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A B S T R A C T

The Markowitz model, a Nobel Prize winning model for portfolio analysis, paves the theoretical foundation in
finance for modern investment. However, it remains a challenging problem in the high frequency trading (HFT)
era to find a more time efficient solution for portfolio analysis, especially when considering circumstances with
the dynamic fluctuation of stock prices and the desire to pursue contradictory objectives for less risk but more
return. In this paper, we establish a recurrent neural network model to address this challenging problem
in runtime. Rigorous theoretical analysis on the convergence and the optimality of portfolio optimization
are presented. Numerical experiments are conducted based on real data from Dow Jones Industrial Average
(DJIA) components and the results reveal that the proposed solution is superior to DJIA index in terms of
higher investment returns and lower risks.
1. Introduction

Investment in stock markets is one of the most popular means for
both retail and institutional investors in our daily lives. One of the
central problems is the determination of particular stocks to short/long
for maximum profit. From a financial perspective, it is a game be-
tween risk and return. The greediness of humans always push for an
answer to the question: how to allocate money to different stocks,
i.e., the optimal portfolio of stocks, so that the risk is minimized while
the return is maximized. Markowitz’s pioneering work modeled stock
prices as a random variable and characterized risks and returns by
statistical variance and mean respectively. This formal framework pro-
vided the first practical but reasonably simple model for practitioners
to make rational decisions for financial investment. Markowitz, as the
inventor of this insightful model, received the 1990 Nobel prize in
economics (Markowitz, 1991). This model for portfolio analysis paved
the foundation for modern portfolio theory (MPT) and constitutes as
a supporting pillar of modern finance (Kim & Francis, 2013; Omisore
et al., 2011).
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Although great success has been achieved for portfolio analysis
with the birth of Markowitz model, the demand for timely decision
making has significantly increased especially in recent years with the
advancement of high frequency trading (HFT), which combines pow-
erful computing servers and the fastest Internet connection to trade at
extremely high speeds. This demand poses new challenges to portfolio
solvers for real-time processing in the face of time-varying parame-
ters. Neural networks, as one of the most powerful machine learning
tools (Khan et al., 2020, 2022), has seen great progress in recent
years for financial data analysis and signal processing (Adamu, 2019;
Gao & Su, 2020; Khan et al., 2021; Troiano et al., 2018). Using
computational methods, e.g., machine learning and data analytics, to
empower conventional finance is becoming a trend widely adopted
in leading investment companies (Allen et al., 2021; Goldstein et al.,
2019; Rebentrost et al., 2018; Sharma et al., 2022; Tran et al., 2018;
Tsantekidis et al., 2020).
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Since the establishment of Markowitz model for portfolio analysis,
it has been an active research direction to develop variant models for
performance enhancement. In Davis and Norman (1990) and Zhang
et al. (2012), the authors point out the limitation of original Markowitz
model for not considering the transaction cost and they develop more
realistic models with this factor taken into account. For some in-
vestors, one preference is to restrict the number of selected stocks in
the portfolio into an understandable and interpretable amount. The
authors in Chang et al. (2000) and Gao et al. (2015) model this
preference as a cardinality constraint in their optimization formulation.
However, the cardinality constraint is non-convex and conventional
solvers usually get stuck at the local optima. To find optimal solutions,
some researchers relax the cardinality to 𝐿1 constraint, one convex
approximation of cardinality, and leverage recent progress on spar-
sity optimization as a solution (Kremer et al., 2020). In the mean
while, some researchers explore the solution using evolutionary com-
putation methods with global optimization capability, e.g., genetic
algorithm (Chen et al., 2019; Yaman & Dalkilic, 2021), particle swarm
optimization (Kaucic, 2019; Raei & Alibeiki, 2010; Zhu et al., 2011),
beetle antennae search (Katsikis et al., 2020; Khan et al., 2019, 2023;
Medvedeva et al., 2021). However, these types of methods require
great computational support and may not be suitable for time-varying
scenarios. Other solutions include the use of fuzzy logics (Galankashi
& Mokhatab, 2020), and neural networks (Imajo et al., 2021) but all
suffer from expensive computational cost and can hardly be used in
real-time high frequency trading.

As a special type of neural network, recurrent neural networks
with feedback connected neurons are naturally suitable for time vary-
ing data processing. In Guo and Zhang (2012) and Zhang and Ge
(2005), a recurrent neural network is presented for time-varying matrix
inversion. A general class of non-constrained optimization problems, in-
cluding linear equation set, can be converted into matrix inversion and
therefore can be efficiently solved using this model. Its discrete-time
version is explored in Li et al. (2021), Liao et al. (2016), Ma and Guo
(2020), Shi and Zhang (2020) and Zhang et al. (2021). In Chen et al.
(2020) and Zhang et al. (2020, 2022), researchers leverage deliberate
design of activation functions for the speedup of convergence to finite
time, which further enhances the real time processing capability of
recurrent neural networks. Further investigations include the extension
to complex-valued number dynamical signal processing (Xiao et al.,
2021), noise-robust neural network derivation (Li et al., 2020; Xiao
et al., 2022), model-free situations (Zhang et al., 2018), robot arm
motion control (Li et al., 2018), mobile robot trajectory planning (Chen
et al., 2021), multiple robot coordination (Li et al., 2017), Sylvester
equation solving (Zhang et al., 2019), non-stationary quadratic pro-
grams (Qi et al., 2022) and rank-deficit problem solving (Shi et al.,
2022), as comprehensively surveyed in Jin et al. (2017).

