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A B S T R A C T

Point cloud saliency detection is an important technique that support downstream tasks
in 3D graphics and vision, like 3D model simplification, compression, reconstruction
and viewpoint selection. Existing approaches often rely on hand-crafted features and
are only applicable to specific datasets. In this paper, we propose a novel weakly su-
pervised classification network, called C2SPoint, which directly performs saliency de-
tection on the point clouds. Unlike previous methods that require per-point saliency
annotations, C2SPoint only requires category labels of the point clouds during train-
ing. The network consists of two branches: a Classification branch and a Saliency
branch. The former branch is composed of two Adaptive Set Abstraction layers for
feature extraction and a Saliency Transform layer for learning saliency knowledge from
the classification network. The latter branch introduces a multi-scale point-cluster sim-
ilarity matrix for propagating the cluster saliency to each point within it, resulting in the
prediction of point-level saliency. Experimental results demonstrate the effectiveness of
our method in point cloud saliency detection, with improvements of 2% in both AUC
and NSS compared to state-of-the-art methods.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction1

The rapid advancement of radar scanning technology has2

greatly facilitated the acquisition of three-dimensional (3D)3

point clouds. However, due to their inherent sparsity and large4

number of points, preprocessing techniques are necessary to en-5

hance computational efficiency and reduce storage overheads.6

In this context, point cloud saliency detection (PCSD) emerges7

as a promising approach that simulates the capabilities of the8

human visual system (HVS), providing a powerful alternative9

to data-driven operations such as filtering to improve efficiency.10

⋆Only capitalize first word and proper nouns in the title.
∗Corresponding author: Tel.: +0-000-000-0000; fax: +0-000-000-0000;
e-mail: example@email.com (Corresponding Author Name)

1Footnote 1.

PCSD plays a crucial role in accurately identifying the most in- 11

formative regions on 3D objects, leading to improved perfor- 12

mance in downstream visual tasks [1, 2]. This capability has 13

significant implications for enhancing human-machine interac- 14

tion in saliency-based approaches [3]. PCSD also finds broad 15

applications across various domains, including reconstruction 16

[4, 5], compression [6, 7], simplification [8, 9], and viewpoint 17

selection [10, 11]. These applications leverage the insights pro- 18

vided by PCSD to drive advancements in point cloud analysis 19

and processing. 20

In recent years, several PCSD algorithms have been pro- 21

posed [12, 13, 14]. However, these methods predominantly rely 22

on hand-crafted features, which present limitations in terms of 23

generalization and detection accuracy. To overcome these chal- 24

lenges, researchers have explored the use of neural networks for 25

feature learning. They often conduct user studies to collect sub- 26

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
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jective selection data from participants, aiming to implement1

