
Received: June 8, 2022. Revised: May 12, 2023. Accepted: May 24, 2023
© The Author(s) 2023. Published by Oxford University Press on behalf of The British Computer Society.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

The Computer Journal, 2024, 67, 1381–1404

https://doi.org/10.1093/comjnl/bxad067
Advance access publication date 23 August 2023

Articles

Improving Science That Uses Code
Harold Thimbleby*

See Change Fellow in Digital Health, Swansea University

*Corresponding author: harold@thimbleby.net

As code is now an inextricable part of science it should be supported by competent Software Engineering, analogously to statistical
claims being properly supported by competent statistics.

If and when code avoids adequate scrutiny, science becomes unreliable and unverifiable because results — text, data, graphs,
images, etc — depend on untrustworthy code.

Currently, scientists rarely assure the quality of the code they rely on, and rarely make it accessible for scrutiny. Even when available,
scientists rarely provide adequate documentation to understand or use it reliably.
This paper proposes and justifies ways to improve science using code:

1. Professional Software Engineers can help, particularly in critical fields such as public health, climate change and energy.
2. ‘Software Engineering Boards,’ analogous to Ethics or Institutional Review Boards, should be instigated and used.
3. The Reproducible Analytic Pipeline (RAP) methodology can be generalized to cover code and Software Engineering methodologies,

in a generalization this paper introduces called RAP+. RAP+ (or comparable interventions) could be supported and or even required
in journal, conference and funding body policies.

The paper’s Supplemental Material provides a summary of Software Engineering best practice relevant to scientific research, including
further suggestions for RAP+ workflows.

‘Science is what we understand well enough to explain to a computer.’ Donald E. Knuth in A = B [1]
‘I have to write to discover what I am doing.’ Flannery O’Connor, quoted in Write for your life [2]
‘Criticism is the mother of methodology.’ Robert P. Abelson in Statistics as Principled Argument [3]
‘From its earliest times, science has operated by being open and transparent about methods and evidence, regardless of which
technology has been in vogue.’ Editorial in Nature [4]

Keywords: Computational Science; Software Engineering; reproducibility; scientific scrutiny; reproducible analytic pipeline (RAP &
RAP+)

1. INTRODUCTION
Unreliable, often unstated and unexplored, code and computa-
tional dependencies (including using AI or ML) in science are
widespread. Furthermore, code is rarely published or made acces-
sible in a usable form; it is generally too onerous or impossible to
verify or scrutinize. Ironically, computers should be able to make
reproducibility easier, yet too often code and results claimed do
not contribute to reliable science, and do not support verification,
replication or reproduction on which future science can be firmly
based.

This paper makes an explicit analogy between the use of statis-
tics, which has clear standards for reliable use and presentation,
and the use of code. Like statistics, code is often relied on to
support key results in scientific publications, yet code is generally
informal, inaccessible and incorrect. Just as sound experimen-
tal methods and sound statistics generally rely on professional
specialist input, it is argued here that good use of code must
rely on professional Software Engineering input [5, 6], and more
strategically on professional Computational Thinking [7, 8] — an
accessible form of Software Engineering that consciously applies
the ideas universally, far more widely than just to software and
coding.

This paper was initially motivated by concerns about the
poor quality of code used in high-profile epidemiology research
because of its significance for informing and driving public health
responses to the coronavirus disease 2019 (COVID-19) pandemic.
A pilot survey implies that such problems are ubiquitous and
by no means limited to epidemiology: see Tables 1 and 2 for a
summary of the sample, and see the Supplemental Material for
further details of the survey. In the survey, no papers claimed
or provided evidence that their code was adequately tested
or rigorously developed; none used methodologies like RAP or
RAP+ (described below). Only one paper mentioned any Software
Engineering methods, albeit simplistic and without technical
details.

In the survey sample, 81% of papers were published in leading
journals that have code policies (which themselves are weak), but
42% of surveyed papers published in those journals breached their
own policies. One paper declared it had accessible code, but the
relevant repository was and still remains empty. The findings are
comparable to problems increasingly recognized for data and data
access (reviewed in Section 2.1): code problems form part of the
reproducibility crisis [e.g. 12, 13] discussed throughout this paper.

This paper therefore argues that code should be developed
and discussed in a professional, rigorous, and supportive

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

 5637
11709 a 5637 11709 a

mailto:harold@thimbleby.net
mailto:harold@thimbleby.net

1382 | H. Thimbleby

Table 1. Overview of peer-reviewed paper sample, broken down
further in Table 2. Survey methodology and data are provided in
the Supplemental Material. (The survey does not include the
motivating papers [9–11], none of which provide code or code
summaries; see section 5.1.)

3 Journals
32 Papers:

6 Lancet Digital Health
12 Nature Digital Medicine
14 Royal Society Open Science

264 Published authors
341 Published journal pages
July 2020 Sample month

environment that facilitates quality science with clear presen-
tation and appropriately rigorous scrutiny of code. Its main
contribution is to suggest straightforward ways to enable this.
The proposals may not be ‘the’ right or best ways, but it is
hoped the case studies and arguments presented here persuade
readers that the proposals are at least a productive way to start
pointing in the right direction, and to inform raising the profile
and constructively debating the issues more widely.

An extensive online Supplemental Material appendix to this
paper provides additional resources, including brief details of
many Software Engineering practices relevant to supporting
quality science. The supplement will be of particular interest to
research software engineers supporting non-software-specialist
scientists.

2. BACKGROUND
The discoveries and inventions of scientific technologies and
instruments like microscopes, telescopes and X-rays, drove and
expanded the sciences. There are fascinating periods when new
ideas and science unified; for example, thermometers could not
measure temperature in any meaningful way until the underlying
science was mature. For over a century, there was no agreement
on definitions of temperature, how to calibrate thermometers, or
what units they measured in.

Paradoxically the science could not mature until there was con-
sensus in scientific methodologies for thermometry, and having
that consensus in turn depended on reproducible thermometer
measurements; for example, scientists working in different places
needed to know they were working with the ‘same temperatures’
yet there was for a long period no consensus on what that
meant. Contributing to reliable science depended on a thorough
understanding of principles, including gradually fixing the con-
founding factors that were misunderstood [14].1 Science matured
from no quantitative interest in temperature, through a complex
process of hand-in-hand theoretical-and-technical maturation,
until today, when we have robust off-the-shelf instruments that
measure temperature in reliable, repeatable, internationally stan-
dardized units, that follow international quality standards.

Computers are a unique, new technology, far more flexible
and challenging than thermometers. Understanding computers
and integrating them into science is far harder than the tor-
tured development of modern thermometry. Computation not
only expands science’s paradigms and supports new discoveries

1 One example: if the volume of mercury is chosen to measure tempera-
ture, a confounding factor is that the volume of the container measuring the
volume of mercury also increases with temperature (but at a different rate), so
the volume measurement is inaccurate.

(particularly with AI), but it also does new science — almost all
modern laboratory instrumentation, including thermometers, is
heavily computerized. Relying on computer models has become
routine. The dependency of modern science on computers is far
more tangled and complex than the now-resolved dependence
on reliable temperature measurement; computers affect how
scientists in all disciplines think.

Pushing the boundaries of science, then, now involves pushing
the boundaries of computer science. The synergy runs deep: for
instance, while particle physics relies on powerful supercomput-
ers, quantum physics itself is developing more powerful quantum
computing.

‘Computational science’ has come to mean a particular style
of science based on developing and using explicit computational
models, but, really, all of science is now computational in this
sense.

Computational science is not just restricted to specialized
fields like computational chemistry, genomics, big data . . . in all
fields of science, computation is used at every step, from calcula-
tions of course, through note taking, sound and image processing,
literature searches, analysis and statistics, correspondence with
co-authors and editors, through to typesetting, distributing and
archiving the final publications. All areas of science are being pro-
foundly computerized. Furthermore, developments in computer
science themselves drive science such that earlier science is even
becoming obsolete as the computer technology moves on [15].

2.1. Code quality concerns
Publishing high quality computer code has been strongly advo-
cated since the earliest times, such as the Communications of the
ACM in its first issue in its first volume published in 1958, where
it outlined its algorithm publication policy. The new policy was
illustrated with a square root algorithm [16]. However, publishing
code in the computer science literature is distinct from publishing
high quality general science that depends on code, which is the
particular concern of the present paper. Of course, as a special
case, Computer Science too can also benefit from improving ways
to reliably use code in general science.

In almost all published science, the code it relies on is taken for
granted, just as in routine chemistry the quality of the glassware is
not at issue. While chemists are trained in reliable methodologies,
so taking quality glassware for granted is reasonable. Code is a
newer innovation, and quality code is a current research pro-
gramme in its own right, and has resulted in calls for a Grand
Challenge research effort [17]. Inevitably, because of these reasons
taken collectively, much published science depends on unreliable
code that is not explicitly discussed, was not peer-reviewed, and
is not open to scrutiny, reproduction or reuse by the scientific
community. The situation with code is analogous to chemists
using contaminated glassware with no awareness how its effects
might be controlled or might affect results.

Is it a problem? A study of 863 878 Python-coded Jupyter
notebooks [18] found a 76% failure rate for code to complete exe-
cution successfully. Trisovic et al. [19] performed a study of 9000
research codes written in the language R on Dataverse, an open-
source repository maintained by Harvard University’s Institute for
Quantitative Social Sciences. They found a comparable result that
74% of the code files analyzed failed. These results are consistent
with this paper’s findings, as summarized in Tables 1 and 2.

The authors of [18] make technical recommendations to
improve reproducibility, such as ‘Abstract code into functions,
classes and modules and test them.’ It will not be obvious for
most practicing scientists how to do this, so, more generally,

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

Improving Science that Uses Code | 1383

Table 2. Breakdown of pilot survey of peer-reviewed science papers relying on code.

Number of papers sampled relying on code 32 100%

Access to code
Some or all code available 12 38%
Some or all code in principle available on request 8 25%
Requested code actually made available (within 2 years 11 months�) 0 0%

Evidence of any software engineering practice
Evidence program designed rigorously 0 0%
Evidence source code properly tested 0 0%
Evidence of any tool-based development 0 0%
Team or open source based development 0 0%
Other methods, e.g. independent coding methods 1 3%

Documentation and comments
Substantial code documentation and comments 2 6%
Comments explain some code intent 3 9%
Procedural comments (e.g. author, date, copyright) 10 31%
No usable comments 17 53%

Repository use
Used code repository (e.g. GitHub) 9 28%
Used data repository (e.g. Dryad or GitHub) 9 28%
Empty repository 1 3%

Evidence of documented processes
Evidence of RAP/RAP+ or any other principles in use to support scrutiny 0 0%

Adherence to journal code policy (if any)
Papers published in journals with code policies 26 81%
Clear breaches of journal code policy (if any) 11 42% (N = 26)

�Time of 2 years 11 months is wait between code request and date of generating this table.

Table 3. The TOP committee’s recommended levels for journal article code transparency. Level 0 is provided for a comparison that does
not meet any TOP requirements. Concerns about the interpretation of “reproduced independently,” as required at level 4, are raised in
section 5.2.

Level 0 Level 1 Level 2 Level 3

Journal encourages code
sharing – or says nothing.

Article states whether code is available
and, if so, where to access them.

Code must be posted to a trusted
repository. Exceptions must be
identified at article submission.

Code must be posted to a trusted
repository, and reported analyses will
be reproduced independently before
publication.

the authors of [19] recommend establishing Working Groups
to support reproducible research — and in fact Dataverse (the
source of the [19] data) has already done so. These ideas may be
compared to the present paper’s proposal of Software Engineering
Boards (SEBs), as discussed in detail in Section 6, supported by
more specific suggestions in the Supplemental Material.

These concerns about code are part of the reproducibility crisis
for science generally [12, 20–23]. Concern has led to new journals,
Journal of Open Source Software (JOSS) [24], ReScience C [13] and oth-
ers, to explore and encourage the explicit replication of previously
published research.

To start to address code quality issues the Transparency and
Openness Promotion Committee met in 2014, and has since been
promoting Transparency and Openness Promotion, TOP, starting
with journal publication policies [25]. TOP covers citation stan-
dards, replication standards and code standards amongst others.
TOP recommends levels of compliance to their recommendations,
where level 0 does not meet the standard, and levels 1–3 are
increasingly stringent. The TOP levels for code are shown in
Table 3. The TOP standards continue to develop, and are now
maintained on a wiki at osf.io/9f6gx/wiki/Guidelines [26]. TOP
can be compared with the Findable, Accessible, Interoperable and
Reusable (FAIR) initiative, which places greater emphasis on data
rather than code; FAIR itself is critiqued in Section 5.4.

As the present paper argues, developing quality code is
widely under-appreciated, which leads to a vicious cycle of lack

of acknowledgement, invisibility, and being unable to recruit
adequately competent coders (see Section 3). The term research
software engineer was coined in 2012 to help address this problem,
and to stimulate thinking about researchers’ career paths. The
Society of Research Software Engineering (society-rse.org) has
been established to further promote research software engineer
interests.

There is no shortage of computational tools available to help
address the problems. However, it should be noted that such
tools are not a panacea, as the study [18] cited above makes
clear. This suggests that human support for improving coding and
reproduction quality, perhaps in the form of Working Groups or
Boards, as this paper suggests, will be critical.

In addition to unintentional problems with code quality and
reproducibility, actual scientific misconduct occurs when the out-
come is intentional. While pure plagiarism, which is a form of mis-
conduct, generally does not affect the quality of reported science,
when data or code is fraudulently manipulated to have deceptive
properties, the results are likely to be destructive. The notorious
Wakefield MMR fraud claiming to link vaccines and autism pub-
lished in The Lancet took 12 years before it was retracted; this
misconduct has been extraordinarily destructive [27].

A recent meta-analysis of surveys of scientific misconduct esti-
mates that nearly 2% of scientists have at least once fabricated,
falsified or modified results, and over a third have undertaken
other questionable research practices [28]. The meta-analysis

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

osf.io/9f6gx/wiki/Guidelines
osf.io/9f6gx/wiki/Guidelines
osf.io/9f6gx/wiki/Guidelines
osf.io/9f6gx/wiki/Guidelines
osf.io/9f6gx/wiki/Guidelines
osf.io/9f6gx/wiki/Guidelines
society-rse.org
society-rse.org
society-rse.org

1384 | H. Thimbleby

qualifies the figures carefully, but these are alarming rates regard-
less of the qualifications; indeed, the authors suggest that as
misconduct is a sensitive issue, the rates are likely to be under-
estimates.2

While technical solutions like using AI may help, it is notable
that many misconduct issues can be detected and constructively
managed prior to publication using exactly the same methods as
will improve research reproducibility, as discussed throughout the
present paper.

2.2. Computable papers
‘Electronic lab notebooks’ (ELNs) [29], emphasize computer tools
that specifically support laboratory notebook authoring and edit-
ing. In contrast, so-called ‘computable papers’ aim to support the
scientific paper authoring workflow: the emphasis is that papers
should produce faithful results from code embedded in (or easily
accessible from) the text of the paper.

If, for example, HTML is being used for a computational paper,
the paper’s text could include Javascript code like

<script>

document.write(responses.total)

</script>

This illustrative code would insert the result of running it
into the paper, perhaps like ‘We collected data and obtained
754 responses,’ where the 754 is the value of the variable
responses.total when the paper was formatted. The point
is that the number 754 (or whatever) is computed automatically
from the data, so any changes or improvements to the data or
the methodology analyzing it will translate into the published
number being updated and inserted into the paper at the
appropriate point.

Systems like LATEX (which was used for the current paper) can
combine advanced typesetting with computable paper calcula-
tions. Here, as a simple example, we calculate that 10! is equal
to 3 628 800 just by writing the LATEX code \factorial{10} in
this paper, which can calculate arbitrary factorials and group
the result into conventional blocks of three digits by inserting
small spaces. Note that although factorial is not a standard
LATEX function, it was readily defined by code also in the present
paper, so it can be easily modified by the author for other purposes
as required.

More practically for helping author complex scientific papers,
a separate program can generate a file of LATEX definitions for data,
tables, and cross-references, etc, as needed for a paper. Here is a
small example, where each generated fact (taken from the present
paper’s analysis) has been highlighted in bold:

For the present paper, as a concrete example of this approach,
the pilot survey analyzed 32 papers with 264 authors. The
paper [9], discussed below in Section 5.1, relied on code com-
posed of 229 files, with over 25 thousand lines of code (how
this compares with files in the survey is summarized in table
9 in the Supplemental Material).

In the ‘old days’ such numbers (32; 264; etc) quoted above
would have been manually worked out, eyeballed, typed up
and then (hopefully) double-checked by the authors. Instead, in
this paper, those numbers (and many others) were computed
automatically, and were then inserted into the text of this

2 The present paper’s author’s own survey of scientists publishing in the
Journal of Machine Learning had comparable results [20].

paper automatically. They are auditable back to their sources.
Furthermore, they will update automatically — with no further
work from the author — when the data or calculations change.

The idea is easy to implement. Continuing using LATEX as the
illustrative word processing system, code could generate text like

\newcommand{\numberOfAuthors}{264}
where the 264 is some number calculated from the relevant data.

Such a line of text is then saved to a file, which is then imported
into the paper so the value is named and can be used easily and
reliably. Then, when and wherever the authors write the name
\numberOfAuthors in their paper’s text, the typeset paper says
264, or whatever the actual value is at the time — it will update
automatically whenever the data or analysis is improved. Some
easy LATEX coding can then present the numbers in the author’s
or publisher’s preferred style, such as zero, one,... nine, 10, 11,..., 1
000, 1 001, etc, as done more realistically elsewhere in this paper
(for instance, see footnote 5).

The key concept in computable papers is that as the authors of
a paper collect or revise data or calculations or otherwise update
it, the results written up in the paper also update automatically,
and all the statistics, graphs, and analysis reported in the paper
update and remain correct with no further work from the authors.
Indeed, if an author corrects a mistake, the correction will apply
automatically to all future revisions.

However, there is no structure to using general-purpose sys-
tems like HTML, LATEX or Rmarkdown, which means authors may
make unnoticed mistakes. Many authors therefore prefer a more
structured approach imposed by tools designed for the purpose,
where their structure helps impose uniformity and helps prevent
and check for errors.

