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a b s t r a c t 

Fault prognosis is an important area of research that aims to predict and diagnose faults 

in complex systems. The sudden failure of industrial components can have adverse con- 

sequences for an organisation in terms of time, cost and workflow. It is, therefore, crit- 

ical to ensure the maintenance of equipment components in optimal condition in order 

to avoid downtime that may cause significant disruption. Due to this reason, in recent 

years, there has been an increasing interest in creating innovative methods for fault prog- 

nosis that can increase system reliability and reduce maintenance costs. Gear pumps are 

widely utilised in a variety of industrial applications, and their reliability and effectiveness 

are crucial for achieving optimal system performance. Gear pumps, on the other hand, are 

prone to malfunctions and failures, which can result in substantial downtime and main- 

tenance costs. The challenge is to develop a fault prognosis approach that is reliable and 

accurate enough to detect and diagnose defects in a gear pump before they cause system 

failures. This paper proposes a novel computational strategy for the fault prognosis of an 

external gear pump using Machine Learning (ML) approaches. Due to the unavailability 

of sufficient experimental data in the vicinity of failure mechanisms, a novel approach to 

generating a high-fidelity in-silico dataset via a Computational Fluid Dynamic (CFD) model 

of the gear pump in healthy and faulty working conditions is presented. However, consid- 

ering the computational demand for rerunning the same CFD simulations, novel synthetic 

data generation techniques are implemented by perturbing the frequency content of the 

time series to recreate other working conditions and constructing degradation behaviour 

using linear and cubic interpolation methods for run-to-failure scenarios. The synthetically 

created datasets are used to train the underlying ML metamodel for fault prognosis. Two 

types of ML algorithms are employed for fault prognosis: Multilayer Perceptron (MLP) and 

Support Vector Machine (SVM) algorithms. A series of numerical examples are shown, al- 

lowing us to infer that the proposed modelling technique is feasible in an industrial setting 

and that employing the MLP algorithm delivers superior fault prognosis results when com- 

pared to SVM. Furthermore, datasets generated using the cubic interpolation method have 
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lower prediction errors than datasets generated using the linear interpolation method due 

to the smoother degradation behaviour in the data. 

© 2023 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Gear pumps are widely used in many industrial applications due to their reliability, simplicity, and efficiency. Due to a 

sophisticated and compact design, external gear pumps can easily fit inside complex industrial equipment, reducing man- 

ufacturing time and associated costs. However, gear pumps, like any mechanical system, are prone to faults and failures, 

which can negatively affect the industry in terms of time, cost, and workflow. To ensure optimal system performance and 

avoid costly failures, reliable and accurate fault prognosis methods that can detect and diagnose defects in gear pumps be- 

fore they cause system failures are required. Fault prognosis is a branch of condition monitoring that entails forecasting and 

diagnosing failures in a system using sensor data and other pertinent data. As a result, it is critical to regularly examine

the mechanical condition of the machine’s health in order to avoid unexpected failure [1] . In general, there are two types

of fault prognosis methods: model-based approaches, which utilise mathematical models of the system to anticipate and 

diagnose defects, and data-driven methods, which employ statistical analysis and machine learning algorithms to recog- 

nise patterns in data and identify faults [2] . Both approaches have been widely studied and applied in various industries,

including aerospace, automotive, manufacturing, and power systems. 

In equipment’s prognosis, the most commonly used type is the prediction of time remaining before a failure occurs, 

given the equipment’s current condition and its past performance profile [3] . The time left before observing a failure is des-

ignated as Remaining Useful Life (RUL). In some situations, especially when a failure is potentially catastrophic, it is more 

than desirable to predict the probability that equipment operates without fault or failure up to some future point in time

(the next inspection interval), given the current equipment condition and its past operational profile [4] . In any case, the

probability that equipment operates without a fault until the next inspection interval is a good reference point for a main-

tenance engineer to determine the appropriateness of the inspection interval [5,6] . However, this is not a popular method 

due to the limitation in gathering the required data for prediction. To perform prognosis, in addition to the condition mon-

itoring data of equipment, obtaining the fault propagation process and information on the failure mechanism is necessary. 

However, gaining knowledge of the physical processes in the vicinity of failure is not always possible or straightforward [3] .

The fault propagation process is usually tracked by a trending or forecasting model for certain condition variables. There are 

two methods to describe the failure mechanism. The first one assumes that failure depends only on the condition variables, 

which reflect the actual fault level and the predetermined boundary condition (i.e. the pre-established level at which failure 

will occur). The second method constructs a model for the failure mechanism using historically available data [3] . 

ML approaches are widely documented for performing fault prognoses in literature. Methodologies employed to predict 

the RUL of rolling bearings using the gated recurrent unit method and the Support Vector Machine (SVM) regression method 

are discussed in [7] and [8] , respectively. SVM regression algorithm is extensively used for prognosis within a variety of

applications [9–11] . Multilayer Perceptrons (MLP) with backpropagation is another method widely applied in the field of 

prognosis. Reference [12] proposed the application of an echo state network and a recurrent multilayer perceptron. Reference 

[13] took the approach of comparing the results of applying recurrent neural networks and neural–fuzzy inference systems 

to predict the failure of the machinery. Recent developments in prognosis have also used the deep neural network, recurrent 

neural network, or convolutional neural network [3,7,14–16] and have been applied within various industrial sectors. 

There has been an increasing interest in creating innovative and improved fault prognosis methods for gear pumps in 

recent years. This is due to rising demand for reliable and effective pump systems, as well as advancements in sensor tech-

nology and data analytic techniques. Some of the recent research works in this area include: deep learning-based intelligent 

fault diagnosis approaches for rotating machinery [17] , a fault diagnosis of an external gear pump using Machine Learning

classification algorithms [18] , a physics-constraint variational neural network for wear state assessment of the external gear 

pump proposed in [19] , a sensor acquired vibration, flow rate, and pressure signals to establish a reliable fault prognostics

framework of a gear pump subjected to different fuel contamination levels are studied in [20] . 

In order to perform fault prognosis using ML approaches, the gear pump’s actual history/run-to-failure history needs to 

be monitored. In addition, ML predictive capability is strongly dependent upon the availability of large sets of high-fidelity 

data [21] . In case of absence (or limited availability) of experimental data, these can be superseded using high-fidelity in-

silico data [22–24] . Due to the high computational demand in simulating high-fidelity data for similar events, synthetic data 

generation methods can be utilised to enhance the data available for fault prognosis. Moreover, synthetic data generation 

methods can be employed where data privacy can be of significant concern [25] . 

This Industry-Academia collaboration has sought to address one specific bottleneck: finding an efficient strategy to per- 

form fault prognosis of an external gear pump with insufficient availability of experimental data. As a result, this work 

proposes a fault prognosis methodology using supervised ML algorithms (i.e. MLP and SVM) and synthetic data generation 
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methods to enhance high-fidelity data obtained from an accurate CFD model resembling the external gear pump opera- 

tions in healthy and various fault conditions (speed variations, radial gap variations, viscosity variations, etc.). Specifically, 

pressure, flow rate, and torque are monitored for several working conditions of the pump to develop a fault-prognostic 

framework of a gear pump. Additionally, synthetic data generation techniques are implemented by perturbing the frequency 

content of the time series to recreate other working conditions and constructing degradation behaviour using linear and cu- 

bic interpolation methods for run-to-failure scenarios. Following an extensive series of results, it is shown that the proposed 

method is very useful in situations where there is limited or insufficient experimental data. 

Following this introductory section, the paper is organised as follows: Section 2 introduces the generation of high-fidelity 

in silico data using a Computational Fluid Dynamics (CFD) model of the gear pump. Section 3 describes two efficient ML

algorithms, namely MLP and SVM. Section 4 presents the implementation of a synthetic data generation method and data 

labelling. Section 5 presents the complete framework and a comprehensive set of numerical examples. Section 6 summarises 

some concluding remarks. Appendix A presents the mathematical model and governing equations used for performing the 

CFD Simulations. 

2. High-fidelity data generation using computational fluid dynamics simulation of an external gear pump 

External gear pumps are extensively utilised for moving fluids such as oil, fuel, and lubricants in a variety of industrial

applications. Simulating these pumps is critical in building efficient and reliable systems, and numerous approaches are 

used to achieve this. The analytical approach involves solving mathematically simplified equations to simulate the pump’s 

behaviour. This approach is useful for simple systems and can yield fast solutions. However, it is not suitable or generalisable

to more complex systems that involve multiple parameters [26] . Another approach involves Computational Fluid Dynamics 

(CFD), which predicts the pump’s behaviour using high-fidelity numerical simulations. CFD can provide detailed information 

about the flow dynamics and pressure distribution within the pump, making it useful for complex systems. CFD simula- 

tions, on the other hand, can be computationally expensive and time-consuming [27] . The experimental approach is a third 

strategy that involves physically testing the pump and measuring its performance characteristics. This procedure can yield 

accurate and trustworthy data, but it can be expensive, time-consuming and, in some cases, unfeasible [27] . 