supervised methods for saliency calculation. The underlying2

premise is that saliency reflects human visual perception of 3D3

objects [15]. For instance, Lavoue et al. [16] conducted an4

eye-tracking experiment to map eye fixations to 3D objects and5

investigate the impact of various factors on human attention.6

However, the limited availability of training datasets hinders the7

applicability of deep neural networks to this approach.8

To address these challenges, we consider the possibility to9

develop a weakly supervised learning technique for 3D PCSD.10

We first observe that there is a strong correlation among visual11

recognition and saliency detection tasks, where the higher-level12

image features acquired through classification tasks prove ben-13

eficial for image saliency detection [17]. Neuroscience studies14

show that there are similarities in activated areas in the cortex15

during the processing of visual information [18, 19] and mutual16

enhancement [20] for both classification and saliency detection17

tasks. Visualizations of benchmark datasets [15] shown in Fig.18

1 reveal that objects of the same category tend to have similar19

saliency distributions. This indicates that the human visual sys-20

tem selectively attends to informative features for rapid object21

identification, without scrutinizing all the details [21]. It also22

suggests a close relationship between visual saliency percep-23

tion and object classification. Accordingly, [21] has developed24

a weakly supervised technique to transfer 2D multi-view object25

classification to mesh saliency. However, the approach cannot26

make use of the full 3D structure details of point cloud as it is27

2D view based. On the other hand, large existing 3D classifi-28

cation datasets, such as ModelNet40 [22], are readily available,29

which offer uniqueness and certainty of 3D object categories,30

and provide ample data for training deep neural networks. All31

these motivate us to ask the question: “Can we benefit from32

well-trained 3D point cloud object classification tasks and use33

their high-level features directly to transfer learning 3D point-34

level saliency, through weak supervision?”35

To this end, we propose C2SPoint, a Classification-to-36

Saliency network that leverages weakly supervised learning for37

3D PCSD. Our network uses PointNet++ [23] as the backbone38

and consists of two branches: a classification branch and a39

saliency branch. The classification branch includes 1) cluster40

saliency extraction and 2) point-cluster similarity calculation,41

while the saliency branch utilizes a multi-scale point-cluster42

similarity matrix for saliency prediction. Training C2SPoint43

solely requires 3D object categories, obviating the need for te-44

dious manual saliency annotations on every point. Our study45

also shows improvement against existing work. Our main con-46

tributions include:47

• We propose C2SPoint, a novel neural network for 3D point48

cloud saliency detection. It is trained via weak supervision,49

leveraging only point cloud category labels without the need50

for point-wise saliency annotations.51

• A multi-scale point-cluster similarity matrix is introduced to52

capture the relationships between points and clusters at mul-53

tiple scales, enabling the prediction of point-level saliency54

from cluster saliency.55

• Our experimental results demonstrate the superiority of the56

proposed method over state-of-the-art algorithms for point57

cloud saliency detection. 58

2. Related work 59

Feature extraction is a critical aspect of Point Cloud Saliency 60

Detection. Existing techniques in PCSD can be classified into 61

two categories based on how features are computed: hand- 62

crafted detectors and learning-based detectors. Among these 63

methods, transfer learning for 3D saliency detection has gained 64

attention and has motivated our work in this paper. 65

2.1. Saliency detection based on hand-crafted features 66

Many existing point cloud saliency detection algorithms em- 67

ploy hand-crafted features to construct descriptors for analyz- 68

ing point cloud saliency [12, 13, 14]. Prior research by Guo et 69

al. [13] introduced a saliency detection algorithm that leverages 70

covariance descriptors, demonstrating high discrimination and 71

robustness. By utilizing techniques like the sigma-point method 72

and principal component analysis (PCA), their approach signif- 73

icantly improved saliency detection efficiency. Other methods 74

[12, 14] have adopted a cluster-to-point mechanism to enhance 75

the efficiency of saliency computation. These approaches in- 76

volve initially simplifying the point cloud into clusters, where 77

each cluster is represented by a cluster head and aggregated fea- 78

tures from local points. Subsequently, cluster saliency is com- 79

puted based on cluster-level features and propagated to indi- 80

vidual points using diverse strategies. For example, Tasse et 81

al. [12] propose a point-cluster probability matrix to convert 82

cluster saliency into point-wise saliency, while Ding et al. [14] 83

incorporate a random walk ranking algorithm to assign clus- 84

ter saliency to individual points. These cluster-based methods 85

align with human visual attention patterns, which tend to focus 86

on local regions rather than specific target points within a 3D 87

object. Motivated by the effectiveness of these approaches, we 88

employ a cluster-to-point saliency computation in our work to 89

leverage these advantages. 90

Using hand-crafted features, these methods do not require 91

large training data and manual saliency annotation. However, 92

the expressiveness of the hand-crafted features is limited and 93

tends to be susceptible to noise. In this study, we consider a 94

weakly supervised learning approach to perform saliency de- 95

tection, which is robust against noise. Our method does not 96

require manual saliency annotation and shows superior results. 97

2.2. Saliency detection based on learning features 98

Inspired by the success of deep learning techniques in image 99

saliency detection, recent research has shifted towards learning- 100

based Point Cloud Saliency Detection, surpassing traditional 101

hand-crafted algorithms. However, the sparse, irregular, and 102

unordered nature of 3D point clouds poses challenges to deep 103

learning architectures. These architectures are predominantly 104

designed for processing and analyzing regular data, such as im- 105

ages and videos, which have inherent spatial structures. The 106

lack of explicit spatial structures in 3D point clouds makes it 107

difficult to directly apply deep learning techniques developed 108

for regular data [24]. Many early techniques convert 3D point 109

clouds into formats that are compatible with convolution neural 110
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Fig. 1. The visualization of the points of interest selected by users in the datasets provided by Chen et al. [15].