A taut review of such systems is Perkel [30], whereas [31] dis-
cusses in-depth the design trade-offs of one powerful approach,
Maneage; the paper [31] includes a substantial and useful lit-
erature review (in its appendix). Here, four representative tools
(WEB, Mathematica, Jupyter and knitr) serve to sample the variety
of approaches that are available:

• WEB is the earliest tool reviewed here. WEB was developed by
Donald Knuth in 1984 [32, 33] as a batch (non-interactive) tool
to support his then radical new concept of literate program-
ming. The idea was to facilitate programmers write literate
documentation for their code. WEB combines a sequential
documentation file with code that can be presented in any
order, thus overcoming the problem that the best explanation
of a program is not necessarily written in the same order
as the code it explains. The original WEB allowed Pascal
programs to be documented in TE X, but many variants of
WEB have since been developed that are more flexible in the
systems they support.
WEB documents an entire program, but there are variants
such as relit [34] that allow arbitrary parts of programs to
be documented, and hence are useful for normal scientific
papers that need to explain algorithms, but do not need
to show or explain the entire code required for computer
execution.
In contrast to the other tools reviewed here, literate pro-
gramming is intended to produce high quality publications
about code, rather than publications just using code, inserting
output, such as statistics or graphs, generated by running it.

• Mathematica is one of the earliest fully interactive notebook
tools for computational papers. Notebooks were developed by
Theodore Gray in 1988 [35]. Notebooks consist of a collection

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

Improving Science that Uses Code | 1385

of ‘cells,’ where cells can be labelled as text or as a section
heading, but if a cell is labelled as code, it can be run and it
will normally generate a new cell following it as its output.
The new cell can be numbers, tables, mathematics, a plot, an
image, or even more text — the arbitrary output of running
code, in fact. Moreover, a notebook itself is a Mathematica
expression, so it — the paper itself — can be analyzed
or manipulated by code in any way. The entire notebook
structure and contents can be checked for consistency and
correctness in any way the author chooses.
A Mathematica notebook can be published directly as a
paper, but some code might be distracting for a publication.
Typically the author therefore optionally hides some or all
code cells that are irrelevant to the narrative of the paper,
but which nonetheless were required to generate the results
presented.
The user manual for Mathematica itself was written as
a Mathematica notebook, which ensured all its examples
actually worked — and probably helped ensure the correct-
ness of the Mathematica code used behind the scenes (see
Section 6.3). The book is now the largest example of software
documentation in existence: in its latest edition it runs to over
10 000 pages.

• Jupyter was developed by Fernando Pérez and Brian Granger
[36], and takes a similar approach to Mathematica, but Jupyter
is open-source and not closely integrated with any particular
programming language, as Mathematica is. Jupyter can be
installed on a local computer or run over the web.

• Jupyter is both an authoring tool and a framework on which to
build other tools: thus Google’s colaboratory is built on top of
Jupyter, using it as a foundation but making stylistic changes,
including providing free computational resources.

• Jupyter is very popular and widely-known. Many extensive
examples of using Jupyter notebooks (and other good prac-
tice, such as using repositories) to support large scale science
projects can be found at the Gravitational Wave Open Science
Center at www.gw-openscience.org.

• knitr [37] is a powerful culmination of a variety of tools,
Pweave, Sweave and ideas from literate programming. Knitr
combines a markdown document with R code, and is a more
powerful approach than the analogous, and perhaps more
familiar, HTML+Javascript example shown above to motivate
this section.

Thimbleby [38] is a 1999 example of a peer-reviewed paper
(about user interface design) written as a Mathematica notebook,
which makes the point that a distinctive feature of its methodol-
ogy is that the Mathematica notebook creates a fully inspectable
and replicable process. The notebook is available on the author’s
web site; it can be checked by others, or easily extended or
repurposed to support new research — and it still works 24 years
later.3

There are many tools to make using code more convenient
and more reproducible, as this section briefly reviewed, but

3 Mathematica is an example of a proprietary system: using it requires a
paid-for license, which is a limitation on reproducibility; worse, in the long-
run the system owners may go out of business and the code would potentially
be unusable at any price. However, these limitations are also limitations that
impact free software: versions may become obsolete, and the community may
move on and stop maintaining old systems. The impact on reproducibility is
much the same as with proprietary systems. The common solution is to code
in whichever language is chosen in as portable a way as possible, to chose a
system that uses a well-defined notation in an open representation (such as
XML or ASCII), so that if the worst happens the old code, or at least the key
parts of it, can be translated to run on a new system.

unfortunately they are rarely used or used haphazardly, as the
next section shows.

2.3. RAP: reproducible analytical pipelines
Writing a paper typically starts with a word processor (such as
Microsoft Word or LATEX), sketching an outline, writing boiler-plate
text (such as the authors’ names and standard section headings),
and then gradually building up the evidence base (including citing
the literature) that the paper relies on. This workflow will be
concurrent with many other activities — grant writing, writing
up lab books, negotiating authorship, protecting IP, workshops,
finding publication outlets, and so on.

Table 4 illustrates the core pipeline of how experiments and
data are used to provide information on which analysis and
calculations are based, the results of which are then collected and
edited into a paper.

For clarity, the schematic pipeline in table 4 omits many steps
in the creative scientific workflow. Furthermore, each step is
iterated and modified as the research progresses, and, indeed, as
referees require revision. The point is that in typical scientific
practice each step in the table is largely or entirely manual,
typically selecting and copying output from the previous phase,
and then pasting and editing the results into the next. The pipeline
of data → · · · → paper is then iterated by hand as the var-
ious components are refined and improved until the authors
(and funders, editors, and referees) are happy with the final
paper.

As problems are found in a paper, the data, calculations and
code are debugged, refactored and refined. The workflow is rarely
systematic, and even less likely to be documented — after all, the
atomic steps seem to be innocuous copy and paste actions. The
final paper and the ideas it embodies are what matters.

The insight of the reproducible analytic pipelines (RAP) propo-
nents is that every time any step in the pipeline is performed it
could have been automated [40–42]. If automated, it could then
be repeated reliably — unlike a manual cut and paste which
is potentially different and certainly error-prone every time it
is performed. If automated, any part of the workflow can be
reliably repeated if any experimental data, literature or other
knowledge changes; the paper’s analysis will brought up to date
with ease. In particular, any other researcher, whether part of the
authorship team or a later reader of the paper, can reproduce
the paper and its results reliably provided that the RAP work-
flow is made available. Table 5 provides a brief summary of RAP
principles.

For example, if the paper in question is a systematic review,
it could be kept current by automatically re-running the pro-
grammed atomic actions that it was built with. Indeed, this ability
is one of the original motivations of RAP, so Government agencies
could easily generate up to date reports on request without having
to repeat all the manual work, and risk making procedural errors
doing so. Furthermore, every time a publication is re-derived or
updated, the RAP pipeline itself is reviewed and improved, so the
quality of the reproduced work improves — unlike in a non-RAP
workflow where new errors are potentially introduced every time
a work is revisited.

RAP not only helps develop reproducible science, and improve
the quality of the science as the authors debug and refine their
methodology, it also provides a precise audit trail that can be used
to protect against fraud, as discussed in [27]. RAP can perform
checks much faster and more efficiently than conventional post
hoc investigations.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

www.gw-openscience.org
www.gw-openscience.org
www.gw-openscience.org
www.gw-openscience.org

1386 | H. Thimbleby

Table 4. A simplified schematic of the publication pipeline. For clarity, the pipeline has been linearized; in general, there will be
repetitive cyclic iteration and refinement. The RAP and RAP+ approaches encode the normally manual steps in the pipeline workflow
so that they can be run automatically, and hence reproduce the results that underpin the final paper. The encoded RAP+ algorithms
can be shared with other scientists, scrutinized, simplified and optimized, and themselves turned into publishable objects — they are
scientific instruments, just like thermometers or DNA sequencers. Additional schematics are provided in section 10.f in the
Supplemental Material.

Data sources → Models and analysis → Select results → Submit for
for write up publication

Experiments Hand calculations
Standard data Packages Copy & paste
Search engines SPSS etc and edit data Final paper
Literature Graphics packages (text, images, graphs, etc)
Sensors Specially-written code, into paper

C, Python, R, Mathematica, etc
...

...

Table 5. A minimum standard of RAP, based on the UK Statistics Authority summary [39].

1 Peer-review is used to ensure the workflow followed is reproducible and to identify improvements

2
No or minimal manual interference; for example copy-paste, point-click and drag-drop steps replaced using computer code that
can be inspected by others

3 Open-source programming languages so that processes do not rely on proprietary software and can be reproduced by others
4 Version control software, such as Git, to guarantee an audit trail of changes made to code
5 Publication of code, whenever possible, on code hosting platforms such as GitHub to improve transparency
6 Well-commented code and embedded documentation to ensure the workflow can be understood and used by others
7 Embedding of existing quality assurance practices in code, following guidance set by recognized organizations

Adopting RAP principles is not necessarily about incorporating all of the above: implementing just some of these principles will generate valuable
improvements.

RAP embodies Donald Knuth’s comment, also quoted after this
paper’s abstract,

‘Science is what we understand well enough to explain to a

computer.’

from the foreword to A = B [1]

The corollary is that if we are doing arbitrary cut and paste that
has not been programmed into a computer, then we are not doing
good science; we are certainly not explaining what we are doing to
the computer. Science is in principle an algorithmic process, and
therefore, as Knuth says, if we understand well enough what we
are doing in science, we can explain it as code, specifically in a
RAP, for a computer to automatically run and rerun.

2.3.1. Potential code
Code is usually thought of as text written in a programming lan-
guage, such as Python or C, but this ignores special cases of what
can be called potential code: processes that could be presented in
code, but have not been and therefore are invisible. Such potential
code cannot be reasoned about as rigorously as they would be had
they been expressed explicitly in code. The loss of scrutiny, loss of
the ability to reason rigorously, the loss of the ability to review
potential code are problems that RAP tries to address. Potential
code includes:

1) Critical algorithmic steps may never be codified. Writing a
paper may involve creating an image and copying it into a
word processed document. Indeed, every time the image is
modified, the process must be repeated. In an important
sense, the author is executing a computational process,
effectively using code that has never been written down.

There is a process here, but it is informal and may be run
differently each time. However, it could have been coded and
reproduced precisely every time it was needed. Moreover, if
the process had been coded explicitly, it could be reasoned
about, critiqued and improved.

2) Compiling and running programs (for instance to generate
results) is also a computational process that may not be
recorded in code. The author, more explicitly than creating
and using images, runs programs to get results — but the
process of running the programs may not be recorded. Typi-
cally, if the author notices that the processes are repetitious,
they may develop a shell script to codify the repetitive
process.

3) Processes in writing a paper, configuring software and gen-
erating data may be codified, but the author discovers that
their codified processes do not generate quite what they
want. Rather than debugging the code, it is tempting to
manually edit the final results. The author knows they could
have coded things correctly, but this seems too tedious —
especially if the edits required seem minor.

4) Another case of potential code arises when a paper has
been completed, but referees or the publishers require some
minor fixes. These minor fixes are easier to implement in
the paper as simple textual corrections, rather than revisit-
ing and updating the explicit code that informed or gener-
ated the paper (and updating the repositories and so forth).
The RAP approach would require the entire workflow to be
revised, not just the final presentation in the paper.

In all cases, a computational process is involved that could
have been explicitly coded, but defining the general case as
program code seemed harder than an ad hoc implicit process. The

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

Improving Science that Uses Code | 1387

problem for reproducibility is that the final science depends on
this potential code as much as on any explicit code, but it is
nowhere recorded, and therefore reconstructing the science will
be unreliable.

2.3.2. RAP as research
RAP itself is an object of research. For example, in reproducing
the results of a paper published over a decade previously, [43]
shows that RAP workflows — which had not been considered or
followed at the time — can be semi-automatically reconstructed
(along with software dependencies) using suitable tools, thus
making the original paper and the experiment it depended on
fully reproducible. Furthermore, the newly derived and now
explicit pipelines were specified as pure functions, meaning
that the workflow was fully-defined using nothing but explicit
functions and explicit parameters, arguably a prerequisite for
rigorous, deterministic reproducibility.

While this reproduction of an old paper obtained important
insights, deriving a RAP workflow after the fact cannot benefit
the original scientific process. Instead, insights from this post
hoc reproduction methodology [43] can be used as an insightful
basis to help advance approaches to RAP; that is, doing RAP
explicitly (in, for example, the ways that [43] explores) while the
science is being developed would provide powerful and construc-
tive insights during the scientific process, rather than later in
hindsight.

3. THE STATISTICS/CODE ANALOGY
The central role of computational methods in science may be
fruitfully compared to using statistics, an established scientific
tool.

Poor statistics is much easier to do than good statistics, and
there are many examples of science being let down by naïvely
planned and poorly implemented statistics. Often scientists do
not realize the limitations of their own statistical skills, partic-
ularly when developing new experiments, so careful scientists
generally work closely with professional statisticians.

In good science, all statistics, methods and results are reported
very carefully and in precise detail [44–46], generally following
strict journal or disciplinary guidelines. A statistical claim in a
paper might be summarized as follows:

‘Random intercept linear mixed model suggesting significant time

by intervention-arm interaction effect. [. . .] Bonferroni adjusted

estimated mean difference between intervention-arms at 8-weeks

2.52 (95% CI 0.78, 4.27, p = 0.000 9). Between group effect size

d = 0.55 (95% CI 0.32, 0.77).’ [47]

This standard wording formally summarizes confidence intervals,
p levels, and so on, to present various statistical results so the
paper’s claims can be seen to be complete, easy to interpret, and
easy to scrutinize. It is a lingua franca. It may look technical, but it
is written in the standard, widely accepted form for summarizing
statistics — it is a clear, rigorous, and readily interpreted way to
express uncertainty in results. Moreover, behind any such brief
paragraph is a substantial, rigorous, and appropriate statistical
analysis.

Scientists write like this and conferences and journals require
it because statistical claims need to be properly accountable and
documented in a clear way. The journal Science, for example,

in its many explicit and quite technical statistics requirements
requires

‘Adjustments made to alpha levels (e.g., Bonferroni correction) or

other procedure used to account for multiple testing (e.g., false

discovery rate control) should be reported.’ [46]

Spiegelhalter [48] says statistical information needs to be accessi-
ble, intelligible, assessable and usable; he also suggests probing
questions to help assess statistical quality (see Supplemental
Material section 11). Results should not be uncritically accepted
just because they are claimed. The skill and effort required to
do statistics so it can be communicated clearly and correctly, as
above, is not to be taken for granted; in fact, there is widespread
concern about the poor quality of statistics in science [49, 50].
While it is assumed that statistics should be peer-reviewed, and
that review will often lead to improvement, critical papers like [49,
50] show that reviewers and editors are often failing to pick up on
poor statistics.

Scientists accept that statistics is a distinct, professional
science, itself subject of research and continual improvement.
Among other implications of the depth and progress of the
field of statistics, undergraduate statistics options for general
scientists are recognized as insufficient training for rigorous work
in science — their main value, arguably, is to help scientists to
understand the value of collaborating with specialist statisticians.
Collaboration with statisticians is particularly important when
new types of work are undertaken, where the statistical pitfalls
have not already been well-explored.

Except in the most trivial of cases, all numbers and graphs,
along with the statistics underlying them, will be generated by
computer. Indeed, computers are now very widely used, not just to
calculate statistics, but to run the models, to do the data sampling
and processing, to operate the sensors or surveys that generate
the data, and to process it all. Many papers now explore the
contribution of AI and ML to their fields. The data — including
the databases and bibliographic sources — and code to analyze it
is all stored and manipulated on computers. Computers even help
with the word processing and typesetting of the research.

In short, computers, data and computer code are central to
modern science, not just to the explicitly computational sciences.
Some AI work is uncovering biases and ethical issues that were
previously unrecognized, so computational sciences are not just
routinely contributing to existing science but extending its reach
and improving its quality.

However, using any code raises many critical questions: for-
mats, backup, cyber-vulnerability, version control, integrity check-
ing (e.g. managing human error), auditing, debugging and testing,
and more. Is the code correct, and is it dependable enough to
justify the claims the scientists would like to make? Software
code, like statistics, is subject to unintentional bias [51, 52]. All
these issues are non-trivial concerns requiring technical exper-
tise to manage well. As with statistics, good answers to such
“technical” issues makes the science that relies on them better;
conversely, failing to properly address the questions makes the
science suspect.

For example, a common oversight in scientific papers is
to present a model, such as a set of differential equations,
but omit how that model was reliably transformed into the
code that generates the results the paper summarizes. The
code may have problems that cannot be identified as there is no
specification to reference it to, and possibly even no link to the
code at all.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

1388 | H. Thimbleby

Failure to properly document and explain computer code
undermines the scientific value of the models and the results
they generate, in the same way as failure to properly articulate
statistics undermines the value of any scientific claims. Indeed,
as few papers use code that is as well-understood and as
well-researched as standard statistical procedures (such as
Bonferroni corrections), the scientific problems of poorly planned
and reported code are widespread. The terms ‘invariant,’ ‘pre-
condition,’ ‘post-condition’ are basic technical terms used in
reliable coding, yet none of these concepts appear in in any of
the code repositories referred to in this paper’s survey. Only one
project uses assertions, and then only for checking user interface
input data rather than the correct operation of the paper’s model
(see Supplemental Material data summary). These basic coding
concepts are simpler than Bonferroni corrections.

We would not believe a statistical claim that was obtained from
some ad hoc analysis with a new fangled method devised just for
one project — instead, we demand statistics that is recognizable,
even traditional, so we are assured we understand what has been
done and how reliable results were obtained.

An interesting overlap with statistical and Software Engineer-
ing sloppiness concerns the many papers that disclose as part of
their methodology that they used a particular software package,
for example

‘Data analyses were performed using SAS 9.2 (SAS Institute, Cary,

North Carolina, USA).’ [53]

but without giving more details. Besides, the authors have not
made their code available so it is moot what system it runs on.
The problem is that the common practice of declaring using a
named system (such as SAS in this case) does not help scrutiny
in the least, as such systems can do almost anything. How those
analyses might have been performed was not discussed, and
one assumes it follows that the analyses could therefore not
have been properly reviewed for scientific competence during the
publication workflow.

A reviewer, if nobody else, needs to actually examine the code
used and its documentation to assess whether the analysis pre-
sented in the paper is appropriate and sufficiently reliable. Fur-
thermore, if the analysis in this case actually depended on using
SAS version 9.2, and not any general purpose statistical system,
then it is problematic because it is not reproducible as it depends
on idiosyncrasies in SAS version 9.2. Of course, an author can
disclose the idiosyncratic dependencies; while this seems to be
an onerous obligation, conversely it is arguable that if an author
is unaware of dependencies, then their science relying on them is
equally unreliable.

It is recognized that to make critical claims, models must be
run under varying assumptions [54], yet somehow it is overlook
edthat the code that implements those models also needs to be
carefully tested under varying assumptions to uncover and fix
bugs and biases, as well as to uncover unknown dependencies.
Indeed, the code may be poorly written (as this paper shows it
often is), so the results derived from the code simply may not be
reliable.

