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ABSTRACT

This study focuses on computational modeling of shear-banded wormlike micellar solutions (WLM) in a complex planar Couette flow, driven
by a moving top plate over a rounded-corner 4:1:4 obstruction. The BMP+-_t,, model is used, which is constructed within an Oldroyd-B-like
form, coupled with a thixotropic fluidity-based structure equation. Solute energy dissipation drives fluid-structure adjustment in a construc-
tion—destruction dynamics affected by viscoelasticity. This model reproduces conventional WLM features, such as shear thinning, extensional
hardening/softening, viscoelasticity, apparent yield stress, and shear banding, with a bounded extensional viscosity and an Njgpe,, upturn at high
deformation rates. The BMP+_rt,, characterization for shear banding is based on extremely low solvent fractions and appropriate shear-banding
intensity parameters. Flow structure is analyzed through velocity, stress, and fluidity, whereupon banded and non-banded response is contrasted
at appropriately selected flow rates. Solutions are obtained with our hybrid fe-fv algorithm, capturing essential shear-banded flow features
reported experimentally. For a fluid exhibiting banding, banded solutions are generated at a flow rate within the flow curve unstable branch. In
the fully developed simple shear flow regions, a split velocity profile is observed, with different viscosity bands at equal stress levels, enhanced
with a shock-capture procedure. Non-banded solutions are derived for the lowest and highest flow rates sampled, located in the stable branches.
Within the constriction zone, banded profiles are lost due to the mixed non-homogeneous deformation. Shear-banding fluids display less
intense viscosity/stress features, correlated with their relatively stronger shear thinning response. The constriction resistance provokes a
pressure-level adjustment, leading to fully developed Couette-like constant values upstream-downstream.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143432

I. INTRODUCTION

The theme of this predictive finite volume/element modeling study
is particularly concerned with investigating material system response of
wormlike micellar solutions. These solutions are capable of supporting
shear banding under ideal simple shear flow. To further develop and
identify the corresponding position adopted in inhomogeneous complex

This leads to the observation of pure shear Couette flow in fully devel-
oped entry—exit regions, away from the obstruction, while mixed shear-
to-extensional flow arises around the contraction zone. This provides the
possibility to gather zones of pure shear banding in the entry flow region,
allowing us to study the corresponding system response within and
beyond the complex flow zone, once exit-flow pure shear conditions are
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flow, a modified planar Couette flow is considered. This flow is
generated by a moving top plate in a rounded-corner 4:1:4 planar
contraction-expansion geometry (aspect ratio o =4), see Fig. 1. To
avoid singular flow response, the obstruction formed has a rounded tip.

recovered. To suit present purposes, the simplicity of plane Couette flow
is preferred (with its single-rate non-SB). The multiple form of rate-
profiles, as offered by a pressure-driven deformation, is seen as a more
advanced stage in problem resolution, which will appear subsequently.

Phys. Fluids 35, 063101 (2023); doi: 10.1063/5.0143432
© Author(s) 2023

35, 063101-1


https://doi.org/10.1063/5.0143432
https://doi.org/10.1063/5.0143432
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0143432
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0143432&domain=pdf&date_stamp=2023-06-01
https://orcid.org/0000-0002-0308-3994
https://orcid.org/0000-0003-2431-199X
https://orcid.org/0000-0001-6633-1070
mailto:jelopezaguilar@unam.mx
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0143432
pubs.aip.org/aip/phf

Physics of Fluids

Flow direction

Inlet

TITTTTTIT

ARTICLE pubs.aip.org/aip/pof

I4:1:4 contraction-expansion |

Outlet

Contraction wall

FIG. 1. Schematics of the planar modified Couette geometry—this complex flow geometry is a composition of a 4:1:4 planar contraction-expansion with rounded edges and a
drag flow. The flow is promoted by the drag the sliding plate exerts on the fluid stick to its surface. One observes simple shear flow away from the contraction and mixed

shear-to-extensional flow in the contraction neighborhood.

Shear-banded flows have been traditionally studied within the
restricted context of ideal simple shear flow." © In the planar Couette
flow under present consideration, shear-banded flow is observed in
the form of a discontinuous velocity gradient profile. This profile dis-
plays two or more distinct shear rates over multiple bands, which are
constant over each band, while simultaneously maintaining equitable
total shear stress levels across each band.” This scenario is reflected in
an idealized simple shear flow curve, which covers a range of shear
rates in the stable branches of the flow curve, each shear rate with its
equivalent distinct shear stress level. The level of shear stress itself is
determined by the characteristic shear rate Upja/L (Which is directly
linked to the generated flow rate). Here, Upjae represents a moving-
wall top-plate velocity, and L is the width of the flow cell. One notes
that to generate a banded flow, the overall characteristic shear rate
(Uplate/L) must lie within the unstable shear rate range regime of the
flow curve, which is identified in a negative stress slope, plotted against
shear rate rise.””

Materials that exhibit the phenomenon of shear banding are
wide ranging. For example, shear-banded inhomogeneous flow may
be observed in aqueous surfactant solutions, pastes, foams, emulsions,
granular slurries, liquid crystals, concentrated colloidal emulsions and
suspensions, and oil fractions.” © Despite the large variety of materials
capable of displaying bands in complex flow under realistic scenarios
and their widespread industrial use, the majority of previous work has
been limited to idealized steady simple shear flow. Commonly, this
scenario has been analyzed through simple shear Couette flow and
Taylor-Couette-type deformations (promoted by surface movement
and corresponding drag flow in steady and oscillatory shear proto-
cols).‘” In addition, extension necking has been observed in some
wormlike micellar systems,”'” in the form of extensional deformation
rate localization, that originates from a multiple-valued extensional
stress flow curve, with higher extension rates and pronounced thin-
ning of the filament radius in the midplane of the sample. Despite
such advance, there has been a distinct lack of attention paid to the
response of banding fluids in complex flow with tangible sparsity in
the literature on either experimental or predictive studies."' "> Hence,
the present study focuses on inhomogeneous modified Couette flow
(with spatial dimension greater than one), and the derivation of
numerical solutions for wormlike micellar banding fluids.

Olmsted” states two general modes of shear banding for shear-
thinning and shear-thickening fluids: (i) gradient banding, in which
bands of different apparent viscosities coexist, under a common overall
shear stress, and (ii) vorticity banding, in which bands with different
shear stress distribute in the vorticity direction. Divoux et al.” reviewed
two main types of soft matter that undergo segregation due to shear
banding: (i) fluid-like materials, in which semi-dilute polymeric and

wormlike micellar solutions are grouped; and (ii) soft-glassy materials,
which correspond to more concentrated materials than common
wormlike micellar solutions, may display liquid or gel-like features
(principally yield stress) at rest. These complex fluids exhibit shear
banding through a gradient-banding mechanism, which is captured
via a non-monotonic flow curve. Such behavior is observed in the
experiments of Fischer and Rehage'® and Pipe et al,'”” where shear
stress plateaux are apparent over finite shear rate ranges. In complex
flow, particularly in microfluidic planar contractions, Nodoushan
et al."” recently reported intense secondary flow promoted by the
interplay of strong shear thinning, shear banding, and yield stress for
typical cetyltrimethylammonium bromide/sodium salicylate wormlike
micellar solutions.