Motivated by the success of recurrent neural networks in processing
time-varying problems, and the demand for online analysis of portfolios
in a high frequency trading era, in this paper we present a novel re-
current neural network customized for portfolio optimization, with the
consideration of transaction cost and multiple objectives. This neural
network is proved to find the solution corresponding to the optimum
portfolio. This method provides a superior solution to both retail and
institutional investors than simply buying market index. In addition,
the method can also output the Pareto efficient frontier, which is of
great importance for practitioners when making financial decisions.
The main contributions of this paper are summarized as follows.

(1) Conventional solutions are suitable for static problems with-
out time-varying parameters. In the high frequency trading era,
many applications involve time-dependent factors. The proposed
method is suitable for solving the optimal portfolio online under
time-varying parameters.

(2) Compared to evolutionary optimization based solutions, the pro-
posed method does not require high computational power. This
feature enhances the suitability of the proposed model for high
2

frequency trading. 𝑤
(3) The optimality and global convergence of the proposed model are
guaranteed in theory. The model can deliver important financial
indices, including the optimal portfolio, expected return, and
Pareto frontier.

(4) To the best of our knowledge, this is the first recurrent neural net-
work model developed for portfolio analysis without the potential
risk of local optima in the final solution.

The rest of the paper is organized as follows. In Section 2, the portfolio
analysis problem is described. In Section 3, the neural network is
designed to solve the formulated problem and theoretical analysis is
illustrated. Then, experimental validations based on real stock data are
presented in Section 4. Finally, conclusions are drawn in Section 5.

2. Problem description

Portfolio analysis refers to the determination of the optimal distribu-
tion of investments to different stocks so that less risk and more return
can be achieved. In this section, we present the formulation of portfolio
analysis.

2.1. Stock return

Consider a total of 𝑛 stocks named 𝑆𝑖 for the 𝑖th one. Mathemati-
cally, the return of the 𝑖th stock at time 𝑡, denoted as 𝑟𝑖(𝑡), is a random
variable up to fluctuation. The following statistical characteristics are
defined for 𝑟𝑖(𝑡):

𝐸(𝑟𝑖(𝑡)) = 𝜇𝑖(𝑡),

𝑜𝑣(𝑟𝑖(𝑡), 𝑟𝑗 (𝑡)) = 𝜎𝑖𝑗 (𝑡)with 𝜎𝑖𝑗 (𝑡) = 𝜎𝑗𝑖(𝑡),
(1)

here 𝐸(⋅) computes the mean value of a random variable, and 𝐶𝑜𝑣(⋅, ⋅)
or the covariance of two variables, 𝜇𝑖(𝑡) is the mean value of 𝑟𝑖, 𝜎𝑖𝑗 is
he covariance of 𝑟𝑖 and 𝑟𝑗 . 𝜎𝑖𝑗 (𝑡) reveals the inter-dependency of the
wo stocks 𝑆1 and 𝑆2 in their return. The value of 𝜎𝑖𝑗 (𝑡) could be greater
han 0 when their returns are positively correlated, or less than 0 when
egatively correlated. For example, the stock trend of Amazon and Ebay
re positively correlated most of the time due to their common nature
s online consumer markets, while crude oil prices and airline stocks
re usually observed to be negatively correlated due to the impact of
rude oil price on airline profits. In a compact form, Eq. (1) can be
ritten as

(𝑟(𝑡)) = 𝜇(𝑡), 𝑉 𝑎𝑟(𝑟(𝑡)) = 𝛴(𝑡), (2)

ith

(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜇1(𝑡)
𝜇2(𝑡)
⋮

𝜇𝑛(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝛴(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜎11(𝑡) 𝜎12(𝑡) ⋯ 𝜎1𝑛(𝑡)
𝜎21(𝑡) 𝜎22(𝑡) ⋯ 𝜎2𝑛(𝑡)
⋮ ⋮ ⋱ ⋮

𝜎𝑛1(𝑡) 𝜎𝑛2(𝑡) ⋯ 𝜎𝑛𝑛(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

, (3)

here the variance matrix 𝛴(𝑡) ∈ R𝑛×𝑛 is positive semi-definite.

.2. Mean return VS. Risk

The decision variable in Markowitz’s portfolio analysis is the distri-
ution of investments. Suppose one investor holds one dollar and a wise
ecision is to select a proper fraction 𝑤𝑖(𝑡) to buy 𝑆𝑖 for 𝑖 = 1, 2,… , 𝑛
o that the overall return is maximized while the risk minimized.
wo extremes are evident: it is the best decision to buy stock 𝑆𝑖∗

or 𝑖∗ = argmax{𝑟1(𝑡), 𝑟2(𝑡),… , 𝑟𝑛(𝑡)}, i.e., the most profit stock with
aximum statistic mean return, if an investor wants maximize mean

eturn without taking the potential risk into account; oppositely, a
ational investor distribute the money over different stocks to reduce
isks, following the age-old philosophy ‘do not put all your eggs in one
asket’. For one dollar overall investment with 𝑤𝑖(𝑡) ≥ 0 for stock 𝑆𝑖,
he overall amount ∑𝑛

1 𝑤𝑖(𝑡) = 1, with the matrix form as

T
(𝑡)𝟏 = 1, (4)
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where 𝑤T(𝑡) = [𝑤1(𝑡), 𝑤2(𝑡),… , 𝑤𝑛(𝑡)] is the weight vector and is also the
decision variable of portfolio analysis, and 𝟏 ∈ R𝑛 is a 𝑛 dimensional
vector with all entry 1. With this portfolio of stocks, the return 𝑝(𝑡) is
therefore computed as

𝑝(𝑡) = 𝑤T(𝑡)𝑟(𝑡). (5)

Apparently, the portfolio return 𝑝(𝑡) is also a random variable. We can
compute its mean and variance respectively as below:

𝐸(𝑝(𝑡)) = 𝑤T(𝑡)𝐸(𝑟(𝑡)) = 𝑤T(𝑡)𝜇(𝑡),

𝑉 𝑎𝑟(𝑝(𝑡)) = 𝑉 𝑎𝑟(𝑤T(𝑡)𝑟(𝑡)) = 𝑤T(𝑡)𝛴(𝑡)𝑤(𝑡).
(6)

2.2.1. Return maximization
Quantitatively, the maximization of the mean return, without con-

sidering potential risks, results in the following formulation of an
optimization problem

max𝑤(𝑡)𝑤
T(𝑡)𝜇(𝑡)

𝑠.𝑡. 𝑤T(𝑡)𝟏 = 1,

0 ≤ 𝑤𝑖(𝑡) ≤ 1, ∀𝑖 = 1, 2,… , 𝑛.

