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A B S T R A C T   

Infection by the fungus Verticillium dahliae (Vd) and the bacterium Xylella fastidiosa (Xf) threatens the production 
of olives (Olea europaea L.) and almonds (Prunus dulcis Mill.) worldwide. Producing symptoms that resemble 
water stress or nutrient deficiency, infection by these vascular pathogens restricts water and nutrient flow 
through the xylem. Hyperspectral, narrow-band multispectral, and thermal imagery acquired at a high spatial 
resolution can detect disease symptoms, even before they are visible, potentially allowing growers to distinguish 
infected plants from those affected by confounding environmental stresses. Nevertheless, operational detection of 
vascular disease using high-resolution commercial satellite multispectral images remains to be evaluated. Here, 
we assessed the capacity of high-resolution Worldview-2 and -3 multispectral imagery to detect Xf and Vd in-
fections in olive and almond orchards in Spain, Italy, and Australia between 2011 and 2021. We compared the 
accuracy of detecting both pathogens using the satellite imagery with results obtained using aerial high- 
resolution hyperspectral and thermal imaging, with model-inverted plant traits, solar-induced chlorophyll 
fluorescence (SIF), and thermal data as a reference. Our results using spectral plant traits to examine disease 
progression at all stages showed that traits and their importance varied as a function of disease severity. 
Worldview-2 and -3 detected the disease incidence with overall accuracies ranging from 0.63 to 0.83 and kappa 
coefficients (κ) ranging from 0.29 to 0.68. Nevertheless, detecting the early stages of disease with multispectral 
satellite data yielded poorer results, with κ values of 0.22–0.45, compared with κ values of 0.3–0.69 obtained 
from hyperspectral data. Typical multispectral bandsets available from satellite sensors cannot measure 
important plant traits such as the blue index NPQI, xanthophyll proxy PRIn, SIF, and anthocyanin levels, thus 
explaining the poorer results obtained from multispectral satellite data for the early detection of vascular dis-
eases. Adding a thermal-based crop water stress indicator to the satellite data improved the overall accuracies by 
10–15% and increased κ by >0.2 units. This work shows that commercial multispectral high-spatial resolution 
imagery can be used to detect intermediate and advanced Xf and Vd infection, but that the early detection of 
disease symptoms requires hyperspectral and thermal data.   

1. Introduction 

Cultivation of olives (Olea europaea L.) and almonds (Prunus dulcis 

Mill.) has major socioeconomic importance worldwide (Özcan, 2022; 
Rallo et al., 2018). For example, in Spain, olives and almonds are first 
and second in acreage among crops (López-Moral et al., 2017). Almonds 
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are cultivated in the USA, Australia, and Spain (Moral et al., 2019), and 
olives are grown in the Mediterranean region (Rallo et al., 2018), 
particularly Spain, Italy, and Greece, and in Argentina, where olive 
groves cover >110,000 ha (Torres et al., 2017). However, >100 pests 
and pathogens threaten almond and olive cultivation (Fernández-Esco-
bar et al., 2013). One of the greatest threats worldwide is the gram- 
negative bacterium Xylella fastidiosa (Xf), which infects over 655 plant 
species (EFSA, 2022), including olive and almond. Another major threat 
is the soil-borne fungus Verticillium dahliae (Vd) Kleb, which threatens 
olive and almond production worldwide (Jimenez-Diaz et al., 2012; 
Luisi et al., 1993). 

Early detection of infection allows growers to take measures against 
these devastating pathogens. However, traditional methods for detect-
ing Vd and Xf infections involve in-situ observations followed by labo-
ratory analysis that, despite being accurate, are time-consuming, labour- 
intensive, and expensive (Gramaje et al., 2013). Moreover, visible 
symptoms of vascular disease emerge well after the infection has been 
established and can be confused with symptoms of environmental 
stresses, such as water and nutrient deficiency. 

Advanced imaging spectroscopy is crucial for the early detection of 
infections on a large scale, even before visible symptoms appear (Zarco- 
Tejada et al., 2018). Combining hyperspectral and thermal sensors on 
drones and piloted aircraft was an effective approach for detecting 
symptoms in Vd-infected olive trees at both the orchard- and large-scale 
levels (Calderón et al., 2013, 2015). These studies highlight the 
importance of temperature-based indicators such as air–canopy tem-
perature difference (Tc–Ta) or crop water stress index (CWSI) (Idso 
et al., 1981) and solar-induced chlorophyll fluorescence (SIF) emission 
(Plascyk, 1975) for the early detection of biotic-induced symptoms. 
Additionally, data collected by narrow-band hyperspectral and thermal 
imaging sensors successfully could be combined to detect non-visual 
symptoms caused by Xf infection in olive trees (Zarco-Tejada et al., 
2018). Using a machine learning approach that accounted for pigment, 
structural, fluorescence, and thermal-based plant traits (PSFTs), we 
could detect Xf infections with overall accuracy exceeding 80%. In this 
PSFT modelling scheme, the anthocyanins (Anth), SIF, normalized 
phaeophytinization index (NPQI) (Barnes et al., 1992; Peñuelas et al., 
1995a, 1995b), and CWSI were the most critical spectral traits for 
detection of infected trees irrespective of infection severity. We then 
disentangled the symptoms triggered by Xf and Vd infections from the 
confounding responses induced by water stress (Zarco-Tejada et al., 
2021); the accuracies, measured against qPCR analyses, exceeded 90% 
after the abiotic stress–induced responses were accounted for. A further 
refinement using a three-stage method was proposed to improve the 
detection and differentiation of symptoms caused by Vd and Xf infection, 
which can result in similar visual symptoms. This methodology enabled 
the detection and differentiation of Vd and Xf infections from a mixed 
(Xf + Vd) dataset with 98% and 92% accuracy, respectively (Poblete 
et al., 2021). 

The performances of these models rely on high-spatial-resolution 
hyperspectral and thermal imagery to elucidate subjacent physiolog-
ical changes affecting plant traits. Several studies have explored whether 
Vd and Xf infections could be detected at different scales and spatial 
resolutions (based on various technical and scientific innovations), 
which sets the stage for implementing these models on a global scale. 
Rey et al. (2019) demonstrated the effectiveness of a multi-sensor 
configuration system prototype that included an eight-band multispec-
tral sensor, a low-cost hyperspectral spectrometer, a thermal camera, a 
LiDAR sensor, and two red-green-blue (RGB) cameras. The authors 
mounted this system onto an automated robot to monitor the various 
stages of disease progression in Xf-infected olive trees. Di Nisio et al. 
(2020) employed a five-band multispectral camera, an RGB camera, and 
thermal cameras mounted on an unmanned aerial vehicle (UAV) to 
detect Xf-induced symptoms in olive trees. These authors developed a 
segmentation algorithm coupled with linear discriminant analysis to 
differentiate between healthy and infected trees, reaching an accuracy 

of 93%. Castrignanò et al. (2021) used a four-band multispectral camera 
and a maximum likelihood classification algorithm to detect Xf-infected 
olive trees, showing an overall accuracy of 69% for all stages of the 
disease and 77% for the early stages. 

The aforementioned studies utilized hyperspectral or narrow-band 
multispectral imagery captured by UAVs or piloted aircraft systems at 
a high spatial resolution. Upscaling these airborne-based models to 
satellite data resolution would allow global disease monitoring and 
forecasting. On that front, Hornero et al. (2020) proposed a hybrid 3D 
radiative transfer model for spatial and temporal analysis of Xf in-
fections in olive orchards, assessing Sentinel-2 satellite images and using 
airborne hyperspectral images to validate >3000 olive trees affected by 
Xf in Puglia. Their findings demonstrated that the atmospherically 
resistant vegetation index (ARVI; Bannari et al., 1995) and the opti-
mized soil-adjusted vegetation index (OSAVI; Rondeaux et al., 1996) 
could be used to track the temporal dynamics of both the incidence and 
severity of infection with accuracies of R2 = 0.71 and 0.74. In that work, 
they tracked the understory reflectance time series recorded for all or-
chards monitored. Shortly after, Huang et al. (2021) employed MODIS 
NDVI data at a spatial resolution of 250 m to evaluate the spread of 
poplar looper (Apocheima cinerarius) on Euphrates or desert poplars 
(Populus euphratica) in China. By applying wavelet transformation and 
linear discriminant analysis techniques, the authors successfully iden-
tified pest infestations and forecasted their severity at over 36 sites 
monitored between 2009 and 2014. The severity prediction achieved an 
accuracy of 77.14% when tested on datasets not used for model training, 
while the detection of outbreak time achieved an accuracy of over 90%. 
Li et al. (2022) used simulations of an extended stochastic radiative 
transfer model on Sentinel-2 images to detect pine wilt disease (PWD) in 
pine forests with limited prior field data and multispectral and RGB 
imagery. The authors employed random forest (RF) algorithms to esti-
mate infected areas on simulated data with an R2 of 0.88. However, 
when applied to real data, the performance decreased to R2 values 
ranging from 0.48 to 0.57. 