One of the key features for a model to predict banded flow is its
capacity to support a non-monotonic flow curve with localized
extrema.””’ Two main streams of constitutive modeling have been
developed to predict shear banding: a classical approach in polymeric
fluids'® " and, alternatively, equations of state based on the descrip-
tion of the fluid microstructure.”*'**

On the side of polymer-based constitutive models, a modified
Johnson-Segalman model characterizes banding materials via a diffu-
sion term in the polymeric extra-stress equation, leading to the so-
called d-JS model of Olmsted et al.'® Such stress-diffusion term in the
polymeric stress equation has the form of the Laplacian operator of
the extra-stress tensor multiplied by a stress diffusivity D, i.e., DV?*1,.
This particular model choice has captured shear bands in cylindrical
Couette flow. In addition, wormlike micellar systems have also been
represented through a form of the Giesekus model, where shear band-
ing characteristics are introduced via the non-linear anisotropy
coupling parameter.”’ These authors developed a method based on
large-amplitude oscillatory shear (LAOS) flow, from which fluid char-
acterization could be extracted, and where the onset of shear banding
was observed to depend on oscillation frequency.

Within the microstructural constitutive models, an extra struc-
ture equation(s) is used to induce non-monotonicity. The Vazquez—
Cook-McKinley (VCM) model is one of such, that is based on a
discrete form of the “living polymer theory,” attributed to Cates.”
This VCM model has been validated in simple flows where rheological
homogeneity prevails, and under conditions of shear banding.” A
closely related model to the VCM model is the Germann-Cook-Beris
(GCB) model, under which the structure breakage rate depends explic-
itly on the trace of the conformation tensor (always positive by defini-
tion).>*>** Moreover, a soft glassy rheology (SGR) model has been
proposed recently to model shear banding under LAOS.”* Similarly,
solutions for startup in shear with the integral Doi-Edwards model””
have been compared to those obtained by Moorcroft and Fielding,”®
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with a differential approximation of the Rolie-Poly model. The reactive
rod model (RRM) of Graham and co-workers’** models wormlike
micellar solutions as a suspension of rods that interact to form revers-
ible physical bonds that modify the internal structure of the material.
This RRM model predicts features of vorticity banding observed in
diluted solutions.

In addition, the thixotropic Bautista-Manero-Puig (BMP) mod-
els also produce non-monotonic flow curves through their dynamic
fluid internal-structure equation. Such an additional fluid-structure
evolution equation naturally integrates mechanisms for the construc-
tion and destruction of internal structure.””” This would include a
structure destruction coefficient that has an explicit dependence on
flow invariants,”'*”" without the complication of handling Laplacian
operators. For an approach to modeling shear-banding wormlike
micellar solutions, the latest variant is the BMP+_t,, which has been
used previously under complex flow deformations, such as in circular
contraction—expansion”’ and flow past a sphere."’ The BMP+_t,,
may be supplemented with a destruction parameter of linear depen-
dence on the second invariant of rate-of-strain tensor, to have the
functional capability of generating a non-monotonic curve,”’ and
importantly, a unique solution in the shear-banding (SB) regime.
Furthermore, this recent BMP+_t, model and some previous variants
have incorporated a relationship between fluid structure and viscoelas-
ticity within the structure equation.”””’ These developments have
resulted in consistent energy-related pressure drop predictions,
whereas earlier versions were found to be inadequate.” In addition to
supporting banded flow, the latest BMP+_z, model also has a number
of attractive rheological features, which include, in shear, a second
high-rate upturn in first normal stress difference Njgpear; @ bounded
extensional viscosity response; alongside extreme shear thinning and
strain softening/hardening behavior. These are all properties common
to many wormlike micellar systems,”””” which are in agreement with
experimental shear flow findings.'>'”

On the side of complex flow modeling, Varchanis et al'* con-
ducted a comparison of the predictive capabilities of well-known mod-
els under banding conditions in cross-slot and flow past a cylinder.
These authors tested a model proposal based on a fluidity variable
against the Johnson-Segalman, the VCM, and the Giesekus models. In
addition, Lépez-Aguilar et al.'* and Hooshyar and Germann'” carried
out predictive work on the flow of wormlike micellar solutions in con-
traction geometries under banding conditions. Sasmal™ performed
computational modeling of non-banding wormlike micelles in
expansion—contraction geometries using the VCM model. In pressure-
driven tube flow, Cunha et al.”* predicted transient shear banding flow
features with a fluidity-based constitutive model.

In this work, a BMP+_1, model””?" is used to represent the
behavior of wormlike micellar systems under shear-banding condi-
tions, with an ingredient of complex flow posed by the constriction in
the modified Couette geometry. This requires an additional term in
the constitutive model with viscoelasticity within network-structure
destruction kinetics, which can potentially facilitate shear banding.
Experimental evidence would indicate that extremely concentrated
micellar fluids with non-monotonic shear stress are required to gener-
ate shear-banded solutions. Therefore, banded-system response is
sought under low solvent fractions of f < 10~ and material shear-
banding intensity parameters of { >0 ({ =0, non-banding system),
where non-monotonicity is observed in both shear stress and Nghear-
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This article is organized as follows: Sec. IT provides details on the
BMP+-_t, model theoretical framework, along with its consequences
on the relevant material functions. This is accompanied by a range of
suitable deformation rates (converted into their corresponding flow
rates Q) that are used to characterize specific instances of low, interme-
diate, and high deformation rates. One must choose an intermediate
deformation rate such that the associated shear stress lies on an unsta-
ble branch of the flow curve, while corresponding low and high defor-
mation rates (with equal shear stress) are located in stable branches.
The combination of shear rate and banding/non-banding fluids gener-
ates the various flow instances, which are analyzed in Sec. III
(Numerical Predictions). There, the banded complex flow defines the
main findings, while the remaining cases provide a backdrop for direct
comparison. Finally, in Sec. IV, the significant findings of the study are
summarized.