networks, and have received considerable attention. One com-1

mon approach encodes irregular points as feature vectors. It en-2

ables neural networks to process and analyze the point clouds3

effectively. For example, Atmosukarto and Shapiro [25] used4

a histogram of adjacent low-level features for each vertex and5

a classifier to label points as salient or non-salient. However,6

their manual annotation approach is time-consuming. Chen et7

al. [15] trained a regression model to predict the distribution8

of Schelling points from a dataset of 400 meshes. Wang et al.9

[3] designed a 5-layer convolutional neural network to predict10

human gaze on 3D objects. Limited training data would lead to11

underfitting in these networks. Shu et al. [26] devised a method12

for detecting 3D points of interest using projective neural net-13

works. Zheng et al. [27] uses differentiable point dropout, relo-14

cating points to the center of objects to determine their impor-15

tance ranking for classification. However, this approach over-16

looks the mechanism of human attention distribution on specific17

objects, focusing solely on the points’ impact on the classifica-18

tion task. Hence, it is not appropriate to directly refer to the19

derived per-point importance as point saliency.20

Leveraging learned features, the above methods often require21

large training data and manual saliency annotation. By contrast,22

we consider a weakly supervised approach to transfer learning23

saliency detection from the point cloud classification task. Our24

method solely requires 3D object categories, eliminating the25

need for tedious manual saliency annotations on every point.26

2.3. Transfer Learning for 3D Saliency Detection27

Traditional machine learning methods typically assume that28

the training and testing data belong to the same domain, shar-29

ing similar feature spaces and data distributions. However,30

in cross-domain and cross-distribution tasks, where acquiring31

training data and manual annotation are challenging, traditional32

learning-based approaches face significant obstacles. To ad-33

dress this, transfer learning methods [28, 29, 30, 31] have34

gained attention for leveraging datasets from other domains to35

learn relevant knowledge for the target task, offering robustness36

and flexibility.37

3D saliency detection is a target task that often faces lim-38

itations in training datasets. Existing 3D saliency datasets39

with point-wise annotations are small, containing only a max-40

imum of 400 objects from 20 categories [15], which is insuf-41

ficient for effective network training. Song et al. [21] pro- 42

pose a multi-view convolutional neural network for saliency ex- 43

traction, leveraging transfer learning to transform classification 44

knowledge into mesh saliency. Inspired by this idea, we present 45

a novel algorithm for Point Cloud Saliency Detection based on 46

weak supervision, which only requires object-level labels (i.e., 47

category labels) and eliminates the need for expensive point- 48

wise annotation. Our work differs from [21] in three fundamen- 49

tal aspects. First, our neural network directly processes the in- 50

put point clouds, while their method takes multi-view images as 51

input and requires additional data preprocessing before training. 52

Second, we focus on cluster saliency rather than view saliency, 53

which allows us to capture and preserve the 3D structure infor- 54

mation of objects. Third, we design a multi-scale point-cluster 55

similarity matrix to describe the correlation between points and 56

clusters and propagate the cluster saliency to each point. This 57

matrix preserves multi-scale details, representing a reliable 3D- 58

to-3D correspondence, while the 2D-to-3D correspondence in 59

[21] may be less accurate in regions with low local vertex den- 60

sity. 61

3. Method 62

Our novel semi-supervised network, namely C2SPoint, con- 63

sists of a Classification branch and a Saliency branch (see Fig. 64

2). The Classification branch utilizes two Adaptive Set Abstrac- 65

tion (ASA) layers for feature extraction and a Saliency Trans- 66

form (ST) layer to learn saliency information from the classifi- 67

cation network. The Saliency branch introduces a multi-scale 68

point-cluster similarity matrix for point-level saliency predic- 69

tion. During training, C2SPoint directly operates on the raw 70

point cloud and learns saliency information from the classifica- 71

tion task. During deployment, the workflow involves four main 72

steps: 1) point cloud feature extraction; 2) cluster saliency eval- 73

uation; 3) multi-scale point-cluster similarity computation; and 74

4) point-wise saliency calculation. 75

3.1. Classification branch 76

The Classification branch of C2SPoint, as depicted in Fig. 2, 77

adapts the PointNet++ backbone to promote saliency. It con- 78

sists of two key components: the adaptive set abstraction layer 79

(ASA) and the saliency transform layer (ST). 80
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Fig. 2. The proposed method framework. The upper half illustrates the Classification branch, which consists of two Adaptive Set Abstraction (ASA) layers
for feature extraction and a Saliency Transform (ST) layer for learning saliency information from the classification network. Each ASA layer comprises
an Adaptive Clustering (AC) module and a Feature Extraction (FE) module. The Saliency Transform (ST) layer includes a Cluster Saliency (CS) module
and a Saliency-based Pooling (SP) module. The bottom half illustrates the saliency branch, which introduces a multi-scale point-cluster similarity matrix
for point-level saliency prediction. The circled W symbol represents the computation of point-cluster similarity, indicating the correlation between clusters
and points.

The ASA layer extracts multi-scale point cloud features using1

the adaptive clustering module (AC) and the feature extraction2

module (FE). We employ two ASA layers to balance compu-3

tation cost and the ability to adaptively extract informative fea-4

tures from the point cloud. Each ASA layer takes an N× (3+D)5

matrix as input, representing N points with 3D coordinates and6

D-dimensional point features. It outputs an N′ × (3 + D′) ma-7

trix representing N′ clusters with 3D coordinates and new D′-8

dimensional cluster features that capture local context.9

The ST layer leverages knowledge from the classification10

network to learn saliency information. It utilizes the cluster11

saliency module (CS) and the saliency-based pooling module12

(SP). The ST layer takes the outputs of all ASA layers as input,13

which is a matrix of size D′ × N′ for a given point cloud. Each14

column of this matrix represents a feature descriptor of one15

cluster. The ST layer then produces a re-weighted D′ × N′ de-16

scriptor that represents the entire point cloud. It is important to17

note that the cluster saliency output by the CS module is further18

utilized in the Saliency branch to generate point-wise saliency.19

Finally, the Classification branch outputs a k-dimensional vec-20

tor to predict the category of the given point cloud.21

In the following sections, we will provide detailed explana-22

tions of these sub-modules.23

3.1.1. Adaptive Set Abstraction layer24

Adaptive clustering module. This module aims to assign25

each point to a cluster based on the proximity of points to the26

cluster center in both Euclidean space and descriptor space. The27

architecture follows the backbone of PointNet++ [23] due to its28

excellent performance in classification and direct point process-29

ing. However, the clustering mechanism of PointNet++, which30

uses Farthest Point Sampling and ball query, only considers Eu-31

clidean distance when assigning points to clusters, resulting in32

unstable downsampled points. For saliency detection, we be-33

lieve that points within the same cluster should be close not only34

in their positions but also in their features. To address this, we 35

propose an adaptive clustering (AC) module that incorporates 36

both Euclidean and descriptor distance. 37

Given a 3D point cloud P = {Pi|i = 1, . . . ,N} ⊂ R3+D as 38

input, the output of this module is N′ clusters with a data size 39

of N′ × K × (3 + D). The AC module is designed as follows: 40

Firstly, we employ farthest point sampling to select N′ points 41

from the point cloud as the initial sampling subset Cinit = 42{
cinit

j | j = 1, . . . ,N′
}
, ensuring that the selected points cover the 43

point cloud as widely as possible. The cluster heads are initially 44

defined as cinit
j . 45

Secondly, we select the M nearest points using the k-Nearest
Neighbor algorithm to construct the local neighborhood and
calculate the initial features for each cluster:

f init
(
cinit

j

)
=

1
M

∑
pm∈δ

(
cinit

j

) f (pm) (1)

where pm refers to any point in the local neighborhood δ(cinit
j ) 46

of the cluster head cinit
j . Note that f (·) represents the feature 47

descriptor of points. In the first ASA layer, f (·) represents the 48

original geometric features of the input point cloud, i.e., nor- 49

mal vectors. In the second ASA layer, f (·) denotes the output 50

features learned from the previous ASA layer. 51

It is worth noting that the k-nearest neighbor algorithm, 52

which only uses Euclidean distance, is not sufficient to mea- 53

sure closeness in descriptor space. To capture the local geomet- 54

ric feature differences of the point cloud, we introduce the chi- 55

squared distance into the distance metric, following the meth- 56

ods in [12, 14]. This inclusion reduces the differences in fea- 57

ture descriptors within a cluster, resulting in greater similarity 58

between points in the same cluster in terms of spatial location 59

and geometric structure. Thus, the average descriptor in Eq. 1 60

adequately describes the local neighborhood information of the 61

cluster head. The distance metric D(c, p) is calculated as: 62
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D (c, p) =
∥u(c) − u(p)∥