(7)

The closed-form optimal solution can be readily solved as

𝑤(𝑡) = 𝑒𝑖∗ (𝑡) for 𝑖∗ = argmax{𝑟1(𝑡), 𝑟2(𝑡),… , 𝑟𝑛(𝑡)}, (8)

where 𝑒𝑖∗ (𝑡) ∈ R𝑛 is a 𝑛 dimensional vector with all entries being 0
except the 𝑖∗th entry being 1. Solution (8) represents the investment of
all money in the most profitable stock 𝑆𝑖∗ with the highest mean return
𝑟𝑖∗ (𝑡).

2.2.2. Risk minimization
In contrast, the minimization of risks, characterized by the variance

of the portfolio 𝑝(𝑡), can be described by the following optimization

min𝑤(𝑡)𝑤
T(𝑡)𝛴(𝑡)𝑤(𝑡)

𝑠.𝑡. 𝑤T(𝑡)𝟏 = 1,

0 ≤ 𝑤𝑖(𝑡) ≤ 1, ∀𝑖 = 1, 2,… , 𝑛.

(9)

Problem (9) can also be solved in closed form by noticing the eigen-
value inequality 𝑤T(𝑡)𝛴(𝑡)𝑤(𝑡) ≥ 𝜆1(𝑡)𝑤T(𝑡)𝑤(𝑡) for any 𝑤(𝑡) ≠ 0,
where 𝜆1(𝑡) is the smallest eigenvalue of 𝛴(𝑡). For 𝑤T(𝑡)𝛴(𝑡)𝑤(𝑡) ≥
𝜆1(𝑡)𝑤T(𝑡)𝑤(𝑡), equality holds when 𝑤(𝑡) equals 𝑥1(𝑡), where 𝑥1(𝑡) is
the eigenvector of 𝛴(𝑡) corresponding to its smallest eigenvalue 𝜆1(𝑡).
Accordingly, the solution of (9) can be written as

𝑤(𝑡) =
𝑥1(𝑡)

‖𝑥1(𝑡)‖
, 𝑥1(𝑡) ≠ 0 (10)

where 𝑥1(𝑡) ∈ R𝑛 is the corresponding eigenvector of 𝛴(𝑡) to its smallest
eigenvalue 𝜆1(𝑡). Note that 𝑥1(𝑡) in the denominator is for normalization
o that entries of 𝑤(𝑡) sum to one. Solution (10) implies that the risk-
inimum portfolio can be reached with the distribution of money over

ll stocks according to the eigenvector of the return variance matrix
(𝑡).

.3. Transaction cost and multi-objective optimization

.3.1. Transaction cost
In practice, the transaction of stocks introduces additional expenses.

uppose the transaction cost rate is 𝑐(𝑡) ∈ R𝑛 with 𝑐𝑖(𝑡) being the 𝑖𝑡ℎ
element. For the investment of amount 𝑤𝑖(𝑡) to stock 𝑆𝑖, the individual
transaction cost is 𝑤𝑖(𝑡)𝑐𝑖(𝑡) and the total transaction cost of all stocks in
the portfolio is ∑𝑛

𝑖=1 𝑤𝑖(𝑡)𝑐𝑖(𝑡) = 𝑤T(𝑡)𝑐(𝑡), resulting in the replacement
of Eq. (4) by the following

T T
3

𝑤 (𝑡)𝟏 +𝑤 (𝑡)𝑐(𝑡) = 1. (11)
2.3.2. Multi-objective optimization
Emotional investors desire the minimum risk as well as the max-

imum mean return, which leads to the following formulation of the
problem

min𝑤(𝑡)𝑤
T(𝑡)𝛴(𝑡)𝑤(𝑡),

ax𝑤(𝑡)𝑤
T(𝑡)𝜇(𝑡),

𝑠.𝑡. 𝑤T(𝑡)𝟏 +𝑤T(𝑡)𝑐(𝑡) = 1,

0 ≤ 𝑤𝑖(𝑡) ≤ 1, ∀𝑖 = 1, 2,… , 𝑛.

(12)

ctually, the first and the second objectives in (12) cannot be achieved
imultaneously by a single decision in most practical situations, im-
lying the non-feasibility of the demand by emotional investors. In-
uitively, the portfolio 𝑤(𝑡) that achieves the first objective in (12),
.e., the one with minimum risk, usually is not identical to the portfolio
hat maximizes the mean return, which is the goal of the second
bjective in (12).

.4. Problem reformulation

We present two reformulations for solving problem (12).

.4.1. Risk minimization with desired return
Rather than pursuing the maximization of the mean return, a rea-

onable goal is to set the desired mean return of portfolio 𝑝(𝑡) as a
roper value 𝜇𝑑 (𝑡) and minimize the risk under this constraint, leading
o the following constrained optimization problem:

in𝑤(𝑡)𝑤
T(𝑡)𝛴(𝑡)𝑤(𝑡),

𝑠.𝑡. 𝑤T(𝑡)𝜇(𝑡) = 𝜇𝑑 (𝑡),

𝑤T(𝑡)𝟏 +𝑤T(𝑡)𝑐(𝑡) = 1,

0 ≤ 𝑤𝑖(𝑡) ≤ 1, ∀𝑖 = 1, 2,… , 𝑛.

