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Abstract 

This study focuses on computational modelling of shear-banded wormlike micellar solutions 

in a complex planar Couette-flow, driven by a moving top-plate over a rounded-corner 4:1:4 

obstruction. The BMP+_p constitutive model is used, which is constructed within an 

Oldroyd-B-like form, coupled with a thixotropic fluidity-based internal-structure equation. 

Here, solute energy-dissipation drives fluid-structure adjustment in a construction-destruction 

dynamics affected by viscoelasticity. This model reproduces conventional wormlike micellar 

solution key features, such as shear-thinning, extensional hardening/softening, viscoelasticity, 

apparent yield-stress and shear-banding, with a bounded extensional-viscosity and an N1Shear-

upturn at high deformation-rates. The BMP+_p characterisation for shear-banding solutions 

is based on extremely low solvent-fractions ≤10-2 and appropriate shear-banding intensity-

parameters. Ensuing flow-structure is analysed through velocity, stress and fluidity fields, 

whereupon banded and non-banded system response is contrasted at appropriately selected 

flow-rates. Highly non-linear solutions are obtained with our hybrid fe-fv algorithm, 

capturing essential shear-banded flow features reported experimentally. For a fluid exhibiting 

banding behaviour, banded-solutions are generated at an intermediate flow-rate within the 

flow-curve unstable branch. Here, in the fully-developed simple-shear flow away from the 

contraction, a split velocity-profile is observed, with different viscosity bands at equal stress-

levels, enhanced with a shock-capture procedure. Non-banded solutions are derived for the 

lowest and highest flow-rates sampled, which are located in the stable branches. Within the 

constriction zone, the banded profiles are lost due to the mixed non-homogeneous shear-to-

extensional deformation. Comparatively, shear-banding fluids display less intense viscosity 

and stress features, which are correlated with their relatively stronger shear-thinning 

response. The constriction resistance results in a pressure-level adjustment, leading to fully-

developed Couette-like constant values upstream-downstream. 

Keywords: shear-banding, complex-flow, wormlike micelles, revisited Bautista-Manero 

models, numerical simulation, hybrid finite element/volume method, enhanced oil-recovery 
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I. Introduction  

The theme of this predictive finite volume/element modelling study is particularly 

concerned with investigating material system response of worm-like micellar solutions. 

These solutions are capable of supporting shear-banding under ideal shear-flow. To further 

develop and identify the corresponding position adopted in inhomogeneous complex flow, a  

modified planar Couette-flow is considered. This flow is generated by a moving top-plate in a 

rounded-corner 4:1:4 planar contraction-expansion geometry (aspect-ratio =4), see Fig.1. 

To avoid singular flow response, the obstruction formed has a rounded-tip . This leads to the 

observation of pure-shear Couette-flow in fully-developed entry-exit regions, away from the 

obstruction, whilst mixed shear-extensional flow arises around the contraction-zone. This 

provides the possibility to gather zones of pure shear-banding in the entry flow-region, 

allowing to study the corresponding system response within and beyond the complex flow 

zone, once exit-flow pure-shear conditions are recovered.†  

Shear-banded flows have been traditionally studied within the restricted context of ideal 

shear-flow.1-6 In the planar Couette flow under present consideration, shear-banded flow is 

observed in the form of a discontinuous velocity-gradient profile. This profile displays two or 

more distinct shear-rates over multiple bands, which are constant over each band, while 

simultaneously maintaining equitable total shear-stress levels across each band.5 This 

scenario is reflected in an idealised simple-shear flow-curve, which covers a range of shear-

rates in the stable branches of the flow-curve, each  shear-rate with its equivalent distinct 

shear-stress level. The level of shear-stress itself is determined by the characteristic shear-rate 

Uplate/L (which is directly linked to the generated flow-rate). Here, Uplate represents a moving-

wall top-plate velocity, and L is the width of the flow-cell. One notes that to generate a 

banded-flow, the overall characteristic shear-rate (Uplate/L) must lie within the unstable shear-

rate range regime of the flow curve, which is identified in a negative stress-slope, plotted 

against shear-rate rise.3,5-7  

 

 

 

 

 

 

 

 

 

 

 

 

 
† To suit present purposes, the simplicity of plane Couette flow is preferred (with its single-rate non-SB). The 

multiple form of rate-profiles, as offered by a pressure-driven deformation, and banding in extensional 

deformations under extension-necking conditions, are seen as a more advanced stages in problem resolution, 

which will appear subsequently. 

Figure 1. Schematics of the planar modified Couette geometry – This complex flow geometry is a 

composition of a 4:1:4 planar contraction-expansion with rounded edges and a drag flow. The flow is 

promoted by the drag the sliding plate exerts on the fluid stick to its surface. One observes simple-shear 

flow away from the contraction and mixed shear-to-extensional flow in the contraction neighbourhood. 

4:1:4 contraction-expansion 

Flow direction 
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Materials that exhibit the phenomenon of shear-banding are wide-ranging. For example, 

shear-banded inhomogeneous flow may be observed in aqueous surfactant solutions, pastes, 

foams, emulsions, granular slurries, liquid crystals, concentrated colloidal emulsions and 

suspensions, and oil-fractions.3-6 Despite the large variety of materials capable of displaying 

bands in complex-flow under realistic scenarios and their widespread industrial use, the 

majority of previous work has been limited to idealised steady simple-shear flow. Commonly, 

this scenario has been analysed through simple-shear Couette-flow and Taylor-Couette-type 

deformations (promoted by surface movement and corresponding drag flow in steady and 

oscillatory shear protocols).3-8 In addition, extension-necking has been observed in some 

wormlike micelle systems,9,10 in the form of extensional deformation-rate localisation, that 

originates from a multiple-valued extensional-stress flow-curve, with higher extension-rates 

and pronounced thinning of the filament radius in the middle-plane of the sample. Despite 

such advance, there has been a distinct lack of attention paid to the response of banding-fluids 

in complex flow with tangible sparsity in the literature on either experimental or predictive 

studies.11-15 Hence the present study focuses on inhomogeneous modified Couette-flow (with 

spatial dimension greater than one), and the derivation of numerical solutions for wormlike 

micellar banding-fluids. 

Olmsted3 states two general modes of shear-banding for shear-thinning and shear-

thickening fluids: (i) gradient-banding, in which bands of different apparent viscosities 

coexist, under a common overall shear-stress, and; (ii) vorticity-banding, in which bands with 

different shear-stress distribute in the vorticity direction. Divoux et al.6 review two main 

types of soft-matter that undergo segregation due to shear-banding: (i) fluid-like materials, in 

which semi-dilute polymeric- and wormlike micellar solutions are grouped; and (ii) soft-

glassy materials, which correspond to more concentrated materials than common wormlike 

micellar solutions, may display liquid or gel-like features (principally yield-stress) at rest. 

These complex fluids exhibit shear-banding through a gradient-banding mechanism, which is 

captured via a non-monotonic flow curve. Such behaviour is observed in the experiments of 

Fischer & Rehage16 and Pipe et al.,17 where shear-stress plateaux are apparent over finite 

shear-rate ranges. In complex flow, particularly in microfluidic planar contractions, 

Nodoushan et al.15 recently reported intense secondary flow promoted by the interplay of 

strong shear-thinning, shear-banding and yield-stress for typical cetyltrimethylammonium 

bromide/sodium salicylate wormlike micellar solutions. 