In normal scientific reporting (outside of teaching and
assessing science) details of methodology are routinely glossed.
A chemist does not say they cleaned their glassware. One might
argue, then, that scientists need not discuss their code in detail
because they know how to program and their code is correct. This
argument is mistaken. Code is rarely considered a valuable part

of the science to which it contributes (section 4.2), which creates
a vicious cycle of ignoring code, leading to ignoring the critical —
and non-trivial — role of correct code in science.

3.1. The siren call of over-fitting code
Poor code can generate plausible and possibly misleading results
from any data or theory, including fraudulent science. A tempta-
tion is that developing code to get ‘good results’ becomes more
important than the code’s overall faithfulness to the real scientific
phenomena, theoretical or empirical.

In conventional modeling terms, successful computer pro-
grams are often over-fitted to phenomena [55]. That is, instead of
using code to rigorously challenge, test, and develop our models,
we tinker with code adapting it to generate results closer and
closer to our prejudices. The code then apparently confirms our
science, since we fitted it to our preconceptions but not to the
science.

In general, an over-fitted model fits a set of data closely, but
contains more parameters than can be justified by the science.
An over-fitted model fails to reliably predict results beyond the
scope of the data it has been fitted to. Over-fitting is a well-known
problem, but the point is that when code is used, over-fitting is
done unconsciously by programmers adjusting the code — its
parameters, its structure, its embedded data, the calculations it
performs — that specifies the model. ‘A model over-fits if it is
more complex than another model that fits equally well’ [55],
is a criterion that describes almost every program! Programmers
without the discipline and experience to manage the unlimited
adaptability of code debug, alter, and extend their code to make it
do what they think it should do. This becomes a vicious circle as
the idea of what the science is becomes driven by the code. Rather
than debugging code by improving its fit to the actual science, it
gets debugged and extended to fit the expectations.

The problems of over-fitting data may be visualized using a
Real→Real function of one variable (Fig. 1). The code that gener-
ates an over-fitted curve seems to work very well: in the example
shown, the over-fitted curve fits the sampled data exactly; indeed,
the code used here will fit any new data exactly as well. But the
code has a negligible ability to predict new data or to describe
theories of the data, which is the point of modeling. The fact that
over-fitted code seems to work well is deceptive.

Looking specifically at the data plotted in Figure 1 if, for the
sake of argument, we assume the error in the data is normally
distributed then the values the over-fitted code generates outside
the range of the sample are improbable. For example, the basic lin-
ear model predicts ŷ(0) = 0.5, versus the extreme value predicted
by the over-fitting code, ŷ(0) = −41.8, even lies far outside the
plot region shown in the figure.4 Similar problems happen with
interpolation rather than extrapolation, for instance around x = 4.

While over-fitting data is a well-known problem, the point for
this paper is that code itself can easily be over-fitted. Code can
of course be over-fitted in more complex ways than can be illus-
trated with elementary polynomials, as here. Code over-fitting is
much harder to recognize because there may be no simple graph
plot, like Figure 1, to highlight the problems. Furthermore, almost
all code is far more intricate than the two trivial polynomials used
to illustrated in Figure 1.

4 The bounds of the confidence interval illustrated in Figure 1 depend
on assumptions about the distribution of the data; in this example, we are
assuming, perhaps because we know something more about the experiment,
or thanks to Occam’s Razor that a linear function is more likely than a high
order polynomial.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

Improving Science that Uses Code | 1389

Figure 1. Much computational science is concerned with finding
plausible multi-dimensional models that fit models to data with the aim
of extrapolating or predicting new results from them. Shown here is
notional sample of experimental 2D data (the dots), a linear
least-squares regression, and an exact polynomial model. The
over-fitted polynomial model fits the sample exactly, but since the
experimental data are presumably subject to random error (indicated by
the confidence interval, itself estimated), the linear model would
generally be considered a better description of the experimental data.

Unfortunately, code in published science is often over-fitted,
and over-fitted in a way that is very hard to scrutinize. For exam-
ple, in epidemiology (which is considered in Section 5.1) it is
routine to use very complicated, large dynamical models param-
eterized with numerous social, cultural, health, demographic and
geographical data. The parameterization is mixed between data
files, data written explicitly into the code, and with conditionals
and other structuring in the code to cover special cases. Indeed,
many of the programs in the survey used comments to inactivate
code, presumably indicating an unfinished tinkering approach to
code development.5

Furthermore, scientific support code is rarely documented well
enough to know what it should have been doing, which should
be answered by a specification. With no clear specification and
documentation, the code can be arbitrarily hacked to get any
convenient results, since no particular specification for it has
been defined that it should adhere to. Thus we risk doing and
promoting substandard science because we — the scientists and
the publication process — are not managing the unlimited adapt-
ability and complexity of code that science has come to rely on.
This is over-fitting of the worst kind — in conventional over-fitting
one can at least hope to see that the fitting is over-parameterized
for the data, but in code over-fitting the code and specification
are not visible, therefore not adequately scrutinized, and — worse
— the ‘data’ the code over-fits includes the entire conceptual
contribution of the paper.

Reference [56] shows that even trivial code (in the case cited,
implementing simple difference equations) with very few param-
eters can have very complex results, and reference [57] is a
historically significant paper pointing out how the problems of
over-fitting has improved science.

5 Of the 10 papers in the pilot survey that reported use of code repositories
(covering 182 thousand lines of code—so this is not a trivial amount of program-
ming effort), one provided an empty repository with no code at all (effectively
commenting out all their code!), and seven repositories explicitly commented
out chunks of workable code. The two remaining non-trivial repositories with
no commented-out code consisted of straightforward, short code files with few
comments of any sort.

4. THE CONVENTIONAL ROLE OF CODE
Models map theory and parameters to describe phenomena, typ-
ically to make predictions, or to test and refine the theory sup-
porting the models. With the possible exception of theoretical
research, all but the simplest models require computers to use;
indeed even theoretical mathematics is now routinely performed
by computer.

Whereas the mathematical form of a model may be concise
and readily explained, even a basic computational representation
of a model can easily run to thousands of lines of code, and its
parameters — its data — may also be extensive. The chance that
a thousand lines of code is error free is negligible, and therefore
good practice demands that checks and constraints should be
applied to improve its reliability. How to do this is the concern
of Software Engineering.

While scientific research may rely on relatively easily-
scrutinized mathematical models, or models that seem in princi-
ple easy to mathematize, the models that are run on computers
to obtain the results published are sometimes not disclosed, and
even when they are they are long, complex, inscrutable and (as
our survey shows) lack adequate documentation. Therefore the
models are very likely to be unreliable in principle.

If code is not well-documented, this is not only a problem for
reviewers and scientists reading the research to understand the
intention of the code, but it also causes problems for the original
researchers themselves: how can they understand their historical
thinking well enough (say, just a few weeks or months later) to
maintain it correctly if it has not been clearly documented? As
a scientist pursues a research career building on their previous
work, how can they be certain their work is reliable, and not
merely converging to their prejudices? Without proper documen-
tation, including a reasoned case to assure that the approach
taken is appropriate [58], how do researchers, let alone reviewers,
know exactly what they are doing?

Without substantial documentation it is impossible to scruti-
nize code properly. Consider just the single line ‘y = k∗exp(x)’
where there can be no concept of its correctness unless there
is also an explicitly stated relation between the code and the
mathematical specifications. What does it mean? What does k

mean — is it a basic constant or the result of some previous
complex calculation? Does the code mean what was intended?
What are the assumptions on k, x and y, and do they hold
invariantly? Moreover, as code generally consists of thousands
of such lines, with numerous inter-dependencies, plus calling on
many complex libraries of support code, it is inevitable that the
collective meaning will be unknown. A good programer would (in
the example here) at least check that k and x are in range and
that k∗exp was behaving as expected (e.g. in case of under- or
overflow).

Without explicit links to the relevant models (typically mathe-
matics), it is impossible to reason whether any code is correct, and
in turn it is impossible to scientifically scrutinize results obtained
from using the code. Not providing code and documentation, pro-
viding partial code, or providing code without the associated rea-
soning is analogous to claiming ‘statistical results are significant’
without any discussion of the relevant methods and statistical
details that justify making such a claim. If such an unjustified
pseudo-statistical claim was made in a scientific paper, a reviewer
would be justified in asking whether a competent experiment had
even been performed. It would be generous to ask the author to
provide the missing details so the paper could be better reviewed
on resubmission.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

1390 | H. Thimbleby

Some authors assert that the purpose of code is to provide
insight into models, rather than precise (generally numerical)
analyses summarizing data or properties of the data [59]. In real-
ity, if code is inadequate, any so-called ‘insights’ will be potentially
flawed, and flawed in unknown ways. Indeed, none of the papers
sampled (see Supplemental Material section 12) claimed their
papers were using code for insight; all papers claimed, explicitly
or implicitly, that their code outputs were integral to their peer-
reviewed results.

Clearly, like statistics, coding can be done poorly and reported
poorly, or it can be done well and reported well — and any mix
between the extremes. The question is whether it matters, when it
matters, and, if so, when it does, what can be done to appropriately
help improve the quality of code (and discussions about the code)
in scientific work?

4.1. The deceptive simplicity of code
It is a misconception that programming is easy and even children
can do it [60]. More correctly, toy programming is easy, but mature
programming is very difficult.

An analogy helps justify this key point. Building houses is very
easy — indeed, many of us have built toy Lego houses. Obviously,
though, a Lego house is not a real house. It is not large enough or
strong enough for safe human habitation! This point is obvious
because we can see Lego houses, and everyone is familiar with
the limitations of building-block play. Its real-world engineering
limitations are too obvious to need stating.

In contrast to Lego, computer programs are generally invisible,
and therefore the engineering problems within them are also
made invisible. The ‘programming is easy’ cliché is deceptive
— programming appears easy because professional standards of
building software are ignored, because people cannot see the
reasons why they are needed, and because — like Lego — toy
programs can look inspiring but be unreliable, difficult to use,
even dangerous.

Saying programming is easy is like appreciating a child’s Lego
building because we are not worried about subsidence, load bear-
ing, electric shock, fire risks, water ingress, or even planning
regulations. These are professional engineering issues that Lego
builders ignore. Certainly, even real building is much easier and
faster when the technical details are ignored, as anyone who has
experienced a cowboy builder can attest.

Unlike building houses (the Code of Hammurabi dates from
around 1755 bc6), programming is a new discipline, and the
problems of poor programming are not widely appreciated or
embedded in our culture. Professional standards, even when they
exist, are not enforced.

Problems for the reliability of science arise when doodling and
tweaking software drifts into claiming scientific results that do
not have reliable engineering processes or structures underpin-
ning them (let alone the properly developed and documented
accessible code) to justify them.

In many countries, there are laws that require all but the very
simplest building structures to be formally approved from plans
and inspected as they are built, but who writes plans for software,
who inspects scientific models while they are being coded? Yet the
consequences of building a shoddy garage have negligible impact
compared to the consequences of writing poor code that informs
national public health policies or climate change interventions.

6 The Code of Hammurabi says, ‘(§233) If a builder constructs a house [and]
does not make it according to specifications, and a wall then buckles, that
builder shall make that wall sound using his own silver.’ [61]

4.2. The low status of coding
Since programming appears to be so easy, developing code has
a correspondingly low status in scientific practice (and more
widely). Developers of code are rarely acknowledged in scientific
papers. The implicit reasoning is: if programming is easy, then its
intellectual contribution to science is negligible, so it is not even
worth citing it or acknowledging the contributors to it. Because it
is apparently easy, there is no need to work hard to make it correct.
Because of the ease of over-fitting (Section 3.1), code ‘works well’
with little skill or effort. While such mistaken views prevail, the
vicious cycle is that the low status means software development
is casualized, which reinforces the low status.

Almost all scientific papers routinely describe their experimen-
tal method, their data handling, and provide an overview of
their analytic (usually statistical) methods. If they are theoretical
papers, they will describe their mathematical models and data
that is used to run or test their models. However, outside of pure
computer science, scientific papers are almost entirely silent on
the code they rely on and how it was developed — in particular,
how the code might have been protected from bugs, analogously
to how appropriate experimental methods were used avoid or
control for experimental error.

Since published papers rarely mention their code, new papers
contributing to the literature do not write about their code either,
so the low status of code persists.

In reaction to this vicious cycle, there is a growing movement to
use and cite code correctly [25, 62], because code is important, par-
ticularly for the reproduction, testing and extension of any scien-
tific work. (Code also needs to be correct, not just cited correctly.)
Few journals editorial policies recognize that data and code are
in practice indistinguishable (see Supplemental Material). Given
that data and code are equally important in science, effectively
equivalent and interchangeable, it follows that publishing policies
on data handling should also apply at least as strictly to code.

4.3. The critical role of code is often ignored
Because statistics, like code, is so readily susceptible to uncon-
trolled bias and error, there are many protocols and journal poli-
cies that enforce best practice, for example journals often require
adherence to PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) [63] for any paper performing a
systematic review of the literature. PRISMA is a leading and
influential research protocol, and it serves to make the point that
the critical role of code is often strategically ignored.

PRISMA is not concerned with the reproducibility of the lit-
erature reviewed, nor the reproducibility of systematic reviews
themselves. PRISMA not only ignores the role of code, it ignores the
Software Engineering principles that assure code that research
relies on is reliable and reliably reported.

PRISMA covers the review workflow. For example, it states that
authors should report the number of papers they included in their
review. Perhaps N = 2000. This number will then written be into
the review, perhaps in several places. As the authors read and
revise their paper and respond to peer-reviewers, it is likely that
the number of papers in the survey will change; other numbers
and details will certainly change.

The authors now have a maintenance problem that PRISMA
does not address: where are the numbers that have changed, and
what should they be changed to? Doing a search-and-replace,
whether automated or by hand, is fraught with difficulties. What
happens if 2000 is used for some other purposes as well? What
happens if some of the 2000 values are written as 2000 or as

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

Improving Science that Uses Code | 1391

2000.0, or if a number containing the digits 2000, like 12 000,
is changed? What happens if some 2000 are year dates and are
changed incorrectly?

Then there are the Human Factors: slips and errors will happen
in this workflow anyway [64]. Typos, slips during cut-and-paste,
and other errors are common. Similar iterative revision cycles
happen with any paper, not just with systematic reviews.

PRISMA, like many such standards, ignores the methodological
problems of using code such as the issues raised above.

The irony, then, is that PRISMA says nothing about how to
ensure the results of a survey are correctly and reliably pre-
sented, despite this being one of PRISMA’s explicit motivations.
PRISMA explicitly warns about methodological issues, but ignores
that poorly managed code raises methodological issues that will
undermine the validity of research it supports. PRISMA reinforces
the culture that code is trivial and incidental to research.

4.4. Bugs, code and programming
Critiques of data and model assumptions are increasingly com-
mon [65, 66] but program code is rarely mentioned. Program code
has as great an effect on results as the data; in fact, without
code, the data would be uninterpreted and almost useless. Code,
however, is harder to scrutinize, which means that errors in code
have subtle, often unnoticed effects on results.

Program code contains data. Almost all code contains ‘magic
numbers’ — that is, data masquerading as code (see Supple-
mental Material, section 10). This common practice ensures that
published data is rarely all of the relevant data because it omits
the magic numbers embedded in the code. Such issues empha-
size the need for repositories to require the inclusion of code
so all data, including that embedded in the code, is actually
available.

Conversely, much data contain code. Excel spreadsheets are
often used to manage code, and almost all Excel spreadsheets
contain macros and formulæ — code embedded in the data. JSON,
the JavaScript Object Notation, is a structured data language, but
as it is part of the JavaScript programming language there is no
practical code/data distinction. Indeed, the present paper’s data is
in a file data.js that also contains the JavaScript code to analyze
it and generate results (such as Table 2) for presentation in this
paper.

Although convenience and convention treat data and code
differently, ultimately, data and code are formally equivalent (see
Supplemental Material, Section 10) in the important sense that
there is no pre-determined boundary between them or formal
criteria to distinguish them: different scientific projects can draw
their boundaries differently and as they see best fits their work.
Indeed, all of the papers reviewed here where code was available
include critical data in their code. It therefore makes no sense to
have separate rules for data and code — except in the most trivial
cases both are equally essential for verification, building on and
reproduction of work.

Bugs can be understood as discrepancies between what code
ought to do and what it actually does. Many bugs cause erroneous
results, but bugs may be ‘fail safe’ by causing a program to crash
so no incorrect result can be delivered. Contracts and assertions
are essential defensive programming technique that block com-
pilation or block execution with incorrect results; they turn bugs
into safe termination, or, better, failure to compile. None of the
science surveyed in this paper includes any such basic techniques.

Random numbers are widely used in computational science
(and in many of the papers surveyed), for simulation or for ran-
domizing experiments. Misuse of random numbers (e.g. using

standard libraries without testing them) is a very common cause
of naiïve bugs [67].

If code is not documented it cannot be clear what it is intended
to do, so it is not possible to detect and eliminate bugs. Indeed,
even with good documentation, intentional bugs will remain, that
is, code that correctly implements the wrong things [60, 68].
Intentional bugs occur in code that correctly does what was
intended, but what was intended was itself faulty (students and
inexperienced programmers regularly make intentional bugs).
Intentional bugs frequently arise in numerical modeling, where
using an inappropriate method can introduce errors that are not
bugs in the sense of failing to correctly implement what was
wanted, but are bugs in the sense that the wrong numerical
method was chosen and inaccurate results are obtained; that is,
what was intended was wrong.

4.5. Long-term problems of unreliable code
Scientists explore and extend the boundaries of rigorous knowl-
edge. Put briefly, the purpose of scientific experiments is to vary
details to either test and specify the boundaries of theories, or to
discover new phenomena that then lead to theory revision.

If poor code, or poorly documented code, is made available with
scientific papers, the code is a natural place to start replicating
and varying experimental conditions, including both data or code.
However, if the starting point is not accurately known, whether
due to bugs, obscure code or because of poor documentation, then
experimental variations will have an unknown effect. Theory will
then be driven by artifacts of the code, not genuine phenomena.

In Section 5.1, below, an example is documented of a research
code development process of at least 15 years’ duration where
the code was admitted to be completely undocumented, leaving
details in just one author’s head. None of the various related
papers describe any controls over the drift of the science, or how
independent researchers building on it might have been able to
build with confidence rather than merely reproducing the same
errors.