Advances in plant disease detection using multispectral satellite 
imagery have been essential for developing large-scale operational 
models. However, it has been shown that the spectral Contribution of 
canopy components such as soil or scrub in medium-resolution pixels 
(10–60 m/px) constrains the quantification of plant traits necessary for 
early disease detection (Hornero et al., 2020). However, it is unclear 
whether satellite data with high spatial resolution could improve the 
detection of Xf and Vd infections in orchard trees. Furthermore, an 
assessment of the ability to track the subtle physiological changes trig-
gered at the earliest stages of the disease progression comparing mul-
tispectral and hyperspectral-derived data has not been addressed yet. A 
pair of studies have made initial tests of the effects of the spectral 
reduction in the detection of Xf infections in olive trees (Poblete et al., 
2020) and of trunk disease in grapevine (Bendel et al., 2020). Poblete 
et al. (2020) found that using the six most sensitive spectral bands 
coupled with CWSI resulted in a decrease in detection accuracy from 
80% to 74% compared with the hyperspectral-derived data, showing 
that the addition of CWSI is critical for disease detection. However, it is 
important to note that this study only evaluated a theoretical reduction 
in spectral bands and did not investigate the use of actual satellite im-
agery. Later, Bendel et al. (2020) evaluated non-destructive sampling 
using ground-based hyperspectral and UAV multispectral images to 
detect the grapevine trunk disease Esca affecting vineyards. With 
ground-hyperspectral data, the detection of pre-symptomatic plants was 
possible, with accuracies ranging between 73 and 81% when using VNIR 
and between 79 and 91% when adding the SWIR spectral region. 
However, despite the accuracies obtained when using these ground 
measurements, the authors showed that when using multispectral im-
ages, the predictions were highly compromised, with accuracies only 
between 58% and 60% for detecting early infection symptoms. Mantas 
et al. (2022) proposed an RF algorithm to detect PWD-compatible 
decline in maritime pines using a combined dataset with Sentinel-2 
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and Worldview-3 images, reaching overall accuracies of 95%. However, 
this type of approach successfully applied for a PWD with a primary 
effect of discoloration and defoliation of tree crowns might be insuffi-
cient for Xf and Vd infections, which mainly affect the vegetation’s 
functionality. 

Here, we reasoned that higher spatial and spectral resolution satellite 
images might reduce the influence of the ground on spectral signatures 
and, as a result, improve the detection of vascular disease–induced stress 
compared to medium- and low-spatial-resolution images. The present 
study focuses on the effect of using high-resolution multispectral 
Worldview 2 and 3 satellite imagery, with high-resolution hyperspectral 
and thermal imagery as a benchmark. Furthermore, it progresses on 
understanding the underlying physiological changes reported by spec-
tral analysis as a function of biotic stress, assessing the progression of the 
contributions of different plant traits retrieved by hyperspectral analysis 
to detect early, middle, and all levels of symptoms severity. 

2. Materials and methods 

2.1. Study sites 

This study consisted of multi-date, − site, and -species monitoring 
comprising disease assessment data obtained from Xf outbreaks in Italy 
and Spain as well as Vd outbreaks in Spain and Australia. 

The study sites to assess Xf infections affecting olive trees were 
located in Puglia, Italy and were monitored during 2016 and 2017, 
while the study sites to monitor the disease progress affecting almond 
trees were located in Majorca (Balearic islands), Spain in 2019 and 
2021. The study sites to study Vd infections were located in Castro, Spain 
and in Australia which were monitored in 2011 and 2020–2021, 
respectively. Visual assessments of the disease severity (SEV) were 
performed using a scale of 0–4 based on the percentage of the tree 
canopy showing disease symptoms between 2011 and 2022 in olive and 
almond orchards affected by Xf and Vd pathogens (Table 1). 

2.1.1. Study sites with Vd infections in olive trees 
Visual assessments of Vd infections were conducted in olive orchards 

located in Spain and Australia during 2011–2013 and 2020–2022, 
respectively (detailed field data used in this study regarding Vd out-
breaks in Spain were reported by Calderón et al., 2013, 2015). The site 
monitored in 2011 was in Castro del Rio (Córdoba, Spain) and 
comprised olive trees of cv. Picual (Calderón et al., 2013), while in 2013 
the study site was located in Ecija (Seville, Spain) and comprised olive 
trees of cvs. Picual and Hojiblanca (Calderón et al., 2015). The area of 
the olive orchards assessed during these campaigns ranged between 1.69 
and 7.28 ha. In the Castro study site, 1878 olive trees were assessed, 
among which 1569 were asymptomatic (SEV = 0) and 283 were 
symptomatic (77%, SEV = 1; 16%, SEV = 2; 4%, SEV = 3 and 3%, SEV =
4; Fig. 1A). In the Ecija study site, visual assessments of SEV was per-
formed for 5223 olive trees; 5040 trees were asymptomatic and 183 
were symptomatic (61%, SEV = 1; 22%, SEV = 2; 12%, SEV = 3; and 
5%, SEV = 4). 

The study site monitored during 2020–2022 in Australia comprised 
olive trees of cvs. Koroneiki, Manzanillo, Picholine, Arbosana, Arbe-
quina, Hojiblanca, Coratina, and Picual. The area covered by the or-
chards ranged between 44.9 and 456 ha. During the 2020–2021 growing 
season, 1036 olive trees were assessed, with 355 reported as asymp-
tomatic and 681 as symptomatic (42%, SEV = 1; 18%, SEV = 2; 23%, 
SEV = 3 and 17%, SEV = 4). In addition, during the 2021–2022 growing 
season, 1296 olive trees were assessed, with 258 were reported as 
asymptomatic and 1038 as symptomatic (23%, SEV = 1; 27%, SEV = 2; 
27%, SEV = 3; and 23%, SEV = 4; Fig. 1B). 

2.1.2. Study sites with Xf infection in olive and almond trees 
Visual inspection of Xf symptoms was conducted in olive and almond 

orchards located in Italy and Spain during 2016–2017, and 2019 and 
2021, respectively (detailed field data used in this study regarding Xf 
outbreaks in Italy and Spain were reported by Zarco-Tejada et al., 2018 
and 2021, and Poblete et al., 2020 and 2021). The study sites monitored 
in 2016 and 2017 were in Apulia (southern Italy) comprising olive trees 
of cv. Cellina di Nardò and cv. Ogliarola Salentina. For the field mea-
surements, the area of the olive orchards ranged between 0.44 and 6.02 
ha. The visual assessments were performed on 7296 olive trees. From 
this field campaign, 4045 trees were reported as asymptomatic and 3251 
as symptomatic (45%, SEV = 1; 41%, SEV = 2; 11%, SEV = 3; and 3%, 
SEV = 4; Fig. 1C). 

The study sites monitored in 2019 and 2021 were located in Majorca 
(Spain), comprising almond trees of cvs. Marinada, Soleta, Vairo, Fer-
ragnes, and Marta. The areas of the orchards monitored were between 
173 and 990 ha. The visual assessments carried out during 2019 showed 
that of 4048 almond trees assessed, 2661 were asymptomatic and 1387 
were symptomatic (39%, SEV = 1; 32%, SEV = 2; 26%, SEV = 3; and 
3%, SEV = 4; Fig. 1D). The visual assessments carried out on 2021 
showed that from 2001 almond trees assessed, 1018 were asymptomatic 
while 983 where symptomatic (11%, SEV = 1; 16%, SEV = 2; 62%, SEV 
= 3; and 11%, SEV = 4). 