One of the key features for a model to predict banded flow is its capacity to support a non-

monotonic flow-curve with localised extrema.3,5-7 Two main streams of constitutive 

modelling have been developed to predict shear-banding: a classical approach in polymeric 

fluids;18-20 and alternatively equations of state based on the description of the fluid 

microstructure.17,21-24  

On the side of polymer-based constitutive models, a modified Johnson–Segalman model 

characterises banding-materials via a diffusion term in the polymeric extra-stress equation, 

leading to the so-called d-JS model of Olmsted et al..18 Such stress-diffusion term in the 

polymeric stress equation has the form of the Laplacian operator of the extra-stress tensor 

multiplied by a stress-diffusivity Ɗ, i.e. Ɗ
2

p  . This particular model choice has captured 
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shear-bands in cylindrical Couette flow. In addition, wormlike micelles systems have also 

been represented through a form of Giesekus model, where shear-banding characteristics are 

introduced via the non-linear anisotropy coupling parameter.20 These authors developed a 

method based on large amplitude oscillatory shear (LAOS) flow, from which fluid 

characterisation could be extracted, and where the onset of shear-banding was observed to 

depend on oscillation frequency.  

Within the microstructural constitutive models, an extra structure equation(s) is used to 

induce non-monotonicity. The Vazquez-Cook-McKinley (VCM) model is one such, that is 

based on a discrete form of ‘living polymer theory’, attributed to Cates.21 This VCM-model 

has been validated in simple flows where rheological homogeneity prevails, and under 

conditions of shear-banding.17 A closely-related model to the VCM-model is the Germann-

Cook-Beris (GCB) model, under which the structure breakage-rate depends explicitly on the 

trace of the conformation-tensor (always positive by definition).8,22-23 Moreover, a soft glassy 

rheology (SGR) model has been recently proposed to model shear-banding under LAOS.24 

Similarly, solutions for startup in shear with the integral Doi-Edwards model,25 have been 

compared to those obtained by Moorcroft and Fielding,26 with a differential-approximation of 

the Rolie-Poly model.  The Reactive-Rod Model (RRM) of Graham and co-workers27,28 

models wormlike micellar solutions as a suspension of rods that interact to form reversible 

physical bonds that modify the internal structure of the material. This RRM model predicts 

features of vorticity banding observed in diluted solutions.   

In addition, the thixotropic Bautista-Manero-Puig (BMP) models also produce non-

monotonic flow-curves through their dynamic fluid internal-structure equation. Such an 

additional fluid-structure evolution equation naturally integrates mechanisms for the 

construction and destruction of internal-structure.29,30 This would include a structure 

destruction coefficient that has an explicit dependence on flow-invariants,7,12,31 without the 

complication of handling Laplacian operators. For an approach to modelling shear-banding 

wormlike micellar solutions, the latest variant of which is the BMP+_p, has been used 

previously under complex flow deformations, such as  in circular contraction-expansion29 and 

flow past a sphere30. The BMP+_p has a destruction-parameter of linear-dependence on the 

second-invariant of rate-of-strain tensor. This model has the functional capability of 

generating a non-monotonic curve,31and importantly, a unique solution in the Shear-Banding 

(SB)-regime. This recent BMP+_p model, and some previous variants, have incorporated a 

relationship between fluid-structure and viscoelasticity within the structure equation.29-30 

These developments have resulted in consistent energy-related pressure-drop predictions, 

whereas earlier versions were found to be inadequate.32 In addition to supporting banded-

flow, the latest BMP+_p model also has a number of attractive rheological features, which 

include in shear, a second high-rate upturn in first-normal stress-difference N1Shear; a bounded 

extensional-viscosity response; alongside extreme shear-thinning and strain-

softening/hardening behaviour. These are all properties common to many wormlike micellar 

systems,29-30 which are in agreement with experimental shear-flow findings.16-17 

On the side of complex flow modelling, Varchanis et al.14 conducted a comparison of the 
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predictive capabilities of well-known models under banding conditions in cross-slot and flow 

past a cylinder . These authors tested a model-proposal based on a fluidity variable against 

the Johnson-Segalman, the VCM and the Giesekus models. In addition, López-Aguilar et al.12 

and Hooshyar and Germann13 carried out predictive work on the flow of wormlike micellar 

solutions in contraction geometries under banding conditions. Sasmal33 performed 

computational modelling of non-banding wormlike micelles in expansion-contraction 

geometries using the VCM model. In pressure-driven tube flow, Cunha et al.34 predicted 

transient shear-banding flow features with a fluidity-based constitutive model. 

In this work, a BMP+_p model29-30 is used to represent the behaviour of wormlike 

micellar systems under shear-banding conditions, with an ingredient of complex flow posed 

by the constriction in the modified Couette geometry. This requires an additional term in the 

constitutive model with viscoelasticity within network-structure destruction kinetics, which 

can potentially facilitate shear-banding. Experimental evidence would indicate that 

extremely-concentrated micellar fluids with non-monotonic shear-stress, are required to 

generate shear-banded solutions. Therefore, banded-system response is sought under low 

solvent-fractions of ≤10-2 and material shear-banding intensity parameters of 0 (=0, non-

banding system), where non-monotonicity is observed in both shear stress and N1Shear. 

This article is organised as follows. First, section II provides details on the BMP+_p 

model theoretical framework , along with its consequences on the relevant material-functions. 

This is accompanied by a range of suitable deformation-rates (converted into their 

corresponding flow-rates Q), that are used to characterise specific instances of low, 

intermediate and high deformation-rates. One must choose an intermediate deformation-rate 

such that the associated shear-stress lies on an unstable branch of the flow-curve, whilst 

corresponding low and high deformation-rates (with equal shear-stress) are located in stable 

branches. The combination of shear-rate and banding/non-banding fluids generates the 

various flow instances, which are analysed in Section III (Numerical Predictions). There, the 

banded complex-flow defines the main findings, while the remaining cases provide a 

backdrop for direct comparison. Finally in Section IV, the significant findings of the study 

are summarised. 

 

II. Governing equations, constitutive modelling & theoretical framework 

A. Conservation principles and BMP+_p model 

Wormlike micellar solutions are a type of complex fluids prone to generate banded-flows 

under specific conditions. According to experiments and conventional simple-shear flow 

modelling,3,5-7, a combination of factors is necessary to particularly promote exposure to 

shear-banding: firstly, a deformation-rate dependency on the destruction coefficient; and 

secondly, highly-concentrated micellar solutions, with solvent-fractions on the order of ≤10-

2. In this work, the BMP+_p model has been used to characterise the flow of wormlike 

micellar systems in complex flow.29-30 With the BMP-family of fluids, non-monotonicity in 

the flow-curve is promoted through an explicit rate-dependent function, that acts on the 

structure-destruction coefficient k of the structure-equation, as expressed in Eq.(1).31 This 
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function adopts a linear form of the second-invariant of the rate-of-deformation tensor II
D
, 

producted by a constant shear-banding intensity parameter ( ), viz. ( )0 1k k II= + D
: 

( ) ( ) 0 1
0

1
1 1 p

s

G
f f k II f :

t




  

  
+  = − + + −  

 +   
Du D .         (1) 

The structure-equation (Eq.(1)) provides an evolution equation for a dimensionless fluidity 

0p pf  =  (taken as scaled against a reference-viscosity, zero-rate solute-viscosity 
0 p

, 

with units of Pa·s). This equation establishes a coupled highly-nonlinear relationship between 

the structure dynamics, viscoelasticity and energy-dissipation. Within the structure-

destruction term, the shear-banding intensity parameter   appears in the destruction 

coefficient ( )0 1k k II= + D
, and modulates the capacity of the fluid to generate banded 

flows. The  -parameter appears in Eq.(1) in the form of a characteristic-time related to the 

appearance of flow-segregation. As a result, a new temporal-scale arises, which is closely 

linked to flow-segregation. At sufficiently high solute-concentrations, the shear-banding 

intensity parameter   dictates the appearance of localised extrema (maxima-minima) in the 

flow-curve. Here the intensity of the shear-stress Txy drops, marking a non-monotonic trend in 

the flow-curve, and then subsequently rises with deformation-rate increase. With  =0, a 

monotonic Txy-flow-curve is recovered. The structure-destruction term contribution to the 

structure-dynamics, is modulated through a base constant coefficient k0, with units of inverse 

of stress (Pa-1). The inverse of constant coefficient k0 (i.e. k0
-1), is related to a characteristic 

stress-level for structure-destruction. Note, the explicit presence of the relaxation-time 1  in 

Eq.(1) quantifies the viscoelastic contribution in the fluid-structure dynamics. There, 0G  

represents the elastic modulus at vanishing deformation-rates and ( )  +  is the solute 

viscosity at high-deformation rates. Counterpart structure-construction dynamics is regulated 

via a structure-construction characteristic-time s . 