Since the code in question was substantial and non-trivial, it is
very unlikely that any constructive reproduction occurred outside
the original laboratory and mindset; indeed, Section 5.2 describes
how ‘reproduction’ became trivialized because of community
pressure to confirm the insights of this particular research.

Trying to constructively refute aspects of this research in the
Popperian sense [69] would have been impossible. For example,
had the relevant papers published critical code invariants then
scientists building on the research could have explored whether
those invariants remained valid and, if so, under what assump-
tions. In fact, invariants are the theories of code, and deserve as
high a prominence in published science as the domain theories
the code itself is supporting investigating.

5. STATE OF THE ART
5.1. Case study: pandemic modeling
For an excellent review of the extreme pressures under which sci-
entists were working during the COVID-19 pandemic (but nothing
about the role of computers!), see [70] — which, while referring
to some failed mRNA vaccines, makes an important point on
recovering from “failed” science:

‘Such is the beauty of science: even failed attempts are a step

towards more information and progress forward.’ [70]

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

1392 | H. Thimbleby

But progress, if any, would be chaotic if it was not possible to
scrutinize exactly what science has failed. It undermines progress
if science and the code it relies on are not both accessible and
adequately defined. It is as misleading as getting the statistics or
mathematics wrong.

By focusing on influential science and coding undertaken to
inform public health policies during a pandemic emergency, this
section now focuses on an area where reliable and high quality
science using code open to interdisciplinary scrutiny was very
obviously required. Note that pandemic model correctness is a
secondary concern here; correctness is not addressed as without
informed scrutiny correctness cannot even be assessed.

A review of epidemic modeling [71] says, “we use the words
‘computational modeling’ loosely,” and then, curiously, the review
discusses exclusively mathematical modeling, implying that for
the authors, and for the peer-reviewers, there is no role for code or
computation as such. It appears that the new insights, advances,
rigor, and problems that computers bring to research were not
considered relevant.

A systematic review [66] of published COVID-19 models for
individual diagnosis and prognosis in clinical care, including apps
and online tools, noted the common failure to follow standard
TRIPOD guidelines [72]. The review [66] itself ignored the mapping
from models to their implementation, yet if code is unreliable, the
model cannot be reliably used, and cannot be reliably interpreted
regardless of whether TRIPOD guidelines are followed. Indeed,
TRIPOD guidelines ignore code completely.

It should be noted that flowcharts, which the review [66]
did consider, are graphical programs intended for human use.
Flowcharts, too, should be designed as carefully as code, for
exactly the same reasons.

A high-profile 2020 COVID-19 model [9, 73], which influenced
UK COVID-19 public health strategies, uses a modified 2005 com-
puter program [10, 11] originally developed for modeling H5N1 in
Thailand, when it did not model air travel or other factors required
for later western COVID-19 modeling. The 2020 model forms part
of a series of papers [9–11] none of which provide details of their
code.

A co-author disclosed [74] that the code was thousands of lines
long and was undocumented code. As Ferguson, the original code
author, noted in an interview,

‘For me the code is not a mess, but it’s all in my head, completely

undocumented. Nobody would be able to use it . . . ’ [75]

The admission above is tantamount to saying that the published
scientific findings are and need not be reproducible.7

The comment was made by a respected, influential world-
leading scientist, with many peer-reviewed publications involving
computational modeling, with a respectable h-index8 of 93, and at
the time ‘one of the top scientists advising the government on its
response to the coronavirus crisis’ working in the UK’s Scientific
Advisory Group for Emergencies (SAGE) group [77].

Ferguson’s code must be representative of best practice when
the stakes were high and reliability was known to be essential;
and if not representative of best practice, at least representa-
tive of accepted practice both in Ferguson’s team, the field of

7 A constructive discussion of Software Engineering approaches to repro-
ducibility can be found in [76].

8 h-index: the largest value of h such that at least h papers by the author
have each been cited at least h times. The figure cited for Ferguson was obtained
from Google Scholar on 20 January 2022. (Typical h values vary by discipline.)

epidemiology more widely, as well as with members of the high-
powered interdisciplinary SAGE group. It is therefore instructive
to explore the larger story around this science that uses code.

Lack of reproducibility is problematic, especially as the model
code would have required many non-trivial modifications to
update it for COVID-19 with its different assumptions; moreover,
the code would have had to have been updated very rapidly in
response to the urgent COVID-19 crisis.

If Ferguson’s C code had been made available for review, the
reviewers would not have known how to evaluate it without
the relevant documentation. It is, in fact, hard to imagine how
a large undocumented program could have been repeatedly
modified and repurposed over fifteen years without becoming
incoherent.

If code is undocumented, there would be an understandable
temptation to modify it arbitrarily to get desired results (i.e.
over-fitting, see Section 3.1); worse, without documentation and
proper commenting, it is methodologically impossible to distin-
guish legitimate attempts at debugging from merely fudging the
results. In contrast, if code is properly documented, the documen-
tation defines the original intentions (including, where appro-
priate, formally using mathematics to do so), and therefore any
modifications will need to be justified and explained — or the
theory revised.

The programming language C which was used [74] is, like many
popular programming languages, not a dependable language; to
develop reliable code in C requires professional tools and skills.
Some of the code was written in a naïve style (e.g., writing ∗(a+ i)

instead of a[i], and with obscure numerical goto statements like
if(l == 0) goto S150), and with C code that was translated
simplistically from FORTRAN and Pascal code, from references
dating back to the 1970s and 1980s [e.g., 78, 79].

Moreover, C code is not portable, which limits making it avail-
able for other scientists to use reliably: C notoriously gets different
results with different compilers, libraries, or hardware. In fact,
in any area where reliable programming is required in a C-like
language, a special dialect such as MISRA C is preferred: MISRA
C manages the serious design flaws of C that otherwise make
it too unreliable [80]. Alternatively, a high integrity programming
language, unrelated to C, such as SPARK Ada [81], or modern lan-
guages (many related to the ‘ML family’) like OCaml, F∗, Haskell
[82] could be used. These languages have steeper learning curves;
however their key benefit is that correct programs are far more
likely and are much faster to write. (The Supplemental Material
discusses these issues further.)

Ferguson, author of the code, says of the criticisms of his code,

‘However, none of the criticisms of the code affects the mathe-

matics or science of the simulation.’ [83]

This claim is implausible.
The original work on theoretical epidemiology may be fine if it

does not use any of his code, but if the science is not supported by
code that correctly implements the models, then the program’s
output cannot be relied on without independent evidence. Over
the fifteen plus years the code was in development the science it
informs will have developed too, as will the relevant data; it is not
clear how they will have remained in alignment.

Typically, models will be developed iteratively as their results
are improved to better fit a scientist’s goals — but this, especially
when it is done by tinkering, as here — risks making the code
arbitrarily fit the goals (that is, over-fitting; see Section 3.1), rather
than to objectively elucidate the science.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

Improving Science that Uses Code | 1393

In fact, the Ferguson code, covid-sim, is a very large program
at 25 kLOC (thousands of lines of code),9 so it is implausible that
the ‘mathematics or science’ has been correctly implemented
in it without error, particularly as there is no discussion of
methodologies to code reliably. Ferguson’s reported science is
consequently unlikely to be reliable.

5.2. Concerns with reproducibility
Getting science right, which now, in turn, depends on correct code,
is a normal requirement of reproducibility.

The code in [9, 73] has been ‘reproduced,’ as reported in Nature
[83, 84], but this so-called reproduction merely confirms that the
code can be run again and produce comparable results. As Eglen
says,

“Each run generated a tab-delimited file in the output folder. Two

R scripts provided by Prof Ferguson were used to summarize these

runs into two summary files [. . .] These files were compared against

the values generated by Prof Ferguson [. . .] The results were found

to be identical. Inserting my results into his Excel spreadsheet

generated the same pivot tables. The codecheck found that: ‘Small

variations (mostly under 5%) in the numbers were observed [. . .]’”

[84]

This test would pass provided the runs gave the same answers
regardless of whether the answers are correct — it is not a usefully
stronger test than just checking that the code compiles. The
comparison relied on running (apparently) unchecked R code to
summarize the data, which is potentially misleading unless the
published results [9] exclusively relied on the same summary
code. In general, reproducing code results, even done formally,
does not scrutinize the science, as [85] makes clear.

Running code just to obtain results claimed in a paper is a
weak test, and anyway one that should be checked routinely
during paper preparation and submission. However, in this case
the reproduction involved a community effort that also refactored
and improved the code, which added value to the code and use-
fully improved its generality [84]. The reproduction effort was also
certified [85], which is the sort of evidence of quality assurance
processes that arguably should be required before publication,
particularly for critical code such as public health modeling. The
publicity of this story and the certificate will certainly raise the
profile of the scientific value of independent review of code.

Unfortunately, the terms reproducibility, replicability, and
repeatability, have similar meanings in English but have been
used in different specific technical ways by different authors. In
[83, 84] the reproduction amounted to just re-running the original
code. It is certainly essential to establish that a paper’s code can be
run, as non-working code cannot support any claims in a paper;
if the original code runs this confirms a basic level of access
for the wider scientific community, and this can be formally
certified [85] so it is appreciated by the community. But a more
realistic criterion than basic reproduction in this sense is whether
an independently developed model developed from the same
paper(s) specifications produces equivalent results (called N-
version programming, a standard Software Engineering practice
[86]) like public health surely requires as, indeed, Ferguson’s own
influenza paper [87] argues.

9 Ferguson’s covid-sim system is composed of 229 files, and uses 734 Mb
of data. It is now rewritten from C into C++ with Python, R, sh, YAML/JSON, etc.
For more details, see Supplemental Material.

In general, much stronger scrutiny of code than ‘reproduction’
is required to answer essential questions (numbered below for
reference) including:

1) Is the code valid: does it do what the paper claims?10

2) Do other scientists, including reviewers and the authors,
understand the code?

3) Does the code implement the methods described in the
paper?

4) Has the code been over-fitted or tweaked to support specific
claims in the paper?

5) Is there a definitive version of code?
6) Is the code controlled and signed?
7) What limitations does the code have?
8) Was the code developed to any standard, and does it comply

to that standard?
9) How does the code protect against data, coding, and human

error?
10) Was the code tested adequately?
11) Does the code depend on arbitrary parameters, data, or code

to over-fit to obtain the published results?
12) Is the code documented adequately, so we know what it is

trying to do, and how?
13) . . . and so forth.

All such questions also apply to specifications, documentation,
assurance cases, test procedures, and other essential documents,
not just to code. In turn, the levels of scrutiny demanded should
be guided by explicit claims in the paper [68] — for example, a
pilot study requires weaker assurance than code that is developed
concerning nuclear power, driverless vehicles, public health, etc.

The questions in the list above are certainly hard to answer
for all but the briefest code, but corresponding levels of quality
assurance are demanded for other methodologies [63, 69, 72, 88–
90], such as data preparation and statistics to support claims in
peer-reviewed science.

Because of the recognized importance of the Ferguson paper,
a project started to document its code [91].11 Documenting code
in hindsight, even if done rigorously, may describe what it does,
including its bugs, but it is unlikely to explain what it was originally
intended to have done. As the code is documented, bugs will be
found, which will then be fixed (refactoring), and so the belatedly
documented code will not be the code that was used in the
published models; it will be different.

It is well-known that documenting code helps improve it, so it
is surprising to find an undocumented model being used in the
first place, since so many years’ opportunity to improve the code
have been lost. The revised code has now been published, and it
too has been heavily criticized [e.g. 92], supporting the concerns
expressed in the present paper.

Some papers [e.g. 93] publish models in pseudo-code, a
simplified form of programming. Pseudo-code looks deceptively
like real code that might be copied to try to reproduce it, but
pseudo-code introduces invisible and unknown simplifications.
Pseudo-code, properly used, can give a helpful impression of the
overall approach of an algorithm, certainly, but pseudo-code alone

10 Of course, the underlying science may be wrong to, so it is useful to
distinguish internal validity and external validity. Internal validity occurs if the
code does what the paper claims; external validity occurs if the code represents
correct science which the paper may have interpreted incorrectly.

11 It is surprising to find an undocumented model being used in the first
place, since so many years’ opportunity to improve the code have been lost. The
revised code has now been published, and it too has been heavily criticized
[e.g. 91], supporting the concerns expressed in the present paper. n-source,
available at github.com/mrc-ide/covid-sim version (19 July 2021).

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

github.com/mrc-ide/covid-sim
github.com/mrc-ide/covid-sim
github.com/mrc-ide/covid-sim
github.com/mrc-ide/covid-sim
github.com/mrc-ide/covid-sim
github.com/mrc-ide/covid-sim

1394 | H. Thimbleby

is not a surrogate for code: using it instead of making actual
code available is worse than not publishing code at all (see [94]).
Pseudo-code is too vague to help anyone scrutinize a model;
moreover, pseudo-code may mask over-fitting in code used that
is not explicit in the pseudo-code.

An extensive criticism of pseudo-code, and discussion of tools
for reliable publication of code can be found elsewhere [34].

The Supplemental Material provides further discussion of
reproducibility.

5.3. Beyond pandemic modeling
Epidemiology has a high profile because of the COVID-19 pan-
demic, but the problems of unreliable code are not limited to
COVID-19 modeling papers, which, understandably, were perhaps
rushed into publication. But other examples that were not rushed
include a 2009 paper reporting a model of H5N1 pandemic mit-
igation strategies [95], which provides no details of its code. Its
supplementary material, which might have provided code, no
longer exists.

There are many other areas of computational science that are
equally if not more critical, and many will have longer-lasting
impact. Climate change modeling is one such example that will
have an impact long beyond the COVID-19 pandemic.

A short 2022 summary of typical problems of Software
Engineering impacting science appears in Nature [96], describing
diverse and sometimes persistent problems encountered during
research in cognitive neuroscience, psychology, chemistry, nuclear
magnetic resonance, mechanical and aerospace engineering,
genomics, oceanography, and in migration. The paper [96] makes
some misleading comments about the simplicity of Software
Engineering, e.g., ‘If code cannot be bug-free, it can at least be
developed so that any bugs are relatively easy to find.’

Guest and Martin promote the use of computational model-
ing [97], arguing that through writing code, one debugs scien-
tific thinking. Psychology, their focus, has an interesting relation-
ship with software, as computational models are often used to
model cognition and to compare results with human (or animal)
experiments [97]. In this field, the computation does not just
generate results, but is used to explicitly explore the assump-
tions and structures of the scientific frameworks from which
the models are derived. Computational models can be used to
perform experiments that would be unethical on live participants,
for instance involving lesioning (damaging) artificial neural net-
works. It should be noted that such use of cognitive models is
controversial — on the one hand, the software allows experiments
to be (apparently) precisely specified and reproduced, but on the
other hand in their quest for psychological realism the models
themselves have become very complex and it is no longer clear
what the science is precisely!

For instance, ACT-R, one widely-used theory for simulating and
understanding human cognition, has been under development
since 1973, and is now a 120 kLOC Common LISP and Python
system [98]. Furthermore, any paper using ACT-R would require
additional code on top of the basic ACT-R framework.

The psychology paper [97] presents an example computational
model from scratch to illustrate a framework of computational
science. In fact their example model has no psychological content:
a simple numerical test is performed, but the psychology of why
the result is counterintuitive — the psychological content — is
not modeled. Be that as it may, they develop a mathematical
specification and discuss a short Python program they claim
implements it.

The Python code is presented without derivation; Software
Engineering is ignored. The program listed in the paper certainly

runs without obvious problems (ignoring some typographical
errors due to the journal’s publishers), but ironically the Python
does not implement the mathematical specification explicitly
provided for it, thus undermining the argument of the paper.

One might argue the bug is trivial (the program prints False

when it should print b), but to dismiss such a bug would be
comparable to dismissing a statistical error that says p= False

which would be nonsense — if a program printed that, one would
be justified in suspecting the quality of the entire program and its
analyses. Inadvertently, it would seem, then, that the paper shows
that just writing code does not help debug scientific thinking:
instead, code must first be derived in a rigorous way and actually
be correct. Otherwise, code based on inadequate Software Engi-
neering will introduce errors into scientific thinking.

Code generally for any field of scientific modeling needs to be
carefully documented and explained because all code has tacit
assumptions, bugs and cybersecurity vulnerabilities [51, 52, 96]
that, if not articulated and properly managed, can affect results in
unknown ways that may undermine any claims. People reading
the code will not know how to obtain results because they do not
know exactly what was intended in the first place. The problem
is analogous to the problem of failing to elaborate statistical
claims properly: failure to do so suggests that the claims may have
unknown limitations or flaws.

Even good quality code has, on average, a defect every 100 lines
— and such a low rate is only achieved by experienced industrial
software developers [99]. World-class software can attain maybe
1 bug per 1000 lines of code. Code developed for experimental
research purposes will have higher rates of bugs than professional
industrial software, because the code is less well-defined and
evolves as the researchers gain new ‘insights’ into their ideas,
unable to distinguish genuine insights from artifacts of bugs. In
addition, and perhaps more widely recognized, code — especially
but not exclusively mathematical code — is subject to numerical
errors [100]. It is therefore inevitable that typical modeling code
has many bugs (reference [86] is a slightly-dated but very insight-
ful discussion). Such bugs undermine confidence in model results.

Only if there is access to the actual code and data (in the specific
version that was used for preparing the paper) does anyone know
what the researchers have done and whether that corresponds
closely to what they are reporting.

Some COVID-19 papers [e.g., 101] make unfinished, incomplete
code available. While some [e.g. 101, 102] make what they call
‘documented’ code available, they provide no more than super-
ficial comments. This is not documentation as properly under-
stood. Such comments do not explain code, explain contracts, nor
explain algorithms. Contracts, for instance, originated in work in
the 1960s [103], and are now well-established practice in reliable
programming.

Even if a computer can run it, badly-written code (as found
in all the research reviewed in the present paper, and indeed in
computer science research, e.g. [20]) is inscrutable. Only if there
is access to adequate documentation can anyone know what the
researchers intended to do. Without all three (code, data, adequate
documentation), there are dangers that a paper simplifies or exag-
gerates the results reported, and that omissions, bugs and errors
in the code or data, generally unnoticed by the paper’s authors
and reviewers, will have affected the results they report [34].

5.4. The lop-sided emphasis on data
Data have been at the center of science, certainly since the earliest
days of astronomy collecting planetary and other information.
Today it is widely recognized that lack of accessible and usable
data that has already been collected limits the progress of science.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

Improving Science that Uses Code | 1395

Low quality data and poor access to data causes reproducibility
problems, an increasingly recognized problem — in 2015 it was
estimated that $28 billion a year is spent on preclinical research
that is not reproducible [104].

