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Highlights

Domain-informed graph neural networks:

a quantum chemistry case study

Jay Morgan, Adeline Paiement, Christian Klinke

• We leverage the existence of different edge types to modulate the infor-

mation flow within graph neural networks. To this end, we formulate

and compare two strategies, namely specialised message production

and specialised state update.

• We leverage a multi-task learning framework to enforce learnt repre-

sentations to be more related to quantities of interest. We explore the

potential of this approach to better capture the underlying mechanisms

behind the studied phenomenon.

• We evaluate our domain knowledge integration strategies on the case

study of estimating the potential energy of chemical systems (molecules

or crystals).

• To support these experiments, we release three new datasets of out-of-

equilibrium molecules and crystals of various complexities.
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Abstract

We explore different strategies to integrate prior domain knowledge into the

design of graph neural networks (GNN). Our study is supported by a use-

case of estimating the potential energy of chemical systems (molecules and

crystals) represented as graphs. We integrate two elements of domain knowl-

edge into the design of the GNN to constrain and regularise its learning,

towards higher accuracy and generalisation. First, knowledge on the exis-

tence of different types of relations/graph edges (e.g. chemical bonds in our

case study) between nodes of the graph is used to modulate their interac-

tions. We formulate and compare two strategies, namely specialised message

production and specialised update of internal states. Second, knowledge of

the relevance of some physical quantities is used to constrain the learnt fea-

tures towards a higher physical relevance using a simple multi-task learning
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(MTL) paradigm. We explore the potential of MTL to better capture the

underlying mechanisms behind the studied phenomenon. We demonstrate

the general applicability of our two knowledge integrations by applying them

to three architectures that rely on different mechanisms to propagate infor-

mation between nodes and to update node states. Our implementations are

made publicly available. To support these experiments, we release three new

datasets of out-of-equilibrium molecules and crystals of various complexities.

Keywords: Graph neural network, Domain knowledge integration,

Quantum chemistry application

1. Introduction

We investigate the introduction of domain knowledge into the design of a

graph neural network (GNN), to constrain and regularise its learning towards

higher accuracy and generalisation. GNNs were first proposed in (Scarselli

et al., 2009) to process data represented as graph. An internal state hv is

associated to each node v of the graph, and the ensemble of internal states

serves to produce an output ŷ. Each internal state is iteratively updated,

based on 1) input features xv associated to the node, 2) input features x̄vw

associated to the edges of the node, possibly complemented by internal states

h̄vw associated to these edges, and 3) actions from neighbour nodes w, rep-

resented as a message mv =
∑

w mvw. The message mvw is generated by

a message function M(hv,hw, x̄vw, h̄vw)
1 using the internal state hw of the

neighbouring node. The message function M is shared by all nodes. It is

1This is a general definition, and in some implementations M may only use a subset of

its inputs.
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typically implemented by a perceptron, e.g. as in (Liu et al., 2021a) where

a perceptron is applied to a concatenation of x̄vw and of hv ◦ hw (◦ be-

ing element-wise multiplication). The update function U(hv,xv,mv)
2 is also

shared by all nodes. It is originally implemented by a perceptron, but it can

also benefit from a recurrent kernel such as Gated Recurrent Unit (GRU)

(e.g. in (Gilmer et al., 2017)) or Long Short-Term Memory (LSTM). De-

pending on the task, the GNN’s output is then computed from the node

states by a readout function, which may be implemented by a perceptron or

more complex kernels. Variants of the original GNN have been proposed to

accommodate special graph types, such as directed, see e.g. (Wu et al., 2021;

Zhou et al., 2020) for an overview.

We explore avenues for integrating domain knowledge into the design of

GNNs, with the aim to constrain and simplify the GNN’s learning to improve

its generalisation and accuracy, and to allow training on smaller datasets.

We consider two distinct aspects, namely 1) the information flow within the

GNN, and 2) the relevance of learnt node states for the application domain.

Regarding point 1), it is of particular interest to account for the fact

that nodes may share different types of relations, and therefore different

information during inference. A few previous works proposed to specialise the

message function M with regards to the type of relation between nodes e.g.

(Schlichtkrull et al., 2018; Zhang et al., 2019). Other works, e.g. (Chen et al.,

2021), used separate sub-graphs for different relation types. We expand and

generalise on the initial proposition of (Schlichtkrull et al., 2018) through the

2Here also this is a general definition, and in some implementations U may only use a

subset of its inputs.
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Figure 1: Graph representation of a molecule (from QM9) for GNN estimation of potential

energy and stable geometry. Nodes of states hi are atoms and colour denotes atom type

(black: carbon, white: hydrogen, blue: nitrogen, red: oxygen). Edges link chemically

bonded atoms and colour denotes bond type (blue: single bond, orange: double bond).

Non-bonded atoms may also share edges in fully connected graphs, but these edges are

not represented for readability. Messages mij are exchanged across edges. The GNN

outputs an energy estimate, along with the estimates of one or several auxiliary (physical

and chemical) properties in the case of multi-task learning. Energy estimates at different

molecule geometries may be used to identify stable configurations at the minimum of

energy. Left drawing is from (Glavatskikh et al., 2019).

exploration of different pathways for specialising the information flow within

the GNN, namely by acting on the message generation M or on the update

U of internal states. We propose a more general formulation for specialising

M than the previously mentioned specialisation methods. To the best of our

knowledge, the specialisation of U was not previously proposed. In addition,

while previous methods are dependent on the GNN architecture, ours applies

to all GNN architectures and their implementations of M and U .

With point 2), we also exploit the knowledge that some auxiliary quanti-

ties/qualities are closely related to the studied phenomena and should play

a role in the internal representation of the Deep Neural Network (DNN).

4
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We consider the case study of estimating potential energies3 of a chemical

system, either molecule or crystal, as a function of geometry (i.e. position of

atoms). Such systems are represented as chemical graphs, with nodes denot-

ing individual atoms, and edges the type of bond between them, as illustrated

in Fig. 1. For out-of-equilibrium (OoE) systems, the atoms are at positions

which are not at the minimum of potential energy. There is an interest in

estimating the potential energy of OoE systems, as this allows searching for

stable geometries through minimisation of the energy, with a possible aim

to discovering new materials or simulating crystal growth. Such calculations

typically require large amounts of resources and do not scale well to larger

system sizes (i.e. number of atoms) (Jiang et al., 2003; Erba et al., 2017).

This was addressed in the seminal work Message Passing Neural Network

(MPNN) (Gilmer et al., 2017) and with successive improvements in SchNet

(Schütt et al., 2017b) and DimeNet/DimeNet++ (Klicpera et al., 2020b,a)

with GNNs that estimate energy in a matter of milliseconds. Indeed, GNNs

and their message passing principle are well suited to capture the atomic

interactions that underpin the system’s chemical properties. Further recent

works have built on these GNNs, e.g. (Liu et al., 2021b; Schütt et al., 2021;

Satorras et al., 2021) improve on MPNN, (Unke and Meuwly, 2019; Klicpera

et al., 2020b,a; Batzner et al., 2022) improve on SchNet, and (Gasteiger et al.,

2021a,b) improve on DimeNet++.

We summarise our main contributions as follows:

[C1] We present methods to augment existing GNNs through integrat-

3determined at the electronic ground-state at given positions of atoms (i.e. given

geometry) for static systems
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ing domain knowledge into their design. We are not aware of other works

that follow this aim, as previous works focused on proposing new GNN ar-

chitectures usually for some given applications. We demonstrate our method

by augmenting three different existing GNN architectures, namely MPNN,

SchNet, and DimeNet++.