In this study, the CFD model has been built using the commercial code ‘Simerics MP+’ that numerically solves the funda-

mental conservation equations of mass, momentum, and energy and includes accurate physical models for turbulence and 

cavitation [28,29] . The mathematical model and governing equations are detailed in Appendix A . 

2.1. Geometry of the external gear pump 

Gear pumps are rotating positive displacement pumps, where the fluid is displaced from the inlet side of the pump to

the outlet side of the pump due to the intermeshing of the drive and the slave gear’s teeth. The geometry of the external

gear pump, which is of main interest to this project, is shown in Fig. 1 . Some specific features of the geometry have been

hidden due to commercial sensitivity. 

The gears are located inside a tight, leak-free casing and connected to the lubrication channel through the top channel 

with rotating shafts. Similarly, the backside of the gear is connected to the magnetic drive mechanism via a bottom channel

with rotating shafts, and the magnet is connected to the rest of the structure of the pump. The inlet and outlet ports are

connected to the sides of the gear. The inlet and outlet sensors are placed in the inlet and outlet ports to monitor pressure

from the CFD simulation. The outlet sensor is placed away from the end to avoid reversing the flow and accurately measure

the pressure distribution in the outlet port. During the operation, these types of pumps are noiseless, pulsation-free, and 

capable of handling liquids up to 95 ◦C with pressure up to 12 bar and flow rate up to 210 l/h [30] . Due to commercial

sensitivity, exact inner geometry and dimensions cannot be reported. However, simulations can be replicated to any desired 

geometry of the external gear pump. 

2.2. Model attributes 

The fluid domain of the external gear pump is extracted from the Computer-Aided Design (CAD) of the pump, which 

is provided by the industrial partner F-Lab and the geometry is imported into Simerics MP+. The mesh of the entire fluid

domain is generated using high-quality structured and unstructured hexahedral cells in Simerics MP+, shown in Fig. 2 . 

The binary tree unstructured mesh is utilised to create hexahedral cells for highly curved regions or narrow-cut regions. 

In addition, Simerics MP+ has a specialised tool for the meshing of the internal geometry of the gear using a rotor gear

template mesh, producing high-quality structured hexahedral cells [29] . 

In order to perform the CFD analysis of this gear pump, the conservation of mass and momentum equations are solved

along with turbulence and cavitation model equations [28] . For completeness, the equations for the conservation of mass, 

momentum, turbulence, and cavitation model are summarised in Appendix A . For pump flows, cavitation is often encoun- 

tered and is usually considered by the industry as an important design factor that must be accounted for [29] , as it can

potentially damage blades and, in this context, gear teeth. The turbulence model is essential to accurately predict the flow 

characteristics within the pump. Turbulent flow is characterized by fluctuations in velocity and pressure, where these fluctu- 

ations can have a significant impact on pump performance, such as increasing the pressure drop and decreasing the pump’s 
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Fig. 1. Geometry of the external gear pump. Specific features of the geometry and the measurements have been hidden due to commercial sensitivity. 

Fig. 2. Mesh of the external gear pump (the entire computational domain) created using Simerics MP+. 

 

 

 

 

efficiency. The simulation of the external gear pump running in healthy conditions applies to a high viscous Newtonian 

ink-type fluid with properties detailed in Table 1 . Boundary conditions are provided for flow, turbulence and cavitation vari-

ables in Table 2 . Notice that although the energy equation is not included as part of the governing equations for simulation,

that is, the simulation is run in isothermal mode, some materials parameters, such as the gas density within the cavitation

model, are temperature dependent [28] , which is the reason of the inclusion of the temperature in Table 1 . Following ad-

vice from the industrial partner, the consideration of temperature gradients is not applicable for the pump under study, and 

isothermal conditions hold. 
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Table 1 

Properties of a healthy (normal working condition) gear 

pump. 

Operating conditions of the gear pump 

Speed 1450 rpm 

Radial gap 0.03 mm 

Number of drive gear teeth 9 

Number of slave gear teeth 9 

Material properties of the gear pump 

Viscosity 0.0383 Pa-s 

Density 800 kg/m 

3 

Temperature 300 K 

Table 2 

Boundary conditions of flow variables, turbulence, and cavitation models. 

Inlet Outlet Wall 

Flow: 

Pressure 1.01325 bar 3.15 bar Zero gradient 

Velocity Zero gradient Zero gradient No-slip condition 

Turbulence: 

Kinetic energy 0.01 m 

2 / s 2 0.01 m 

2 / s 2 Standard wall function 

Dissipation rate 1 m 

2 / s 2 1 m 

2 / s 2 Standard wall function 

Cavitation: 

Vapour mass fraction 0 0 Zero gradient 

Table 3 

Mesh sensitivity analysis: execution time is in a dimensionless quan- 

tity, where h 1 is used as reference. 

h 1 h 2 h 3 h 4 

No of elements 44,518 247,495 446,393 4,605,699 

Max cell size 0.1 0.07 0.03 0.018 

Min cell size 0.005 0.005 0.002 0.001 

Execution time 1 3.24 7.57 182.76 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Mesh sensitivity analysis 

A mesh sensitivity analysis is carried out, whereby finer discretisations are used until a threshold of accuracy is passed 

as moving from one model to the next [31] . For simplicity and to optimise the number of cells, a simpler geometry is

considered with the inlet port, the outlet port and the external gear in Fig. 1 . Simulations are performed for fixed time

step 

1 with four different grid sizes ( h 1 , h 2 , h 3 , h 4 ) ranging from coarsest to finest mesh. The properties of the different grid

sizes and their computational time are displayed in Table 3 . 

Figure 3 a displays the overall flow rate time history for the four discretisations. It can be clearly seen that the solu-

tion converges as the grid is refined, with h 3 and h 4 grid solutions showing hardly any distinguishable difference. Figure 3 b

depicts the absolute relative error of grids h 1 to h 3 with respect to the reference grid h 4 . This error is computed by calcu-

lating the difference for a given time step between dimensionless quantities of interest, specifically, overall torque, overall 

flow rate and pressure at the sensor spatial location. It can be clearly seen that the error decreases drastically as the mesh

is refined. All in all, h 3 results provide the best balance between accuracy and computational time. As an outcome of this

investigation, all CFD analyses are carried out using mesh size h 3 . 

2.4. CFD model validation against experimental data 

To validate the CFD results, the industrial partner provided the experimental results for the exact external gear pump 

( Fig. 1 ) with the same specifications and material descriptions as the CFD numerical model described in Section 2.2 . Due

to commercial sensitivity, the experimental activities cannot be fully disclosed, but relevant information is provided next. 

The experiments were conducted by fixing speed and viscosity values for different outlet pressure values ( 1 , 2 , . . . , 9 bar).

In total, 21 experiments were conducted for the same gear pump. The inlet pressure is assumed to be atmospheric pressure

(1.01325 bar) for all the experiments and the outlet pressure is varied for each experiment. In particular, the experiments 

were performed for two different rotational speed values of the gear, 1450 rpm and 2900 rpm. For the 1450 rpm speed,

two different viscosity values were used, 0.001 Pa-s and 0.075 Pa-s, and for the 2900 rpm speed, three different viscosity
1 The size of the time step is sufficiently small to remove possible error sources stemming from the time discretisation. 
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Fig. 3. Overall flow rate time history for the four discretisations (a), and the absolute relative error (%) of grids h 1 to h 3 with respect to the reference grid 

h 4 (b). 

Fig. 4. Standardised mean discharge flow rate of experimental results against CFD model of an external gear pump with the speed of 1450 rpm (a) and 

2900 rpm (b) for different relative pressure values. In the x-axis, the values are relative pressure calculated using the difference between outlet and inlet 

pressure. 

 

 

 

 

 

 

 

 

 

 

 

values, 0.001 Pa-s, 0.02 Pa-s and 0.075 Pa-s. CFD simulations match experimental values very closely, providing confidence 

in subsequent developments. 

The discharge flow rate, defined as the time-varying surface integral of the outflow flux, is computed at the far end

of the pump simulation model. Subsequently, this magnitude is time-averaged and displayed in Fig. 4 a and b. Figure 4 a

shows the mean experimental discharge flow rate values compared with the CFD simulation model for different pressure 

values and different viscosity values (0.001 Pa-s and 0.075 Pa-s) of a gear pump with the rotating speed of 1450 rpm.