Curating data are taken seriously as a part of normal science
and peer-reviewed publication. Journal policies widely require
appropriate discussion of data, much as they require appropriate
discussion of statistics. Journals often require archiving data in
standard formats so it can be accessed for reproduction in further
scientific work.

There are many current activities to proceduralize and stan-
dardize the more effective curation and use of data, such as the
FAIR principles (Findable, Accessible, Interoperable and Reusable)
for scientific data management and stewardship [105, 106], and
in the development of journal and national funder policies. For
example, the 2022 update to the US National Institutes of Health
data policies [89] is described as a ‘seismic mandate’ by Nature [90]
in its attempt to improve reproducibility and open science yet they
ignored code.

These cost estimates and initiatives under-play the role of code
as a critical component despite its becoming the new laboratory
for almost all science. The role of code specifically in modeling is
discussed throughout this paper; without bespoke code, proposed
models (unless intended to be abstract) cannot make a quantifi-
able contribution to the literature. Code has additional problems
of versions and compatibility beyond those of data, for example
suitable compilers to run old code may no longer be available, and
programming systems may produce different results when used
on different computers.

In general, without proper management of code — for example
to record, detect and report version control differences — sharing
code may even be counter-productive.12

Using structured repositories that provide suggestions for and
which encourage good practice (such as Dryad13 and GitHub), and
requiring their use, would be a lever to improve the quality and
value of code and documentation in published papers. The evi-
dence (see Supplemental Material) suggests that, generally, some
but rarely all develop code that is uploaded to a repository just
before submitting the paper in order to ‘go through the motions.’
In the surveyed papers there is no evidence (before, during, or after
the date of the survey sample) that any published code was pre-
pared or maintained using repositories. This is consistent with the
finished code being uploaded to a repository just for the purposes
of satisfying publishing requirements, but not using one earlier
probably because they did not understand the benefits of doing
so — not using a repository during the research process means
the author of the paper misses out on the many helpful features
of repositories, such as version control, review, actions, and other
approaches for automating development, sharing workload, and
so on. Using repositories during research means that other people
can more easily help review the approach, in much the same
way that papers are routinely circulated for peer review before
submitting to a formal journal.

12 The data and code shared with the present paper includes cryptographic
checksums; if somebody reproducing the work described here does not obtain
the same checksums at least when they start their work, then there are
problems that need investigation before relying on the reproducibility of the
data.

13 Dryad datadryad.org curates raw, unprocessed data. At the time of
writing, Dryad excludes code; however, it uses a separate organization, Zen-
odo zenodo.org, to host code and other relevant information. This arbitrary
separation is unfortunate as it increases management problems, increases
reproducibility problems, limits using RAP, and most seriously limits how
scientists can structure their data and code to best suit their research (see
Section 4.4).

There is a lop-sided emphasis on data in science. In fact, data
are useless without code, and code must be used to manipulate
and analyze it. Often code is used to extrapolate data, so the
code itself effectively generates more data, or the code eliminates
outliers so it effectively deletes data. Data are routinely formatted
in simple or standard ways, but code, in contrast, are architecture-
and version-specific, so — unless properly managed — code goes
obsolete faster than data. In short: the integrity of code and its
availability to scrutiny is in fact both harder and more important
than the usual requirements put on data.

6. RETHINKING SCIENCE THAT USES CODE
Computer programs are the laboratories of modern scientists, and
should be used with a comparable level of care that virologists use
in their laboratories — lab books and all [88] — and for exactly the
same reasons: bugs, whether computer bugs or biological bugs,
accidentally cultured in one laboratory can infect research, ideas,
and policy worldwide.

Inadequate scientific code can be problematic. Incorrect
results might be used for supporting science, modeling pan-
demics or informing public health policy, informing medical
research, or adopted for use in other critical software, such as
medical diagnostics, credit checking, or any other impactful use.
Professional critical software development, as used in critical
industries such as aviation and the nuclear power, is (put briefly)
based on correct by construction [107], effectively: design it right
first time, supported by numerous rigorous techniques, such as
Formal Methods, to manage error. Not coincidentally, these are
exactly the right methods to ensure code is both dependable and
scrutable, as is required for supporting reproducibility and quality
science more generally. Conversely, not following these practices
undermines the rigor of science.

6.1. Software Engineering Boards
Misuse of data, exploiting vulnerable people, and not obtaining
informed consent are typical ethical problems. Planned research
may be ethically unacceptable in ways the investigators do not
anticipate: few people have the objectivity and ethical expertise
to make sound ethical judgments, particularly when it comes to
assessing their own work. National funders, and others, therefore
require Ethics Boards to formally review ethical quality. Medical
journals will not publish research that has not undergone inde-
pendent formal ethical review.

Analogously, and supplementing Ethics Boards, it is argued
here that Software Engineering Boards (SEBs) would authorize as
well as provide advice to guide the implementation of quality Soft-
ware Engineering to support research and publication processes.
Just as journals require conflicts of interest statements, data
availability statements and ethics board clearance, we should
move to scientific papers and funded research being required to
include formal Software Engineering Board statements. Note that
Software Engineers themselves have a code of ethics that applies
to their own work [108].

Some journals have policies that code is to be made available
(see Supplemental Material), but they should require that code is
not just available in principle but actually works on the relevant
data. The authors should test a clean deployed build of their code
and save the results. Presumably a paper’s authors must have run
their code successfully on some data at least once, so preparing the
code and data in a way that is reproducible should be a routine
and uncontentious part of the rigorous development of code
underpinning any scientific claims. This requirement is no more

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

datadryad.org
datadryad.org
zenodo.org
zenodo.org

1396 | H. Thimbleby

unreasonable than requesting good statistics, as discussed earlier.
And the solution is the same: that relevant experts — statisticians
or Software Engineers — need to be available and engaged with
the science. Software Engineering Board statements would be a
straight forward way of helping achieve this and showing that it
has been done adequately.

There need to be many SEBs to ensure convenient access,
potentially at least one per university. Active, professional Soft-
ware Engineers should be on these SEBs; this is not a job for people
who are not qualified and experienced in the area or who are not
actively connected with the state of the art. There are many high-
quality university computer science departments and software
companies (especially those in safety-critical areas like aviation
and nuclear power) who would be willing and competent to help.

As appropriate, SEBs might require version control, unit testing,
static analysis and other quality control methods. Within the field
of Software Engineering itself, publishers are already developing
rigorous badging initiatives to indicate the level of formal review
of the quality of software [109].

A potential argument against SEBs is that they may become
onerous, onerous to run and onerous to comply with their require-
ments. A more balanced view is that SEBs need their processes
to be adaptable and proportionate; indeed, few people consider
Ethics Boards to be disproportionately onerous. If software being
developed is of low risk, then less stringent engineering is required
than if the software could cause frequent and critical outcomes,
say in their impact on public health policy for a nation. Hence
SEBs processes are likely to follow a risk analysis, perhaps starting
with a simple checklist. There are standard ways to do this, such
as following IEC 61508:2010 [110, 111] or similar. Following a risk
analysis (based on safety assurance cases, controlled documents
and so on as appropriate to the domain), the Board would focus
scrutiny where it is beneficial without obstructing routine science.

A professional organization, such as the UK Royal Academy of
Engineering ideally working in collaboration with other national
international bodies such as IFIP, should be asked to develop and
support a framework for SEBs. SEBs could be quickly established
to provide direct access to mature Software Engineering expertise
for both researchers and for journals seeking competent peer-
reviewers. In addition, particularly during a pandemic or other
disasters, SEBs would provide direct access to their expertise for
Governments and public policy organizations. Given the urgency,
this paper recommends that ad hoc SEBs should be established for
this purpose.

SEBs are a new suggestion, providing a supportive, collaborative
process. They meet Tony Hoare’s comments about the value of
rigorous management of procedures [112], and widen them to
non-programmer scientists. Methodological suggestions already
made in the literature include open-source and specific Soft-
ware Engineering methodologies to improve reproducibility [76,
113]. Reference [114] provides an conceptual framework. However,
there is scope for further research to provide an evidence base
to motivate and assess appropriate interventions (such as those
proposed in this paper) to help scientists do more rigorous and
effective Software Engineering to support their research and pub-
lishing.

An analogous proposal to SEBs has been made for Methods
Review Boards [115], to help scientists ensure the methods they
use are appropriate for addressing their research questions. Meth-
ods Review Boards were motivated by an Ethics Board member
noticing that often experimental methodologies are inadequate,
which will waste time that will not be corrected until the flaws are
raised, usually too late, typically during peer-review — creating

technical debt (discussed below, in Section 6.6). As with SEBs, the
goal of Methods Review Boards is not to gatekeep, but to improve.
The paper [115] raises many of the same trade-offs that SEBs also
face; indeed one would hope that Methods Review Boards would
include Software Engineers or have SEBs as sub-boards or vice
versa: Software Engineering is now a key methodology of science.

6.2. Extending RAP to RAP+
Code is usually seen as an independent set of files that are used
to generate results, typically to be copied into a paper; code
is usually seen as a passive part of science. In reality, code is
very creative. A paper can itself embed code or become code
[e.g. 34, 116], as discussed in Section 2.2: code then becomes a
driver for the research. This view supports the generalization
of RAP to form RAP+. Essentially, RAP+ is the recognition that
coding is not just about programming computers (which results
in RAP) but is about applying computational thinking [7, 8] that
supports and constructively analyzes any process, in particular
the creative scientific processes of doing science and creating
archival publications.

Once workflow steps in the pipeline are automated, then there
is code to run the steps again. Once there is code, it can be man-
aged in a version control system. A version control system then
provides an audit trail for free, as well as many advantages such as
being able to backtrack to an earlier version, for instance to review
earlier edits. Importantly, code can also perform sanity checks
on the process. A very simple example is automatic bibliography
systems that check that journal names and DOIs are correct, and
so forth. (Bibliographic systems also allow the bibliographic data
to be pooled and curated with other scientists, which improves its
scope and quality.) But RAP+ goes far beyond bibliographies; there
is far more of the scientific workflow that can be partly or fully
automated — and with corresponding benefits.

GitHub is a tool that provides actions that are named specifica-
tions to run analytic pipelines, workflows in GitHub’s terminology.
GitHub happens to specify actions in the language YAML, which,
being a textual notation, in turn means that the features of GitHub
— open-source, version control, and so on — can be applied to the
research workflow as well. Research pipelines can thus be made
explicit, documented, shared and, most importantly, critiqued and
improved.

The entire scientific process can be supported by automation
(especially with its interaction with the world automated by sen-
sors, AI, and robots). There are many ways to do this; for example,
Mathematica makes the analysis of the data and the calculations
and the paper “the same thing” in its integrated notebooks. The
many alternatives include R Markdown, an approach based in the
open mathematical system R [117]; a system, Lepton [118], which
allows a LATEX document to execute and include arbitrary code,
and language-independent notebook systems like Jupyter; and so
on (section 2.2).

In all such systems, running the computational paper creates
the publication. Indeed, every time the paper is run, the authors
are likely to check the results and fix any problems, so an explicit
RAP workflow actively helps reduce errors.

Here is the insight: the paper’s code, just like the paper itself is
text, so the code itself can fully form part of the pipeline, made
reproducible, and benefit from all the usual RAP benefits. To
date, this critical point has been overlooked. Since using RAP to
integrate code, rather than just the conventional ‘pure’ scientific
workflow, has not been mentioned previously, we call it RAP+
to make it clear this is a new and important generalization of
RAP. RAP+ helps improve code quality, for the same reasons

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

Improving Science that Uses Code | 1397

RAP improves the quality of the science. Improving code quality
improves the science and its reproducibility.

Software engineers have many tools for automatic code devel-
opment (such as Unix’s make) but the idea that these tools can be
used to integrate and help automate code authoring as well as its
documentation and paper authoring is radical. It means that the
entire research and development process of the paper including all
its underlying code can be reproduced, reused, and developed by
others. The present paper is an example of RAP+; more details are
given in the Supplemental Material.

By definition, RAP+ objectifies how science is done to a stan-
dard sufficient to enable a computer to run it. RAP+ therefore
enables all of the methodologies of Software Engineering to be
brought to bear on the science itself . RAP+ means the normally tacit,
manual, and undocumented processes of science (especially the
coding) become explicit. Code can then be scrutinized, optimized
and ensured correct by standard Software Engineering practice;
thus RAP+ does not automate science just for easier reproduction,
it makes the automation explicit so the doing of science itself
can be reasoned about — not just by scientists but supported by
sophisticated tools, such as theorem proving and AI. Science will
be improved by RAP+.

6.3. The paper as a scientific laboratory
The conventional view of science is that experiments are done
then written up. However, it is more productive to think of the
paper itself as an active laboratory, not just as a record of finished
work. The view of the paper as a scientific laboratory is explicit in
computational papers (Section 2.2): ideas are written down, and
their validity is tested by the sense they make or fail to make;
the ideas are then revised — writing is an active experiment to
find and develop ideas that are worth saying. Viewing the paper
as a laboratory encourages authors to copy and adopt laboratory
best practice (such as keeping records, as RAP and RAP+ suggest)
into the processes of writing the paper itself; viewing the paper
as a laboratory also encourages authors to see writing as a sci-
entifically — not just expressive — act, and not just as the final
summary of a period of scientific creativity. In short, seen as a
laboratory, the paper is no longer a reactive write-up of finished
work, but it is an active part of doing good science. Writing a
paper explores the space of scientific possibility as constructively
as working in the field or on a lab bench. The computable paper
is now the scientific laboratory.

With a computational paper, authors can literally experiment
in the paper, exploring the effectiveness of ideas and explanations.
Furthermore, they can experiment with hypotheses: for example,
authors can make a clear claim that at that point in the lifecycle of
the paper is but a wish rather than an established theory or fact —
the wish enables them to sketch a direction they plan to go in and
to explore possible supporting arguments and evidence for it. So
they then do the experiments or calculations, including consult-
ing the literature and other scientists, to establish a justification
and other details. The evidence they generate or the criticism they
receive may not be quite what they expected, so they then revise
the claim to be correct, or change it to be a more realistic claim, or
they could delete it if it just turns out to be a mess, or they could
develop some altogether much better approach to the work as a
result of the exploration.

Typically, many ideas in a paper will be linked to conventional
experiments. For example a computational paper might calculate
the statistical power of an experiment is too low (there is an
unacceptable risk of committing Type II errors), so the authors
will decide to improve the experiments. The computational paper

approach allows such calculations to be made before, during, or
after the experiments.

If there is code in the paper, every time it is typeset, the code will
be run. Therefore the authors of the paper proof-reading the paper
and the results of the code will have opportunities to debug and
improve the code. Again, the paper itself is acts like a laboratory,
helping the authors refine the science.

Note that systems capable of handling computational papers
(including LATEX) can create conditional documents: for example,
there could be a flag publish. If publish is false, the author
can see all their private work and thinking, including all their
experimental thinking and workings; but when the author sets the
flag publish to true, the paper would be typeset for a submitted
paper with the detailed workings concealed to ensure a clean and
concise presentation. In principle, also submitting to the journal
a separate version of the paper with publish set to false would
make the data and workings visible and thus could satisfy journal
code and data requirements. Of course, when there is a large
body of data or code, they need not all be an explicit in the
computational paper: they would be made available separately
in the usual way — the flag publish rather than being true/false
might instead be a number setting the degree of disclosure.

The more we view the paper as a proactive scientific laboratory
environment, the more we gain from the RAP+ perspective, and
the more science gains from improved, conceptually broadened,
reliable and reproducible science. The more we will also want to
engage mature Software Engineering (and computational think-
ing) ideas too, because the quality and creativity of future science
relies on them, after all, Software Engineering is about how to
tell a computer how to do something reliably, and, as Knuth
said, science is what we understand well enough to explain to
a computer, and so Software Engineering can now directly help
ensure we are not fooling ourselves about what we understand.

6.4. Action must be interdisciplinary
Code is more than a scientific instrument, more than a ther-
mometer or test tube, as code makes, informs and changes deci-
sions; indeed, code can actually do science. Still, code is only a
part of science, so relying on SEBs alone would continue one of the
besetting problems about the role of code in science.

The conventional view is that scientists do the hard work
compared to the ‘easy’ coding work (Sections 4.1 and 4.3) so they
just need to tell coders what to do. This is the view expressed
by Landauer in his classic book The Trouble with Computers
[119, 120], where he argues that the trouble with computers, an
idea he explores at some length, is that we need to spend more
effort in working out what computers should do (here, do the
science better) and then just tell programmers to do that.

On the contrary, competent Software Engineers have insights
into the logic, coherence, complexity and computability of what
they are asked to do, and how it needs refining or optimizing
— or the question changing. In other words, Software Engineers
can bring important insights into the science, hence improving
or changing the questions and assumptions the science relies
on. This insight was widely recognized in the specialist area of
numerical computation: ‘here is a formula I want you to just code
up’ . . . ‘but it’s ill-conditioned, there is no good answer to that
question.’ It is not a simple sequential workflow with the expert
initiative all on the left:

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

1398 | H. Thimbleby

but an iterative cycle of mutual collaboration and growing under-
standing, informed by Software Engineering best practice (via
SEBs) and science, and implemented and tested-out using papers
as laboratories.

In short, the way SEBs work and are used will be crucial to
the success of the science they support. Software engineers can
help improve the science, so it is not just a matter of asking
a SEB whether some coding practices (like documentation) are
satisfactory, but whether the SEB has insights into the science
itself too. The SEB idea requires interdisciplinary working prac-
tices (science plus Software Engineering) with mutual respect for
their contributing expertise.

6.5. Methodological statements
Scientific publishers (journals, conferences, workshops, videos,
books, etc, and funders) often require an explicit methodology
discussion, yet they rarely require the methodology to discuss the
computational methodology — which, to the extent that anything
relies on code, impacts all the other methodology and results
discussions.

Many science publishers require explicit statements how the
authors have conformed to appropriate methodological standards
covering issues such as conflicts of interest, ethics, data access,
consent, authoring, funders and other acknowledgements of
support, and so forth. Conformance to PRISMA (see Section 4.3)
is one such methodological standard. It would be easy for
journals and funders to require equivalent types of statements
on the quality of code, that is on the quality of its Software
Engineering.

Studies of data access statements show that they are unre-
liable: some authors withdraw papers when journals request
access statements [21] (indicating that journals that do not make
an explicit request are likely publishing papers that will not pro-
vide access), and some authors do not respond to access requests
[22]. How we help scientists who do not want to provide data or
code access is one problem, but the serious issue for science is
how to ensure any statements made are accurate, and any access
provided is actually helpful (e.g. well-defined, versioned, etc) to
support useful reproduction.