[C2] We leverage the existence of different edge types to modulate the

information flow within the GNN (Section 3.1). To this end, we formulate

and compare two strategies, namely specialised message production and spe-

cialised state update. For the specialised state update, we provide different

implementations for GRU and for dense layer-based update functions. While

specialised message production was proposed in some previous works and for

specific architectures, our formulation is more general since it does not de-

pend on the GNN architecture. Our proposed principle of specialised state

update is novel.

[C3] We leverage a multi-task learning framework to enforce learnt rep-

resentations to be more related to quantities of interest (Section 3.2). We

explore the potential of this approach to better capture the underlying mech-

anisms behind the studied phenomenon.

[C4] We evaluate our domain knowledge integration strategies both indi-

vidually and jointly, on the case study of estimating the potential energy

of chemical systems (molecules and crystals). Our methods are applied

to the very different architectures of MPNN, SchNet, and DimeNet++ to

demonstrate their flexibility to GNN type (Section 4). MPNN, SchNet, and

DimeNet++ are the basis for most recent models within our case study.

Therefore, our improved performances for these base models suggest that

6
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our methods may be applied to more recent models with similar improve-

ments.

While our knowledge integration strategies are demonstrated on potential

energy estimation, they may be applied more generally to estimating other

properties of chemical systems, such as different bioactivities and properties

of molecules for drug discovery (Xiong et al., 2020), and even to other appli-

cation domains where graph representations are relevant and where GNNs

are used for prediction, for example circulation of goods and people in eco-

nomics (Panford-Quainoo et al., 2020), traffic prediction (Diehl et al., 2019),

E-commerce recommendations (Liu et al., 2021a), or biomedical knowledge

discovery from knowledge graphs (Callahan et al., 2020).

[C5] We demonstrate that our proposed augmentation of existing GNNs

through domain knowledge results in a improved performance on several

points: the achieved accuracy on the task is increased, training is possible on

smaller datasets, the GNN generalises better to new sizes of graphs, the GNN

generalises better to new configurations of graphs such as new perturbations

of node locations/properties.

[C6] To support these experiments, we release three new datasets of OoE

molecules and crystals of various complexities (Section 4.1).

2. Previous works

2.1. GNNs for estimating potential energies of chemical systems

Gilmer et al. (2017) implement with their MPNN4 a rather classical GNN

4We use the implementation from: https://github.com/priba/nmp_qc (MIT license).

7
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with atom type as node feature, interatomic distance as edge feature, a per-

ceptron as message functionM , and GRU as update function U . The internal

state hv is initialised as the node feature xv. Then, messages and node states

at iteration t+ 1 are computed as:

mt+1
v =

∑

w∈Nv

M
(
ht
w,x

e
vw

)
(1)

ht+1
v = U

(
ht
v,m

t+1
v

)
(2)

with Nv the set of neighbours of atom v. Three iterations are performed,

then the set of node states at all timesteps is used to estimate the system’s

potential energy as the sum of individual nodes’ contributions, computed by

perceptrons, using a mean-squared error loss. In basic MPNN, only bonded

atoms exchange messages (Nv only contains bonded neighbours). In a fully

connected graph variant, which we denote as Extensive MPNN (E-MPNN),

all pairs of atoms exchange messages to account for long-range interactions.

Gilmer et al. (2017) also introduced bond type (BT) information as edge

input feature. This additional feature improved energy estimates over using

interatomic distance alone. We refer to this other variant as MPNN-BTF

(MPNN with Bond Type Feature).

With SchNet5, Schütt et al. (2017a) implement another GNN with 3 lay-

ers of interactions that do not share weights, as opposed to the recurrent

interactions of MPNN, but weights are still shared between nodes/atoms for

each layer. The interaction layers are followed by atom-wise dense layers,

non-linearities, and a final sum pooling to obtain the energy estimate. Each

5https://github.com/atomistic-machine-learning/schnetpack (MIT license)
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interaction layer l considers the sum of actions of neighbours on atom v in

a fully connected graph (Eq. 3). The atoms’ actions (i.e. messages) are

element-wise multiplication ◦ of their node states hl
w (updated by a dense

layer with parameters Wl, bl) with a radial filter Rl that depends on the

distance dvw between the two atoms. Rl is implemented by two softplus

dense layers. Node states are initialised based on atom type (i.e. node fea-

ture), then updated by a dense layer and non-linearity-based update function

(Eq. 4).

ml+1
v =

∑

w∈Nv

(
Wlhl

w + bl
)
◦Rl (dvw) (3)

hl+1
v = U l

(
hl
v,m

l+1
v

)
= hl

v + V l
(
ml+1

v

)
(4)

DimeNet and DimeNet++6 (Klicpera et al., 2020b,a) are other GNNs

with successive interaction layers that do not share weights. They each per-

form two steps of message passing across a chain of three atoms. This allows

accounting explicitly for the angle akwv formed by these three atoms. This is

achieved by first updating directional edge states h̄vw from actions of neigh-

bour atoms of w (Eqs. 5 and 6). These edge states then serve to produce

messages mvw that represent the information flow from atom w to atom v

(Eq. 7). For the first pass of message passing, an edge message m̄vw is pro-

duced by a message function M̄ , and a function Ū updates the edge state h̄vw.

For the second pass, a second message function M produces the messages

6We use the implementation from: https://github.com/pyg-team/pytorch_

geometric/blob/master/torch_geometric/nn/models/dimenet.py (Hippocratic Li-

cense 2.1).

9
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mvw. The node state update function U(mvw) is simply the identity.

m̄l+1
vw =

∑

k∈Nw\{v}
M̄ l

(
h̄l
wk, dvw, dwk, akwv

)
(5)

h̄l+1
vw = Ū l

(
h̄l
vw, m̄

l+1
vw

)
(6)

ml+1
v =

∑

w∈Nv

M l
(
h̄l+1
vw , dvw

)
(7)

hl+1
v = ml+1

v (8)

M̄ , Ū , and M combine fully connected and residual operations. They use

spherical Bessel functions and spherical harmonics to encode dwk and akwv,

and radial Bessel basis functions to encode dvw. A readout function does

dense transformations of the node states, for all layers, which are then

summed across layers and nodes to produce the final output.

Further recent works have built on these GNNs, e.g. (Liu et al., 2021b;

Schütt et al., 2021; Satorras et al., 2021) improve on MPNN, (Schütt et al.,

2021; Unke and Meuwly, 2019; Klicpera et al., 2020b,a; Batzner et al., 2022)

improve on SchNet, and (Gasteiger et al., 2021a,b) improve on DimeNet++.

Choudhary and DeCost (2021) update node and edge states as in DimeNet++,

using the formalism of two parallel and intertwined graphs. Similar to

DimeNet++, Thürlemann and Riniker (2023) perform two steps of message

passing with directional edge states based on Cartesian multipoles. Zitnick

et al. (2022) implement a more classical one-step message passing, but define

node states and messages as spherical functions, using spherical harmonics,

to encode angular information. Kaba and Ravanbakhsh (2022) generalise

the message passing idea to equivariance to the symmetry of the data, in

10
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order to handle and exploit the high degree of symmetry in crystals of vari-

ous lattice types. This is achieved through appropriate specialisations of M

and U to different symmetries. While we also implement specialised message

and update functions, this pursues a different goal. Overall, the two ideas

of message passing and of information embedding within node states remain

central in all these works, and are the basis of our proposed augmentations

in Section 3.