(13)

ote that it returns exactly the same solution if we replace the first
quation constraint 𝑤T(𝑡)𝜇(𝑡) = 𝜇𝑑 (𝑡) in (13) by 𝑤T(𝑡)𝜇(𝑡) ≥ 𝜇𝑑 (𝑡) as
he minimization of the objective function 𝑤T(𝑡)𝛴(𝑡)𝑤(𝑡) drives 𝑤(𝑡) to
educe in values as much as possible until the equality holds.

.4.2. Optimization in Pareto sense
Pareto optima is defined as an alterative to address the multi-

bjective dilemma. It aims to find such decisions where the change of
t can never simultaneously improve/keep all the objectives. Usually,
areto optimum returns a set of solutions. Markowitz adopted the opti-
ality in Pareto Sense to find the efficient frontier, i.e., the Pareto front.
ccording to Pareto optimization theory (Miettinen, 2012), the set of
olutions in Pareto sense can be obtained by solving the optimization
elow
in𝑤(𝑡)𝑤

T(𝑡)𝛴(𝑡)𝑤(𝑡) − 𝑘(𝑡)𝑤T(𝑡)𝜇(𝑡),

𝑠.𝑡. 𝑤T(𝑡)𝟏 +𝑤T(𝑡)𝑐(𝑡) = 1,

0 ≤ 𝑤𝑖(𝑡) ≤ 1, ∀𝑖 = 1, 2,… , 𝑛,

(14)

ith 𝑘(𝑡) ≥ 0 scanning across all feasible values.
Optimization (14) can be used to find the optimal portfolio set in

areto sense, i.e., the Markowitz efficient frontier as named in fiance,
y enumerating possible values of 𝑘(𝑡). Besides, there also exists some
nderlying equivalence between (14) and (13). For a given value of
(𝑡) in (14), it is always possible to increase 𝑘(𝑡) until 𝑤T(𝑡)𝜇(𝑡) = 𝜇𝑑 (𝑡) if
T(𝑡)𝜇(𝑡) ≤ 𝜇𝑑 (𝑡) for a given 𝜇𝑑 (𝑡), and vice versa. This implies that (13)

an be equivalently solved with (14) by choosing a proper value of 𝑘(𝑡)
or a given value of 𝜇𝑑 (𝑡). Without losing generality, we therefore focus
n the solution of the general optimization form (14) in this paper.

. Recurrent neural networks for real time portfolio analysis

In this section, we propose a recurrent neural network based ap-
roach to solve the time-varying portfolio optimization (14) and then
rovide theoretical analysis for the result.
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3.1. Derivation of the recurrent neural network

As (14) includes constraints in the form of both equalities and
inequalities, we first construct the following Lagrangian function to
effectively deal with the constraints

𝐿(𝑤(𝑡), 𝜆(𝑡)) =𝑤T(𝑡)𝛴(𝑡)𝑤(𝑡) − 𝑘(𝑡)𝑤T(𝑡)𝜇(𝑡)

+ 𝜆(𝑡)(𝑤T(𝑡)𝟏 +𝑤T(𝑡)𝑐(𝑡) − 1),
(15)

where 𝜆(𝑡) ∈ R is a Lagrangian multiplier associated with the equation
𝑤T(𝑡)𝟏 +𝑤T(𝑡)𝑐(𝑡) = 1 constraint. Define a convex set

𝛺 = {𝑤(𝑡) ∈ R𝑛, 𝑤𝑖(𝑡) ≤ 1, ∀𝑖 = 1, 2,… , 𝑛} (16)

to capture the inequality constraint. According to optimization the-
ory (Ruszczynski, 2006), the following min–max optimization reaches
the same solution to (14)

min𝑤(𝑡)max𝜆(𝑡)𝐿(𝑤(𝑡), 𝜆(𝑡)),

𝑠.𝑡. 𝑤 ∈ 𝛺.
(17)

In light of the Karush–Kuhn–Tucker (KKT) condition (Ruszczynski,
2006), the solution of (17) can be written as

0 ∈
𝜕𝐿(𝑤(𝑡), 𝜆(𝑡))

𝜕𝑤(𝑡)
+𝑁𝛺(𝑤(𝑡)), 0 =

𝜕𝐿(𝑤(𝑡), 𝜆(𝑡))
𝜕𝜆(𝑡)

(18)

where 𝑁𝛺(𝑤(𝑡)) is the normal cone of set 𝛺 at 𝑤(𝑡). The normal cone
expressed condition (18) can be equivalent converted to set projection
descriptions as below

𝑃𝛺

(

𝑤(𝑡) −
𝜕𝐿(𝑤(𝑡), 𝜆(𝑡))

𝜕𝑤(𝑡)

)

= 𝑤(𝑡),

𝜕𝐿(𝑤(𝑡), 𝜆(𝑡))
𝜕𝜆(𝑡)

= 0,
(19)

where 𝑃𝛺(⋅) is the projection operator to set 𝛺. Expression (19) is
a set of nonlinear equations and still cannot be solved effectively.
We therefore construct the following recurrent neural network, whose
equilibrium point is identical to the solution of (19), for real time
solution

𝜖𝑤̇(𝑡) = −𝑤(𝑡) + 𝑃𝛺

(

𝑤(𝑡) −
𝜕𝐿(𝑤(𝑡), 𝜆(𝑡))

𝜕𝑤(𝑡)

)

,

𝜖𝜆̇(𝑡) =
𝜕𝐿(𝑤(𝑡), 𝜆(𝑡))

𝜕𝜆(𝑡)
,

(20)

with 𝜖 > 0 being a scaling factor. The substitution of Expression (15)
into Eq. (20) results in

𝜖𝑤̇(𝑡) = −𝑤(𝑡) + 𝑃𝛺(𝑤(𝑡) − 2𝛴(𝑡)𝑤(𝑡) + 𝑘(𝑡)𝜇(𝑡)

− 𝜆𝟏 − 𝜆𝑐(𝑡)),

𝜖𝜆̇(𝑡) =𝑤T(𝑡)𝟏 +𝑤T(𝑡)𝑐(𝑡) − 1,

(21)

which yields the recurrent neural network to facilitate online solution
of portfolio analysis. We have the following remark for the derived
recurrent neural network (21).