The fluidity f supplies the all-important information on the internal structure of the fluid at 

hand. It also acts to weight the polymeric-stress p -contribution in a generalised Oldroyd-B-

type differential statement, as follows: 

1 02p p pf 


= −D  .         (2) 

In Eq.(2), the relaxation time 1  also modulates a second source of non-linearity; that is 

related to the upper-convected derivative of solute-stress, 

 
= +  −  


u u u

p T
p p p p

t


   −  .  
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This complex and highly-coupled rheological equation-of-state pairing (Eq.(1)-(2)), 

delivers the internal forces within the solute-component of such wormlike micellar fluids. It 

integrates with a complementary solvent Newtonian-contribution 2s s= D , to generate the 

total extra-stress = +s p   ; where s  is the solvent viscosity. With this information, one 

seeks to preserve the mass and momentum conservation principles for incompressible and 

isothermal flow, expressed through the continuity equation and the momentum equation, 

respectively: 

 0 =u ,           (3) 

- p
t

 


=   − 


u
T u u .        (4) 

Dimensionless forms for Eq.(1)-(4) and relevant dimensionless group numbers may be 

obtained by using the following dimensionless variables: 

*

L
=

x
x ,   *

U
=

u
u ,  * U

t t
L

= ,   * L

U
=D D ,   

( )0

*

p s

p
p

U

L
 

=

+

, 

( )0

p*

p

p s

U

L
 

=

+


 .        

Here, U  represents a characteristic mean-velocity in the contraction gap, originating from the 

flow-rate per unit width Q. L is the width of the flow-cell, from which a characteristic 

deformation-rate ( )U L  may be defined. Hence, time is non-dimensionalised using the 

characteristic deformation-rate ( )U L . Forces, expressed in terms of pressure and stresses, 

are normalised with respect to the characteristic stress as measured in the first Newtonian-

plateau, i.e. ( )( )0p s U L  +
 

. Thus, non-dimensionalisation of Eq.(1)-(4), yields the 

following dimensionless group numbers: in Eq.(1) and in the form of characteristic-times, (i) 

a dimensionless shear-banding intensity parameter, ( )U / L = , (ii) a dimensionless 

structure-construction characteristic-time, ( )s U / L = , and (iii) the Weissenberg group-

number, ( ) 2
1 1Wi U / L Q / L = = , which can be interpreted as an additional viscoelastic 

dimensionless time-scale.‡ Alternatively, in Eq.(1), in the form of normalised stresses, (iv) 

two dimensionless structure-destruction parameters arise, i.e. 

( ) ( )
0

0 0 0G p sk G    = + +    and ( )( )0 0p sk U L  = + . One of them, 
0

G , compares 

the elastic modulus of the material against its structure-destruction stress, producted with a 

viscosity ratio. In contrast,   normalises the characteristic total stress at the first Newtonian-

plateau with respect to the structure-destruction characteristic stress. In addition, from Eq.(2) 

and T-definition, a solvent-fraction ( )0   = +s p s/  may be defined. The solvent-fraction 

 
‡ Here, 1 is taken as 1 s. 
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  expresses a relative measure of the solvent-viscosity to the total viscosity at zero 

deformation-rate, i.e. 0p s + .   may be used to estimate the relative solvent-to-solute 

composition in the viscoelastic wormlike micellar solution. The corresponding (variable) 

viscosity of the wormlike micellar solution is   = +Tot p s . Finally, from Eq.(4), a non-

dimensional group Reynolds number, ( )0  = +p sRe UL / , also arises, based on a material 

density  . The Re-number regulates the relative contribution of inertial forces with respect to 

diffusive forces acting on the material. Inertial forces effects are taken as negligible in the 

present work, i.e. Re~O(10-2), with its companion implication of inertialess creeping flow. 

B. Material functions, flow-domain and alternative deformation-rate choices 

Fig.2a provides the steady-state flow-curves for total shear-stress Txy against shear-rate 

covering two representative fluids: i) a non-shear-banding fluid (characterised by a null 

shear-banding intensity-parameter =0); and ii) a banding fluid (with =3), see first column 

of Table 1. The common feature across this data is the need for an extremely low solvent-

fraction, specifically =10-2, to generate non-monotonic flow-curves in the case where 

≠0.3,5-7 The characteristic cubic non-monotonic Txy-shape in Fig.2a is manifested by the 

presence of local maxima (rate 100) and minima (rate 101), which allow for the same constant 

state level of stress to be sustained by two different shear-rate.  

Further rheology of interest lies in the shear-thinning and extension-hardening profiles 

shown in Fig.2b, which are promoted by the set of structure construction-destruction kinetic-

parameters employed {, G0, }={4, 0.1136, 2.27x10-7} (see Table 2, for the full set of 

parameters used in this work). The extent of thinning covers a rapid drop over two-decade, 

supported by solvent-fraction (=10-2). As illustrated in Fig.2b, the slope-of-decline is 

influenced by elevation in shear-banding parameter, where a rise in  promotes shear-

thinning. This is reflected in the power-law index equivalents of n=0.196 for (=0), and n=-

0.142 for (=3). The negative value of n is associated with stress non-monotonicity.35  

Furthermore, some moderate extensional-hardening is detected in Fig.2b around unity 

rates in both shear-banding and non-shear-banding fluids equally, proving to be 

indistinguishable in this deformation§. The position in shear viscosity is reflected through the 

corresponding response in N1Shear profiles shown in Fig.2c, where the banding fluid displays a 

characteristic non-monotonic trend in N1Shear, with clear and distinct local maxima (rate 100) 

and minima (rate ~104). Notably, the present BMP+_p model predicts the N1Shear upturn at 

high shear-rates (observed experimentally in wormlike micellar fluids; see Fig.2c);16-17 and 

also, bounded extensional viscosity Ext-response at large extension-rates (Fig.2b).  

 
§  In this analysis, flow and material segregation is promoted primarily through shear-

deformation. A second alternative for generating banded predictions is currently under 

development, which involves inhomogeneous shear and extensional deformations, namely, 

under extension-necking conditions.9,10 Corresponding findings shall be published elsewhere. 
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Table 1. Deformation-rate versus fluid chart 

 
1 0  =0.5 

Q=4 

1 0  =3.75 

Q=30 

1 0  =56 

Q=450 

 =0  

non-shear-banding 

fluid 

Case A 

Non-banded 

Case B 

Non-banded 

Case C 

Non-banded 

 =3 

shear-banding fluid 

Case D 

Non-banded 

Case E 

Banded 

Case F 

Non-banded 

 

      Table 2. List of parameters 

Parameter 

(units) 
Non shear-banding fluid Shear-banding fluid 

 (−) 0 3 

 (−) 0.01 0.01 

Ω (−) 4 4 

ξG0 (−) 0.1136 0.1136 

ξ (−) 2.27x10-7 2.27x10-7 

λ1 (s) 1 1 

Re (-) 10-2 10-2 

 

 An inflected, non-monotonic the flow-curve (Fig.2a), with predictions for homogeneous 

simple shear flow, is crucial in generating banded-solution. By examining these non-

monotonic flow-curves, one can identify an unstable branch, which is characterised by a 

negative-sloped declining shear-stress zone (Fig.2a).3,5-7 An unstable branch then stabilizes 

itself by generating shear-bands at the same stress level, but at alternative lower and/or higher 

shear-rates (stable-branches, with positive slopes). Each shear-band corresponds to a different 

degree of structure, which can macroscopically observed as viscosity or fluidity. 