Il. GOVERNING EQUATIONS, CONSTITUTIVE
MODELING, AND THEORETICAL FRAMEWORK

A. Conservation principles and BMP+_t, model

Wormlike micellar solutions are a type of complex fluids prone
to generate banded flows under specific conditions. According to
experiments and conventional simple shear flow modeling,”” a com-
bination of factors is necessary to particularly promote exposure to
shear banding: first, a deformation-rate dependency on the destruction
coefficient; and second, highly concentrated micellar solutions, with
solvent fractions on the order of f < 1072 In this work, the
BMP+_1, model has been used to characterize the flow of wormlike
micellar systems in complex flow.”””” With the BMP family of fluids,
non-monotonicity in the flow curve is promoted through an explicit
rate-dependent function that acts on the structure—destruction coeffi-
cient k of the structure equation, as expressed in Eq. (1)." This
function adopts a linear form of the second invariant of the rate-of-
deformation tensor IIp, produced by a constant shear-banding
intensity parameter (), viz. k = ko(1 + 9¥1lp),

Goa

(6]

The structure equation [Eq. (1)] provides an evolution equation for a
dimensionless fluidity f = 1,9/, (taken as scaled against a reference
viscosity, zero-rate solute-viscosity 1,9, with units of Pa-s). This equa-
tion establishes a coupled highly nonlinear relationship between the
structure dynamics, viscoelasticity, and energy dissipation. Within the
structure—destruction term, the shear-banding intensity parameter ¥
appears in the destruction coefficient k = ko (1 + ¥IIp) and modulates
the capacity of the fluid to generate banded flows. The ©J-parameter
appears in Eq. (1) in the form of a characteristic time related to the
appearance of flow segregation. As a result, a new temporal scale
arises, which is closely linked to flow segregation. At sufficiently high
solute concentrations, the shear-banding intensity parameter ¢ dic-
tates the appearance of localized extrema (maxima-minima) in the
flow curve. Here, the intensity of the shear stress T, drops, marking a
non-monotonic trend in the flow curve, and, then, subsequently rises
with deformation rate increase. With 9 =0, a monotonic T, flow
curve is recovered. The structure-destruction term contribution to the
structure dynamics is modulated through a base constant coefficient

(§+ " v)f — (=) +k(1 +19HD>(,1

[o¢]
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ko, with units of inverse of stress (Pa~'). The inverse of constant
coefficient ko (ie., ko), is related to a characteristic stress level for
structure-destruction. Note that the explicit presence of the relaxation
time 4; in Eq. (1) quantifies the viscoelastic contribution in the
fluid-structure dynamics. Therefore, G, represents the elastic modulus
at vanishing deformation rates and (17, + 0) is the solute viscosity at
high deformation rates. Counterpart structure-construction dynamics
is regulated via a structure—construction characteristic time /;.

The fluidity f supplies the all-important information on the inter-
nal structure of the fluid at hand. It also acts to weight the polymeric
stress 7, contribution in a generalized Oldroyd-B-type differential
statement, as follows:

v
21Ty = 21D — f1p. (2)

In Eq. (2), the relaxation time 4; also modulates a second source of
non-linearity that is related to the upper-convected derivative of solute
stress, ‘Yp: % +u- Vrp —Vul. T, =Ty Vu.

This complex and highly coupled rheological equation-of-state
pairing [Egs. (1) and (2)] delivers the internal forces within the solute
component of such wormlike micellar fluids. It integrates with a com-
plementary solvent Newtonian contribution 7, = 25D, to generate
the total extra-stress T' = 7, + 7,, where 7, is the solvent viscosity.
With this information, one seeks to preserve the mass and momentum
conservation principles for incompressible and isothermal flow,
expressed through the continuity equation and the momentum equa-
tion, respectively,

V. u=0, (3)

Ou

Por
Dimensionless forms for Egs. (1)-(4) and relevant dimensionless

group numbers may be obtained by using the following dimensionless
variables:

=V.-T—pu-Vu—Vp. (4)

U L
x*:f, u*zi, t'=—t, D'=—D,
L U L U
* p * Tp
p =71 and T, = T
(o + 1) (o + 1)

Here, U represents a characteristic mean velocity in the contraction
gap, originating from the flow rate per unit width Q. L is the width of
the flow cell, from which a characteristic deformation rate (U /L) may
be defined. Hence, time is non-dimensionalized using the characteris-
tic deformation rate (U/L). Forces, expressed in terms of pressure and
stresses, are normalized with respect to the characteristic stress as mea-
sured in the first Newtonian plateau, ie., [(17,) + #;)(U/L)]. Thus,
non-dimensionalization of Eqgs. (1)-(4) yields the following dimen-
sionless group numbers: in Eq. (1) and in the form of characteristic
times, (i) a dimensionless shear-banding intensity parameter,
{ =9(U/L); (ii) a dimensionless structure-construction characteristic
time, w = A,(U/L); and (iii) the Weissenberg group number,
Wi = /,(U/L) = 7,Q/L?, which can be interpreted as an additional
viscoelastic dimensionless timescale. Here, A; is taken as 1s.
Alternatively, in Eq. (1), in the form of normalized stresses, (iv)
two dimensionless structure-destruction parameters arise, ie., &g,
= [koGo/ (1 + 8)](myo + 1) and & = ko(ny0 + 1) (U/L). One of

ARTICLE pubs.aip.org/aip/pof

them, &,, compares the elastic modulus of the material against its
structure—destruction stress, produced with a viscosity ratio. In con-
trast, & normalizes the characteristic total stress at the first Newtonian
plateau with respect to the structure—destruction characteristic stress.
In addition, from Eq. (2) and T-definition, a solvent fraction
B = 1/ (po + 1) may be defined. The solvent fraction /3 expresses a
relative measure of the solvent viscosity to the total viscosity at zero
deformation rate, i.e., 17,9 + 11,. # may be used to estimate the relative
solvent-to-solute composition in the viscoelastic wormlike micellar
solution. The corresponding (variable) viscosity of the wormlike micel-
lar solution is #77,, = 11, + 1, Finally, from Eq. (4), a non-dimensional
group Reynolds number, Re = pUL/ (1,5 + 1;), also arises, based on
a material density p. The Re number regulates the relative contribution
of inertial forces with respect to diffusive forces acting on the material.
Inertial force effects are taken as negligible in the present work, i.e.,
Re~ O(10™?), with its companion implication of inertialess creeping
flow.

B. Material functions, flow domain, and alternative
deformation rate choices

Figure 2(a) provides the steady-state flow curves for total shear
stress T, against shear rate covering two representative fluids: (i) a
non-shear-banding fluid (characterized by a null shear-banding inten-
sity parameter { = 0); and (ii) a banding fluid (with { = 3), see first col-
umn of Table I. The common feature across these data is the need for
an extremely low solvent fraction, specifically =102 to generate
non-monotonic flow curves in the case where { £ 0.””~ The charac-
teristic cubic non-monotonic Ty, shape in Fig. 2(a) is manifested by
the presence of local maxima (rate 10°) and minima (rate 10"), which
allow for the same constant state level of stress to be sustained by two
different shear rates.

Furthermore, rheology of interest lies in the shear thinning and
extension hardening profiles shown in Fig. 2(b), which are promoted
by the set of structure construction-destruction kinetic parameters
employed {w, &gp €} = {4, 0.1136, 2.27 X 1077} (see Table 11, for the
full set of parameters used in this work). The extent of thinning covers
a rapid drop over two decades, supported by solvent fraction
(B=10"2%). As illustrated in Fig. 2(b), the slope-of-decline is influ-
enced by elevation in shear-banding intensity parameter, where a rise
in { promotes shear thinning. This is reflected in the power-law index
equivalents of n=0.196 for { =0, and n= —0.142 for { = 3. The neg-
ative value of 7 is associated with stress non-monotonicity.””