2.2. Domain-informed design of a deep neural network

In (Gilmer et al., 2017; Schütt et al., 2017a; Liu et al., 2021b; Schütt

et al., 2021; Unke and Meuwly, 2019; Klicpera et al., 2020b,a; Batzner et al.,

2022), the choice of a GNN architecture is a well-motivated inductive bias

where the internal representation and information flow are designed to fit

with the physics of the replicated phenomenon, namely the interactions of

atoms producing the system’s potential energy. Other similar examples of

domain-informed choice of a GNN architecture include (Mrowca et al., 2018)

that predicts future states of deformable objects represented by a hierarchical

graph that decomposes them into particles at various scales. Convolution op-

erations are defined on this graph to apply external forces to the system, and

to exchange information on collisions and physical state change. Similarly,

Salehi and Giannacopoulos (2022) use a GNN to align brain images while

predicting physically meaningful soft tissue deformations, and (Kawahara

et al., 2017) defined convolution operations on a brain connectivity graph

to predict neurodevelopment scores. Diehl et al. (2019) found that account-

ing for interactions between neighbouring vehicles helps predict short-term

behaviours of traffic participants. When predicting bilateral trade, Panford-

11
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Quainoo et al. (2020) hypothesised that “adoption of specific domestic trade

policies in one country can influence similar policies to its neighbours”, which

was realised as a graph to represent trade relationships between countries.

Liu et al. (2021a) also used a GNN architecture for E-commerce recommen-

dation where missing relationships are inferred from a partially connected

graph.

Some works exploited domain knowledge to constrain the information

shared between nodes of a GNN. Wang et al. (2023) accounted for the at-

traction or repulsion of nodes, based on different/similar node types, in the

computation of messages. Schlichtkrull et al. (2018) considered the case of

edges representing different types of relation between nodes, and proposed to

specialise the message function M with regards to relation type r. This was

achieved with distinct perceptrons. Zhang et al. (2019) obtained a similar

specialisation of M to the relation type using specialised weights. Chen et al.

(2021) took a different approach to account for relation type, with separate

and specialised GNNs for each sub-graph of a given edge type, before final

fusion of learnt representations. In this work, we are also interested in ex-

ploiting the relation type between nodes. First, we propose a generalisation

of the specialised M of (Schlichtkrull et al., 2018) which does not depend

on the GNN architecture. Second, we also experiment with specialising the

embedding update function U , which is a new paradigm to the best of our

knowledge.

In Yu and Gao (2022), the relation type between nodes (as well as types

of nodes) are considered to stress some key edge types in the learning of

graph representations. However, contrary to the previously cited works, the

12
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edge types are exploited in a motif GNN in parallel to the molecular GNN,

before fusion of their representations. This added layer of complexity is not

considered in this study, as we focus on single GNN processing.

Other works have adapted the training of DNN based upon prior physics

knowledge. Raissi et al. (2018) constrained a dense-layer DNN that estimates

physical quantities (e.g. velocity, pressure) by a loss term obtained from

partial differential equations of fluid dynamics. These equations are imple-

mented using automatic differentiation, and their parameters are learnable.

Schütt et al. (2017a) used a similar approach to improve SchNet’s predic-

tions of both energies and their derivatives w.r.t. atom positions, using a

loss term based on computed interaction forces. In the present work, we do

not employ equations of atomic interactions, as they become intractable for

larger systems. Instead, we focus on the domain-informed architecture av-

enue, i.e. how a GNN’s design may further account for the known properties

(e.g. known physics in our case study) of the problem.

3. Proposed domain knowledge integration

3.1. Specialising interactions based on edge type

The types of relation between nodes of a graph are an important fac-

tor when considering the nodes’ interactions towards the GNN’s inference.

As an illustration, in our case study, the types of bonds between atoms de-

termine atomic interactions and their contribution to the system’s energy.

Therefore, when estimating the potential energy of a system as a function

of geometry, it may be beneficial to account for the contribution of different

BT. MPNN-BTF provide a clue towards confirming this assertion. By in-

13
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troducing BT information as edge input feature in their GNN, Gilmer et al.

(2017) improved energy estimates over using distance alone. We take this

domain knowledge integration principle further, and we propose to design

the information exchange within the GNN to reflect the relations between

nodes. In our case study, this results in the nodes’ information exchange

better reflecting the physics of atomic interactions.

Similar to (Schlichtkrull et al., 2018), we introduce specialised interactions

based on relation type, with relation type being BT7 in our case study. While

(Schlichtkrull et al., 2018) focused on the production of messages that are

specialised to the relation, we explore two strategies of specialising either the

message production, or the state update. These two latter processes operate

based on their own and separate unit types (e.g. perceptron, GRU...) and

learnt parameters. Thus, our two strategies act on different learning elements

within the GNN. Furthermore, while (Schlichtkrull et al., 2018) focused on a

single GNN type (namely Graph Convolutional Network, GCN), we provide

more general formulations that are adapted to different architectures.

Since the DimeNet++ architecture implements two steps of message pro-

duction and state update at each layer (see Section 2.1), we specialise in-

teractions at both steps. However, given the extreme simplicity of the U

function (identity), we only specialise M̄ , M , and Ū .

7BT is predetermined using RDKit, https://www.rdkit.org/ (BSD 3-Clause license),

and Antechamber (Wang et al., 2001) (GPL-3 license), for molecules with Canonical

SMILES representation and for others, respectively. BT is provided as an input and

it is not determined by the GNN.

14
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Figure 2: Illustration of the specialised message production method for specialising inter-

actions of nodes based on edge type. In this example, two different edge types (blue and

orange) are supported by their respective functions Mr1 and Mr2 for message production,

in addition to the original generic message function M .

3.1.1. Specialised message production

Separate messages mr
vw for each relation type r between nodes are pro-

duced by a relation-specialised message function Mr, as illustrated in Fig. 2.

In the specific case of a perceptron-basedMr, this is equivalent to (Schlichtkrull

et al., 2018). For other implementations of the message function, the r-

specialised version is simply obtained by having a separate set of learnt pa-

rameters per relation type r. For our three example GNNs, the r-specialised

functions are denotedMr (MPNN, see Eq. 1, and DimeNet++, see Eq. 7), Rl
r

(SchNet, see Eq. 3), or M̄r (DimeNet++, see Eq. 5) and become respectively:

mt+1
v = α

∑

w∈Nv

M
(
ht
w, x̄vw

)
+ (1− α)

∑

r∈R

∑

w∈N r
v

Mr

(
ht
w, x̄vw

)
(9)

ml+1
v = α

∑

w∈Nv

(
Wlhl

w + bl
)
◦Rl (dvw)+(1−α)

∑

r∈R

∑

w∈N r
v

(
Wl

rh
l
w + bl

r

)
◦Rl

r (dvw)

(10)
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Figure 3: Illustration of the specialised state update method for specialising interactions

of nodes based on edge type. In this examples, there are two different edge types (blue and

orange). Top: classical state update process. Bottom: proposed specialised state update

with (left) specialised weighting of the messages, and (right) specialised update functions.




m̄l+1

vw = α
∑

k∈Nw\{v} M̄
l
(
h̄l
wk, . . .

)
+ (1− α)

∑
r∈R

∑
k∈N r

w\{v} M̄
l
r

(
h̄l
wk, . . .

)

ml+1
v = α

∑
w∈Nv

M l
(
h̄l+1
vw , dvw

)
+ (1− α)

∑
r∈R

∑
w∈N r

v
M l

r

(
h̄l+1
vw , dvw

)

(11)

with α modulating the strength of the relation-specialised message produc-

tion with regards to the original generic message production. R is the set

of relation types. In our application scenario, it is the set of bond types,

that may include a ‘no bond’ element to consider a fully connected graph as

in SchNet and DimeNet++. N r
v is the set of neighbour nodes that share a

relation of type r with node v.

3.1.2. Specialised state update

Specialised interaction may also use generic messages mvw, but handling

them in a relation-specialised manner when updating node states. We explore
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the following different implementations:

Specialised weighting of the messages. Messages coming from nodes of differ-

ent relation types are weighted by a relation-specialised and learnable (scalar

or vector) weight λr:

mv = α
∑

w∈Nv

mvw + (1− α)
∑

r∈R
λr

∑

w∈N r
v

mvw (12)

This is illustrated on the bottom left of Fig. 3. In the specific case of a

perceptron-based message function M , this approach is equivalent to the

basis-decomposition regularisation proposed in (Schlichtkrull et al., 2018) as

a mean to reduce the number of learnable parameters associated to spe-

cialised message production.