Figure 4 b shows the mean experimental discharge flow rate values compared with the CFD simulation model for different

pressure values and different viscosity values (0.001 Pa-s, 0.02 Pa-s and 0.075 Pa-s) of the gear pump with a rotating speed

of 2900 rpm, respectively. From Fig. 4 a and b, it can be seen that the simulation results are in very good agreement with

the experiments. Also, it can be noted that an increase in the viscosity value provides a higher discharge flow rate. After

validation for various viscosity values and two different speed values in the CFD simulations with experimental values, we 

now move to build potential fault scenarios which can cause the pump to degrade or even to fail, and this is discussed in

the following section. 

2.5. Implementation of fault conditions in the external gear pump 

First, the results of an external gear pump’s healthy condition are shown, followed by the implementation of all fault 

scenarios. A CFD simulation is performed following the operational conditions and material properties in Section 2.2 . The 

gear pump is run for five gear revolutions (1450 rpm) with an atmospheric (1.01325 bar) inlet pressure and outlet pressure

of 3.15 bar. The first revolution is for the stabilisation of the flow, and the second to fifth revolutions are considered for

results. For post-processing and data acquisition, pressure at the outlet sensor (sensor is shown in Fig. 1 ), the discharge flow
353 
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Fig. 5. External gear pump running in a healthy condition; standardised and fully developed pressure (a), flow rate (b) and torque (c) with respect to time 

for one revolution. 

Fig. 6. Implemented fault scenarios considering the healthy working conditions of the gear pump as a reference. 

 

 

 

 

 

 

 

 

 

rate at the far end of the outlet, and the sum of the drive and slave gear’s torque have been considered as primary sensor

variables monitored from the CFD simulation. In this study, the variables are monitored in the same way for all simulations.

Figure 5 shows the standardised 

2 and fully developed outlet pressure, discharge flow rate and torque of the rotating gear 

for one revolution (x-axis is normalised between 0 and 1). The low-frequency contribution is due to the pump rotation 

and is very consistent with the pump’s rotational frequency. High-frequency contributions are due to gear engagement and 

disengagement. The number of oscillations shown in Fig. 5 a–c corresponds to the number of teeth in the gear. 

Utilising the validated CFD simulation models of a gear pump as a reference, a variety of working conditions, including 

several fault scenarios, are recreated based on the experience of the industrial partner. Several fault scenarios are consid- 

ered: radial gap degradation, speed variations (validated experimentally), viscosity variations (validated experimentally) and 

temperature variations. Although simulations are run in isothermal mode, some of the fluid material properties are temper- 

ature dependent, and that is the reason why the study of the influence of different temperature conditions is relevant. These

scenarios are considered to understand the pump’s complete behaviour when running in an abnormal condition. Figure 6 

shows the fault scenarios implemented, and Table 4 shows the fault variables and the different cases considered (in percent-

age). The percentage is calculated considering the healthy working conditions parameters of the gear pump as a reference. 

For ease of simplicity, different cases are considered in increasing trend (i.e. higher values represent higher deviation with 

respect to the healthy scenario). For example, the temperature variation is increased by 2.5%, 5% and 7.5%. So three different

simulations are simulated by only changing the temperature, and every other parameter is considered as in the healthy 

case simulation. For all fault scenarios, 15 simulations were run in all cases, and they were not conducted in parallel. Each

fault scenario is simulated using the boundary conditions and material properties described in Section 2.2 , and they are

presented below. 

For instance, fault scenarios due to radial gap degradation are created based on the concept that mass particles can enter

the pump, causing the gear’s teeth to erode. The radial gap faults are generated by grinding all the gears teeth and re-
2 Standardised refers to z-score normalisation and is expressed as (x i − μ) /σ , where x i is the i th entry in x , and μ and σ are mean and standard 

deviation of x [32] . 
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Table 4 

Implemented fault scenarios; the percentage is calculated 

considering the healthy working conditions parameters of 

the gear pump as a reference. 

Fault scenarios Different cases 

Radial gap degradation (G) 66 . 66% , 133 . 33% , 200% 

Axial gap degradation (A) 2 . 5% , 5% , 7 . 5% 

Speed variations (S) 1 . 78% , 3 . 57% , 5% 

Viscosity variations (V) 0 . 8% , 1 . 6% , 2 . 4% 

Temperature variations (T) 2 . 5% , 5% , 7 . 5% 

Fig. 7. Discharge flow rate with respect to the time (a) and the frequency (b) for fault scenarios due to radial gap degradation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

running appropriate CFD simulations after modifying the geometry of the model. This step-by-step degradation behaviour 

is generated, namely G1, G2 and G3, to understand the erosion behaviour on the gear teeth. The standardised discharge

flow rate of the scenarios (G1, G2, G3) compared with the healthy scenario (H) in the time domain and frequency domain

is shown in Fig. 7 . By increasing the gap size, the mean flow rate decreases. Since the gap between the gear and gear gap

increases, i.e., gear teeth size decreases, the gear pumps a lower amount of fluid comparatively, reducing the flow rate. With

respect to the healthy scenario, the mean flow rate of G1, G2 and G3 faulty scenarios is decreased by 21 % , 40 % and 56 % ,

respectively. 

The fault scenarios due to axial gap degradation are created in order to analyse the effect of flow leakage in the fluid

volume, and they are generated by increasing the gap between the gears and the gear casing (side leakage). Similar to radial

gap fault scenarios, the discharge flow rate decreases with the incremental increase of axial gap size. Concerning the healthy 

scenario, the mean flow rate of axial gap variations (A1, A2 and A3) is decreased by 2 % , 4 % and 6.3 % , respectively. 

The fault scenarios due to speed variations are generated by increasing the rotational speed (in RPM) of the gear pump

to comprehend the flow behaviour. The speed variations are created to validate that for positive displacement pumps, as the 

rotational speed increases, the discharge flow rate increases in a linear trend, which is proven in [29] for an external gear

pump. Considering the healthy scenario, the mean flow rate of speed variations (S1, S2 and S3) is increased by 2 % , 4.5 % and

6.3 % , respectively. 

The fault scenarios due to viscosity variations are generated to understand the pump performance with viscosity change. 

Gear pumps are best suitable for high-viscosity applications. When the fluid viscosity decreases, slip increases. The slip 

takes place when the pump recirculates from the outlet to the inlet side as it escapes through machined clearances while

the pump tries to progress forward. The amount of slip is determined by the fluids viscosity and discharge pressure. A thin

fluid with a low viscosity can squeeze through the clearances more easily than thicker fluids. High discharge pressure can 

force thinner fluids back through the pump, also causing more slip. Therefore, because thin fluids slip, the pumps efficiency 

decreases as less product progresses with the forward movement, hence the lower discharge flow rate. As a result, the mean

flow rate of viscosity variations (V1, V2 and V3) is increased by 0.4 % , 1 % and 1.5 % , respectively, to the healthy scenario. 

The fault scenarios due to temperature variations are generated to understand the changes in the gear pump’s perfor- 

mance with respect to temperature variations. With the pump operation, fluid viscosity drops in nature. With time, any 

working fluid would lose part of its viscous effect due to natural degradation, but the temperature would remain the same,

and some of the fluid material properties related to cavitation are temperature dependent [28] . To replicate that, separate

viscosity and temperature variations were conducted. Considering the healthy scenario, the mean flow rate of temperature 

variations (T1, T2 and T3) is decreased by 0.16 % , 0.25 % and 0.33 % , respectively. Other fault scenarios mentioned in Table 4 are

simulated, and the results in the form of time series are extracted. 
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Fig. 8. Fully connected MLP architecture. 

 

 

 

 

 

 

 

 

 

3. Machine learning algorithms for fault prognosis 

Supervised Machine Learning (ML) algorithms are typically divided according to their input and output data. Supervised 

learning algorithms usually include classification and regression, with the latter used for predicting continuous quantities 

and the former to predict discrete values. An extensive study of supervised ML algorithms is given in [33] . In the present

work, two types of ML regression algorithms will be utilised and compared, namely Multilayer Perceptron (MLP) and Support 

Vector Machine (SVM). For regression problems, the metric used for training (or testing) during the offline phase is the R2

score (measure the proportion of variance in the dependent variables that is predictable from the independent variables in 

a regression model) and Mean Squared Error (MSE) of the predicted output values ˆ y i against the true output values y i , 

MSE = 

1 

n 

∑ 

i =1 

n 
(

ˆ y i − y i 
)

2 . (1) 

3.1. Multilayer perceptron 

Multilayer Perceptron (MLP) is a class of feedforward Artificial Neural Networks (ANN). The study of ANNs has been 

inspired by observing that biological learning systems are built of very complex networks of interconnected neurons. The 

average human brain consists of nearly 10 11 neurons of various types, with each neuron connected on average to 10 4 oth-

ers [34] . However, the fastest neuron switching times are in the order of 10 −3 s, which is relatively slow compared to

the computer switching speed of 10 −10 s. Yet, humans can make complex decisions surprisingly fast. This observation has 

hypothesised that the information-processing abilities of biological neural systems must follow highly parallel processes op- 

erating on representations that are distributed over many neurons. A motivation for ANN is to capture this kind of highly

parallel computation based on distributed representations [35] . 