Furthermore, in Fig. 2(b), some moderate extensional hardening
is detected around unity rates in both shear-banding and non-shear-
banding fluids equally, proving to be indistinguishable in this
deformation. The position in shear viscosity is reflected through the
corresponding response in Nighear profiles shown in Fig. 2(c), where
the banding fluid displays a characteristic non-monotonic trend in
Nshears With clear and distinct local maxima (rate 10°) and minima
(rate ~10%). Notably, the present BMP+_t,, model predicts the Njgycar
upturn at high shear rates [observed experimentally in wormlike
micellar fluids; see Fig. 2(c)]'®'” and also bounded extensional viscos-
ity 1y response at large extension rates [Fig. 2(b)]. Note that in this
analysis, flow and material segregation is promoted primarily through
shear deformation. A second alternative for generating banded predic-
tions is currently under development, which involves inhomogeneous
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FIG. 2. (a) Shear stress T, (b) viscosity, and (c) first normal stress difference in shear Nyshear against deformation rate (simple shear and uniaxial extension); ff = 1072
BMP+_t; {w, &go, &, 0} =1{4, 0.1136, 2.27 x 1077, 1 x 107}, non-shear-banding fluid (¢ = 0), shear-banding fluid (¢ = 3); VCM: {Cacq: Creq: &, & 13={05, 0.7, 0.42,
7.5 % 1077, 1.5). Here, the rheological features provided by the BMP+_z, model in its shear-banding mode are illustrated. In figure (a), the shear stress vs shear rate { =3
curve displays a non-monotonic trend, characteristic of shear-banded materials (absent for { =0 non-shear-banding fluid); non-monotonicity is also displayed in first normal
stress difference response in shear Nishear @s apparent in figure (c). In figure (b), the corresponding viscosity response is plotted; here, exaggerated shear thinning is
observed for the shear-banding { =3 case, being this a common feature of shear-banding fluids. BMP+-_z,, model predictions appear comparable against those provided by
the well-known VCM model.

TABLE 1. Deformation rate vs fluid chart.
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;vl'j)o = 05 ;Ll'?o = 375 ;»1'5)0 = 56
Q=4 Q=30 Q=450
{ =0 non-shear-banding fluid Case A: non-banded Case B: non-banded Case C: non-banded
{ =3 shear-banding fluid Case D: non-banded Case E: banded Case F: non-banded
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TABLE II. List of parameters.

Parameter (units) Non-shear-banding fluid ~ Shear-banding fluid

(= 0 3

B (=) 0.01 0.01
Q(-) 4 4

Ego () 0.1136 0.1136
¢(-) 227 %1077 227 %1077
A1 (s) 1 1

Re () 1072 1072

shear and extensional deformations, namely, under extension-necking
conditions.”'” Corresponding findings shall be published elsewhere.

An inflected, non-monotonic flow curve [Fig. 2(a)], with predic-
tions for homogeneous simple shear flow, is crucial in generating
banded solutions. By examining these non-monotonic flow curves,
one can identify an unstable branch, which is characterized by a
negative-sloped declining shear stress zone [Fig. 2(a)].>”” An unstable
branch then stabilizes itself by generating shear bands at the same
stress level, but at alternative lower and/or higher shear rates (stable
branches, with positive slopes). Each shear band corresponds to a dif-
ferent degree of structure, which can be observed macroscopically as
viscosity or fluidity.

Nishear banding—in Fig. 3, the rheology is presented for a shear-
banding fluid at three different solvent fraction levels. One notes that a
plateau in T,y is extracted, with a gradual elevation in solvent fraction,
starting from the banding level of 102 up to 0.05. For 1.0 > f > 0.05,
the Nispear data display band-like features while providing an appar-
ently monotonic trend in shear stress (T,). The relevant mathematics
for this scenario is expounded through the governing solute-content
function. This is expressed through the f-functional of Eq. (5) in sim-
ple shear flow, where a cubic dependency on shear rate is displayed,
affecting stress thereby

= 1=+ 0)(1 = PiPlf — wE(1+ ) éqWip* = 0. (5)

Recall also that the counterpart total shear stress is Ty, = f7
+(1—=p)p/f and the first normal stress difference in shear is
Nishear = 2Wi(1 — B)9?/ /f2. Unlike previous solutions, as shown and
discussed in Fig. 3(b) (with banding promoted by non-monotonic-
T,,) in the banded regime (case-E), one might ask the question of
what flow outcomes are possible under Njgpe,-banding alone. In Fig.
3(c), the fluidity appears relatively larger with f-rise.

In addition, in Fig. 2, a comparison of the rheological response of
our BMP+_t, is provided against the well-known Vazquez-Cook-
McKinley (VCM) model.”" This comparison is performed based on
similar intensity in the peak of extensional viscosity #p.-response
under =102 The parameter set of VCM displaying such behavior
is {Caeqp Cpegp &5 & 1} =1{0.5,0.7, 042, 7.5 X 1077, 1.5}. As it is appar-
ent in Fig. 2(b), the BMP+_t,, and VCM 17, trends appear similar for
low to intermediate extension rates up to the maximum #g,, level,
located at 4,&=0.5 units. Beyond this landmark, VCM displays a
stronger strain softening trend toward the second Newtonian plateau.
Interestingly and relevant to this work, BMP+-_t,, and VCM produce
a non-monotonic shear stress flow curve, whose unstable branches are
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located in the shear rate range of 1 < ;7 < 30 units [Fig. 2(a)]. Non-
monotonicity is also observed in the first normal stress in shear Nigpear
measure for both models, but over the significantly extended shear
rate range of 1 < ;9 < 10* units [Fig. 2(c)]. Notably, in the unstable
banding branches, VCM shear and normal stresses always lie at higher
levels than those for BMP+_1,,. As such, one would expect these two
models to provide similar banding predictions in complex flow, as has
already been reported recently by Varchanis et al.'* A comparative
study on predictive capabilities of these and other models in pressure-
driven flow through constrictions and past objects will come subse-
quently, as well as analysis on extension necking situations in stretched
filaments of wormlike micellar solutions.

To explore the various disparate regimes of segregated and non-
segregated flow, a choice of three key deformation rates 4,7, (= Wi)
has been made, counterpart to their equivalent global flow rates.
Therefore, the imposition of Q, and hence of Wi, implies an imposed
target shear rate in the flow curve. Here, low (4,7, = 0.5, Q=4), inter-
mediate (4,7, =3.75, Q= 30), high (4,7, =56, Q=450) target shear
rates (= Upe/L) have been imposed. As shown in Table I, each
sampled deformation rate then generates its associated flow rate,
which is applicable over the entire flow domain. Supporting flow pro-
files for these shear rate levels are tested on two candidate fluids: one
fluid, incapable of supporting flow segregation (with { = 0); and a sec-
ond fluid, prone to generate shear bands (with { = 3). The ({ = 3) fluid
may manifest shear-bands in an intermediate shear rate interval of
1 <4179 <10 [Fig. 2(a)]. The stated combination of three key shear
rates and two fluids provides six instances to analyze and compare, as
recorded in Table I and Fig. 2(a).