Remark 1. The recurrent neural network (21) is designed for the solu-
tion of (14). The projection term 𝑃𝛺(⋅) in (20) enforces the inequality
constraint (the 3rd line) in (21), the 𝜆(𝑡) dynamics enforces the equality
constraint (the 2rd line) and the 𝑤(𝑡) dynamics enforces the goal to
minimize the objective function (the 1st line). The above three factors
work in coordination to enforce the solution of (21) in a recurrent way
through the dynamical evolution of 𝑤(𝑡) and 𝜆(𝑡).

3.2. Theoretical analysis

In this part, we provide two main theoretical results of the designed
recurrent neural network (21) to pave the foundation for the effective-
ness of using (21) for the solution of (14). The derived neural network
is generally an ordinary differential equation. Our first result is on its
4

equilibrium point and the second result is on its global convergence. a
3.2.1. Equilibrium point optimality
About the equilibrium point, we have the following theorem.

Theorem 1. The equilibrium point (𝑤(𝑡), 𝜆(𝑡)) of recurrent neural network
(21) is identical to the optimal solution of (14).

Proof. The equilibrium point of (21) is obtained as 0 = −𝑤(𝑡)+𝑃𝛺(𝑤(𝑡)−
2𝛴(𝑡)𝑤(𝑡) + 𝑘(𝑡)𝜇(𝑡) − 𝜆𝟏 − 𝜆𝑐(𝑡)) and 0 = 𝑤T(𝑡)𝟏 +𝑤T(𝑡)𝑐(𝑡) − 1. This can
e further written as 0 = −𝑤(𝑡)+𝑃𝛺 (𝑤(𝑡) − 𝜕𝐿(𝑤(𝑡), 𝜆(𝑡))∕𝜕𝑤(𝑡)) and 0 =
𝐿(𝑤(𝑡), 𝜆(𝑡))∕𝜕𝜆(𝑡) with the definition of 𝐿(𝑤(𝑡), 𝜆(𝑡)) = 𝑤T(𝑡)𝛴(𝑡)𝑤(𝑡) −
(𝑡)𝑤T(𝑡)𝜇(𝑡) + 𝜆(𝑤T(𝑡)𝟏 + 𝑤T(𝑡)𝑐(𝑡) − 1). Note that the above defined
unction 𝐿(𝑤(𝑡), 𝜆(𝑡)) is convex relative to 𝑤(𝑡) owing to the positive
emi-definite property of the variance matrix 𝛴(𝑡), and 𝐿(𝑤(𝑡), 𝜆(𝑡)) is
inear relative to 𝜆(𝑡). Therefore, the KKT condition implies that the
quilibrium point is the only solution of min𝑤(𝑡)∈𝛺max𝜆(𝑡)𝐿(𝑤(𝑡), 𝜆(𝑡)).
s 𝐿(𝑤(𝑡), 𝜆(𝑡)) can also be recognized as a Lagrangian function with
(𝑡) being the decision variable, 𝜆(𝑡) being the multiplier, and 𝑤T(𝑡)𝛴(𝑡)
(𝑡)−𝑘(𝑡)𝑤T(𝑡)𝜇(𝑡) being the objective to be minimized. Accordingly, we
btain the following equivalent optimization problem

in𝑤(𝑡)∈𝛺𝑤
T(𝑡)𝛴(𝑡)𝑤(𝑡) − 𝑘(𝑡)𝑤T(𝑡)𝜇(𝑡),

𝑠.𝑡. 𝑤T(𝑡)𝟏 +𝑤T(𝑡)𝑐(𝑡) = 1.
(22)

This is identical to optimization (14) by recalling the definition of set
𝛺. Note that all the above procedures are conducted under equivalent
conversion. Therefore, the conclusion is both sufficient and necessary.
This concludes the proof. □

3.2.2. Global convergence
We have so far proved that the equilibrium point of the recurrent

neural network is identical to the optimal solution. We can readily
declare that the designed neural model is able to solve the formulated
optimization problem if the neural dynamics converges globally to its
equilibrium point whatever the initial state is started with.

About the global convergence, we have the theorem below.

Theorem 2. Recurrent neural network (21) converges globally to the
optimal solution of problem (14).

Proof. As we have proved that the equilibrium point of recurrent
neural network (21) is identical to the optimal solution of problem
(14). We thus only need to prove the global convergence of (21) to
its equilibrium point.