maxu
+ λ
χ2( f init(c), f init(p))

max f
(2)

where u(·) represents the spatial coordinate, maxu and max f

are the maximum distances from all points to the cluster head
c in Euclidean and descriptor space, respectively. λ is used to
assign different importance to spatial distance and chi-square
distance based on their contributions to the clustering results.
∥·∥ denotes the Euclidean distance, and χ2(·) is the descriptor
distance defined as:

χ2( f init(c), f init(p)) =
B∑

b=1

( f init
b (c) − f init

b (p))2

f init
b (c) + f init

b (p)
(3)

where B represents the number of bins used for dividing the1

descriptor f init.2

Next, the existing subsets are used to calculate the cluster
center co as follows:

co =
1
M

M∑
m=1

pm (4)

Note that the cluster center may not correspond to an existing3

point in P. Therefore, it is necessary to re-determine the closest4

point to the cluster center as the new cluster head.5

Finally, the final cluster set C = {c| j = 1, . . . ,N′} and its6

corresponding subset Cδ(c j) = {p j1 , p j2 , . . . , p jM } are acquired7

by determining the neighborhood of the cluster head.8

Feature extraction module. The feature extraction mod-9

ule aims to fuse the features of the local neighborhood around10

the cluster head to obtain the cluster feature fc. It takes an11

N′ × K × (3 + D) tensor as input and outputs an N′ × (3 + D′)12

matrix f of N′ clusters with 3-dimensional coordinates and new13

D′-dimensional feature vectors.14

Firstly, the spatial coordinates of all points in the cluster are
normalized to form a local neighborhood space with the cluster
head as the origin:

û(pδ) = u(pδ) − u(c) (5)

where pδ ∈ Cδ(c) and û(·) denotes the normalized coordinate.15

Secondly, a shared Multi-Layer Perceptron (MLP) is utilized
to encode the features of each point in the cluster independently.
The cluster feature is formulated as:

fc = MAX{MLP(û(pδ) ⊕ f (pδ))} (6)

where ⊕ represents feature concatenation, and MAX denotes16

the max-pooling operation.17

The cluster feature fc captures the geometric structural infor-18

mation of the cluster’s local region and can be effectively used19

to calculate cluster saliency. Note that an additional feature ex-20

traction layer is introduced after the second ASA layer (Fig. 2).21

This additional layer’s purpose is to extract a high-dimensional22

feature f ∗ that provides a better description of the clustering23

results obtained by C2SPoint.24

3.1.2. Saliency Transform layer 25

Cluster saliency module. The CS module takes the out-
puts of all ASA layers (an N′ ×D′ matrix representing the clus-
ter feature) as input and outputs an N′-dimensional vector to
the next layer. The concept of cluster saliency is inspired by
the human visual system (HVS), which suppresses responses
to frequently occurring features while maintaining sensitivity
to unique and deviating features from the norm [32, 33]. De-
viating features in a region are considered salient for the HVS.
Therefore, the cluster saliency sc is calculated by measuring the
dissimilarity of Euclidean distances between cluster features.
The saliency of a cluster is determined by the sum of dissimi-
larities and can be formulated as:

d(c j, ck) =
∥∥∥ f ∗(c j) − f ∗(ck)

∥∥∥ ( j , k) (7)

sc j =
∑
j,k

d(c j, ck) (8)

where d(c j, ck) represents the dissimilarity between the feature 26

of cluster c j and ck, with j, k ∈ {1, . . . ,N′}. sc j denotes the 27

cluster saliency of cluster c j, which will be used for predicting 28

point-level saliency in the Saliency branch. 29

Saliency-based pooling module. The Saliency-based
pooling module integrates saliency information into the clas-
sification network to enhance its performance. Salient regions
in 3D objects are typically unique and crucial for distinguish-
ing categories [32]. Therefore, the saliency of a region should
positively correlate with its impact on the classification result.
Motivated by this, the cluster feature f ∗ is reweighted using the
cluster saliency sc as the weight to obtain the global feature G,
which represents the input point cloud effectively:

G = sc · f ∗ (9)

Finally, the global feature G is fed into a fully connected 30

layer, enabling it to participate in the training process of the 31

classification network. By integrating cluster saliency sc into 32

the classification task, the influence of salient regions on the 33

classification results is increased. Furthermore, changes in the 34

classification results also impact the cluster saliency during 35

backpropagation. This bidirectional process establishes a close 36

relationship between classification and saliency knowledge, en- 37

suring reliable classification-to-saliency transfer learning. 38

3.2. Saliency branch 39

This branch computes point-level saliency using a multi- 40

scale point-cluster similarity matrix. This matrix captures the 41

correlation between points and clusters based on multi-scale 42

features. At each ASA layer, the Saliency branch takes an 43

N× (3+D′) matrix of point features and an N′× (3+D′) matrix 44

of cluster features as input. It produces an N × N′ similarity 45

matrix, which quantifies the similarity between each point and 46

each cluster. This similarity matrix is utilized to measure the 47

similarity of a point p to each cluster. Finally, the point-level 48

saliency is computed by combining the saliency values from 49

all clusters through a linear combination. This aggregation of 50

saliency values enables a comprehensive assessment of the sig- 51

nificance of a point within the point cloud. 52
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3.2.1. Multi-scale point-cluster similarity1

