortcomings of the method and plans for improvement.

3.7.1 Summary of the assessments and resultant outcomes

In the initial iteration of the assessment, the aim of the questionnaire was to gather gen-

eral information on the participant’s roles and responsibilities and identify discussion points

for the interviews. Although the questionnaire used in the DEP assessment was an early

iteration, it proved extremely useful to the assessors to identify interview participants,

preparing questions, and structuring the interview process. Furthermore, management

found the quantitative data valuable to gain insights into key Industry 4.0 topics such as

communication, data usage, and collaboration. For example, Figure 3.4 shows that when

asked how important the usage of data analytics is to a participant’s job, 90% stated it

was very important. However, when asked how well their department creates value from

this data, 33% of participants stated value creation was very good, 54% good, and 13%

poor. These data are immediate indicators of opportunities for value creation through the

further application of data analysis on-site.

Given the added value of the initial versions of the questionnaire, a more rigorous design

approach was used to produce the final version, following best practices in questionnaire

design outlined in Section 3.3.1. This finalised questionnaire is presented in section 3 of
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Figure 3.4: Four examples of questionnaire responses related to data usage and availability.

the appendix, as well as a summary of the results of the survey. The questionnaire sent out

at Halewood Transmission Plant was also found to be valuable to the senior management

team in understanding data science knowledge gaps. By increasing the sample size at Hale-

wood, further insights were able to be drawn on how responses varied between different

levels of management. Figure 3.5 shows that those in more senior management positions

have increasingly less access to data when required. This highlights an opportunity to

improve business intelligence which is a major goal of Industry 4.0 [12]. This insight into

the lack of data access for senior management became a major discussion point during the

de-brief meeting, and led to direct changes in how data science training is delivered to se-

nior management as well as the content of these training pathways. Further questionnaire

findings related to innovation and data science also provided important quantitative in-

formation and data visualisations to support discussions in the de-brief meeting to amend

existing data science hiring strategies. Within 2 weeks of delivering the report, the pro-

posed changes were implemented by the senior management team.

Each interview was conducted by two assessors who independently gave scores based on

the information obtained in each interview. At the end of the interview, these scores were

compared. Any discrepancies in scores were discussed between the assessors, notes were
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Figure 3.5: An example comparing how some questionnaire responses vary between differ-

ent levels of management.

taken on why there was any disagreement and decided between them what the final score

should be. This dialogue became an important part of the assessment to gather informa-

tion on: the Industry 4.0 maturity, the effectiveness of the tool, and discuss future changes

that may be required. For these reasons, it is highly recommended that at least 2 assessors

are assigned to perform this self-assessment.

Many participants in the interview stage were quick to share their ideas on digitalisation

and automation opportunities in their departments. In these instances, further questions

would be asked on the value proposition, resource requirements, technological barriers, or-

ganisational barriers, and other considerations of the potential business case. It was found

that many participants had promising innovation ideas related to Industry 4.0 technolo-

gies that demonstrated a clear business case. Many of these ideas had been proposed to

supervisors and management but had not been pursued for three main reasons: Lack of

data science skills, limited knowledge of resource requirements and potential ROI of digi-

talisation and data science solutions, and resistance to change.

Firstly, sites didn’t have access to the required data science skills and programming skills

to support the development of digitalisation solutions, such as PdM, Computer Vision,

dashboard development, and low-level administrative process automation. This supports

previous findings by Li 2021 and Bag 2021 who find that a lack of data science skills is one

of the main barriers to Industry 4.0 [47, 48].

Secondly, management often lacked sufficient understanding of these emerging technologies

which made it difficult to estimate the resource requirements and calculate the ROI for the

proposed solution. These findings are aligned with prior research by Theissler 2021, who

discusses how limited knowledge of the machine learning requirements at the managerial
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and process levels is one of the main barriers to technology implementation [30]. Our find-

ings suggest that this goes beyond machine learning solutions and also applies to complex

data-driven solutions that require programming.

Finally, it was found that many managers were resistant to digital innovation solutions,

with multiple interview participants stating there was a mindset of ‘If it’s not broken, why

fix it’. Upon exploring the cause of this resistance to change, the author finds that one of

the main reasons was due to the frustration of employees dealing with highly bureaucratic

processes required to deviate from well-established company norms. Multiple instances

were identified where bureaucracy presented a barrier to innovation, resulting in consider-

able wasted time for those involved with the respective proposals.

For proposed innovation ideas aligned with Industry 4.0 and where sufficient information

could be gathered to form a business case, these ideas were compiled in the report to

communicate the value proposition to senior management and central R&D teams. As a

result, multiple new projects were identified during the interview stage that went on to

be successfully implemented at the company. For example, one of the questions in the

questionnaire asks participants to state to what extent they agree with the statement:

‘My department / team/ business function is good at identifying instances where data are

not well utilised’. In cases where participants answered ‘strongly disagree’, the assessors

would follow up on this during the interview stage, asking participants to identify which

data they believed were not well utilised. When posing this question to a member of the

logistics department, it was found that vehicle monitoring data and AGV error logs were

not being utilised by AGV teams, off-site simulation teams, or external vendors to help

address AGV downtime. Interviews found that on-site teams were aware that this data was

available, but teams lacked the required skills in SQL and other programming languages

that were required to analyse these data. These findings, as well as a proposed solution,

were included in the report to senior management highlighting this as a potential inno-

vation project. This project has since been completed and led to direct improvements in

AGV cycle times on-site, as well as providing additional data on AGV routing to improve

simulation models of these systems across the company’s European operations.

In addition to AGV data insights, five other projects were identified from the interview

stages across all three sites. These projects include: digitalising Kanban in warranty de-

partments, new management tools to support process automation, new training initiatives,

Cobot voice command systems, and an anomaly detection solution for nut runner processes.

The details of all six projects are discussed further in section 2.6 of the appendix.
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To summarise, when reflecting upon the information gathering approaches, both the ques-

tionnaire results and interview findings provided valuable insights into various aspects of

Industry 4.0 related to technology, organisation, and culture. In terms of delivering ac-

tionable outcomes at the end of the assessment, the questionnaire was a quick and easy

approach to collect clear quantitative information on the organisational and cultural as-

pects of the factory. These data were valuable to support any proposed changes. While

much more time consuming and resource intensive, the interviews allowed assessors to

assess Industry 4.0 maturity in much more depth as well as gain insight into potential

innovation opportunities at the department or process level.

Following the information gathering stage, the de-brief meeting was found to be the most

important stage in the assessment process. By engaging with the senior management team

and presenting a list of proposed actions, these items were able to be assigned to on-site

personnel to take ownership of delivery. By having members of centralised manufacturing

departments, any deliverables beyond the capability of on-site teams were also able to be

communicated to the relevant teams to support any required next steps. This supports

the authors’ initial hypothesis that many assessments fail to deliver actionable results due

to the lack of engagement of senior management.

In addition to these direct strategic changes related to Industry 4.0 strategy, management

are also able to use these data to demonstrate cultural improvements on-site. By sending

out the questionnaire every six months and comparing the results, management are able

to measure how cultural values are changing over time. The resource requirements for

this are very low, with the questionnaire taking 4 minutes to complete on average, with

results immediately accessible through an online dashboard. This makes this a simple and

cost-effective approach for senior management to demonstrate how corporate-level cultural

objectives are being met.

3.7.2 Time and Resource Involved in Deploying the Method

The following subsection details the time and resource requirements from the Halewood

assessment. A team of 3 people was required to deliver the full assessment. A Ford Motor

Company manager in the Powertrain Manufacturing Engineering was required to support

with organisational aspects during the project planning phase, such as liaising with union

representatives, scheduling meetings, and ensuring GDPR compliance. The remaining two

team members included the author and a data science apprentice at Ford Motor Company

127



to act as the second assessor during the interview stage. Throughout the planning phase,

the necessary arrangements were made via web conferencing via email. From project start,

it took approximately 3 weeks to identify, contact, and schedule meetings with the required

personnel prior to the de-brief meeting. Much of these 3 weeks was waiting for scheduled

meetings and email replies, which required minimal time input from those managing these

arrangements.

Questionnaires were sent out via email using Microsoft Forms. Of the 80 salaried staff at

Halewood that were sent the assessment, a total of 54 responses were returned in total,

all within 5 days. Most quantitative data were available through the MS Forms platform,

however, an estimated two hours of additional work was required to explore further in-

sights into the responses such as the comparison of responses between different levels of

management shown in Figure 3.5.

Using the questionnaire results to identify discussion points and preparing interview ques-

tions was key to structuring the individual interviews to ensure a fast and efficient interview

process. By scheduling and preparing for interviews while the questionnaire responses came

in, the 30 interviews at Halewood were able to be completed by two assessors within a 2

week period alongside other full-time projects. While the interviews were only scheduled

for 30 minutes via web conferencing, following the interview an additional 30 minutes was

often required by the assessors o write up notes and discuss any findings. In some cases,

only 1 assessor was able to be present, in which case the interview was recorded and re-

viewed separately by the absent party. In many cases, interviewees would send supporting

documents, or email additional information relevant to any discussion which would also

require time to review and disseminate.

Some key findings of the interviews were able to be compiled into a draft version of the re-

port as the questionnaire responses and interview findings were being collected. In total, it

is estimated that the final 26-page report took approximately 70 hours to complete, spread

over a 5 week period. If necessary, additional web conferencing meetings were scheduled

during this time to clarify any information.

Based on these findings, the full assessment is estimated to take between 8 and 12 weeks

to complete. These findings were used to produce the proposed project timeline presented

in Figure 3.3. This takes considerably longer than most other assessments in the reviewed

literature, with the exception of the Engineering USA report for which the time estimate

is similar.

This investment of human resources and time is not insignificant. However, given that this
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is the only example in the reviewed literature where an assessment tool can demonstrate

the impact in a manufacturing environment, the author argues that the proposed approach

improves upon prior research in delivering Industry 4.0 objectives. Further work is required

to quantify the long-term value add of the assessment framework and compare this with

other assessment tools.

3.7.3 Qualitative analysis of the assessment outcomes

The objective of the Industry 4.0 assessment tool is to support automotive manufacturing

sites in advancing aspects of the Industry 4.0 strategy with a particular focus on enabling

technologies of machine learning. In order to achieve this, based on findings from Chapter

2, the assessment ensures to engage management throughout the assessment process and,

upon completion, provides a concise report and strategic roadmap to deliver quick wins

and guide long-term strategic change.

Applying the proposed assessment tool using the methodology outlined in this chapter

resulted in multiple outcomes to address a range of human-centric, technology-centric, and

organisational growth opportunities at Ford Motor Company. Table 3.5 presents a cate-

gorised list of these outcomes. As discussed above, multiple short-term innovation projects

have resulted from performing these assessments at multiple manufacturing sites. These

short-term projects have already yielded tangible improvements in simulation models, pro-

duction efficiency, and upskilling initiatives. Additionally, ongoing projects aim to achieve

further cost savings and enhance product quality. Further information on the Ford-specific

projects highlighted in Table 3.5 are discussed in section .2.6 of the appendix. Due to the

time scale of this research and the impact of COVID-19 during the course of study, further

work is required to continue research in the projects listed as long-term in Table 3.5 as

well as quantifying the long-term value-add of the short-term solutions.

Although the long-term impact of the Industry 4.0 assessment at the factory level is dif-

ficult to quantify at this stage, this research has significantly influenced Ford’s long-term

strategy in other areas of operations. In 2022, based on the successful outcomes of the

Halewood assessment, Ford’s Powertrain Manufacturing Engineering Department adopted

this assessment tool as part of its Industry 4.0 strategy to support innovation efforts across

European manufacturing operations. Further assessments are currently being planned for

other European manufacturing sites throughout 2023. By quantifying the impact of these

projects identified through the Industry 4.0 assessment tool, the value of conducting such
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assessments can be effectively communicated to other manufacturing plants. This provides

further opportunities to promote digital growth on a global scale.

Table 3.5: A categorised list of outcomes of the Industry 4.0 assessment per-

formed across all of Ford’s UK manufacturing sites. These outcomes are ex-

panded upon further in section 2.6 of the appendix.

Human Centric Technology Centric Organisational / Strategic
Short-

Term • Automation of Kanban to reduce

non-value added admin time.

• Bite-Sized data science training for

management.

• Updating data science hiring strate-

gies at Halewood.

• AGV Data Insights

• Nut Runner Anomaly

Detection

• Industry 4.0 Assessment Tool

• Quantifying workplace culture using

questionnaire results.

• I-RPA - A quantitative assessment

approach to identify and prioritise

RPA activities at the department

level.

Long-

Term • New training initiatives related to

emerging AI and data science tools.

• Cobot Voice Command

System.

• IoT scanners in logis-

tics for inventory man-

agement.

• Quantifying cultrual change using re-

peated questionnaires.

When considering the value of the Industry 4.0 assessment tool, management should

consider not only the economic appraisal of engineering projects but also the added value

of additional data access, knowledge growth, and the social benefits of the proposed solu-

tion. This chapter presents various metrics to evaluate organisational and strategic change

that may be used to measure this impact. This addresses a major gap in the industrial

sponsors’ current business strategy, thus providing a novel means of supporting future sus-

tainable growth. Further work is required to explore the extent of these strategic gaps in

other automotive manufacturers in order to better understand the potential impact of the

proposed assessment tool beyond Ford Motor Company.

As mentioned previously, the assessment process identified multiple innovation projects by

expanding upon questionnaire responses and collaborating with participants during the in-

terview stage to develop robust business cases. While this approach has led to the develop-

ment and implementation of numerous projects, it relies on assessors possessing a detailed

understanding of Industry 4.0 and experience in emerging technology implementation for

relevant solutions. Additionally, assessors need familiarity with existing technologies in

the company to determine resource requirements and identify opportunities for replica-

tion. These knowledge requirements restrict the pool of individuals capable of successfully
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conducting the assessment. However, given that this assessment methodology targets large

automotive manufacturers, it is reasonable to expect that individuals with the necessary

skills can be found within centralized engineering teams dedicated to exploring emerging

manufacturing solutions. These limitations could also be addressed by further improving

the structure of the interview process to provide clear guidance for a non-expert in Industry

4.0 technologies to support the identification of innovation opportunities.

As mentioned above, the full assessment requires a significant investment of time and

resources, with a team of at least three working over approximately 8 and 12 weeks to

complete. A large portion of this time is taken up by the interview stages which could

be reduced considerably through improvements in methods to select participants and a

more structured interview process. Future research may consider developing a flow chart

of questions to structure the line of questioning and reduce interview time.

A further limitation of the research is that the results and findings presented in the chapter

are specific to Ford Motor Company. While the proposed iterative design approach can be

applied by any automotive company to refine the assessment tool, further research is re-

quired to understand the additional resource requirements this may require and the extent

to which the proposed scoring matrix is applicable across organisations. Further research

may also explore how this assessment methodology may be adapted for use by other indus-

tries beyond the context of automotive manufacturing, although this would likely require

major changes to the scoring matrix.

One limitation of the assessment questionnaire pertains to questions concerning workplace

culture, where there currently exists no benchmark for expected responses from sites with

high Industry 4.0 maturity. This limits the insight that can be gained from these find-

ings, and makes it difficult to highlight growth opportunities. To address this issue, it is

suggested that the Industry 4.0 questionnaire be distributed to sites within the respec-

tive company known to have the highest Industry 4.0 readiness. The results from these

questionnaires can then serve as an internal benchmark for comparison. Additionally, it

is recommended that the same questionnaire be administered to all salaried employees

every six months following an assessment. This would demonstrate the extent to which

management has narrowed the gap between the current status and that set by the internal

benchmark. By comparing responses over time, progress towards Industry 4.0 objectives

related to workplace culture can be measured effectively.
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3.8 Conclusion

The transition to Industry 4.0 and the adoption of machine learning technologies is a

complex process, requiring organisational changes that challenge well-established business

practices. Previous research explains the slow adoption of Industry 4.0 in the automotive

industry due to the limited availability of skills, poor change management, and a lack of

organisational knowledge [39]. Furthermore, researchers suggest that this problem is more

complex than a skills shortage and that the Industry 4.0 paradigm at its core needs to

be better aligned with social sustainability goals [39]. The research in this thesis sup-

ports these claims, and therefore, the maturity model focuses on social sustainability and

human-centric innovation approaches. This research finds that Ford Motor Companies UKs

manufacturing operations are in the early stages of the Industry 4.0 transition and, de-

spite widespread opportunities for digital growth, the company lacks a clear digitalisation

and automation strategy to guide technical and organisational growth at the factory level.

To overcome these challenges, this chapter presents a methodology for automotive manu-

facturers to produce a prescriptive maturity assessment tool to measure ongoing progress

towards Industry 4.0 objectives and develop a roadmap to guide progress.

This research argues that the approach of previous maturity models is too generalised, of-

ten targeted for use by a wide range of industries and organsiations. These models provide

limited, high-level guidance towards digitalization and automation, but many areas of as-

sessment may not apply to all companies. As a result, the self-assessment process becomes

confusing, and the resulting guidance is limited and subject to interpretation. There is

currently no research to suggest that the roadmaps produced by these assessments have

any impact on a companies Industry 4.0 strategy. Our own research supports these find-

ings, as Ford Motor Company’s experience with such generalized tools has shown that

they require extensive adaptation, rendering benchmark comparisons invalid and failing to

identify actionable outcomes.

The proposed assessment framework aimed to address shortcomings of previous Industry

4.0 maturity models by narrowing the scope. Firstly, the assessment is specifically aimed

at automotive manufacturers. Secondly, the assessment is aimed to be delivered at the

factory level, rather than across an entire organisation. This narrow scope, combined with

a clear step-wise information gathering approach enables assessors to score various aspects

of the business strategy based on primary evidence. This narrow scope also makes it easier

to identify, prioritise, and deliver digitalisation and automation projects at the department

level.
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A critical review of existing maturity models is used to develop the initial design for the

proposed assessment tool, as well as follow best practices in questionnaire design. The

assessment tool is then refined through an iterative design process following multiple as-

sessments at the sponsor company and addressing feedback from senior management at all

three of the Fords UK manufacturing sites. In addition to providing a qualitative analysis

of current progress, each assessment also provides quantitative measures that can be used

to measure long-term growth.

In addition to assessing Industry 4.0 strategy and quantifying progress, the assessment

tool is also designed to identify potential innovation projects to add value to current work

streams in the short term. Multiple projects were identified from these assessments to drive

technological and organisational innovation at the respective sites. Some of these projects

have already yielded tangible improvements in simulation models, production efficiency,

and upskilling initiatives. Additionally, ongoing projects aim to achieve further cost sav-

ings and enhance product quality. However, due to the time constraints of this research

and the restrictions of the COVID-19 pandemic, it was not possible to thoroughly examine

the long-term impact of all the proposed innovation projects. Ongoing work on the pro-

posed innovation projects requires further research to quantify the ROI and evaluate their

contribution to achieving Industry 4.0 objectives. Understanding the economic impact of

these solutions is crucial to quantify the value of the assessment methodology and justify

the time and resource expense. Future research should also explore the transferability of

the assessment tool in different contexts and provide insights into how it can be utilized

to facilitate digital transformation in various industries.

The findings of the three assessments carried out using the proposed framework highlights

three main barriers to Industry 4.0: a lack of data science skills, limited knowledge of

the resource requirements and potential ROI of digitisation and data science solutions,

and resistance to change. This research confirms the significance of data science skills in

delivering Industry 4.0, supporting previous research that identifies a lack of data science

skills as a key barrier to implementing Industry 4.0 technologies [47, 48]. This emphasizes

the need for organizations to amend current training and hiring strategies to acquire the

necessary data science and programming skills to support the continuous development of

Industry 4.0 solutions.

Furthermore, this research highlights the knowledge gap among management regarding

emerging technologies, particularly machine learning. The limited understanding of these

technologies makes it challenging for management to estimate the resource requirements
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and calculate the ROI for proposed solutions. This finding aligns with prior research by

Theissler 2021, who emphasizes the limited knowledge of machine learning requirements

at the managerial and process levels as a significant barrier to technology implementation

[30]. This research expands on these findings, suggesting that these barriers also apply to

complex data-driven solutions that require programming knowledge. This broadens the

scope of challenges faced by organizations in implementing Industry 4.0 technologies, fur-

ther highlighting the need for comprehensive skills training and talent acquisition in areas

related to data science.

Regarding the impact on the industrial sponsor, the strategic framework presented in this

chapter and the resultant guidance to align the business strategy with Industry 4.0 goals is

an important step towards addressing these skills gaps and increasing the analytical capa-

bilities of the company. To continue digital growth and maximise value creation of existing

technologies, leadership teams must recognise data as a major asset and should continue

to develop their training and hiring strategies to ensure it has the necessary resources to

digitalise processes and create value from new and existing data sources. As these skills

are developed and teams have increased access to data through new Cloud-based solutions,

considerable opportunities to explore machine learning solutions will be possible.

A key finding of this research is how the different approaches to information gathering re-

sulted in different outcomes. The questionnaire findings were valuable in guiding strategic

and organizational changes, such as amending hiring strategies, and training delivery. This

was due to the quantitative information and clear visualisations that could be presented

to management to support these proposed changes. The interview findings were more

useful in identifying innovation and replication opportunities for Industry 4.0 technologies.

While each of these information gathering stages added value in different ways, the de-brief

meeting was the crucial aspect that ensured these findings were acted on. By presenting

these findings in this workshop-style format and facilitating a conversation between senior

management, various tasks to deliver the proposed opportunities were quickly outlined and

delegated among the management team. The value of the proposed assessment framework

has been recognised by Ford Motor Company which has since adopted this methodology

as an internal tool to perform regular assessments at European manufacturing sites. The

Simulation and Process Optimisation team at Fords’ R&D Center in Dunton, UK has

taken ownership of this tool with plans to perform further assessments at Valencia and

Cologne manufacturing sites. In addition to full assessments, the company also uses the

questionnaire as a means of measuring ongoing progress following the initial assessment by
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comparing responses change over time. This provides senior management with new way

to assess cultural changes at the factory level, something that has not yet been explored

within the company.

Overall, this research contributes to the academic literature by identifying and validating

barriers related to data science skills, knowledge gaps among management, and other or-

ganisational barriers to complex data-driven solutions in the context of Industry 4.0. These

insights can inform organizations and policymakers in addressing these barriers, facilitating

the successful implementation of innovative ideas and leveraging the potential of Industry

4.0 technologies for improved business outcomes.
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Chapter 4

In-Process Anomaly Detection in

Engine Assembly

4.1 Summary

Throughout automotive engine assembly, various in-process testing is carried out at key

stages for quality inspection, such as leak tests, torque tests, DC nut runner and final

testing. Each test produces either uni-variate or multi-variate time-series data, which re-

sults in over 22 Billion time-series data per year within Ford power-train plants making it

infeasible to review these time-series data manually. Research has shown that automating

anomaly detection in production settings can be challenging due to requirements for high-

quality labelled data, advanced data analytics skills, and long-term investment in novel

solutions for which ROI is difficult to determine [35, 178]. Because of these challenges,

many anomaly detection processes in engine testing at Ford Motor Company rely on sim-

plistic approaches, such as static limit thresholds, that fail to detect a large volume of

anomalies. This research finds that based on vehicle warranty data, a successful solution

could save an estimated $3m per year, globally. Additional cost savings would be delivered

by reducing repair teardowns on the line, increasing output, as well as providing further

opportunities to implement anomaly detection in other sites such as vehicle assembly.

To address these challenges, based on the current state-of-the-art approaches to anomaly

detection two methods are presented to improve anomaly detection for one of the most

challenging in-process tests at Ford Motor Company, DC Nut Runner. This test represents

as much as 10% of the warranty losses mentioned above. The process involves a human
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operator using a handheld tool to fasten a series of nuts onto the engine, and an inbuilt

torque transducer in the nut runner tool measures torque against time data which can

be analysed in real-time. Some nut rundown processes have been automated whereby a

machine controls the same tool to secure the nuts.

The variability introduced in the time series by the human error and manufacturing vari-

ability of the incoming parts presents novel challenges for anomaly detection that have not

been explored in previous research. Most notable is the ’staging’ problem. Because the

nut runner process involves multiple stages, a human operator may pause for some short

duration between stages, resulting in characteristic torque measurements being shifted in

time due to these intermittent pauses. Not only does this introduce further variability

to the data, but also removes the cyclicity and seasonality on which many methods rely

to identify outliers. These characteristics of the time-series data have made unsupervised

approaches difficult to implement.

In this study, multiple semi-supervised approaches are presented to overcome the staging

problem and identify outliers in nut runner data. The presented solutions fall under two cat-

egories: semi-supervised clustering and semi-supervised forecasting. The semi-supervised

clustering approaches apply dimensionality reduction before training a Gaussian Mixture

Model on normal data to produce threshold regions to identify anomalies in near-real

time. Three dimensionality reduction methods are compared: principal Component Anal-

ysis (PCA), t- Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold

Approximation and Projection (UMAP). While PCA and t-SNE are well-established di-

mensionality reduction approaches, UMAP is a relatively new technique that is emerging

as a promising tool that has yet to be explored for application in manufacturing anomaly

detection using real-world data. For the time series forecasting approach, a Long Short

Term Memory (LSTM) model is trained using normal data, and the prediction error is used

to identify anomalies. This approach has been successful in a limited number of studies in

manufacturing applications but has yet to be applied to manual process data.

The success of these methods is demonstrated on two bespoke datasets collected from two

nut runner processes, one manual and one automated. In developing these datasets, mul-

tiple challenges are faced relating to real-world data. A major gap was identified in the

company’s machine learning development strategy, as no standard method was in place to

support data labelling tasks, a key stage in model development to produce high-quality

training and testing datasets. To address this, a simple user interface was developed to

minimise the time taken to label large amounts of time series data. This dashboard has
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since been used to label over 15,000 time series data to support additional internal projects,

including a recent project exploring new approaches to deal with disagreement in labelled

production data.