C. Flow domain, boundary conditions, ABS-f
and centerline VGR corrections, and fe-fv scheme

The flow problem is a modified Couette flow (Fig. 1), where the
dragging motion of an upper plate promotes the flow through a planar
contraction-expansion geometry. The obstruction has rounded cor-
ners and the contraction aspect ratio is o = 4. As such, fully developed
steady simple shear Couette flow is observed in regions away from the
constriction, while inhomogeneous shear-to-extensional mixed flow
prevails in the constriction zone.

This modified plane Couette flow has been devised to provide
a means of comparison between simple shear flow (in locations
away from the contraction) and complex shear-to-extensional flow
in the contraction region. Furthermore, in the inlet flow region
prior to the constriction, simple shear flow is maintained in the
form of a traditional sliding-plate planar Couette flow (as observed
in drag flows in co-axial cylinder and cone-and-plate rheome-
ters).”  In contrast, in the contraction zone, mixed shear-to-
extensional deformation prevails, and its effects on the fluid
structure are evaluated. Therefore, the simple shear flow is lost due
to the presence of the constriction, and yet is recovered down-
stream of the constriction, where the conditions of simple shear
flow are re-established. Such a flow configuration can be found in
many industrial devices, such as an extruder, where a molten poly-
mer is carried by blades through an extruder screw, and then
pushed through a dye (traditionally studied as a contraction flow),
before being shaped or prepared for further processing.”
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FIG. 3. (a) Shear stress Ty, (b) first normal stress difference in shear Nighear, and (c) structure parameter f against shear rate (simple shear flow); BMP+_z,; {», &qo, &,
0} = {4, 0.1136, 2.27 x 10~ 1 x 10~5; shear-banding fluid (¢=3). Under these settings, an illustration is provided on the influence of solvent-fraction variation in the rheolog-
ical response of the BMP+-_z,, model. Decrease of solvent fraction signals solute-concentration increase and promotes flow-curve non-monotonicity, as observed in figure (a).
Notably, in figure (b), Nisnear-banding features appear invariant with solvent-fraction decrease and are sustained for all solvent fraction f3-levels below unity. In terms of the
structure parameter in shear fy,q,, in figure (c), a slight adjustment is observed with -variation at relatively high shear rates.

1. Periodic boundary condition strategies—banding
against non-banding conditions

On the geometry walls, pure shear flow prevails, and the so-
called no-slip boundary condition is assumed (# = 0). Linear velocity
u, profiles are specified at the geometry entry-exit, either as piece-wise
linear for banding fluids or a single linear for non-banding fluids,
respectively. The profiles are determined based on the deformation
rate dictated by the flow curve under the sampled shear rate
70 = Uplate/L). Particularly important for stability at high deformation

rates, fully developed entry and exit velocity gradient (Vu) are
observed through feedback/feed-forward procedures, as discussed in
Lépez-Aguilar et al.””* Stress (t,) is not specified at outlet; hence, the
stress is not periodic. In both banding and non-banding scenarios, it is
only necessity to set the pressure P at flow-inlet, to impose a pressure
level and remove pressure indeterminacy (flow exit attracts Dirichlet
setting on velocity). Recall that different constant pressure levels are
recorded across upstream and downstream locations. This difference
is caused by the presence of the constriction. Consistently, correspond-
ing upstream and downstream fully developed pressure gradients are
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null. In practice, it has been found to be more appropriate to specify a
pressure level at the inlet, thus avoiding the appearance of any false
numerical artifacts in the inlet zone near the wall.

For banding instances:

On velocity profiles, penetration into the field upstream is
ensured, from entry to fully developed zone, as well as in the down-
stream field. This ensures periodicity of the banding flow.

Since the velocity gradient, stress, and f-structure-function are
discontinuous under banding and represented by step functions across
the banded-velocity zones, it is appropriate to take this into account in
the discretization. Starting from continuously extracted solutions, this
can be achieved by a series of deferred-correction procedures, which
involve incorporating shock-capturing techniques (SCP) to accurately
resolve selected variables within each band. Hence, one may appeal to
periodic analytic values (constants per band) and use them to itera-
tively correct fe/fv nodal values throughout the timesteps, within the
fully developed flow zones, as and where appropriate. One observes
that the interface location between bands generally lies within the con-
trol volumes used, so that unique nodal values may be prescribed
based on nodal allocation within a specific band.

2. Hybrid finite-element/finite-volume scheme

The numerical method employed is a hybrid finite-element/
volume scheme as reported by Lépez-Aguilar et al.””” and references
therein. In brief, this scheme is a semi-implicit, time-splitting, frac-
tional three-staged formulation, which invokes finite-element (fe) dis-
cretization for velocity-pressure (Q2-Ql, parent-cell) discretization
and cell-vertex finite-volume (fv, subcell) discretization for stress.
Together, the individual advantages and benefits of both the (fe) and
(fv) approximation are combined. The subcell fv triangular tessellation
is constructed within the parent fe grid by connecting the midside
nodes. Within such a structured tessellation, stress variables are
located at the vertices of fv-sub-cells (offering linear interpolation)
and solution projection is circumvented. In addition, Galerkin fe-
discretization is enforced on the embedded Cauchy component
system. The fractional three-staged formulation consists of the
momentum equation in stage 1, the pressure—correction equation in
stage 2, and the satisfaction of the incompressibility constraint in stage
3 (to ensure higher order precision). On solvers, this leads to a space-
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efficient element-by-element Jacobi iteration for stages 1 and 3,
whereas for the pressure—correction stage 2, a direct Choleski solution
method is utilized. At stage 1 of the stress solution, the discretization
using the fv method results in a system that is diagonalized by design,
which is immediately amenable to direct solution.

In order to attain numerical solutions under the present highly
non-linear flow situations (recall f= 10" and high Q-requirements),
the absolute form for the internal structure functional f (termed ABS-f
correction) is demanded within the implementation of the constitutive
equation. The ABS-f correction arose as a physical argument to ensure
thermodynamic consistency, with base on the Second Law of
Thermodynamics. This correction poses an absolute value constraint
on each term contributing additively to the dissipation function
|tp : D| in Eq. (1) and enhances numerical tractability by enforcing
consistent material property estimation.”” Recovered velocity gradients,
denoted as a VGR correction, are also required to achieve stable
numerical solutions over wide ranges of deformation rate, ensuring
discrete continuity imposition throughout the flow field.”” Another
consequence of the use of the ABS-f and VGR corrections is the con-
spicuous increase in the level of non-linearity at which numerical algo-
rithms loose tractability, traditionally denoted as a critical Weissenberg
number Wi, Lopez-Aguilar et al’”** recorded Wi, increments of
0(10%) on solutions obtained using the ABS-f/VGR doublet, with
respect to simulations devoid of such corrections. Moreover, the ABS-f
correction has been found to be generally applicable to other families
of constitutive equations such as PTT and FENE.”**