When there are two steps of message passing, as in DimeNet and DimeNet++,

this principle may be applied at both steps, with either a unique or two dif-

ferent weights λr. In DimeNet++, vector weights need to be different in each

step due to the messages having different sizes (Klicpera et al., 2020a):



m̄vw = α

∑
k∈Nw\{v} m̄vwk + (1− α)

∑
r∈R λ1

r

∑
k∈N r

w\{v} m̄vwk

mv = α
∑

w∈Nv
mvw + (1− α)

∑
r∈R λ2

r

∑
w∈N r

v
mvw

(13)

Specialised update functions. This approach implements separate relation-

specialised update functions and sums their contributions, as illustrated on

the bottom right of Fig. 3. As for Mr, r-specialised update functions Ur of

any type (e.g. perceptron, GRU, etc.) may be obtained through specialised

sets of learnt parameters. State update for MPNN, SchNet, and DimeNet++

become respectively:

ht+1
v = αU

(
ht
v,m

t+1
v

)
+ (1− α)

∑

r∈R
Ur


ht

v,
∑

w∈N r
v

mt+1
vw


 (14)
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v = hl
v + αV l

(
ml+1

v

)
+ (1− α)

∑

r∈R
V l
r


 ∑

w∈N r
v

ml+1
vw


 (15)

h̄l+1
vw = αŪ l

(
h̄l
vw, m̄

l+1
vw

)
+ (1− α)

∑

r∈R
Ū l
r


h̄l

vw,
∑

k∈N r
w\{v}

m̄l+1
vwk


 (16)

In DimeNet++, U(mv) is the identity and is therefore not specialised.

In MPNN, the update function is implemented by a GRU unit, while in

SchNet it is based on a dense layer, and in DimeNet++ Ū combines fully

connected and residual operations. A straightforward implementation of the

(additional) specialised update functions is to use the same type of unit

(e.g. GRU for MPNN). Additionally, when augmenting MPNN (Eq. 14), we

experiment with two levels of weight sharing when specialising Ur in order

to limit the amount of added model complexity. This results in the following

three implementations. A similar weight sharing strategy may be employed

for other types of update function.

MPNN Implementation 1) We use separate GRU cells, one per re-

lation type, to implement the different Ur.

MPNN Implementation 2) We use a single GRU cell, so that all re-

lation channels share the GRU’s internal state. The GRU’s Wz, Wr and Wh

weight matrices contain weights that are specialised for the different relation

types. In practice, this amounts to concatenating the different messages from

each relation type
[∑

w∈N 1
v
mvw . . .

∑
w∈N |R|

v
mvw

]T
before providing them to

the GRU cell.
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MPNN Implementation 3) We also use a single GRU cell with con-

catenated messages from different relation types, but we reduce the number of

free GRU parameters in Wz, Wr and Wh by sharing them between relation

channels: Wz/r/h =
[
Qz/r/h . . .Qz/r/h

]T
with Qz, Qr and Qh being matri-

ces of weights. This achieves a drastic reduction in the number of learnable

parameters, at the cost of a lower flexibility since all relation types are now

handled in the same way (but still differently than the general interaction).

3.2. Relating learnt features to relevant physical quantities

Multi-task learning (MTL) may be seen as a way to introduce an induc-

tive bias, where one or several auxiliary tasks further constrain the model

and its learnt features (see e.g. (Ruder, 2017; Zhang and Yang, 2018) for a

review, and Fig. 1 for illustration). We use this paradigm to encourage the

GNN’s node states to relate more to relevant (physical) properties for our

problem. Drawing motivation from the fact that BT is characterised by the

valence property of atoms, we hypothesise that a more physically relevant

node state may better support BT-specialised interactions. We explore the

potential of MTL for better relating learnt features to physical parameters

that are relevant to a final task, and the effect on this task. Our explo-

ration encompasses different GNN architectures and auxiliary tasks. We also

evaluate separately the effects of individual tasks.

We experiment with the auxiliary estimation of three different low- and

high-level system-wise properties: 1) The number of atoms of each type

present in the system. This composition is directly relevant to the value of

potential energy, therefore it may be beneficial to draw the attention of the

DNN on composition. 2) The number of orbitals associated with each atom
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Figure 4: Illustration of multi-task learning for relating learnt features to relevant physical

quantities.

type. In addition to being physically relevant to the definition of potential

energy, this is also particularly relevant to determine the BT between two

atoms, in support for specialised interaction. 3) A probability distribution

for the scaling to the stable geometry, estimated as a Gaussian function

as in (Timoshenko et al., 2018). This quantity is less directly related to

the physical properties of the chemical system, while still being related to

potential energy. A chemical system at equilibrium being at its minimum of

potential energy, the task of estimating how far the system is to equilibrium

(i.e. to minimum potential energy) is an interesting task that considers

the whole chemical system and how it relates to its potential energy. In

future works, we may investigate auxiliary quantities linked to the physics of

individual nodes/atoms, such as atomic forces or the medium-level descriptor

atom-centred symmetry functions used in (Liu et al., 2021b). In other case

studies, a purpose-designed set of relevant properties would need to be chosen

using knowledge of the problem. While we focus on properties that are

relevant to the whole graph, node-wise properties may also be considered in

the future.

In practice, for each auxiliary estimation, a new output layer is added and

a mean-squared error loss term is minimised during training, as illustrated
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in Fig. 4. This is identical to the energy output estimation, and the type of

output layer depends on the GNN architecture (see Section 2.1 for details on

the three GNNs used in our experiments). Each auxiliary loss term (three

in our case study) is weighted by a β hyper-parameter. In our experiments

we set β to 0.3 while the original potential energy loss keeps a weight of 1 so

that the three combined auxiliary tasks weight on par with the main task in

the total sum:

Ltotal = LMSE(y, ŷ) + β
∑

a∈A
LMSE(a, â) (17)

with y and ŷ the ground-truth and predicted potential energies, and A the

set of auxiliary quantities a being used. While we found that β values around

0.3 work well in our experiments, a more thorough parameter analysis would

be recommended for any new usage of our method, as the optimal value may

vary with the GNN architecture and the main and auxiliary tasks.

4. Experiments

We evaluate the impact of our knowledge integration on the three GNNs

of MPNN, SchNet, and DimeNet++. We modify their respective codes4,5,6 to

introduce our augmentations, and we make the augmented versions publicly

available8. They are the bases to current state-of-the-art (SoTA) models

for estimating potential energies e.g. (Liu et al., 2021b; Schütt et al., 2021;

Satorras et al., 2021; Unke and Meuwly, 2019; Batzner et al., 2022; Gasteiger

et al., 2021a,b; Choudhary and DeCost, 2021; Thürlemann and Riniker, 2023;

Zitnick et al., 2022; Kaba and Ravanbakhsh, 2022), thus our methods may

8https://github.com/jaypmorgan/DGNNs
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also be applied to current and future SoTA, likely with similar results. In

addition, the fact that these three architectures are very different suggests

that similar improvements may be obtained on other GNN types too.

The models are used in different conditions than in their original papers.