Tasse et al. [12] introduced a point-cluster probability to cap-2

ture the likelihood of a point belonging to a cluster, prioritizing3

the influence of the most probable cluster on point saliency.4

However, their approach overlooks local details within clus-5

ters. To address this limitation, we use multi-scale features to6

calculate a point-cluster similarity matrix. This matrix reflects7

the relationship between each point and cluster, capturing fine-8

grained details across different scales.9

Single-scale point-cluster similarity. Inspired by Tasse
et al.’s method [12], we construct an auxiliary weight matrix ξ
to analyze the relationship between each point p and cluster c
at each scale. In the propagation step, we aim to prioritize the
influence of the most likely correlated cluster on the saliency of
point p. To achieve this, we calculate the Euclidean distance be-
tween the spatial coordinates of a point and each cluster, as well
as the Chi-square distance between the descriptor of a point and
each cluster. This information is incorporated into the definition
of the auxiliary weight matrix at scale r as follows:

ξr(p, c) =
e−(λu∥ ˆu(p)−u(c)∥2−λ f χ

2( fr(p), fr(c)))

σuσ f
(10)

Here, ξr(·, ·) represents the auxiliary weight matrix at scale10

r. The parameters λu and λ f determine the importance of the11

spatial coordinates and geometric features, respectively, and we12

set λu = 1 and λ f = 5 in our method. Also, σu represents the13

mean Euclidean distance of all points to the center position of14

the point cloud, while σ f represents the mean chi-square dis-15

tance of all points to the global descriptor of the point cloud.16

By utilizing the constructed auxiliary weight matrix ξ, we
define the single point-cluster similarity matrix as:

ξ
′

r(p, c) =
ξr(p, c)∑

q∈P ξr(q, c)
(11)

After obtaining the single point-cluster similarity matrix
ξ′r(p, c), we further normalize each row to obtain a matrix with
values ranging between 0 and 1. This normalization step en-
sures that the weights reflect the relative influence of each clus-
ter on the saliency of a given point at the specific scale. The
normalized matrix is defined as follows:

Wr(p, c) =
ξ′r(p, c)∑

ck∈C ξ
′
r(p, ck)

(12)

Here, Wr(p, c) represents the normalized point-cluster sim-17

ilarity weight between point p and cluster c at scale r. The18

denominator in the equation is the sum of all normalized simi-19

larities for point p across all clusters ck.20

Note that our algorithm takes into account the influence of21

neighboring clusters on points. Points that are located far away22

from a cluster in terms of spatial distance are unlikely to belong23

to that cluster. To handle this, we introduce a distance threshold,24

which is set as 1% of the radius of the bounding sphere of the25

point cloud. When the distance between point pi and cluster26

c j exceeds this threshold, the point-cluster similarity is set to 0,27

indicating no influence from the distant cluster, i.e., Wr(pi, c j) =28

0 if distance(pi, c j) > threshold.29

By incorporating this distance-based constraint, we ensure 30

that the point-cluster similarity accurately captures the local re- 31

lationships between points and their nearby clusters, while dis- 32

regarding distant clusters that are unlikely to have a significant 33

influence on the saliency of a given point. 34

Multi-scale point-cluster similarity. Multi-scale analysis
provides a more comprehensive understanding of the input data
at different levels of detail [34], which can lead to more com-
pact and informative representations. Based on this, a multi-
scale point-cluster similarity fusion mechanism is proposed to
aggregate the similarity of points p and clusters c computed by
fine-grained and coarse-grained features. Specifically, a nonlin-
ear weighted mechanism is adopted to implement the fusion of
point-cluster similarity at each scale.

Wms =
∑

r

(max(Wr) −mean(Wr))2Wr (13)

where max(·) is the maximum similarity and mean(·) is the av- 35

erage similarity at scale r. This ensures that the similarity at 36

the scale with the largest peak-valley difference is given greater 37

weight in the final multi-scale point-cluster similarity Wms. 38

Point-cluster similarity transfer. There are multiple 39

adaptive set abstraction (ASA) layers in the Classification 40

branch of C2SPoint, which are implemented to continuously 41

expand the receptive field of feature extraction and learn deeper 42

structural information. Therefore, the similarity for each ASA 43

layer needs to be further transferred to describe the closeness 44

between the input point cloud P and the final clustering result 45

C of all the ASA layers. 46

Let W l
ms represent the similarity in the l-th adaptive set ab-

straction layer, where l = 1, 2, . . . , L. It can be inferred that:

W1
ms ∈ RN×N1 ,W2

ms ∈ RN1×N2 , . . . ,WL
ms ∈ RNL−1×NL (14)

where N > N1 > · · · > NL = N′. This means that the number
of cluster centers decreases with the stacked ASA layers until
the final N′ cluster centers represent N′ clusters. For the input
point cloud P and the cluster CL (i.e., the final cluster C) output
by the L-th ASA layer (i.e., the last ASA layer), the similarity
W∗ can be transferred by performing matrix multiplications on
the intermediate results at each ASA layer.