 N1Shear-banding- In Fig.3, the rheology is presented for a shear-banding fluid at three 

different solvent fraction levels. One notes that a plateau in Txy is extracted, with a gradual 

elevation in solvent fraction, starting from the banding level of 10-2 up to 0.05. For 

1.0>β≥0.05, the N1Shear-data displays band-like features while providing an apparently 

monotonic trend in shear-stress (Txy). The relevant mathematics for this scenario is 

expounded through the governing solute-content function. This is expressed through the f-

functional of Eq.(5) in simple shear flow, where a cubic dependency on shear-rate is 

displayed, affecting stress thereby: 
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 ( )( ) ( )2 2 2
01 1 1 1 0        − − + − − + =

  Gf f Wi .         (5) 

Recall also that the counterpart total shear-stress is ( )1xyT f  = + −  and the first 

normal-stress difference in shear is ( ) 2 2
1 2 1ShearN Wi f = − . Unlike previous solutions, as 

shown and discussed in Fig.3b, (with banding promoted by non-monotonic-Txy), in the 

banded-regime (Case-E), one might ask the question of what flow outcomes are possible 

under N1Shear-banding alone. In Fig.3c, the fluidity appears relatively larger with -rise. 

 In addition, in Fig.2, a comparison of the rheological response of our BMP+_p is 

provided against the well-known Vazquez-Cook-McKinley (VCM) model.21 This comparison 

is performed based on similar intensity in the peak of extensional viscosity Ext-response 

under =10-2. The parameter set of VCM displaying such behaviour is {CAeq, CBeq, , 

 }={0.5, 0.7, 0.42, 7.5x10-7, 1.5}. As it is apparent in Fig.2b, the BMP+_p and VCM Ext-

trends appear similar for low to intermediate extension-rates up to the maximum Ext-level, 

located at 𝜆1𝜀̇=0.5 units. Beyond this landmark, VCM displays a stronger strain-softening 

trend towards the second Newtonian-plateau. Interestingly and relevant to this work, 

BMP+_p and VCM produce a non-monotonic shear-stress flow-curve, whose unstable 

branches are located in the shear-rate range of 1≤𝜆1𝛾̇≤30 units (Fig.2a). Non-monotonicity is 

also observed in the first normal-stress in shear N1Shear-measure for both models, but over the 

significantly extended shear-rate range of 1≤𝜆1𝛾̇≤104 units (Fig.2c). Notably, in the unstable 

banding branches, VCM shear and normal stresses always lie at higher levels than those for 

BMP+_p. As such, one would expect these two models to provide similar banding 

predictions in complex flow, as has already been reported recently by Varchanis et al..14 A 

comparative study on predictive capabilities of these and other models in pressure-driven 

flow through constrictions and past objects will come subsequently, as well as analysis on 

extension necking situations in stretched filaments of wormlike micellar solutions. 
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Figure 2. a) Trz , b) viscosity, and c) N1Shear against deformation-rate (simple shear & uniaxial extension); =10-2;  

BMP+_p {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}, non-shear-banding fluid (=), shear-banding fluid (=); 

VCM: {CAeq, CBeq, ,  }={0.5, 0.7, 0.42, 7.5x10-7, 1.5}. 

c) 

a) 

b) 
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Figure 3. a) Txy, b) N1Shear and c) f against shear-rate (simple shear flow); BMP+_p; 

{, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; shear-banding fluid (=) 
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To explore the various disparate regimes of segregated and non-segregated flow, a choice of 

three key deformation-rates 1 0   (=Wi) has been made, counterpart to their equivalent global 

flow-rates. Therefore, the imposition of Q, and hence of Wi, implies an imposed target shear-

rate in the flow-curve. Here, low ( 1 0  =0.5, Q=4), intermediate ( 1 0  =3.75, Q=30), high (

1 0  =56, Q=450) target shear-rates ( plateU L= ) have been imposed. As shown  in Table 

1, each sampled deformation-rate then generates its associated flow-rate , which is applicable 

over the entire flow domain. Supporting flow profiles for these shear-rate levels are tested on 

two candidate fluids: one fluid, incapable of supporting flow-segregation (with =0); and a 

second fluid, prone to generate shear-bands (with =3). The (=3)-fluid may manifest shear-

bands in an intermediate shear-rate interval of 1≤ 1 0  ≤10 (Fig.2a). The stated combination 

of three key shear-rates and two fluids provides six instances to analyse and compare, as 

recorded in Table 1 and Fig.2a. 

C. Flow domain, boundary conditions, ABS-f and centreline VGR-corrections, and 

fe-fv scheme 

The flow problem is a modified Couette flow (Fig.3), where the dragging motion of an 

upper-plate promotes the flow through a planar contraction-expansion geometry. The 

obstruction has rounded-corners and the contraction aspect-ratio is =4. As such, fully-

developed steady simple-shear Couette flow is observed in regions away from the 

constriction, while inhomogeneous shear-to-extensional mixed flow prevails in the 

constriction-zone.  

This modified plane Couette flow has been devised to provide a means of comparison 

between simple shear flow (in locations away from the contraction) and complex shear-to-

extensional flow in the contraction region. Furthermore, in the inlet flow-region prior to the 

constriction, simple shear flow is maintained in the form of a traditional sliding-plate planar 

Couette flow (as observed in drag flows in co-axial cylinder and cone-and-plate 

rheometers).3-6 In contrast, in the contraction zone, mixed shear-to-extensional deformation 

prevails, and its effects on the fluid-structure are evaluated. There, the simple shear flow is 

lost due to the presence of the constriction, and yet is recovered downstream of the 

constriction, where the condition of simple shear flow  are re-established. Such a flow 

configuration can be found in many industrial devises, such as an extruder, where a molten 

polymer is carried by blades through an extruder screw, and then pushed through a dye 

(traditionally studied as a contraction flow), before being shaped or prepared for further 

processing.36 

Periodic boundary condition strategies - banding against non-banding conditions  

On the geometry-walls, pure-shear flow prevails, and the so-called no-slip boundary 

condition is assumed ( =u 0 ). Linear velocity ux-profiles are specified at the geometry entry-

exit, either as piece-wise linear for banding fluids or a single linear for non-banding fluid, 
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respectively. The profiles are determined based on the deformation-rate dictated by the flow-

curve under the sampled shear-rate ( =Uplate/L). Particularly important for stability at high 

deformation-rates, fully-developed entry and exit velocity-gradient ( u ) are observed 

through feed-back/feed-forward procedures, as discussed in López-Aguilar et al.,37-38. Stress (

p ) is not specified at outlet; hence, the stress is not periodic. In both banding and non-

banding scenarios, it is only necessity to set the pressure P at flow-inlet, to impose a pressure 

level and remove pressure indeterminacy (flow exit attracts Dirichlet setting on velocity). 

Recall that different constant pressure-levels are recorded across upstream and downstream 

locations. This difference is caused by the presence of the constriction. Consistently, 

corresponding upstream and downstream fully-developed pressure-gradients are null. In 

practice, it has been found to be more appropriate to specify a pressure level at the inlet, thus 

avoiding the appearance of any false numerical artefacts in the inlet zone near the wall. 