This reserach also introduces the novel concept of the ’Anomaly No Concern’ (ANC) cate-

gory when labelling data. An ANC describes a time-series waveform where test engineers

observe a clear process anomaly but based on their experience the anomaly can be explained

and would not impact the quality of the part, meaning no action would be required. The

ANC category was initially introduced to address the knowledge gap between test engineers

and data scientists, however, throughout model development and testing it was found to

give new insights into model performance and became a key consideration during model

selection.

High accuracies are achieved in model testing by both the clustering and forecasting ap-

proaches. Both approaches achieve F-scores of 0.8, a tenfold improvement on previous

attempts to identify anomalies in nut runner data. The success of the anomaly detection

approaches presented in this study has resulted in these methods being included in an

off-line trial at Dagenham Engine Plant. Details of the trial are discussed in detail as well

as the implementation challenges for the two methods. These challenges include Tensor-

flow GPU implementation, dataset quality, data labelling limitations, and training data

selection. These lessons learned to highlight the main opportunities for further research in

nut runner anomaly detection and should be addressed before further trials. Regardless

of these challenges, the anomaly detection solutions are found to outperform the exist-

ing solutions and plans are in place to include these methods in a live trial at Halewood

Transmission Plant and Cologne Vehicle Assembly. If successful, this method will be rolled

out globally as part of the company’s ADAPT program to automate anomaly detection in

engine manufacturing and assembly.

This chapter is structured as follows. In section 4.2 the research topics are introduced at a

high level. Details on the nut runner process are presented and the current anomaly detec-

tion methods used at Ford Motor Company are described. In section 4.3 previous research

into time series anomaly detection is reviewed, focusing specifically on semi-supervised

approaches that lend themselves to our application and previous applications of LSTM,

GMM, and dimensionality reduction approaches. The methodology is presented in sec-

tion 4.4, which includes low-level details on the machine learning models compared in this

study as well as the experimental setup and details on the metrics used to evaluate their

performance. The methodology also discusses the challenges of collecting labelled data in

138



real-world manufacturing settings, and how these challenges were overcome by introducing

the ANC category. The results of the experiments are presented in section 4.5 and the

discussion is included in 4.6. Following the success of the development and testing, the

anomaly detection methods were included in a trial at a Ford manufacturing site. The

details of this trial are presented in 4.7 as well as the challenges of implementing and eval-

uating the proposed solutions. Finally, our research conclusions are summarised in section

4.8.

4.2 Introduction

Developing a system capable of detecting anomalies in production settings is challenging

for several reasons. Access to labelled anomaly data is often difficult in production settings

where there are often many potential failure modes, each of which is usually rare and diffi-

cult to interpret in time-series data [167]. Furthermore, there is a lack of publicly available

datasets to develop and test anomaly detection methods in industrial settings.

Manufacturers must therefore develop their own training and testing datasets and solve

complex processing and feature engineering challenges that require technical expertise in

both data science and the target domain. Not only is this research and development time-

consuming, but any given solution may not be transferable to other processes, even if the

processes seem similar in nature. These challenges often make it difficult to estimate a

ROI of such data analytics projects. As a result, the value of machine learning solutions is

yet to be fully realised in the automotive industry, which typically focuses on short-term

ROI projects.

Machine learning technologies are key enablers of Ford Motor Company’s long-term vision

of transforming its manufacturing sites into highly automated ’Factories of Tomorrow’. As

discussed in Chapter 2, an effective approach to expand the use of advanced data analytics

solutions is through collaborative innovation pilots between centralized R&D teams and

manufacturing production teams. Such projects are important to deliver high levels of

technological innovation by delivering human-centric solutions by combining the domain-

level expertise of production engineers and the technical expertise of data scientists. This

socially sustainable approach helps transfer knowledge of data science and analytics to pro-

duction engineers to improve analytic competency and build wider organisational knowl-

edge in understanding the business case to identify, justify, and prioritise investments in

future automation solutions.
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At Ford Motor Company, project ADAPT is a good example of a human-centric inno-

vation pilot aligned with these sustainable objectives. Project ADAPT was introduced

to improve quality in engine assembly by introducing an anomaly detection dashboard to

identify process anomalies at test stations. Throughout the engine assembly line, there are

various in-process and end-of-line tests to ensure the quality of the final product. Many

of these tests use static process limits to identify potential fault modes. These limits are

set by experienced testing engineers with considerable knowledge of the process and are

reviewed and updated regularly manually based on recent test data. In many processes,

this visual inspection of process time-series data through a series of dashboards is also

an important step in identifying potential process errors. This method has been proven

effective in many tests for which the data is clean, well-structured, and highly regular, and

the failure modes are well-understood.

Process owners recognise that there are opportunities to improve the current anomaly de-

tection processes, for which there are multiple inefficiencies. Firstly, this approach is not

well suited to identify new, previously unseen anomalies where faults may occur within

the specified limits. In these cases, anomaly detection is completely reliant upon visual

inspection. Complex processes that result in highly variable test data require consider-

able human input to identify potential process errors. Secondly, current methods require

regular tuning whenever the operating parameters of the test or machinery are changed.

Automating these processes would reduce the burden on test engineers to evaluate and

maintain the current anomaly detection methods. Furthermore, by using statistical ap-

proaches based on historical data, there is an opportunity to significantly increase anomaly

detection rates in processes that exhibit high variability and deliver quality improvements

by reducing false negative rates.

Nut runner is an assembly process in which anomaly detection is particularly challeng-

ing. The process involves a series of nuts being fastened onto the product, either by a

manual operator or a machine. An inbuilt torque transducer in the nut runner tool mea-

sures torque against time data which can be analysed to detect process anomalies. The

process occurs at multiple stations throughout the automotive engine assembly line involv-

ing various types of nuts, threads, required torque, process duration, and other process

variables. The automated and manual processes produce highly variable data due to the

manufacturing variation of the incoming parts and the staged nature of the rundown pro-

cess. Because the nut runner process involves multiple stages, a human operator may pause

for some short duration between stages, resulting in characteristic torque measurements

140



Figure 4.1: An example of a line worker using a DC nut runner tool in engine assembly.

being shifted in time due to these intermittent pauses. Similarly, an automated process

may pause between processes for tool changes or geometrical differences between product

variants. This staging can be observed in the torque time plots in Figure 4.2 where torque

is applied at different stages of the process, separated by periods of 0 torque, which vary

in length. Not only does this staging introduce further variability to the data, but it also

removes the cyclicity and seasonality that many methods rely on to identify outliers. This

high variability in both the normal data and the anomaly data makes traditional unsuper-

vised clustering approaches such as one-class SVM and PCA ineffective, as anomalies are

not always outliers. Figure 4.3 shows the first two principal components of two nut runner

datasets, showing how not all anomalies are outliers, and not all outliers are anomalies.

Reconstruction methods such as encoder-decoders are also infeasible due to the data being

shifted in time at multiple stages, making it difficult to draw a probability distribution

from initial data.

When considering the economic impact of the current process, quality issues result in

significant economic losses associated with in-service warranty claims. Within Ford Motor

Company, warranty claims traced back to manufacturing faults in engine assembly, an es-

timated $1.3 million per plant per year is lost due to process anomalies being missed by
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Figure 4.2: Datsets 1 and 2 with a random example of a single observation highlighted

in red. Dataset 1 is a manual nut runner process with high variability. Dataset 2 is an

automated process where the staging problem can be clearly observed.

current anomaly detection methods. Of these faults, as high as 10% are due to errors in

nut runner processes. Based on the available warranty data, a solution to reliably detect

process anomalies in nut runner has the potential to save $130,000 in warranty claims per

plant per year, and over $3m across all 24 engine lines globally. If successful, there are

further applications for nut rundown anomaly detection in vehicle operations that have

been identified at the Cologne vehicle assembly plant to provide further cost savings. In

addition to this economic impact is the additional impact on customer satisfaction, cus-

tomer loyalty, and brand reputation.

Project ADAPT aims to address these challenges by developing machine learning algo-

rithms to automate, or semi-automate, anomaly detection across multiple tests in engine

assembly. Currently, a single unsupervised algorithm is used to detect anomalies for all

processes. This approach uses PCA to reduce the dimensionality of the time series data

and perform a cluster analysis using Density Based Spacial Clustering (DBSCAN) under

the assumption that any noise points are anomalies. This has been shown to be successful

on a range of end-of-line tests, outperforming the current static limit approach. However,

the PCA method is ineffective at identifying anomalies in nut runner data.

In anomaly detection, some amount of labelled data is required to evaluate machine

learning models, and because anomaly data are rare, the available labelled data are usu-

ally mostly normal data. Many machine learning solutions use these surplus normal data

for training [30]. Anomaly detection approaches that train machine learning models using
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Figure 4.3: Labelled PCA plots for Datasets 1 and 2. ’Normal’ data are shown in blue,

’True Anomalies’ are shown in red, and ’Anomaly No Conern’ are shown in green. Here it

can be seen that for both datasets, not all anomalies are outliers, and not all outliers are

anomalies.

only normal data are known as semi-supervised models, also called a ”clean” approach

or ”clean-semi-supervised” approach [198]. In this chapter, two types of semi-supervised

approaches are presented to identify outliers in nut runner data: semi-supervised clustering

and semi-supervised forecasting.

Dimensionality reduction and clustering approaches are common approaches to identify

anomalies in time-series applications [199, 200, 201, 202, 203]. Dimensionality reduction

methods aim to represent high-dimensional data in a lower-dimensional space in order to

visualise data in two or three dimensions and apply cluster analysis approaches that are

more suited to lower-dimensional datasets. In this study, three dimensionality reduction

methods are compared: PCA, t-SNE, and UMAP. PCA and t-SNE are well-established

dimensionality reduction approaches, however, UMAP is a relatively new technique that is

emerging as a promising tool but has yet to be explored for application in manufacturing

anomaly detection using real-world data.

After applying dimensionality reduction, a GMM is trained using a semi-supervised ap-

proach. The GMM model is a common approach to clustering data that assumes the

generative processes to produce the dataset can be described by a mixture of isotropic

Gaussian probability density functions. By training the GMM on normal data, threshold

regions can be defined, assuming any process that generates anomalies will fall outside of

these regions and be identified as an anomaly.
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For the time series forecasting approach, a semi-supervised Long Short Term Memory

(LSTM) is trained using normal data, and the prediction error is used to identify anoma-

lies. Machine learning-based forecasting methods such as LSTM have been proven to be

powerful tools for time series forecasting in recent years, and perform better than tradi-

tional statistical techniques in more challenging cases where new or unknown anomalies

may occur, or when there is no clear anomaly distribution [204, 205, 206]. LSTMs are a

type of Recurrent Neural Network that has been widely used for time-series forecasting in

industrial settings due to the ability of the architecture to retain both long- and short-term

dependencies [207, 208, 209, 210]. For anomaly detection use cases, forecasting methods

use some initial portion of the time series to predict the remainder of the process. If the

prediction deviates significantly from the actual readings, an anomaly is assumed to have

occurred.

4.3 Related Research

Anomaly detection is the process of finding, removing, describing, or extracting obser-

vations in a dataset that are generated by a different generative process than that of

the majority of normal data [211]. Anomaly detection in time-series has been stud-

ied by data science researchers for over 50 years in various domains, including fraud

detection[212, 213, 144], cyber security [214, 215, 216], stock market prediction [217], cardi-

ology [211, 218, 219, 220], engine monitoring [221, 218, 219], fault detection and condition

monitoring [199, 222, 223, 224], and manufacturing [209, 225, 226, 203, 31, 227, 228]. Ap-

proaches to anomaly detection vary greatly on the context of the task, however following

several advancements in neural network architectures and computational statistics in the

late 80’s and early 90’s, combined with the increased access to the required computational

power to apply these methods, the majority of researchers have since focused on some form

of machine learning to solve anomaly detection [229, 230, 231]. There are three typical

approaches for anomaly detection:

• Supervised: Training data is labelled and includes both the nominal and anomalous

data.

• Clean Semi-Supervised: Training data only includes nominal data, while test data

also includes anomalies.
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• Unsupervised: Training data is unlabelled and includes both the nominal and anoma-

lous data.

Supervised methods frame the anomaly detection task as a binary classification problem

(Normal vs. Anomaly) and use labelled data to train classifiers that distinguish between

nominal and anomalous data. This can be effective in situations where the percentage of

anomalies α are high (α >1%). However, in most cases anomalies are typically very rare

(α <1%) making supervised approaches infeasible as it is both difficult and time-consuming

to obtain sufficient labelled anomalous data. Furthermore, the supervised approach makes

the assumption that the distribution of anomalous data can be well-defined, and that this

distribution can be used to train a statistical model [211]. This assumption is known as

the Well-Defined Anomaly Distribution (WDAD) assumption [211]. In manufacturing, this

assumption can be utilised to detect repeated machine failures for which the problem space

is well understood and sufficient data are available to define the distribution. This is the

theoretical basis for Six Sigma practices for which time-invariant data are modelled to fit a

well-defined Gaussian distribution and if some measurement exceeds ±6σ from the mean,

those instances are flagged as anomalous. Prior research finds that the WDAD assumption

is rarely applicable in the real world as few approaches make the assumption that the

anomaly and nominal distribution can be accurately modelled by the analyst [211]. This

is especially true in manufacturing environments due to the increasing complexity and

variance of data produced by modern manufacturing systems.

In cases where WDAD assumption does not hold, and the fraction of training points that

are anomalies are very small (α <1%), unsupervised or clean semi-supervised methods

can be used to detect outliers, although these methods may also fail if anomalies are not

outliers or if the distribution of the nominal data has long tails [198].

4.3.1 Types of Anomalies

Anomaly detection of manufacturing systems deals with time-series data and requires dif-

ferent statistical approaches to those used on time-invariant data that assume constant

variance and independence of variables. Time series data is defined as a sequence of obser-

vations taken by continuous measurement over time, with observations usually collected

at equidistant time intervals [207]. Time series data can have properties such as trend,

seasonality, cycles and level which can be used to make predictions on future trends and

identify anomalies that deviate from the norm.
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Much of the existing literature focuses on three types of anomalies in time-series data: point

anomalies, collective anomalies, and contextual anomalies [201, 207, 205]. Point anomalies

are instances where a single point in time deviates significantly from the majority of the

time series. An example of a point anomaly in historic weather patterns could be a single

day of heavy snowfall in British springtime. Point anomalies have been studied most exten-

sively with most approaches making the assumption that anomalies are scarce and occur

independently of each other [211]. Neural Networks [232], tree-based approaches [233],

SVM [216, 234], and LSTM [235] have been successfully used to identify point anomalies.

Collective anomalies are where multiple data points in the time series may be considered to

be normal when analysed individually, but when viewed as a collective they demonstrate

a pattern of unusual characteristics. Continuing with the weather example, a collective

anomaly would be if the snowfall continues for multiple days. Contextual anomalies are

cases where data may deviate from the majority of the data set but are dismissed as normal

due to the context. Contextual anomalies are defined by two attributes [212, 211]:

1. a spacial attribute that describes the local context of a data-point relative to it

neighbours,

2. a behavioural attribute that describes the normality of the data point.

Point et al. provide a detailed mathematical description of contextual anomalies, and how

clustering algorithms can be used to identify contextual anomalies in a range of real-world

and synthetic data [211]. A common example of contextual anomalies is described using

credit card data [212, 213, 144]. For example, if an individual’s credit card expenditure

is significantly high over the course of a week in April it might be considered a collective

anomaly and flagged as fraudulent activity. The same transaction behaviour the week

before Christmas however may be considered normal behaviour given the context.

In the example of credit card transactions, we can see that there can often be an overlap

between the different types of anomalies. Therefore, it is sometimes necessary to develop

a solution that identifies all three types of anomalies. Hundman et al. demonstrate how

LSTMs can be used to identify all three types of anomalies in a multivariate time-series

dataset to identify spacecraft anomalies in telemetry data [205].
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4.3.2 Dimensionality Reduction

The first step in any anomaly detection task is to use domain knowledge to extract mean-

ingful features from the raw data using feature engineering techniques. These features

can then be analysed using a wide range of statistical tools to highlight outliers, which

are potential anomalies. The number of meaningful features a dataset has determined

whether it has high dimensionality or low dimensionality. As the dimensionality of data

increases, it becomes more difficult to draw relationships between these features. This not

only requires more training data and more processing power to train models to learn these

representations but also makes the trained models more susceptible to overfitting due to

noise being present across all dimensions [236].

Dimensionality reduction methods aim to represent high-dimensional data in a lower-

dimensional space to visualise data in two or three dimensions and apply cluster analysis

approaches that are more suited to lower-dimensional datasets. The most common cluster

analysis approaches that have been applied to anomaly detection in time series include:

k-means clustering [237, 238, 193, 239, 240], Fuzzy C-Means clustering [241, 239], Gaussian

mixture model [237, 242, 234], and hierarchical clustering [237, 193, 240, 107].

K-means and Fuzzy C-means clustering involve making initial guesses on the centroid po-

sition of a given number of clusters before applying stochastic approaches to iteratively

optimise the centroid locations by minimising the distances to points that lie within each

centroid’s respective clusters. K-means clustering is a hard clustering approach in which

each point is assigned to a specific cluster. C-means is a soft clustering approach that

assigns individual probabilities to each data point so that data can be assigned to multiple

clusters. Diez-Olivan et al. show how k-means clustering can be used for diesel engine

condition-based monitoring by detecting anomalies in sensor data [239]. For CBM appli-

cations such as this, the normal operating conditions and the anomaly distributions can

be well-defined, making cluster analysis a highly effective solution.

Gaussian Mixture Model (GMM) is a similar clustering approach that assumes that the

process can be described by several sub-processes, each of which may generate a Gaussian

component in the lower dimensional representation [237]. GMM is a probabilistic approach

for which maximum likelihood estimation algorithms such as Expectation Maximisation

are used for model fitting [237, 242]. Previous research has shown that GMMs perform well

at semi-supervised anomaly detection in time-series data where the anomaly distribution

is not known [243]. Amruthnath et al. compare unsupervised machine learning models to

identify anomalies in machine vibration data for predictive maintenance. Of the various
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clustering methods compared in the study, a combination of PCA and GMM was found to

give the best result [237]. However, for this application, the normal operating parameters

are well-defined, and only one fault instance was considered. GMM is often applied to

analyse biometric time series as it is well suited to handle data with large sample distribu-

tions [243, 244]. Reddy et al. demonstrate how GMM can be used in unsupervised settings

to identify outliers in network traffic data [245]. Reddy et al. apply a semi-supervised ap-

proach and discuss the importance of high-quality training data, as the model is sensitive

to outliers.

In hierarchical clustering, the initial number of clusters K equals the number of data points.

At each iteration, each point is merged with neighbouring clusters until a single cluster is

formed. This bottom-up approach is called agglomerative hierarchical clustering and can

also be performed in a top-down approach which is called divisive hierarchical clustering

[107]. This process is then used to construct a dendrogram where branches are joined or

split at a depth equal to the number of iterations at which those clusters were merged or

split. The resulting dendrogram explains the relationship between all the data points in

the system and can be horizontally sliced at any point to return the required number of

clusters, where small clusters may indicate anomalous system behaviour [107, 237].

Dimension reduction techniques can be split into two main categories: Matrix Factori-

sation and Neighbour Graph approach. Matrix factorisation includes algorithms such as

Linear Autoencoders, Generalised Low-Rank Models, and PCA. PCA is one of the oldest

and most commonly used methods for dimensionality reduction across a range of scientific

disciplines, dating back to work by Pearson in the early 1900s [246]. PCA uses the eigenvec-

tors and eigenvalues of the dataset’s covariance matrix to construct linear representations

of the data in latent space. These linear representations are called principal components,

and those with the highest variance capture the most information of the original data and

can be retained for further analysis or plotting while components with low variance can

be discarded. PCA has been widely applied in a range of time series anomaly detection

tasks by researchers over the past few decades [202, 247, 238, 239, 237]. One limitation of

PCA is that if the correlations between features are non-linear or unrelated, the resultant

transformation may result in false positives or fail to draw any useful relationships [236].

Various tools and add-ins are included in common industrial toolsets, such as Microsoft

Excel, that make PCA accessible to engineers. As discussed in Chapter 3, researchers

propose that PCA should be included in industrial training programs such as Six Sigma to

address the increasing complexity of manufacturing data for which the WDAD assumption
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does not hold [248].

In recent years, there have been multiple advancements in the development of learning-

based neighbour graph algorithms such as t-distributed Stochastic Neighbor Embedding

(t-SNE) [249], and Uniform Manifold Approximation and Projection (UMAP) [250].

t-SNE is a variation of Stochastic Neighbor Embedding first proposed by Hinton and Roweis

in 2002 [251]. While PCA retains global structure through eigenvectors with high variance,

t-SNE reduces dimensionality by modelling high dimensional data neighbour points as a

probability distribution in low dimensional space, thus retaining a more detailed local

structure at the loss of some global information. This makes t-SNE favourable in produc-

ing visualisations where understanding this local structure is important and has been used

in anomaly detection to visualise bearing faults [252], and superconductor manufacturing

errors [253]. Furthermore, t-SNE can reveal non-linear relationships of the data that may

be missed using PCA.

UMAP is a recent advancement in dimensionality reduction that has drawn much atten-

tion since its publication in 2020 in which Mcinnes et al. propose a topological mapping

approach for dimensionality reduction [250, 202, 254]. UMAP has been shown to improve

on t-SNE in preserving both local and global structure of data while also achieving superior

run time performance [250, 202, 254]. UMAP outperformed PCA in clustering time-series

data based on cyclical and seasonal characteristics [199, 254] and has been used in combina-

tion with density-based clustering approaches to highlight periods of anomalous behaviour

in time-series data [199, 254]. Given the complexity and novelty of UMAP, further research

is required to understand the performance of UMAP in industrial settings, with researchers

suggesting opportunities for future works in comparing its 2D reduction performance with

other distance methods [254].

4.3.3 Semi-Supervised Anomaly Detection

Unsupervised anomaly detection is a commonly used method of anomaly detection and

is often beneficial as it can avoid the need to build high-quality labelled datasets to de-

velop and implement the solution. However, in real-world applications, testing datasets

will need to be developed to test and compare models during development to prove their

effectiveness before implementation. In cases where the fraction of training points that

are anomalies is very small (α <1%), any testing datasets will be highly imbalanced, with

significantly more normal data than anomalies. In these cases, it is practical to utilize this
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surplus normal data as part of a semi-supervised approach.

In time-series anomaly detection, LSTMs have been a popular area of research focus-

ing on semi-supervised training approaches in which a model is trained on nominal data

and anomalies are identified through various strategies of comparing prediction errors

[205, 218, 220, 255]. Research by Malhotra et al. demonstrates how LSTMs can be used

to successfully predict anomalies in four time-series datasets using a clean semi-supervised

approach under the assumption that prediction errors fit a Gaussian distribution [218].

Mapping new error vectors onto this distribution is then used to identify anomalies in

the contaminated dataset. In this study, LSTMs outperformed RNNs at semi-supervised

anomaly detection. Chauhan et al. apply the same approach to identifying anomalies in

ECG readings [226].

Hundman et al. use a similar semi-supervised training approach to anomalies in space-

craft telemetry data [205]. Hundman’s approach differs slightly in that error values are

calculated at each discrete point in time, and instances where error exceeds a given thresh-

old are highlighted as anomalies. By measuring the time above the error threshold, this

method enables the distinction between point, contextual, and collective anomalies. A

similar thresholding approach to Hundman et al. is used to identify specific time points

for which collective anomalies occur in computer networks to highlight possible network

intrusions [214]. Both Hundman et al. and Cao et al. highlight that the successful appli-

cation of this threshold approach is sensitive to the careful selection of training data that

must be clean and well-structured [214, 205]. Later research by Maleki et al. describes

how outlier rejection can be used to select training data in an unsupervised manner using

Central Limit Theorem, however, this requires the WDAD assumption, which makes this

difficult to apply in practice [235]. This is discussed in their 2021 paper on how LSTM

autoencoders trained using a clean semi-supervised approach can identify point anomalies

in gas turbine measurement and CPU utilisation [235].

LSTM has been proven to be a powerful time series forecasting in recent years, outper-

forming traditional statistical techniques in more challenging cases where new or unknown

anomalies may occur, or when there is no clear anomaly distribution [205, 207, 208, 209,

210, 218, 220]. A limitation of prior research in LSTM for anomaly detection is that re-

search lacks detail in describing how anomaly thresholds are calculated once they have been

modelled to fit a specific distribution [218, 226]. Some researchers focus on model compar-

isons and include no detail at all on how thresholds are set. in instances where the anomaly

distribution is not known [255]. Prior research has explored LSTM for anomaly detection
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in instances where either the nominal data distribution is well-understood [235, 218, 226],

or vast amounts of historic training data are available [214, 205]. Because of this, less

consideration has been given to methods that can be applied to minimise training data re-

quirements and therefore make these methods more applicable in industrial settings where

accessing high-quality training data is difficult. Based on this prior research, opportunities

for further research are identified in the application of semi-supervised LSTM for anomaly

detection in manufacturing environments. Given the success of setting anomaly thresholds

for applications where testing data is limited and may not be sufficient to be modelled to

fit a Gaussian distribution.

4.4 Methodology

In this section, the methodology to develop a solution for nut runner anomaly detection

is presented. The two datasets were used to develop and test various machine-learning

models. The methods used to collect and label these datasets in collaboration with domain

experts are discussed, as well as the challenges of these real-world datasets.

Two semi-supervised approaches are presented to detect anomalies in nut runner data:

2D semi-supervised clustering, and time series forecasting. The former train a Gaussian

Mixture Model on normal data to generate outlier thresholds in a reduced feature space.

The latter trains an LSTM on normal data to make predictions on the test data and the

resultant prediction error is used to detect outliers. This section describes the GMM and

LSTM models at a low level, and how these mathematical foundations can be applied

to detect anomalies in real-world manufacturing data. Descriptions are also included on

the multiple dimensionality reduction techniques used in combination with the GMM.

Details on the experimental setup to test and train each of the proposed solutions are also

presented, as well as the metrics used to evaluate their performance.