W∗ = W1→L
ms = W1

ms ·W
2
ms · · ·W

L
ms (15)

3.2.2. Point-level saliency computation 47

Firstly, the ModelNet40 dataset [22] is utilized to train the 48

Classification branch of C2SPoint, which serves two purposes: 49

1) training the network for the classification task, and 2) ex- 50

tracting saliency knowledge from the saliency-based pooling 51

module. Subsequently, the trained model is employed to ex- 52

tract saliency predictions. The saliency computation process 53

consists of three steps: 54

Cluster saliency extraction. The original point clouds 55

are fed into the network, and the final clustering result is ob- 56

tained through two ASA layers. The cluster saliency sc is then 57

calculated in the saliency transform layer of the Classification 58

branch. (See Sec. 3.1) 59
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Point-cluster similarity calculation. Single-scale point-
cluster similarity is computed at each ASA layer, represent-
ing a mini-propagation of saliency from the output subsampled
points (clusters) to the input points. In this process, the input
data of each layer serves as the original point set for computing
point saliency, while the output represents the clustering results
partitioned by the AC module within that layer. Notably, the
input features fin are further processed by a shared Multi-Layer
Perceptron (MLP) to ensure a consistent number of channels
between the input and output features at each layer.

f̂in = mlpl( fin) (16)

Next, f̂in is combined with the descriptor of cluster Cl gener-
ated by the l-th AC module to calculate the point-cluster simi-
larity matrix W l for that ASA layer.

W l = Wms(pin, pout) (17)

where pout refers to the descriptor of cluster Cl for better clarity.1

Finally, the similarity W∗ between the input point cloud P2

and the final clusters C is generated by multiplying the similar-3

ity matrices W computed at each ASA layer. (See Sec. 3.2)4

Point-level saliency computation. Point-level saliency is
computed by propagating the saliency of clusters to the saliency
of points using the multi-scale point-cluster similarity matrix
W∗. This can be represented as:

s = W∗sc (18)