2.2. Airborne hyperspectral and thermal imagery 

Narrow-band hyperspectral and thermal imagery data were collected 
over all study sites concurrently with the field assessments. Details of the 
airborne campaigns were reported by Calderón et al. (2013 and 2015), 
Zarco-Tejada et al. (2018 and 2021), Hornero et al. (2020), and Poblete 
et al. (2020 and 2021). For the flight campaigns carried out in Italy and 
Spain, the narrow-band hyperspectral images consisted of 260 bands in 
the 400–885 nm spectral range collected with 6.4-nm of full-width at 
half maximum (FWHM) using a headwall Photonics (Fitchburg, MA, 
USA) VNIR linear hyperspectral sensor. This sensor has an 8-mm focal 
length that allows an angular field of view (FOV) of 50◦. For the flight 
campaigns carried out during 2020–2022, narrow-band hyperspectral 
images comprising 371 bands in the 400–1000 spectral range were 
collected with 5.8-nm of FWHM using a hyperspectral imager (Hyper-
spec VNIR E-Series model, Headwall Photonics, Fitchburg, MA, USA). 

Table 1 
Description of the study sites, disease, affected species and number of trees 
included in this study.  

Study site Pathogen Affected 
species 

Year of data 
collection 

Trees assessed 

Puglia, 
Italy 

Xylella 
fastidiosa 

Olive trees 2016 and 
2017 

7296: - 
Asymptomatic (n =
4045)     
- Symptomatic (n =
3251)      

Majorca, 
Spain 

Xylella 
fastidiosa 

Almond 
trees 

2019 and 
2021 

6049: - 
Asymptomatic (n =
3679)     
- Symptomatic (n =
2370) 

Castro, 
Spain 

Verticillium 
dahliae 

Olive trees 2011 1878: - 
Asymptomatic (n =
1569)     
- Symptomatic (n =
283) 

Ecija, 
Spain 

Verticillium 
dahliae 

Olive trees 2013 5223: - 
Asymptomatic (n =
5040)     
- Symptomatic (n =
183) 

Australia Verticillium 
dahliae 

Olive trees 2020 and 
2021 

2332: - 
Asymptomatic (n =
613)     
- Symptomatic (n =
1719)  
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This sensor has an 8-mm focal length that allows a FOV of 66◦. 
Radiometric calibration was performed on the hyperspectral imagery 

collected by both sensors, applying to each image the coefficients ob-
tained from different illumination levels with a constant light source 
using a CSTM-USS-2000C and a SPARC-A060L integrating sphere 
(LabSphere, North Sutton, NH, USA) for the 6.4-nm and the 5.8-nm 
FWHM sensors, respectively. The atmospheric correction and irradi-
ance calculation to convert radiance values to reflectance was conducted 
with the SMARTS model (Gueymard, 2001) using aerosol optical prop-
erties and meteorological parameters measured at the time of the image 
acquisition. The aerosol optical depth at 550 nm was derived using 
readings with a Microtops II sun photometer (Solar LIGHT Co., Phila-
delphia, PA, USA) at wavelengths 440, 500, 675, 870, and 936 nm, and 
the meteorological parameters were obtained using a portable weather 
station (Transmitter PTU30, Vaisala, Helsinki, Finland, for the data 
obtained in Spain and Italy; and WXT510, Vaisala, Helsinki, Finland, for 
the data obtained in Australia). The calibrated and atmospherically 
corrected hyperspectral images were ortho-rectified using the Para-
metric Geocoding & Ortho-rectification for Airborne Optical Scanner 
Data software (PARGE, ReSe Applications Schläpfer, Wil, Switzerland). 
This method uses as inputs the IMU and GPS information obtained from 
the solidly installed and synchronized inertial measurement units 
(IG500 model; SBG Systems, Carrières-sur-Seine, France, for the images 
collected in Italy and Spain; VN-300-VectorNav Technologies LLC, 
Dallas, TX, USA for the images collected in Australia). 

High-resolution thermal imagery was collected using a thermal 
camera flown in tandem with the hyperspectral imager. A FLIR SC655c 

(FLIR Systems, USA) uncooled microbolometer covering the 7.5–14-μm 
spectral range with a spatial resolution of 640 × 480 pixels was used for 
all study sites. This sensor has a focal length of 24.6 mm f/1.0 allowing a 
FOV of 45◦. Vicarious thermal calibration was performed using soil 
temperature measured for each flight as described by Calderón et al. 
(2013). To isolate individual tree crowns and obtain radiance, reflec-
tance, and temperature from unmixed vegetation pixels, both Niblack’s 
thresholding (Niblack, 1986) and Sauvola’s binarization (Sauvola and 
Pietikäinen, 2000) methods were implemented to remove background, 
soil, and within-crown shadow pixels. Pure tree–crown thermal data 
were used for the calculation of CWSI (Idso et al., 1981), which is one of 
the most sensitive reported indicators of early symptoms for both Xf and 
Vd infection (Calderón et al., 2013 and 2015; Zarco-Tejada et al., 2018 
and 2021; Poblete et al., 2021) due to its link with the reduction of 
transpiration rates. 

The pure tree–crown radiance spectra were then used for quantifi-
cation of sun-induced chlorophyll fluorescence at 760 nm (SIF@760) 
using the O2-A in-filling Fraunhofer Line Depth (FLD) method (Plascyk, 
1975), which is also an indicator of Xf- and Vd-induced stress in both 
olives and almonds due to the reduction in photosynthesis experienced 
by the infected plants (Zarco-Tejada et al., 2018 and 2021). 

The pure tree–crown reflectance spectra extracted from the images 
were used to calculate the set of narrow-band hyperspectral indices 
(NBHIs) for each tree identified in the images that corresponded with a 
tree evaluated in the field. The set of NBHIs selected (see full details of 
the hyperspectral indices in Zarco-Tejada et al., 2018 and 2021) 
required spectral bands in the VNIR spectral region and are related to 

Fig. 1. Spatial distribution of visual assessments for Xylella fastidiosa (Xf) and Verticillium dahliae (Vd) infection performed between 2011 and 2022. (A) Castro, Spain 
site monitored in 2011 for Vd infections in olive trees. (B) Australia site monitored in 2020–2022 for Vd infections in olive trees. (C) Puglia, Italy site monitored in 
2016–2017 for Xf infections in olive trees. (D) Majorca, Spain site monitored in 2019 and 2021 for Xf infections in almond trees. 
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structural traits and concentration of plant pigments such as chlorophyll 
a + b, carotenoids, anthocyanins, and xanthophylls. In addition to the 
NBHI calculation, the leaf biochemical and canopy structural parame-
ters were determined using the inversion of radiative transfer models 
described in Section 2.4. 

2.3. Worldview-2 and -3 satellite imagery 

High-spatial-resolution Worldview-2 (WV-2) and Worldview-3 (WV- 
3) images captured close to the dates of the hyperspectral and thermal 
airborne campaigns were acquired for all study sites (Table 2). Both 
platforms were launched by DigitalGlobe in October 2009 and August 
2014 and operate in a sun-synchronous orbit. While both sensors cap-
ture spectral information in the VNIR collecting eight multispectral 
bands in the 400–1040-nm spectral range, WV-3 also captures eight 
SWIR bands in the 1195–2365-nm spectral range at a lower resolution. 
For this study, only the VNIR bands were used due to the low spatial 
resolution of the SWIR bands (3.7 m), which prevented the identification 
of pure tree crowns. WV-2 and WV-3 obtain panchromatic data at a 
ground sample distance of 0.46 and 0.31 m, respectively, and multi-
spectral data in the VNIR region at 1.84 and 1.24 m, respectively. 
Despite the spatial resolution differences, the configuration of the 
spectral band centers of both sensors is similar, with eight multispectral 
bands in the visible region, including 400–450 nm (center wavelength, 
CWL = 427.3 nm), 450–510 nm (CWL = 477.9 nm), 510–580 nm (CWL 
= 546.2 nm), 585–625 nm (CWL = 607.8 nm), and 630–690 nm (CWL =
658.8 nm), along with one band in the red-edge at 705–745 nm (CWL =
723.7 nm) and two bands in the near-infrared at 770–895 nm (CWL =
832.5 nm) and 860–1040 nm (CWL = 908 nm). A comparison of the 
spatial resolution acquired by the satellite multispectral imagery and the 
airborne hyperspectral imagery used in this study can be found in Fig. 2. 