4.4.1 Labeled Data

Nut runner anomalies are rare, and historical process data is not always stored long-term.

This makes it challenging to get sufficient data on historical machine faults to develop

training and testing datasets. If historical fault data does exist, this will still need to be

reviewed by a domain specialist to ensure sufficiently high-quality datasets. The task of
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labelling data is therefore the first major hurdle. Even fully unsupervised methods require

high-quality datasets to validate model accuracy. In fault detection applications, training

datasets will likely be highly imbalanced as fault instances and anomalies are usually rare.

Therefore, large amounts of data may need to be reviewed by domain specialists to gather

sufficient data to validate such models.

For this research, a dashboard was developed to speed up the labelling process. The dash-

board presents a domain specialist with 12 on-screen examples of time-series nut rundown

data to label. Given that anomaly occurrences were presumed to be very rare, the user

was informed that all data they were being shown were examples of ’normal’ operating

conditions. If the user saw any instances that could be considered anomalous, they were

asked to label this by using a series of push buttons to categorise the observation into one

of three categories:

• True Anomaly: True anomalies are instances where either a known process anomaly

has occurred that has compromised part quality, or an unknown anomaly has oc-

curred that requires further inspection before the part is released.

• Anomaly No Concern (ANC): An ANC is defined as an anomalous observation

for which no action is needed. This may be because the anomaly can be explained

by a known process error that is unlikely to have compromised the quality of the

outgoing part.

• Re-hit: A re-hit are instances where no data was recorded and the amplitude of the

time series remains constant at 0.

If none of the 12 examples on-screen fall within one of these categories, a refresh button is

used to label all observations as ’normal’ and the display is refreshed with a new batch of

12 images.

This labelling approach proved very fast, as less than 1% of processes included True Anoma-

lies and therefore most on-screen batches were all normal and labelled twelve at a time.

Using this system, domain specialists were able to consistently label data at a rate of ap-

proximately 1000 observations per half-hour of labelling. This approach is designed to be

used on personal computers to label historical data and is not integrated into any produc-

tion process or data collection systems.

ANC class was introduced to overcome some confusion around what constitutes an anomaly.

Production line test engineers consider anomalies to be any observation that would result in
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Figure 4.4: The data labelling dashboard allows users to label batches of 12 normal wave-

forms at a time.

a part being rejected for inspection/repair. In contrast, the data analysts viewed anomalies

as having features or characteristics not found in the majority of the data. To address this

contrasting definition of terms, the Anomaly No Concern (ANC) category was included

in the labelling process. The judgement between a True Anomaly and an Anomaly No

Concern is based on experience, and therefore there is some level of uncertainty in this

class. For this reason, the task of labelling is given only to engineers who has a high level

of understanding of the process and the test. While this does introduce some uncertainty

into our testing datasets, it is notable that engineers will typically err on the side of cau-

tion, as product quality is prioritised over all other production metrics. For this reason, it

is desirable for any proposed anomaly detection system to flag both a ‘True Anomaly’ as

well as an ‘Anomaly No Concern’. This being said, a network’s ability to detect ‘Anomaly

No Concern’ should never be improved at the expense of reducing the ‘True Anomaly’

detection rate.

By using this labelling dashboard we are able to overcome two of the major hurdles of

developing and implementing machine learning approaches for fault detection: the time

taken to label good quality data, and the knowledge gap between domain experts and data

analytic experts. This labelling approach was used to build two testing datasets, one for

each process. All labelled anomalies were utilised in this dataset, as well as a random
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sample of normal data. Details of each dataset are shown below in Table 4.1.

Table 4.1: Composition of training and testing datasets to evaluate performance of the

models.
Dataset True Anomalies ANC Normal Total

Test Dataset 1 26 37 1000 1063

Test Dataset 2 67 100 1000 1167

4.4.2 Machine Learning Model Descriptions

Based on the related research, three dimension reduction approaches are compared prior

to training a GMM: PCA, t-SNE, and UMAP. During the model development phase, the

visualisations produced by these approaches proved useful in communicating the results

and findings of the nut runner analysis to other team members. This was particularly

useful when discussing the importance of high quality data, and revealed early on that test

engineers would often disagree on data labels. Visualising the results through the early

development phase made it easier to identify and communicate potential labelling mistakes

and get feedback from test engineers. For these reasons, it was decided only to explore 2D

representations for all dimensionality reduction approaches.

PCA

PCA is a dimensionality reduction technique that aims to preserve the global structure

of the data by preserving pairwise distance among all data samples. This is achieved by

applying linear mapping using matrix factorization. Consider a dataset Xo comprised of

m observations, and k variables For ease of computation, the first step of the PCA is to

centre the k dimensional data using the centering matrices Cn and Cm, given by:

Cm = Im − 1

n
1m, (4.1)

and

Cn = In −
1

n
1n, (4.2)
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where 1n and 1m are the n× n and m×m matrices of all 1’s respectively. The zero-mean

centered matrix X can then be calculated by

X = CmXoCn. (4.3)

The simplest approach to derive a dataset’s principal components is by finding the eigen-

vectors ui of the symmetric k × k covariance matrix C, where [247]:

C =
1

n− 1
XXT . (4.4)

These eigenvectors are the principal components of X. The inverse of the eigenmatrix U

is used to map the dataset onto the reduced feature space X ′, where

X ′ = UTX. (4.5)

The first principal component of Xis the eigenvector ui that gives the largest eigenvalue,

as this describes the direction in p dimensional space along which the data has the highest

variance. The second principal component is the eigenvector orthogonal to the first prin-

cipal component, and so on. For further information on the derivation of the covariance

matrix, the reader is referred to [256].

Application of PCA

The current anomaly detection method at Ford Motor Company identifies anomalies using

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to identify noise

points in the first two principal components. Figure 4.3, shows a labelled plot of the first

two principal components for datasets 1 and 2. These plots show that when applying the

PCA transform on nut runner data, not all noise points are anomalies, anomalies can form

tight clusters, and not all are outliers. In dataset 1, many anomalies lie within the nominal

distribution of the data, sometimes forming small clusters of anomalies within the nominal

distribution. In dataset 2, most anomalies form tight clusters, and the ANC class overlaps

significantly with the nominal data.

Because PCA is sensitive to the variance, the data are first normalized. Typically, when ap-

plying PCA, the first two or three components are selected, as these components retain the

most information on the original structure of the data [257]. However, initial experiments

with nut runner data found that using different combinations of principal components re-

sulted in more distinct clusters of anomalies. For this reason, the principal components

were also varied when optimizing the hyperparameters for the semi-supervised approach.
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t-SNE and UMAP

Following the state-of-the-art dimensionality reduction, t-SNE and UMAP are also com-

pared with PCA at clustering the data in 2D before applying the semi-supervised GMM.

t-SNE and UMAP are neighbour graph approaches that determine the similarity between

the data points before projecting the data onto the lower dimensional space.

t-SNE

Consider some training dataset comprised of T training vectors and n dimensions, given by

X = xi, ..., xT that we wish to map onto a low-dimensional space given by Y = yi, ..., yT .

The most basic method of calculating the similarity matrix is the k-NN approach, where

for each point in the high-dimensional space, the euclidean distance between every other

point is calculated, given by:

Dij =
p

√√√√ T∑
i=1

|xi − xj|p. (4.6)

where p is the user-defined power parameter. The resultant T × T is the similarity matrix

D. This k-NN approach is one of the fundamental clustering models used in machine

learning [258].

Stochastic Neighbor Embedding (SNE) converts the euclidean distancesDijto probabilities,

such that the similarity between xj and xj is the conditional probability pij that xi would

select xj as its neighbour if neighbours were selected in proportion to their probability

density given by a Gaussian centred at xi [249]. The conditional probabilities that make

up this new similarity matrix D′ are given by:

pj|i =
exp(−C2

ij)∑
k ̸=l exp(−C2

kl)
. (4.7)

Similarly, a second similarity matrix C ′′ is also calculated for the low-dimensional space,

given by:

qj|i =
exp(−||yi − yj||22)∑
k ̸=l exp(−||yk − yl||22)

. (4.8)

where the similarity between yj and yj is the conditional probability qij that yi would

select yj as its neighbour. SNE aims to minimise the difference between pi|j and qi|j by

minimising the sum of the Kullback-Leibler divergences over all data points using gradient

decent [249]. The Kullback-Leibler divergences define the cost function C for the SME
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algorithm as:

C =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

log
pi|j
qi|j

, (4.9)

and the gradient,
δC

δyi
= 2

∑
j

(pi|j − qi|j + pj|i − qj|i)(yi − yj)). (4.10)

For a full derivation of δC
δyi

, as well as other approaches to determine the SME gradients

can be found in the original paper by Maaten and Hinton [249].

t-SNE is a variation of the SNE algorithm that uses a heavily tailed Student-t distribu-

tion in the low-dimensional map, rather than a Gaussian distribution to determine the

similarities. For the t-SNE algorithm, conditional probability qij is given by:

qi|j =
(1 + ||yi − yj||2)−1∑
k ̸=l(1 + ||yk − yl||2)−1

(4.11)

By applying a probability distribution with heavy tails, (1 + ||yi − yj||2)−1 approaches an

inverse square law for large pairwise distances in the low-dimensional representation of the

data. This helps retain global structure by separating clusters that are far apart, while

retaining local structure within the respective clusters [249]. These new values for qi|j give

a gradient of the Kullback-Leibler divergence as:

δC

δyi
= 4

∑
j

(pi|j − qi|j)(1 + ||yi − yj||2)−1. (4.12)

The gradient descent is initialised by randomly sampling from an isotropic Gaussian cen-

tred on the origin with a small variance. The initial data points Y are then shifted in this

low-dimensional space such that the conditional probabilities Q converge on P . For further

details on how the gradient decent process is optimised to avoid poor local minima, see

[249].

UMAP

Similar to t-SNE, UMAP is also a neighbour graph approach that uses stochastic pro-

cesses to map X onto Y . UMAP is by far the most complex approach discussed in this

section, with the theoretical foundations based on manifold theory and topology [250]. At

a high level, UMAP applies manifold approximation together with local set representations

to map the data onto lower dimensional space. These high-dimensional set representations,

known as simplicial sets, provide a combinatorial approach to describe the high-dimensional
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Figure 4.5: UMAP uses combinations of simplicies to provide a simplified representation of

the continuous topological space defined by the high dimensional dataset X while retaining

the global and local structures that define the space.

feature space by combining multiple simplices defined by the data points X. Figure 4.5

shows a visualisation of these simplicies and how they can be combined into a simplicial

complex to describe a multi-dimensional feature space. The reader is referred to Mcinnes

et al 2020 for further description of the mathematical description of simplicial complex and

how it is used to describe the high-dimensional manifolds [250].

There are may similarities between UMAP and t-SNE. Numerous algorithms are presented

in the original UMAP paper based on complex topological theories, however, these algo-

rithmic steps can be expressed in a form similar to the t-SNE notation. For example,

UMAP also uses the similarities in both the high-dimensional and low-dimensional space

to define the cross entropy loss function C, given by:

CUMAP =
∑
i ̸=j

υijlog

(
υij
ωij

)
+ (1− υij)log

(
1− υij
1− ωij

)
(4.13)

where vi|j are the local simplicial set memberships based on the nearest neighbour distances,

and vi|j are the low-dimensional similarities. The local simplicial set memberships are given

by:

vi|j = exp[(−Dij − ρ)/σi)] (4.14)

where ρi is the distance between xi and the nearest neighbour, D is the similarity matrix,

and σi is a normalising factor calculated using a binary search. For the algorithm used to
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calculate σi see [250]. The similarities in low-dimensional space are given by:

wi|j = (1 + a||yi − yj||2b2 )−1 (4.15)

where a and b are user-defined positive values. Setting a = 1 and b = 1 give the Stu-

dent t-distribution used in t-SNE. For information on how the points are initialised for the

stochastic process, the reader is referred to Mcinnes et al [250].

Application of t-SNE and UMAP

Because t-SNE is a probabilistic approach and both t-SNE and UMAP use stochastic

processes, we must combine the training and testing data and perform dimensionality re-

duction on both datasets to ensure they are mapped onto the same lower dimensional

feature space. The 2D outputs of the dimensionality reduction are then split back into the

training and testing sets before applying GMM for semi-supervised clustering. Figure 4.6

shows t-SNE applied to the training and testing nut runner data.

For data with very high dimensions t-SNE has challenges associated with high computa-

tional requirements when compared to PCA. The initial construction of the k-NN graph

to determine the similarity scores is a computational bottleneck for very high dimensional

data, and the performance of the k-NN step deteriorates as the dimensionality is increased

[259]. Furthermore, the t-SNE method becomes increasingly sensitive to parameter se-

lection as the dimensionality is increased. This also requires users to exhaustively search

for optimal parameters which become computationally expensive for very high-dimension

datasets [259]. However, in the original paper by [249], the method was shown to have a

low error at on a 784-dimensional dataset. This is a higher dimensionality compared to

the 750 dimensions in the nut runner time series. Details of the optimization for the t-SNE

and UMAP are discussed in 4.4.2.

GMM

Consider a Gaussian process for which some outputX is a continuous random variable. It is

impossible to define a probability distribution function for all x, as there are an uncountably

infinite number of potential values. To overcome this, a closely related function can be

used to describe the probabilities associated with a continuous random variable [260]. This
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Figure 4.6: The same GMM approach applied using t-SNE and UMAP to reduce and

cluster the data. Labelled data includes Nominal points (blue), ANC (green), and True

Anomalies (red).
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is called the Probability Density Function (PDF), given by:

p(x) =
d

dx
F (x) (4.16)

F (x) =

∫ x

−∞
p(x)dx. (4.17)

A scalar Gaussian component has two parameters that can be used to describe the PDF:

the mean µ, and the variance σ2. This gives a PDF in the form:

p(x|µ, σ2) = N (x|µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2)

2σ2

)
. (4.18)

Gaussian Mixture Model (GMM) assumes that the process can be described by several

sub-processes, each of which can be described by a Gaussian probability density with a

mean µ, and the variance σ2[237]. However, it is often the case when applying GMM that

there are multiple features and high dimensionality [244]. For a multivariate Gaussian with

n features and D-dimensions, a multivariate Gaussian PDF with the same quadratic form

is used to describe these components, given by :

p(x⃗|µ⃗,Σ) = N (x⃗|µ⃗i,Σi) =
1

(2π)D/2|Σi|1/2
exp

(
−1

2
(x⃗− µ⃗i)

′Σ−1
i (x⃗− µ⃗i)

)
, (4.19)

where µ⃗ is the vector mean of length n, and Σ is the n× n covariance matrix [244].

The GMM also introduces a scalar weight wi for each Gaussian component, where
∑M

i=1wi =

1. Therefore, a GMM can be described as a weighted sum of M Gaussian components,

given by:

p(x⃗|{wi, µ⃗i,Σi}) =
M∑
i=1

wiN (x⃗|µ⃗i,Σi), (4.20)

where i = 1, ...,M . To apply the GMM to make predictions on new data, the model must

first be fit to some training dataset comprised of T training vectors, given by given by

X = {x⃗i, ..., x⃗T }. This is achieved by making initial estimates for the mixture weights

wi mean vectors µ⃗i, and covariance matrices Σi before optimising these values. The most

common approach to optimise the GMM parameters is to use an iterative Expectation-

Maximization (EM) algorithm [245, 261, 244].

For a M components and with initial estimates for the mixture weights wimean vectors

µ⃗i, and covariance matrices Σi, the next step in the EM algorithm is to calculate the

probability that x⃗T is assigned to component i, given by:

Pr(i|x⃗t, γ}) =
wiN (x⃗t|µ⃗i,Σi)∑M

k=1wkN (x⃗t|µ⃗k,Σk)
, (4.21)
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where γ = {wi, µ⃗i,Σi}. This probability Pr(i|x⃗t, γ)is known as the A Posterioi and is used

to calculate the next iterations parameters γ′ using the following equations [244]:

w′
i =

1

T

T∑
t=1

Pr(i|x⃗t, γ) (4.22)

µ⃗i
′ =

∑T
t=1 Pr(i|x⃗t, γ)x⃗t∑T
t=1 Pr(i|x⃗t, γ)

(4.23)

Σ′
i =

∑T
t=1 Pr(i|x⃗t, γ)x

2
t∑T

t=1 Pr(i|x⃗t, γ)
− µ

′2
i . (4.24)

The result of the EM process is dependent on the initialisation points for which to begin

the EM optimisation process. This makes the user’s selection of the number of Gaussian

components important in achieving optimal results. Researchers commonly use methods

such as the Bayesian Information Criterion or the Akaike Information Criterion to opti-

mise M [261, 262, 261]. Similarly, the result of the GMM is also dependent on the training

vectors, which often require careful pre-processing and feature engineering to reduce the

dimensionality and cluster the data before applying the GMM. Because of the dependence

on the initialisation points, GMM will converge on the local optimum, which may not

necessarily be the global optimum. For this reason, multiple runs are required to com-

pare model performance with different. Because the model is deterministic, the best result

obtained over multiple runs can then can be used to generate future Gaussian mixture

components for classification.

Application of GMM

A GMM is trained in a semi-supervised manner, using 400 normal training data and

the number of Gaussian components. For the GMM model, two hyperparameters are op-

timised using a random search approach: The number of Gaussian components M , and

the scalar weights wi. The number of Gaussian components M are searched in the range

of integers 1 to 6, and the initial estimates for the scalar weights wi are multiplied by a

value in the range 1 to 3 with intervals of 0.5. When optimising these hyperparameters

for the GMM model, hyperparameters are also optimised for the respective dimensional-

ity reduction methods. When applying PCA, the optimum principal components are also

included in the random search, considering all possible pairwise combinations of the first

ten components. For t-SNE, perplexity was studied in the range 5 to 50 in steps of 5,
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Figure 4.7: Outlier regions calculated using Gaussian mixture model trained on the reduced

normal data. Any points that fall in the red area are identified as anomalies. Labelled

data includes Nominal points (blue), ANC (green), and True Anomalies (red).
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and learn rate in the range of 100 to 1000 with steps of 100, all other values are set as

MATLAB defaults. For UMAP, the minimum distance was studied between 0.1 and 0.5 in

steps of 0.1, and the number of nearest neighbours was studied between 5 and 25. All other

parameters were kept as default in the modified code originally sourced from MATLAB

File Exchange [263]. For each combination of hyperparameters, the experiment is repeated

3 times and the average f-score is calculated. For each model, the random search is stopped

after 2 hours. This limitation on the optimisation time was decided by those managing

the Cloud-based architecture of the anomaly detection pipeline. Because of bandwidth

limitations, this 2-hour estimate would ensure that in a worst-case scenario, optimisation

runs would still be able to be sucessfully completed during weekend non-productive time.

This would avoid unnecessary downtime of the anomaly detection solution during the pro-

ductive time. All experiments were run on an NVIDIA GeForce GTX 1050 GPU.

By training the model using only normal data, the resultant Gaussian approximate com-

ponents are used to define a threshold boundary to highlight outliers in the testing dataset.

Figure 4.7 shows a plot of datasets 1 and 2 with the outlier thresholds visualized.

LSTM

Long Short-Term Memory (LSTM) have been widely used in semi-supervised applications

for anomaly detection. LSTM was introduced in the late ’90s as an architectural modifi-

cation to Residual Neural Networks (RNN) to address limitations of RNNs in their ability

to learn and predict long-term dependencies in time series [230]. This limitation resulted

from the propagation mechanisms in RNNs where the gradients used to update the adjacent

weights of each hidden unit would either increase or decrease exponentially in proportion

to the length of the time series n. For very large values of n, if the weights W are constant

and greater than 1 then the gradients tend to infinity. This is called the exploding gradi-

ent problem and results in subsequent updates to these large gradients having a negligible

effect on the output. In contrast, if W is constant and less than 1 this results in vanishing

gradients, where the gradients tend to 0 and learned information is lost.

LSTM overcomes the gradient problem by replacing the tanh activation layer of RNNs

with a memory cell containing multiple gates shown in Figure 4.9. The tanh activation

function is depicted in Figure 4.8, where the output of the activation function is equal

to tanh(x). Another important activation function that is used in the LSTM cell is the
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Figure 4.8: Graphs showing the Sigmoid and Tanh activation functions used in the LSTM

network.

sigmoid function, for which the output σ(x) = 1/1 + e−x. These activation functions and

other mathematical operators make up the gates in the memory cell which regulate the

amount of information the network passes between hidden units. A cell state vector C(t)

is also introduced to pass information between hidden units. This architecture allows the

cell state C(t) to act as the long-term memory component while the hidden state h(t) acts

as the short-term component. Figure 4.10 shows the 8 different learnable weights and 4

biases used to tune the network.

Figure 4.9: The high level LSTM architecture is similar to that of an RNN.

The three control gates in the memory cell are called the input, output, and forget

gates, which can respectively perform write, read, and reset functions at each time step.

The forget gate takes the input of the previous hidden state and the new input and passes
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Figure 4.10: Inside the LSTM cell the three gates controlling the flow of information can

be observed.

it through a sigmoid activation function. Values are returned in the range between 0 and

1, where values close to 0 are ’forgotten’ while values closer to 1 are used to update the cell

state. The forget vector ft is then multiplied by the previous cell state output, where once

again, forget vectors close to 0 will significantly reduce the cell state values. The forget

vector is given by:

ft = σ(Wxfxt +Whfht−1 + bf ). (4.25)

The input gate then applies the sigmoid activation to the previous hidden state and the

new input to produce the input vector it, given by:

it = σ(Wxixt +Whiht−1 + bi). (4.26)

The cell state vector c̄ is calculated by applying the tanh activation to the previous hidden

state and the new input, given by:

ct = tanh(Wxcxt +Whcht−1 + bc). (4.27)

The tanh activation function distributes the gradients across a 0-centered range from 1 to

-1, which helps regulate the cell state information over higher values of n, preventing the

onset of the exploding and vanishing gradients problem. The input vector it is then used
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to write information to the previous cell state by multiplying the result with the cell state

vector c̄. Finally, the output gate updates the hidden state ht. This is done by applying a

tanh activation to the new cell state and multiplying the result with the output vector ot,

where

ot = σ(Wxoxt +Whoht−1 + bo), (4.28)

and

ht = ȳt = [ot × tanh(ct)]. (4.29)

The new hidden state is then passed on to the following time step and is also outputted

as the prediction ȳtfor that timestep.

Application of LSTM

An LSTM forecasting model is trained on normal data to make sequence-to-sequence pre-

dictions on the time-series data. This semi-supervised approach means that when making

predictions on new ’Normal’ data with no process errors, this trained model is expected

to make accurate predictions. However, if the data contains anomalous readings, the error

of the predicted sequence will be high as the model hasn’t seen similar instances of these

data before. This is shown in Figure 4.11 where LSTM predictions between a normal and

anomalous observation are compared. This figure highlights a key benefit of this method

over the clustering approaches in that the LSTM forecasting approach shows the specific

parts of the time series that result in high prediction errors, therefore suggesting points in

the process where anomalies may occur. This is useful in production as it can help identify

instances of specific faults.

For this study, it was found that for any given waveform X with a sequence denoted by

Xt = [xt1, xt2, xt3, ..., xtn] a sequence-to-sequence approach was most effective. This is im-

plemented using an X training input of Xtrain = (xt1, xt2, xt3, ..., xtn−1) and a Y training

input of Ytrain = [xt2, xt3, xt4, ..., xtn]. All data are normalised prior to training.

Anomaly Detection Threshold: Gaussian Distribution

Figure 4.4.2 shows a histogram of the RMSE values for predictions made on test datasets

1 and 2. Given that these values are normally distributed, we can use this to calculate

the anomaly threshold similar to prior research [218, 226]. Previous research does not pro-

vide specific details on how an anomaly threshold should be calculated using this method
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Figure 4.11: Examples of how LSTM forecasts vary between normal waveforms (Top) and

anomalous waveforms (Bottom). The LSTM performs poorly when forecasting anomalous

oscillations between 50 and 200 time steps, leading to a high reconstruction error above

the anomaly threshold.

[218, 226, 255], therefore in this study we turn to a common heuristic of setting the thresh-

old as 1.5 times the interquartile range above the third quartile [264]. This gives a threshold

of 0.0602 for dataset 1, and 0.0468 for dataset 2.

Anomaly Detection Threshold: Inflection Point

We can then use a test dataset contaminated with labelled anomaly data to determine

an error threshold. Any data resulting in a prediction error above the given threshold can

be assumed to be an anomaly.

The error threshold is calculated by sorting the RMSE values in ascending order and find-

ing the corresponding RMSE value of the inflexion point. The inflexion point is defined by

the maximum distance d on a plot of the sorted RMSE values, shown in Figure 4.4.2, for

which d is defined as:

d = |p2 − (p1.b̂)b̂| (4.30)

where p are points on the graph, and b̂ is the unit vector between the lowest and highest

RMSE values.

This approach gives slightly lower threshold values compared to the Gaussian method,

with 0.0562 for Dataset 1, and 0.0437 for dataset 2.

Model Optimisation

As discussed in the literature review, prior research has explored LSTM for anomaly detec-
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Figure 4.12: Two methods are compared at to find the error threshold for the LSTM

forecasting approach: one setting the threshold as 1.5 times the interquartile range above

the third quartile (Top), and the other using the elbow method on a plot with RMSE

values sorted in ascending order (Top).
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tion in instances where either the nominal data distribution is well-understood [235, 218,

226], or vast amounts of historic training data are available [214, 205]. In this application,

due to the complexity of the process and the limited labelled data available, the distribu-

tions of our data are difficult to define, and limited data can be used for training.

To select optimal LSTM parameters and minimise training data requirements, a series of

experiments is carried out to explore how LSTM prediction accuracy on normal data cor-

relates with anomaly detection performance. In these experiments, the training data size,

LSTM architecture, and model hyper-parameters are varied using a grid search approach

with the goal of minimising the RMSE on a testing dataset containing 200 normal data.