The MLP architecture is presented in Fig. 8 , where there is an input layer (first layer), an output layer (last layer), and

the layers between them are called hidden layers. A hidden layer is comprised of neurons, and the outputs of these neurons

are the input to the next layer until the final output is achieved. There are h − 1 hidden layers shown in Fig. 8 . 

For the forward propagation of MLP, the value related to each neuron can be calculated by utilizing the weights of the

connections W (vector represented), activation functions φ and the values associated with the output of the previous layer. 

The output of the first layer in Fig. 8 can be computed as 

y (1) = φ(1) 
(
W 

(1) x + b 

(1) 
)
, (2) 

where x is an input, y is an output, b is referred to as bias and � (1) denotes the first layer of the variable � . Likewise, for the

h th layer 

ˆ y = y (h ) = φ(h ) 
(
W 

(h ) y (h −1) + b 

(h ) 
)
, (3) 

where ˆ y is the output of the last layer. When the output layer has only one neuron, like in Fig. 8 

y ML = y (h ) = φ(h ) 
(
W 

(h ) y (h −1) + b 1 
(h ) 

)
. (4) 
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Fig. 9. SVM architecture for the linearly separable case. 
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The activation function φ(h ) determines the output of the neural network. The function takes the net input signal 

 

(h ) y (h −1) + b (h ) , then compresses the values between a certain range and outputs the signal. There are different types 

of activation functions that are used in ANN, depending on the application. Some of the common activation functions are 

the sigmoid function, hyperbolic tangent sigmoid function or tanh function, and Rectified Linear Unit function (ReLU) [34] . 

When MLP is used for multiclass classification, another activation function called softmax function is used in the MLP net- 

work [36] . 

For the last or output layer, the error between the predicted and the ground truth value can be calculated using a loss

function (also known as a cost function) depending on the specific type of application. In the case of classification, the

cross-entropy loss function is preferred and it is given by 

J( W ) = 

1 

n 

∑ 

j=1 

n [ y j log ( ̂  y j ) + (1 − y j ) log (1 − ˆ y j )] + 

λ

2 n 

∑ 

l=1 

h || W 

(l) || 2 , (5) 

where λ is a regularisation parameter. The first part of the right-hand side of Eq. (5) is a cross-entropy loss function, and the

second part is a regularisation term that addresses overfitting. This loss function is trained by a backpropagation learning 

algorithm [37] . Backpropagation is a method to optimise the connection weights starting from the output layer and propa- 

gating backwards by adapting the weights, layer by layer, compensating for error during the training, and efficiently dividing 

the error among the connections. Technically, backpropagation efficiently computes the gradient of the loss function associ- 

ated with a given state with respect to the weights. Backpropagation employs the gradient descent method to minimise the 

squared error between the network output values and desired values for those outputs. This procedure is repeated for MSE 

in the case of regression. 

3.2. Support vector machine 

Support Vector Machine (SVM) is one of the most widely used classification algorithms. SVM provides a globally optimal 

solution for any binary/multi-class classification problems. For the case of a linear binary classification problem, a decision 

hypothesis H is defined as 

H = { x �→ sign ( w · x + b) : w ∈ R 

m , b ∈ R } . (6) 

where w is the weight vector, b is the bias and the equation of the hyperplane is defined as 

w · x + b = 0 . (7) 

The hypothesis H labels all the data points either positively (on one side of the hyperplane) or negatively (on the other

side of the hyperplane). When a given sample dataset is linearly separable, then there exists a hyperplane that perfectly 

separates the training samples into two classes. This is equivalent to the existence of ( w , b) ∈ (R 

m − { 0 } m × R ) such that 

y j ( w · x j + b) ≥ 0 , ∀ j = 1 , . . . , n, (8) 

where the parenthesis indicates a multiplication. In Fig. 9 , there can be infinitely many separating hyperplanes for the given

problem. The SVM algorithm selects the optimal hyperplane based on the Maximum margin and then it is converted into a

convex optimisation problem, given as 

minimise 
w ,b 

1 
2 
|| w || 2 , 

subject to y j ( w · x j + b) ≥ 1 , ∀ j = 1 , . . . , n. 
(9) 
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This optimisation problem admits a unique solution, an important property that does not hold for other learning algo- 

rithms [38] . Figure 9 illustrates the maximum-margin hyperplane returned by the SVM solution for the separable case. It 

also shows the marginal hyperplanes, which are the hyperplanes parallel to the separating hyperplane and passing through 

the closest points on the negative and positive sides, which are also called support vectors. 

When a given sample dataset is non-separable, which implies that for any hyperplane w · x + b = 0 , ∃ x j such that 

y j ( w · x j + b) � 1 , (10) 

then constraints for linear separable cases cannot hold. ∀ j = 1 , . . . , n , ∃ ζ j ≥ 0 such that 

y j ( w · x j + b) ≥ 1 − ζ j . (11) 

The slack variable ζ j measures the distance by which x j violates the inequality. Similar to the separable case, the optimisa- 

tion problem is now defined as 

minimise 
w ,b, ζ

1 
2 
|| w || 2 + C 

∑ 

j=1 
n ζ j 

p , 

subject to y j ( w · x j + b) ≥ 1 − ζ j ∧ ζ j ≥ 0 , ∀ j = 1 , . . . , n, 
(12) 

where the regularisation parameter C ≥ 0 determines minimisation of || w || 2 and the minimisation of the slack penalty ∑ 

j=1 
n ζ j 

p , for some p ≥ 1 [38] . 

For a more generic non-linear classification problem, kernel functions K are used to map the training sample data into 

a higher dimensional space, where the classification problem transforms into a linear one. The kernel function defined over 

X is K = X × X → R . 

When a given sample dataset is non-linear or high dimensional, then kernel functions K are used to non-linearly map 

the input space to high-dimensional space, where the linear separation is possible. The kernel function defined over X is

K = X × X → R [38] and 

∀ x 1 , x 2 ∈ X , K(x 1 , x 2 ) = 〈 �(x 1 ) , �(x 2 ) 〉 , (13)

where 〈·, ·〉 denotes the inner product. Different kernel functions such as linear, polynomial, Gaussian and sigmoid, which 

are widely used in SVM for non-linear classification and formulations of these kernel functions, can be found in [38] . 

Similar to the SVM classification, SVM regression has the same properties of the margin maximisation and kernel for 

non-linear mapping with only a minor difference [39,40] . The SVM regression function approximates all pairs of input and

output ( x j , y j ) while maintaining the differences between estimated values and real values under epsilon ( ε) precision. ε is

called a margin of tolerance. That is, for every input x j in S, 

y j − ( w · x j + b) ≤ ε. (14) 

Recalling Eq. (9) , by minimising || w || 2 to maximise the margin, the training in SVM regression becomes a constrained

optimisation problem. 

minimise 
w ,b 

1 
2 
|| w || 2 , 

subject to y j − ( w · x j + b) ≤ ε, ∀ j = 1 , . . . , n. 
(15) 

The solution to this problem follows similar steps to solving an SVM classification problem. 

3.3. Optimisation of hyper-parameters 

Most ML and deep learning algorithms have some parameters that need to be adjusted, called hyper-parameters. The 

hyper-parameters are optimised during the training of ML algorithms as they are crucial and directly control the perfor- 

mance of the algorithm. A good choice of hyper-parameters is essential in order to build a robust and accurate model, thus,

preventing the model from overfitting or underfitting [41] . Although several automatic optimisation techniques exist, they 

have different strengths and drawbacks when applied to different types of problems [42] . 