Journals and funders should provide support for hosting data
and code (and any other relevant data, such as qualitative data,
video, etc), and the review process must check that authors actu-
ally provide the material as they claim in the methodological and
access statements. Conversely, scientists should be able to access
funding to ensure data and code access, as well as funding for on-
going maintenance of the databases, which will typically require
funding beyond the end of the normal funding period.

Intellectual Property (IP) is an increasing concern, both for
author scientists and their sponsors who want royalties, and for
other scientists wishing to freely build on the published science.
Particularly concerning access to code, IP is potentially and often
is in conflict with scientific openness. Methodological statements
should be made concerning any IP associated with code, and
to what extent this interferes with open access to code. More
routine discussion should include raising known system depen-
dencies, such as operating system, compiler or special hardware
dependencies; it is also appropriate to mention standards confor-
mance, such as to IEEE Floating-Point Arithmetic (IEEE 754).

Journal policies could start to explicitly encourage computa-
tionally reproducible science using RAP and RAP+ techniques.
That is, the research’s methodology itself may be a mixture of
data and code. As this paper’s Supplemental Material shows in
section 12.d.3, many journals (e.g. PLOS ONE and, ironically, IEEE

Transactions on Software Engineering) and repositories have policies
that make RAP much harder or just counter-productive at the last
step.

Methodological statements should be required that make clear
what access rights are available for RAP or RAP+ material, as it
is much more likely to raise IP issues that normal disclosures.
In particular, if the authors plan on publishing a series of papers
based on the same methodologies, the RAP/RAP+ access might be
provided in a later paper or held under escrow by the journal or
funding body.

Journals and funders often require data and code access state-
ments, but as this paper has made clear, code is complex and
it is rarely easy to understand and scrutinize even with access
to substantial documentation (which is unusual). It is therefore
recommended that journals and funders require assurance argu-
ments [58], a familiar technique from the safety assurance domain.
Assurance arguments provide a concise, high-level argument that
the system does what is claimed. Assurance arguments can be
more or less detailed, and more or less formal in their approach;
editors and referees would have views on the level of detail and
formality required for any specific contribution.

Finally, as there is no practical distinction between data and
code (see Supplemental Material) and methodology (thanks to
RAP), and certainly no distinctions that cannot be circumvented,
journal and funder policies of code and data access should be
reviewed and unified so that the access and methodology state-
ments apply to all information, regardless of arbitrary classifica-
tion of it as code or data (or documentation, assurance case, etc).

6.6. Training to reduce technical debt
Science has to work for other people in other places at other times,
otherwise they cannot be sure they are studying, developing, or
correcting the intended ideas reliably, but while working on a
research project, the requirements of reproducibility are tempting
to postpone or ignore altogether. It seems more expedient to ‘just’
get on and do the science without regard for the extra effort
of ensuring reproducibility. This creates the problem known as
technical debt [121]: the savings in effort now increase the future
cost of reproduction. That is, a debt arises as the authors’ savings
now create higher costs for scientists later. The authors of a paper
may create debt for themselves as shortcuts now increase the
effort of retro-fitting reproducibility later. Indeed, what if the post
hoc rigors of reproducibility expose previously unknown problems
where the earlier shortcuts have created a now too-late-to-avoid
cost authors with integrity will be obliged to pay?

There is a trade-off to balance when and how much effort to
put into reproducibility. The trade-off is comparable to trade-offs
in using statistics — the author may realize at a later stage that
a ‘significant’ result depends on designing the experiment appro-
priately for the intended statistical claims, but now making the
claim rigorously requires revising the methodology and probably
improving the type of analysis too. What was an easier route to
take earlier now causes a challenging and costly revision. How-
ever, since mature scientists recognize the importance of correct
statistics, statistics is positioned at the forefront of their work
rather than delayed and sorted out at greater cost later. Because
of its recognized role, statistics is routinely in the undergraduate
syllabus, so most scientists consciously make appropriate trade-
offs minimizing statistical technical debt.

In contrast to statistics, reproducibility has only recently
become an explicit issue, and computational tools to support
it are developing rapidly; unlike statistics, very little of best
reproducibility practice will be in scientists’ background training.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

Improving Science that Uses Code | 1399

While systems like Jupyter facilitate reproducible science,
realizing this may only come after much work has been done.
Unfortunately, retro-fitting the science into a reproducibility
tool is a steep learning curve — no less than learning statistics
from scratch. As with rigorous statistics, if the benefits of
reproducibility processes were not realized at the start of a project
and they have to be retrofitted, then the reworking of the science
will be costly. Worse, Jupyter and similar tools are not ‘just’
computational notebook systems that are easy to use: they work
with a raft of inter-related technologies, such as Binder, Docker,
Python, MyST, Sphinx . . . as well as field-specific environments
like Neurolibre, as well as with (or despite) costly tools the
scientists may be relying on, including proprietary systems, high
performance computing resources, and subscription services.

Jupyter, and its many alternatives, are effectively lifestyle
choices with dauntingly steep learning curves when they are
learned on the job during research. The solution, as with
statistics, is to push back learning about reproducibility and the
benefits of tools to earlier in the scientific career, at the latest
to the undergraduate curriculum before reproducibility-related
technical debt can arise.

6.7. Benefits beyond science
Science increasingly recognizes the key supporting roles of code
and computation, but many fields do not recognize computation
as such as a skilled discipline, and therefore they are missing out
on the leverage that comes with recognizing computation as a
first class player in their activities.

For example, healthcare research is supported by computers
and code, yet medical research papers remain in a traditional pre-
digital culture and do not refer to code, as if code has no influence
in the methodology of the science. Yet clinical practice relies
on computer code (e.g. for diagnostics), so inevitably practice
must use code unrelated to the code developed in research. In
other words, the culture of not discussing and sharing code in
research reduces its impact: putting research into practice is a
reproducibility question, and if code has been down-played in the
research it will be reproduced unreliably. Conversely, the critical
issues (including patient safety) that tacitly assume code is more
reliable than required for scientific research code do not get
evaluated by researchers. The gap is wide. The problems and
missed opportunities of under-valued and poorly-managed code
are ubiquitous in healthcare [60]. Solutions might well be initiated
through SEBs.

Another example is that numerous problems in finance have
been precipitated by similar computational cultural naïvety. JP
Morgan Chase (JPM) lost over $6 billion in a credit derivatives trade
[122], in a costly parody of bad science. As reported in [122], traders
did not understand the trades, did not monitor them, doubled
down when results were poor, and did not communicate the
extent of their losses. They were using manual coding methods;
as the report says:

“[. . .] the model operated through a series of Excel spreadsheets,

which had to be completed manually, by a process of copying and
pasting data from one spreadsheet to another. [Our emphasis.]

[. . .] this individual immediately made certain adjustments to

formulas in the spreadsheets he used. These changes, which

were not subject to an appropriate vetting process, inadvertently

introduced two calculation errors

[. . .] after subtracting the old rate from the new rate, the

spreadsheet divided by their sum instead of their average, as the

modeler had intended.”

etc [123]

Compare the discussion here with figure 3, in a series of figures
in the Supplemental Material, which illustrates the problem as it
presents in many scientific papers.

The report [122] does not detail how the Excel spreadsheets
were specified or coded, seemingly as unaware of Software
Engineering as the traders. It was an unconsciously incompetent
process.

Reviewers in JPM failed to scrutinize not just the coding, but the
trades informed by the code. They passed on optimistic reports.
Then there was a merry-go-round of blame: “the information
communicated to the Risk Policy Committee . . . did not suggest
any significant problems . . . there was no robust debate with the
right facts at the right level about the portfolio risk.” UK and US
governments are now investigating fraud. Again, lasting solutions
might well have been initiated through SEBs or equivalent; involv-
ing SEBs might well avoid future financial fiascos.

Without taking the lessons of improving Software Engineering
to other fields, including improving and broadening the recog-
nition and career paths for developers, there will continue to
be unfortunate and unnecessary disconnects between compe-
tent software engineering and actual scientific (or medical or
financial, etc) practice. Everything, from healthcare to finance —
not just science — will continue to suffer because the critical
contributions of dependable code, quality Software Engineering,
and competent Computational Thinking are not yet recognized,
understood, valued, or required.

6.8. Approaches to further work
Encouraging and informing the improvement of science and,
specifically the reproducibility of science that relies on code, were
the main aims of this paper. This paper raised problems and
suggested some possible solutions: there are solutions, and better
ones may yet be found. Although further work is desirable, any
contributions can help improve science; not everything needs
doing before we start.

Further work should research the efficiency, effectiveness, and
quality of the various ideas proposed, such as RAP+ and Software
Engineering Boards, and propose and evaluate more ideas.

Further work to extend the reach and scope of the survey
with increasing scale, subject coverage, and rigor beyond the
exploratory requirements of the present paper might seem worth-
while. If people feel our analysis of the problem is inadequate,
better surveys may be appropriate, but recognizing that there is
a problem (regardless of arguing over its scale) in practice it is
more important to explore what direction to travel in. We should
be focusing effort on acknowledging, understanding, assessing,
managing and avoiding scientific problems — including poor
reproducibility. This requires practical solutions that scientists
can adopt, which itself relies on further work to examine rigor-
ously what effective ‘practical solutions’ might entail.

Being primarily concerned with reproducibility, this paper
avoided assessing the correctness of code used in science, not
least because that without reproducibility correctness is moot
— how code is managed and made available is more relevant
than exactly what it does. Indeed, since none of the papers
reviewed provided code specifications, it is not obvious what
correctness means to practicing scientists. The balance, then,
between practical correctness and formal correctness is an
important research topic to pursue [112].

The present paper did not assess the correctness of code used
in papers (explicitly so in Section 5.1) for several reasons. Code
was not documented well-enough (even with high-level discus-
sion in the papers) to know what ‘correct’ would mean, and no

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

1400 | H. Thimbleby

papers performed adequate tests, let alone provided adequate
test material for independent verification (see Table 2); moreover,
installing the software environments to build and test the systems
— different environments for each paper — was too onerous,
even when those environments were specified. The implication is
that people within the relevant fields, especially referees, should
promote standardized software environments to help increase
the rate of reproduction and verification of results. As a matter
for further research, then, it is important to develop, assess,
and promote effective shared online (e.g. cloud) environments,
perhaps with discipline-specific solutions, so that development
and test environments are standardized, powerful enough and
sufficiently accessible.

7. CONCLUSIONS
A pandemic creates unprecedented pressure and exposes prob-
lems in scientific methodology. During the COVID-19 crisis, code
led epidemiological modeling, implemented track and trace and
caused problems [124], modeled mutation pressures against vac-
cine shortages [125], and more. Code drove public policy. Code had
a direct impact on the quality of life.

While this paper was originally motivated by Ferguson’s public
statements [e.g. 74, 75] about his high-profile COVID-19 pandemic
modeling, the evidence reviewed here suggests that scientific cod-
ing practice is inadequate in every field, but particularly worrying
in the context of the extreme pressures of managing a pandemic
in real time. As science becomes more and more reliant on com-
puters, we need to correspondingly improve the quality of code,
the quality of code policies, the quality of Software Engineering,
and the quality of all scientists’ understanding of computation
and how to manage its unlimited complexity.

The main challenges to mature computationally-realistic sci-
ence are:

1) To manage software development to reduce the unnoticed
and unknown impacts of bugs and poor programming prac-
tices that research and publications rely on. Computer code
should be explicit, accessible (well-structured, etc), and ade-
quately documented. Papers should be explicit on their soft-
ware methodologies, limitations and weaknesses, just as
Whitty expressed about the standards of science gener-
ally [54]. Professional software methodologies should not be
ignored.

2) To use computation to help make scientific workflows and
processes explicit, so that they can be reproduced, scruti-
nized and improved. RAP is an increasingly popular way
to help do this, but as this paper points out, RAP can be
generalized to RAP+ to help the computational parts of
science as well, leading to a virtuous circle.

3) To support and develop the scientific community in the
professional use of computation.

4) To find effective ways to promote professional software engi-
neers being recognized and participating fully in scientific
research, just as professional statisticians routinely support
quality research (see Section 3).

While programming seems easy and is often taken for granted
and done casually, programming well is very difficult [60]. Science
needs coding to be done well.

We know from software research that ordinary programming
is very buggy and unreliable. Without adequately specified and
documented code and data, research is not open to scrutiny, let

alone proper review and its quality is suspect. Some have argued
that availability of code and data ensure research is reproducible,
but that is naïve criterion: computer programs are easy to run and
reproduce results, but being able to reproduce something of low
quality does not magically make it more reliable [34, 69, 126] (see
Section 5.2).

Software Engineering Boards (SEBs), as proposed in this paper,
are an initial, straightforward, constructive and practical way
to support and improve code- and computer-based science.
If nothing else, the idea of SEBs is something to criticize and
improve.

This paper’s Supplemental Material summarizes relevant Soft-
ware Engineering good practice that Software Engineering Boards
would draw on, including discussing how and why Software
Engineering helps improve code reliability, dependability and
quality.

ACKNOWLEDGMENTS
The author is very grateful for comments from: Ross Ander-
son, Nicholas Beale, Ann Blandford, Paul Cairns, Rod Chapman,
José Corréa de Sà, Paul Curzon, Jeremy Gibbons, Richard Har-
vey, Will Hawkins, Konrad Hinsen, Ben Hocking, Daniel Jackson,
Peter Ladkin, Bev Littlewood, Paolo Masci, Stephen Mason, Robert
Nachbar, Martin Newby, Patrick Oladimeji, Claudia Pagliari, Simon
Robinson, Jonathan Rowanhill, John Rushby, Susan Stepney, Isaac
Thimbleby, Prue Thimbleby, Will Thimbleby, Martyn Thomas and
Ben Wilson. The author also thanks anonymous referees who also
contributed to the quality of this paper.

SUPPLEMENTARY MATERIAL
Supplementary material is available at www.comjnl.oxfordjour
nals.org. Updates and errata are included in the Supplementary
Material, which is kept up to date at github.com/haroldthimbleby/
improving-science.

DATA AND CODE ACCESS
The Supplemental Material presents all data in human-readable
form, and there is an extended discussion of methodology
in section 10. Additionally, all data, code and documentation,
including the LATEX source, are available online at github.com/
haroldthimbleby/improving-science.

The raw data are encoded in JSON. JavaScript code checks
against 30 possible classes of error, and converts the JSON data
into LATEX, thus making it trivial to typeset results reliably in this
paper and the Supplemental Material directly from the analysis.
In addition, a standard CSV file is generated in case this is conve-
nient, for instance to browse directly in a spreadsheet or to import
into other programs.

AUTHOR CONTRIBUTION
Harold Thimbleby is the sole author. An preliminary outline of
this paper, containing no supplementary material or data, was
submitted to the UK Parliamentary Science and Technology Select
Committee’s inquiry into UK Science, Research and Technology
Capability and Influence in Global Disease Outbreaks, under ref-
erence LAS905222, 7 April, 2020. The evidence, which was not
peer-reviewed and is only available after an explicit search, briefly

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/bxad067#supplementary-data
https://www.comjnl.oxfordjournals.org
github.com/haroldthimbleby/improving-science
github.com/haroldthimbleby/improving-science
github.com/haroldthimbleby/improving-science
github.com/haroldthimbleby/improving-science
github.com/haroldthimbleby/improving-science
github.com/haroldthimbleby/improving-science
github.com/haroldthimbleby/improving-science
github.com/haroldthimbleby/improving-science
github.com/haroldthimbleby/improving-science
github.com/haroldthimbleby/improving-science

Improving Science that Uses Code | 1401

summarizes the case for Software Engineering Boards, but with-
out the detailed analysis and case studies of the literature, etc,
that are in the present paper. It is available to the public [127, 128].

FUNDING
This work was jointly supported by See Change (M&RA-P), Scot-
land (an anonymous funder), by the Engineering and Physical
Sciences Research Council [grant EP/M022722/1], by the Royal
Academy of Engineering through the Engineering X Pandemic Pre-
paredness Programme [grant EXPP2021\1\186] and by Assuring
Autonomy International Programme, Assuring Safe AI in Ambu-
lance Service Triage. The funders had no involvement in the
research or in this paper.

REFERENCES
1. Petkovsek, M., Wilf, H., and Zeilberger, D. (1996) A = B, A K

Peters. Ltd. www2.math.upenn.edu/~wilf/AeqB.html
2. Quindlen, A. (2022) Write for Your Life. Random House.
3. Abelson, R.P. (1995) Statistics as Principled Argument. Lawrence

Erlbaum Associates.
4. Editorial (2023) Tools such as ChatGPT threaten transparent

science; here are our ground rules for their use. Nature, 613,
612. https://doi.org/10.1038/d41586-023-00191-1.

5. Sommerville, I. (2015) Software Engineering (10th edn). Pearson.
6. Knight, J. (2012) Fundamentals of Dependable Computing for Soft-

ware Engineers. CRC Press.
7. Wing, J.M. (2008) Computational thinking and thinking about

computing. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci., 366,
3717–3725. https://doi.org/10.1098/rsta.2008.0118.

8. McOwen, P.W. and Curzon, P. (2020) The Power of Computational
Thinking. World Scientific Publishing.

9. Ferguson, N.M. et al. (2020) Impact of non-pharmaceutical
interventions (NPIs) to reduce COVID-19 mortality and
healthcare demand. www.imperial.ac.uk/media/imperial-
college/medicine/sph/ide/gida-fellowships/Imperial-College-
COVID19-NPI-modelling-16-03-2020.pdf.

10. Ferguson, N.M., Cummings, D.A.T., Fraser, C., Cajka, J.C., Cooley,
P.C. and Burke, D.S. (2005) Strategies for containing an emerging
influenza pandemic in Southeast Asia. Nature, 437, 209–214.
https://doi.org/10.1038/nature04017.

11. Ferguson, N.M., Cummings, D.A.T., Fraser, C., Cajka, J.C.,
Cooley, P.C. and Burke, D.S. (2006) Strategies for mitigat-
ing an influenza pandemic. Nature, 442, 448–452. https://doi.
org/10.1038/nature04795.

12. Baker, M. (2016) 1,500 scientists lift the lid on reproducibility.
Nature, 533, 452–454. https://doi.org/10.1038/533452a.

13. Rougier, N.P. et al. (2017) Sustainable computational science:
the ReScience initiative. PeerJ Comput. Sci., 3, e142. https://doi.
org/10.7717/peerj-cs.142.

14. Chang, H. (2007) Inventing Temperature: Measurement and Scien-
tific Progress. Oxford Studies in the Philosophy of Science.

15. Hippel, M. von (2022) Crucial computer program for particle
physics at risk of obsolescence. Quanta Magazine. www.
quantamagazine.org/crucial-computer-program-for-particle-
physics-at-risk-of-obsolescence-20221201.