Lépez-Aguilar et al.” recently reported on mesh characteristics
and a mesh refinement study for the 4:1:4 planar contraction-
expansion with rounded edges geometry in Fig. 1, as well as for the rhe-
ological equations of state in the Bautista—Manero family and the solu-
tion algorithm. To complement such mesh-independence information
with the problem to hand, BMP+_z,, solutions captured in the fully
developed flow regions in the banding regime are illustrated in Fig. 4.
Here, node-element density is increased in the velocity gradient direc-
tion, where construction of the coarse and the refined meshes display
half and twice the number of elements, respectively, that the medium
mesh has cross stream. The solution-capture test is performed in terms
of the banded shear and normal stress profiles, as well as the location of
the band interface. The chosen fluid is case-E, capable to displaying
banding under parametrization {f5, w, {gp & 0} = {1072, 4, 0.1136,

Coarse

Medium

Refined

FIG. 4. (a) Normal stress T, and (b) shear
stress T, profiles sampled at the upstream
fully developed region; f=10"2 {w, g0,
& 0y =1{4,0.1136,2.27 x 1077, 1 x 10°};
mesh-refinement study for coarse, medium,
and refined grids; case E: shear-banding
fluid (£ =3).

a) b)
4r- 4r
—— Coarse
Medium
Refined
3F 3k
> 2t > 2r
1F 1+
TXX
1 1 R - 1 J 1
% 0.2 0.4 T 0.6 0.8 1 % 0.2
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227 %1077, and 1 x 10~%}. In general, solutions appear well-resolved
as the location of the band interface remains invariant across mesh den-
sification. The medium and refined solutions approximate the interface
location well, which was found to be at y;,; ~ 3.48 units for the test case.
The normal and shear stress profiles have similar shapes and intensities,
particularly on the refinement step from medium to refined. However,
some localized noise is noted near the interface. This noise is due to the
discontinuity posed by the interface and solution approximation. This is
dealt with via a shock-capture implementation, which is discussed in
detail in the results section. Hence, from this point on, the medium
mesh is considered for the solution description.

IIl. NUMERICAL PREDICTIONS

In this section, the solutions for the cases in Table I demonstrate
the ability of our BMP+_t,, constitutive model and our numerical
algorithm to generate banded or non-banded flows in the fully devel-
oped region away from the constriction. These solutions also illustrate
the influence of the obstruction and its mixed shear-to-extensional
deformation fields on the attained flow structure.

Particularly for the ({=3) banding fluid, an intermediate flow
rate (Q=30) lies within the shear-banding deformation rate range,
making banded solutions possible. The lowest (Q=4) and highest
(Q=450) flow rates lie outside the shear-banding regime, where non-
banded solutions are expected. In the following sections, details on the
development of these instances are provided.

A. Banded against Non-banded solutions—intermediate
target flow rate (1174 = 3.75), shear-banding fluid case-E
against non-shear-banding fluid case-B

1. Case-E banded velocity-u, and structure (viscosity
and structure-parameter-f) fields and profiles

First, the { = 3-banded Case-E is considered (Table I), for which
the corresponding velocity u,-field is presented in Fig. 5(a). The nature
of this complex planar flow reveals simple shear flow away from the
contraction, and a combined shear-to-extensional deformation in the
contraction region. As such, several key features may be observed and
discerned from these two deformation states. In the upstream and
downstream fully developed flow regions, one can observe a
banded steady-state velocity u, field, with velocity bands appearing
in the vertical y-spatial direction. The banded flow pattern is then
lost as the fluid approaches the constriction. Subsequently, one notes
that, after traversing through the constriction and upon recovering
simple shear deformation, a banded fully developed flow pattern is
recovered.

In Fig. 6(a), flow segregation is recorded through a split u, profile.
This is sampled cross-stream at a fixed horizontal x-spatial coordinate
in the upstream fully developed flow region [one notes the null trans-
versal velocity u,-profile in Fig. 6(b)].

The interface between bands is located at the inflection point of
such a split u,-profile (y;,, ~ 3.48 units), where there is a sharp change
in color intensity in the fields [Fig. 5(a)]. Such an interface can be
determined using the lever rule””' to lie at a location of yi
=[(7, — 70)/ (72 — 71)]oa, where j,, is the target characteristic shear
rate and o;=4 units is the distance that separates the moving plate and
the contraction wall. Here, o; =4 also corresponds to the contraction
ratio in this contraction-expansion geometry. As such, 7, =3.75 and
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T~ 0.4 units [Fig. 7(a)], in this case, it is located in the unstable non-
monotonic shear stress regime.

Then, extracted from the flow curve at an equivalent shear stress
level, Ty~ 0.4 units, 7, = 0.5 units, and j, =27 units are the low and
high shear rate stable branches, respectively. Each band, which consti-
tutes the split u, profile, is then supported by its corresponding shear
rate, with the low-7, and high-7, shear rates being assigned to the
lower and upper bands, respectively. Then, the narrow upper-band in
the local neighborhood of the moving plate [with a red/intense-core;
Fig. 5(a)] represents the material in the high- shear rate band. In terms
of rheological response [Fig. 7(b)], this high-}, shear rate band corre-
sponds to a highly unstructured fluid of total viscosity
1o~ 1.8 x 1072 units [see blue band in viscosity field in Fig. 5(c) and
counterpart red-fringe in the structure-parameter f-field of Fig. 5(d)].
In contrast, the low-}, shear rate band occupies the remaining channel
space, lying between the band interface and the bottom geometry wall
[homogeneous blue band in f-field of Fig. 5(d)]. Here, a highly struc-
tured fluid is reported, with a viscosity of #7,;~ 0.8 units [as indicated
by the orange band in viscosity field in Fig. 5(c)].

In the complex flow region, the pre-banded flow field is disrupted
and distorted by the constriction, with unstructured material flowing
through the constriction gap, while highly structured material occupies
the stagnant corners [as shown in the viscosity field representation,
Fig. 5(c)]. In Fig. 6(d), the cross-stream velocity U,-profile in the con-
traction gap displays changes of slope near the contraction and top
walls, fact that reflects the non-homogeneity of the flow in the contrac-
tion region. Then, beyond the constriction, and once the fluid viscosity
has had the opportunity to readjust, a banded morphology is reformed
(nb. the downstream intermediate-green viscosity color levels, illus-
trate convection downstream).

A clarification is worthwhile regarding the meaning of the terms
“inhomogeneous deformation” and “inhomogeneous flow” for the rhe-
ological community. In complex flows studied under the umbrella of
non-Newtonian fluid mechanics, “inhomogeneous flow/deformation”
refers to a flow in which simultaneous shear and extensional deforma-
tions are mixed in the domain. In contrast, in rheometry, where shear
banding has traditionally been studied, an “inhomogeneous field”
refers to fields with fluid segregation (bands) in a simple shear deforma-
tion. Hence, in this paper, to address this issue, we differentiate and
define the concept of “complex flow” as a mixed inhomogeneous
shear-to-extensional deformation. Additionally, we define “banded
flow” as a flow that supports the coexistence of two bands of material
with different physical properties, i.e., viscosity.