Each model setup is also used to make predictions on a second test dataset containing 200

additional normal data as well as 50 ANC and 50 True Anomalies. Figure 4.4.2 shows a

plot the RMSE values on the normal test data against the F-score on the contaminated

dataset.

In both datasets, there is little correlation between prediction accuracy on the normal test

data and the models’ ability to accurately detect anomalies. However, in both datasets

when RMSE on the normal test data is low, two clusters are observed with one at an

F-score of around 0.7 and the other above 0.9. These clusters are not the result of any

particular combination of parameters and upon repeating the experiment, these clusters

still form when all parameters are fixed and the only change between runs is the random

sampling of the training data. This suggests that the training data sample is contaminated

with some anomalous data, leading to a higher number of false negatives and therefore a

lower F-score. This is reflected in the confusion matrices of the experimental results.

The optimisation experiments also help identify the amount of training data that can

be used. For our testing datasets, we find that the optimal training data sizes are 200 and

400 for datasets 1 and 2, respectively. For both datasets, we find that a single LSTM layer

with dropout and 200 hidden units gives the best results, as well as L2 regularisation set

as 0.0001, learn rate = 0.0001, and max epochs as 20. The inclusion of L2 regularisation,

dropout, and the low number of training epochs are common approaches to reduce overfit-

ting, a common problem in training with noisy data in which models learn information on

irrelevant features of the noise and fail to generalise important features to make accurate

predictions on new data [265, 266, 267, 257].

The results of these experiments highlight the importance of high-quality test datasets to

validate the accuracy of models prior to implementation.
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Figure 4.13: Results of the parameter optimisation experiments showing how anomaly

detection accuracy varies with the models’ performance at predicting normal data.

4.4.3 Metrics

In this study, anomalies are treated as the positive class. With this in mind, the following

aims are outlined for this study:

• Minimise False Negative Rate: The end goal of this study is to develop an

anomaly detection system to improve overall product quality. Therefore, our main

objective is to reduce the number of True Anomalies incorrectly identified as Normal.

• Identify a High Percentage of True Anomalies: Reducing the false negative

rate should not come at the expense of identifying a low percentage of True Anoma-

lies.

• Near Real Time: Any solution must be able to identify a potential anomalous

reading before the part continues onto the next process in the production line. While

this time varies between processes, we set a target of under 5 seconds to perform the

analysis.

• Adaptable and Transferable: As processes change over time, any provided solu-

tion must be re-trainable with minimal additional development by engineers. Fur-

thermore, any solution must be demonstrated to be effective on multiple nut runner

datasets to demonstrate its transferability to multiple use cases.

Given these objectives, we use the F-score false negative rate as our main metric to
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measure the performance of our methods. F-score is defined as:

F − score = 2 ∗ Precision ∗Recall

Precision+Recall
(4.31)

where precision is the ratio of between true positives and all positives,

Precision =
TP

TP + FP
(4.32)

And recall is the measure of the method to correctly identify true positives

Recall =
TP

TP + FN
. (4.33)

An optimal solution will maximise F-score while minimising the false positive rate.

These metrics are complicated slightly through the introduction of the ANC class. As

discussed in section 4.4.1 it can be useful to view ANCs as either an anomaly or a nominal

data point depending on the circumstances. For this reason, in any results, we state

explicitly whether ANCs are being treated as nominal or as anomalies and discuss the

findings within the relevant contexts.

4.5 Results

Typically, when evaluating the performance of models, data scientists at Ford Motor Com-

pany treat ’Anomaly No Concern’ as ’True Anomalies’. This approach makes sense, as

ANC’s are still outliers and should be reviewed by test engineers to err on the side of

caution and ensure the highest output quality. However, the author argues that this ANC

information can provide additional insights into the performance of the models and should

be further considered when analysing performance. This is particularly true for nut runner

data where the quality of the datasets is difficult to assure given that there is some level

of subjective judgement required when labelling the data that affects the overall quality of

the datasets. For this reason, two situations are considered:

a) ANC’s are considered as True Anomalies. (Tables 4.2 and 4.3)

b) ANC’s are considered to be normal. (Tables 4.4 and 4.5)
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Method F-score Precision Recall TP FN FP TN

PCA+DBSCAN 0.14 0.14 0.14 9 54 55 945

PCA+GMM 0.49 0.56 0.43 27 36 21 979

t-SNE+GMM 0.25 0.35 0.19 12 51 22 978

UMAP+GMM 0.27 0.17 0.68 43 20 216 784

LSTM Thresh1 0.56 0.82 0.43 27 36 6 994

LSTM Thresh2 0.42 0.36 0.51 32 31 57 943

Table 4.2: Comparison of ML approaches for test Dataset 1a where ANC’s are considered

as True Anomalies.

Method F-score Precision Recall TP FN FP TN

PCA+DBSCAN 0.23 0.49 0.15 25 142 26 974

PCA+GMM 0.83 0.84 0.81 136 31 26 974

t-SNE+GMM 0.73 0.73 0.74 124 43 47 953

UMAP+GMM 0.59 0.48 0.77 128 39 137 863

LSTM Thresh1 0.43 0.96 0.28 46 121 2 998

LSTM Thresh2 0.66 0.78 0.57 95 72 26 974

Table 4.3: Experiment results for Dataset 2a where ANC’s are considered as True Anoma-

lies.

Method F-score Precision Recall TP FN FP TN

PCA+DBSCAN 0.09 0.06 0.15 4 22 60 977

PCA+GMM 0.43 0.31 0.70 18 8 40 1007

t-SNE+GMM 0.29 0.22 0.42 11 15 38 999

UMAP+GMM 0.02 0.01 0.96 25 1 234 803

LSTM Thresh1 0.54 0.48 0.62 16 10 17 1020

LSTM Thresh2 0.31 0.20 0.70 18 8 71 966

Table 4.4: Experiment results for Dataset 1b where ANC’s are NOT considered as True

Anomalies.
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Method F-score Precision Recall TP FN FP TN

PCA+DBSCAN 0.07 0.08 0.06 4 63 47 1053

PCA+GMM 0.58 0.41 1.00 67 0 95 1005

t-SNE+GMM 0.61 0.45 0.97 65 2 78 1022

UMAP+GMM 0.35 0.22 0.87 58 9 207 893

LSTM Thresh1 0.77 0.92 0.66 44 23 4 1096

LSTM Thresh2 0.71 0.55 0.99 66 1 55 1045

Table 4.5: Experiment results for Dataset 2b where ANC’s are NOT considered as True

Anomalies.

4.5.1 LSTM Results

For the LSTM solution, two methods are compared. Threshold method 1 (LSTM-Thresh1)

sets the anomaly threshold 1.5 times the interquartile range above the third quartile, while

threshold method 2 (LSTM-Thresh2) uses the elbow method on the sorted RMSE data.

Because the calculated threshold is lower for LSTM-Thresh2, a higher number of anomalies

are predicted, resulting in a higher true positive rate and a lower false negative rate, at the

expense of a higher false positive rate.

For dataset 1, LSTM-Thresh1 achieves the best F-score of 0.56 due to its high precision.

With the exception of GMM-UMAP, which can be ignored due to its very high false neg-

ative rate, the LSTM-Thresh2 method achieves the lowest false positive rate. However,

this increased recall comes at the expense of a reduction in precision, resulting in a lower

overall F-score than the best semi-supervised clustering approach, PCA-GMM. Here the

user can tune the scalar constants to set the threshold value to achieve the desired balance

between these metrics for the given situation. However, consider Table 4.5 for comparison.

Here, the F-score for LSTM-Thresh1 is comparable, but there is a disproportionate drop

in the F-score for LSTM-Thresh2. This shows that as the anomaly threshold is reduced,

a large proportion of the new anomalies detected are ANCs. This would result in consid-

erable added work for test engineers with minor gains in quality. For these reasons, the

LSTM-Thresh1 method is preferable for dataset 1.

For dataset 2, when ANCs are considered True Anomalies, both LSTM achieve high pre-

cision, especially for LSTM-Thresh1 which only returns 2 false positives. However, both

methods return a very high false negative rate, resulting in a lower F-score when compared

to the clustering approaches. However, Table 2.4 shows that when ANCs are considered

normal data, the LSTM methods achieve the highest F-scores. This example highlights
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the importance of considering the result of situation b where ANCs are treated as nor-

mal data. Without considering this condition, initial experiments may have dismissed the

LSTM solution due to a high false negative rate. However, in reality, the vast majority of

these incorrect classifications are process errors that would not require any actions taken.

LSTM-Thresh2 only misses 1 True Anomaly, making it the more preferable of the two

methods.

4.5.2 Semi-Supervised Clustering Results

The results of the semi-supervised GMM method are largely dependent on the dimension-

ality reduction approach used to prepare the data. For dataset 1a, containing manual nut

runner data where ANCs are considered True Anomalies, the PCA-GMM performs the

best of the clustering approaches, achieving F-scores of 0.55 compared to 0.25 and 0.27 for

t-SNE-GMM and UMAP-GMM respectively. The PCA-GMM method achieves an iden-

tical recall to the LSTM-Thresh1 method, each returning 36 false negatives and 27 true

positives, however, the PCA-GMM achieves a lower precision. The t-SNE and UMAP ap-

proaches are less desirable in comparison, with t-SNE returning a low recall while UMAP

returns a low precision. However, all methods outperform the current PCA+DBSCAN

used for anomaly detection.

When considering Dataset 1b, where ANCs are considered as normal, similar findings can

be found compared to those discussed above, in section 4.5.1. The PCA-GMM method

sees a comparable drop in true positive rate and false negative rates compared to the

LSTM approaches. The t-SNE approach is the only method for which F-score increases

when ANCs are treated as normal data. This aligns with the findings during the model

development phases, where t-SNE was found to be particularly useful in identifying true

anomalies contaminating the normal training data. However, the method was not as good

as distinguishing between ANC and normal data. UMAP-GMM achieves the highest recall

of all methods on dataset 1, however, the very low precision makes the approach undesir-

able in practice as it would result in considerable added work for test engineers to review

these false positives.

For dataset 2a, PCA-GMM performs the best of all methods, achieving the highest recall

and second-highest precision. Furthermore, when considering dataset 2b, it can be seen

that this method identifies 100% of the true anomalies. t-SNE-GMM also performs well

on dataset 2, with similar results to the PCA-GMM method. UMAP-GMM is once again
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the least best method due to high false positive rates, however, it still achieves a higher

F-score than the original PCA-DBSCAN approach.

4.6 Discussion of Results

4.6.1 LSTM

While no threshold selection method emerges as an optimal approach for the LSTM

method, both semi-supervised LSTM solutions prove to be effective methods for predicting

anomalies in nut runner data. These initial experiments suggest that the LSTM solutions

are best at dealing with manual nut runner processes, although further experiments are

required to confirm this. In real-world scenarios, the selection of an appropriate thresh-

olding approach largely depends on the application. Given that the elbow method gives a

slightly lower threshold, this is suggested for applications where a reduction in F-score is

acceptable in order to reduce the false negative rate. The higher thresholds given by the

Gaussian distribution approach results are more suited to minimising false positive rates.

As mentioned in section 4.4.2, the model optimisation experiments resulted in very high

F-scores on the validation datasets. These high F-scores are not replicated when using

the same optimised pre-trained networks on test datasets 1 and 2. It is expected that this

reduction in accuracy is again due to the high variance in anomalies. Further reserach is

required to confirm this as more data are available.

A major benefit of the LSTM approach is that it’s very easy to show at what point in

the time series leads to the highest overall error. This presents an opportunity for future

applications of this method to move towards a prescriptive analysis approach. This adds

further value for test engineers to provide additional support in understanding the root

cause of any errors. This is more difficult to achieve with other semi-supervised clustering

methods.

4.6.2 Semi-Supervised Clustering Findings

For both datasets, PCA-GMM performs well and is the most consistent of all methods.

This approach achieves similar precision and recall to the LSTM methods for Dataset 1,

and performs the best on dataset 2 identifying 100% of the true anomalies. Unlike t-SNE
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and UMAP, PCA is deterministic meaning the eigenvectors of the initial transform that

gives an optimal result can be easily used to project any new data into the same fea-

ture space with minimal computational requirements. Furthermore, the ADAPT project

already uses PCA in its current anomaly detection solutions and has a good understand-

ing of the processes required to further develop and optimize this solution after concept

readiness. For these reasons, it is decided to focus continued efforts on the LSTM and

PCA+GMM solutions for nut runner anomaly detection.

Because t-SNE and UMAP are stochastic processes results will vary between runs, and

specific results can be difficult to reproduce. Repeated experiments found that the f-score

varied significantly, however, when successful t-SNE produced the most useful visualisa-

tions. For example, in Figure 4.6, the t-SNE results produce a distinct cluster of True

Anomalies that were correctly identified and also resulted in a low false positive rate. Fur-

thermore, this run also reveals a mislabelled data point in the training data that appears

to be a True Anomaly at [-20, -20]. This highlights a major benefit of dimension reduction

clustering approaches to produce 2D visualisations. By visualising the data in this ab-

stracted feature space, a quick visual inspection can highlight potential labelling errors in

training and testing datasets. These findings are aligned with previous research in which

t-SNE was found to be the best method to visualise anomalies in fault detection and man-

ufacturing production data [252, 253].

Despite the added value of the visualisations produced by t-SNE and UMAP, the re-

training requirements for these algorithms present challenges when considering real-world

implementation due to the variability of results and high computational requirements when

compared to PCA. Given that the proposed architecture for the end solution uses Cloud-

based services, any additional computational requirements will lead to higher processing

costs and may affect the ability of the solution of delivering analysis in near real-time.

There are opportunities for future reserach to explore non-random initialisation options

for t-SNE and UMAP that reduce the variability of the final mapping after training. How-

ever, this can be complex to implement and may require additional optimisation steps to

ensure a solution converges on global minima, rather than local minima. Future reserach

should also explore more efficient Bayesian optimisation approaches that consider more hy-

perparameters, especially for higher dimensionality datasets greater than 784 dimensions,

where the performance of the t-SNE approach is likely to decrease [249].

Although further work is required to apply t-SNE and UMAP for near real-time anomaly

detection in nut runner data, our results show that t-SNE and UMAP are still useful tools.
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Labelling production data is a difficult task, and during our research, it was found that

even the most experienced test engineers disagree on True Anomaly and ANC labels, and

mistakes are not uncommon when using our labelling tool. Throughout this project, visual

inspection of the 2D t-SNE, PCA, and UMAP plots played an important role in cleaning

labelled data and highlighting potential labelling errors. The false negative mentioned

above in Figure 4.6 at [-20 -20] has since been confirmed by the test engineer to be an

error and is indeed a True Anomaly. Following these results, these methods have since

been adopted by Ford Motor Company within teams at the Dunton Technical Centre to

validate data labelling efforts as part of this wider project. It is suggested that future

research into real-world production data also use t-SNE and UMAP to help clean data

before model training if sufficient labelled data is available.

4.7 Industrial Case Study

Following the successful results in the development stage, it was decided to include the

semi-supervised anomaly detection methods in a live trial at Dagenham Engine Plant. The

trial was focused on delivering anomaly detection for data in QualityWorks (QWX). QWX

is a purchased data storage solution created by Sciemetrics capable of storing Component

Quality Data. QWX normally receives data from plant floor production cell machinery,

such as Atlas-Copco, and Sciemetrics and is commonly used in engine assembly and testing.

For the full production volume at DEP, around 2,200 waveform IDs from 322 operations

are written to QWX databases. For reference, a ‘waveform ID’ describes a collection of

individual time-series data of fixed length produced by a specific process. Each individual

time series is referred to as a ‘waveform’. The scope of the trial focused on waveform

IDs for which at least 5000 historic waveforms were available to train the unsupervised

PCA+DBSCAN model. Diagnostic waveforms are ignored. This resulted in 1,303 wave-

form IDs being considered in the trial, 256 of which are nut runner data.

Over the two-week trial, any detected anomalies are presented to test engineers via a dash-

board. Test engineers review each of the flagged anomalies one-by-one, categorising each

instance as “True Anomaly”, ‘ANC’, or ‘Normal’. If test engineers find a specific waveform

ID is returning a high number of false positives, these labelled data are used to retrain the

model and optimise performance.

Initially, it was decided to implement the LSTM-Thresh2 approach, due to the low false

negative rates and high F-scores. While the overall performance seemed comparable to the
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PCA-GMM method, the opportunity to explore prescriptive solutions in the future also

influenced this decision. Furthermore, if the model returned false positive rates that are

too high, a scalar constant can easily be applied to increase the anomaly threshold without

requiring full retraining of the model.

Two main challenges were faced in the lead-up to the trial. Firstly, given the large number

of waveforms to be included in the trial, it was infeasible to label normal training data

for each case. Instead, it was decided to randomly sample training data from the 5000

historic waveforms, which may be contaminated with some ANCs and True Anomalies

and may affect the performance. This was deemed acceptable by those leading the trial

given the extent to which the solution outperformed the existing PCA-DBSCAN solution.

The second major challenge was that the solution needed to be executed in Python, and

the complex architecture of the anomaly detection pipeline made it difficult to set up a

Tensorflow GPU environment required to train the model.

The complexity of the LSTM implementation presented a major challenge to the team,

and as a result, the solution was not successfully included in the live trial. Due to time

and resource constraints, it was decided to use the PCA-DBSCAN in the live trial for

nut runner anomaly detection. An off-line trial would then be carried out afterwards to

compare the semi-supervised approach with the results of the PCA-GMM approach. At

the end of the trial, for the 256 nut runner data, a total of 1871 anomalies are identified

by the system. Test engineers validate these anomalies for use in the off-line study. Due to

the complexity of the LSTM solution, it was decided to use the PCA-GMM model given

its similar performance during model development.

There are several challenges with this off-line approach. Firstly, only the anomaly data is

validated by test engineers. This means normal data are likely to be contaminated with

false negatives given the high false negative rates of the PCA-DBSCAN method when ap-

plied to nut runner data. Secondly, test engineers will often disagree on whether nut runner

data are anomalies or not. This means the labelled data is also likely to contain some false

positives. These factors result in low-quality testing datasets that are not representative

of the ground truth.

The plots in Figure 4.14 show examples of why low-quality data presents a challenge for

machine learning development. Each of these plots applied the PCA-GMM model, trained

on 200 data sampled from the normal data, and optimized hyperparameters using the same

approach described in section 4.4.2. Anomalies validated by test engineers are shown in
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Figure 4.14: Four examples of waveforms included in the off-line trial. Any process data

within the green boundary is classified as ’Normal’ by the proposed PCA-GMM model.

Green points indicate process data that are classified as ’Normal’ by both the current

PCA-DBSCAN model and the proposed PCA-GMM model. Blue points show process

data that has been labelled as ’Normal’ but the current PCA-DBSCAN model, but classed

as a ’True Anomaly’ by the proposed PCA-GMM model. Red points are classified as ’True

Anomalies’ by the current PCA-DBSCAN model. Because of the lack of validation, data

that are suspected to be False Positives or False Negatives are highlighted.
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red, while all other points are assumed to be normal but have not been validated. The

GMM classifies any points that fall outside the anomaly threshold regions as an anomaly,

while anything inside the threshold is classified as normal. Upon reviewing the data,

multiple false positives and false negatives were identified using the visualisations, and the

respective waveforms were sent to test engineers for review. These false positives and false

negatives are highlighted in the example plots. Two conclusions can be drawn from these

examples. Firstly, the current PCA-DBSCAN approach can result in a high false negative

rate, as shown by Waveform ID 1010 and 386, however, the false negative rate is largely

unknown. Secondly, sampling the training data from the ’normal’ data is not an effective

approach for the PCA-GMM method, as it is sensitive to any false negatives contaminating

the training data, also shown by Waveform ID 1010 and 386.

4.7.1 Opportunities for Future Work

At the time of writing, two more trials are being planned at Cologne Vehicle Assembly and

Halewood Transmission Plant to explore further opportunities to implement nut runner

anomaly detection using the PCA-GMM and LSTM methods. From the results presented

in this chapter, there are multiple lessons learned that should be addressed ahead of these

future trials. The following opportunities and recommendations for future work on nut

runner anomaly detection:

• Continued Analysis of Dagenham Trial Data: Further work is required to

continue the analysis of the datasets produced by the Dagenham trial and apply

statistical approaches to select training data to train the model automatically. This

will require input from test engineers to validate the labelled data.

• Improving Methods of Data Labelling: The lack of toolsets to efficiently label

data to develop supervised and semi-supervised machine learning models was identi-

fied as a major gap at Ford motor company as part of this study. It is recommended

that the data labelling tool developed as part of this study is used to support future

data labelling to minimise the time requirements to perform this task. There are op-

portunities to improve this tool to make it easier to distribute to users who currently

require admin rights to use the tool when on the Ford network. Further reserach

may consider how to present the same waveform multiple times to multiple users to

explore further how to deal with data for which test engineers disagree.
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• Tensorflow GPU Environment: Input is required to support the setup of Ten-

sorflow GPU environments to explore the use of LSTM for nut runner anomaly

detection.

• Further research is required to explore how to reliably select normal training data

from a sample of data contaminated with anomalies. It is recommended that for a

fixed hyperparameter setup, random samples of 200 training data are selected n times

to train n number of models. The performance of the models can be cross-validated

and training data that lead to high prediction errors. However, this approach also

requires high-quality testing and validation data.

• Training Data Sampling Methods: Initial results from the Dagenham off-line

trial suggest that the PCA-GMM model works well on some waveforms but not

others. With these new datasets, there are further opportunities to develop additional

anomaly detection models and automatically select the optimal model to apply based

on the features of the data.

4.8 Conclusions

This chapter proposes two solutions to detect anomalies in nut runner processes. Multiple

reasons make nut runner data a challenging anomaly detection problem, including process

staging, human-induced variability, and the subjectivity and ambiguity of the anomalous

class. These process characteristics lead to an anomaly detection scenario where anomalies

are not outliers, and the normal operating conditions are difficult to define. For these

reasons, previous unsupervised attempts to automate nut runner anomaly detection have

had limited success.

To develop a solution to address these challenges, two bespoke datasets are developed using

data collected from two nut runner processes, one manual and one automated. In devel-

oping these datasets, multiple challenges of real-world data are faced. A major gap was

identified in the company’s machine learning development strategy, as no standard method

was in place to support data labelling tasks. To address this, a simple user interface and

labelling methodology are developed to minimise the human resource requirements to label

large amounts of time series data. This dashboard has since been used to support addi-

tional projects at Ford Motor Company with further plans to develop this dashboard as

an internal application.
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In addition to the data labelling dashboard, a novel concept is introduced to label the

training and testing data. When asked to label data, domain experts were given the op-

portunity to label data as ’Anomaly No Concern’, in addition to the traditional labels

of ’True Anomaly’ and ’Normal’. Introducing this new term helped address knowledge

gaps between data scientists and domain experts by highlighting conditions where some

processing error had occurred but could be clearly explained as something that would not

impact part quality or require any maintenance actions. The inclusion of the ANC class

became a key consideration throughout the model development and testing to help clean

data, build testing and training data, and address disagreement when labelling data. Fur-

thermore, the ANC class provided further insights into model performance when analysing

the results and can be used as further justification for the business case when estimating

the solution’s impact on quality metrics.

To overcome the challenges of nut runner anomaly detection, multiple solutions are pre-

sented that use the available normal data to train machine learning models. These semi-

supervised approaches significantly outperform current methods at Ford Motor Company,

increasing F-scores by a factor of ten in some cases. The methods presented fall under

two main categories: semi-supervised clustering and anomaly detection using GMM, and

semi-supervised LSTM forecasting.

For the GMM approach, three dimensionality reduction methods are compared: PCA, t-t-

SNE, and UMAP. Of the three methods, t-SNE and UMAP were found to produce the best

visualisations when developing the models, allowing data scientists and domain experts to

identify mistakes when labelling data and support data cleaning and model development.

However, the combination of PCA and GMM gave the best results when tested on two

real-world datasets. A notable finding of this research was that because anomalies are

not outliers, the principal components that gave the highest variance did not necessarily

produce the optimal clusters for anomaly detection. To address this, a unique approach

is used to apply PCA. Instead of selecting the selected principal components based on the

highest variance, random combinations are included in the parameter search when training

the combined PCA-GMM model.

For the time series forecasting approach, a LSTM model is trained using normal data, and

the prediction error is used to identify anomalies. This study is the first attempt in the

reviewed literature to identify anomalies in manual manufacturing processes. The LSTM

achieves high levels of accuracy and demonstrates that accurate anomaly detection can be

achieved on complex and highly variable manufacturing processes.
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Following the success of the PCA-GMM and LSTM approaches, these methods were se-

lected to be included in a trial at Dagenham Engine Plant to detect anomalies in an off-line

setting. Several challenges were faced during the implementation. Human resource lim-

itations and the complexity of setting up Tensorflow and GPU environments presented

significant barriers to implementing the LSTM solution. These challenges are discussed in

detail to be addressed ahead of future trials planned at Cologne and Halewood production

sites. Due to these limitations, the PCA-GMM was used to compare performance with

current anomaly detection methods. The results show that the current anomaly detection

methods have high false negative rates and that there are further opportunities to delvier

quality improvements in nut runner anomaly detection. The LSTM and PCA-GMM solu-

tions are presented as the most promising areas in which to focus future work, and further

input by test engineers to support data labelling to determine the success of these solu-

tions. Future reserach should also explore improved methods of selecting training data for

semi-supervised settings.
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Chapter 5

Identifying Houses Suitable for EV

Charging

5.1 Summary

The number of publicly available EV charging points in the UK is currently limited

[268, 269]. According to UK government guidance, approximately 80% of all EV charging

occurs at home [270]. Despite this, there have been limited efforts to survey residential

areas to understand how many homes are suitable for home EV charging. This presents

a challenge to local governments, automotive companies and other industries that require

this data to understand future trends of EV uptake in order to deliver products, services,

and infrastructures to support demand.