In (Gilmer et al., 2017), MPNN was only evaluated on stable configurations

of molecules from the QM9 dataset (Blum and Reymond, 2009; Montavon

et al., 2013), that contains a diverse set of 134k molecules using 5 atom

types. We further evaluate it on new datasets of OoE molecules and crystals

(Section 4.1). SchNet was evaluated on OoE molecules in (Schütt et al.,

2017a), however that was either on single molecules at a time (from the

MD17 dataset (Chmiela et al., 2017; Schütt et al., 2017b; Chmiela et al.,

2018) of 8 small organic molecules with independent perturbations of their

atoms’ positions) or on isomers (i.e. molecules of same size and atomic

composition, from the ISO17 dataset (Schütt et al., 2017a,b; Ramakrishnan

et al., 2014) of 129 isomers of C7O2H10). We apply SchNet to our harder

scenario of jointly modelling multiple molecules and crystals of various sizes

and atomic compositions. DimeNet++ was evaluated both on QM9 and on

small OoE organic molecules of the COLL dataset (Klicpera et al., 2020a).

Our OoE perturbations differ from those of COLL, and our crystal datasets

contain significantly more different system sizes. We also apply all three

GNNs to unseen sizes and compositions.

A comparison of MPNN and E-MPNN is provided in the sup. materials,

where MPNN does as well as E-MPNN on one dataset, and outperforms it

on all others. Thus, we only work with MPNN. We do not use MPNN-BTF

because we aim to demonstrate the effectiveness of accounting for physics
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knowledge in the design of the GNN, rather than merely in the input fea-

tures. Results of the augmented MPNN-BTF are still provided in the sup.

materials.

We use the base models’ default hyper-parameters for both original and

augmented versions. For (base and augmented) MPNN, we experimented

with different numbers of iterations (see sup. materials). MPNN’s default

of 3 worked best. New hyper-parameters α are learnable and optimised dur-

ing training of the DNN starting from a default initialisation of 0.5. These

parameters modulate the contribution of the specialised interactions based

on edge type, from 0 (only specialised interactions) to 1 (only general inter-

action). In our experiments, we found that the optimised value was consis-

tently around 0.6 for MPNN and SchNet, which indicates that a significant

contribution from the specialised interactions complements well the general

interactions in support to a better modelling by the GNN. For DimeNet++,

an α value close to 0 obtained the best results, indicating that the specialised

interactions are particularly useful in this architecture. The sup. materials

and Table 1 provide a list of the number of original and additional learnable

parameters brought by our methods. Early stopping at 50 stable epochs

ensures that each DNN trains for a suitable time.

4.1. Datasets

Extended QM9 (E-QM9) includes diverse sizes (i.e. number of atoms)

and compositions of OoE molecules, through extending a subset of QM9 with

OoE versions of 10k of its molecules.
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Periodic crystals (PC) allows learning regular bonding patterns that

arise in periodic structures by repeating the base crystal lattice. We use

the Face-Centred Cubic (fcc) Bravais lattice (Fig. 5 left) for aluminium (Al)

and copper (Cu) crystals. Unlike in Kaba and Ravanbakhsh (2022), we

only consider the crystal lattice of an ideal crystal, assuming that no local

symmetry breaking may happen.

Crystal Growth (CG) contains growing crystals of increasing size

and complexity. Starting from a basic fcc crystal seed of 14 atoms (Fig. 5

centre), new systems are generated by iteratively placing atoms at a random

location on the surface of the growing crystal following its lattice pattern

(Fig. 5 right), with sizes ranging from 15 to 114 atoms. We use 20 random

seeds for each atom type, thus creating 40 varied Al and Cu crystal growths

and 4,000 stable systems. As a result, for a given crystal size and composition

(atom type), there are 20 samples with differently located atoms. CG enables

experimenting with large scale atomic interactions in non-regular systems,

and enables evaluation of an ML method’s ability to learn how each atom

contributes to the final potential energy.

In all datasets, OoE systems are obtained by compressing/dilating all

interatomic distances (i.e. isometrically) at regular intervals within 90-150%

of stable geometry, which we refer to as ‘scaling’. In other words, scaling

is applied to the coordinates of all atoms within the system: x̂ = λx. At

each geometry, the ground-truth potential energy is calculated using CP2K9’s

DFT.

9https://www.cp2k.org/ (under the GPL-2.0 license)
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Figure 5: FCC Bravais crystal lattice (left) and growing crystal structures (centre: seed,

right: intermediate).

We generate two subsets of CG: Stable Crystal Growth (SCG) with only

stable geometries, and Unstable Crystal Growth (UCG) with scaling. Both

contain Al and Cu crystals. SCG aims to evaluate an ML model at varying

system sizes (i.e. number of atoms) without the added complexity of varying

scale. For UCG, we select 5 of the random crystal growth seeds for each

atom type to consider 1,000 stable geometries to be scaled. Statistics on all

datasets are in the sup. materials. The datasets are publicly available at

https://doi.org/10.6084/m9.figshare.12360620.

The datasets are split between training, testing, and validation in propor-

tions appropriate for the data complexity as detailed in the sup. materials.

4.2. Evaluations of the individual domain knowledge integration strategies

We evaluate the individual effects of the different knowledge integration

methods in comparison to non-augmented base GNNs, on E-QM9. Table 1

reports absolute error (AE) and relative error (RE = |ŷ−y|
|y| ) between true y

and predicted ŷ energies in a.u. unit. Squared errors are provided in the sup.

materials. We also report the Distance to Stable Geometry (DSG) which is
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SchNet (bottom) for E-QM9. Results are in the format: mean(std). AE is provided as

1e−1, RE as 1e−3 and DSG as 1e−2. The specialised interaction methods that optimise

at best energy and geometry are highlighted in bold for each GNN. We also show in the

last column the added number of parameters in percentage of original model size.

Strategy AE RE DSG +% paramete

MPNN base model with no BT information 2.42(13.18) 2.9(15) 3.4(7.4) –

MPNN-BTF 0.91(4.76) 1.2(5) 3.9(5.6) –

r-

specialised

interactions

Specialised message Eq. 9 (α = 0.624) 2.72(12.93) 3.4(14) 5.1(8.0) 398.20

Specialised

state

updates

Eq. 12 scalar λr (α = 0.628) 1.22(4.31) 1.6(5) 3.2(5.7) 5.28e−4

Eq. 12 vector λr (α = 0.627) 1.05(5.02) 1.3(5) 5.0(4.9) 3.85e−2

Eq. 14 impl. 1) (α = 0.615) 1.06(2.53) 1.4(3) 2.3(4.8) 17.11

Eq. 14 impl. 2) (α = 0.635) 0.73(1.70) 1.0(2) 3.0(4.8) 10.18

Eq. 14 impl. 3) (α = 0.618) 1.31(4.36) 1.7(5) 2.5(5.5) 3.42

Auxiliary

estimates of

# atoms of each type 1.71(9.86) 2.1(11) 3.1(4.6) 3.43

# orbitals 1.95(5.45) 2.5(6) 3.3(4.6) 3.43

distance to stable geometry 1.19(6.98) 1.5(8) 3.3(4.6) 3.40

SchNet base model 0.38(0.37) 0.5(0.5) 2.0(3.1) –

r-

specialised

interactions

Specialised message Eq. 10 (α = 0.734) 0.36(0.35) 0.5(0.5) 2.2(3.2) 220.43

Specialised

state

updates

Eq. 12 scalar λr (α = 0.529) 0.20(0.18) 0.3(0.2) 2.5(3.2) 8.01e−3

Eq. 12 vector λr (α = 0.570) 0.24(0.28) 0.3(0.3) 3.4(3.4) 0.51

Eq. 15 (α = 0.727) 0.31(0.32) 0.4(0.4) 1.5(2.8) 220.43

Auxiliary

estimates of

# atoms of each type 0.38(0.36) 0.5(0.5) 3.2(3.3) 0.39

# orbitals 0.36(0.35) 0.5(0.5) 2.2(3.2) 0.39

distance to stable geometry 0.49(0.44) 0.7(0.6) 3.7(3.3) 0.36

DimeNet++ base model 4.17(3.83) 5.6(5.0) 6.8(5.6) –

r-

specialised

interactions

Specialised message Eq. 11 (α = 0.012) 0.72(0.58) 1.0(0.8) 4.4(3.2) 23.33

Specialised

state

updates

Eq. 13 scalar λr (α = 0.003) 0.60(0.49) 0.8(0.6) 2.7(3.3) 2.9e−4

Eq. 13 vector λr (α = 0.011) 0.69(0.57) 0.9(0.7) 5.5(2.6) 5.5e−2

Eq. 16 (α = 0.599) 4.34(3.96) 5.9(5.2) 5.0(5.4) 55.08

Auxiliary

estimates of

# atoms of each type 3.05(3.44) 4.1(4.2) 4.1(4.9) 40.46

# orbitals 7.61(7.05) 10.3(8.5) 11.2(8.5) 40.46

distance to stable geometry 7.44(7.74) 10.1(8.9) 12.1(13.1) 39.70
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the absolute difference between the scaling where the predicted energy is