2.3.1. Radiometric calibration and atmospheric correction of Worldview 
imagery 

WV-2 and WV-3 products were provided by the vendor as radio-
metrically calibrated and atmospherically corrected image pixels with 
top-of-atmosphere (TOA) reflectance. However, that processing level 
does not consider topographic, atmospheric, or BRDF differences 
(Richards, 1999). Therefore, to allow a quantitative analysis comparable 
with that from surface measurements, all images provided from WV-2 
and WV-3 satellites were atmospherically corrected (bottom of 

atmosphere [BOA]) using the empirical line method prior to data 
extraction for subsequent analyses. This technique has been successfully 
applied to both aerial data and coarser spatial resolution satellite sensor 
data (Karpouzli and Malthus, 2003). Here, we performed this cross- 
calibration with Sentinel-2 imagery using homogeneous and time- 
invariant calibration zones. 

The high spatial resolution of Worldview and Sentinel-2 images 
allowed us to identify areas of bare soil to be used as homogeneous 
calibration objects. Sentinel-2 imagery was selected by searching for the 
closest cloud-free date within the location of each study area. Once the 
area was established, the images were downloaded at the L1C processing 
level to be processed to Surface Reflectance (L2A) using Sen2Cor (Main- 
Knorn et al., 2017). To obtain the synthetic-target bare soil for the 
Worldview spectral bands, a third-degree polynomial interpolation was 
performed for each study area and collection date. The coefficients of 
determination of the observed prediction equations for each zone were 
reasonably high (R2 > 0.95). Finally, to compute the empirical line 
factors, the source spectral data (TOA) were forced to match the target 
spectral data (synthetic values extracted from the previous step, BOA) 
using linear regression to match each band to the target reflectance 
(Fig. 3). 

In addition to the NBHI calculated from the narrow-band hyper-
spectral images, multispectral indices (Sagan et al., 2021) were calcu-
lated from the Worldview satellite imagery (Table 3) to compare the 
differences between asymptomatic trees (SEV = 0) and the different 
disease severity levels (SEV = 1, SEV = 2, SEV = 3, and SEV = 4); an 
analysis of variance (ANOVA), followed by a Dunnett’s test was per-
formed at α < 0.05. 

2.4. Modelling methods 

Leaf biochemical constituents and canopy structural properties were 
retrieved using an inversion approach based on the PRO4SAIL radiative 
transfer model (as in Zarco-Tejada et al., 2018 and Zarco-Tejada et al., 
2021, Poblete et al., 2021). PRO4SAIL couples the PROSPECT-D (Féret 
et al., 2017) leaf radiative transfer model and the 4SAIL (Verhoef et al., 
2007) canopy radiative transfer model. Leaf pigments such as chloro-
phyll a + b (Ca+b), anthocyanins (Anth.), and carotenoids (Cx+c) were 
quantified using the modelling approach since they are important for 
predicting symptoms caused by infection by Xf and Vd in almond and 
olive species (Zarco-Tejada et al., 2018, 2021). Structural traits 
including the leaf inclination distribution function (LIDF) and the leaf 
area index (LAI) were estimated for each tree crown, as they are good 
indicators to detect Xf infections in almond trees (Zarco-Tejada et al., 
2021). These leaf and canopy traits were retrieved using pure sunlit tree 
crown reflectance pixels, obtained from the segmentation method. As 
this method obtains only plant features from the trees, it prevents arti-
facts caused by vegetation pixels combined with within-crown shadows, 
tree boundaries, or from a sunny or shaded soil backdrop that might 
hinder the quality of the spectra. This procedure was carried out for each 
specific study site considering the intrinsic variations between each 
dataset and time of collection (Table 4) described in section 2.2. 

A look-up table of 100,000 simulations was created for each dataset 
by uniformly distributing the parameters shown in Table 4. The rest of 
the parameters were used in their default ranges. As reflectance is 
simulated in PRO4SAIL in the 400–2500-nm spectral range with an 
FWHM of 1 nm, data resampling was carried out to match the spectral 
resolution of both hyperspectral sensors used in this study. Convolution 
was performed by applying a Gaussian spectral response function. The 
inversions of the plant traits derived by model inversion were performed 
using supported vector machine (SVM) algorithms. SVM models are 
non-parametric models, based on the statistical learning theory (Vapnik, 
1999) and have been widely used in remote sensing studies due to their 
generalization even when the training dataset is reduced (Mantero et al., 
2005), and they showed similar or even better results when compared 
with more recently proposed algorithms, such as artificial neural 

Table 2 
Description of the satellite and airborne imagery collected in this study.  

Study site Outbreak 
assessed 

Imagery collected Date of collection 

Xylella fastidiosa datasets 
Apulia, Italy Xylella 

fastidiosa 
Narrow-band hyperspectral 
and thermal 

June 2016–July 
2017   

Worldview-2 August 2017 
Majorca, 

Spain 
Xylella 
fastidiosa 

Narrow-band hyperspectral 
and thermal 

July 2019   

Worldview-2 May-Sept 2019   
Worldview-3 July-Sept 2019 

Majorca, 
Spain 

Xylella 
fastidiosa 

Narrow-band hyperspectral 
and thermal 

July 2021   

Worldview-2 July–August 
2021   

Worldview-3 July 2021 
Verticillium dahliae datasets 
Castro, 

Spain 
Verticillium 
dahliae 

Narrow-band hyperspectral 
and thermal 

June 2011   

Worldview-2 June 2011 
Australia Verticillium 

dahliae 
Narrow-band hyperspectral 
and thermal 

November 2020   

Worldview-3 November 2020   
Narrow-band hyperspectral 
and thermal 

December 2021   

Worldview-3 December 2021  
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networks (Kuter, 2021; Almendra-Martín et al., 2021). The main pur-
pose of SVM algorithms is to find the hyperplane that maximizes the 
margin between the classes and to minimize the misclassification error. 
For regression analyses, this algorithm is named Support Vector 
Regression (SVR), where the main purpose is to find the function with 
the maximum deviation between the observed responses for all in-
stances of observation. The so-called kernel technique is used to project 
a nonlinear problem in a higher dimensional feature space where the 
problem can be solved by linear solutions. This kernel technique can be 
applied to both classification and regression problems. For the inversion 
of the biochemical and structural traits, SVR models were trained in 

parallel using MATLAB (MATLAB; Statistics and Machine Learning 
toolbox, parallel computing toolbox and Deep Learning toolbox; Math-
works Inc., Natick, MA, USA), employing as inputs the resampled 
reflectance and as output the biochemical and structural traits. The SVR 
algorithms were trained 10-fold using a radial basis function as kernel 
and optimizing the hyperparameters during training for each variable. 

2.5. Machine learning algorithms to detect Xf and Vd infection and 
symptom severity in olive and almond trees 

Detection of Xf- and Vd-induced symptoms was performed for early, 

Fig. 2. Comparison of the spatial resolution obtained between the Worldview-3 satellite images and the airborne hyperspectral and thermal imagery. (A) Worldview- 
3 panchromatic imagery collected in Australia with a pixel size of 0.31 m. (B) Worldview-3 multispectral imagery collected with a pixel size of 1.24 m. (C) Narrow- 
band hyperspectral imagery collected with a pixel size of 0.29 m. (D) Thermal imagery collected with a pixel size of 0.44 m. 
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middle, and all stages of the disease progression. The trees were classi-
fied as asymptomatic (SEV = 0) or at one of three levels of increasing 
disease severity: i) early stage, which included trees assessed as 

symptomatic with SEV = 1; ii) middle stage, which included trees 
assessed as symptomatic with SEV = {1,2}; and iii) all stages, which 
included all trees assessed as symptomatic (SEV = {1,2,3,4}). 

Fig. 3. Comparison of the spectral resolution between narrow-band hyperspectral images and Worldview-3 multispectral images. (A) Calibrated narrow-band 
hyperspectral imagery showing reflectance spectra for vegetation and soil pixels. (B) Radiometrically calibrated Worldview-3 multispectral images showing 
reflectance spectra for vegetation and soil pixels. 

Table 3 
Multispectral indices derived from the Worldview-2 and -3 satellite imagery.  