For banding instances:  

(i) On velocity profiles, penetration into the field upstream is ensured, from entry to 

fully-developed zone, as well as in the downstream field. This ensures periodicity 

of the banding flow.  

(ii) Since the velocity-gradient, stress and f-structure-function are discontinuous under 

banding and represented by step-functions across the banded-velocity zones, it is 

appropriate to take this into account in the discretisation. Starting from 

continuously extracted solutions, this can be achieved by a series of deferred-

correction procedures, which involve incorporating shock-capturing techniques 

(SCP) to accurately resolve selected variables within each band. Hence, one may 

appeal to periodic analytic values (constants per band) and use them to iteratively 

correct fe/fv nodal values throughout the time-steps, within the fully-developed 

flow zones, as and where appropriate. One observes that the interface location 

between bands generally lies within the control volumes used, so that unique nodal 

values may be prescribed based on nodal allocation within a specific band. 

Hybrid finite-element/finite-volume scheme  

The numerical method employed is a hybrid finite-element/volume scheme as reported by 

López-Aguilar et al.29-30 and references therein. In brief, this scheme is a semi-implicit, time-

splitting, fractional three-staged formulation, which invokes finite-element (fe) discretisation 

for velocity-pressure (Q2-Q1, parent-cell) discretisation and cell-vertex finite-volume (fv, 

subcell) discretisation for stress. Together, the individual advantages and benefits of both the 

(fe) and (fv) approximation are combined. The sub-cell fv-triangular-tessellation is 

constructed within the parent fe-grid by connecting the mid-side nodes. Within such a 

structured tessellation, stress variables are located at the vertices of fv-sub-cells (offering 

linear interpolation) and solution projection is circumvented. In addition, Galerkin fe-

discretisation is enforced on the embedded Navier-Stokes component-system. The fractional 

three-staged formulation consists of the momentum equation in stage-1, the pressure-
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correction equation in stage-2 and the satisfaction of the incompressibility constraint in stage-

3 (to ensure higher order precision). On solvers, this leads to a space-efficient element-by-

element Jacobi iteration for stages 1 and 3; whereas for the pressure-correction stage 2, a 

direct Choleski solution method is utilised. At stage 1 of the stress solution , the discretisation 

using fv method results in a system that is diagonalised by design, which is immediately 

amenable to direct solution. 

In order to attain numerical solutions under the present highly non-linear flow situations 

(recall =10-2 and high Q-requirements), the absolute form for the internal-structure 

functional f (termed ABS-f-correction) is demanded within the implementation of the 

constitutive equation. The ABS-f correction arose as a physical argument to ensure 

thermodynamic consistency, with base on the Second Law of Thermodynamics. This 

correction poses an absolute-value constraint on each term contributing additively to the 

dissipation-function p : D  in Eq.(1), and enhances numerical tractability by enforcing 

consistent material property estimation.37 Recovered velocity-gradients, denoted as a VGR-

correction, are also required to achieve stable numerical solutions over wide ranges of 

deformation rate, ensuring discrete continuity imposition throughout the flow field.37 Another 

consequence of the use of the ABS-f and VGR-corrections is the conspicuous increase of the 

level of non-linearity in which numerical algorithms loose tractability, traditionally denoted 

as a critical Weissenberg number Wicrit. López-Aguilar et al.37-38 recorded Wicrit-increments of 

O(103) on solutions obtained using the ABS-f/VGR  doublet, with respect to simulations 

devoid of such corrections. Moreover, the ABS-f correction has been found to be generally 

applicable to other families of constitutive equations such as PTT and FENE.37-38 

López-Aguilar et al.38 recently reported on mesh characteristics and a mesh refinement 

study for 4:1:4 planar contraction-expansion with rounded edges geometry (Fig1.), as well as 

rheological equations of state in the Bautista-Manero family and solution algorithm. To 

complement such mesh-independence information with the problem to hand, BMP+_p 

solutions captured in the fully-developed flow regions in the banding regime are illustrated in 

Fig.4. Here, node-element density is increased in the velocity-gradient direction, where 

construction of the coarse and the refined meshes display half and twice the number of 

elements, respectively, that the medium mesh has cross stream. The solution-capture test is 

performed in terms of the banded shear and normal stress profiles, as well as the location of 

the band interface. The chosen fluid is Case-E, capable to displaying banding under 

parametrisation { , G0, , }={10-2, 4, 0.1136, 2.27x10-7, 1x10-6}. In general, solutions 

appear well-resolved as the location of the band-interface remains invariant across mesh 

densification. The medium and refined solutions approximate the interface location well, 

which was found to be at yint~3.4 units for the test case.  The normal and shear stress profiles 

have similar shapes and intensities, particularly on the refinement step from medium to 

refined. However, some localised noise is noted near the interface. This noise is due to the 

discontinuity posed by the interface and solution approximation. This is dealt with via a 
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shock-capture implementation, which is discussed in detail in the results section. Hence, from 

this point on, the medium mesh is considered for the solution description. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. Numerical Predictions 

In this section, the solutions for the cases in Table 1 demonstrate the ability of our BMP+_p 

constitutive model and our numerical algorithm to generate banded or non-banded flows in 

the fully-develop region away from the constriction. These solutions also illustrate the 

influence of the obstruction and its mixed shear-to-extensional deformation fields on the 

attained flow-structure.  

 Particularly for the (=3) banding-fluid, an intermediate flow-rate (Q=30) lies within the 

shear-banding deformation-rate range, making of banded-solutions possible. The lowest 

(Q=4) and highest (Q=450) flow-rates lie outside the shear-banding regime, where non-

banded solutions are expected. In the following sections, details on the development of these 

instances are provided.  

A. Banded against Non-banded solutions – Intermediate target flow-rate ( 1 0 

=3.75), shear-banding fluid Case-E against non-shear-banding fluid Case-B  

Case-E Banded velocity-ux and structure (viscosity and structure-parameter-f) fields 

and profiles  

First, the =3-banded Case-E is considered (Table 1), for which the corresponding velocity 

ux-field is presented in Fig.5a. The nature of this complex planar-flow reveals simple shear-

flow away from the contraction, and a combined shear-to-extensional deformation in the 

contraction-region. As such, several key-features may be observed and discerned from these 

two deformation states. In the upstream and downstream fully-developed flow-regions, one 

can observe a banded steady-state velocity ux-field, with velocity-bands appearing in the 

Txx Txy 

a) b) 

Figure 4. a) Normal-stress Txx and b) shear-stress Txy profiles sampled at the upstream fully-developed region; 

=10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; mesh-refinement study for coarse, medium and refined grids; 

Case E: shear-banding fluid (=) 
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vertical y-spatial direction. The banded flow-pattern is then lost as the fluid approaches the 

constriction. Subsequently, one notes that, after traversing through the constriction and upon 

recovering simple-shear deformation, a banded fully-developed flow pattern is recovered.  

 In Fig.6a, flow-segregation is recorded through a split ux-profile. This is sampled cross-

stream at a fixed horizontal x-spatial coordinate in the upstream fully-developed flow region 

(one notes the null transversal velocity uy-profile in Fig.6b). 