minimal (optimised by multiple DNN queries for various scalings), and the

ground-truth at-equilibrium scaling (i.e. 100%): DSG = |λ − 1|. Mean and

std are computed over chemical systems, with std indicating the ability to

handle a large variety of systems.

Results of (non-augmented) base models are provided in rows 1,12,20 of

Table 1. When compared against these base models, and considering only

the best performing methods for r-specialised interactions, all integrations

of domain knowledge tend to improve energy estimation and/or finding sta-

ble geometries. Since all the base and augmented models are trained on the

exact same data (no data augmentation), these improvements over base mod-

els cannot come from training on an extension of QM9 that contains OoE

molecules. Instead, improvements reflect the effect of integrating domain

knowledge into the design of the augmented GNNs.

The impact of BT information is the strongest for all three architecture

types (rows 2,7,14,22). This confirms Gilmer et al. (2017)’s observation that

BT is relevant for estimating energy. Furthermore, accounting for BT in the

design of r-specialised interactions in MPNN (row 7) has a stronger positive

impact than merely using it as an input edge feature as in (Gilmer et al.,

2017) (row 2). This suggests that r-specialised interactions better capture

the physics of atomic interactions.

When examining the effects of the different r-specialised interaction meth-

ods in parallel to the additional model complexity that they bring (last

column of Table 1, see also sup. materials for more numbers of parame-

ters), we notice that the very simple r-specialised weighting of the messages
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(Eqs. 12 and 13) performs generally well while bringing a very limited number

of extra parameters. On the other hand, r-specialised message production

(Eqs. 9 and 10) brings a very large number of new parameters for MPNN

and SchNet (+220% and +398%), which may explain its lower performance,

while the same method for DimeNet++ (Eq. 11) keeps the complexity rea-

sonable (+23%) and obtains a decent performance. The same observation

applies to r-specialised update functions for SchNet (Eq. 15, +220%) and

DimeNet++ (EQ. 16, +55%). However, in the case of MPNN, r-specialised

update functions (Eq. 14) provide a lower number of new parameters (+3%

to 17%), and remain within a manageable complexity that is exploited to

bring the best performance improvement for this architecture. In fact, the

two implementations that bring the highest increase in complexity (+10-

17%) provide the best performance for MPNN. Considering that MPNN has

smaller node states than SchNet and DimeNet++ (73 vs. 128), it is also a

possible explanation for MPNN benefiting more from an added model com-

plexity.

The auxiliary estimation of physical properties (rows 9-11) also improves

on base MPNN, but less so than BT information. On SchNet, estimating

the number of orbitals also provides a slight improvement (row 18), and

DimeNet++ benefits from estimating the number of atoms of each type

(row 25). These improvements may come from the models implicitly dis-

covering and encoding useful physics representations required for accurate

predictions. Indeed, as discussed in Section 3.2, these quantities are chosen

based on knowledge of the domain to help focus the GNN’s attention on

important aspects of the learning problem. In particular, the distance to
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Al Cu

Method AE DSG AE DSG

MPNN 0.643 (0.495) 0.096 (0.135) 6.250 (4.772) 0.214 (0.192)

Augm.-MPNN 0.150 (0.120) 0.031 (0.037) 1.160 (0.878) 0.108 (0.122)

Augm.-MPNN w/o r-spec. interactions 0.180 (0.144) 0.050 (0.036) 0.638 (0.582) 0.071 (0.071)

Augm.-MPNN w/o aux. # atoms 0.179 (0.129) 0.011 (0.026) 0.928 (0.760) 0.098 (0.125)

Augm.-MPNN w/o aux. # orbitals 0.190 (0.141) 0.020 (0.034) 0.906 (0.724) 0.080 (0.073)

Augm.-MPNN w/o aux. DSG 0.177 (0.151) 0.035 (0.038) 0.834 (0.680) 0.082 (0.102)

SchNet 6.357 (3.159) 0.117 (0.047) 5.355 (5.278) 0.066 (0.088)

Augm.-SchNet 0.333 (0.247) 0.069 (0.071) 0.368 (0.259) 0.002 (0.008)

Augm.-SchNet w/o r-spec. interactions 0.444 (0.358) 0.080 (0.073) 1.424 (1.490) 0.034 (0.060)

Augm.-SchNet w/o aux. # atoms 0.395 (0.169) 0.102 (0.025) 0.304 (0.238) 0.001 (0.009)

Augm.-SchNet w/o aux. # orbitals 0.241 (0.146) 0.006 (0.019) 0.286 (0.176) 0.054 (0.031)

Augm.-SchNet w/o aux. DSG 0.296 (0.203) 0.035 (0.049) 0.328 (0.220) 0.000 (0.000)

stable geometry is related to a high level system optimisation and its im-

proved performance may indicate that the GNN’s features better capture

the dependency of energy on geometry. It is interesting that different archi-

tectures benefit differently from different auxiliary estimations. This may be

related to their respective ways of handling the relation between the global

composition and geometry of the chemical system and its total energy. In

future works, we may investigate auxiliary quantities linked to the physics of

individual atoms/nodes.

We further explore the effect of the best method for r-specialised inter-

actions (Eq. 14 impl. 2 for MPNN and Eq. 12 with scalar λr for SchNet)

and of each auxiliary estimation in an ablation study using UCG (results are

reported in Table 2). As previously, the two GNN architectures don’t benefit

equally from a same augmentation, with auxiliary estimates being mostly
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type, best results between base and augmented GNNs are highlighted in bold.

Base Augmented

Model Dataset AE DSG AE DSG

MPNN

E-QM9 0.242 (1.318) 0.034 (0.074) 0.065 (0.161) 0.030 (0.045)

Periodic Crystals 0.041 (0.032) 0.073 (0.079) 0.039 (0.035) 0.074 (0.079)

Stable CG 2.796 (3.797) – 2.105 (2.624) –

Unstable CG 2.892 (3.820) 0.344 (0.083) 0.655 (0.805) 0.069 (0.098)

SchNet

E-QM9 0.038 (0.037) 0.020 (0.031) 0.026 (0.025) 0.016 (0.028)

Periodic Crystals 13.444 (15.984) 0.054 (0.012) 15.961 (19.424) 0.039 (0.053)

Stable CG 2.021 (1.829) – 1.217 (1.586) –

Unstable CG 5.866 (4.377) 0.091 (0.075) 0.351 (0.254) 0.035 (0.060)

DimeNet++

E-QM9 0.417 (0.383) 0.068 (0.056) 0.101 (0.095) 0.036 (0.034))

Periodic Crystals 5.683 (14.656) 0.104 (0.043) 1.819 (3.062) 0.101 (0.038)

Stable CG 0.244 (0.254) – 0.249 (0.202) –

Unstable CG 27.475 (44.753) 0.990 (0.714) 22.708 (34.180) 0.694 (0.663)

beneficial to MPNN. Furthermore, there are a few occurrences where some

augmentations, which did help individually in Table 1, were better removed

from fully augmented models. While these results have to be taken carefully

given that they are based on different datasets, this may also suggest that

1) the weighting of the auxiliary tasks may need to be optimised, 2) some

augmentations may interact and result in a more complex behaviour, and 3)

total model complexity may also need to be accounted for to explain these

behaviours. Future work is needed to further explore the cause for these

varying behaviours and avenues to better balance the contributions of auxil-

iary estimations for example based on (Long et al., 2017; Cipolla et al., 2018)

instead of the fixed β = 0.3. In addition, since the auxiliary tasks that we

consider in this study are related to the global composition and geometry of
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the chemical system, future study may benefit in also exploring the use and

effect of auxiliary tasks that are related to individual atoms. For the rest

of the paper, since the combined four augmentations still outperform base

models by a significant margin, we use this simple configuration to assess the

properties of fully augmented GNNs.