Multispectral indices Equation Reference 

Ratio vegetation index RVI = R832.5/R658.8 Tucker (1979) 
Normalized difference veg. index NDVI = (R832.5 − R658.8)/(R832.5 + R658.8) Rouse et al. (1974) 
Green normalized diff. veg. index GNDVI = (R832.5 − R546.2)/(R832.5 + R546.2) 

Gitelson et al. (2003) 
Enhanced vegetation index EVI = 2.5 • ((R832.5 − R658.8)/(R832.5 + 6 • R658.8 − 7.5 • R477.9 + 1) )

Huete et al. (2002) 
Enhanced Vegetation Index 2 EVI2 = 2.5 • (R832.5 − R658.8)/(R832.5 + 2.5 • R658.8 + 1)]

Jiang et al. (2008) 
Wide dynamic range vegetation index WDRVI = (0.12 • R832.5 − R658.8)/(0.12 • R832.5 + R658.8) Gitelson (2004) 
Structure Insensitive Pigment Index SIPI = (R832.5 − R477.9)/(R832.5 − R658.8) Peñuelas et al. (1995a, 1995b) 
Normalized Ratio Vegetation Index NRVI = (RVI − 1)/(RVI + 1)

Baret and Guyot (1991) 
Transformed Vegetation Index TVI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[(R832.5 − R658.8)/(R832.5 + R658.8) + 0.5] ]

√

Deering (1975) 
Optimized soil-adjusted veg. index OSAVI = (R832.5 − R658.8)/(R832.5 + R658.8 + 0.16)

Rondeaux et al. (1996) 
Modified chlorophyll abs. refl. index MCARI = [(R723.7 − R658.8) − 0.2 • (R723.7 − R546.2) ] • (R723.7/R658.8) 

Daughtry et al. (2000) 
Transformed chl.abs. refl. index TCARI = 3 • [(R723.7 − R658.8) − 0.2 • (R723.7 − R546.2) • (R723.7/R658.8) ] Haboudane et al. (2002) 
MCARI/OSAVI MCARI/OSAVI 

Daughtry et al. (2000) 
TCARI/OSAVI TCARI/OSAVI 

Haboudane et al. (2002) 
Normalized difference red-edge NDRE = (R832.5 − R723.7)/(R832.5 + R723.7) Gitelson and Merzlyak (1997) 
Red-edge chlorophyll index RECI = (R832.5/R658.8) − 1 

Gitelson et al. (2005)  
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The classification of SEV = 0 vs. SEV = 1; SEV = 0 vs. SEV ≤2; and 
SEV = 0 vs. SEV ≥ 1 was performed to i) compare the accuracy of the 
detection when using as inputs different spatial and spectral resolution 
data, and ii) assess the progression of the Contribution of the plant traits 
relevant to detecting each pathogen-induced stress and severity level. 

2.5.1. Assessment of the detection of Xf and Vd infection and severity of 
symptoms 

A similar procedure of classifying SEV = 0 (asymptomatic) vs. SEV =
1; SEV = 0 vs. SEV ≤ 2; and SEV = 0 vs. SEV ≥ 1 was performed using 
different sets of inputs, including i) the PSFT inputs from airborne 
hyperspectral and thermal images, used as a benchmark when 
comparing against satellite-derived model performance (these inputs 
were obtained from previous studies where the classification of 0 vs. all 
was performed; more details can be found in Zarco-Tejada et al., 2021); 
ii) hyperspectral-only derived data (Ca+b, Anth., Cx+c, LAI, LIDF, 
SIF@760, and the non-collinear set of NBHIs) without using the thermal 
CWSI indicator; iii) reflectance bands from WV-2 and 3 multispectral 
satellite imagery; and iv) the same inputs as (iii) but including the 
airborne-derived thermal CWSI indicator. The latter set of inputs was 
used to assess the importance of obtaining thermal imagery concurrently 
with Worldview 2 and 3 satellite imagery for improved disease detec-
tion. This combination of inputs was assessed because the CWSI is linked 
to transpiration rates, which are affected by the blockage of water flow 
through the vascular system of plants infected by these pathogens. Given 
that thermal infrared satellite sensors have limited spatial resolution, 
which can hinder early disease detection when relying solely on 
satellite-derived data, this procedure can be used to assess the need for a 
multi-sensor approach to enhance the detection of different stages of the 
disease. 

This analysis was carried out to compare the accuracies obtained by 
training SVM algorithms. These algorithms were trained in parallel with 
the 10-fold cross-validation procedure. The hyperparameters were 
optimized using Bayesian optimization during the training step with 
balance techniques. We used 70% for training and the remaining 30% 
for testing, and this process was performed 50 times. To evaluate the 
accuracy of the detection, the overall accuracy (OA) and the kappa co-
efficients (κ) were calculated (Freeman and Moisen, 2008). In addition, 
the false positive rate (FPR) and false negative rate (FNR) related to 
sensitivity (the likelihood of properly recognizing true positives while 
avoiding false negatives) and specificity (the ability to appropriately 

detect true negatives while avoiding false positives; Trevethan, 2017) 
were calculated and compared for all datasets. 

2.5.2. Contribution of plant traits to detection at progressive stages of Xf 
and Vd infection and severity 

Disease symptoms are expected to affect sensitive plant traits 
differently over the course of disease. Therefore, we assessed the 
hyperspectral imagery to evaluate the Contribution of plant traits as a 
function of the different disease stages (early, middle, and all severity 
levels). This analysis was performed by training random forest (RF) al-
gorithms for all datasets. RF algorithms were trained using the 
biochemical and structural traits obtained by model inversion as inputs 
and adding traits such as CWSI, SIF@760, and the non-collinear NBHIs 
that contributed to the model. 

As in Poblete et al. (2021) and Zarco-Tejada et al. (2021), Ca+b, 
Anth., Cx+c, LAI, LIDF, CWSI, and SIF@760 were inputs into RF models 
since they are directly related to the plant physiological status. First, the 
dimensionality of the NBHI pool of indices was reduced by the variance 
inflation factor (VIF) analysis (James et al., 2013), where indices from 
the NBHI pool with a VIF > 5 (Akinwande et al., 2015) were removed. 
Then, a recursive feature elimination approach was performed by clas-
sifying asymptomatic (SEV = 0) vs. all disease severity levels (SEV ≥ 1), 
and those indices that did not improve the classification accuracies (OA) 
and the kappa coefficients (κ) were not included in the models. Indices 
retained in this step were included in the rest of the detection analyses 
for the early and middle stages of the disease progression. A balanced 
dataset of both asymptomatic and symptomatic trees was randomly 
chosen from 80% of the trees to determine the Contribution of plant 
traits in the detection. RF models were then trained using the balanced 
dataset of symptomatic/asymptomatic trees, and the importance of each 
predictor was determined using the permutation of the out-of-bag 
method (Thomas et al., 2021). As all the plant traits and indices used 
have already being reported as relevant to detect these diseases at all 
stages of infection, the progression assessment of their Contribution was 
performed to assess the role they play for the detection of the different 
stages of disease progression. This analysis will allow to link this dy-
namics with the progressive physiological changes as a function of dis-
ease severity. The hyperparameters of the models were optimized using 
a Bayesian optimization method in MATLAB (Statistics and Machine 
Learning toolbox; MathWorks Inc., Natick, MA, USA). After assessing the 
progression of the contributions for each plant trait, we compared the 
predictions obtained by the hyperspectral-only derived data with the 
satellite-only data. We used the datasets from Australia to study Vd in-
fections affecting olive trees, which were monitored during two 
consecutive years. We first predicted asymptomatic and infected 
symptomatic (irrespective of the severity level) olive trees at a plot level 
monitored in the 2020 campaign. Then, considering that in the 2021 
season a larger area and a larger number of trees were assessed, we 
validated our results with the second-year campaign by comparing the 
percentage of incidence of disease predicted by both the airborne 
hyperspectral and the satellite sources. Following this, we investigated 
those orchards with major discrepancies between both sources by con-
trasting their predictions against the visual assessments performed in the 
second year. 

As the hyperspectral-derived plant traits gave valuable physiological 
information that could not be retrieved by the available satellite-only 
information, we investigated whether this discrepancy was produced 
by the inability of the satellite-derived models to capture symptoms 
triggered in trees at the early stages of disease progression. We 
compared the absolute differences of the percentage of trees predicted as 
symptomatic (SEV ≥ 1) with the proportion of trees evaluated as early- 
stage (SEV = 1) in the second year to assess if the major differences were 
associated with a higher proportion of trees at early stages. 