This chapter addresses these challenges and research gaps by presenting a novel method

of surveying the built environment. Using geospatial and image data, 3 workflows to de-

liver automated surveys and identify houses suitable for EV charging are presented. Each

method has its merits, developed with different end users in mind to address differences in

the aims and scope of the different industries.

This work has led to a journal article published in Artificial Intelligence (AI), as well as 2

conference papers: one published in the proceedings of the 2021 IEEE International Geo-

science and Remote Sensing Symposium (IGARSS) [271], and the second in IGARSS 2022

[272]. The works presented at IGARSS 2022 were done in collaboration with the Swansea

University Geography department which assisted with the GIS analysis and Sentinel-2

analysis discussed in sections 5.5.3 and 5.5.3.
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This chapter is structured as follows: Section 5.3 includes a literature review of prior

research on machine learning applications using streetscape imagery. This section out-

lines various methods that have previously successfully identified building features from

streetscape and overhead imagery using computer vision systems. This section also de-

scribes various datasets and data types used in previous studies, exploring how each of

these data types is best suited to the different end users. Section 5.4 then introduces the

image processing methodology used in all three of the final workflows. After first provid-

ing a definition of key terms and outlining some key considerations of the tools’ end use,

the network architectures used for image processing are described, as well as justification

for their selection based on experimental results. A description of the geospatial and im-

age datasets used is also provided. Section 5.5 introduces the three workflows, each of

which is presented in individual sub-sections, along with three separate example surveys to

highlight the benefits of each method and the opportunities for value creation for their tar-

geted users. While each sub-section includes a brief description of the results, 5.6 includes

a more detailed reflection on the three workflows, expanding on key findings and outlining

suggestions for future work. Finally, the research conclusions are presented in section 5.7.

5.2 Introduction

In recent years, Plug-in Electric Vehicle (PEV) sales have grown considerably and are ex-

pected to represent 21% of the market by 2030 [273]. To manage this continued growth,

companies and local governments must collaborate to ensure the appropriate infrastruc-

tures are in place to support the growing demands of charging electric vehicles. The number

of EV charging points in the UK is currently limited [268, 269]. Significant research has

been done to determine the optimal locations for public EV charging points [274, 275].

However, previous research is focused on delivering larger-scale aggregate data and does

not consider the availability of home charging in local residential areas or at individual

property levels. According to guidance by the UK government, approximately 80% of all

EV charging occurs at home [270]. For a house to be classed as suitable for EV charging,

according to the UK government’s guidance for customers, a property must have some

form of off-street parking, such as a driveway or a garage[270].

There is limited prior research that explores identifying houses with such features. Cur-

rently, no mapping agencies provide information about which properties are suitable for

the installation of home EV charge points. This lack of data causes a challenge for local
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governments as it makes it difficult to identify the best locations for community charge

points. Such data is also required to plan and manage the infrastructure of the national

grid as district network operators are required to manage the additional loads caused by

home EV charging. Automotive companies could also use the data to better identify areas

to target marketing, and better predict the future uptake of electric vehicles in different

areas.

In the available literature, only one approach to this challenge was identified in a report

published by Field Dynamics, a data analytics consultancy [276]. The approach uses GIS

techniques to measure the distance between the edge of a residential building and the ad-

jacent road. However, due to the commercial nature of the research limited information

is available on the full methodology. No previous research has attempted to identify in-

dividual houses suitable for home EV charging, nor has there been research to identify

residential off-street parking availability. It is critical that this research gap is addressed

to provide the necessary data to support the rapid uptake of electric vehicles and the sub-

sequent infrastructure requirements these products require.

To address this research gap, an image classification pipeline is proposed that uses a combi-

nation of geospatial and streetscape image data. Streetscape imagery is a type of remotely

sensed RGB image data source taken from the perspective of a road user. Google Street

View is perhaps the most well-known example of streetscape data with millions of freely

available images available at 5m intervals taken from a drivers perspective. Each image

in a streetscape dataset provides a vast amount of visual information about nearby prop-

erties that image recognition systems can leverage to identify a wide range of building

attributes. The value of streetscape image data is already recognised by some UK local

governments who already use Google Street View imagery to survey built-up areas. In

these cases, surveyors manually inspect areas property by property in this virtual environ-

ment. This virtual approach improves on traditional surveying methods that would require

an in-person inspection, however, this process is still labour-intensive. By combing these

streetscape data with geospatial data it is shown that this process of auditing the built

environment can be automated using Automated Programming Interfaces (API) to deliver

a wide range of data outputs for various end users.

In this chapter, 3 workflows to deliver automated surveys and identify houses suitable for

EV charging are presented. While each workflow differs slightly, they all rely on the same

image processing steps using Google Street View images and pre-trained neural networks to

classify properties as suitable or unsuitable for EV charging. It is the application of these
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neural networks that enable large surveys of tens of thousands of households to be carried

out in a matter of hours, at a very low cost. Each of the three workflows has its merits to

address differences in aims and scope between the various end-users in mind, although the

main focus of this research is to explore new data value chains for the automotive industry.

5.3 Related Research

There has been considerable research on classifying Land Use and Land Cover (LULC) in

aerial and satellite remote sensing imagery with applications including environmental mon-

itoring and natural hazard detection [277, 278], agriculture and vegetation mapping [279],

and various urban planning applications [280, 281, 282, 283, 284, 285]. However, there has

been significantly less research in the public domain that explores the use of streetscape

imagery despite the widespread availability of tools such as Google Street View [286],

Mapilary[287], and KartaView [288]. Streetscape imagery sources such as these capture a

vast amount of high-resolution information on urban areas, much of which is impossible to

capture using aerial and satellite imagery due to occlusion by roofs, large structures, trees,

and the details lost in the low-resolution of these images.

Advancements in Industry 4.0 technologies such as image classification and Application

Programming Interfaces (API) have enabled researchers to improve on traditional ap-

proaches to object classification by combining aerial, and streetscape imagery [280, 289,

290]. The success of these studies, and other works discussed in this section, highlight this

emerging field of streetscape remote sensing as a possible route to develop a system to map

the urban environment of residential properties suitable for home EV charging. This sec-

tion includes an overview of the existing literature on remotely sensed streetscape imagery

as well as recent advancements in machine learning tools used for image classification.

5.3.1 Machine Learning in Remote Sensing

Data-driven computational geographical approaches have been used since the 1980s when

early LULC research relied on techniques to extract information at the level of individ-

ual pixels [291, 292]. This approach is often difficult as spectral information is often not

sufficient and results in high miss classification [281, 282, 293]. For example, concrete

rooftops, car parks, and road junctions may share similar spectral responses from an aerial

perspective, making them difficult to distinguish using early handcrafted feature-based
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methods such as Color Histograms [291] and Texture Descriptors [292]. Over the past

decade, as distributed smart systems and the internet of things have become increasingly

widespread, new technologies have emerged to process and analyse these vast amounts of

data. The subsequent development of smart devices, artificial neural networks and com-

puter vision systems has meant more recent approaches to LULC classification rely on

machine learning techniques such as SVMs and CNNs to classify structures, and urban

land use [280, 282, 283, 284].

Computer vision algorithms have proven to be especially powerful tools due to their versa-

tility, scalability, and low-cost [294]. CNN’s in particular have been widely used in remote

sensing applications and are a well-established approach for pattern recognition, object

detection, image classification, and image segmentation. CNN’s have been used to distin-

guish between types of buildings in satellite and streetscape imagery, and have been shown

to be very successful for some building types, such as religious buildings or entertainment

buildings that typically have very clear distinguishing features [295, 280]. However, pre-

vious research has shown performance drops when identifying classes such as residential

properties and garages where classes can be overlapped or have high variability [295, 280].

Inspired by the perception mechanisms of the visual cortex, a CNN architecture consists

of multiple layers of artificial neurons in a stacked arrangement to perform three main

operations: convolution, non-linearity, and pooling/subsampling [296, 297]. For image

classification, a series of multispectral images are fed into the first layer in the form of 2-D

arrays. The following sequential layers are then represented as input and an output feature

maps calculated by alternatively stacking convolutional and pooling layers. The final layer

is a fully connected layer in which classification is performed. For a further description of

CNN, the reader is referred to the appendix, Section .1.2.

Most of these works use pre-trained networks such as AlexNet and GoogLeNet that have

been pre-trained on the ImageNet database. ImageNet is a large image database containing

1000 images for 1000 different categories [298]. This open-source dataset leads to the intro-

duction of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Engineers

could now take advantage of this data, avoiding the otherwise expensive task of labelling

data, allowing a platform to progress the field of image classification through competition.

Other image databases similar exist for more specific purposes, such as Places: A 10 million

image database for scene recognition [299].

Several of the networks presented in this subsection were developed as entries to the

ILSVRC, and these pre-trained networks are also made open source. Re-purposing these
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pre-trained networks using a fine-tune transfer learning approach means fewer images are

required for training, as these networks retain information on low-level features that are

transferable between tasks such as the detection of edges and object boundaries. The most

common networks in the reviewed literature include AlexNet, VGG variants, GoogLeNet,

and ResNet variants, all of which are pre-trained on ImageNet.

Figure 5.1: The AlexNet architecture is one of the most simple CNN architectures with

only 8 layers and 60 million paramters [1].

AlexNet

Over the years, various CNN models have been proposed with specific architectural traits

and nuances to optimise performance. The eight-layer CNN was developed by Krizhevsky

et al. in 2007 for the ImageNet ILSVRC-2010 contest is among the most popular due to

its relative simplicity [1]. AlexNet was the first network to incorporate the ReLU activa-

tion function, which significantly improved the performance of feed-forward networks by

making it possible to develop much deeper networks than was previously possible. This

increased efficiency is because the gradient of the sigmoid activation function is between

0 and 1, which for many layers can result in gradients that are exponentially small. This

means very small changes occur between each step of the gradient descent, which leads

to slow convergence. For the ReLu activation function, the gradient is 1 if the input is

positive, and 0 if negative. This results in more stable gradients for deeper networks, as

well as faster computation as the derivatives, are quicker to compute.

Alexnet consists of 8 layers, with five convolutional layers and three max pooling layers.

This architecture results in approximately 60 million parameters, making it the least com-

plex network in this review. With only 8 layers, AlexNets simplicity makes it suitable for
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situations where near real-time processing is required. This is demonstrated by Amato et

al., who used AlexNet to detect parked cars in real-time using a Raspberry Pi as part of

an occupancy detection system [300]. In recent years, other networks such as GoogLeNet,

ResNet, and VGG variants have been shown to outperform Alexnet in a number of specific

tasks. However, Alexnet remains the baseline approach for remote sensing applications,

including LULC [301, 284], building instance classification [280, 282], and object detection

[302].

GoogLeNet

In 2015, Christian et al. proposed a new CNN building block called ’Inception Modules’

as part of the GoogLeNet architecture. This innovation leads to GoogLeNet winning the

2015 ILSVRC14 competition. The inception module is characterized by multiple filters

branching off in parallel from a single input layer [2]. The resulting outputs of the filters

are then concatenated to form a single input to the next layer. This allows for more spacial

information to be retained while using fewer parameters, making the network less sensitive

to over-fitting as well as requiring less computational expense [2].

The most simple structure of an inception model is the ’naive version’, consisting of a max

pooling layer and three filters of sizes 1x1, 3x3, and 5x5, as shown in Figure 5.2 (a). In

practice, the naive arrangement would lead to an increased number of outputs with each

layer. To overcome this, 1x1 convolutions are introduced before the expensive 3x3 and

5x5 filters to reduce the dimensionality of the input and prevent computational blow up

at deeper layers [2].

GoogLeNet has been shown to outperform AlexNet, and other networks in some aerial

LULC applications [303, 304], and has been used to classify buildings in Google Street

View images [305]. Previous work has shown that fine-tuning the network achieves better

results compared to training the network from scratch or using feature vector approaches

[303].

VGG

Visual Geometry Group Networks (VGG), used very small convolutional filters to enable

deeper networks ranging from 11 (VGG-11) to 19 (VGG-19) layers. The VGG networks

were entered as part of the ILSVRC challenge in 2014, achieving very high accuracies [3].

The network achieved top 5 performance, outperforming AlexNet but losing to GoogLeNet

191



Figure 5.2: The two types of inception modules introduced in the GoogLeNet CNN archi-

tecture [2].

[3]. The VGG network is constructed with the smallest possible convolutional filters of size

3x3 throughout all layers, although 1x1 filters are also used to apply linear transformations

using ReLU. Initial layers use 64 filters, with this number doubling with every increase in

layer depth. This results in a deep network with a very large number of parameters, around

138 million. An example of the VGG-16 network is shown in Figure 5.3, consisting of 13

3x3 convolutional layers and three fully connected layers.

Although GoogLeNet outperforms VGG in some applications, VGG is still widely used as

it has been shown to generalise well to a wide range of tasks and datasets. This being

said, the memory requirements of deeper VGG variants can make it challenging for some

applications, requiring large GPUs [306]. VGG has been used in related works to classify

urban scenery in streetscape images [307], as well as being successfully used to identify

buildings in streetscape imagery [280].

ResNet

In 2015, He et al. introduced the ResNet architecture which won the ILSVRC challenge

through the novel application of feedforward ’shortcut’ connections between layers [4]. This
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Figure 5.3: The VGG-16 network contains 13 3x3 convolutional layers and three fully

connected layers. [3].

architectural change was introduced to address the vanishing gradient problem faced by

researchers when exploring very deep neural networks. For a mathematical description

of the vanishing gradient problem, see Chapter 2 Section .1.2. He et al. propose a deep

residual learning framework such that for an input F (x) and output H(x), each residual

block optimises the residual function H(x) = F (x) + x under the assumption that this

is easier to optimise than the original unreferenced mapping H(x) = F (x). The residual

block is shown in Figure 5.4. The shortcut connections provide this residual mapping

through each layer. This approach is shown to be successful, allowing for more layers to be

stacked without increasing the number of parameters allowing for very deep architectures.

ResNet variants can be of various depths, with 18-, 34-, 50-, and 101- depth networks most

commonly used. ResNets have been shown to outperform other network architectures at

mapping tree cover in Google Street View imagery [308, 289]. Li et al. also show that

ResNet50 outperforms AlexNet at estimating building ages in Google Street View images

[309]. There has been no published research that aims to identify individual houses

suitable for home EV charging, nor has there been research to identify residential off-street

parking availability. While no work has been done to identify driveways, some works have

attempted to identify garages in Google Street View images. One related publication on

building instance classification includes garages as a target class but had limited success,

partly due to the overlap of classes in cases where many residential properties in the

surveyed area contain integrated garages [280]. Zhao et al. improve on this approach
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Figure 5.4: The ResNet architecture uses an identity connection to feed information forward

between layers to address the vanishing gradient problem [4].

Table 5.1: A comparison of the most commonly used CNNs in related remote sensing works

in the reviewed literature.
CNN Layer Depth Parameters (x106) Defining Features

AlexNet [1] 8 60 First to use ReLU

GoogLeNet [2] 22 7 Inception Modules

ResNet18 [4] 18 11.4 Shortcut Connections

VGG16 [3] 16 138 Very small conv filters

by using a bounding box approach to identify types of buildings, including residential

houses and garages [310]. By using object detection, this method allows for images to have

multiple labels, avoiding the challenge of overlapping classes.

5.3.2 Streetscape Remote Sensing

Streetscape imagery is a type of remotely sensed RGB image data source taken from the

perspective of a road user. Each image in a streetscape dataset provides a vast amount

of visual information about nearby properties that image recognition systems can leverage

to identify a wide range of building attributes. The use of streetscape imagery in remote

sensing is a very recent research topic, made widely accessible in 2007 when Google Street

View, the most popular source of such imagery, first released its API for users to automate

the request of streetscape imagery. Soon after came the release of similar services, includ-

ing KartaView in 2009 and Open Street View in 2013, although Google Street View has

194



remained the dominant source of such imagery for researchers in this time.

One of the first papers to explore this topic was on the use of SVMs to identify architectural

characteristics from streetscape imagery [311]. Since then, following the advancements of

image classification networks such as Alexnet and ResNet, more recent works have focused

on fine-tuning CNN and DCNN variants for object detection [280, 312, 313]. Some previous

works have explored using streetscape imagery and image recognition to identify external

features and attributes of buildings [314, 309, 315, 316, 280, 282]. These approaches all

use CNNs and Google Street View images. Li et al. demonstrated how CNNs can be used

to extract characteristics of Google Street View images, such as the building materials and

architectural styles of houses, to estimate the ages of buildings [309]. Other works using

Google Street View imagery for geospatial analysis include: pedestrian mapping [268],

quantifying outdoor space aesthetics [290, 269], and mapping green areas within cities

[289, 317].

A major challenge when using streetscape imagery is the occlusion of the target by ob-

jects in the foreground, such as trees, vehicles, pedestrians, etc. Some researchers over-

come these challenges by retrieving Google Street View images from multiple locations

surrounding a target [280, 294]. Alternatively, a combination of multiple data types can

be used to overcome occlusion challenges. There have been a limited number of studies

where both streetscape and aerial imagery have been used to survey urban environments

[280, 289, 290, 305]. In these cases, initial detections of the target domain are made using

aerial imagery and streetscape imagery is then used as a high-resolution auxiliary dataset

to either validate these assumptions or to gather further information on the target not vis-

ible from the aerial views. These works also focus on identifying high-level characteristics

of buildings and scenes, such as whether they are residential, commercial or public. Many

of these works focus on small-scale proof of concepts. However, Yin (2015) goes further

to develop more detailed work pipeline to demonstrate how large-scale audits of the built

environment can be automated [268]. Other than the bounding box approach by [310] and

the building age estimation by [309], few works go beyond the high-level classification to

identify more detailed features or characteristics of individual properties.

5.3.3 Geographic Data Sources and Digital Tools

To address the problem statement outlined in 5.2, any given solution to deliver surveys

of houses unsuitable for EV charging should be developed with two main end users in
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mind: Automotive companies and local governments. Automotive companies can use the

derived data of this system to predict consumer trends, target locations to install privately

operated charging stations, or sell the data directly to local authorities, District Network

Operators (DNOs), or other interested parties. This data is extremely valuable to DNOs

as no other mapping agencies, including Ordnance Survey (OS), currently provide informa-

tion on off-street parking availability, making it difficult to predict the increase in energy

requirements due to EVs in the medium- to -long-term. Similarly, local authorities need

this data to understand the uptake potential of the EV market to help meet environmental

targets, guide policies surrounding EV charging and plan future EV infrastructure projects

to support the growing number of EVs.

The selection of any geographical data sources and digital tool sets used to develop the so-

lution must consider these end users. This is to maximise the value of the final derived data

and ensure the development is aligned with the Industry 4.0 vision outlined in Chapters 2

and 3. The availability of digital skill sets in the relevant industries should be considered to

ensure the full potential of human resources can be leveraged to generate value. Similarly,

the selection of any datasets should also be aligned with current industry standards to

enable integration with existing datasets to create further value. Digital tools should also

have the potential to be automated while ensuring transparency and simplicity.

A common source for geographic information is Open Street Maps [318], an open-source

online mapping service used by many of the papers in the literature review to collect ge-

ographical information [295, 280, 290, 282, 319]. The main benefits of OSM are that it is

fully open source and provides various attribute data in easy-to-use formats. Most GIS

software support OSM data, and a wide range of open-source programming libraries are

available to import and pre-process OSM data. A downside of OSM is that because it re-

lies on Volunteered Geographical Information, the data quality can vary between locations,

particularly in suburban and rural areas where fewer users are available to contribute data.

Another disadvantage of OSM in the use case is that there is very limited attribute data

for specific properties when compared to other sources such as Ordnance Survey.

The Ordnance Survey is the most extensive mapping agency in the UK and is the standard

source of geographical information for local authorities and other government services. Lo-

cal authorities in the UK typically have dedicated GIS officers who are familiar with OS

data to support geospatial and geographical analysis works. The disadvantage of using OS

data is that private companies’ licences are extremely expensive. However, if a service is

being provided to a local authority, access to OS data can be obtained through a Standard
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Contractor Licence and derived data can be shared by both parties [320].

As part of the research, the authors collaborated with GIS Officers at various local authori-

ties and private companies to understand how to maximise the value of the end data. It was

found that a key consideration of should be the exact definition of properties suitable and

unsuitable for EV charging. While there are some general UK guidelines for what makes

a property suitable for EV charging, this can vary between local authorities depending on

the application. Any solution should be able to use a transfer learning approach to ensure

flexibility for the different use cases of the end users.

A report by Field Dynamics was the only other research identified with similar objectives

to identify houses suitable for EV charging. Field Dynamics is a data analytics consultancy

that offers a service to map off-street parking availability for local governments using GIS

tools. This method focuses on identifying houses with driveway access, using GIS tech-

niques to measure the distance between the edge of a residential building and the adjacent

road. However, limited information is available on the exact methodology and data pro-

cessing steps to perform this analysis [276]. This method research was explored further by

Swansea University expand on this method to identify suitable locations for installation of

public electric EV charging points using GIS [5].

One local authority was working on a related project using Google Street View to survey

a town to identify residential properties with various forms of off-street parking, including

driveways and garages, that would be suitable for home EV charging. This survey was car-

ried out by visually inspecting each Google Street View image in the town and collecting

data manually in a spreadsheet. The government sector has been slow to adopt Industry

4.0 technologies such as Big Data analytics and the advanced programming skills required

to automate workflows such as this [321].

5.4 Image Processing Methodology

This section discusses the methods used to develop the image processing portion of the 3

workflows. While each workflow differs slightly, they all rely on the same image processing

steps using Google Street View images and pre-trained neural networks to classify prop-

erties as suitable or unsuitable for EV charging. The application of these neural networks

enables large surveys of tens of thousands of households to be carried out in a matter of

hours at a very low cost. This section describes the methods of data acquisition for the

training and testing data, as well as details on how the models were selected and trained.

197



Figure 5.5: Locations from which training, testing, and case study data were retrieved.

5.4.1 What makes a property EV suitable?

To identify residential properties suitable for home EV charging, a definition of an ’EV

Suitable’ and ’EV Unsuitable’ property must be established. The current UK requirements

are access to private off-street parking where a wall box can be installed [270], however,

when developing a method, it is important to consider whether additional information on a

property can be leveraged to produce added value for the end user. For example, the works

by Field Dynamics classify a suitable property as one that has the potential for installing

an EV charging point. This means they do not distinguish between houses with accessible

driveways suitable for wall box installation and houses with frontal features blocking car

access, such as access steps or a walled front garden. Here, the assumption is made that if

sufficient space exists to park a car, the homeowner may decide to invest in adding a drive-

way to the property in the near future. Predictions made using this method are subject

to some inaccuracy and speculation, as some homeowners may not be able to get planning

permission or may not be able to afford the development of off-street parking. For these

reasons, the approach is most appropriate for users considering longer-term projects >10

years.

In this study, a different approach is taken to that presented by Field Dynamics. This

research focuses on providing the most accurate possible data on the location and distri-
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bution of properties that are immediately ready for the installation of home charging wall

boxes. The ’EV Suitable’ property is therefore defined as a residential property for which

there is a high probability that the property has access to at least one off-street parking

space suitable for immediately installing a home-charging wall box. An ’EV Unsuitable’ is

defined as a residential property without clearly accessible off-street parking or where no

residential property is visible. This may lead to some false negatives where homeowners

may have access to some external parking access, such as a detached garage or other park-

ing space away from the property. These instances are not considered in this study.

It is also important to note that the analysis is restricted to the property level, not the

household. Due to limited attribute data, some UPRNs may be houses of multiple occu-

pancy or converted into residential flats. However, insufficient data are available to dis-

tinguish between households. Future works should use additional data sources to identify

and exclude these properties from the survey to reduce false positives.

5.4.2 Data Acquisition

Google Street View image data were collected from 9 different UK towns and cities, shown

on the map in Figure 5.5. Six of these locations were used to collect training data, one was

used to test the models and optimise hyperparameters, and the final two locations were

used as case studies to analyse the accuracy of a scale full survey. These towns and cities

were selected due to their varying geographical locations, local histories, and population

density, all of which affect the housing style, age, and size. A diverse training dataset

ensures high accuracy when classifying properties from new, previously unseen locations.

The geographical data used to retrieve the Google Street View images at each training lo-

cation was obtained from Open Street Maps. For each location, an .xml file was exported of

all geographical information, and the road network coordinates were extracted at intervals

of 20m using an open source OSM interface [322]. At each road coordinate, four images

were requested from the Google Street View API at 0, 90, 180, 270-degree headings, while

the pitch was kept constant at 0 degrees. During the training phase, coordinates from the

entire road network are used to collect training data to ensure a wide sample that contains

a diverse range of images, including images for which no houses are present.

For testing, data are gathered from four locations: Oswestry, Petersfield, Birmingham, and

Gloucestershire. The Oswestry data is used in the early testing phase to explore different

approaches, compare models, and optimise network parameters. Petersfield, Birmingham,
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and Gloucestershire locations are used as case studies to perform surveys and evaluate the

performance of each of the three workflows described further in section 5.5.

Figure 5.6: Example images from the 6 categories used to train the CNNs.

5.4.3 Image Classification

Definition of Classes

Initially, the image classification task was treated as a simple binary classification, using

a single CNN to distinguish between the positive and negative classes. This approach

was unsuccessful, and even when revisiting this approach using the optimised networks de-

scribed in section 5.4.3, a maximum F-score of 25.4% was achieved. These early approaches

likely failed due to the high diversity of the ’EV Unsuitable’, leading to over-fitting. In-

creasing the number of positive output classes to reduce the diversity had limited success

when new categories were introduced to identify photos of houses with driveways (contains

driveway), houses with garages (contains garages), and all other unsuitable images (not

suitable). Upon inspection of the ’not suitable’ images, it was found images generally fall

into 4 classes: buildings, car parks, trees/fields / other greenery, or images taken at angles

facing directly down the road where buildings may be obscured by cars or trees. Examples

of these images can be found in Figure 5.6.

To address the high diversity of the dataset, it was decided to introduce pre-processing

step needed to filter out a large number of unsuitable images. The proposed solution is to
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split the image classification task in two, using two separate CNNs in a combined workflow.