Here, W∗ represents the point-cluster similarity matrix that5

describes the correlation between points and clusters. By mul-6

tiplying W∗ with the cluster saliency vector sc, we ensure that7

the saliency of a point p is most influenced by the clusters it is8

most likely to belong to.9

4. Experiments10

4.1. Datasets, Experiment Setups, and Evaluation Metrics11

Training datasets. For training the proposed C2SPoint, we12

utilize the ModelNet40 dataset [22], which consists of 12,31113

CAD models from 40 categories. We follow the official split,14

using 9,843 shapes for training and 2,468 shapes for testing.15

Benchmark datasets. To evaluate the performance of our16

proposed method, we employ the benchmark dataset provided17

by Chen et al. [15]. This dataset comprises saliency distribu-18

tion maps and human-selected interest points for 400 3D objects19

across 20 categories.20

Implementation details. We implement C2SPoint using Py-21

Torch. The Adam optimizer is utilized with a momentum of 0.922

and weight decay set to 0.0001. The training process spans 20023

epochs, with a batch size of 12. We set the initial learning rate24

to 0.001. The configuration of clusters, radius, and MLPs fol-25

lows that of PointNet++ [23]. Specifically, the channel of the26

last MLP in C2SPoint is set to (256, 512, 1024).27

Evaluation Metrics. The accuracy of the proposed algorithm28

is evaluated using commonly used metrics in saliency detection,29

namely AUC, NSS, and LCC [35]. AUC is an evaluation met-30

ric specifically designed for saliency detection tasks. It focuses31

Table 1. Classification accuracy on ModelNet40 [22].
Network Accuracy%

PointNet [36] 89.2
PointNet++ [23] 91.9
CfS-CNN [21] 88.3
C2SPoint(ours) 91.0

on the ranking of saliency values while disregarding non-salient 32

regions. The metric is calculated by determining the area under 33

the ROC curve. NSS, on the other hand, is a widely employed 34

measure for evaluating saliency detection algorithms. It quanti- 35

fies the saliency value of fixation points along the eye-scanning 36

path of each user. LCC, which stands for Linear Correlation 37

Coefficient, is utilized to assess the strength of the linear rela- 38

tionship between the saliency values generated by the compu- 39

tational model and the ground truth. 40

4.2. The transferability from classification to saliency 41

Classification results. Since C2SPoint is essentially a 42

network for classification, it is necessary to evaluate the effec- 43

tiveness on a classification task. In Table 1, we compared our 44

method with three commonly used networks for 3D classifica- 45

tion, namely [21, 23, 36]. These networks were selected for two 46

main reasons: First, we utilized PointNet++ as the backbone 47

for our network, and comparing with these networks allows us 48

to assess the impact of incorporating saliency into the classifi- 49

cation process. Second, CfS-CNN is another network trained in 50

a weakly supervised manner, but it is based on multi-view im- 51

ages and work on meshes only. We try to compare with [21] on 52

a classification task to show the effect of preserving the inherent 53

3D characteristics in our method. 54

When compared to PointNet [36] and CfS-CNN [21], our 55

work, C2SPoint, demonstrates improved classification accuracy 56

by 0.8% and 2.7%, respectively. The superior performance of 57

C2SPoint can be attributed to its multi-scale mechanism, which 58

captures detailed local structures and surpasses PointNet [36] 59

in classification. Additionally, by utilizing the original point 60

clouds as input instead of multi-view 2D images, C2SPoint 61

preserves the inherent 3D characteristics of the points, leading 62

to more accurate classification results compared to CfS-CNN 63

[21]. However, in comparison to PointNet++ [23], C2SPoint 64

exhibits a slight decrease in classification accuracy. Although 65

integrating cluster saliency into C2SPoint enhances the influ- 66

ence of salient regions on classification results, it does not com- 67

pletely eliminate the impact of low-salient regions. Neverthe- 68

less, C2SPoint demonstrates excellent overall performance in 69

classification, showcasing the reliability of the network. 70

High-Drop test. The High-Drop test is conducted to ex- 71

amine the influence of saliency on classification results. In this 72

experiment, we utilize ModelNet40 [22] to perform the test. 73

The proposed algorithm is employed to compute the point-wise 74

saliency, and subsequently, the salient points are systematically 75

removed to assess their impact on classification. 76

Fig. 3 presents the classification accuracy before and after 77

the High-Drop test for all categories in ModelNet40 [22]. The 78

results reveal that the removal of these salient points leads to a 79



8 Preprint Submitted for review /Computers & Graphics (2023)

decrease in classification accuracy exceeding 70%. Addition-1

ally, prior to the point removal, the accuracy of 20 categories2

remains above 80%, while after the removal, less than half of3

the models maintain an accuracy above 80%. These findings4

underscore the significant influence of the salient points identi-5

fied by the proposed algorithm on the classification results.6

In Fig. 4, the visual illustration demonstrates the impact of7

removing salient points (highlighted in red) on the classifica-8

tion results. It is evident that the removal of these salient points9

leads to incorrect classification outcomes, which contradicts hu-10

man visual perception. These results highlight the significance11

of salient regions in distinguishing objects, thereby affirming12

the feasibility of leveraging saliency information from classifi-13

cation knowledge.14

4.3. Quantitative evaluation15

Here, we further compared our method with several existing16

approaches, namely handcrafted based methods [12, 13, 14] and17

learning based approach [26].18

Table 2 illustrates the superior performance of our algorithm19

compared to state-of-the-art methods [12, 13, 14, 26], achiev-20

ing the highest AUC value in 65% of the categories. Notably,21

learning-based methods, including our algorithm, demonstrate22

better performance than all other methods, exhibiting higher23

AUC scores across most object categories. This finding un-24

derscores the effectiveness of deep learning-based saliency de-25

tection across diverse categories. Additionally, our algorithm26

showcases significant improvements of 22%, 18%, and 13% re-27

spectively on the Fish, Spring, and Teddy models when com-28

pared to the algorithm proposed by Shu et al. [26].29

Also, Table 3 presents the quantitative enhancements of our30

algorithm over Shu et al.’s approach [26], with a 2% increase31

in AUC value and a 2% higher NSS value. When compared to32

handcrafted based methods [12, 13, 14], our algorithm demon-33

strates superior performance.These results clearly show that our34

algorithm is more accurate in 3D point cloud saliency detection.35

4.4. Qualitative evaluation36

Comparison with point-based saliency algorithms. In37

Fig. 5, our proposed algorithm is compared to point-based algo-38

rithms. The algorithm presented in [12] fails to correctly detect39

the palm of the hand. This can be attributed to the palm being40

widely distributed with low global rarity, making it less salient41

to the human visual system. The algorithm proposed by Guo et42

al. [13] identifies the contour of the teddy as salient. However,43

human eyes tend to focus more on the face and limbs of the44

teddy. The method by Ding et al. [14] does not perform well45

on cylindrical shapes, such as the octopus feet and chair legs.46

In most 3D objects, our algorithm achieves saliency detection47

results that are more consistent with the ground truth [15], such48

as accurately identifying the feet of the octopus and chair, as49

well as the limbs of the teddy. However, our algorithm exhibits50

weaker performance on the egea and vase models. It is possi-51

ble that the classification accuracy of C2SPoint does not reach52

100%, resulting in learning features that are not entirely accu-53