16. Bemer, R.W. (1958) Techniques department: policy statement.
Commun. ACM, 1, 5–7.

17. Hoare, C.A.R. (2007) The ideal of program correctness: third
computer journal lecture. Comput. J., 50, 254–260. https://doi.
org/10.1093/comjnl/bxl078.

18. Pimentel, J. F., Murta, L., Braganholo, V., and Freire, J. (2019) A
large-scale study about quality and reproducibility of Jupyter
notebooks, In2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), pp. 507–517. doi:https://doi.
org/10.1109/MSR.2019.00077.

19. Trisovic, A., Lau, M.K., Pasquier, T. and Crosas, M. (2022)
A large-scale study on research code quality and execu-
tion nature research. Scientific Data, 9. https://doi.org/10.1038/
s41597-022-01143-6.

20. Thimbleby, H. (2004) Give Your Computer’s IQ a Boost —
Journal of Machine Learning Research. Times Higher Educa-
tion Supplement. www.timeshighereducation.co.uk/story.asp?
sectioncode=26&storycode=176549.

21. Miyakawa, T. (2022) No raw data, no science: another possible
source of the reproducibility crisis. Mol. Brain, 13, 1–6. https://
doi.org/10.1186/s13041-020-0552-2.

22. Gabelica, M., Bojčić, R. and Puljak, L. (2020) Many researchers
were not compliant with their published data sharing state-
ment: mixed-methods study. J. Clin. Epidemiol. https://doi.
org/0.1016/j.jclinepi.2022.05.019.

23. Munafò, M.R., Nosek, B.A., Bishop, D.V.M., Button, K.S., Cham-
bers, C.D., Percie du Sert, N., Simonsohn, U., Wagenmakers,
E.-J., Ware, J.J. and Ioannidis, J.P.A. (2017) A manifesto for
reproducible science. Nat. Hum. Behav., 1, 0021. https://doi.
org/10.1038/s41562-016-0021.

24. Smith, A.M. et al. (2018) Journal of open source software (JOSS):
design and first-year review. PeerJ Comput. Sci., 4, e147. https://
doi.org/10.7717/peerj-cs.147.

25. Nosek, B.A. et al. (2015) Promoting an open research culture:
author guidelines for journals could help to promote trans-
parency, openness, and reproducibility. Science, 348, 1422–1425.
https://doi.org/10.1126/science.aab2374.

26. Alter, G. et al. (2022) Guidelines for Transparency and Openness Pro-
motion (TOP) in journal policies and practices. The TOP Guidelines.
osf.io/9f6gx/wiki/Guidelines.

27. Godlee, F., Smith, J. and Marcovitch, H. (2011) Wakefield’s article
linking MMR vaccine and autism was fraudulent. BMJ, 342.
https://doi.org/10.1136/bmj.c7452.

28. Fanelli, D. (2009) How many scientists fabricate and falsify
research? A systematic review and meta-analysis of sur-
vey data. PloS One, 4, e5738. https://doi.org/10.1371/journal.
pone.0005738.

29. Machina, H.K. and Wild, D.J. (2013) Electronic laboratory note-
books progress and challenges in implementation. J. Lab.
Autom., 18, 264–268. https://doi.org/0.1177/2211068213484471.

30. Perkel, J.M. (2021) Reactive, reproducible, collaborative: com-
putational notebooks evolve. Nature, 593, 156–157. https://doi.
org/10.1038/d41586-021-01174-w.

31. Akhlaghi, M., Infante-Sainz, R., Roukema, B.F., Khellat, M., Valls-
Gabaud, D. and Baena-Gallé, R. (2021) Toward long-term and
archivable reproducibility. Comput. Sci. Eng., 23, 82–91. https://
doi.org/10.1109/mcse.2021.3072860. https://maneage.org.

32. Knuth, D.E. (1984) Literate programming. Comput. J., 27, 97–111.
https://doi.org/10.1093/comjnl/27.2.97.

33. Knuth, D.E. (1992) Literate programming. In of CSLI Lecture Notes,
Vol. 27, Center for the Study of Language and Information
Publication, Stanford, CA.

34. Thimbleby, H. and Williams, D. (2018) A tool for publishing
reproducible algorithms & a reproducible, elegant algorithm
for sequential experiments. Sci. Comput. Program., 156, 45–
67. GitHub.com/haroldthimbleby/relit. https://doi.org/10.1016/
j.scico.2017.12.010.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

www2.math.upenn.edu/~wilf/AeqB.html
www2.math.upenn.edu/~wilf/AeqB.html
www2.math.upenn.edu/~wilf/AeqB.html
www2.math.upenn.edu/~wilf/AeqB.html
www2.math.upenn.edu/~wilf/AeqB.html
www2.math.upenn.edu/~wilf/AeqB.html
www2.math.upenn.edu/~wilf/AeqB.html
https://doi.org/10.1038/d41586-023-00191-1
https://doi.org/10.1038/d41586-023-00191-1
https://doi.org/10.1038/d41586-023-00191-1
https://doi.org/10.1038/d41586-023-00191-1
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1098/rsta.2008.0118
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
https://doi.org/10.1038/nature04017
https://doi.org/10.1038/nature04017
https://doi.org/10.1038/nature04017
https://doi.org/10.1038/nature04017
https://doi.org/10.1038/nature04795
https://doi.org/10.1038/nature04795
https://doi.org/10.1038/nature04795
https://doi.org/10.1038/nature04795
https://doi.org/10.1038/533452a
https://doi.org/10.1038/533452a
https://doi.org/10.1038/533452a
https://doi.org/10.1038/533452a
https://doi.org/10.7717/peerj-cs.142
https://doi.org/10.7717/peerj-cs.142
https://doi.org/10.7717/peerj-cs.142
https://doi.org/10.7717/peerj-cs.142
https://doi.org/10.7717/peerj-cs.142
www.quantamagazine.org/crucial-computer-program-for-particle-physics-at-risk-of-obsolescence-20221201
www.quantamagazine.org/crucial-computer-program-for-particle-physics-at-risk-of-obsolescence-20221201
www.quantamagazine.org/crucial-computer-program-for-particle-physics-at-risk-of-obsolescence-20221201
www.quantamagazine.org/crucial-computer-program-for-particle-physics-at-risk-of-obsolescence-20221201
www.quantamagazine.org/crucial-computer-program-for-particle-physics-at-risk-of-obsolescence-20221201
www.quantamagazine.org/crucial-computer-program-for-particle-physics-at-risk-of-obsolescence-20221201
www.quantamagazine.org/crucial-computer-program-for-particle-physics-at-risk-of-obsolescence-20221201
www.quantamagazine.org/crucial-computer-program-for-particle-physics-at-risk-of-obsolescence-20221201
www.quantamagazine.org/crucial-computer-program-for-particle-physics-at-risk-of-obsolescence-20221201
www.quantamagazine.org/crucial-computer-program-for-particle-physics-at-risk-of-obsolescence-20221201
www.quantamagazine.org/crucial-computer-program-for-particle-physics-at-risk-of-obsolescence-20221201
www.quantamagazine.org/crucial-computer-program-for-particle-physics-at-risk-of-obsolescence-20221201
www.quantamagazine.org/crucial-computer-program-for-particle-physics-at-risk-of-obsolescence-20221201
https://doi.org/10.1093/comjnl/bxl078
https://doi.org/10.1093/comjnl/bxl078
https://doi.org/10.1093/comjnl/bxl078
https://doi.org/10.1093/comjnl/bxl078
https://doi.org/10.1093/comjnl/bxl078
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1038/s41597-022-01143-6
https://doi.org/10.1038/s41597-022-01143-6
https://doi.org/10.1038/s41597-022-01143-6
https://doi.org/10.1038/s41597-022-01143-6
www.timeshighereducation.co.uk/story.asp?sectioncode=26&storycode=176549
www.timeshighereducation.co.uk/story.asp?sectioncode=26&storycode=176549
www.timeshighereducation.co.uk/story.asp?sectioncode=26&storycode=176549
www.timeshighereducation.co.uk/story.asp?sectioncode=26&storycode=176549
www.timeshighereducation.co.uk/story.asp?sectioncode=26&storycode=176549
www.timeshighereducation.co.uk/story.asp?sectioncode=26&storycode=176549
www.timeshighereducation.co.uk/story.asp?sectioncode=26&storycode=176549
www.timeshighereducation.co.uk/story.asp?sectioncode=26&storycode=176549
https://doi.org/10.1186/s13041-020-0552-2
https://doi.org/10.1186/s13041-020-0552-2
https://doi.org/10.1186/s13041-020-0552-2
https://doi.org/10.1186/s13041-020-0552-2
https://doi.org/0.1016/j.jclinepi.2022.05.019
https://doi.org/0.1016/j.jclinepi.2022.05.019
https://doi.org/0.1016/j.jclinepi.2022.05.019
https://doi.org/0.1016/j.jclinepi.2022.05.019
https://doi.org/0.1016/j.jclinepi.2022.05.019
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.7717/peerj-cs.147
https://doi.org/10.7717/peerj-cs.147
https://doi.org/10.7717/peerj-cs.147
https://doi.org/10.7717/peerj-cs.147
https://doi.org/10.7717/peerj-cs.147
https://doi.org/10.1126/science.aab2374
https://doi.org/10.1126/science.aab2374
https://doi.org/10.1126/science.aab2374
https://doi.org/10.1126/science.aab2374
https://doi.org/10.1126/science.aab2374
osf.io/9f6gx/wiki/Guidelines
osf.io/9f6gx/wiki/Guidelines
osf.io/9f6gx/wiki/Guidelines
osf.io/9f6gx/wiki/Guidelines
osf.io/9f6gx/wiki/Guidelines
osf.io/9f6gx/wiki/Guidelines
https://doi.org/10.1136/bmj.c7452
https://doi.org/10.1136/bmj.c7452
https://doi.org/10.1136/bmj.c7452
https://doi.org/10.1136/bmj.c7452
https://doi.org/10.1136/bmj.c7452
https://doi.org/10.1371/journal.pone.0005738
https://doi.org/10.1371/journal.pone.0005738
https://doi.org/10.1371/journal.pone.0005738
https://doi.org/10.1371/journal.pone.0005738
https://doi.org/10.1371/journal.pone.0005738
https://doi.org/0.1177/2211068213484471
https://doi.org/0.1177/2211068213484471
https://doi.org/0.1177/2211068213484471
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1038/d41586-021-01174-w
https://doi.org/10.1109/mcse.2021.3072860
https://doi.org/10.1109/mcse.2021.3072860
https://doi.org/10.1109/mcse.2021.3072860
https://doi.org/10.1109/mcse.2021.3072860
https://maneage.org
https://maneage.org
https://maneage.org
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
GitHub.com/haroldthimbleby/relit
GitHub.com/haroldthimbleby/relit
GitHub.com/haroldthimbleby/relit
GitHub.com/haroldthimbleby/relit
https://doi.org/10.1016/j.scico.2017.12.010
https://doi.org/10.1016/j.scico.2017.12.010
https://doi.org/10.1016/j.scico.2017.12.010
https://doi.org/10.1016/j.scico.2017.12.010
https://doi.org/10.1016/j.scico.2017.12.010

1402 | H. Thimbleby

35. Gray, T.W. and Wolfram, S. (2013) Method and system for
presenting input expressions and evaluations of the input
expressions on a workspace of a computational system. US
Patent no. 8,407,580 B2.

36. Granger, B.E. and Pérez, F. (2021) Jupyter: thinking and story-
telling with code and data. Comput. Sci. Eng., 23, 7–14. https://
doi.org/10.1109/MCSE.2021.3059263.

37. Xie, Y. (2015) Dynamic Documents with R and knitr (2nd edn). CRC.
38. Thimbleby, H. (1999) Specification-led design for interface sim-

ulation, collecting use-data, interactive help, writing manu-
als, analysis, comparing alternative designs, etc. Personal Tech-
nol., 4, 241–254. https://doi.org/10.1007/BF01885563. harold.
thimbleby.net/ansim.

39. Office for National Statistics (2022) Using reproducible
analytical pipelines (RAP) to improve statistics. https://code.
statisticsauthority.gov.uk/case-studies/using-reproducible-
analytical-pipelines-rap-to-improve-statistics/.

40. Upson, M. (2017) Reproducible analytical pipelines. datain
government.blog.gov.uk/2017/03/27/reproducible-analytical-
pipeline.

41. Goldacre, B. (2022) Better, broader, safer: using health data for
research and analysis. Department of Health and Social Care.
www.gov.uk/government/publications/better-broader-safer-
using-health-data-for-research-and-analysis.

42. Ainsworth, R. et al. (2022) The Turing Way: A Handbook for Repro-
ducible Data Science, Vol. v1.0.3, Zenodo. the-turing-way.netlify.
app/welcome, doi:https://doi.org/10.5281/zenodo.3233853.

43. Courtès, L. (2020) [re] storage tradeoffs in a collabora-
tive backup service for mobile devices. Rescience C, 6, 10.
https://doi.org/10.5281/zenodo.3886739. https://gitlab.inria.fr/
lcourtes-phd/edcc-2006-redone.

44. Glen, S. (2022) Reporting statistics APA style. Statistics How
To. www.statisticshowto.com/probability-and-statistics/
reporting-statistics-apa-style.

45. Cichoń, M. (2020) Reporting statistical methods and outcome
of statistical analyses in research articles. Pharmacol. Rep., 72,
481–485. https://doi.org/10.1007/s43440-020-00110-5.

46. Cichoń, M. (2022) Science Journals: Editorial Policies. https://
www.science.org/content/page/science-journals-editorial-
policies.

47. Richards, D. et al. (2020) A pragmatic randomized waitlist-
controlled effectiveness and cost-effectiveness trial of digital
interventions for depression and anxiety. Nat. Digital Med., 3,
85. https://doi.org/10.1038/s41746-020-0293-8.

48. Spiegelhalter, D. (2019) The Art of Statistics. Learning from Data,
Pelican Books.

49. Cairns, P. (2007) HCI . . . not as it should be: inferential statistics
in HCI research, In BCS-HCI ‘07: Proceedings of the 21st British HCI
Group Annual Conference on People and Computers: HCI . . . but not
as we know it, Vol. 1, pp. 195–201.

50. Johnson, V.E. (2013) Revised standards for statistical evidence.
Proc. Natl. Acad. Sci., 110, 19313–19317. https://doi.org/10.1073/
pnas.1313476110.

51. Shneiderman, B. (2016) Opinion: the dangers of faulty, biased,
or malicious algorithms requires independent oversight. Proc.
Natl. Acad. Sci., 113, 13538–13540. https://doi.org/10.1073/
pnas.1618211113.

52. Friedman, B. and Nissenbaum, H. (1996) Bias in computer
systems. ACM Trans. Inform. Syst., 14, 330–347. https://doi.
org/10.1145/230538.230561.

53. Laurain, E., Ayav, C., Erpelding, M.-L., Kessler, M., Bri-
ançon, S., Brunaud, L. and Frimat, L. (2022) Targets for
parathyroid hormone in secondary hyperparathyroidism: is

a “one-size-fits-all” approach appropriate? A prospective
incident cohort study. BMC Nephrol., 15, 132. https://doi.
org/10.1186/1471-2369-15-132.

54. Whitty, C.J.M. (2015) What makes an academic paper useful
for health policy? BMC Med., 13, 301. https://doi.org/10.1186/
s12916-015-0544-8.

55. Hawkins, D.M. (2004) The problem of overfitting. J. Chem. Inf.
Model., 44, 1–12. https://doi.org/10.1021/ci0342472.

56. May, R.M. (1976) Simple mathematical models with very
complicated dynamics. Nature, 261, 459–467. https://doi.
org/10.1038/261459a0.

57. Dyson, F. (2004) A meeting with Enrico Fermi. Nature, 427, 297.
https://doi.org/10.1038/427297a.

58. Habli, I., Alexander, R., Hawkins, R., Sujan, M., McDermid, J.,
Picardi, C. and Lawton, T. (2020) Enhancing COVID-19 decision
making by creating an assurance case for epidemiological
models. BMJ Health Care Inform., 27, 1–5. https://doi.org/10.1136/
bmjhci-2020-100165.

59. Kelly, D. and Sanders, R. (2008) Assessing the quality of scientific
software, first international workshop on software engineering
for computational science and engineering (see [128]).
Leipzig., citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
526.5076.

60. Thimbleby, H. (2021) Fix IT: How to See and Solve the Problems of
Digital Healthcare. Oxford University Press.

61. Roth, M.T. (2022) Laws of Hammurabi. University of Central
Florida, Open Educational Resources for the Ancient
Near East. https://stars.library.ucf.edu/cgi/viewcontent.cgi?
article=1133&=&context=ancientneareast&=&sei-redir=1&
referer=https%253A%252F%252Fscholar.google.com%252
Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5
%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252
Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=
%22If%20builder%20constructs%20house%20hammurabi
%22.

62. Katz, D.S. et al. (2021) Recognizing the value of soft-
ware: a software citation guide [version 2; peer review:
2 approved] previously titled: “the importance of soft-
ware citation”. F1000Research, 9. https://doi.org/10.12688/f1000
research.26932.2.

63. Page, M.J. et al. (2021) The PRISMA 2020 statement: an updated
guideline for reporting systematic reviews. Syst. Rev., 10, 1–11.
https://doi.org/10.1186/s13643-021-01626-4.

64. Thimbleby, H. (2016) Human factors and missed solutions to
Enigma design weaknesses. Cryptologia, 40, 177–202. https://
doi.org/10.1080/01611194.2015.1028680.

65. Sayburn, A. (2020) Covid-19: experts question analysis suggest-
ing half UK population has been infected. BMJ, 368, m1216.
https://doi.org/10.1136/bmj.m1216.

66. Wynants, L. et al. (2020) Prediction models for diagnosis and
prognosis of covid-19 infection: systematic review and critical
appraisal. BMJ, 369. https://doi.org/10.1136/bmj.m1328.