The first CNN (CNN1), acts as a filter to remove unsuitable images. This is achieved by

training the network to distinguish between images of ’Car Parks’, ’Trees and Foliage’,

’Unsuitable Road Views’, and ’Residential Front Views’. Only images classified by CNN1

as Suitable Views’ are passed on to CNN2 for further processing. CNN2 then classifies

these images as either suitable or unsuitable for EV charging. This configuration of two

CNNs in a series gave better results than a single CNN. Table 5.2 presents a summary of

the class definitions.

While these class definitions were useful guidelines for most data, some cases presented

Table 5.2: The following definitions were used when labelling the training and testing data.

Category Definition

Car Parks Images of surface-level car parks, either occupied or unoccupied. This

includes car parking facilities in commercial and residential areas but

does not include roadside parking.

Trees and Foliage Images of trees, fields, roadside greenery, parks, or other green spaces.

Unsuitable Road

Views

Images taken at an angle facing down the road in the direction of travel

or at 180 degrees to travel. For ambiguous cases where the angle is not

exactly at 0 or 180 degrees, if the vanishing point of the road is visible,

it should be classed as an ’Unsuitable Road View’.

Residential Front

Views

Images of residential properties taken at an angle perpendicular to the

road / directly facing the property front.

EV Suitable Images showing at least one residential property with a driveway, inte-

grated garage, or any other safe place to park and charge a vehicle that

is clearly visible in the image. ’EV Suitable’ properties must also meet

the ’Residential Front View’ criteria.

EV Unsuitable Images of residential properties that have no off-street parking accessible

by road shown in the image. ’EV Unsuitable’ properties must also meet

the ’Residential Front View’ criteria.

challenges. For instance, some images would contain multiple instances of classes. To

address this, when selecting training data for CNN1, it was decided that the positive class

would always dominate. Any image containing a residential property taken at a suitable

view should be labelled as ’Residential Front Views’, even if trees and foliage are present

and largely obscure the property. Two examples of this have been included in Figure 5.6.
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Table 5.3: A breakdown of the image dataset used to retrain CNN 1. The Oswestry data

is used for validation and hyper-parameter optimisation.

Category B’pl P’gh S’sea C’ran Co’ter Ex’th Os’try Total

Car Parks 349 424 308 405 90 117 200 1,893

Trees and Foliage 318 1,658 573 311 348 402 200 3,810

Road Views 354 388 434 334 337 375 200 2,422

Suitable View 1,251 937 947 1,019 972 1,033 200 6,359

Totals 2,272 3,407 2,262 2,069 1,747 1,927 800 14,484

Table 5.4: A breakdown of the image dataset used to retrain CNN 2. The Oswestry data

is used for validation and hyper-parameter optimisation.

Category B’pl P’gh S’sea C’ran Co’ter Ex’th Os’try Total

EV Suitable 627 743 295 451 898 759 500 4,273

EV Unsuitable 542 379 411 94 322 415 500 3,232

Totals 1,169 1,122 706 545 1,220 1,174 1000 7,505

One example shows a house is only partially in the frame, and a fence partially obscures the

driveway, this is classed as a ’Residential Front View’ as the image is taken perpendicular

to the road, facing directly to the house. This same image was also included in the ’EV

Suitable’ training dataset, as the driveway for a residential property is clearly in view. An-

other example shows where a property lies on the corner of a junction. This is a common

case that had to be addressed and was somewhat subjective as this could be considered as

either an ’Unsuitable Road View’ or a ’Residential Front View’. It was decided that if the

property took up more than half of the image, it would be classed as a ’Residential Front

View’, otherwise, it would be labelled as ’Unsuitable Road View’. However, more complex

situations meant there was some subjectivity to unusual cases such as this.

CNN2 posed a more significant challenge. Initially, the definition of an EV-suitable prop-

erty was based on the UK Governments’ guidance for customers in its Electric Vehicle

Home-charge Scheme documentation [270]. Here it says that a property needs access to

off-street parking to be eligible for the scheme i.e. a garage or a driveway. However, this

may include garages or parking spaces located away from the main building and out of

view of the Google Street View images. For this study, EV-suitable properties are defined

as residential properties with off-street parking adjacent to the house.
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Model Selection

To minimise the amount of training data required a fine-tune transfer learning approach is

used. This allows us to use networks that have been pre-trained on large datasets and have

already learnt to detect edges, shapes, intensity and other low-level features of images. By

leveraging this knowledge of the pre-trained networks, less data is required when training

new classes.

Based on similar works described in section 5.3, it was decided to compare three different

Figure 5.7: A box plot showing the range of F-scores resulting from the hyperparameter

optimisation experiments for three different architectures. Googlenet performs the best for

both CNN1 and CNN2.

pre-trained networks for CNN1 and CNN2: ResNet, GoogLeNet, and AlexNet. VGG

variants were initially included, but the memory requirements were too high. The datasets

used to compare the performance of each of the networks are shown in Tables 5.3 and

5.4, sourced from the Oswestry data. Prior to the comparison, a separate testing dataset

from Oswestry was used to explore how different training parameters affected the overall

accuracy, including the initial learn rates, batch size, learn rate drop factor, learn rate drop

period, and L2 regularisation. For all three networks, the initial learn rate and batch size

had the greatest effect on performance. A grid search approach was used to optimise these

parameters for each network, the results of which are shown in Figure 5.7.

GoogLeNet achieved the highest overall accuracy for both CNN1 and CNN2. The confusion
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Figure 5.8: Confusion matricies of the optimal networks selected for CNN1 and CNN2

matrices from the best-performing runs are shown in Figure 5.8 For CNN1, a learning rate

of 1e-3 and a batch size of 32 gave the best results of 93.9%. More importantly, GoogLeNet

achieved a 100% recall for CNN1 at identifying the ’Residential Front Views’ category. This

means in this test dataset, all of the images would have been correctly passed onto CNN2.

However, it is important to consider the range in results, particularly for CNN1. In real-

world examples of this system, high-quality testing datasets may not always be available.

Depending on the application, users may want to select AlexNet, which gave a more robust

result at the expense of a lower maximum achievable accuracy. Given these results, it was

decided to use GoogLeNet for CNN1, given this high recall rate. For CNN2, GoogLeNet

was also selected, given the high F-score of 93.7%. The optimal model parameters are a

learn rate of 1e-3 and a batch size of 32.

5.5 ProposedWorkflows to Identify EV Suitable Houses

This section presents 3 workflows to deliver automated surveys of a specified area to iden-

tify residential properties suitable for home EV charging. Each of these workflows uses

the image processing steps described in section 5.4 with varying pre-processing and post-

processing steps to meet the requirements of different end-users. For each workflow, a

survey is carried out on the testing locations to demonstrate the performance of each

approach.
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Figure 5.9: Flow diagram for Workflow 1.

5.5.1 Workflow 1

The first method uses the same image data acquisition as outlined in section 5.4.2, ex-

tracting the entire road network coordinates from OSM at intervals of 20m using an open

source interface run in MATLAB [322]. This approach is advantageous when gathering

training data as it ensures sufficient diversity and quantity of training data, however, it

is less suitable for surveying use cases where cost is a limiting factor as many of the im-

ages downloaded will be removed by CNN1 and not used. While this approach is not

cost-effective for surveying use cases, it is very useful during the development stage as all

geospatial analysis, processing, and post-processing can be done by one engineer using a

single software. This allows for rapid testing and the development of new ideas. For these

reasons, this workflow is developed to be used by commercial entities such as automotive

companies for applications such as targeted marketing and predicting consumer trends.

The full workflow for the Birmingham case study is shown in Figure 5.9.

Birmingham Survey

The Birmingham test area was limited to roughly 4km2 located east of the city centre

due to the high density of houses and the limitations of the Google Street View API. The

survey area is shown in Figure 5.10. A total of 28,728 Google Street View images were

retrieved from this location, of which 13,962 were duplicate images and had to be removed

prior to further processing. The remaining 14,766 images were manually labelled into the

respective categories to produce the test dataset and evaluate the networks’ performance.

The high number of duplicates is due to two main reasons. Firstly, road network co-

ordinates are retrieved at 5m intervals, which was found to be a higher resolution than

the Google Street View image locations. However, this resolution can vary between areas.

When requesting an image from a given coordinate, the API returns the closest image
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Figure 5.10: Survey area for the Birmingham case study.

Figure 5.11: Confusion matrices showing the performance of CNN1 and CNN2 on the

Birmingham dataset.

within a certain radius. There is a balance here between getting sufficient coverage and

minimising duplicate downloads. Secondly, limited attributes are listed in the OSM docu-

mentation that enables the user to distinguish between types of A roads, B roads, one-way

streets, no vehicle access roads, public footpaths, ect. This leads to some roads being
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Figure 5.12: A heat map of EV-suitable properties in the Birmingham survey area.

overlayed on top of each other and also explains some of the gaps in the road network in

figure 5.10.

Once the images were downloaded, they were passed through CNN 1 for pre-processing.

For the Birmingham test area, CNN 1 achieves a recall of 96.3% when identifying images of

Residential Front Views, as shown in Figure 5.5.1. Following the CNN 1 step, 7408 images

were passed onto CNN 2 for processing, which then identified 5376 images as suitable for

EV charging, giving a high recall of 89.3%, as shown in Figure 5.5.1. Overall, the system

recognises 4617 of the total 5306 images suitable for EV charging. Figure 5.5.1 shows all

EV-suitable properties plotted on a heat map to show which areas have the highest and

lowest density of houses suitable for home EV charging point installation.

From these results, it is found that this data acquisition method does not lend itself to

large-scale surveys due to the high number of duplicate images and the high number of

images that do not include suitable views of houses. This is particularly true in rural areas.

This method is more useful in the early development stages to gather training and testing

datasets and develop custom post-processing tools such as the heat map in Figure 5.5.1.

Because this method allows for the full workflow to be run in a single platform such as

MATLAB or Python, this makes it more suited to integrating with existing systems and

datasets.
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5.5.2 Workflow 2

Following the findings from workflow 1, a second method was developed to address the

data acquisition challenges and ensure the method’s scalability by exploring the use of

alternative datasets and geoprocessing tools to retrieve location data for each property.

With a proof of concept already established, it was also decided to narrow the scope of

this research to focus specifically on developing a tool for local governments. As discussed

in section 5.3.3, the advanced data analytics and coding skillsets required to use, develop

and maintain workflow 1 are not widely available within local government. Therefore, to

improve data acquisition, it was decided to use Ordnance Survey data rather than OSM

data, as these data are already widely used by local authorities and provide more accurate

and detailed attribute information of each property to enable more efficient retrieval of the

image data.

Figure 5.13: Flow diagram for Workflow 2

Ordnance Survey Data

OS data is readily available for all local governments in the UK and provides the most

accurate attribute information on UK properties, each of which is identifiable using the

Unique Property Identification Number (UPRN) associated with it. Workflow 2’s data ac-

quisition step combines several Ordnance Survey datasets pre-processed using Geographi-

cal Information Software (GIS). Specifically, detailed information of buildings was attained

from the AddressBase® dataset and property boundaries were obtained from Digimap OS

Mastermap Topography Ordnance Survey datasets. The vector layers were pre-processed

using QGIS 3.18 such that all non-residential buildings were removed. There are several

advantages to using OS data and GIS in this way. Firstly, these data are widely used for

geospatial analysis in various industries and make collaborating and sharing information
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much easier. Secondly, OS data provides a range of attribute data for all properties, includ-

ing geographical location and whether the property is residential or commercial. Therefore,

this approach enables us to retrieve coordinate data at the individual property level, which

significantly reduces data acquisition costs, making this approach highly scalable. Finally,

being able to pre-process the data in GIS allows coordinate data to be generated based on

specific attributes, making future works easier to adapt to other use cases.

Automation Considerations

As part of this study, researchers met with GIS Officers at local authorities in England

and Scotland who were interested in better understanding the local EV infrastructure.

Discussions took place on how to maximise the value creation of the output data to create

the greatest value for local governments in a surveying use case. It became clear that

due to varying regulations, political motivations, and environmental targets between the

local authorities, they each had different ideas of how the system might be used to deliver

the greatest value. For example, one local authority had a longer-term view of EV suit-

ability, defining EV-suitable houses as those at which a charging wall box could feasibly

be installed immediately or in the near future if the property owner was to modify some

external characteristics. Examples are cases where a front garden could be converted into

a driveway, which may involve removing a fence or hedgerow. This highlights one of the

major advantages of combining image classification with GIS in this way. When transfer-

ring this methodology to a new local authority with different but similar class definitions,

the networks can be easily retrained using a new training sample developed collaboratively

with local GIS officers to meet the demands of that specific end-user.

Dataset Validation

To ensure the quality of the training and testing datasets, the authors collaborated with

GIS officers to validate a sample of 100 images selected from both the ’EV Satiable’ and

’EV Unsuitable’ classes. Given that in this study only considers properties that are im-

mediately suitable for home EV charging, the GIS officer the following definition for this

labelling task:
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Table 5.5: Geographical data sources

Data Scale

OS MasterMap Topography 1:1 250

OS MasterMap Highways-Roads 1:2 500

OS Open UPRN 1:1 000

2011 Census MSOA Code: E02004708 MSOA

Images showing at least one residential property with a driveway, integrated garage, or

any other safe place to park and charge a vehicle that is clearly visible in the image.

Following this guidance, the GIS officers’ labels agreed with ours for all 200 images.

With this result, the datasets were assumed to be of sufficiently high quality, and it was

decided not to revise the training or testing datasets for either the Petersfield or Birming-

ham locations.

Petersfield Survey

To test workflow 2, it was decided to explore a more rural area to see how the network

performed compared to the more urban environment of the Birmingham study. For the

Petersfield test dataset, the survey area is defined by the Middle Super Output Area code

MSOA E02004708. This MSOA encompasses 4,317 buildings included in the survey giving

a total of 17,268 images downloaded. A map of the survey area is shown in Figure 5.15.

For this paper, QGIS 3.10 software was used to gather coordinate data for all properties

within the survey area. The full workflow for the Petersfield case study is shown in Figure

5.9.

At the Petersfield location, of the total 17,268 images downloaded, 1,700 image requests

failed to download and 8443 duplicate images were removed. Because Petersfield is a much

more rural area, it is assumed that the failed downloads are either because no Google Street

View data has been gathered in these specific locations, or these locations are instances

where the centroid of the building polygon is too far away from the nearest public road for

Google to recognise the request. This may be due to private road access to a property, or

a very large building polygon. Of the remaining 7,125 images passed onto CNN1 for pre-

processing, 3,295 images were identified as suitable views. The confusion matrix for CNN1
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and CNN2 are shown in Figure 5.14, achieving F-scores of 93.6% and 88.7% respectively.

Figure 5.15 shows all suitable and unsuitable houses plotted on a map of the survey area.

Once again, CNN 1 is highly accurate at filtering out unsuitable images despite the change

to a more rural environment. CNN 2 achieved a much lower false negative rate in this rural

location while maintaining a similar false positive rate. However, given the different data

acquisition methods for workflow 1 and 2, it is not possible to draw direct comparisons.

This is addressed in the next case study presented in the following section.

The majority of the time taken to complete this survey lies in the GIS data acquisition and

the Google Street View API requests. With the lessons learned from the Birmingham case

study, this workflow allowed the author to survey all 4300 houses within a single working

day. This excludes time spent labelling data and training models, which are significant

tasks. However, this only needs to be completed once, after which multiple surveys can be

quickly conducted at any location with similar architectural characteristics to the training

dataset.

Figure 5.14: Confusion matrices showing the performance of CNN1 and CNN2 on the

Petersfield dataset.
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Figure 5.15: A map showing all locations of suitable and unsuitable properties in the

Petersfield survey area.

5.5.3 Workflow 3

From the findings from the Birmingham and Petersfield case studies, further opportunities

to improve the methodology are identified. Firstly, these findings suggest that by improving

the methods of data acquisition, further reductions in the number of failed downloads can

be achieved and improved accuracy. However, further testing is required to validate this,

as the two test locations have contrasting population densities and architecture. Secondly,

the property is immediately labelled as unsuitable at UPRN locations where no Google

Street View data exists, resulting in a higher number of false negatives. To address this

challenge, alternative datasets must be explored.

This section addresses these opportunities by introducing a third iteration of the method-

ology and performing two additional surveys at locations in Gloucestershire. Workflow 3

expands on Workflow 2, focusing on local authorities as an end users and aiming to reduce
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the false negative rate by adding two additional processing steps that utilise additional data

sources. Prior research shows that use satellite imagery can be combined with streetscape

imagery to achieve high accuracy of building instance classification [280, 289, 290]. Drawing

on lessons from this research, this section explores how extracting information on build-

ing footprints can be used to infer additional information on the architectural features of

a building to inform the classification model. To achieve this Sentinel-2 optical satellite

imagery is used, as well as building footprint information from the OS datasets.

A diagram of Workflow 3 is shown in Figure 5.16. By applying the ’double-check’ on

UPRNs classified as unsuitable by CNNs, the predictions can be re-evalidated to reduce

false possitives and provide a means of analysing UPRNs for which no Google Street View

images are available.

Figure 5.16: A flow diagram for Workflow 3.

GIS Proximity Analysis

In section 5.4.1 research by Field Dynamics is discussed, where GIS tools are used to iden-

tify properties with a high likelihood of off-street parking based on the space between the

building footprint and the adjacent road. Using the average UK parking size of 2.4m x

4.8m, the proximity analysis method assumes that if insufficient space exists to park a car,

then this property is classified as unsuitable for EV charging. If sufficient parking space

does exist, the UPRN is passed onto an additional processing step to check the vegetation

index of the frontal space using Sentinel-2 data to distinguish between a paved driveway

and a green front garden. The size of the frontal areas is calculated using the OS Topogra-

phy Layer processed in QGIS by measuring the distance between the edge of the building

polygon to the adjacent road.
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Sentinel-2

Sentinel-2 is a multi-spectral satellite with 13 bands, providing high-resolution images that

have been widely used for LULC applications such as distinguishing households plots [18],

mapping urban areas [17], and analysing public urban green spaces and private gardens

[19, 20].

If a UPRN has been found by the proximity analysis to have a suitable space for off-street

parking, Sentinel-2 data are used to determine if this area is either a paved driveway or a

green front garden. This is done by calculating the Normalized Difference Vegetation Index

(NDVI) using bands 4 and 8, which capture the red and near-infrared at 10m resolution.

NDVI is a common means of detecting vegetation in remotely sensed images. On a scale

of -1 to 1, values between -1 and 0.19 indicate surfaces similar to rock or concrete, while

values 0.19 and above indicate vegetation. For the selected UPRNs, the vector polygons

from the OS MasterMap Topography Layer are obtained to extract the frontal area for

calculating the NDVI value.

This combined approach of proximity analysis and Sentinel-2 assumes that the frontal

area of any property that is large enough to park a car and has a low vegetation index is

a driveway. This is not always the case, as it may be a paved front garden or other areas

inaccessible from the road. However, these cases are assumed to be the exceptions, and

while this will result in a slightly increased false positive rate, the overall accuracy should

be improved overall due to the reduced false negative rates.

Gloucerstershire Survey

To test this methodology, additional test datasets are developed using images from two

postcode locations in Gloucestershire, GL55 and GL53, as shown in Figure 5.17. Glouces-

tershire County Council declared a climate emergency and aims to reduce their carbon

output bu 80% by 2030 and become fully carbon neutral by 2050. At the time of this

study, these locations have limited public charging points, making these areas an ideal

study site to support the future uptake of EVs. The GL53 location is a rural area with

low population density, making it a good location to test the new approach to identifying

driveways that are likely to be occluded by greenery. The GL55 location is more urban,

with parts of the area within Cheltenham, Gloucestershire’s second-largest town with a

population of 117,500. Surveying these two locations will not only allow us to directly

compare the different methodologies but also allow us to see how each method performs in
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Figure 5.17: Gloucerstershire Map [5]

different environments.

To evaluate this method at this new location, a random sample of 200 UPRNs was se-

lected from each location and the respective Google Street View images were labelled by

a licenced EV charger installer. This resulted in a dataset of 157 households from GL53,

and 172 households from GL55 that were successfully downloaded to be used in the test

datasets. The discrepancy between these numbers and the original sample of 200 is due to

some Google Street View images failing to be downloaded.

In this comparison, workflow 1 was not included due to its different method of data acqui-

sition, which prevents us from retrieving the same image data for an accurate comparison.

The results for the Gloucestershire locations are shown in Figure 5.19 with F-scores of

69.3% and 81.4% at GL53 and GL55, respectively. At both locations, the addition of the

proximity and multi-spectral analysis steps resulted in a slight increase in precision due to

the decreased false negative rate. However, there is a significant reduction in the recall due

to a further increase in the false positive rate. As a result, the overall F-score of method

3 is lower than method 2 at both test locations.

Further investigation finds that one of the most likely reasons for this significant increase

in false positive rate is the low resolution of Sentinel-2. Sentinel-2 has a resolution of

10m, while the minimum size of the parking space to be analysed was 2.4m x 4.8m. This

low resolution means that nearby features will affect the NDVI value, such as roadside
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Figure 5.18: Workflow 3 F-scores

trees, neighbours’ gardens, or other greenery, within the target property’s frontal space.

Because the false positive rate is increasing, the pipeline incorrectly reclassifies unsuitable

properties as suitable during step 6.

5.6 Discussion

Section 5.5 presents 3 methodologies to identify residential properties suitable for EV

charging. Each of these methodologies is built around a pair of CNNs that perform image

classification in series to first filter out images that are unsuitable for processing and then

classify the remaining images as either suitable or unsuitable. It is demonstrated that

using a CNN as a pre-processing step to identify and filter out unwanted images is highly

effective, achieving recall rates of up to 100%. It is also shown at four separate locations

that the three variations of this general method achieve high accuracy.

Figure 5.15 shows how a local authority or other commercial entity might use this work-

flow for a range of urban planning projects. For example, in the bottom right of the map

there is a cluster of houses highlighted in black that are unsuitable for home EV charging.

This highlights a potential location for installing community charge points to improve the

accessibility of green transport options within the local area. Local authorities can use this

data to support EV uptake as part of efforts to meet clean air targets outlined by the UK

government and the Paris Climate agreement. Once models are trained and tested, being

able to conduct surveys like this in a matter of hours represents a major advancement in

surveying technology compared to current manual methods.
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Figure 5.19: The confusion matrices of the Gloustershire test locations for Workflows 2

and 3.

217



Using the results from the Petersfield location, a rough cost estimate can be made to deliver

a survey of this type at the local authority level. Assuming the same number of images

would be required to survey each of the 15 MSOAs in East Hampshire District Council,

including the Petersfield MSOA, and given a cost of $0.007 per image download from the

Google Street View API, a total cost of $1930 is estimated, excluding labour. Licensing

costs can also be excluded as OS data can be accessed under a Standard Contractor Licence

with UK local authorities. Using this same approach, to survey Birmingham, the largest

English authority containing roughly 442,000 dwellings, the estimated total cost scales to

approximately $20,000 +- $5000 when considering duplicate images. Furthermore, once

image data is acquired from an area, these dame images can be easily repurposed for ad-

ditional image classification tasks for surveying use cases. Further work should explore

adapting this methodology to identify other characteristics of residential properties to pro-

vide alternative surveying services. Possible research directions may include estimating the

energy efficiency of homes or identifying properties suitable for solar PV installation.

The methods for data acquisition in methods 2 and 3 were found to be much more ef-

fective, resulting in fewer duplicate images and providing more useful output data for

real-world applications when collaborating with local councils and other researchers who

often required data on individual properties, identifiable by their UPRN and respective

coordinates. The data acquisition approach used in Workflow 1 made it difficult to link

images to these UPRNs, hence why this method was not used in the comparison in section

5.5.3.

While the improved method does result in a high level of accuracy, a significant number

of duplicate images still needed to be removed in pre-processing. Further works should

improve the GIS data acquisition to ensure the coordinates of each building polygon are

retrieved as close to the road as possible to ensure the highest accuracy when requesting

the respective image from the Google Street View API.

Compared to the Petersfield survey, the Gloustershire results show a reduction in F-score

of around 15%. In both survey areas, the false positive rate was found to have the greatest

negative effect on the overall accuracy of the method. Upon inspecting the types of im-

ages that result in false positives, there are three main attributes that a large proportion

of these images share in common. Firstly, are images of properties taken on the corner

of a road intersection. Secondly, are properties with large front gardens with either low

fences or no fences at all. Finally, are images of car parks that are adjacent to residential

properties. While these features result in a large number of miss classified images, there
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are also many more unique architectural quirks that also lead to false positives. Given the

specificity and high variance of these features, it is impractical to address these issues by

modifying the training datasets as this would add considerable time to what is already the

most laborious process in developing and replicating this research. Instead, it is considered

how prior research has addressed the challenges of using streetscape imagery by using aerial

and satellite imagery as ancillary datasets [280, 289, 290]. By extracting information on

building footprints, additional information can be obtained on the architectural style of a

building that can be used to inform the classification model [280]. Such building footprint

information is already available in the existing OS datasets.

5.7 Conclusion

In this chapter, three novel methods are presented to automate current approaches to sur-

vey the external characteristics of residential properties. Specifically, this research focuses

on identifying houses with private off-street parking, a key requirement for installing home

EV charging systems in the UK. The methods are developed with two main end users in

mind: automotive companies and local governments. It is discussed how these industries

can use these tools to perform large-scale surveys to support the future development of

EV charging infrastructures in both the short- and long-term, as well as discuss the use of

these tools for target marketing of EV products.

In developing these methods, a novel image processing pipeline is presented using two

CNNs in series to address over-fitting in a classification task where labels are ambiguous

and there is high diversity within classes. An initial CNN is used to filter out unwanted

images, while the second CNN performs the binary classification of ’Suitable’ or ’Unsuit-

able’. It is demonstrated that using a CNN as a pre-processing step to identify and filter

out unwanted images achieves recall rates of up to 100%, leading to high overall accuracies

of the full pipeline.