The main parameters for MLP regression are weights, activation functions, number of hidden layers and neurons. The 

weights have been adjusted by the backpropagation algorithm according to the loss function specified when compiling the 

model. The backpropagation algorithm requires that the network is trained for a specified number of epochs of the training 

dataset. Each epoch can be partitioned into groups called batches. The batch size defines the number of patterns that the

network is exposed to before the weights are updated within an epoch. It is common practice to show the model loss

with respect to the number of epochs. This plot can detect if the model is overfitting, underfitting or suitably fitting the

training dataset [43] . In addition, during training, an Early Stopping argument is used in order to stop the training when

the chosen performance measure stops improving [44] . Hidden layers and hidden layer neurons play a vital role in the

performance of the backpropagation neural network [45] . For the MLP regression algorithm, the activation functions (tanh, 

elu or Relu) and the number of hidden neurons are optimised using a random search algorithm [46] . Table 5 shows the

optimised hyperparameters for the MLP model. The hidden layer is approximated by the model’s performance. 

Considering SVM regression, the most important hyper-parameters are the type of kernel functions, the kernel scale, the 

regularisation parameter C in Eq. (12) and the tolerance margin ε. This is performed using a random search algorithm [46] .

Table 6 shows the optimised hyperparameters for the SVM regression model. 
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Table 5 

Hyperparameters of the MLP model. 

Hyperparamters Value 

Number of neurons 8, 16, 32, 664, 128, 256, 512 

Activation function Relu, elu, tanh 

Learning rate 1 e −3 , 1 e −4 , 1 e −5 

Batch size 8, 16, 32, 64, 128 

Optimiser Adam, SGD, RMSprop 

Table 6 

Hyperparameters of the SVM model. 

Hyperparamters Value 

Kernel function linear, polynomial, sigmoid, Gaussian 

Kernel scale 1, 2, 3 

Margin of tolerance 0.1, 0.2, 0.3 

 

 

 

 

 

 

 

 

 

 

 

 

4. Data generation methods 

In order to improve the learning phase of any ML algorithm, an essential requirement is to have a large quantity of data.

Due to the insufficient amount of experimental data in the current work context, the CFD model has been used to generate

high-fidelity data by recreating a variety of working conditions for the gear pump. However, generating a CFD simulation 

of one identical case several times can drastically increase the computational time, so synthetic data must be generated. In 

this work, 16 different CFD simulations were used, consisting of one healthy scenario and 15 fault scenarios, as mentioned 

in Table 4 . Time-varying values of pressure, flow rate, and torque monitored from the CFD simulations are used as primary

high-fidelity data for fault prognosis. This high-fidelity data is perturbed using a noise perturbation method to recreate 

possible environmental variations of the working pump conditions; this is only generated to increase the data availability 

for ML algorithms. The noise perturbation method is presented below. 

4.1. Synthetic data generation method using a noise perturbation method 

Consider x (t) a continuous time-varying field (i.e. pressure, flow rate, etc.) in the time interval [0 , T ] 

x : [0 , T ] ⊂ R → R 

t �→ x (t) , 
(16) 

where x (t) is the value of the field at time t . Let us define a discrete set ( D) of time values being chosen for the sampling

evaluation of the field x in time, namely 

D = { t 1 , t 2 , . . . , t m 

}; t i = (i − 1)	t, i = 1 , . . . , m ; 	t = 

T 

m − 1 

. (17)

Thus, the discrete set x is given by, 

x = [ x (t 1 ) , x (t 2 ) . . . x (t m 

)] T , x ∈ R 

m . (18) 

The discrete set x is converted to the frequency domain using a Discrete Fourier Transform (DFT) ( ̃  F 	t ), and it is expressed

as 

ˆ x = 

˜ F 	t ( x ) = [ ̂  x (ω 1 ) , ̂  x (ω 2 ) , . . . ̂  x (ω m 

)] T , ˆ x ∈ R 

m , (19) 

where ˆ x represents the discrete approximation of the Fourier transform for a set of discrete frequencies W = 

{ ω 1 , ω 2 , . . . , ω m 

} . The objective is to perturb the DFT ˆ x series by adding noise ε in a selected group of frequencies con-

tained in a set ˜ ω ⊂ W . Specifically, 

ε : ˜ ω ⊂ W → R 

˜ ω j �→ ε( ̃  ω j ) . 
(20) 

As an example, the set ˜ ω is defined on the basis of local maxima observed frequencies contributing to the frequency spec-

trum. Figure 10 shows pressure as a function of frequency (DFT) in normal working conditions of the gear pump from the

CFD simulation. The main frequency contribution represents the rotational speed, and the small fluctuations are related to 

gear engaging and disengaging. This figure is shown as an example to demonstrate where the noise is added. For a given

monitored field x , where the set of selected frequencies ˜ ω = { ̃  ω 1 , ˜ ω 2 , . . . , ˜ ω 10 } can be observed. 

The objective is to add noise in the response of the DFT with larger noise content for higher frequencies. The noise is

added to one amplitude at a time. One of the ways to achieve this is by considering a monotonically increasing quadratic

function, 

ε( ̃  ω j ) = p 1 ̃  ω 

2 
j + p 2 ̃  ω j + p 3 , j = 1 , 2 , . . . , n, (21) 
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Fig. 10. Pressure as a function of frequency in normal working condition of gear pump where all the high frequencies of the frequency spectrum are 

chosen to add noise. 

 

 

 

 

 

 

 

with unknown coefficients p 1 , p 2 and p 3 . In order to find these coefficients, a system of three equations is created and

solved. These three equations are generated by imposing constraints. The constraints are selected to have a balance between 

the generated time history and the original time history. A small noise content will not produce any difference in the

generated time history, but, on the other hand, a more significant noise content can create an unreasonable time history. 

For example, ε is assumed to be zero for ˜ ω 1 since adding noise in the first peak can create a very high-level difference from

the original data. Similarly, ε is assumed to be 1 for ˜ ω 3 for the same reason. The third equation is created by adopting the

last peak value to be 100 because when the noise is added to the last peak, the effect generated by the noise is minimal.

Thus, we can construct a matrix ˆ X ∈ R 

m ×(n +1) by using Eqs. (19) and (21) , 

ˆ X = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ˆ x ( ω 1 ) ˆ x ( ω 1 ) ˆ x ( ω 1 ) . . . ˆ x ( ω 1 ) 
. . . 

. . . 
. . . . . . 

. . . 
. . . ˆ x ( ̃  ω 1 )(1 + ε( ̃  ω 1 )) 

. . . . . . 
. . . 

. . . 
. . . ˆ x ( ̃  ω 2 )(1 + ε( ̃  ω 2 )) . . . 

. . . 
. . . 

. . . 
. . . . . . ˆ x ( ̃  ω n )(1 + ε( ̃  ω n )) 

. . . 
. . . 

. . . . . . 
. . . 

. . . . . . . . . . . . . . . 

ˆ x ( ω m 

) ˆ x ( ω m 

) ˆ x ( ω m 

) . . . ˆ x ( ω m 

) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (22) 

where [ ̂  X ] j represents a modified frequency series obtained after introducing noise perturbation for frequency content ˜ ω j . 

Hence, 

ˆ X E j = [ ̂  X ] j , with E j = [0 , . . . , 0 , 1 , 0 , . . . , 0] T , (23) 

where [ ̂  X ] j is the jth column of ˆ X , and in E j , 1 is the jth entry. Inverse Fourier transform ( ̃  F 

−1 
	t 

) has been used to convert

[ ̂  X ] j into time history [ X ] j , and it is expressed as, 

[ X ] j = 

˜ F 

−1 
	t 

([ ̂  X ] j ) , (24) 

where in Eq. (24) , the first column is equal to the original time-varying discrete set x , and the second and the following

columns are the noise-perturbed datasets. Figure 11 shows the time history of the original pressure dataset and two synthet- 

ically generated datasets. The original dataset, synthetic dataset 1 and synthetic dataset 2 are the inverse Fourier transform 

of the first, second, and third columns in Eq. (22) . 
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Fig. 11. Time history of the original pressure dataset and two synthetic datasets. The original dataset, synthetic dataset 1 and synthetic dataset 2 are the 

inverse Fourier transform of the first, second, and third columns in Eq. (22) . 

 

 

 

 

4.2. Synthetic degradation data generation method for fault prognosis 

In this section, the data generation method for fault prognosis will be presented. As discussed in the introduction, fault 

prognosis requires degradation behaviour in the dataset. Two interpolation methods are considered in order to achieve 

degradation behaviour, where interpolation between high-fidelity simulations is used as a method for the generation of 

new data set points. This facilitates computational efficiency without excessively sacrificing the accuracy of results. The 

first approach uses a linear interpolation method to deteriorate from a healthy dataset (h) to a faulty dataset (f1), and the

subsequent approach uses a spline function to interpolate between healthy data (h) to a series of faulty data (f1, f2, f3). f1,

f2 and f3 are generic names for all 15 different fault scenarios mentioned in Table 4 . 