Table 4 
Ranges of parameters used to perform simulations with the PRO4SAIL radiative 
transfer model.  

Parameter Abbreviation Units Value / Range 

Chlorophyll content Ca+b [μg/ 
cm2] 

[10,70]a;[10,80]b; [10,60]c 

Carotenoid content Cx+c [μg/ 
cm2] 

[0,20]a;[1,20]b;[4,15]c 

Anthocyanin content Anth. [μg/ 
cm2] 

[0,7.5]a; [1,15]b; [1,18]c 

Dry matter content Cm [g/cm2] 0.012a,b; 0.0015c 

Water content Cw [g/cm2] 0.009a,b; 0.001c 

Mesophyll struct. 
Coeff. 

N – [1, 2.5]a;[0.5,3]b,c 

Leaf area index LAI [m2/m2] [0.3,5]a; [1,2.5]b; [1,3.5]c 

Average leaf angle LIDF [deg.] [0,90]a,b; [0,90]b; 
[40,100]c 

Hot spot parameter hot – 0.01a,b,c 

Observer angle tto [deg.] 0a,b,c 

Sun zenith angle tts [deg.] [0–66.9]a,53.75b; 60c 

Relative azimuth angle psi [deg.] 0a,b,c  

a Parameters used for the study sites monitored from 2011 to 2019 in Italy and 
Spain. 

b Parameters used for the study sites monitored from 2020 to 2022 in 
Australia. 

c Parameters used for the study site monitored in 2021 in Spain. 
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3. Results 

The indices calculated from both hyperspectral and Worldview 
multispectral satellite data showed consistent trends as a function of all 
levels of disease severity (Supplementary Fig. 1). The indices related to 
canopy structure, e.g. NDVI (Rouse et al., 1974), EVI (Huete et al., 
2002), and OSAVI (Rondeaux et al., 1996) decreased when the severity 
increased (Supplementary Fig. 1A, 1B and 1G, respectively). In addition, 
chlorophyll-related indices such as TCARI (Haboudane et al., 2002), 
MCARI (Daughtry et al., 2000), and the ratio TCARI/OSAVI (Haboudane 
et al., 2002) (Supplementary Fig. 1E, 1F and 1H, respectively) also 
showed a decrease as a function of severity. 

3.1. Detection accuracy of Xf infections in olive and almond trees 

The detection of Xf infections in olive trees using only the Worldview 
satellite multispectral data showed OAs of 0.62 and 0.61, κ values of 
0.29 and 0.22, FNRs of 0.44 and 0.51, and FPRs of 0.43 and 0.43, for 
middle and early stages of the disease progression, respectively (Fig. 4A 
and 5A). These results improved when adding the thermal CWSI indi-
cator, showing OAs of 0.67 and 0.63, κ values of 0.35 and 0.26, FNRs of 
0.35 and 0.34, and FPRs of 0.31 and 0.38, respectively. The same 
behavior was observed when detecting symptomatic trees at any level of 
infection, where the accuracies were higher when the CWSI indicator 
was added (OAs from 0.63 to 0.7, κ values from 0.29 to 0.39, FNRs from 
0.41 to 0.34, and FPRs from 0.38 to 0.25). 

The results using satellite-derived data were considerably lower 
compared to the PSFT benchmark dataset for the detection of early, 
middle, and all stages of the disease progression. The highest accuracy 
was reached by the PSFT dataset for all stages of the disease progression, 
with an OA of 0.79, a κ of 0.46, FNR = 0.32, and an FPR = 0.2. When 
detecting middle and early stages, the OA values were 0.71 and 0.65, κ 
was 0.41 and 0.29, FNR was 0.34 and 0.35, and FPR was 0.24 and 0.38, 
respectively. The use of hyperspectral-derived data without the thermal 
CWSI indicator slightly underperformed the PSFT dataset with OA =
0.71, κ = 0.41, FNR = 0.34, and FPR = 0.25, for the detection of all 
stages. For the middle and early stages, the accuracies obtained were OA 
= 0.68–0.64, κ = 0.27–0.36, FPR = 0.29–0.39, respectively, and FNR =
0.35 for both cases. The detection of Xf effects on almond trees using 
only the Worldview data yielded the poorest performance for all cases. 
However, when detecting middle and all stages of Xf disease progres-
sion, the performance of Worldview imagery improved when the 
thermal-based CWSI was added in the model. The OA increased from 
0.74 to 0.77 and from 0.81 to 0.84, respectively. The κ increased from 
0.49 to 0.55 and from 0.63 to 0.67 (Fig. 4B). The FNRs decreased from 
0.24 to 0.23 and from 0.24 to 0.17 for middle and all-stage detection. In 
the case of the FPR, they remained stable at 0.18 and 0.12 in both cases 
(Fig. 5B). Nevertheless, for the detection of the early stages of the Xf 
disease progression, the inclusion of CWSI had almost no effect, with OA 
= 0.74 for both cases, and the κ, FNR, and FPR varying from 0.47 to 
0.49, 0.35 to 0.3, and 0.25 to 0.23, respectively. As in Xf/olive, in Xf/ 
almond the PSFT was the best performing in all cases and compared with 
the satellite-derived data only, a major improvement was observed for 
middle and early stages. The accuracies at early stages varied from OA =
0.74 to 0.79 (κ from 0.47 to 0.6); for middle stages from OA = 0.74 to 
0.85 (κ from 0.49 to 0.71); and all stages from OA = 0.81 to 0.91 (κ from 
0.63 to 0.81). The use of hyperspectral-derived data only compared with 
the PSFT dataset showed a slight difference in accuracy, with an average 
of 0.1 units of difference for both OA and κ. 

3.2. Detection accuracy of Vd infections in olive trees 

As in the assessment of Xf, adding CWSI to the satellite data 
improved the detection of Vd infections in olive trees. For the early 
stages of disease progression, OA improved from 0.72 to 0.78 and k from 
0.45 to 0.56 (Fig. 4C). For the middle stages of disease progression, OA 

increased from 0.76 to 0.85 and k from 0.54 to 0.71, and for all stages of 
disease progression, the improvement was from OA = 0.83 to 0.86 and k 
= 0.68 to 0.72. The improved accuracy obtained when adding the CWSI 
to the multispectral satellite data highlights the need for high-resolution 
thermal imagery to detect both infections; however, it is not feasible to 
obtain such resolution using conventional satellite platforms. 

The PSFT dataset contributed the most to the prediction compared 
with using the satellite-only derived data, principally with a major effect 
on the detection of early and middle stages. When detecting early stages, 
the OA was improved from 0.72 to 0.85, the κ increased from 0.45 to 
0.69, the FNR decreased from 0.27 to 0.12, and the FPR from 0.32 to 
0.11. For the detection of middle stages, OA increased from 0.76 to 0.9, 
while k increased from 0.54 to 0.79. The FNR was reduced from 0.26 to 
0.12 and the FPR from 0.23 to 0.09, while for all stages the OA increased 
from 0.83 to 0.92, the k increased from 0.68 to 0.83, and the FNR and 
the FPR decreased from 0.21 to 0.08 and from 0.14 to 0.07, respectively. 

3.3. Progression of plant traits to detect early, middle and all stages of Xf 
and Vd infections 

We further studied the lower performance of the multispectral sat-
ellite data compared to airborne hyperspectral data for the early 
detection of both diseases. The significant improvement observed with 
the PSFT dataset compared to the use of satellite-only data allowed us to 
evaluate the plant traits sensitive to early levels of infection, with regard 
to their influence on the detection of early stages. First, we evaluated the 
distribution of the plant traits previously identified as sensitive to 
infection and useful for detection (Zarco-Tejada et al., 2021), comparing 
them for the early, middle, and all stages of the disease progression with 
the asymptomatic trees. As a Dunnett’s test showed that the relevant 
plant traits (i.e., CWSI, PRIn, SIF@760, Ca+b, Anth., and LAI) were sta-
tistically different when comparing all stages of disease progression with 
the asymptomatic trees (Supplementary Fig. 2), we then assessed the 
progressive contributions (importance) of the most sensitive plant traits. 
NPQI had the greatest Contribution to the detection of Xf in both tree 
species for middle and all stages of disease progression (as in Zarco- 
Tejada et al., 2018, 2021), showing an importance of 0.22 and 0.20 for 
olive, respectively (Fig. 6A), and 0.21 and 0.22 for almond, respectively 
(Fig. 6B). At the earliest stages, PRIn made the largest Contribution when 
detecting symptoms affecting almond trees, with an importance of 0.25, 
while for olive, NPQI again had the greatest Contribution, at 0.23. PRIn 
showed the best separability among severity levels of disease progres-
sion, with differences of 0.04, 0.22, 0.26, and 0.48 between asymp-
tomatic and early, middle, and advanced stages. On the other hand, LAI 
showed the lowest differences between these groups with 0.03, 0.07, 
0.1, and 0.05, respectively (Supplementary Fig. 2). 