 The interface between bands is located at the inflection-point of such a split ux-profile 

(yint~3.48 units), where there is a sharp-change in colour-intensity in the fields (Fig.5a). Such 

an interface can be determined using the lever-rule,6,31 to lie at a location of: 

( ) ( )2 0 2 1int dy      = − −  , where  is the target characteristic shear-rate and d=4 units 

is the distance that separates the moving-plate and the contraction-wall.** As such, =3.75 

and Txy~0.4 units (Fig.7a), in this case, it is located in the unstable non-monotonic shear-

stress regime. Then, extracted from the flow curve at an equivalent shear-stress level Txy~0.4 

units, =0.6 units and =27 units are the low and high shear-rate stable-branches, 

respectively. Each band, which constitutes the split ux-profile, is then supported by its 

corresponding shear-rate, with the low-  and high-  shear-rates being assigned to the lower 

and upper bands, respectively. Then, the narrow upper-band in the local neighbourhood of the 

moving-plate (with a red/intense-core; Fig.5a) represents the material in the high-  shear-

rate band. In terms of rheological response (Fig.7b), this high-  shear-rate band corresponds 

to a highly-unstructured fluid of total-viscosity Tot~1.8x10-2 units (see blue band in viscosity 

field in Fig.5c and counterpart red-fringe in the structure-parameter f-field of Fig.5d). In 

contrast, the low-  shear-rate band occupies the remaining channel-space, lying between the 

band-interface and the bottom geometry-wall (homogeneous blue band in f-field of Fig.5d). 

Here, a highly-structured fluid is reported, with a viscosity of Tot~0.8 units (as indicated by 

the orange band in viscosity field in Fig.5c).  

 In the complex flow region, the pre-banded flow field is disrupted and distorted by the 

constriction, with unstructured material flowing through the constriction-gap, while highly-

structured material occupies the stagnant corners (as shown in the viscosity field 

representation, Fig.5c). In Fig.6d, the cross-stream velocity Ux-profile in the contraction gap 

displays changes of slope near the contraction and top walls, fact that reflects the non-

homogeneity of the flow in the contraction-region. Then, beyond the constriction, and once 

the fluid-viscosity has had the opportunity to readjust, a banded morphology is reformed (nb. 

the downstream intermediate-green viscosity colour levels, illustrate convection 

downstream).  

 A clarification is worthwhile regarding the meaning of the terms ‘inhomogeneous 

deformation’ and ‘inhomogeneous flow’ for the rheological community. In complex flows 

studied under the umbrella of non-Newtonian fluid mechanics, ‘inhomogeneous 

flow/deformation’ refers to a flow in which simultaneous shear and extensional deformations 

are mixed in the domain. In contrast, in rheometry, where shear-banding has traditionally 

been studied, an ‘inhomogeneous field’ refers to field with fluid segregation (bands) in a 

 
** d=4 also corresponds to the contraction ratio () in this contraction-expansion geometry. 



 18 

simple shear deformation. Hence, in this paper, to address this issue, we differentiate and 

define the concept of ‘complex flow’ as a mixed inhomogeneous shear-to-extensional 

deformation. Additionally, we define ‘banded flow’ as a flow that supports the coexistence of 

two bands of material with different physical properties, i.e. viscosity. 
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d) 

Flow direction

a) 

b) 

c) 

e) 

f) 

g) 

Figure 5. a) Velocity Ux , b) shear-rate ∂Ux/∂y, c) viscosity, d) f-functional, e) shear-stress Txy, f) normal-

stress Txx and g) pressure P fields; =10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6};  

Case E: shear-banding fluid (=) 
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Figure 6. Profiles of a) Ux b) Uy , c) Txy and d) Ux @ contraction-gap; 

=10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; Case E: shear-banding fluid (=) 
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a) b) 

c) 

Figure 7. a) Trz , b) Shear and Ext, and c) N1Shear against deformation-rate  (simple shear & uniaxial extension); BMP+_p; 

=10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; Case E: shear-banding fluid (=) 
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Case-E banded shear and normal stress fields and profiles, and pressure-field  

The fully-developed banded velocity-profile response of =3-solution is accompanied by a 

roughly constant shear-stress Txy-field (Fig.5e). Notably, at the channel-height where the 

interface between the bands appears, a horizontal strip of slightly larger Txy-values is 

apparent. The counterpart Txy-profile reveals a constant Txy-level (~0.4 units; Fig.6c), which 

appears throughout the flow-gap. Precisely near the interface location, the Txy-profile 

oscillates about the mean level. This is consistent with the discretisation and the 

discontinuous nature of the shear-rate profile across the flow-gap, which ideally necessitates 

shock-capturing techniques for more accurate resolution (see earlier remarks). These 

undulations coincide with the slightly more intense strips observed and may be associated 

with the discontinuity posed by the interface (see on with shock-capturing). Conspicuously, 

the normal-stress Txx also inherits bands, driven by the velocity profile (Fig.5f). Such banding 

in normal-stress components has also been observed in non-extensional large amplitude 

oscillatory shear (LAOS) predictions using the Rolie-Poly model.39 Once more, the 

homogeneous Txy-field and the inhomogeneous Txx-response in the fully-developed regions 

are disturbed by the presence of the constriction (Fig.5e-f). Here, the effects of the combined 

shear-extensional deformation are more evident. On Txy, the stripped-interface disappears and 

a homogeneous Txy-level is adopted in the constriction-gap (Fig.5e). Moreover, in the recess-

zones, there are triangular green-structures, and a localised small blue-zone emerges on the 

contraction back-face, near its tip. Consistently, on Txx, two coloured-level regions are 

reported; with base on the contraction-tip of negative-blue values upstream and a positive-red 

counterpart downstream (Fig.5f).  

In Case E, the pressure sustaining flow passes from a green-uniform base-pressure-level to 

a relatively lower and brighter-green pressure-level downstream of the contraction (Fig.5g, 

Poutlet /(1+Pinlet)~5x10-1). Note that in the upstream and downstream fully-developed regions, 

pressure-fields appear independent of the main-flow x-direction, consistent with Couette-

deformation. The upstream-to-downstream pressure-level adjustment is provoked by the 

mixed shear-to-extension flow within the constriction. 

From such a continuous solution representation, deferred-correction solutions may be 

considered when incorporating shock-capturing (SCP) across the bands to more directly 

address solution-discontinuity and its localisation. The effectiveness  of this strategy may be 

demonstrated by comparing cross-stream profiles of solution refinements with no-shock-

capturing solutions. Here, the entry SCP-conditions are set as analytic in velocity-gradient 

and stress, which imposes the f-structure-function (Fig.8). The exit SCP-conditions are then 

taken as follows: first by imposing periodicity on the f-structure-function; secondly, by 

imposing periodicity on velocity-gradients; thirdly, by imposing periodicity on both; Then, 

stress is computed as before. The corresponding exit-flow SCP-solutions are provided in 

Fig.9, for both major stress components (Txy, Txx). Through these solutions, one can contrast 

the analytic entry SCP-conditions. Here, the major correction influence is from periodicity in 
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the velocity-gradients. Any correction from the f-structure-function (alone/in combination 

with velocity gradients) is seen to deteriorate the quality of exit-stress profiles. In this data, 

the overall quality of the none-shock-captured solution is also complemented. 

Case-B Non-banded Velocity field  

For Case-B (non-shear-banding fluid =0; Table 1 and Fig.10) and in contrast to Case-E 

(=3, Fig.5), the fully-developed velocity ux-field now appears as a single and continuous 

shear-rate form, as shown in Fig.10a-b. This is accompanied by upstream-downstream 

constant non-segregated Txy- and Txx-levels Fig.10e-f. Such a linear upstream velocity-profile 

is lost in the constriction zone, where the fluid is accelerated as a consequence of the 

converging flow. Here, the Txy-field develops strongly positive and negative localised regions 

attached to the contraction walls, and a negative elongated region on the moving-plate 

(Fig.10e). The normal stress Txx-field presents a strong elastic-zone in the contraction-region 

(Fig.10f), followed stream-wise by a negative zone whose influence appears to be convected 

downstream. In the upstream recess zone, there is an additional negative-strong patch, which 

is balanced downstream by an isolated red-positive core that elongates into a tail downstream.  