4.2.1. Linear interpolation method 

Consider x h a time-varying continuous function representing a monitored field of a gear pump in a healthy working 

condition. Similarly, x f 1 is the time-varying continuous function representing the same monitored field under faulty working 

conditions. In order to obtain time-varying conditions for the situation in between these two scenarios, healthy and faulty, 

the degradation function is presented as 

x (t, s ) = x f 1 (t) + g(s ) 
[
x h (t) − x f 1 (t) 

]
, s ∈ [0 , 1] , (25) 

where 

x (t, s = 0) = x h (t) , (26) 

x (t, s = 1) = x f 1 (t) , (27) 

where g(s ) is a degradation function and defined as 

g(s ) = 1 − s. (28) 

In order to generate a discrete set, the time continuous function Eq. (25) is evaluated in a discrete set of time values,

rendering 

[ x ] j = x f 1 + g(s j )[ x h − x f 1 ] , j = 1 , . . . , n, (29) 

Figure 12 shows the interpolated dataset between healthy dataset x h and faulty dataset x f 1 using the linear degradation 

function. Moreover, if a series of faulty scenarios ( x f 1 , x f 2 , x f 3 ) are available, then the linear interpolation method is em-

ployed intervals, i.e., x h to x f 1 , x f 1 to x f 2 and x f 2 to x f 3 . These interpolated datasets are employed as the input dataset for 

fault prognosis. 

4.2.2. Cubic interpolation method 

Consider x h a time-varying continuous function representing a monitored field of the gear pump in a healthy working 

condition. Similarly, x f 1 , x f 2 and x f 3 are the time-varying continuous functions representing the same monitored field under 

various faulty working conditions. To obtain the time-varying conditions for the situation in between these four scenarios, 

a spline (cubic) interpolation method can be used. A Lagrange interpolation polynomial can be used to yield, 

x (m, t) = 

4 ∑ 

i =1 

x i (t) g i (m ) , g i (m j ) = δi j , δi j = 

{
1 , if i = j, 
0 , if i � = j, 

(30) 
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Fig. 12. Interpolated time-varying pressure values between healthy working conditions and faulty working conditions using linear degradation function 

presented in Eq. (29) . 

Fig. 13. Time-varying flow rate values for viscosity variations faulty scenarios for 1 s (100-time steps) created using the cubic interpolation method. 

 

 

 

 

 

where x represents the time-varying condition of four working scenarios x h , x f 1 , x f 2 , and x f 3 of the gear pump, δi j is

Kronecker delta symbol and m is the model parameter, which is considered to be experimentally validated for viscosity 

variations m = [ m 1 , m 2 , m 3 , m 4 ] = [0 . 001 , 0 . 02 , 0 . 05 , 0 . 075] Pa-s. The viscosity variations faulty scenarios are presented in

Section 2.5 . Four available model parameters can be used to form a system of equations that can be solved to find the un-

known coefficients. Figure 13 shows the interpolated time-varying flow rate values for viscosity variations faulty scenarios 

for 1 s (100-time steps). 

To validate the cubically interpolated value, the CFD simulation is performed for another viscosity value of 0.0384 Pa-s. 

Since the CFD simulations for different viscosity values have been validated experimentally, comparing interpolated values 

with the results of CFD simulation from the same properties provides sufficient reliability. Figure 14 shows the Validation 

of cubically interpolated value with the high-fidelity CFD results for the viscosity value of 0.0384 Pa-s. It can be observed

that the interpolated degradation behaviour has good agreement with the CFD simulated value, especially in identifying 

amplitude peaks and time periods. 

4.3. Data description and labelling 

As mentioned earlier, ML-supervised algorithms are utilised to perform fault prognosis, which requires the input and 

output dataset to train the algorithm. In the context of fault prognosis, data generated using the linear and cubic interpo-

lation methods are utilised as the input dataset for ML algorithms. The synthetically generated dataset consists of a total 
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Fig. 14. Validation of cubically interpolated value with the high-fidelity CFD results for the viscosity value of 0.0384 Pa-s. 

Fig. 15. Possible functions for RUL, linear decay function. 

 

 

 

 

 

 

 

 

 

of 20 0 0 samples containing the degradation behaviour of each of the specified fault categories. The output variable of fault

prognosis is defined as RUL, which is a real number, quantifying the remaining life of the gear pump. In the absence of

a full experimental dataset, where the degradation model is unavailable, the linear model has been reported as the most 

natural choice due to its simplicity [47] . Figure 15 shows a linear function that can be used as the RUL of a gear pump, with

100-time units being assumed as the maximum lifetime of the gear pump. It represents that with the increase in life, RUL

decreases. 

5. Numerical results for fault prognosis 

The objective of this section is the numerical simulation of fault prognosis (prediction of the RUL) of the external gear

pump using two alternative ML algorithms, namely MLP and SVM. The overview of the designed process for fault prognosis 

is presented in Fig. 16 . 

The high-fidelity data has been generated using an accurate CFD model resembling the operations of an external gear 

pump in healthy and various fault conditions (speed variations, radial gap variations, etc.). In order to enhance the predicted 

response of any ML algorithm, large amounts of data are usually necessary. To greatly facilitate the gathering of data, the

synthetic data generation method is employed. The noise perturbation technique is used to recreate more data from the 

in-silico data, and the process of generating data is presented in Section 4.1 . The generated datasets are, in turn, used for

generating degradation datasets for fault prognosis. 

In the absence of run-to-failure data or the lifetime history of the equipment, the deteriorating data of the equipment

component is necessary to carry out fault prognosis [48] . In order to generate deterioration data, in this work, a linear
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Fig. 16. Overview process of fault prognosis using ML regression algorithms. 

Fig. 17. Quantification analysis of prognosis of fault scenarios due to radial gap degradation using the linear interpolation method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and a cubic interpolation method are employed, as discussed in Section 4.2 . Datasets generated from the linear and cubic

interpolation methods are standardised and used as input datasets for the training, validation and testing of ML regression 

algorithms. The output datasets consist of RUL, derived from linear function ( Section 4.3 ). Also, RUL is normalised between

0 and 1. 

Once the dataset is gathered, it is divided into a training dataset (used to fit the model) comprised of 80 % of the dataset

and a test dataset (used to provide an unbiased evaluation of a final model fit on the training dataset) comprised of the

remaining 20 % [49] . The training dataset is used to train each of the ML algorithms, which are then tested against the test

dataset, and the Mean Squared Error (MSE) of the model is computed using Eq. (1) . 

The quantification analysis is employed to understand the behaviour and the performance of ML algorithms with respect 

to the number of samples used for training. For the analysis, 10%, 30%, 50%, 70%, and 90% of the dataset are used to train

the ML algorithms, MLP and SVM. Figure 17 show the quantification analysis of pressure, flow rate, and torque for fault

scenarios due to radial gap degradation using ML algorithms, MLP and SVM, utilising the dataset generated from the linear 

interpolation method. In most cases, both ML algorithms follow a linear trend, showing that, as the number of samples in-

creases, the machine learning algorithms provide better results (i.e., lower prediction error). However, there is inconsistency 

in the case of pressure using both ML algorithms. 

The hyperparameters for both models are discussed in Section 3.3 . The hyperparameter optimisation is performed while 

training the model, i.e., at the Train & validate ML algorithms stage in Fig. 16 . As mentioned earlier, overfitting or underfitting

can be identified by model loss with respect to the number of epochs, which is shown in Fig. 18 a. The train and validation

loss curves are slightly drifted compared to Fig. 18 b, yet it does not show overfitting, hence, one layer is sufficient for the

prediction, but having two hidden layers provides lower MSE. The number of epochs can be stopped during the training, 

using the early stopping option, when the chosen performance stops improving. The early stopping criteria minimise the 

computational time up to 50 % when the optimisation is carried out without early stopping. 

After hyperparameters are optimised, the best parameters can be extracted for subsequent prediction. For the MLP algo- 

rithm, the optimised hyperparameters are shown in Table 5 ; the best-optimised parameters are as follows: The number of 

neurons for hidden layer 1 is 64, hidden layer 2 is 32, the activation function is Relu, the learning rate is 1 e −3 , the batch

size is 32, and the optimiser is Adam type. Similarly, for the SVM algorithm, the optimised hyperparameters are shown in

Table 6 ; the best-optimised parameters are as follows: The kernel function is polynomial with degree 3, the kernel scale is

1, and the tolerance margin is 0.1. 
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Table 7 

MSE of pressure, flow rate and torque 

using MLP and SVM for fault scenarios 

due to speed variations using the lin- 

ear interpolation method (a) and cubic 

interpolation method (b). 