The methodologies presented in the chapter are shown to achieve high levels of accuracy in

identifying residential properties suitable for EV charging. Three case studies are carried

out at different locations in the UK to demonstrate the models, each of which is developed

with different end users in mind. Each of the models achieves high accuracies in iden-

tifying EV-suitable properties. It is found that the methods that rely solely on Google

Street View imagery have some limitations, achieving slightly lower accuracies in rural
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areas where residential properties are obscured by roadside greenery such as hedgerows

and trees. To overcome this, Workflow 3 also incorporates satellite imagery to improve

performance. However, the low resolution of satellite imagery was found to be insufficient

to improve the system’s accuracy.

The methods developed in this chapter represent a major advancement towards fully au-

tomated remote surveying capability to audit the built environment. Further research is

recommended to explore the use of this technology in identifying suitability for photo-

voltaic installation, external wall insulation, and other factors to help improve housing

sustainability. In automotive applications, further research is also required to explore the

issues relating to the intellectual property of the derived data and how to create value

from these data insights. Possible directions may include a web-based application for local

governments to access these data as a service to help improve EV charging infrastructure.

With further advancements in autonomous driving, Ford should consider developing their

own streetscape datasets to overcome the IP challenges and explore further use cases for

data-as-a-service models such as these.
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Chapter 6

Conclusions

The automotive industry is in the middle of a major change due to new environmental

policies, changing consumer demands, and rapid advancements in data-driven manufac-

turing technologies. These factors have resulted in an industry-wide shift towards electric

powertrain, which is widely expected to become the dominant mode of powertrain in the

near future [9]. Ford Motor Company are still in the early stages of the EV revolution,

which requires considerable investment to develop new manufacturing solutions for battery

and rotor-stator manufacturing and new product lines.

In addition to the challenges of the transition towards electric powertrain, the automo-

tive industry also finds itself amid a wider industrial revolution as emerging digitalization

and automation technologies and business practices are redefining the manufacturing sec-

tor. This fourth industrial revolution, or Industry 4.0, presents additional opportunities

for automotive manufacturers to digitalize and integrate all areas of business operations

throughout the product life-cycle, delivering productivity improvements and reduced op-

erating costs, as well as the opportunity to explore new data-driven business models to

remain competitive in changing automotive markets.

Successfully managing the transition to electric powertrain and Industry 4.0 will require

high levels of technological and organisational innovation that challenge the existing cul-

tures of the automotive industry. It is widely agreed that data will become an organisation’s

greatest asset in delivering this change, as well as people with the advanced data analysis

skills to create value from these data. Therefore, this thesis explores the sustainable ap-

plication of machine learning solutions in the automotive industry.

In this thesis, a comprehensive review of machine learning applications in the automo-

tive industry is presented. The review offers new perspectives on how to accelerate the
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development of machine learning technologies to maximise the value creation of existing

data value chains and how to mitigate the financial, strategic and cultural risks of these

technologies. In addition, through multiple case studies, further reviews are conducted

to critically analyse the most recent literature on machine learning in anomaly detection,

image recognition, change management, and digitalisation strategy. From the findings of

these reviews, a strategic framework is developed to support further organisational growth

in the automotive industry. The framework provides senior management at the factory

level with a stepwise roadmap to guide digitalisation and automation strategy to achieve

Industry 4.0 objectives and identify innovation opportunities. In collaboration with indus-

trial partners, this framework is used to perform a gap analysis and assess current Industry

4.0 maturity at three Ford UK manufacturing sites. The results of these assessments are

presented, and multiple innovation projects are identified. Two of these innovation projects

involving the applications of machine learning in the automotive industry are explored in-

depth, providing further examples of how opportunities and barriers to machine learning

adoption.

The innovations in Industry 4.0 change management and applied machine learning pre-

sented in this thesis are important steps in developing organisational knowledge for manu-

facturers to ensure a sustainable transition towards EV powertrain and Industry 4.0. The

significance of these works is recognised by the industrial sponsor, and the proposed strate-

gic framework has since been adopted by the European powertrain manufacturing teams

to support ongoing digitisation efforts in Europe. The research presented in Chapter 4 has

led to the development of a dashboard to deliver time savings at Valencia and Dagenham

to label data for machine learning projects. This dashboard is now being developed by

Ford’s R&D teams as an internal application to support future machine learning projects

in the company. Furthermore, a trial is ongoing to implement the machine learning solu-

tion presented in Chapter 4 at Dagenham Engine Plant, with further plans to expand this

solution in vehicle operations at Valencia and Cologne.

To conclude, multiple advancements are presented that contribute to the academic litera-

ture as well as developing and implementing sustainable manufacturing solutions to deliver

added value to current manufacturing operations. The proposed industrial solutions are

supported by clear stepwise frameworks to develop, implement and replicate these solutions

across the business. These contributions have been used to support ongoing digitalisation

efforts, implement state-of-the-art anomaly detection solutions, and explore new data-as-

a-service business models in one of the world’s largest automotive companies.
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6.1 Main Research Contributions

The work presented in this thesis contributes to the current research in applied machine

learning, Industry 4.0 management, and remote sensing. Some of the research has been

disseminated through journal articles and conference papers [323, 271, 324, 325]. A sum-

mary of the main contributions of the research concerning the original objectives are as

follows.

Objective 1: Identify the main machine learning technologies used in automotive

manufacturing, identify the barriers and opportunities for further sustainable growth and

value creation in this field, and understand the current barriers.

A comprehensive systematic literature review of machine learning applications in the

automotive industry is presented in Chapter 2. This review includes a low-level description

of the most popular machine learning models used in manufacturing, as well as critically

reviewing how these models are applied across various automotive manufacturing use cases.

This review provides new insights into the opportunities of these technologies and the tech-

nological and cultural barriers preventing their further uptake in the industry.

The review finds that many papers lack of information on the methodology applied when

conducting machine learning experiments, as well as the potential impact of the proposed

solutions. Many studies are found to lack information on data collection, labelling, cleaning,

and validation in existing research, as well as the absence of clear threshold limit-setting in

anomaly detection applications. Few researchers also consider the economic impact of the

proposed solution. Future research in machine learning applications must ensure sufficient

information on these aspects is presented to support future research as well as the imple-

mentation of these solutions in industrial settings. These findings are carefully considered

in our own research in chapters 4 and 5, where our own experimental methodologies are

described in detail and resource requirements to implement these solutions are estimated.

The literature review also explores cultural and organizational challenges associated with

the adoption of machine learning technologies in the manufacturing industry. Common

findings in the reviewed literature include a lack of data science skills and a reluctance to

embrace emerging technologies due to complexity and uncertainty. The study also iden-

tifies limited knowledge of machine learning requirements at the managerial and process

levels as a significant barrier to the development and implementation of these technologies.

These findings highlight the need for human-centric change management approaches and

strategies to drive innovation, and overcome cultural barriers in the automotive industry.
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These findings are addressed in Chapter 3 where best practices in change management are

incorporated in the Industry 4.0 assessment framework to support the future adoption of

machine learning and Industry 4.0 technologies in automotive manufacturing.

In addition to these research findings in Chapter 2, further reviews are conducted in later

chapters. Chapter 3 compares various maturity models to deliver Industry 4.0 in the

automotive industry. In reviewing these models and exploring their use at Ford Motor

Company, multiple shortcomings of these approaches are highlighted to explain why these

assessments often fail to provide a clear roadmap to guide change in practice.

Chapter 4 reviews machine learning methods for anomaly detection time series focusing

on semi-supervised approaches. Best practices to apply these methods using real-world

data are presented, as well as the common challenges faced when acquiring these data.

Chapter 4 includes low-level descriptions of dimensionality reduction approaches and ma-

chine learning models for anomaly detection. In Chapter 5, popular image classification

algorithms and their use in auditing the built environment are reviewed.

Objective 2: Development of a strategic framework to support the future uptake of

machine learning in the automotive industry with a focus on sustainability.

Chapter 3 addresses research gaps identified in the literature review by presenting a

maturity model to assess Industry 4.0 readiness in automotive production facilities and de-

velop a sustainable roadmap towards Industry 4.0. The assessment focuses on accelerating

digitalisation efforts and identifying opportunities to advance data analytics capabilities.

These aspects are key prerequisites to delivering machine learning solutions and maximise

the value creation of existing data.

Previous research explains the slow adoption of Industry 4.0 in the automotive industry due

to the limited availability of skills, poor change management, and a lack of organisational

knowledge [39]. Furthermore, researchers suggest that this problem is more complex than

a skills shortage and that the Industry 4.0 paradigm at its core needs to be better aligned

with social sustainability goals [39]. The research in this thesis supports these claims, and

therefore, the maturity model focuses on social sustainability and human-centric innova-

tion approaches.

The proposed maturity model is applied across three of Ford Motor Companies’ manufac-

turing plants in the UK, and the results of these assessments are critically reviewed. The

industrial impact of the assessment is discussed in detail. Several projects are identified

that aim to drive technological and organizational innovation, with tangible improvements

already observed in simulation models, production efficiency, and upskilling initiatives.
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This research also demonstrates the value of the proposed assessment framework in guiding

strategic and organizational changes at a major automotive company. The questionnaire

findings provide quantitative information and clear visualizations that support proposed

changes, while the interview findings help identify innovation and replication opportuni-

ties. The debrief meeting was found to be a crucial aspect of the final methodology, as it

facilitates discussion and action planning among senior management.

In addition to the industrial impact of this reserach, these findings also contribute to the

academic literature by identifying and validating barriers related to data science skills,

knowledge gaps among management, and the broader applicability of barriers to complex

data-driven solutions in the context of Industry 4.0. It underscores the need for com-

prehensive data science skills training and talent acquisition in order to support future

digitalisation and automation opportunities. The insights gained from this research can

inform organisations and policymakers in addressing these barriers in order to further facil-

itate the successful implementation of Industry 4.0 technologies and practices for improved

business outcomes.

Objective 3: Using the proposed framework, develop machine learning solutions to

create value from existing data sources in the automotive industry.

Chapter 4 presents an industrial case study exploring anomaly detection in DC Nut

Runner assembly processes. DC Nut Runner is a complex anomaly detection problem

where anomalies are not outliers. In developing this solution, we introduce the novel con-

cept of the ’Anomaly No Concern’ class, in addition to the typical labels of ’Normal’ and

’Anomaly’. Introducing this new term helped address knowledge gaps between data sci-

entists and domain experts by highlighting conditions where some processing error had

occurred but could be clearly explained as something that would not impact part quality

or require any maintenance actions. The inclusion of the ANC class became a key consid-

eration throughout the model development and testing to help clean data, build testing

and training data, and address disagreement when labelling data. Furthermore, the ANC

class provided further insights into model performance when analysing the results and can

be used as further justification for the business case when estimating the solution’s impact

on quality metrics. A data labelling dashboard is also developed. The value of this proof

of concept has been reconised by the company and is now being developed as a internal

dashbaord to support future data labelling efforts.

Further work carried out in Chapter 4 has contributed to successfully delivering the
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ADAPT project, a machine learning strategy to address production anomalies and en-

hance quality in powertrain manufacturing. The author worked as part of a global cross-

functional team to develop and implement a novel anomaly detection solution to detect

outliers in nut rundown assembly processes. Project ADAPT has been successfully imple-

mented in two trials at Ford’s Dagenham engine plant and is estimated to deliver greater

than £10m per annum savings per plant. Following the success of these trials, the anomaly

detection method has demonstrated application readiness and is currently being rolled out

globally within Ford Motor Companies’ manufacturing operations. As a subject matter

expert in machine learning within Ford’s Power Train Manufacturing Engineering team,

the author continues to work on project ADAPT to explore further opportunities for cost

savings and quality improvements elsewhere within the company. Further applications of

the authors’ contribution to the ADAPT project have since been identified in vehicle as-

sembly operations, with ongoing collaboration with the Cologne Vehicle Assembly plant

to deliver further process optimization.

A key finding from the literature review is that few researchers consider the economic im-

pact of proposed real-world manufacutring solutions. This research shows that without

this information, organisations with low Industry 4.0 readiness, or those in the early stages

of their digital transformation, find it difficult to justify investment in innovation projects.

Without understanding the value proposition of the proposed solution, managers find it

difficult to present a business case to invest in these technologies. Therefore, the case

study in Chapter 4 focuses on the proposed solution’s economic sustainability. Current

investment strategies in the automotive industry are discussed as a barrier to innovation.

This expands on the research presented in Chapter 2, providing a practical example of the

challenges of estimating the ROI of innovation projects and how this should be considered

when economically appraising projects of this type. In addition to the industrial impact

of the proposed solution in Chapter 4, this research has also contributed to the academic

literature. A paper has been submitted to the journal ’AI’ and is currently under review

[325].

A second case study is explored in Chapter 5 explores how open source data can be used to

automatically survey the built environment and identifying houses with private off-street

parking. Off-street parking is a key requirement for installing home EV charging systems

in the UK, and understanding the current infrastructures to support the EV transition is

valuable to predict consumer trends and target marketing. Furthermore, the value of these

data for other industries is also discussed, including local governments and district network
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operators. For these industries, this novel approach to surveying the built environment is

a valuable tool to understand the future energy grid infrastructure requirements as energy

demands change with widespread EV ownership. Local governments can also use these

survey data plan and communicate grant schemes to promote EVs’ uptake to help meet

sustainable development goals. As Ford Motor Company continues to explore data-driven

business models, the value of these data presents new opportunities for the company to

promote its products, add value for customers, and deliver data-as-a-service business mod-

els. While some issues are identified with using Google Street View data for commercial

purposes, as Ford Motor Company continues to explore self-driving technologies, these

challenges will be overcome by using the company’s own streetscape imagery instead.

In addition to the business opportunities of this case study, the methods developed in this

chapter represent a major advancement towards fully automated remote surveying capa-

bility to audit the built environment. This research resulted in 3 published papers in the

field of AI and remote sensing [323, 271, 324].

6.2 Future Work

The transition to Industry 4.0 and the adoption of machine learning technologies is a

complex process, requiring organisational changes that challenge well-established business

practices. Ford Motor Company is in the early stages of the Industry 4.0 transition and

machine learning adoption in its manufacturing operations. The work presented in this

thesis addresses some of the major strategic and technical barriers to further adoption.

However, further work is required to continue this development in both academic and

industrial settings.

6.2.1 Industry 4.0 Assessment Outcomes and Future Work

The Industry 4.0 assessment presented in Chapter 3 identified multiple opportunities to

develop, implement, and replicate machine learning applications and related technologies

in Ford’s UK manufacturing sites. Multiple projects were identified from these assessments

to drive technological and organisational innovation at the respective sites. Two of these

projects were developed and implemented by the author are discussed in detail.

The first of project explored how AGV vehicle monitoring data and error logs could be

used to improve the company’s simulation models as well as reduce the cycle times of AGV
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routes on-site. This information has led to Ford Motor Company’s simulation models being

updated to reflect real-world AGV cycle times. This data has also been used by on-site

material handling teams to support route cause analysis of AGV errors. The second project

presents a new project management tool to address a gap in the company’s strategy to

support digital growth in sites with low Industry 4.0 readiness. The tool is designed to be

used by department managers and supervisors to identify digitalisation and automation

projects that can deliver quick wins using existing skills within teams. This tool has since

been used by Halewood teams to support local digital growth, identify skills gaps and guide

training and hiring strategies related to digitalisation and process automation.

Within the scope of this thesis, a limited number of these opportunities could be explored in

detail. Further work is ongoing within the sponsor company to continue the development

and implementation the following projects that were identified as a direct result of the

research presented in Chapter 3:

• Cobot Voice Command Systems Cobots will play an important role in future

assembly operations. Opportunities to deliver process improvements and improved

safety in Cobot systems were identified. These findings resulted in a collaborative

research project between Ford and Swansea University to explore voice command

systems for Cobots.

• Decentralise IT Skills The results of the Industry 4.0 assessment at 3 manufac-

turing sites and interviews with 121 employees across multiple organisations find the

most signitficant barrier to digitalisation and Industry 4.0 at Ford Motor Company

is the centralisation of IT skills at the plant level. Further work is required to decen-

tralise these skills and ensure people on the shop floor have skills in IP addressing,

networking, MQTT, IT standards, and IoT infrastrucutres. Multiple examples are

identified where a lack of access to these skills has prevented innovation and IoT

implementation in logistics, production, maintenance, and process teams. As Ford

Motor Company continues to transition towards higher levels of data and systems in-

tegration, and adopts Cloud infrastructures, the demand for these skills will increase.

• Cobot Implementation at Halewood Multiple Cobot systems will be introduced

at Halewood with the upcoming launch of a new EV transmission line. The Industry

4.0 assessment identifies a knowledge gap at the Halewood site related to these sys-

tems, particularly in process and maintenance teams. Opportunities are identified

to install Cobots on existing lines fitted with computer vision for quality inspection.
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These opportunities are of minimal risk to production and low cost. Installing these

systems ahead of launch is important to proactively address skills gaps and deliver

training on Cobots and computer vision.

• Digitalising Kanban Some manufacturing sites still use paper-based Kanban boards

to manage production. Transitioning to digital project management in production

areas presents significant risks. The proposed strategy to address these challenges

is presented in Chapter 3. Further work is required to deliver this solution at the

Halewood Transmission Plant.

Due to time constraints and COVID-19 restrictions, the long-term impact of proposed

innovation projects could not be thoroughly examined. Work is ongoing to understand the

economic impact and quantify the value of the assessment methodology. Developing this

organisational knowledge will play an important role in communicating the business case to

support future investment in Industry 4.0 and machine learning solutions and understand

their economic sustainability. Given that these projects were identified using the Industry

4.0 assessment tool, quantifying their impact will help communicate the value of perform-

ing Industry 4.0 assessments to other manufacturers, providing further opportunities to

support digital growth at a global scale.

In addition to the technical opportunities, this research also identifies further opportunities

for strategic and organisational growth. Further work is required to define a benchmark

for cultural aspects of Industry 4.0 across industries and organisations, as well as to under-

stand how maturity models help support growth in these areas. While this was not possible

within the scope of this research, within Ford Motor Company it is proposed that the In-

dustry 4.0 questionnaire is sent out to sites that are known to have the highest Industry 4.0

readiness. These responses can then be used to define the internal benchmark for Industry

4.0 culture. Comparing responses of future assessments from sites with high maturity may

give improved guidance to management on what actions need to be taken to make cultural

changes to support ongoing digitalisation efforts. Furthermore, in addition to defining the

Industry 4.0 benchmark, it is also recommended that following an assessment the same

questionnaire is sent to all salaried employees every 6 months after the initial assessment.

By comparing responses over time this would help measure progress towards Industry 4.0

objectives.

Future research is also required to explore how the findings presented in this study can

be generalised to other industries or organisations. The research presented in Chapter
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3 focuses specifically on the application of the proposed assessment methodology within

Ford Motor Company’s UK manufacturing operations. While the findings provide valu-

able insights for this context, further research is needed to explore the application of this

methodology in different contexts.

Finally, while the research mentions using the questionnaire to measure ongoing cultural

changes at the factory level, this analysis was not possible due to the time constraints of

this study.

6.2.2 Anomaly Detection Future Work

This research presents a major advancement in anomaly detection research and highlights

multiple opportunities for continued efforts in this space. This project presents the first

attempt to perform anomaly detection in manual production processes. These data present

new challenges yet to be explored by anomaly detection researchers. Further work is re-

quired to understand how to address data for which there is disagreement among domain

experts on the category. This project overcame this challenge by having multiple engineers

label the same data, however, this approach is time-consuming and labor-intensive. Fur-

ther research should consider how to quantify the disagreement between labellers and how

to use these contrasting data to optimally train an anomaly detection model.

Due to time constraints, the long-term impact of the anomaly detection solution presented

in Chapter 4 has not been quantified in real-world production environments, although

estimates are made based on available warranty data. This opportunity for future work

is recognised by the industrial sponsor, with trials planned to implement the nut runner

solution in engine assembly and vehicle operations as part of Project ADAPT. Further

work is also required by Ford Motor Company to overcome the IT challenges of the LSTM

implementation, specifically to enable Tensorflow GPU environments in existing machine

learning pipeline architectures.

The lack of data was a challenge throughout the development of this solution. With newly

available data from the recent trial at Dagenham, further research is also required to ex-

plore unsupervised approaches. The author proposes that future research explore the use

of cross-validation to identify training data that impact final accuracy when randomly

sampling training data. This requires high-quality testing datasets and therefore requires

additional work from test engineers to support data labelling efforts.

This research shows that the proposed method performs better on automated nut runner
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datasets than on manual datasets. As more data are available on different process variants,

it should also be considered how different anomaly detection approaches perform on each

type. Further research is required to explore how to automatically select the appropriate

anomaly detection method based on the features of a specific process.

6.2.3 Mapping Homes Suitable for EV Charging Future Work

The methods developed in this Chapter 5 represent a major advancement towards fully

automated remote surveying capability to audit the built environment. However, in the

proposed workflows to identify houses suitable for EV charging, the analysis is restricted

to the property level, not the household. Due to limited attribute data, some UPRNs

may be Houses of Multiple Occupancy (HMO) or converted into residential flats. Future

works should explore the use of additional data sources to consider these attributes in the

analysis.

Further research is recommended to explore the use of this technology for other use cases.

Some examples that gained commercial and academic interest include, identifying suitabil-

ity for photovoltaic installation, external wall insulation, double glazing, and other external

characteristics that can be surveyed to help better understand the energy efficiency of res-

idential housing.

In automotive applications, further research is also required to explore the issues relat-

ing to the intellectual property of the derived data and how to create value from these

data insights. Possible directions may include a web-based application for local govern-

ments to access these data as a service to help improve EV charging infrastructure in their

constituencies. As Ford continues to develop autonomous driving solutions, the company

should consider developing their own streetscape datasets to overcome the IP challenges

and explore further use cases for data-as-a-service models.

While the improved method does result in a high level of accuracy, a significant number of

duplicate images still needed to be removed in pre-processing. Further works should further

improve the GIS data acquisition to ensure the coordinates of each building polygon are

retrieved as close to the road as possible to ensure the highest accuracy when requesting

the respective image from the Google Street View API.
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[87] M. Mazzetto, M. Teixeira, É. O. Rodrigues, and D. Casanova, “Deep Learning Models

for Visual Inspection on Automotive Assembling Line,” International Journal of

Advanced Engineering Research and Science, vol. 7, no. 3, pp. 473–494, 2020.

[88] I. Cerro, I. Latasa, C. Guerra, P. Pagola, B. Bujanda, and J. J. Astrain, “Smart

system with artificial intelligence for sensory gloves,” Sensors, vol. 21, no. 5, pp. 1–

18, 2021.

240



[89] L. Malburg, M. P. Rieder, R. Seiger, P. Klein, and R. Bergmann, “Object detec-

tion for smart factory processes by machine learning,” Procedia Computer Science,

vol. 184, no. 2019, pp. 581–588, 2021.

[90] P. Stavropoulos, A. Papacharalampopoulos, L. Athanasopoulou, K. Kampouris, and

P. Lagios, “Designing a digitalized cell for remanufacturing of automotive frames,”

Procedia CIRP, vol. 109, pp. 513–519, 2022.

[91] Z. J. Viharos and R. Jakab, “Reinforcement Learning for Statistical Process Con-

trol in Manufacturing,” Measurement: Journal of the International Measurement

Confederation, vol. 182, no. April, 2021.
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for Remanufacturing Sorting,” Procedia Manufacturing, vol. 21, no. 2017, pp. 384–

391, 2018.

[97] A. Papavasileiou, P. Aivaliotis, S. Aivaliotis, and S. Makris, “An optical system for

identifying and classifying defects of metal parts,” International Journal of Computer

Integrated Manufacturing, vol. 35, no. 3, pp. 326–340, 2022.

[98] A. I. M. Schwebig and R. Tutsch, “Compilation of training datasets for use of con-

volutional neural networks supporting automatic inspection processes in industry

241



4.0 based electronic manufacturing,” Journal of Sensors and Sensor Systems, vol. 9,

no. 1, pp. 167–178, 2020.

[99] I. G. Courville, Y. Bengio, and Aaron, “Detecting Teeth Defects on Automotive

Gears Using Deep Learning,” Sensors, vol. 21, no. 8480, 2021.

[100] R. Ferreira, J. Barroso, and V. Filipe, “Conformity Assessment of Informative La-

bels in Car Engine Compartment with Deep Learning Models,” Journal of Physics:

Conference Series, vol. 2278, no. 1, 2022.

[101] M. X. Bastidas-Rodriguez, F. A. Prieto-Ortiz, and L. F. Polania, “A textural deep

neural network combined with handcrafted features for mechanical failure classifica-

tion,” Proceedings of the IEEE International Conference on Industrial Technology,

vol. 2019-Febru, pp. 847–852, 2019.

[102] M. Kebisek, P. Tanuska, L. Spendla, J. Kotianova, and P. Strelec, “Artificial intel-

ligence platform proposal for paint structure quality prediction within the industry

4.0 concept,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 11168–11174, 2020.

[103] B. Lindemann, F. Fesenmayr, N. Jazdi, and M. Weyrich, “Anomaly detection in dis-

crete manufacturing using self-learning approaches,” Procedia CIRP, vol. 79, pp. 313–

318, 2019.

[104] E. Wescoat, M. Krugh, A. Henderson, J. Goodnough, and L. Mears, “Vibration

analysis utilizing unsupervised learning,” Procedia Manufacturing, vol. 34, pp. 876–

884, 2019.
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for AI in Smart Production Planning and Control System,” Procedia CIRP, vol. 107,

no. 2021, pp. 493–498, 2022.

[173] R. D. Freeze, “Understanding the Main Phases of Developing a Maturity Assessment

Model Understanding the Main Phases of Developing a Maturity Assessment Model,”

no. January, 2005.

248



[174] E. S. Rosa, R. Godina, E. M. Rodrigues, and J. C. Matias, “An Industry 4.0 Con-

ceptual Model Proposal for Cable Harness Testing Equipment Industry,” Procedia

Computer Science, vol. 200, pp. 1392–1401, 2022.