4.3. Evaluation of the fully augmented models on OoE molecule and crystal

data

We combine all our domain integration methods (i.e. the best per-

forming method for r-specialised interactions and all auxiliary estimates)

into Augmented-MPNN, Augmented-SchNet, and Augmented-DimeNet++.

For r-specialised interactions, we retain Eq. 14 impl. 2 for MPNN, Eq. 12

with scalar λr for SchNet, and Eq. 13 also with scalar λr for DimeNet++.

Given the complexity discussion of the previous section, we will also present

some results using the simpler (and still reasonably well performing) Eq. 12

with scalar λr for MPNN. Although r-specialised message production and

r-specialised state update are not mutually exclusive, their combination will

be explored in future work. For CG, we consider system sizes of 15 to 75

atoms instead of the available 114 due to memory restrictions. Results are

reported in Table 3 and with more details and metrics in the sup. materials.

We further illustrate the performance of the fully augmented GNNs by plot-

ting their energy estimates for all scaled versions of randomly picked systems

of E-QM9 in Fig. 6, and of CG in Fig. 7.

We first note that it is generally beneficial to combine r-specialised inter-

actions and auxiliary estimations, with AE and/or DSG results being further

improved in Table 3 as compared to individual augmentations in Table 1.
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The fact that some auxiliary estimations (number of orbitals) are chosen to

support r-specialised interactions may be a reason for these further improve-

ments. An exception is DimeNet++ for which the best results (on E-QM9)

were obtained with r-specialised interactions only (no auxiliary estimations).

For this architecture, the auxiliary estimation of number of orbitals was hin-

dering results in Table 1. Nevertheless, even if the full augmentation is not

the best performing for DimeNet++, it still improves on the base model.

Therefore, as discussed at the end of Section 4.2, we do not optimise the con-

tributions of auxiliary estimations and we present all results with the default

β = 0.3 for consistency.

All three GNN types benefit from our domain knowledge integration, with

overall more accurate energy estimates and better performance at finding sta-

ble geometries (DSG). The latter point is also illustrated in the example en-

ergy plots of Figs. 6 and 7 where the augmented GNNs produce curves with

a correct minimum while base GNNs sometimes had physically-unrealistic

curves with incorrect minimum. The improvement is particularly strong on

CG, hinting that our augmented models can generalise better to new ge-

ometries, that are a particularity of this dataset. Consequently, on Periodic

Crystals, which contains only two mono-atomic crystals (with various scal-

ings), we expect to see further improvements in future works by considering

structures outside of the fcc lattice and a wider variety of atom types.

The absolute errors on the auxiliary tasks are provided in the sup. mate-

rials. While these tasks are not the end goals for the GNNs and have no other

use than guiding the learnt representations to be more physically relevant,

we verify that these predictions have an accuracy that matches the accuracy
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Figure 6: Energy estimations at different scalings of two examples of molecules from E-

QM9 for base (left) and augmented (right) GNNs.
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Figure 7: Example energy estimations at different scalings for a small (15 atoms, top)

and large (75 atoms, bottom) crystalline system of the UCG dataset. Left: base models,

right: augmented models. As DimeNet++ performs poorly on UCG, it is removed from

this figure to preserve the legibility of the plot (axis scaling).
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level of the potential energy estimations (Tables 1 and 3).

4.4. Interpretation of the nodes’ hidden states

We examine the node states through visualising the contribution of each

node to the final estimate. In MPNN, perceptrons combine the states of a

node at all timesteps. In SchNet, the last atom-wise layer has output size of

1. In DimeNet++, the output size is also 1 for each node, and outputs for all

layers are summed. In all three networks, these reduced values are summed

across nodes to obtain the energy estimate. After normalising across all

nodes, they may be considered as the atoms’ contributions to the energy

estimate.

After training the GNNs on UCG, we consider an atom that is newly

added to a (stable) crystal seed of 14 atoms. When scaling the distance of

this single atom to the rest of the crystal, we examine its contribution and

that of the rest of the (static) atoms. This scenario differs from the training

scenario of whole system scaling, but Augm.-SchNet in Fig. 8 still produces

plausible energy estimates with correct minimum (although some offsets in

energy sometimes happen and will be investigated in future work).

As shown in the sup. materials, base GNNs were not successful, including

SchNet and DimeNet++ although this ‘freely’ moving atom setup is closer

to their original experimental setups (Schütt et al., 2017a; Klicpera et al.,

2020a), possibly due to not being able to learn on scaled systems and many

sizes at once. Thus, our augmentations increased the generalisation ability

of SchNet through a better capture of the atomic interactions.

Augm.-MPNN could not obtain a plausible energy curve with correctly

located minimum either (see sup. materials). We tested both the best per-
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forming specialised interaction method of Eq. 14, that introduces a higher

model complexity, and the simpler specialised interaction method of Eq. 12

with scalar λr, used in Augm.-SchNet. Neither methods succeeded in han-

dling the single moving atom, which indicates that the lower generalisation

to new scenarios does not come from the higher complexity introduced by

Eq. 14, but rather would be inherent to the MPNN model, and could not

be overcome by our augmentations as in SchNet. DimeNet++ does very

poorly on UCG. While Augm.-DimeNet++ does better, its performance still

remains poor. It is therefore not surprising that it fails to handle our single

moving atom scenario after training on UCG (see sup. materials).

In Augm.-SchNet, the moving atom’s contribution (left red curve) is min-

imal at its stable location (i.e. minimum of energy, black curve in Fig. 8). At

the same time, static atoms (right red curve) contribute maximally, in line

with the crystal being at its minimum energy driven by its regular structure.

As the atom is moved closer or pulled away, its contribution increases simul-

taneously with energy. At the same time, the relative contributions of static

atoms decrease to give way to the perturbation of the moving atom. This

strongly suggests that the GNN learnt to pay attention to the location of

individual atoms, although it was trained on systems that are isometrically

scaled.

The same experiment, when performed after training on SCG, is not as

successful, with Augm.-SchNet producing an implausible energy curve with

no minimum. This indicates that the different geometries provided by the

20 varied locations of atoms for each crystal size were not enough to learn

the importance of fine location of individual atoms. When training on UCG,
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Figure 8: Contribution of a moving atom (left red curve) and mean contribution of

static atoms (right red curve) toward the energy estimate of a crystal (black curves) by

Augmented-SchNet. Note that the curves cover different ranges of values, with the red

axis labels being for their corresponding red curves (contributions), and the black axis

labels being for the black curves (energy estimate).

the (global) scaling was complementary to the varied occupations of atom

sites in learning the importance of precise location of individual atoms. It is

worth noting that the same training did not allow original SchNet to learn this

principle and to produce plausible energy curves. Thus, it is the combination

of our augmentations and of a sufficiently diverse training data that achieved

this result.