Define an extended variable 𝑥T(𝑡) = [𝑤T(𝑡), 𝜆(𝑡)] and an extended set
𝛺̄ = {𝑥T(𝑡) = [𝑤T(𝑡), 𝜆(𝑡)], 𝑤(𝑡) ∈ 𝛺, 𝜆(𝑡) ∈ R} and the neural dynamics
(21) can be expressed in a compact form as

𝜖𝑥̇(𝑡) = −𝑥(𝑡) + 𝑃𝛺̄(𝑥(𝑡) − 𝐹 (𝑥(𝑡))) (23)

here

(𝑥(𝑡)) = 𝐽 (𝑡)𝑥(𝑡) − 𝑏(𝑡) (24)

ith matrix 𝐽 (𝑡) ∈ R(𝑛+1)×(𝑛+1) and vector 𝑏(𝑡) ∈ R𝑛+1 defined as

(𝑡) =
[

2𝛴(𝑡) 𝟏 + 𝑐(𝑡)
−𝟏T − 𝑐T(𝑡) 0

]

, 𝑏(𝑡) =
[

𝑘(𝑡)𝜇(𝑡)
−1

]

(25)

ith the following property for 𝐽 (𝑡)

(𝑡) + 𝐽T(𝑡) =
[

4𝛴(𝑡) 0
0 0

]

≽ 0, (26)

here ‘≽’ means the left side is a positive semi-definite matrix. Eq. (26)
olds by noticing the positive semi-definiteness of the variance matrix.
herefore,

𝜕𝐹 (𝑥(𝑡))
𝜕𝑥(𝑡)

+
𝜕T𝐹 (𝑥(𝑡))
𝜕𝑥(𝑡)

= 𝐽 (𝑡) + 𝐽T(𝑡) ≽ 0. (27)

ystem (23) is in the canonical form of projected dynamical systems
nd it is globally convergent to its equilibrium point provided (27)
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Fig. 1. Data used in the experimental validation. (a) Stock price of DJI components for 250 effective days from Jan. 3rd 2006 to Dec. 29th 2006. (b) Daily return calculated from
he stock price. (c) Mean return calculated from the moving average based on data from 100 latest days. (d) Covariance of DJI companies with IBM based on data from 100 latest

days.
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holds, as proved in Xia (2004) and discussed in Mohammed and Li
(2015). We therefore conclude the global convergence of (21) to its
equilibrium point and thus complete the proof after combining with
the fact that the equilibrium point of (23) is identical to the optimal
solution of (14) as obtained in Theorem 1. □

4. Numerical validation on DJI components

Dow Jones Industrial Average (DJIA) is one of the most widely
adopted index reflecting the overall trend of stock markets in USA. It is
obtained by price-averaging the stock of 30 prominent companies listed
on New York Stock Exchanges. It is usually a good choice to invest on
DJIA compared to the investment to an individual stock. In this section,
we apply the developed method to the portfolio of the above 30 stocks
and show the superiority of the resulting solution using our method to
investment on DJIA.

4.1. Experimental setup

4.1.1. Data set
In our experiment, we consider the 30 DJI component stocks, in-

cluding Alcoa Corporation (AA), American International Group, Inc.
(AIG), American Express Company (AXP), The Boeing Company (BA),
Citigroup Inc. (C), Caterpillar Inc. (CAT), DuPont de Nemours, Inc.
(DD), The Walt Disney Company (DIS), General Electric Company
5

(GE), General Motors Company (GM), The Home Depot, Inc. (HD),
Honeywell International Inc. (HON), HP Inc. (HPQ), International Busi-
ness Machines Corporation (IBM), Intel Corporation (INTC), Johnson &
Johnson (JNJ), JPMorgan Chase & Co. (JPM), The Coca-Cola Company
(KO), McDonald’s Corporation (MCD), 3M Company (MMM), Altria
Group, Inc. (MO), Merck & Co., Inc. (MRK), Microsoft Corporation
(MSFT), Pfizer Inc. (PFE), The Procter & Gamble Company (PG), AT&T
Inc. (T), Raytheon Technologies Corporation (UTX), Verizon Commu-
nications Inc. (VZ), Walmart Inc. (WMT) and Exxon Mobil Corporation
(XOM), from Jan. 3rd 2006 to Dec. 29th 2006 published online for a
total of 250 days with data available.

4.1.2. Data pre-processing
Fig. 1(a) shows the stock price 𝑣(𝑡) of the 30 stocks over the

50 days. The stock price is converted to daily return 𝑟(𝑡) defined as
(𝑡) = (𝑣(𝑡) − 𝑣(𝑡 − 1))∕𝑣(𝑡), as shown in Fig. 1(b). To accommodate
ortfolio calculation, the statistical characteristics for portfolio need to
e constructed. We use the numerical mean 𝜇̂(𝑡) =

∑𝑡
𝜏=𝑡−𝑚+1 𝑟(𝜏)∕𝑚 and

he numerical variance 𝛴̂(𝑡) =
∑𝑡

𝜏=𝑡−𝑚+1(𝑟(𝜏) − 𝜇̂(𝑡))(𝑟(𝜏) − 𝜇̂(𝑡))T∕(𝑚− 1)
ased on daily return in the past 𝑚 days as the estimates of mean
eturn 𝜇(𝑡) and return variance 𝛴(𝑡) respectively. Linear interpolation
s employed to convert 𝜇̂(𝑡) and 𝛴̂(𝑡) from discrete time in daily basis to
ontinuous time. See Fig. 1(c) for the corresponding 𝜇̂(𝑡) with 𝑚 chosen
s 𝑚 = 100 for the considered data. As 𝛴̂(𝑡) is a 30 × 30 matrix in this
ase which includes a total of 900 values for every time instance, for the
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Fig. 2. Recurrent neural network based portfolio analysis for problems with fixed parameters. (a) The time profile of the calculated optimal portfolio weight using the proposed
ecurrent neural network with 𝜖 = 5.0×10−2. (b) The time profile of the portfolio weight error using the proposed recurrent neural network with 𝜖 = 5.0×10−2. (c) The time profile
f the calculated optimal portfolio weight using the proposed recurrent neural network with 𝜖 = 5.0 × 10−5. (d) The time profile of the portfolio weight error using the proposed
ecurrent neural network with 𝜖 = 5.0 × 10−5.
onvenience of data visualization, we instead plot in Fig. 1(d) the time
istory of the row in 𝛴̂(𝑡) corresponding to the covariance of IBM with
ll 30 companies, rather than showing the 900 curves. The transaction
ost rate 𝑐(𝑡) in (14) is defined as a vector in our formulation. In
ractice, stocks mostly have identical transaction cost rate with fixed
alue, i.e., 𝑐(𝑡) = 𝑐0𝟏 with 𝑐0 being a constant set at 𝑐0 = 0.5% for the
umerical validation.