2. Case-E-banded shear and normal stress fields
and profiles, and pressure field

The fully developed banded velocity-profile response of { =3
solution is accompanied by a roughly constant shear stress T, field
[Fig. 5(e)]. Notably, at the channel height where the interface between
the bands appears, a horizontal strip of slightly larger T, values is
apparent. The counterpart T, profile reveals a constant T, level
[~0.4 units; Fig. 6(c)], which appears throughout the flow gap.
Precisely near the interface location, the T, profile oscillates about the
mean level. This is consistent with the discretization and the discontin-
uous nature of the shear rate profile across the flow gap, which ideally
necessitates shock-capturing techniques for more accurate resolution
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FIG. 5. (a) Velocity U,, (b) shear rate OU,/dy, (c) viscosity, (d) Hfunctional, (e) shear stress Ty, (f) normal stress T,,, and (g) pressure P fields; ff = 1072, {w, &g, &, O} =1{4,

0.1136,2.27 x 107, 1 x 10~}; case E: shear-banding fluid ({=3).
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(see earlier remarks). These undulations coincide with the slightly
more intense strips observed and may be associated with the disconti-
nuity posed by the interface (see on with shock-capturing).
Conspicuously, the normal stress T, also inherits bands, driven by the
velocity profile [Fig. 5(f)]. Such banding in normal stress components
has also been observed in non-extensional large amplitude oscillatory
shear (LAOS) predictions using the Rolie-Poly model.”” Once more,
the homogeneous T, field and the inhomogeneous T, response in

the fully developed regions are disturbed by the presence of the con-
striction [Figs. 5(e) and 5(f)]. Here, the effects of the combined
shear-extensional deformation are more evident. On T, the stripped
interface disappears and a homogeneous T, level is adopted in the
constriction gap [Fig. 5(e)]. Moreover, in the recess zones, there are tri-
angular green structures, and a localized small blue zone emerges on
the contraction back face, near its tip. Consistently, on T, two
colored-level regions are reported, with base on the contraction tip of
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negative-blue values upstream and a positive-red counterpart down-
stream [Fig. 5(f)].

In case E, the pressure sustaining flow passes from a green-
uniform base pressure level to a relatively low and brighter-green pres-
sure level downstream of the contraction [Fig. 5(g), Poued
(14 Pjie) ~ 5 X 107*]. Note that in the upstream and downstream
fully developed regions, pressure fields appear independent of the
main-flow x direction, consistent with Couette deformation. The

upstream-to-downstream pressure-level adjustment is provoked by
the mixed shear-to-extension flow within the constriction.

From such a continuous solution representation, deferred-
correction solutions may be considered when incorporating shock-
capturing (SCP) across the bands to more directly address solution
discontinuity and its localization. The effectiveness of this strategy
may be demonstrated by comparing cross-stream profiles of solution
refinements with no-shock-capturing solutions. Here, the entry SCP
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conditions are set as analytic in velocity gradient and stress, which third, by imposing periodicity on both; then, stress is computed as
imposes the f~structure-function (Fig. 8). The exit SCP conditions are before. The corresponding exit-flow SCP solutions are provided in Fig.
then taken as follows: first, by imposing periodicity on the f~structur- 9, for both major stress components (T, T). Through these solu-

e-function; second, by imposing periodicity on velocity gradients; tions, one can contrast the analytic entry SCP conditions. Here, the
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major correction influence is from periodicity in the velocity gradients.
Any correction from the f-structure-function (alone/in combination
with velocity gradients) is seen to deteriorate the quality of exit-stress
profiles. In these data, the overall quality of the none-shock-captured
solution is also complemented.

2. Case-B-non-banded velocity field

For case B (non-shear-banding fluid { = 0; Table I and Fig. 10)
and in contrast to case E ({ = 3, Fig. 5), the fully developed velocity u,
field now appears as a single and continuous shear rate form, as shown
in Figs. 10(a) and 10(b). This is accompanied by upstream-down-
stream constant non-segregated T\, and T, levels [Figs. 10(e) and
10(f)]. Such a linear upstream velocity profile is lost in the constriction
zone, where the fluid is accelerated as a consequence of the converging
flow. Here, the T, field develops strongly positive and negative local-
ized regions attached to the contraction walls, and a negative elongated
region on the moving plate [Fig. 10(e)]. The normal stress T, field
presents a strong elastic zone in the contraction region [Fig. 10(f)], fol-
lowed streamwise by a negative zone whose influence appears to be
convected downstream. In the upstream recess zone, there is an addi-
tional negative-strong patch, which is balanced downstream by an iso-
lated red-positive core that elongates into a tail downstream.

In terms of fluid structure and away from the constriction zone, the
viscosity (and its counterpart structure—parameter—f) distribution remains
at a single constant level upstream [Figs. 10(c) and 10(d)]. Then, as the
fluid approaches the contraction, the varied and distributed deformation
rate breaks down its structure, resulting in an asymmetric blue-low viscos-
ity region filling the constriction. In the deceleration zone beyond the con-
striction, the material is observed to recover its structure. This fact is
witnessed, via the viscosity field, by a sudden change from a highly
unstructured fluid (blue), to a more structured fluid (green). This is
expressed through two elongated arms directed downstream, one sticking
to the moving plate and the other located in the middle of the domain.

In the recess zones, there are isolated red/high viscosity
triangular-shaped zones, suggesting relatively slow motion in these
vicinities. Here, due to the highly nonlinear conditions based on sol-
vent content (f=10"2) and increased flow rate, the pressure drop
required to drive the flow is enforced through a fixed-pressure bound-
ary condition at the inlet. This implies that the resulting pressure level
must be calculated at the flow outlet. Such a procedure ensures that no
downstream blockage is created in pressure, which may otherwise
degrade the downstream solution quality in taking up fully developed
flow conditions. The ensuing pressure field passes from one of a char-
acteristic constant-pressure Couette flow upstream [Fig. 10(f)] to a
similar form downstream. Afterward, a pressure build-up (pressure-
gradient, ~19.9 units) sustains the flow through the constriction.

B. Non-banded solutions at low flow rate—A against
D cases

1. Case-A and case-D non-banded solutions at low
deformation rates

Considering low deformation rates (Q =4; 7, =0.5), the instan-
ces of the shear-banding fluid ({ = 3; case-D), which lies outside the
unstable branch of the flow curve [Figs. 11(a) and 11(b)], and the non-
shear-banding fluid ({=0; case-A), the predictions indicate single-
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banded u, fields [Figs. 12(a) and 12(b)]. Across both instances (A and
D), and at this relatively low state of deformation, solutions adopt a
similar form, with only slight level differences detected in the constric-
tion gap. In the fully developed regions, the single-banded velocity
profiles are supported by uniform states in T, and T, stress fields
[Figs. 11(e) and 11(f) and 12(e) and 12(f), respectively]. Notably, the
shear-banding ({ = 3; case-D) fluid solution set yields less intense fea-
tures, with a single green-level apparent around the constriction zone.
Correspondingly, the non-shear-banding ({ = 0) case-A solution sus-
tains intense stress levels. These differences may be correlated with the
relatively larger shear and normal stress levels for the non-shear-
banding A-fluid [indicated in Fig. 2(a)]. Recall that non-zero shear-
banding intensity parameters { # 0 provoke exaggerated shear
thinning features [see shear rate differences in Figs. 11(b) and 12(b)].