rate for these particular 3D objects and subsequently leading to54

less satisfactory saliency detection results.55

Comparison with mesh-based saliency algorithms. As 56

shown in Fig. 6, our algorithm successfully detects the salient 57

regions corresponding to the eyes and ears of the bunny, which 58

aligns with human visual perception. Similarly, our algorithm 59

accurately identifies the horns and claws of the dragon as salient 60

regions. In contrast, the mesh-based saliency algorithms ex- 61

hibit limitations in their performance. For instance, the algo- 62

rithm by Wu et al. [37] heavily relies on parameter settings 63

and fails to capture certain salient regions, such as the eyes of 64

the dragon model. The algorithm proposed by Leifman et al. 65

[38] generates excessive salient regions, while the algorithm in- 66

troduced in [39] produces unreasonable salient regions in the 67

dragon model due to its dependency on pre-segmentation. In 68

comparison, our proposed method achieves accurate detection 69

results without relying on topological structures, outperforming 70

the aforementioned mesh-based algorithms 71

Gallery of saliency detection results. In Fig. 7, we 72

can observe that the salient regions detected by our algorithm 73

exhibit strong consistency with the pseudo ground truth [15]. 74

Furthermore, our algorithm demonstrates robust performance 75

in saliency detection, even when applied to testing datasets 76

that were not included in the network training. This outcome 77

highlights the effectiveness of utilizing learning-based features, 78

which significantly enhances the adaptability of our algorithm 79

to objects across diverse categories 80

4.5. Ablation study 81

To evaluate the effectiveness of the Cluster Saliency mod- 82

ule in C2SPoint, we conducted an ablation study by replac- 83

ing the Saliency Transform layer with max pooling. The clus- 84

ter saliency was set to 1, while all other conditions remained 85

the same. This ablated version calculated point saliency solely 86

based on classification knowledge. Depicted in Table 4, our 87

algorithm with the Cluster Saliency module achieved a higher 88

cluster saliency of 0.157 in AUC, 0.056 in NSS, and 0.026 in 89

LCC compared to its ablated version. They show that the Clus- 90

ter Saliency module effectively extracts saliency information. 91

Furthermore, we validated the effectiveness of the point- 92

cluster similarity matrix by combining the cluster saliency with 93

the clustering results to generate saliency scores for all points. 94

Specifically, the saliency scores of points within a cluster were 95

set to the cluster saliency (i.e., sp = sc(p ∈ c)). Quantitative 96

evaluations in Table 4 demonstrate that without using point- 97

cluster similarity propagation, the AUC decreased by 0.392, 98

NSS decreased by 0.344, and LCC decreased by 0.045. These 99

findings indicate that the point-cluster similarity matrix effec- 100

tively improves the saliency detection performance. 101

4.6. Runtime analysis 102

Table 5 illustrates the runtime required for calculating the 103

saliency of various 3D objects discussed in this study. The run- 104

time measurements were conducted on a workstation equipped 105

with an Intel 2.6GHz CPU and a TITAN XP GPU with 12GB of 106

memory. Interestingly, as the number of points in the objects in- 107

creases, the corresponding computation time shows a relatively 108

slow growth. For example, despite the Armadillo having ap- 109

proximately 54 times more points than the Cow, the saliency 110
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Fig. 3. High-Drop experiment on ModelNet40 dataset [22]. Each subfigure shows the classification accuracy results. The blue bars represent the accuracy
of C2SPoint, the green bars represent the accuracy after the High-Drop experiment, and the red dashed lines indicate the 80% accuracy benchmark.

Table 2. Comparison of AUC scores in each category between our method and other state-of-the-art methods. Here, [12, 13, 14] are hand-craft feature
based methods and [26] is learning based method. Bold text means the best performing technique.
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Ours 0.68 0.68 0.48 0.77 0.76 0.67 0.71 0.69 0.68 0.66 0.50 0.85 0.72 0.80 0.75 0.51 0.71 0.69 0.69 0.83
Shu [26] 0.65 0.65 0.65 0.70 0.67 0.70 0.62 0.69 0.74 0.66 0.63 0.63 0.67 0.62 0.69 0.67 0.68 0.71 0.68 0.70

Ding [14] 0.65 0.68 0.56 0.73 0.68 0.56 0.52 0.65 0.65 0.64 0.56 0.79 0.72 0.55 0.74 0.60 0.68 0.69 0.72 0.80
Guo [13] 0.59 0.64 0.53 0.60 0.59 0.59 0.56 0.65 0.57 0.61 0.59 0.66 0.59 0.55 0.66 0.63 0.70 0.62 0.63 0.61

Tasse [12] 0.57 0.60 0.52 0.62 0.60 0.57 0.54 0.63 0.56 0.61 0.59 0.66 0.60 0.55 0.65 0.62 0.68 0.60 0.62 0.60

Table 3. Performance on the benchmark dataset in terms of area under
ROC curve (AUC), Normalized Scanpath Saliency (NSS), and Linear Cor-
relation Coefficient (LCC).

Ours Shu [26] Ding [14] Guo [13] Tasse [12]
AUC↑ 0.69 0.67 0.65 0.61 0.60
NSS↑ 0.85 0.83 0.83 0.80 0.80
LCC↑ 0.40 0.61 0.45 0.35 0.38

calculation time is only around 5 times longer than that of the1

Cow. This observation indicates that the proposed method is2

highly effective and exhibits insensitivity to the number of ob-3

ject points. This behavior can be attributed to the cluster-based4

nature of our algorithm, which efficiently processes the points5

in a grouped manner. Overall, these results demonstrate the ef-6

ficiency and scalability of our method, highlighting its ability to7

handle varying object complexities without significantly com-8

promising the computation time.9

Table 4. Evaluation of the saliency transform layer and point-cluster simi-
larity matrix.

Metrics AUC↑ NSS↑ LCC↑
w/o ST 0.536 0.791 0.375

w/o Similarity 0.301 0.503 0.356
Ours 0.693 0.847 0.401

5. Conclusion 10

We propose a novel point cloud saliency detection algo- 11

rithm based on a weakly supervised training approach using 12

our classification network C2SPoint. By transferring classifica- 13

tion knowledge to saliency knowledge, our algorithm achieves 14

superior performance in computing point cloud saliency com- 15

pared to state-of-the-art 3D saliency detection algorithms based 16

on benchmark datasets. Furthermore, our method has diverse 17

applications. For example, saliency-driven approaches enhance 18

computational efficiency in point cloud compression by prior- 19

itizing salient regions for higher bit allocation. In point cloud 20

simplification, saliency serves as a dynamic clustering radius, 21
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Fig. 4. Visualization of the High-Drop test. The red points represent salient points computed by the proposed method. From left to right: the original
correct prediction, the visualization of dropped points, and the incorrect prediction after dropping points.

Table 5. Computation runtimes for calculating the saliency of various 3D
objects mentioned in the paper.

Objects # Points (K) Time (s)
Cow 3.2 9.90

Airplane 5.9 9.82
Pig 13.2 11.15
Cup 15.0 11.34

Bunny 35.2 18.91
Armadillo 172.9 49.92

guiding the simplification process. For viewpoint selection,1

summing the saliency values of visible points at each view helps2

identify the most informative or least informative view.3

However, there are some limitations in our method. The use4

of FPS for selecting initial cluster centers, although efficient,5

introduces variability in the cluster heads, leading to potentially6

less robust clustering results. Future work will focus on enhanc-7

ing the clustering algorithm, such as point cloud segmentation,8

to improve the stability of the results. On the other hand, our9

point-cluster similarity matrix is designed in hand-crafted way10

and this can be improved in a learning-based way in the future11

work.12
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Fig. 7. Gallery of saliency maps generated by our algorithm compared to the pseudo ground truth [15]. The top half shows saliency detection results using
our proposed algorithm, while the bottom half shows saliency detection results using the pseudo-ground truth.
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