.2. Portfolio with fixed parameters

To verify the correctness of the presented recurrent neural network,
e first consider the typical time-invariant situation which is solvable
y conventional methods. We consider the solution of (14) at time
= 150 based on statistics, i.e., the estimated mean return 𝜇̂(𝑡) = 𝜇̂

nd the estimated return variance 𝛴̂(𝑡) = 𝛴̂, from the past 𝑚 = 100
ays. As this is a static linearly constrained quadratic problem and
ts solution can be solved using Matlab routine 𝑞𝑢𝑎𝑑𝑝𝑟𝑜𝑔(). We choose
(𝑡) = 0.1 and 𝑐(𝑡) = 𝑐0𝟏 with 𝑐0 = 0.5% in (14). With the initial
alue set as 1∕𝑛 for each dimension of 𝑥(𝑡) and 0 for 𝜆(𝑡), the time
volution of the computed optimal portfolio 𝑤(𝑡), as the output of the

proposed recurrent neural network with the selection of the scaling
factor 𝜖 = 5.0×10−2, is shown in Fig. 2(a). As observed, 𝑤(𝑡) varies with
time and gradually converges. Its error in comparison with the solution
computed using function 𝑞𝑢𝑎𝑑𝑝𝑟𝑜𝑔() in Matlab is shown in Fig. 2(b).
Note that parameter 𝜖 scales the time horizon and speed-up of the
6

convergence can be achieved by choosing a smaller value of 𝜖. With
the same setup, a much faster convergence can be observed in Fig. 2(c)
and (d) when choosing 𝜖 = 5.0 × 10−5. It is clear that in both cases, the
portfolio calculated by the proposed neural network converges to the
ideal value with time, which verifies the effectiveness of the proposed
method.

4.3. Portfolio with time-varying parameters

Conventional numerical methods are suitable for static portfolio
optimization problems. When applied to situation with time-varying
parameters, conventional solutions still treat the problem as static and
solve for all time instances, making conventional methods less efficient
when parameters vary with time continuously. In contrast, the recur-
rent neural network developed in this paper is essentially suitable for
dynamic problems. In this experiment, rather than using fixed values
for 𝜇̂(𝑡) and 𝛴̂(𝑡), we consider dynamic ones with averaged running data
in the past 𝑚 = 100 days to make runtime decision with time. As before,
the transaction cost rate 𝑐(𝑡) = 𝑐0𝟏 with 𝑐0 set at 𝑐0 = 0.1%. As shown in
Section 4.2, a smaller value of 𝜖 can reduce the time scale of the system
and speed up the convergence, we therefore choose 𝜖 = 5.0 × 10−5.
Figs. 3 and 4 show the experimental result for a time-varying parameter
situation using the proposed recurrent neural network based online
portfolio analysis. Note that the time-varying nature of the parameters
results in the consequence that the optimal portfolio also varies with
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Fig. 3. The time profile of portfolio weights obtained using recurrent neural network based online portfolio analysis with different values of 𝑘(𝑡), namely 𝑘(𝑡) = 0.1 for (a), 𝑘(𝑡) = 0.5
or (b), 𝑘(𝑡) = 1.0 for (c), and 𝑘(𝑡) = 1.5 for (d).
Fig. 4. The time profile of risks in terms of (𝑤T(𝑡)𝛴̂(𝑡)𝑤(𝑡))1∕2 and the corresponding profit 𝑤T(𝑡)𝜇̂(𝑡) obtained using recurrent neural network based online portfolio analysis with
different values of 𝑘(𝑡), namely 𝑘(𝑡) = 0.1 for (a), 𝑘(𝑡) = 0.5 for (b), 𝑘(𝑡) = 1.0 for (c), and 𝑘(𝑡) = 1.5 for (d).
ime. As shown in Fig. 3(a), with the weighting coefficient 𝑘(𝑡) set at
(𝑡) = 0.1, the calculated optimal weight changes dynamically and the
resented neural network always keep track of the optimal portfolio
ith time, allowing practitioners to make run-time decision which is
specially important in high frequency transactions. The corresponding
isk measure evaluated as (𝑤T(𝑡)𝛴̂(𝑡)𝑤(𝑡))1∕2 and the profit measure
valuated as 𝑤T(𝑡)𝜇̂(𝑡) are also shown in Fig. 4(a), which provides
7