[175] M. Menolotto, D. S. Komaris, S. Tedesco, B. O’flynn, and M. Walsh, “Motion capture

technology in industrial applications: A systematic review,” Sensors (Switzerland),

vol. 20, no. 19, pp. 1–25, 2020.

[176] P. Runeson, T. Olsson, and J. Lin̊aker, “Open Data Ecosystems — An empirical

investigation into an emerging industry collaboration concept,” Journal of Systems

and Software, vol. 182, p. 111088, 2021.

[177] D. Mourtzis, S. Fotia, N. Boli, and E. Vlachou, “Modelling and quantification of

industry 4.0 manufacturing complexity based on information theory: a robotics case

study,” International Journal of Production Research, vol. 57, no. 22, pp. 6908–6921,

2019.

[178] M. Kotarba, “MEASURING DIGITALIZATION - KEY METRICS,” Foundations

of Management, vol. 9, 2017.

[179] N. Tuptuk and S. Hailes, “Security of smart manufacturing systems,” Journal of

Manufacturing Systems, vol. 47, no. May, pp. 93–106, 2018.

[180] A. Telukdarie, E. Buhulaiga, S. Bag, S. Gupta, and Z. Luo, “Industry 4.0 implemen-

tation for multinationals,” Process Safety and Environmental Protection, vol. 118,

pp. 316–329, 2018.

[181] J. Gomes, “Linking Benefits to Maturity Models,” in 15th International Academy of

Management and Business Conference, no. April, pp. Online Proceedings ISSN 1949

– 9108, 2013.

[182] M. V. Steenbergen, R. Bos, O. U. Nederland, and S. Brinkkemper, “The Design of

Focus Area Maturity Models,” no. May 2014, 2010.

[183] B. Axmann and H. Harmoko, “Industry 4.0 Readiness Assessment,” Tehnički glasnik,
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APPENDICES

.1 Machine Learning Models and Descriptions

The following section provides details of the various machine learning scenarios, as well as

the most common machine learning models presented in the literature reviewed in Chapter

2.

Hyper-Parameter Optimisation and Evaluation Metrics

Many papers reviewed in Chapter 2 lack details on the specific methods used to select

hyper-parameters, but those that do typically use simple methods such as trial and error

[91], random search [78], or grid search [79, 79]. Some paper mentions using more ad-

vanced solutions such as Bayesian optimisation, which uses gradient descent to optimize

multiple hyper-parameters [76, 74]. Bayesian optimisation demands high computational

requirements that increase in proportion to the number of parameters selected to optimize,

a challenge that some researchers overcome through the combination of both grid search

and Bayesian optimisation [81].

The most common metric for evaluating machine learning methods for classification tasks

is F-score [98, 80, 88, 81, 87, 101]. F-score is defined as:

F − score = 2 ∗ Precision ∗Recall

Precision+Recall
(1)

where precision is the ratio of between true positives and all positives,

Precision =
TP

TP + FP
(2)

And recall is the measure of the method to identify true positives correctly

Recall =
TP

TP + FN
. (3)
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Some researchers only discuss precision and recall when evaluating quality inspection per-

formance in real-world settings as it gives a more detailed insight into the true positive

and false negative rates of the proposed inspection method than F-score alone [108, 109].

Only one researcher was found to use the area under the Receiver Operating Character-

istics (ROC) curve, a metric commonly called AUC [75]. The ROC curve is produced by

plotting the true positive rate over the false positive rate as the classification threshold

varies, as shown in Figure 1. The author notes that despite not appearing in the searches,

AUC-ROC is a common evaluation metric in machine learning, particularly in instances

that involve binary classification as it gives a good quantitative and visual measure of how

well a model distinguishes between two classes. However, Pereira et al. note in their re-

search that this is an uncommon metric in the industrial quality detection literature [75].

For research on time series prediction, researchers often present multiple evaluation met-

Figure 1: The area under the ROC curve is a metric used to evaluate the performance of

classifiers. (Source: https://en.wikipedia.org/wiki/Receiver operating characteristic)

rics to evaluate their findings, including Root Mean Squared Error (RMSE), Mean Square

Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE)

[106, 103, 29, 83, 76]. In the reviewed literature, no researchers that explore time series

forecasting justified the metrics used, nor any mathematical definitions of these metrics.

To address this gap, the author explores additional external sources that include a good

description and mathematical formulas for these metrics [326]. Ouyang et al. discuss that

there are two main evaluation metrics in time series prediction: longitudinal and transverse

[326]. Longitudinal errors are a measure of the deviation of the prediction amplitude from

the actual values and include RMSE, MSE, MAE, and MAPE [326]. The mathematical
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definitions of the metrics as mentioned above are defined as follows:

RMSE =

√√√√ n∑
i=1

(yi − ŷi)

n

MSE =
n∑

i=1

(yi − ŷi)

n

MAE =
n∑

i=1

|yi − ŷi|
n

MAPE =
1

n

n∑
i=1

|(yi − ŷi)

yi
| × 100

where yi are the actual values, ŷi are the predicted values. The error should be minimised

in each of the above metrics, meaning the forecast perfectly matches the actual values.

RMSE and MAE are in the same units as the target variable, while MAPE is given as a

percentage. The main difference between RMSE and MAE is that because RMSE squares

the errors before they are averaged, RMSE gives higher penalties for larger errors and

therefore is more sensitive to outliers. For this reason, RMSE can be preferable in cases

where the impact of unit increases in error become exponentially worse, i.e., being off by

10 is more than twice as bad as being off by 5. On the other hand, if a model is prone to

making occasional large mistakes that do not impact overall performance, the MAE may

be more appropriate. Note that the RMSE will always be larger or equal to the MAE. The

sensitivity to outliers is further exaggerated by MSE, given the removal of the square root.

By including multiple metrics for comparison, these factors can be inferred, and comparing

the RMSE and MAE can indicate the model’s tendency to give occasional errors. However,

it is difficult to tell if inaccuracies are due to the prediction or anomalies in the actual data.

.1.1 Machine Learning Approaches

The reviewed literature discusses five main types of machine learning: Supervised, Unsu-

pervised, Semi-supervised, Reinforcement learning, and Transfer learning. Each of these

learning scenarios is outlined below. A list of all machine learning methods compared in

the reviewed literature is summarised in Table 1 along with the respective references.
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Table 1: A list of all machine learning methods used in the reviewed literature and the

respective references arranged from most common to least common.

Machine Learning Method Abb. No. Papers References

Convolutional Neural Network CNN 19 [96, 90, 105, 89, 108, 98, 100,

85, 175, 88, 81, 28, 87, 82,

101, 99, 76, 6, 109]

Support-Vector Machine SVM 8 [103, 150, 78, 79, 80, 175, 81,

82]

Random Forest RF 7 [78, 79, 175, 81, 75, 83, 76]

Artificial Neural Network ANN 6 [94, 78, 327, 102, 79, 175]

Auto Encoder AE 5 [74, 75, 75, 29, 84]

k- Nearest Neighbour k-NN 5 [78, 80, 175, 81, 76]

Multilayer Perceptron MLP 5 [79, 175, 81, 82, 76]

k-means n/a 4 [103, 93, 104, 77]

Principal Component Analysis PCA 4 [94, 102, 77, 29]

Generative Adversarial Network GAN 3 [85, 86, 84]

Decision Tree DT 2 [79, 80]

Support Vector Regression SVR 2 [83, 76]

XGBoost XGB 2 [78, 83]

Long Short Term Memory LSTM 2 [106, 103]

Regression n/a 1 [79]

Autoregressive Integrated Moving Average ARIMA 1 [106]

Reinforcement Learning n/a 1 [91]

Hierarchical Clustering n/a 1 [107]

Agglomerative clustering n/a 1 [77]

AutoGluon n/a 1 [75]

Classical Multidimensional Scaling CMDS 1 [77]

Deep Belief Network DBN 1 [29]

Gradient Decent n/a 1 [93]

Halt-Winter n/a 1 [106]

Gaussian Mixture Model GMM 1 [96]

Näıve Bayes n/a 1 [79]

Transfer Learning n/a 1 [91]

Maximum-Likelihood Hebbian Learning MLHL 1 [77]

Cooperative Maximum-Likelihood Hebbian Learning CMLHL 1 [77]

Automated Machine Learning AutoML 1 [75]

Sammon Mapping SM 1 [77]

Factor Analysis FA 1 [77]
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Supervised Learning

Supervised learning tasks are when features from a labelled dataset consisting of pairs

xi,yi are used to train a model to learn the mapping function between X and Ŷ , where

X = (x1, ...,xn) is the set of targets and Y = (ŷ1, ..., ŷn) is the set of corresponding labels

[115]. In the supervised learning setting, the problem is well-defined, and performance

can be easily measured by making predictions on a labelled test dataset. When labels are

continuous, the task is known as regression [83, 115].

Unsupervised Learning

In contrast to supervised learning, unsupervised approaches train models without needing

class labels. This is achieved by identifying trends and patterns in the structured data

to extract the relevant features, which can then be used to group or segment the input

data into distinct categories [104]. Some unsupervised methods assume that data are

drawn independently and identically distributed from the distribution X = (x1, ...,xn)

[115]. Therefore, the goal of the learning problem is to estimate the density likely to have

generated X [115].

Semi - Supervised Learning

As the name implies, semi-supervised methods lie in between supervised and unsuper-

vised approaches. In an anomaly detection setting, because some amount of labelled data

is required to evaluate unsupervised models and the scarcity of anomalies, most of the

available labelled data is likely, normal data [30]. Semi-Supervised methods leverage this

available data to provide algorithms with some, but not all, information on the targets. The

”standard” semi-supervised scenario describes an instance where data contains two classes

Xl = (x1, ...,xl) and Xu = (xl + 1, ...,xl + u), where the labels Yl = (y1, ...,yl) are given,

but no labels are given for Xu [115]. In the anomaly detection case presented in Chapter 4,

the normal labels Yl are known, while the anomaly labels are unknown Xu. This scenario

where only normal data are used to train a semi-supervised model for anomaly detection is

referred to as a ”clean” approach or ”clean-semi-supervised” approach [198]. While other

forms of learning are possible using partial supervision, the clean-semi-supervised setting is

the only example of semi-supervised learning in the reviewed literature and, therefore, the
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only example discussed in this review. For further information on other semi-supervised

settings, the reader is referred to Chapelle et al. [115].

Transfer Learning

Other machine learning techniques include transfer and reinforcement learning; however,

these learning scenarios are less frequent in the reviewed literature. Transfer learning is

another machine learning technique used when limited labelled data are available. Transfer

learning uses existing pre-trained models trained on a target domain and repurposes that

model to re-train on a new domain, the idea being that the pre-trained network already

has some learned features from the relevant data to the new target. The most common

application of transfer learning is in supervised image classification settings, as many open-

source image datasets such as ImageNet, MNIST, and CIFAR-10 can be used to train initial

classifiers on a target domain [99]. When this pre-trained network is repurposed on a new

target, the network retains information on low-level features that are transferable between

tasks such as the detection of edges and object boundaries, meaning fewer images are re-

quired to learn the mapping between x and y. Luckow et al. state that the applicability

of transfer learning largely depends on the application. For example, transfer learning has

been successfully demonstrated in examples such as social media analytics and computer

vision. However, this does not extend to enterprise use cases, the majority of which require

custom datasets [28].

Reinforcement learning

In reinforcement learning, an agent learns through trial and error what actions to perform

in a specified setting where favourable actions are rewarded and unfavourable actions are

penalised [83, 91, 30]. Reinforcement learning has been a key technology in the automotive

industry over the past few decades as it has been an enabling factor in autonomous driving;

however, applications of reinforcement learning in automotive manufacturing and produc-

tion are limited [30]. Different types of reinforcement learning can be applied to perform

classification or process control. Only temporal difference learning approaches for process

control are discussed in the reviewed literature. Temporal difference learning is a learning

approach where a numeric reward value is used to incentivize certain actions selected by

a machine learning model. The reward is scaled inversely to the time between the initial
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action and the respective reward [91]. For a mathematical description of a reward function

for temporal difference learning case, see research by Viharos et al. [91].

.1.2 Common Machine Learning Models

This subsection provides further mathematical details of some of the most commonly used

machine learning methods in the reviewed literature, as shown in Table 1. The mathematics

behind the LSTM, GMM, PCA, t-SNE, and UMAP are not introduced in this section, as

they are discussed in Chapter 5.

Artificial Neural Network

Artificial Neural Networks (ANNs) have been an area of significant scientific interest since

the early 1940s in which McCulloch and Pitts first introduced the artificial neuron depicted

in Figure 2 [328]. The neuron performs two computations. First, the weighted sum of some

input X = x1, ...,xn is calculated and bias is added. The result is then passed onto some

activation function σ, such as tanh or sigmoid, to add some non-linearity to the output

such that the output Ŷ is given by,

Ŷ = σ(
n∑

i=1

xi.wi + b)

. This process is called forward propagation [329].

This architecture enables ANNs to perform a range of tasks including classification and

Figure 2: An artificial neuron used in neural networks. (Source:

https://lanstonchu.files.wordpress.com/2021/03/cell.jpeg?w=750)
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regression. However, given that the majority of cases in the reviewed literature explore

ANNs for image classification, this subsection focuses on this application to describe the

network architecture.

By combining many artificial neurons, a network of fully connected neurons can create a

weight-directed graph that maps the input X onto an output Ŷ as shown in Figure 3. In

a supervised setting, the output values ŷi can then be compared with the target labels yi

to evaluate the performance of the classification model. By varying network variables such

as the number of layers, biases, weights, activation functions, and input variables, the user

can manually tune an ANN to give the best-performing model. Popular types of ANNs

include models such as Multilayer Perceptron, which contains 2-3 layers, and Deep Neural

Network (DNN), which contains more than 3 layers [329].

In addition to forward propagation is backward propagation, the second learning mech-

anism used to train ANNs. Backpropagation is a much more complex process in which

gradient descent is used to find optimal parameters that minimise the loss function and

feed the updated weights and biases back between layers. For a detailed mathematical

description of forward and backward propagation, the reader is refered Skalski’s online

article [330]. Networks that are trained only using forward and backward propagation are

called feed-forward networks.

Figure 3: An example of a 3 layer ANN, sometimes called a Multilayer Perceptron. Each

node in the network is an artificial neuron depicted in Figure 2 Adding at least one more

layer to the network would make it a Deep Neural Network.
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Convolutional Neural Network

The Convolutional Neural Network (CNN) is a supervised learning architecture most com-

monly used for image recognition. The CNN architecture consists of multiple stacked layers

of artificial neurons that take an input X, usually a 2D array, and performs consecutive

transformations ϕ(X) : Rd → Rd′ onto new reduced feature spaces ϕ(X) = Rd′ [6, 105].

Over the multiple layers, the mapping function can be expressed as a nested transforma-

tion f(x) = f (l)(f (l−1)(...f (1)(x))). There are various types of layers throughout the stacked

arrangement. The CNN begins with a convolution layer, followed by activation functions,

pooling layers, and finally a fully connected layer. This architecture is shown in Figure 5.

The convolutional layers each have filter matrices K that are passed over the input feature

space X l in a sliding window fashion to produce a new feature map in a reduced feature

space X l−1. For a mathematical description of this process, see [6]. The filter matrices K

, also referred to as kernels, are updated throughout the learning process through forward

propagation and backward propagation. Each convolutional layer has a tuneable bias value

b which is used in forward propagation to pass learned information onto the following layer

by adding bias to the resultant feature map. An activation function such as tanh, sigmoid,

or Rectified Linear Unit (ReLU) is then applied to the output of the feature map. ReLU

is the most commonly used activation function in convolutional layers, while sigmoid or

softmax are typically used in fully connected layers [6].

Pooling layers are primarily used to reduce the feature space between convolution layers to

Figure 4: Plots showing the most common activation functions used in machine learning

algorithms.

speed up the training process. The most common approach to pooling is the max pooling

layer where the output matrix X l is given by the maximum value of each corresponding

subsample in the input space X l−1, denoted by X l
pq = max(X l−1

ij ) where p ∈ R[i,j] and

q ∈ R[i,j].
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The final layers in the network architecture are the fully connected layer and a final acti-

vation layer, usually sigmoid or softmax. These layers are responsible for combining and

computing the scores of the output classes. The class with the highest assigned score is

used to determine the label.

Machine learning engineers can create different CNNs for specific tasks by varying input

and output filter sizes, tuning weights and biases, and stacking specific combinations of

layers. Public datasets such as ImageNet have been a key tool to advance computer vision

Research. ImageNet is a large image database containing 1000 images for 1000 different

categories [298]. This open source dataset lead to the introduction of the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) from which multiple CNN networks have

been demonstrated to have high accuracies, including: AlexNet [1], GoogleNet [2], LeNet

[331], VGG [3], and ResNet [332]. Further details of these individual CNN varients are

discussed further in Chapter 5.

Figure 5: An Example of the CNN architecture [6].

Autoencoder

An autoencoder is a feed-forward neural network consisting of two parts: an encoder and

a decoder. The idea of an encoder network layer dates back to the 1980s as a means of

reducing the dimensionality of the input layer by compressing the input data X into a

reduced feature space using an encoding function H = f(X) [333]. This encoding can

occur over a single layer with a high compression ratio or over many layers with gradually

decreasing feature space. Encoders are still used today as feature extraction input layers

prior to applying some other machine learning techniques [68]. Sometime later in the late

1980s, researchers added a decoder layer that reconstructs the compressed layer H into a

higher dimensional feature space equal to that of the encoder input X l = g(f(X)) [333].

This process of compression and decompression means the encoder-decoder network, also

called an auto-encoder, is forced to learn the most important features to retain during the
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compression process such that information on the target variable is retained upon decom-

pression. Figure 6 shows an image showing the autoencoder architecture. The autoencoder

uses the same principles of forward and backward propagation to train the weights and bi-

ases of the network to minimize some function L(X, g(f(X))) that penalizes g(f(X)) from

being different to X. In other terms, the network aims to minimize the reconstruction

error X − g(f(X)). This reconstruction error can then be used to evaluate the output.

This unique architecture has been applied to a range of use cases such as classification,

de-noising and manifold approximation; however, the most common application in the

reviewed literature is anomaly detection [333, 68]. In anomaly detection, a clean-semi-

supervised approach is used to train a model on normal training data. The network learns

to reconstruct normal data onto the output space. This can be done using either images

or time series as input. When new unlabelled data is fed into the network, if the recon-

struction error is over some threshold K, the observation is classified as an anomaly [75].

Figure 6: An example of an autoencoder architecture where each node of the network is

an artificial neuron.

Support Vector Machines

This subsection begins by introducing the simplest SVM, a linear SVM in one dimension,

before moving on to the higher dimensional SVM problem. Consider a supervised learning

scenario where some labelled dataset X = (x1, ...,xn) with labels Y = (y1, ...,yn) has been

mapped onto a 2D feature space X
′
shown in Figure 7. A 1D linear decision boundary
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given by f(x) = ax + b can be introduced to separate the two classes by maximising the

margin w between the support vectors of each class. For a detailed explanation of the

convex optimisation problem and how this is solved to select the optimal hyperplane, the

author refers the reader to the following references [334, 335]. The same problem can be

solved in 3D space, where the hyperplane H is a 2D plane given by f(x) = w⊤x+ b.

In reality, our dataset is unlikely to be perfectly separated by a linear function in the

feature space X
′
as shown in Figure 7. In this instance, the so called ’kernel trick’ can be

used to learn non-linear decision functions by using a kernel K to transform input space

X
′
into some higher dimensional feature space in which to apply the hyperplane [30]. The

kernel trick is shown graphically in Figure 8.

Figure 7: example of a hyperplane generated by a linear SVM algorithm to separate

classes in 2D feature space (Source: https://www.analyticsvidhya.com/blog/2020/10/the-

mathematics-behind-svm/).

Figure 8: A graphic demonstrating the kernel trick in which the kernel function ϕ being

used to map points from a 2D input space into a 3D feature space to learn non-linear

relations between the classes (Source: https://medium.com/@KunduSourodip/finding-non-

linear-decision-boundary-in-svm-a89a97a006d2).
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Random Forest

Random Forest (RF) is a supervised Learning technique first proposed by Breiman in 2001

[336] and has since been applied to a wide range of classification and prediction problems.

This section includes references to Breiman’s original paper [336] as well as a book by

Sutton 2005 on Classification Trees [337].

To understand the RF algorithm, we must first introduce decision tree classifiers, in which

a dataset X is consecutively split into subsets B1, B2, ...Bj such that the predicted class

of an observation xi is j if xi ∈ Bj. A decision tree classifier can be visualised as a tree

diagram consisting of two nodes: a decision node and a ’leaf’ node. Decision nodes take

inputs X and Y and select a feature to split the data that results in the highest possible

node purity in the child nodes i.e. one child node has a higher proportion of data belonging

to one class, while the other child is given data mainly belonging to a different class. While

this split will be sub-optimal at the beginning of the tree, through consecutive splits, the

resulting child nodes become increasingly purer until a node only contains data from a

single class, at which point the branch terminates. These terminating nodes are called leaf

nodes. Figure 9 shows an example of a simple decision tree depicting decision nodes, leaf

nodes, and their respective class labels. Once a decision tree is trained, new data can be

fed in the input root node and passed through the decision nodes and is classified based

on the final leaf node it terminates in.

At each decision node, various methods can be used to select the relevant feature to analyse

and split the data. For example, the Classification And Regression Trees (CART) algo-

rithm, uses the Gini Index to select the optimal feature where GiniIndex = 1− [(P−)
2 +

(P+)
2] where P+ is the probability of a positive class and P− is the probability of a negative

class [337]. Multiple features are tested and the one that gives the lowest Gini Index is

selected as this results in the highest purity.

RF differs from the standard decision tree in that it uses an ensemble decision tree, each

trained independently with randomly selected training samples and random feature se-

lection at each decision node. While a single tree tends to overfit, by training mutliple

trees and averaging the result, any bias of the individual trees is reduced [336]. Different

approaches can be used to chose the final results such as calculating the majority results

of all trees, or calculating the Gini Index. The RF architecture is shown in Figure 10.

Random Forest uses a bagging approach at the input, sometimes known as bootstrapping

or bootstrap aggregating. Given a training dataset X, bagging generates m new training

samples Xi by sampling randomly and uniformly from X. In RF, this sampling process is
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done with replacement, meaning some values xi may appear multiple times in any given

sample. Typically, 70% of the bagged samples are used for training (in-bag samples), while

the other 30% are used for internal testing through cross-validation (out-of-bag samples)

to give some indication to the user of the model’s accuracy. A common challenge faced

by earlier rule based decision tree approaches was overfitting, as the random selection of

training samples means the result is less sensitive to any biases of the original training data

[336]. This is overcome in random forests, as Breiman finds that applying this bagging

approach increases the overall accuracy of the model while overcoming overfitting [336].

Similarly, the random selection of features at the decision node ensures further variability

in the ensemble trees.

Figure 9: A simple decision tree with class labels of each node depicted by coloured dots.

Notice the increase in class purity through the tree with nodes terminating when only 1

class label exists in the subset.

GAN

GAN is a popular approach to creating new synthetic image data for image data. GANs

consist of two separate neural networks, a generator and a discriminator. Through an iter-

ative training process, the generator creates new samples of data which are then presented

to the discriminator. The discriminator then has to identify if the image has been created

synthetically by the generator, or if it was part of the original labelled training set. A

simplified diagram of the GAN architecture is shown in Figure 11.
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Figure 10: The random forest architecture showing bagging and ensemble tree classifica-

tion.
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The generators input is simply random noise in the form of a 1D vector sampled from

a fixed distribution of the latent space, which is then mapped onto the 2D output space

using a series of connected weights [87]. The discriminator is usually some form of basic

CNN classifier initially trained on the available labelled data. Both networks are trained

using backpropagation of the discriminator’s loss resulting in an adversarial setting where

the generator is tasked with maximising the error rate of the discriminator, while the dis-

criminator aims to minimise classification error [84]. Initially, the generated images are

poor representations of the final image. However, over many iterations, the loss function

of both networks will converge, and as the discriminator can no longer distinguish between

real and synthetic images. For more details on the mathematics of the GAN architecture,

the reader is refered to the original paper by Goodfellow et al. [114].

While GAN is discussed as one of the best ways to generate new image data to expand

existing datasets, a large amount of training data (thousands of images) are required to

train the discriminator models similar to any other CNN [86]. While GAN are popular for

generating image data, they are less suited to create synthetic data for complex multivari-

ate time series data due to high computational requirements during training [75].

Figure 11: Architecture of a Generative Adversarial Networks (GAN)

.2 Applying the Assessment tool: A Case Study at

Ford Motor Company

A bar on access has been placed on this section due to the sensitive nature of the infor-

mation presented in this section. Access is restricted to Swansea University students and

researchers. This information will be made public on June 1st 2025.
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.3 Industry 4.0 Assessment Questionnaire

Figure 12: Industry 4.0 Assessment Questionnaire page 1
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Figure 13: Industry 4.0 Assessment Questionnaire page 2
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Figure 14: Industry 4.0 Assessment Questionnaire page 3
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Figure 15: Industry 4.0 Assessment Questionnaire page 4
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Figure 16: Industry 4.0 Assessment Questionnaire page 5
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Figure 17: Industry 4.0 Assessment Questionnaire page 6
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Figure 18: Industry 4.0 Assessment Questionnaire page 7
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Figure 19: Industry 4.0 Assessment Questionnaire page 8
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Figure 20: Industry 4.0 Assessment Questionnaire page 9
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Figure 21: Industry 4.0 Assessment Questionnaire page 10
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Figure 22: Industry 4.0 Assessment Questionnaire page 11
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Figure 23: Industry 4.0 Assessment Questionnaire page 12
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Figure 24: Industry 4.0 Assessment Questionnaire page 13
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Figure 25: Industry 4.0 Assessment Questionnaire page 14
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Figure 26: Industry 4.0 Assessment Questionnaire page 15
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