The importance of CWSI was higher when detecting Xf-infected olive 
trees compared to its Contribution in almonds, but in the latter it 
increased as the stages included more advanced symptoms of infection. 
For the detection of Vd-infected olive trees, CWSI had a lower contri-
bution when detecting early stages of infection characterized by low 
severity levels (being the sixth-ranked most important plant trait with an 
importance of 0.08). Nevertheless, it increased with more advanced 
stages of disease progression, ultimately being the most important factor 
for detecting disease incidence, with an importance of approximately 
0.19 (Fig. 6C). In the same case (Vd/olive), the Contribution of NPQI was 
low and remained stable when adding trees with higher severity in the 
classification (with a mean importance of 0.06 in the three stages), 
which could indicate that NPQI has greater specificity for detection of Xf 
infections. The Contribution of PRIn was the highest for the detection of 
early stages of Vd infection in olive trees, and it decreased as a function 
of the disease severity (from 0.24 down to 0.15). Notably, Cx+c, LIDF, 
and SIF@760 showed almost no changes when comparing their Contri-
bution to the detection of middle and early stages of disease develop-
ment. The anthocyanin content was highly relevant in the detection of 
Xf/olive at all stages, increasing from 0.02 up to 0.15 compared with 
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Fig. 4. Comparison of the accuracies obtained at a multi-spatial and -spectral resolution for the detection of Xylella fastidiosa (Xf) and Verticillium dahliae (Vd) in-
fections at early, middle, and all stages of disease progression. (A) Accuracy of the detection of Xf infections in olive trees. (B) Accuracy of the detection of Xf 
infections in almond trees. (C) Accuracy of the detection of Vd infections in olive trees monitored during 2020–2022. 
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early stages, while for the rest of the cases it remained relatively low 
compared with the other plant traits. 

3.4. Assessment of the predictive capabilities of airborne hyperspectral 
and satellite multispectral imagery for detecting Xf and Vd infections 

The overall accuracies achieved when using the PSFT dataset 

Fig. 5. Comparison of the false positive rate (FPR) and false negative rate (FNR) obtained at a multi-spatial and -spectral resolution for the detection of Xylella 
fastidiosa (Xf) and Verticillium dahliae (Vd) infections at early, middle, and all stages. (A) FPR and FNR obtained for the detection of Xf infections in olive trees. (B) FPR 
and FNR obtained for the detection of Xf infections in almond trees. (C) FPR and FNR obtained for the detection of Vd infections in olive trees monitored 
in 2020–2022. 
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Xf
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Fig. 6. Progressive Contribution of the most sensitive plant traits to detection of Xylella fastidiosa (Xf) and Verticillium dahliae (Vd) in olive and almond trees at early, 
middle, and all stages of disease progression. Progression of the plant trait contributions to detect Xf in olive trees (A), Xf in almond trees (B), and Vd in olive trees (C). 
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compared to the hyperspectral-only dataset were not severely compro-
mised, showing on average differences of 0.025 for all stages of disease 
progression, 0.028 for intermediate stages of disease progression, and 
0.01 for early stages. Based on this, we performed a tree-based predic-
tion over a large area to detect Vd-infected olive trees (Fig. 7). We 
applied the models to airborne hyperspectral and satellite multispectral 
images to compare the spatial variability of the resulting predictions, 
evaluating the areas where the larger errors were obtained. 

The areas predicted as infected by the models built with hyper-
spectral data were larger compared with the areas predicted by the 
satellite (Fig. 8). When assessing the errors obtained by both datasets at 
the plot level, results yielded R2 = 0.54 and RMSE = 0.3. 

The proportion of infected trees detected as being symptomatic (all 
disease severity levels) was higher when using the airborne hyper-
spectral data than when using satellite data; the predictions for some 
orchards were highly inaccurate, while others were accurate. To deter-
mine the cause of inaccuracies in disease detection using satellite data, 
we evaluated the frequency of visual assessments for each severity level 
in orchards that yielded the least accurate and most accurate predictions 
(Fig. 9). For the plots where the discrepancy between satellite-based 
predictions and the hyperspectral-based predictions was the highest 
(Fig. 9a-c), the proportion of trees at low severity levels was higher for 
all cases, whereas trees at advanced stages (SEV = 4) were not observed. 
By contrast, orchards with the lowest discrepancies (Fig. 9d-f) had the 
smallest proportion of trees at the early stages of disease progression and 
the highest proportion of trees at advanced stages. This analysis indi-
cated that the major discrepancies between satellite data and airborne 
hyperspectral data were generally observed for trees at the early stages 
of disease progression, while the greatest similarity was obtained when a 
greater proportion of the trees were at advanced stages and fewer (or 

none) at early stages of progression. To further illustrate this point, as 
shown in Fig. 10, we assessed the relationship between the differences in 
the frequency of symptomatic trees detected between the satellite and 
airborne hyperspectral data compared to the proportion of trees at the 
early stages of disease progression. 

Fig. 7. Spatial variability of tree-based prediction to detect asymptomatic and Verticillium dahliae-symptomatic olive trees. Predictions using the model built with 
only hyperspectral-derived information (right panels) or the model built using only satellite multispectral information (left panels). 

Fig. 8. Relationship between the proportion of olive trees predicted as Verti-
cillium dahliae- symptomatic (all disease severity levels) using only 
hyperspectral-derived information with the proportion of trees predicted as 
symptomatic using only the satellite multispectral information. 
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A positive relationship was observed between the error of symp-
tomatic trees detected by satellite and airborne hyperspectral data, 
compared with the proportion of trees at the early infection stage. This 
suggests that the percentage of trees at an early stage of disease pro-
gression was the main driver of the inaccuracies obtained by the models 
built with satellite data rather than only an impact of the spatial reso-
lution. This observation is supported by the finding that plots with the 
smallest errors had no trees showing low severity levels, which typically 
correspond to early stages of disease progression. 

4. Discussion 

4.1. Impact of spectral resolution on the detection of infected trees 

Remote sensing methods at various spectral and spatial resolutions 
have been proposed for large-scale detection of harmful pests and 
pathogens affecting agriculture (Zarco-Tejada et al., 2018 and 2021, El- 
Ghany et al., 2020). Several studies have assessed the role that spectral 
resolution plays in the accuracy of the detection for different diseases 
(Mewes et al., 2011; Poblete et al., 2020; Bendel et al., 2020). For 
example, the study by Poblete et al. (2020) suggested that the bench-
mark was the best-performing dataset compared with a reduced simu-
lated bandset coupled with the thermal indicators CWSI and SIF. They 
found that the accuracies using PSFT decreased from 80% (k = 0.42) to 
74% (k = 0.36), compared to when using the optimally reduced bandset 
consisting of six bands (centered at 400, 669, 760, 714, 423, and 525 nm 
with a FWHM of 10 nm) including the CWSI. They also demonstrated 
that the bandsets simulating the conventional RGB (red, green, and blue) 
and CIR (near-infrared, green, and red) sensors were the worst per-
forming ones with OA = 66.7% and 63% and k = 0.25 and 0.17, 
respectively. This is also in line with the findings of Bendel et al. (2020), 
who used ground-based hyperspectral and UAV multispectral images to 
identify the grapevine trunk disease Esca in vineyards. When using VNIR 
hyperspectral (400–1000 nm) information, the accuracies were 73% and 
81% for the prediction over two consecutive years, and when using 
lower spectral resolutions, it decreased to 60% and 58% for the detec-
tion of infected vines showing 25–50% of symptoms. 