MLP SVM 

Pressure 0.03857 0.0472 

Flow rate 0.03746 0.0490 

Torque 0.1401 0.1211 

(a) Linear interpolation method 

MLP SVM 

Pressure 0.000752 0.0026 

Flow rate 0.00023 0.0084 

Torque 0.00062 0.00052 

(b) Cubic interpolation method 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Fault scenarios due to speed variations 

In the present example, the RUL prediction of fault scenarios due to speed variations is discussed. Pressure, flow rate, and

torque extracted from the fault scenarios due to speed variations are considered for this analysis. Following the methodology 

discussed earlier, a fault prognosis analysis is performed, and the R2 score and MSE are calculated for each scenario. The

model R2 score is 0.9999 with minor differences for different scenarios, so MSE is considered to measure the difference

between the results of all cases. 

Table 7 shows the MSE of pressure, flow rate, and torque for fault scenarios due to speed variations using ML algo-

rithms, MLP and SVM utilising the synthetic data generation approaches, the linear interpolation method (a) and the cubic 

interpolation method (b). For MLP and SVM, the dataset created using the cubic interpolation method provides lower error 

compared to the dataset created using the linear interpolation method. This occurs because the linear interpolation method 

is created between intervals of two-time series, whereas the cubic interpolation method is constructed between four-time 

series, enriching the prediction pattern both in terms of accuracy and smoothness. So, the dataset created using the cubic 

interpolation method gives a degradation behaviour that is smoother than the dataset created using the linear interpolation 

method. When the variables pressure, flow rate, and torque are considered using both ML approaches, torque has one mag- 

nitude higher error than pressure and flow rate for data obtained using the linear interpolation method. As can be observed

in Table 7 , MLP performs better than SVM due to its higher non-linear nature as a result of an increased number of hidden

layers and thus hyper-parameters. Having more than one hidden layer helps with a better prediction of the output without 

over-fitting. Even though SVM has an in-built non-linear character due to the kernel trick uplift , training on the multiple

layers enhances the robust prediction for MLP. 

5.2. Fault scenarios due to viscosity variations 

In this example, the RUL prediction of fault scenarios due to viscosity variations using ML algorithms MLP and SVM is

described. The variables pressure, flow rate and torque extracted from the fault scenarios due to viscosity variations are 

considered for this analysis. 

Following the fault prognosis procedure discussed earlier, the fault prognosis is performed using the ML algorithms, 

MLP and SVM, with the prediction error computed with MSE. Table 8 shows the prediction MSE of pressure, flow rate and

torque for fault scenarios due to viscosity variations using ML algorithms, MLP and SVM utilising the dataset generated from 

the linear interpolation method (a) and the cubic interpolation method (b). Once again, the dataset created by the cubic 

interpolation method provides lower error compared to the dataset created by the linear interpolation method. When the 

variables pressure, flow rate, and torque are considered using both ML approaches, torque has a higher error than pressure 

and flow rate for data obtained using the linear interpolation method. As can be observed in Table 8 , MLP performs better

than SVM. Similarly, as it was explained above, the higher non-linearity of MLP helps obtaining a better prediction with 

respect to SVM. 

5.3. Fault scenarios due to radial gap degradation 

In the present example, the RUL prediction of fault scenarios due to radial gap degradation using ML algorithms, MLP and

SVM is described. Pressure, flow rate, and torque data from the fault scenario due to radial gap degradation are considered

for the analysis. Table 9 shows the MSE of pressure, flow rate, and torque of fault scenario due to radial gap degradation

using ML algorithms, MLP and SVM utilising the linear interpolation method (a) and cubic interpolation method (b). When 
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Table 8 

MSE of pressure, flow rate and torque 

using MLP and SVM for fault scenar- 

ios due to viscosity variations using 

the linear interpolation method (a) 

and cubic interpolation method (b). 

MLP SVM 

Pressure 0.0401 0.0406 

Flow rate 0.0346 0.042 

Torque 0.0961 0.1087 

(a) Linear interpolation method 

MLP SVM 

Pressure 0.00077 0.0036 

Flow rate 0.00011 0.00064 

Torque 0.00223 0.0059 

(b) Cubic interpolation method 

Table 9 

MSE of pressure, flow rate and 

torque using MLP and SVM for fault 

scenarios due to radial gap degra- 

dation using the linear interpolation 

method (a) and cubic interpolation 

method (b). 

MLP SVM 

Pressure 0.0563 0.0700 

Flow rate 0.0367 0.0422 

Torque 0.0711 0.0889 

(a) Linear interpolation method 

MLP SVM 

Pressure 0.00041 0.0048 

Flow rate 0.00035 0.0059 

Torque 0.0024 0.0056 

(b) Cubic interpolation method 

 

 

 

 

 

 

 

the variables pressure, flow rate, and torque are considered using both ML approaches, torque has a higher error than pres-

sure and flow rate for data obtained using both the linear and cubic interpolation methods. In all cases, MLP performs

relatively better than SVM. The dataset created with the cubic interpolation method provides lower error when compared 

to the dataset created with the linear interpolation method. This occurs because the linear interpolation method is created 

between intervals of two-time signals, whereas the cubic interpolation method is used between four-time signals. So, the 

dataset created using the cubic interpolation method gives a degradation behaviour that is smoother than the dataset cre- 

ated using the linear interpolation method. As can be observed in Table 9 , MLP performs better than SVM. Similarly, as it

was explained above, the higher non-linearity of MLP helps obtaining a better prediction with respect to SVM. 

5.4. Fault scenarios due to axial gap degradation 

The present example describes the RUL prediction of fault scenarios due to axial gap degradation using ML algorithms, 

MLP and SVM. Variables such as pressure, flow rate, and torque data monitored from the fault scenario due to axial gap

degradation are considered for this analysis. Table 10 shows the prediction MSE of pressure, flow rate and torque for fault

scenarios due to axial gap degradation using ML algorithms, MLP and SVM utilising the dataset generated from the linear 

interpolation method (a) and the cubic interpolation method (b). When the variables pressure, flow rate, and torque are 

considered using both ML approaches, torque has a higher error than pressure and flow rate for data obtained using the

linear and cubic interpolation methods. Once again, The dataset created by the cubic interpolation method provides lower 

error compared to the dataset created by the linear interpolation method. As can be observed in Table 10 , MLP performs

better than SVM. Similarly, as it was explained above, the higher non-linearity of MLP helps obtaining a better prediction 

with respect to SVM. 
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Table 10 

MSE of pressure, flow rate and torque 

using MLP and SVM for fault scenar- 

ios due to axial gap degradation using 

the linear interpolation method (a) 

and cubic interpolation method (b). 

MLP SVM 

Pressure 0.0401 0.0406 

Flow rate 0.0346 0.042 

Torque 0.0961 0.1087 

(a) Linear interpolation method 

MLP SVM 

Pressure 0.00077 0.0036 

Flow rate 0.00011 0.00064 

Torque 0.00223 0.0059 

(b) Cubic interpolation method 

Table 11 

MSE of pressure, flow rate and 

torque using MLP and SVM for fault 

scenarios due to temperature varia- 

tions using the linear interpolation 

method (a) and cubic interpolation 

method (b). 

MLP SVM 

Pressure 0.037 0.0445 

Flow rate 0.0488 0.0416 

Torque 0.0682 0.0689 

(a) Linear interpolation method 

MLP SVM 

Pressure 0.0011 0.0063 

Flow rate 0.0002 0.0062 

Torque 0.0006 0.0052 

(b) Cubic interpolation method 

 

 

 

 

 

 

5.5. Fault scenarios due to temperature variations 

In this example, the RUL prediction of fault scenarios due to temperature variations using ML algorithms MLP and SVM 

is described. The variables pressure, flow rate and torque extracted from the fault scenarios due to temperature variations 

are considered for this analysis. 

Following the fault prognosis methodology discussed earlier, the fault prognosis is performed using the ML algorithms, 

MLP and SVM, with the prediction error computed with MSE. Table 11 shows the prediction MSE of pressure, flow rate and

torque for fault scenarios due to temperature variations using ML algorithms, MLP and SVM utilising the dataset generated 

from the linear interpolation method (a) and the cubic interpolation method (b). When the variables pressure, flow rate, and 

torque are considered using both ML approaches, in most cases, torque has a higher error than pressure and flow rate for

data obtained using the linear and cubic interpolation methods. Once again, the dataset created by the cubic interpolation 

method provides lower error compared to the dataset created by the linear interpolation method. Once again, MLP performs 

better than SVM for similar reasons to those argued above. 