guidance to investors on the risk and the potential return at the present
moment and the trend of them, implying possible opportunities for
making financial decisions. It is noteworthy that the parameter 𝑘(𝑡)
in model (14) serves as a tradeoff coefficient and it increases the
expected profit but also increases the risk if we choose a larger 𝑘(𝑡).
By increasing the value of 𝑘(𝑡) from 𝑘(𝑡) = 0.1 to 𝑘(𝑡) = 0.5, 𝑘(𝑡) = 1.0
and further to 𝑘(𝑡) = 1.5, we can evidently observe the increase of
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Fig. 5. Comparison of the profit and the risk of investment using different methods, including portfolio obtained using the proposed recurrent neural network (with different 𝑘(𝑡),
.e., 𝑘(𝑡) = 0.05, 𝑘(𝑡) = 0.025, 𝑘(𝑡) = 0.0125, 𝑘(𝑡) = 0.00625), the equal weight portfolio and the market index portfolio. (a) The risk profile. (b) The profit profile.
Fig. 6. Efficient frontier generated using the proposed recurrent neural network based on data at (a) 𝑡 = 150 and (b) 𝑡 = 200.
profits but also the increase of risks. Remarkably, as seen from Fig. 3(b)
and (c) between 𝑡 = 125 and 𝑡 = 175, it leads to the trend to select
an individual stock rather than a portfolio of them for the optimal
solution with increase of 𝑘(𝑡) from 0.5 to 1.0. This aggressive behavior
is due to the over-emphasize of the profit when individual stock profits
are limited. Although with the same 𝑘(𝑡), for other time region than
the time between 𝑡 = 125 and 𝑡 = 175, the change of 𝑘(𝑡) does not
result in much change of the portfolio weights. This happens when the
emphasize of profit can be satisfied by many individual stocks.

The advantage of the presented recurrent neural network solution
can be demonstrated by two widely adopted investment strategies,
namely equal weight portfolio and market index portfolio, as shown
in Fig. 5. The equal weight portfolio refers to the strategy of equally
distributing funds for stocks. The market index portfolio, also adopted
by DJIA, is a price averaged investment scheme, which distributes
funds to stocks with the price of each stocks as the weight. By properly
choosing the risk and profit tradeoff coefficient 𝑘(𝑡), we can achieve
higher profit but simultaneously with less risk (as evident in Fig. 5(a)
for less risk with the choice of 𝑘(𝑡) = 0.05, 𝑘(𝑡) = 0.025, 𝑘(𝑡) =
0.0125 𝑘(𝑡) = 0.00625 and higher profit as seen from Fig. 5(b)). This
demonstrates the advantage of optimal portfolio in investment and the
effectiveness of the proposed solution.
8

4.4. Dynamic tracking of efficient frontier

For two portfolios with the same profit but different risks, we can
easily define the one with the lower risk as more optimal. While for
two portfolios with one receiving higher risk and higher profit, and
the other one receiving less risk and less profit, it is difficult to clearly
define which one is superior. Pareto optimality is defined to deal with
this situation. For portfolio analysis in particular, the so called Pareto
efficient frontier is the optimum solution set defined in Pareto sense
with both risk and profit as objectives. For each point on the frontier,
we can declare that there is no other portfolio solution with the same
risk but with more profit, and there is no other with the same profit but
with less risk. This frontier is very useful for investors to make holistic
decisions. We can easily recover the efficient frontier by setting the risk
and profit tradeoff coefficient 𝑘(𝑡) as time varying in (14).

4.4.1. Efficient frontier for static investment
In this scheme, we consider the experiment with fixed mean and

variance of stock returns. We consider the portfolio problem at time
𝑡 = 150 and 𝑡 = 200 in particular based on 𝜇̂(𝑡) and 𝛴̂(𝑡) obtained
in Section 4.1 with data in the past 100 days. By running the neural
network for a duration of 10 with the coefficient 𝑘(𝑡) setting as linearly
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Fig. 7. Real-time efficient frontier generated using the proposed recurrent neural network for time-varying stock data.
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ime-varying from 0 to 2.0, we can readily obtain the Pareto efficient
rontier from the portfolio output by the recurrent neural network.
ig. 6(a) shows the obtained frontier for the data at time 𝑡 = 150.
he neural network is initially set with equal weight portfolios and it
volves to track the ideal efficient frontier as observed in the figure. By
hoosing a larger value of 𝜖, as shown in the figure, the transient can
e reduced and the neural network can track the frontier faster. Similar
erformance can be observed for 𝑡 = 200 in Fig. 6(b).

.4.2. Efficient frontier for dynamic investment
In this scheme, we consider the experiment with time-varying mean

nd variance of stock returns. We consider the whole time range from
= 100 to 𝑡 = 250 based on the estimated mean return 𝜇̂(𝑡) and the
ariance of the return 𝛴̂(𝑡) using data from the past 100 days. Note that
oth 𝜇̂(𝑡) and 𝛴̂(𝑡) vary with time in this situation and therefore, the
alues of 𝜇̂(𝑡) and 𝛴̂(𝑡) construct an individual efficient frontier at every
oment and the frontier itself is also time-varying. While, this frontier

s important to the run-time decision making in identifying trading
pportunities. To capture the dynamics of this efficient frontier, we set
he tradeoff weight 𝑘(𝑡) as 𝑘(𝑡) = (𝑠𝑖𝑛(2𝜋𝑡) + 1)∕2 which ranges from 0
o 1 with period 1, to capture chances in the time scale higher than
. The output of the proposed neural network constitutes the efficient
rontier as shown in Fig. 7. Note that due to the dynamic evolution of
he mean return and the variance matrix, the profit and risk for each
ndividual stocks also keep changing. In this highly dynamic situation,
he proposed method can adaptively find the optimal portfolio and
onstruct the efficient frontier, demonstrating the advantage of this
ethod in tracking dynamic frontiers and its great potential for high

requency transactions.

. Conclusions

To deal with time-varying data in portfolio analysis, a novel recur-
ent neural network is presented in this paper. The proposed method
pplies to two types of schemes, namely risk minimization with desired
9

s

eturn and portfolio optimization in Pareto sense, in a unified frame-
ork. The presented method is theoretically proved for its optimality
nd convergence to the ideal solution of portfolio problem and extends
he solution to time-varying sceneries with dynamic parameters. This
ethod is able to find the efficient frontier of portfolios in real time.
xperiments based on real stock data verify the effectiveness of the
roposed method. To our best knowledge, this is the first work using dy-
amic neural networks for the analysis of portfolios with time-varying
arameters with provable optimality.
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