This low flow rate (Q =4; 7,=0.5) has been chosen to impose a
stable branch deformation rate in the flow curve, while still maintain-
ing some differences between shear-banding and non-shear-banding
fluids. Here, for the shear-banding fluid ({=3), one can observe a
slightly lower T, level compared to the non-shear-banding ({=0)
case. This ({ = 3) decline in T, slope is related to the proximity to the
flow curve maxima at higher shear rate levels.

In terms of fluid structure, for case-D ({ = 3) viscosity and f fields
[Figs. 11(c) and 11(d)] reflect liquefied material in the constriction
zone, while it is fully structured in the recess zones (red levels). The
extremes in viscosity distribution noticeably spread and fill the con-
striction zone (blue levels), while relatively smaller viscosity levels
occupy the fully developed regions [green-shading, Figs. 11(c) and
11(d)]. In contrast in Figs. 12(c) and 12(d), case A ({=0) viscosity
fields display a relatively structured material away from the constric-
tion (red levels) and isolated thinned-blue fluid patches that have base
on the contraction tip and the wall. They only influence the material
from around the constriction zone.

This distinct change in structural behavior can be attributed to
the exaggerated shear-thinning properties of the shear-banding case-D
({ =3) fluid. At a fixed shear rate (beyond y,~0.3), the shear-banding
case-D ({=3) fluid produces a less-responsive system, with relatively
low levels of material change than those of the non-shear-banding
case A ({=0) fluid. This can be observed from the rheology of the
flow curve in Fig. 2(a) when comparing the field solutions of case A
and case D. The only caveat to this statement lies in the pressure field,
both around and downstream of the constriction, which is significantly
more disrupted under the shear-banding case D ({=3) fluid [Fig.
11(g)] than for the non-shear-banding case A ({=0) fluid [Fig. 12(g)].

C. Non-banded solutions at high flow rate—C
against F cases

1. Case C and case F non-banded solutions

In the alternative extreme of high deformation rate, the second
stable branch of the flow curve is located, as shown by solutions at
(Q=450; y,=56) [Fig. 2(a)]. Therefore, in the non-shear-banding
({=0) case C solution (Fig. 13), a strong single-banded u, field is cap-
tured away from the constriction. In the complex flow constriction
region, intense activity is recorded through stress T, and T, zones,
which are based on the contraction tip and around the moving wall
[Figs. 13(e) and 13(f)]. Here, the large velocity of the moving wall
causes increased kinematics stimulated to convect downstream the
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relatively strong levels of stress from the constriction zone. In this high
deformation rate instance, the fluid viscosity drops dramatically, filling
almost the entire geometry [Figs. 13(c) and 13(d)]. That is, with the
exception of the recess regions, which acquire structured material
response and appear as reduced red zones.

Unfortunately, in contrast, the high-rate shear-banding ({ = 3)
case F proved to be computationally intractable for conditions of
severely low solvent fraction (8 —10"2). This is due to the combination
of three key factors: the already extremely high flow rate Q = 450; the
outstandingly high solute content (1-f)=0.99; and the additional
non-linearity invoked by the non-zero shear-banding intensity param-
eter ({#£0). Nevertheless, some evidence for the influence of { increase
may be drawn from solutions extracted in the reduced range
0.001 < { <0.03, but at the larger permitting solvent fraction of f =1/
9. One notes, therefore, that a final and stable steady-state solution
may be gathered computationally only for a ({=0.03) fluid. Under
these conditions, oscillations in normal stress are observed, signaling
pending intractability. This implies that this fluid is in its high defor-
mation rate stable branch of the T, flow curve, while Njgyeq lies
within its unstable branch. As these solutions do not significantly devi-
ate from ({ = 0)-solutions, these data are withheld.

IV. CONCLUSIONS

In this work, novel solutions are reported for the shear banding
of micellar systems in a complex modified planar Couette flow.
Banded solutions have been attained using the BMP+_t,, model to
approximate the rheological response of highly concentrated (solvent
fraction f§ < 1072) wormlike micellar solutions. In this manner, away
from the constriction, simple shear flow is observed, while inhomoge-
neous shear-to-extensional flow is gathered about the contraction.

To contrast banding against non-banding response, two fluid repre-
sentations have been chosen: a shear-banding fluid (non-monotonic flow
curve with localized extrema) and a non-shear-banding fluid (monotonic
flow curve). Then, three overall flow rates were fixed on the flow curve,
where each flow rate corresponded to a low, intermediate, and high shear
rates, respectively. Armed with these combinations, six independent
instances were identified for study across two fluid types (shear-banding/
non-shear-banding) and three flow rates (stable/unstable/stable).

The banding fluid in the intermediate flow rate generates segre-
gated flow fields away from the contraction, represented via velocity,
normal stress, and flow structure (viscosity or fluidity). Cross-stream
fully developed samples reflect split velocity and normal stress profiles,
while shear stress profiles appear constant. Such inhomogeneous
response is lost in the contraction zone, where flow structure readjusts
to the multiple and distributed rates encountered. This leads to a highly
unstructured material response that is accelerated and stretched due to
the obstruction blockage. Interestingly, pressure sustains a Couette-like
form away from the contraction, with constant pressure levels that vary
from upstream-to-downstream due to the inhomogeneous shear-to-
extensional flow posed by the constriction. One note, in particular, is
that downstream of the constriction, a banding fluid in an intermediate
flow rate regime, shows a tendency to resume banded profiles, having
experienced the disorder of the flow around the constriction. The plausi-
bility of banding in Njghe,r alone, and not within T, is also considered
an interesting and open issue to be resolved.

In contrast and apart from the region of contraction, the non-
shear-banding fluid displays homogeneous velocity, shear stress, and
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normal stress fields and profiles, indicating a relatively more structured
material response. Flow instances in the stable branches of the flow
curves, at low and high flow rates, consistently reflect simpler, non-
segregated flow fields, with degrees of structure modulated by the
individual deformation rate imposed. Due to the high degree of non-
linearity caused by the extremely high solute concentration
(B < 1072), the case of the banding fluid at high-Q is found to be
numerically intractable. However, such predictive limitation may be
addressed via larger-f3 solutions (ff = 1/9), under which normal stress
oscillations are observed as a signal of pending intractability. The impli-
cation here is that this fluid is in its high deformation rate stable branch
of the T, flow curve, while Nigpeo, lies within its unstable branch.

The findings presented in this manuscript suggest new avenues of
research, such as the localization in extensional deformation. This phe-
nomenon is relevant to extension necking in wormlike micellar solu-
tions,”'? contraction,” and pipe flows."” Future studies will focus on
these topics.
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