5.6. Gaussian noise robustness of the utilised regression algorithms 

This section aims to study fault prognosis considering noisy measurements in order to understand the sensitivity of ML 

algorithms. The noise influence in various ML algorithms has been widely studied [50] . The noise can be added to the input,

output, training, testing, or a combination of all of these. The noise generation can be characterised by its distribution and

where to introduce it [25] . In general, noisy data may cause biases in the learning process, making it more difficult for

learning algorithms to form accurate models from the data. Therefore, developing learning techniques that effectively and 

efficiently deal with these types of data is a key aspect in ML [50] . 

It is important to emphasize that the nature of the Gaussian noise described in this section is very different from the

data perturbation technique used in previous sections in order to efficiently build a dense dataset. Whilst the Gaussian noise 
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Fig. 19. MSE of torque using MLP and SVM for noise addition in test dataset (a) and noise addition in test dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

is constructed in a time-varying manner, similar to the noise that a real sensor would experience, the data perturbation 

technique was designed to minimally alter the fundamental frequencies of a given response in order to expand the dataset. 

These two very different approaches were chosen in order to clearly distinguish both perturbation mechanisms. In real 

industry applications, sensors are installed in the device to extract datasets. However, the collected datasets typically contain 

noise, so in order to replicate this scenario, Gaussian white noise is added to the input data of training or test datasets. The

noise addition in the input data can be expressed as 

ˆ x = x + ε, (31) 

where x is the time history and ε is Gaussian white noise. In order to vary the level of noise added, the Signal Noise Ratio

(SNR) in decibels (dB) [51] is utilised, and it is defined as 

SNR = 10 log 10 

P x 

P ε
, (32) 

where P x is the power of a signal, which is the sum of the absolute squares of its time history samples divided by the signal

length, 

P x = 

1 

n 

n ∑ 

i =1 

x 2 i . (33) 

Similarly, P ε is the power of a signal, and it can be written as 

P ε = 

1 

n 

n ∑ 

i =1 

ε2 
i . (34) 

The dataset considered for this analysis is fault scenarios due to radial gap degradation. The variable torque extracted 

from the fault scenarios due to radial gap degradation is considered for this analysis. The degradation dataset generated 

using the cubic interpolation method is the input data, and the linear decay function is the output for ML algorithms. The

input and output datasets are divided into 80 % of the training and the remaining 20 % of the testing dataset. The training

and testing datasets are standardised and used for ML training. The training dataset is used to train each ML algorithm,

MLP and SVM, which are then tested against the test dataset with noise. The model’s prediction MSE is computed using

Eq. (1) between ML predicted values and true output values. In our case, two studies of fault prognosis are performed to

analyse the Gaussian noise effect. Firstly, in 20 % of the testing dataset, the Gaussian noise is added using Eq. (31) , which is

tested against the ML model trained with a dataset without noise. Later, in the 80 % training dataset, the Gaussian noise is

added and tested against the test dataset without noise. 

Figure 19 a and b show the MSE of torque using MLP and SVM to predict RUL for noise addition in the testing and

training datasets, respectively. In both cases, the prediction error follows a decreasing trend in the beginning and then a 

constant trend when there is an increase in the SNR level, i.e., a decrease in noise. For overall prediction, MLP performs

better than SVM. However, both algorithms perform poorly for SNR levels below 30, which generally indicates a relatively 

low signal strength relative to the background noise. The acceptable SNR level depends on the specific application and 

the required level of accuracy or reliability. For example, in mechanical sensing applications, a low SNR might result in 

inaccurate or unreliable measurements, affecting system performance. For accurate flow rate measurements in gear pumps, 

an SNR level of at least 30 dB is typically required. As a result, both of our algorithms work effectively at SNR levels of 30

or higher. 
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This above-discussed technique can be adapted to any fault scenario with a series of faults. Based on the observations 

from the above three cases, MLP and SVM provide excellent results based on the R2 score and MSE, so there is no necessity

to assess other algorithms. Torque provides comparatively higher mean squared error compared to pressure and flow rate, 

resulting in lower error versus cost. Therefore, if the proffered choice is to use torque to perform fault prognosis, there is a

trade between cost and error. 

6. Conclusions 

This paper has presented a novel methodology for fault prognosis using Machine Learning (ML) algorithms for an exter- 

nal gear pump. The main novelties of this work are the high-fidelity data generation for an external gear pump using CFD

models, the introduction of synthetic data generation techniques and a computational framework for fault prognosis exploit- 

ing the use of ML algorithms. In-silico and synthetic data generation methods provide a long-term solution to insufficient 

or unavailable experimental data and enable further investigation via ML or other applicable data analysis techniques. 

The fault prognosis of the gear pump has been performed using two ML regression algorithms: MLP and SVM. Syn- 

thetically generated degradation datasets are applied to perform this analysis using linear and cubic interpolation methods. 

The data generated using the cubic interpolation method provides a superior prediction of the life expectancy of the gear 

pump compared to the linear interpolation method. Furthermore, MLP yields better pressure and flow rate results than SVM, 

whereas MLP and SVM perform similarly for the torque analysis. Although MLP outperforms SVM in most cases, there are 

certain advantages to adopting SVM. SVM, for example, is resistant to outliers in the data, which can be a difficulty in many

prediction tasks, and it has strong generalisation performance, which means it can predict new data accurately. Finally, no- 

tice that the fault prognosis methodology discussed in this paper can be adapted to any fault scenario with a combination

of faults. 

A primary interest for the industry is the performance of these analyses with minimal cost; this would suggest using 

torque as the magnitude as it can be efficiently monitored via a cost-effective sensor. However, torque provides compar- 

atively higher mean squared error compared to pressure and flow rate, resulting in lower error versus cost. Therefore, if 

torque is to be chosen as the preferred measure by the industry, there is a trade between cost and error. Finally, it is impor-

tant to emphasise that the computational framework developed can be straightforwardly used, without any modification, 

with additional experimental data if available. 
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Appendix A. The mathematical model and governing equations 

In this appendix, the governing equations solved during the CFD simulations are presented. The conservation of mass 

principle can be written using an Arbitrary Lagrangian Eulerian (ALE) description as follows [28] 

∂ 

∂t 

∫ 
(t) 

ρd + 

∫ 
∂(t) 

ρ( v − v s ) · n ds = 0 , (A.1) 

where v is the fluid velocity, ρ is the fluid density and v s is the mesh velocity. The conservation of linear momentum written

in ALE description is given as, 

∂ 

∂t 

∫ 
(t) 

ρv d + 

∫ 
∂(t) 

[ ρv � ( v − v s )] · n ds = 

∫ 
∂(t) 

τn ds −
∫ 
∂(t) 

p n ds + 

∫ 
(t) 

ρ f d, (A.2) 

where τ is the Reynold’s average viscous shear stress tensor, p is the pressure, and f is a body force. In this work, both

turbulence and cavitation physical models are considered during the simulation. The standard k − ε model is based on the 

following two equations. The first equation is 

∂ 

∂t 

∫ 
(t) 

ρkd + 

∫ 
∂(t) 

ρk ( v − v s ) · n ds = 

∫ 
∂(t) 

(
μ + 

μt 

σk 

)
(∇k · n ) ds + 

∫ 
(t) 

( G t − ρε ) d, (A.3) 

where μt is the turbulent viscosity, σk = 1 is the turbulent Prandtl number and G t is the turbulent generation term. The

second equation is 

∂ 

∂t 

∫ 
(t) 

ρεd + 

∫ 
∂(t) 

ρε ( v − v s ) · n ds = 

∫ 
∂(t) 

(
μ + 

μt 

σε 

)
(∇ε · n ) ds + 

∫ 
(t) 

(
c 1 G t 

ε 

k 
− c 2 ρ

ε 2 

k 

)
d , (A.4) 
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where σε = 1 . 3 is the turbulent Prandtl number for the turbulent kinetic energy dissipation rate and c 1 = 1 . 44 and c 2 = 1 . 92

are constants. For pump flows, cavitation is often encountered and is an important factor for design considerations [29] . The

vapour mass fraction coupled with the momentum equation via the pressure field is solved via 

∂ 

∂t 

∫ 
(t) 

ρ f v d + 

∫ 
∂(t) 

ρ f v ( v − v s ) · n ds = 

∫ 
∂(t) 

(
D f v + 

μt 

σ f v 

)
(∇ f v · n ) ds + 

∫ 
(t) 

(R e − R c ) d, (A.5) 

where D f v is the diffusivity of the vapour mass fraction f v , σ f v is the turbulent Schmidt number and μt is the turbulent

viscosity. The source terms R e and R c are the vapour generation and the condensation. During simulation, these equations are 

discretised using the finite volume method and solved using a pressure-based solution algorithm. For further details, please 

refer to [52] . 
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