In terms of fluid-structure and away from the constriction-zone, the viscosity (and its 

counterpart structure-parameter-f) distribution remains at a single constant-level upstream 

(Fig.10c-d). Then, as the fluid approaches the contraction, the varied and distributed 

deformation-rate breaks down its structure, resulting an asymmetric blue low-viscosity region 

filling the constriction. In the deceleration zone beyond the constriction, the material is 

observed to recover its structure. This fact is witnessed, via the viscosity-field, by a sudden 

change from a highly-unstructured fluid (blue), to a more structured fluid (green). This is 

expressed through two elongated arms directed downstream, one sticking to the moving-plate 

and the other located in the middle of the domain.  

In the recess-zones, there are isolated red/high-viscosity triangular-shaped zones, 

suggesting relatively slow motion in these vicinities. Here, due to the highly-nonlinear 

conditions based on polymer-content (=10-2) and increased flow-rate, the pressure-drop 

required to drive the flow is enforced through a fixed-pressure boundary-condition at the 

inlet. This implies that the resulting pressure level must be calculated at the flow-outlet. Such 

a procedure ensures that no downstream blockage is created in pressure, which may 

otherwise degrade the downstream solution quality in taking up fully-developed flow 

conditions. The ensuing pressure field passes from one of a characteristic constant-pressure 

Couette flow upstream (Fig.10f) to a similar form downstream.  Afterwards, a pressure build-

up (pressure-gradient, ~19.9 units) sustains the flow through the constriction. 
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c) d) 

e) f) 

Flow direction

Figure 8. Banded-solution profiles: entry-analytic vs exit-Non-SCP; a) velocity Ux , b) shear-rate ∂Ux/∂y, 

c) normal-stress Txx, d) shear-stress Txy, e) f-functional, f) viscosity; 

BMP+_p; =0.01, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; Case E: shear-banding fluid (=) 
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a) b) 

c) d) 

e) f) 

Figure 9. Banded-solution profiles under shock captures (SCP): analytic-entry vs exit-SCP;  

SCP-f: a) shear-stress Txy, b) normal-stress Txx; SCP-Vgrad: c) Txy, d) Txx; SCP-f-Vgrad: e) Txy, f) Txx; 

BMP+_p; =0.01, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; Case E: shear-banding fluid (=) 
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B. Non-banded solutions at low flow-rate - A against D cases 

Case-A and Case-D non-banded solutions at low deformation-rates  

a) 

b) 

c) 

d) 

e) 

f) 

g) 

Figure 10. a) Velocity Ux , b) shear-rate ∂Ux/∂y, c) viscosity, d) f-functional, e) shear-stress Txy, f) normal-

stress Txx and g) pressure P fields; =10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; 

Case B: non-shear-banding fluid (=) 

Flow direction
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Considering low deformation-rates (Q=4; =0.5) the instances of the shear-banding fluid 

(=3; case-D), which lies outside the unstable branch of the flow-curve (Fig.11a-b), and the 

non-shear-banding fluid (=0; case-A), the predictions indicate single-banded ux-fields 

(Fig.12a-b). Across both instances (A and D), and at this relatively low state of deformation, 

solutions adopt a similar form, with only slight level-differences detected in the constriction-

gap. In the fully-developed regions, the single-banded velocity profiles are supported by 

uniform states in Txy and Txx stress-fields (Fig.11e-f and Fig.12e-f, respectively). Notably, the 

shear-banding (=3; case-D) fluid solution-set yields less intense features, with a single 

green-level apparent around the constriction-zone. Correspondingly, the non-shear-banding 

(=0) case-A solution sustains intense stress-levels. These differences may be correlated with 

the relatively larger shear and normal stress levels for the non-shear-banding A-fluid 

(indicated in Fig.2a). Recall that non-zero shear-banding intensity parameters ≠0 provoke 

exaggerated shear-thinning features (see shear rate differences Fig.11b and Fig.12b).  

This low flow-rate (Q=4; =0.5) has been chosen to impose a stable-branch deformation-

rate in the flow-curve, while still maintaining some differences between shear-banding and 

non-shear-banding fluids. Here, for the shear-banding fluid (=3), one can observe a slightly 

lower Txy-level compared to the non-shear-banding (=0)-case. This (=3)  decline in Txy 

slope is related to the proximity to the flow-curve maxima at higher shear-rate levels.  

In terms of fluid-structure, for case-D (=3)-viscosity and f-fields (Fig.11c-d) reflect 

liquefied material in the constriction-zone, while it is fully-structured in the recess-zones 

(red-levels). The extremes in viscosity distribution noticeably spread and fill the constriction-

zone (blue-levels), while relatively smaller viscosity-levels occupy the fully-developed 

regions (green-shading, Fig.11c-d). In contrast in Fig.12c-d, case-A (=0)-viscosity-fields 

display a relatively structured material away from the constriction (red-levels) and isolated 

thinned-blue fluid patches that have base on the contraction-tip and the wall. They only 

influence the material from around the constriction-zone.  

This distinct change in structural-behaviour can be attributed to the exaggerated shear-

thinning properties of the shear-banding case-D (=3) fluid. At a fixed shear-rate (beyond 

~0.3), the shear-banding case-D (=3) fluid produces a less-responsive system, with 

relatively lower levels of material-change than those of the non-shear-banding case-A (=0) 

fluid. This can be observed from the rheology of the flow-curve in Fig.2a when comparing 

the field solutions of case-A and case-D. The only caveat to this statement lies in the pressure 

field, both around and downstream of the constriction, which is significantly more disrupted 

under the shear-banding case-D (=3) fluid (Fig.11g) than for the non-shear-banding case-A 

(=0) fluid (Fig.12g). 
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a) 

b) 

c) 

d) 

e) 

f) 

g) 

Figure 11. a) Velocity Ux , b) shear-rate ∂Ux/∂y, c) viscosity, d) f-functional, e) shear-stress Txy, f) normal-

stress Txx and g) pressure P fields; =10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; 

Case D: shear-banding fluid (=) 

Flow direction
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C.  Non-banded solutions at high flow rate - C against F cases 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

Figure 12. a) Velocity Ux , b) shear-rate ∂Ux/∂y, c) viscosity, d) f-functional, e) shear-stress Txy, f) normal-

stress Txx and g) pressure P fields; =10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; 

Case A: non-shear-banding fluid (=) 

Flow direction
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Case-C and Cased-F non-banded solutions  

In the alternative extreme of high deformation-rate, the second stable-branch of the flow-

curve is located, as shown by solutions at (Q=450; =56) (Fig.2a). There, in the non-shear-

banding (=0) case-C solution (Fig.13), a strong single-banded ux-field is captured away 

from the constriction. In the complex-flow constriction region, intense activity is recorded 

through stress Txy- and Txx-zones, which are based on the contraction-tip and around the 

moving-wall (Fig.13e-f). Here, the large velocity of the moving-wall causes increased 

kinematics stimulated to convect downstream the relatively-strong levels of stress from the 

constriction-zone. In this high deformation-rate instance, the fluid-viscosity drops 

dramatically, filling almost the entire geometry (Fig.13c-d). That is, with the exception of the 

recess-regions, which acquire structured material response and appear as reduced red-zones.  