Mewes et al. (2011) successfully detected Blumeria graminis in-
fections of wheat cultivars using HyMap imagery. Surprisingly, using 
only 13 bands, the authors obtained similar results to those obtained 
using 109 bands after a feature selection process (k = 0.59 and 0.57, 
respectively). Nevertheless, they did not compare the accuracies of their 
results with those obtained using physiological-related plant traits 
derived from hyperspectral data, which we have shown to be critical for 
detecting early stages of infection. In the present study, results were not 
highly compromised using the hyperspectral-derived information 

Fig. 9. Distribution of the visual assessment results in the plots with the highest (A-C) and lowest (D–F) discrepancies between the predictions obtained from the 
model built using only the hyperspectral data and the model built using only the satellite multispectral data for Verticillium dahliae–affected orchards. 

Fig. 10. The percentages of early-stage infected trees (SEV = 1) detected in the 
visual assessments relative to the differences in infected trees detected by the 
model built using only the hyperspectral data and the model built using only 
the satellite multispectral data for Verticillium dahliae–affected orchards. 
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compared with the PSFT. However, the accuracy of the detection 
underperformed when using multispectral satellite images. For early 
stages of disease progression, the highest accuracy was OA = 0.84 and κ 
= 0.68 when detecting Vd infections in olive trees using the 
hyperspectral-derived dataset, while the accuracy was OA = 0.72 and κ 
= 0.45 (and a minimum of OA = 0.61 and κ = 0.22 for the Xf-olive 
dataset) using the multispectral-derived dataset. The hyperspectral- 
derived plant traits provide valuable physiological information that 
could not be retrieved with satellite-only information and contributed 
more as a function of disease severity. This was consistent with our 
findings, which suggested that the model built with satellite-only data 
showed more errors when the prediction was performed on plots 
comprising trees at the early stages of disease development. 

In comparison to the PSFT dataset, detecting infections using solely 
hyperspectral-derived indicators without adding CWSI resulted in lower 
prediction accuracy for all disease severity levels. Notably, the addition 
of the CWSI had a lower influence on the detection of early stages of 
disease. Both of these xylem-invading pathogens gradually reduce water 
flow through the xylem, lowering transpiration rates (Ribeiro et al., 
2003). As the decrease in the transpiration rates is directly connected to 
an increase in CWSI (Idso et al., 1981) and it does not occur at the early 
stages of infection (López-Escudero and Mercado-Blanco, 2011), the 
contribution of CWSI is likely accentuated at more advanced stages of 
disease progression when a higher proportion of the canopy showing 
visible symptoms is included in the classification. 

4.2. Impact of spatial resolution on the detection of infected trees 

High-resolution hyperspectral and thermal images have been suc-
cessfully used to detect xylem-limiting pathogens and differentiate dis-
ease from confounding symptoms due to water stress (Zarco-Tejada 
et al., 2021). However, the operational use of high-resolution commer-
cial satellites for the detection of these vascular diseases has needed 
further assessment. The detection of infections and pests could be 
enhanced by using satellite images with higher spatial resolution, i.e., 
GeoEye-1, Pleiades, WorldView-3 and -4, and GaoJing-1, rather than 
low-resolution satellite platforms such as Landsat (Yang, 2020). In this 
regard, Santoso et al. (2019) implemented a machine learning algorithm 
using WV-3 images to detect basal stem rot disease severity in oil palm 
plantations using SVM, RF, and decision trees. Despite the low accu-
racies obtained in their study (OA ~ 0.53 and κ ~ 0.35), they deter-
mined that SVM and RF were the most accurate models to predict the 
disease, which is consistent with the models implemented in our study. 
Li et al. (2015) detected Huanglongbing (HLB) disease caused by a 
phloem-limited bacterium Candidatus Liberibacter asiaticus using WV-2 
imagery, with accuracies of 81% and κ = 0.46. In their study, the 
addition of thermal CWSI was not assessed, and it could play a key role 
in the detection since HLB can trigger symptoms that can be confounded 
by starch allocation and/or nutrient deficiency responses (Cimo et al., 
2013). 

In the current study, adding airborne CWSI to the satellite data 
improved the disease detection accuracy by 10–15% and increased the κ 
coefficient by >0.2 units. This improvement has practical implications, 
especially given the need for high-resolution thermal images to derive 
thermal indicators such as CWSI from pure vegetation pixels. Thermal 
infrared satellite sensors provide low spatial resolution (Tomlinson 
et al., 2011), which restricts the ability to detect plants at the early 
stages of disease progression using only satellite-derived data. Thus, a 
multi-sensor approach combining satellite and airborne platforms is key 
for in-depth stress detection (Berger et al., 2022), especially for detec-
tion of the initial stages of infection. Previous studies focused on the 
detection of Xf and Vd infections using lower resolution satellite imag-
ery, such as in Hornero et al. (2020), have made great progress in 
assessing the evolution of symptoms caused by Xf using Sentinel-2 data 
from two consecutive years collected with a spatial resolution of 20 m 
and 60 m. They showed that the ARVI and OSAVI indices had better 

performance in tracking disease incidence and severity progression. 
Nevertheless, the analysis of the ability of high-resolution multispectral 
satellite imagery to detect early, middle, and advanced stages of the 
disease compared with hyperspectral data could not be performed. In 
our study we evaluated various stages of disease progression using a 
spatial resolution of 1.84 and 1.24 m. The results demonstrated that, in 
all cases, the PSFT benchmark dataset (Zarco-Tejada et al., 2018 and 
2021) outperformed the models using multispectral satellite-derived 
data in detecting early, middle, and advanced stages of disease 
progression. 

When working with low and medium spatial resolution satellite 
imagery, a major challenge is to properly separate the spectral signal of 
vegetation from the mixed signals of soil background and understory 
vegetation. Previous research has used medium- and low-spatial reso-
lution satellite data, such as that obtained using Sentinel-2, to detect 
symptoms induced by Xylella fastidiosa and Verticillium dahliae. How-
ever, the accuracy of plant trait quantification for disease identification 
is limited by the effect of soil background on pure vegetation reflectance, 
which varies with the spatial resolution of the image. By contrast, high 
spatial resolution imagery from Worldview 2 and 3 is more effective at 
distinguishing green vegetation from soil background responses and 
acquiring precise soil pixel data compared to coarser resolution imagery 
(Fernández-Guisuraga et al., 2020; Fernández-Guisuraga et al., 2021). 
The current findings were consistent across reflectance spectra and 
indices obtained from airborne hyperspectral and Worldview multi-
spectral imagery and showed a trend in relation to disease severity (see 
Supplementary Fig. 1). However, it should be noted that our study was 
conducted across multiple sites and dates, and soil background effects 
can have different impacts on the spectral data obtained from higher 
resolution satellite data. We demonstrated that the main factor 
contributing to inaccuracies in disease detection was the percentage of 
trees at an early stage of disease progression rather than the impact of 
low spatial resolution. Nonetheless, a subsequent simulation study will 
be conducted to evaluate the effects of spatial resolution on the detec-
tion of Xf and Vd infections, particularly in discontinuous tree orchards 
and in non-homogeneous crops. 

5. Conclusions 

We compared high-resolution multispectral WV-2 and -3 imagery 
against a high-resolution hyperspectral and thermal dataset (PSFT 
benchmark dataset) in terms of their accuracy in detection of vascular 
diseases in almond and olives trees due to Xylella fastidiosa (Xf) and 
Verticillium dahliae (Vd) pathogens. WV-2 and -3 satellite data success-
fully detected disease incidence, yielding OA = 0.63–0.83 and κ =
0.29–0.68. Nevertheless, the early stages of disease progression were 
associated with poorer results from the satellite data (reducing κ to 
0.3–0.69) due to the lack of suitable spectral bands for detection at that 
stage, such as the bandsets needed for calculating the blue NPQI index, 
solar-induced-fluorescence SIF, PRIn, and anthocyanins. Given the 
vascular nature of the pathogens studied here and the fact that water 
stress is one of the main symptoms caused by both pathogens, the 
addition of thermal information in the form of the CWSI water stress 
trait to the satellite data improved the prediction by 10–15% and by 
>0.2 in the κ coefficient for both the satellite and aerial platforms. 
Overall, this study demonstrates that the detection of intermediate and 
advanced disease due to Xf and Vd vascular pathogens can be success-
fully carried out with commercial multispectral Worldview imagery, 
while the early detection of the symptoms requires hyperspectral data. 
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