4.5. Generalisation to larger graphs

Fig. 9 presents energy AE on UCG as a function of system size for base

and augmented GNNs when trained on all system sizes (up to 75 atoms) or

on small systems only (up to 25 atoms), keeping the testing set equal. For

Augm.-SchNet, the better accuracy from the augmentations maintains the

AE in the best achieved range when training on small systems only. For
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Figure 9: Impact of system size on accuracy when trained on systems of up to 75 (top)

and 25 (bottom) atoms from UCG.

Augm.-MPNN, when training on small systems only, the range of AE is also

improved by a factor ∼100 compared to base MPNN. An improvement is also

observed for Augm.-DimeNet++, with a range of AE reduced from [0,500]

to [0,300], in spite of the aforementioned difficulty of DimeNet++ with the

UCG dataset.

Furthermore, for Augm.-MPNN, accuracy correlates with system size only

marginally stronger than when training on all sizes (Pearson coef. 0.200

against 0.193). This is an improvement from base MPNN, where Pearson

correlation increases from 0.171 to 0.364. Therefore, our augmentations allow

MPNN for learning of some basic principles about the atomic interactions

that are applicable to larger, unfamiliar systems. When using the specialised

interaction method of Eq. 12 with scalar λr, Pearson correlation is similar at

0.224, and the range of AE is improved by a factor ∼400. We explain this

better AE by the different complexities of Eqs. 14 and 12, which make the
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model more or less robust to smaller training sets.

4.6. Generalisation to smaller training sets

We test whether the domain knowledge integration brings a higher ro-

bustness to small training sets through a better generalisation, by reduc-

ing progressively the size of the training set (keeping the testing set equal).

Figs. 10, 11, and 12 present results respectively on E-QM9 when decreasing

the variety of molecules and when decreasing the variety of scalings, and

on SCG. For E-QM9, we vary the size of the training sets by intervals of

10%, followed by intervals of 1%10 to test even smaller training sets. Since

E-QM9 comprises OoE molecules, in a first experiment the nth training set

includes all scalings of n% of the (original) training molecules. In a second

experiment, the nth training set includes n% of the scalings of all molecules

(with a random selection of scalings for each molecule). For SCG, we vary

the number of crystals in the SCG subset.

When considering extremely small training sets, there are a few cases

where the augmented GNNs obtain worse results than base GNNs. This

might be explained by the increased model complexity due to additional

learnt parameters and auxiliary tasks, requiring a minimal amount of data

to train effectively.

More generally, on E-QM9, while augmented GNNs tend to outperform

their base counterparts, they are not more robust to decreasing the number

of molecules to be trained on as performances decrease with similar rates

(Fig. 10). Thus, the augmentations could not compensate for the loss of

10when numbers of samples were sufficient
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Figure 10: Robustness of base and augmented GNNs to smaller training sets (i.e. subsets

of molecules) for E-QM9. Top: mean AE, bottom: mean DSG. Left: MPNN, right:

SchNet. Blue: base, orange: augmented.
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composition diversity.

However, both augmented GNNs are quite stable to varying numbers of

scalings, and more so than their base counterparts (Fig. 11). This indicates

that they are better able to account for the effect of varying geometries.

The most dramatic improvement is on SCG, where both augmented GNNs

see a more stable, then a later rise in mean AE when decreasing the dataset

size and the associated diversity in crystal geometries (Fig. 12). We conclude

that the augmentations provided insights on geometry and scaling that did

not need to be learnt from data, hence reducing the need for exhaustively

covering these aspects in training samples.

5. Conclusion

We integrate domain knowledge into GNNs to improve accuracy and gen-

eralisation, with two proposed strategies: (1) specialised information flow

within the GNN to better account for relation types between nodes, and

(2) further relating the learnt representations to the studied phenomenon

through MTL. We explore the different means for specialising information

flow by acting on either message production or state update, and we provide

general formulations that are adapted to different architectures. We demon-

strate them on three architectures: MPNN, SchNet, and DimeNet++.

Our proposed domain knowledge integration is tested on a quantum chem-

istry case study where potential energy of chemical systems (molecules or

crystals) is estimated as a function of geometry. For this application, the

elements of domain knowledge that we use are specifically related to atomic

interaction and underlying physics of potential energy.
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The added model complexity varies widely with the augmentation meth-

ods, and a too high complexity for a given GNN and application may be

detrimental. However, in many cases, the (reasonable) added complexity

proved helpful in learning complex and more general concepts. It allowed

the GNNs to better learn principles of atomic interactions, with improved

handling of unseen geometries in graphs, including unseen sizes of graphs

and unseen perturbations of their nodes’ locations, and the ability to train

on smaller datasets.

Our domain knowledge integration methods add to the toolbox of GNN

augmentation strategies. They are generally applicable to non-physics do-

mains, such as economics (Panford-Quainoo et al., 2020), traffic prediction

(Diehl et al., 2019), biomedical knowledge discovery from knowledge graphs

(Callahan et al., 2020), or predicting relationships for E-commerce recom-

mendation (Liu et al., 2021a), where problems are naturally represented as

graphs. Our proposed specialised information flow may enhance GNN anal-

ysis where it is known that nodes share different relation types. While in

our case study, the relation types are chemical BTs, in other applications

they may be of different and very diverse nature, such as priority relations

between traffic participants, semantically and biologically meaningful rela-

tionships between different types of biomedical data, or political or national

affinities in country trade relationships, for example. These new applications

of our augmentations would require an expert-based identification of such

known relations and/or of auxiliary tasks of interest, following the example

of our case study.

From the viewpoint of our case study, our augmentations may enhance
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current and future SoTA estimating potential energies and stable geometries

of chemical systems. Indeed, current SoTA are based on the GNNs used in

our case study, and we expect similar results may be obtained from aug-

menting their more recent variations. Furthermore, our results on three very

different GNN architectures suggest that similar improvements may also be

obtained on other GNN types, including future GNN-based SoTAs. Other

aspects of chemical systems may also be considered, such as drug discovery

(Xiong et al., 2020), nucleation and growth of crystals, mechanical properties

of crystals (in physics and engineering), molecular structure (in chemistry),

doping (in electronic materials). In any case, it is well-known that DNNs

cannot offer guarantees on results and suffer from well documented problems

such as adversarial examples. Therefore, although our methods improve their

accuracy and robustness, numerical simulations remain necessary for a final

verification of an optimal geometry found through a DNN’s predictions.
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Gasteiger, J., Yeshwanth, C., Günnemann, S., 2021b. Directional message

passing on molecular graphs via synthetic coordinates, in: NeurIPS.

Gilmer, J., Schoenholz, S., Riley, P., Vinyals, O., Dahl, G., 2017. Neural

Message Passing for Quantum Chemistry, in: International Conference on

Machine Learning, pp. 1263–1272.

Glavatskikh, M., Leguy, J., Hunault, G., Cauchy, T., Da Mota, B., 2019.

Dataset’s chemical diversity limits the generalizability of machine learning

predictions. Journal of Cheminformatics 11.

Jiang, H., Baranger, H., Yang, W., 2003. Density-functional theory simula-

tion of large quantum dots. Physical Review B - Condensed Matter and

Materials Physics 68, 1–9.

Kaba, O., Ravanbakhsh, S., 2022. Equivariant Networks for Crystal Struc-

tures , in: NeurIPS.

Kawahara, J., Brown, C., Miller, S., Booth, B., Chau, V., Grunau, R.,

Zwicker, J., Hamarneh, G., 2017. BrainNetCNN: Convolutional neural

networks for brain networks; towards predicting neurodevelopment. Neu-

roImage 146, 1038–1049.

Klicpera, J., Giri, S., Margraf, J., Günnemann, S., 2020a. Fast
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