 

Unfortunately, in contrast, the high-rate shear-banding (=3) case-F proved to be 

computationally intractable for conditions of severely-low solvent-fraction (=10-2). This is 

due to the combination of three key factors: the already extremely high flow-rate Q=450; the 

outstandingly-high polymer-content (1-)=0.99; and the additional non-linearity invoked by 

the non-zero shear-banding intensity parameter (≠0). Nevertheless, some evidence for the 

influence of -increase may be drawn from solutions extracted in the reduced range 

0.001≤≤0.03, but at the larger permitting solvent-fraction =1/9. One notes therefore, that a 

final and stable steady-state solution may be gathered computationally only for a (=0.03)-

fluid. Under these conditions, oscillations in normal-stress are observed, signalling pending 

intractability. This implies that this fluid is in its high deformation-rate stable branch of the 

Txy flow-curve, while N1Shear lies within its unstable branch. As these solutions do not 

significantly deviate from (=0)–solutions, this data is withheld. 
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a) 

b) 

c) 

d) 

e) 

f) 

g) 

Figure 13. a) Velocity Ux , b) shear-rate ∂Ux/∂y, c) viscosity, d) f-functional, e) shear-stress Txy, f) normal-

stress Txx and g) P fields;=10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; 

Case C: non-shear-banding fluid (=) 

Flow direction
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IV. Conclusions 

In this work, novel solutions are reported for the shear-banding of micellar systems in a 

complex modified planar Couette flow. Banded solutions have been attained using the 

BMP+_p model to approximate the rheological response of highly-concentrated (solvent-

fraction ≤10-2) wormlike micellar solutions. In this manner, away from the constriction, 

simple shear-flow is observed, while inhomogeneous shear-to-extensional flow is gathered 

about the contraction.  

To contrast banding against non-banding response, two fluid representations have been 

chosen: a shear-banding fluid (non-monotonic flow-curve with localised extrema) and a non-

shear-banding fluid (monotonic flow-curve). Then, three overall flow-rates were fixed on the 

flow-curve, where each flow-rate corresponded to a low, intermediate and high shear-rate, 

respectively. Armed with these combinations, six independent instances were identified for 

study across two fluid-types (shear-banding/non-shear-banding) and three flow-rates 

(stable/unstable/stable). 

The banding fluid in the intermediate flow-rate generates segregated flow-fields away 

from the contraction, represented via velocity, normal stress and flow structure (viscosity or 

fluidity). Cross-stream fully-developed samples reflect split velocity and normal-stress 

profiles, while shear-stress profiles appear constant. Such inhomogeneous response is lost in 

the contraction-zone, where flow-structure readjusts to the multiple and distributed rates 

encountered. This leads to a highly-unstructured material response that is accelerated and 

stretched due to the obstruction-blockage. Interestingly, pressure sustains a Couette-like form 

away from the contraction, with constant pressure-levels that vary from upstream-to-

downstream due to the inhomogeneous shear-to-extensional flow posed by the constriction. 

One notes in particular is that downstream of the constriction, a banding fluid in an 

intermediate flow-rate regime, shows a tendency to resume banded profiles, having 

experienced the disorder of the flow around the constriction. The plausibility of banding in 

N1Shear alone, and not within Txy, is also considered an interesting and open issue to be 

resolved. 

In contrast and apart from the region of contraction, the non-shear-banding fluid displays 

homogeneous velocity, shear-stress and normal-stress fields and profiles, indicating a 

relatively more structured material response. Flow instances in the stable branches of the 

flow-curves, at low and high flow-rates, consistently reflect simpler, non-segregated flow 

fields, with degrees of structure modulated by the individual deformation-rate imposed. Due 

to the high degree of non-linearity caused by the extremely high solute-concentration (≤10-

2), the case of the banding fluid at high-Q is found to be numerically intractable. However, 

such predictive limitation may be addressed via larger- solutions (=1/9), under which 

normal-stress oscillations are observed as a signal of pending intractability. The implication 

here is that this fluid is in its high deformation-rate stable branch of the Txy flow-curve, while 

N1Shear lies within its unstable branch.  
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The findings presented in this manuscript suggest new avenues of research, such as the 

localisation in extensional deformation. This phenomenon is relevant to extension necking in 

wormlike micellar solutions,9,10 contraction15 and pipe flows.40 Future studies will focus on 

these topics.  
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Table and figure captions 

Table 1. Deformation-rate versus fluid chart 

Table 2. List of parameters 

 

Figure 1. Schematics of the planar modified Couette geometry – This complex flow 

geometry is a composition of a 4:1:4 planar contraction-expansion with rounded edges and a 

drag flow. The flow is promoted by the drag the sliding plate exerts on the fluid stick to its 

surface. One observes simple-shear flow away from the contraction and mixed shear-to-

extensional flow in the contraction neighbourhood. 

 

Figure 2. a) Txy , b) viscosity, and c) N1Shear against deformation-rate (simple shear & uniaxial 

extension); =10-2; BMP+_p {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}, non-shear-

banding fluid (=), shear-banding fluid (=); VCM: {CAeq, CBeq, ,  }={0.5, 0.7, 0.42, 

7.5x10-7, 1.5}. 

 

Figure 3. a) Txy, b) N1Shear and c) f against shear-rate (simple shear flow); BMP+_p; {, G0, 

, }={4, 0.1136, 2.27x10-7, 1x10-6}; shear-banding fluid (=) 

 

 

Figure 4. a) Normal-stress Txx and b) shear-stress Txy profiles sampled at the upstream fully-

developed region; =10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; mesh-refinement 

study for coarse, medium and refined grids; Case E: shear-banding fluid (=) 

 

Figure 5. a) Velocity Ux , b) shear-rate ∂Ux/∂y, c) viscosity, d) f-functional, e) shear-stress 

Txy, f) normal-stress Txx and g) pressure P fields; =10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 

1x10-6}; Case E: shear-banding fluid (=) 

 

Figure 6. Profiles of a) Ux b) Uy , c) Txy and d) Ux @ contraction-gap; =10-2, {, G0, , 

}={4, 0.1136, 2.27x10-7, 1x10-6}; Case E: shear-banding fluid (=) 

 

Figure 7. a) Trz , b) Shear and Ext, and c) N1Shear against deformation-rate  (simple shear & 

uniaxial extension); BMP+_p; =10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; Case E: 

shear-banding fluid (=) 

 

Figure 8. Banded-solution profiles: entry-analytic vs exit-Non-SCP; a) velocity Ux , b) shear-

rate ∂Ux/∂y, c) normal-stress Txx, d) shear-stress Txy, e) f-functional, f) viscosity; BMP+_p; 

=0.01, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; Case E: shear-banding fluid (=) 

 

Figure 9. Banded-solution profiles under shock captures: analytic-entry vs exit-SCP; SCP-f: 

a) shear-stress Txy, b) normal-stress Txx; SCP-Vgrad: c) Txy, d) Txx; SCP-f-Vgrad: e) Txy, f) Txx; 

BMP+_p; =0.01, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; Case E: shear-banding fluid 

(=) 
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Figure 10. a) Velocity Ux , b) shear-rate ∂Ux/∂y, c) viscosity, d) f-functional, e) shear-stress 

Txy, f) normal-stress Txx and g) pressure P fields; =10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 

1x10-6}; Case B: non-shear-banding fluid (=) 

 

Figure 11. a) Velocity Ux , b) shear-rate ∂Ux/∂y, c) viscosity, d) f-functional, e) shear-stress 

Txy, f) normal-stress Txx and g) pressure P fields; =10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 

1x10-6}; Case D: shear-banding fluid (=) 

 

Figure 12. a) Velocity Ux , b) shear-rate ∂Ux/∂y, c) viscosity, d) f-functional, e) shear-stress 

Txy, f) normal-stress Txx and g) pressure P fields; =10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 

1x10-6}; Case A: non-shear-banding fluid (=) 

 

Figure 13. a) Velocity Ux , b) shear-rate ∂Ux/∂y, c) viscosity, d) f-functional, e) shear-stress 

Txy, f) normal-stress Txx and g) P fields;=10-2, {, G0, , }={4, 0.1136, 2.27x10-7, 1x10-6}; 

Case C: non-shear-banding fluid (=) 
 

 

 

 

 

 

 