67. Knuth, D.E. (1998) The Art of Computer Programming (Seminumer-
ical Algorithms, Vol. 2, 3rd edn. Addison-Wesley.

68. Jackson, D. (2021) The Essence of Software. Princeton University
Press.

69. Popper, K.R. (2002) Conjectures and Refutations: The Growth of
Scientific Knowledge 2nd edn. Routledge.

70. Sridhar, D. (2022) Preventable: How a Pandemic Changed the World
& How to Stop the Next One. Viking.

71. Heesterbeek, H. et al. (2015) Modeling infectious disease
dynamics in the complex landscape of global health. Science,
347, 265–270. https://doi.org/10.1126/science.aaa4339.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1007/BF01885563
https://doi.org/10.1007/BF01885563
https://doi.org/10.1007/BF01885563
https://doi.org/10.1007/BF01885563
harold.thimbleby.net/ansim
harold.thimbleby.net/ansim
harold.thimbleby.net/ansim
harold.thimbleby.net/ansim
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
https://code.statisticsauthority.gov.uk/case-studies/using-reproducible-analytical-pipelines-rap-to-improve-statistics/
http://dataingovernment.blog.gov.uk/2017/03/27/reproducible-analytical-pipeline
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
www.gov.uk/government/publications/better-broader-safer-using-health-data-for-research-and-analysis
the-turing-way.netlify.app/welcome
the-turing-way.netlify.app/welcome
the-turing-way.netlify.app/welcome
the-turing-way.netlify.app/welcome
the-turing-way.netlify.app/welcome
the-turing-way.netlify.app/welcome
https://doi.org/10.5281/zenodo.3233853
https://doi.org/10.5281/zenodo.3233853
https://doi.org/10.5281/zenodo.3233853
https://doi.org/10.5281/zenodo.3233853
https://doi.org/10.5281/zenodo.3886739
https://doi.org/10.5281/zenodo.3886739
https://doi.org/10.5281/zenodo.3886739
https://doi.org/10.5281/zenodo.3886739
https://gitlab.inria.fr/lcourtes-phd/edcc-2006-redone
https://gitlab.inria.fr/lcourtes-phd/edcc-2006-redone
https://gitlab.inria.fr/lcourtes-phd/edcc-2006-redone
https://gitlab.inria.fr/lcourtes-phd/edcc-2006-redone
https://gitlab.inria.fr/lcourtes-phd/edcc-2006-redone
https://gitlab.inria.fr/lcourtes-phd/edcc-2006-redone
https://gitlab.inria.fr/lcourtes-phd/edcc-2006-redone
https://gitlab.inria.fr/lcourtes-phd/edcc-2006-redone
www.statisticshowto.com/probability-and-statistics/reporting-statistics-apa-style
www.statisticshowto.com/probability-and-statistics/reporting-statistics-apa-style
www.statisticshowto.com/probability-and-statistics/reporting-statistics-apa-style
www.statisticshowto.com/probability-and-statistics/reporting-statistics-apa-style
www.statisticshowto.com/probability-and-statistics/reporting-statistics-apa-style
www.statisticshowto.com/probability-and-statistics/reporting-statistics-apa-style
www.statisticshowto.com/probability-and-statistics/reporting-statistics-apa-style
www.statisticshowto.com/probability-and-statistics/reporting-statistics-apa-style
www.statisticshowto.com/probability-and-statistics/reporting-statistics-apa-style
www.statisticshowto.com/probability-and-statistics/reporting-statistics-apa-style
https://doi.org/10.1007/s43440-020-00110-5
https://doi.org/10.1007/s43440-020-00110-5
https://doi.org/10.1007/s43440-020-00110-5
https://doi.org/10.1007/s43440-020-00110-5
https://www.science.org/content/page/science-journals-editorial-policies
https://doi.org/10.1038/s41746-020-0293-8
https://doi.org/10.1038/s41746-020-0293-8
https://doi.org/10.1038/s41746-020-0293-8
https://doi.org/10.1038/s41746-020-0293-8
https://doi.org/10.1073/pnas.1313476110
https://doi.org/10.1073/pnas.1313476110
https://doi.org/10.1073/pnas.1313476110
https://doi.org/10.1073/pnas.1313476110
https://doi.org/10.1073/pnas.1618211113
https://doi.org/10.1073/pnas.1618211113
https://doi.org/10.1073/pnas.1618211113
https://doi.org/10.1073/pnas.1618211113
https://doi.org/10.1145/230538.230561
https://doi.org/10.1145/230538.230561
https://doi.org/10.1145/230538.230561
https://doi.org/10.1186/1471-2369-15-132
https://doi.org/10.1186/1471-2369-15-132
https://doi.org/10.1186/1471-2369-15-132
https://doi.org/10.1186/s12916-015-0544-8
https://doi.org/10.1186/s12916-015-0544-8
https://doi.org/10.1186/s12916-015-0544-8
https://doi.org/10.1186/s12916-015-0544-8
https://doi.org/10.1021/ci0342472
https://doi.org/10.1021/ci0342472
https://doi.org/10.1021/ci0342472
https://doi.org/10.1021/ci0342472
https://doi.org/10.1038/261459a0
https://doi.org/10.1038/261459a0
https://doi.org/10.1038/261459a0
https://doi.org/10.1038/261459a0
https://doi.org/10.1038/427297a
https://doi.org/10.1038/427297a
https://doi.org/10.1038/427297a
https://doi.org/10.1038/427297a
https://doi.org/10.1136/bmjhci-2020-100165
https://doi.org/10.1136/bmjhci-2020-100165
https://doi.org/10.1136/bmjhci-2020-100165
https://doi.org/10.1136/bmjhci-2020-100165
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.526.5076
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1133&=&context=ancientneareast&=&sei-redir=1&referer=https%253A%252F%252Fscholar.google.com%252Fscholar%253Fhl%253Den%2526as_sdt%253D0%25252C5%2526q%253DIf%252Ba%252Bbuilder%252Bconstructs%252Ba%252Bhouse%252Bhammurabi%2526btnG%253D#search=%22If%20builder%20constructs%20house%20hammurabi%22
https://doi.org/10.12688/f1000research.26932.2
https://doi.org/10.12688/f1000research.26932.2
https://doi.org/10.12688/f1000research.26932.2
https://doi.org/10.12688/f1000research.26932.2
https://doi.org/10.12688/f1000research.26932.2
https://doi.org/10.1186/s13643-021-01626-4
https://doi.org/10.1186/s13643-021-01626-4
https://doi.org/10.1186/s13643-021-01626-4
https://doi.org/10.1186/s13643-021-01626-4
https://doi.org/10.1080/01611194.2015.1028680
https://doi.org/10.1080/01611194.2015.1028680
https://doi.org/10.1080/01611194.2015.1028680
https://doi.org/10.1136/bmj.m1216
https://doi.org/10.1136/bmj.m1216
https://doi.org/10.1136/bmj.m1216
https://doi.org/10.1136/bmj.m1216
https://doi.org/10.1136/bmj.m1216
https://doi.org/10.1136/bmj.m1328
https://doi.org/10.1136/bmj.m1328
https://doi.org/10.1136/bmj.m1328
https://doi.org/10.1136/bmj.m1328
https://doi.org/10.1136/bmj.m1328
https://doi.org/10.1126/science.aaa4339
https://doi.org/10.1126/science.aaa4339
https://doi.org/10.1126/science.aaa4339
https://doi.org/10.1126/science.aaa4339
https://doi.org/10.1126/science.aaa4339

Improving Science that Uses Code | 1403

72. Moons, K.G., Altman, D.G., Reitsma, J.B., Ioannidis, J.P., Macaskill,
P., Steyerberg, E.W., Vickers, A.J., Ransohoff, D.F. and Collins,
G.S. (2015) Transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis (TRIPOD): explana-
tion and elaboration. Ann. Intern. Med., 162, W1–W73. https://
doi.org/10.7326/M14-0698.

73. Adam, D. (2020) Modelling the pandemic: the simulations driv-
ing the world’s response to COVID-19. Nature, 580, 316–318.
https://doi.org/10.1038/d41586-020-01003-6.

74. Ferguson, N. (2020) Tweet. twitter.com/neil_ferguson/
status/1241835454707699713.

75. Leake, J. (2020) Neil Ferguson interview: no 10’s infection
guru recruits game developers to build coronavirus pandemic
model. The Sunday Times. www.thetimes.co.uk/article/neil-
ferguson-interview-no-10s-infection-guru-recruits-game-
developers-to-build-coronavirus-pandemic-model-zl5rdtjq5.

76. Hinsen, K. (2013) Software development for reproducible
research. Comput. Sci. Eng., 15, 60–63. https://doi.org/10.1109/
MCSE.2013.91.

77. Smith, B. (2020) SAGE adviser Neil Ferguson quits over
coronavirus lockdown breach. Civil Service World, www.
civilserviceworld.com/professions/article/sage-adviser-neil-
ferguson-quits-over-coronavirus-lockdown-breach#:~:text=
SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20
coronavirus%20lockdown%20breach,-Epidemiologist%20says
%20he&text=Professor%20Neil%20Ferguson%2C%20one%20
of,resigned%20after%20breaching%20lockdown%20rules.

78. Ahrens, J.H. and Dieter, U. (1973) Extensions of Forsythe’s
method for random sampling from the normal distri-
bution. Math. Comput., 27, 927–937. https://doi.org/10.1090/
S0025-5718-1973-0329190-8.

79. Ahrens, J.H. and Dieter, U. (1972) Computer methods for sam-
pling from the exponential and normal distributions. Commun.
ACM, 15, 873–882. https://doi.org/10.1145/355604.361593.

80. The MISRA Consortium Limited (2020) MISRA Compliance: 2020
– Achieving compliance with MISRA Coding Guidelines. MISRA Con-
sortium., Norwich, Norfolk, England. www.misra.org.uk.

81. Barnes, J. (2003) High Integrity Software: The SPARK Approach to
Safety and Security. Addison Wesley.

82. O’Sullivan, B., Stewart, D. and Goerzen, J. (2008) Real World
Haskell. O’Reilly Media. book.realworldhaskell.org.

83. Chawla, D.S. (2020) Critiqued coronavirus simulation gets
thumbs up from code-checking efforts. Nature, 582, 323–324
www.nature.com/articles/d41586-020-01685-y.

84. Scheuber, A., and Elsland, S. L van. (2020) Codecheck Confirms
Reproducibility of COVID-19 Model Results. Imperial College,
London. www.imperial.ac.uk/news/197875/codecheck-
confirms-reproducibility-covid-19-model-results

85. Eglen, S. J. (2020) CODECHECK Certificate 2020–010 for Paper:
Report 9: Impact of Non-pharmaceutical Interventions (NPIs) to
Reduce COVID-19 Mortality and Healthcare Demand. github.
com/codecheckers/covid-report9, doi: https://doi.org/10.5281/
zenodo.3865491.

86. Hatton, L. and Roberts, A. (1994) How accurate is scien-
tific software? IEEE Trans. Softw. Eng., 20, 785–797. https://doi.
org/10.1109/32.328993.

87. Halloran, M.E. et al. (2008) Modeling targeted layered con-
tainment of an influenza pandemic in the United States.
Proc. Natl. Acad. Sci., 105, 4639–4644. https://doi.org/10.1073/
pnas.0706849105. www.pnas.org/content/105/12/4639.

88. Schnell, S. (2015) Ten simple rules for a computational
biologist’s laboratory notebook. PLoS Comput. Biol., 11, e1004385.
https://doi.org/10.1371/journal.pcbi.1004385.

89. National Institutes of Health. 2020, effective date January
25,2023. Final NIH Policy for Data Management and Sharing,
Vol. NOT-OD-21-013, Office of The Director, National Insti-
tutes of Health. grants.nih.gov/grants/guide/notice-files/NOT-
OD-21-013.html.

90. Kozlov, M. (2022) NIH issues a seismic mandate: share data
publicly. Nature, www.nature.com/articles/d41586-022-00402-
1.

91. Ferguson, N. (2020) Tweet. twitter.com/neil_ferguson/status/
1241835456947519492

92. Richards, D. and Boudnik, K. (2020) Neil Ferguson’s
Imperial model could be the most devastating software
mistake of all time. The Telegraph., www.telegraph.co.uk/
technology/2020/05/16/neil-fergusons-imperial-model-could-
devastating-software-mistake.

93. Zlojutro, A., Rey, D. and Gardner, L. (2019) A decision-
support framework to optimize border control for global
outbreak mitigation. Nat. Sci. Rep., 9. https://doi.org/10.1038/
s41598-019-38665-w.

94. Thimbleby, H. (2003) The directed Chinese postman problem.
Software — Practice & Experience, 33, 1081–1096. https://doi.
org/10.1002/spe.540. harold.thimbleby.net/cpp/index.html.

95. Sander, B., Nizam, A., Garrison, Jr. L.P., Postma, M.J.,
Halloran, M.E. and Longini, I.M.Jr. (2009) Economic evaluation
of influenza pandemic mitigation strategies in the US using
a stochastic microsimulation transmission model. Value
Health, 12, 226–233. https://doi.org/10.1111/j.1524-4733.2008.
00437.x.

96. Perkel, J.M. (2022) How to fix your scientific coding errors.
Nature, 602, 172–173. https://doi.org/10.1038/d41586-022-
00217-0.

97. Guest, O. and Martin, A.E. (2021) How computational mod-
eling can force theory building in psychological science. Per-
spect. Psychol. Sci., 16, 789–802. https://doi.org/10.1177/17456
91620970585.

98. ACT-R Research Group (2022) ACT-R. act-r.psy.cmu.edu/
software.

99. Ladkin, P.B., Littlewood, B., Thimbleby, H. and Thomas, M. (2020)
The Law Commission presumption concerning the dependabil-
ity of computer evidence. Digital Evid. Electron. Sign. Law Rev., 17,
1–14. https://doi.org/10.14296/deeslr.v17i0.5143.

100. Hamming, R.W. (1987) Numerical Methods for Scientists and Engi-
neers. Dover Publications Inc.

101. Kissler, S.M., Tedijanto, C., Goldstein, E., Grad, Y.H. and Lip-
sitch, M. (2020) Projecting the transmission dynamics of SARS-
CoV-2 through the postpandemic period. Science, 368, 860–868.
https://doi.org/10.1126/science.abb5793.

102. Verity et al. (2020) Estimates of the severity of coronavirus dis-
ease 2019: a model-based analysis. Lancet, 20, 669–677. https://
doi.org/10.1016/S1473-3099(20)30243-7.

103. Hoare, C.A.R. (1969) An axiomatic basis for computer pro-
gramming. Commun. ACM, 12, 576–580. https://doi.org/10.1145/
363235.363259.

104. Freedman, L.P., Cockburn, I.M. and Simcoe, T.S. (2015) The
economics of reproducibility in preclinical research. PLoS Biol.,
13, e1002165. https://doi.org/10.1371/journal.pbio.1002165.

105. Wilkinson, M.D. et al. (2016) The FAIR guiding principles for
scientific data management and stewardship. Scientific Data, 3,
1–9. https://doi.org/10.1038/sdata.2016.18.

106. Wood-Charlson, E.M., Crockett, Z., Erdmann, C., Arkin, A.P. and
Robinson, C.B. (2022) Ten simple rules for getting and giving
credit for data. PLoS Comput. Biol., 18, e1010476. https://doi.
org/10.1371/journal.pcbi.1010476.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

https://doi.org/10.7326/M14-0698
https://doi.org/10.7326/M14-0698
https://doi.org/10.7326/M14-0698
https://doi.org/10.7326/M14-0698
https://doi.org/10.1038/d41586-020-01003-6
https://doi.org/10.1038/d41586-020-01003-6
https://doi.org/10.1038/d41586-020-01003-6
https://doi.org/10.1038/d41586-020-01003-6
twitter.com/neil_ferguson/status/1241835454707699713
twitter.com/neil_ferguson/status/1241835454707699713
twitter.com/neil_ferguson/status/1241835454707699713
twitter.com/neil_ferguson/status/1241835454707699713
twitter.com/neil_ferguson/status/1241835454707699713
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
www.thetimes.co.uk/article/neil-ferguson-interview-no-10s-infection-guru-recruits-game-developers-to-build-coronavirus-pandemic-model-zl5rdtjq5
https://doi.org/10.1109/MCSE.2013.91
https://doi.org/10.1109/MCSE.2013.91
https://doi.org/10.1109/MCSE.2013.91
https://doi.org/10.1109/MCSE.2013.91
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
www.civilserviceworld.com/professions/article/sage-adviser-neil-ferguson-quits-over-coronavirus-lockdown-breach#:~:text=SAGE%20adviser%20Neil%20Ferguson%20quits%20over%20coronavirus%20lockdown%20breach,-Epidemiologist%20says%20he&text=Professor%20Neil%20Ferguson%2C%20one%20of,resigned%20after%20breaching%20lockdown%20rules
https://doi.org/10.1090/S0025-5718-1973-0329190-8
https://doi.org/10.1090/S0025-5718-1973-0329190-8
https://doi.org/10.1090/S0025-5718-1973-0329190-8
https://doi.org/10.1090/S0025-5718-1973-0329190-8
https://doi.org/10.1145/355604.361593
https://doi.org/10.1145/355604.361593
https://doi.org/10.1145/355604.361593
www.misra.org.uk
www.misra.org.uk
www.misra.org.uk
www.misra.org.uk
book.realworldhaskell.org
book.realworldhaskell.org
book.realworldhaskell.org
www.nature.com/articles/d41586-020-01685-y
www.nature.com/articles/d41586-020-01685-y
www.nature.com/articles/d41586-020-01685-y
www.nature.com/articles/d41586-020-01685-y
www.nature.com/articles/d41586-020-01685-y
www.nature.com/articles/d41586-020-01685-y
www.imperial.ac.uk/news/197875/codecheck-confirms-reproducibility-covid-19-model-results
www.imperial.ac.uk/news/197875/codecheck-confirms-reproducibility-covid-19-model-results
www.imperial.ac.uk/news/197875/codecheck-confirms-reproducibility-covid-19-model-results
www.imperial.ac.uk/news/197875/codecheck-confirms-reproducibility-covid-19-model-results
www.imperial.ac.uk/news/197875/codecheck-confirms-reproducibility-covid-19-model-results
www.imperial.ac.uk/news/197875/codecheck-confirms-reproducibility-covid-19-model-results
www.imperial.ac.uk/news/197875/codecheck-confirms-reproducibility-covid-19-model-results
www.imperial.ac.uk/news/197875/codecheck-confirms-reproducibility-covid-19-model-results
www.imperial.ac.uk/news/197875/codecheck-confirms-reproducibility-covid-19-model-results
www.imperial.ac.uk/news/197875/codecheck-confirms-reproducibility-covid-19-model-results
www.imperial.ac.uk/news/197875/codecheck-confirms-reproducibility-covid-19-model-results
github.com/codecheckers/covid-report9
github.com/codecheckers/covid-report9
github.com/codecheckers/covid-report9
github.com/codecheckers/covid-report9
github.com/codecheckers/covid-report9
https://doi.org/10.5281/zenodo.3865491
https://doi.org/10.5281/zenodo.3865491
https://doi.org/10.5281/zenodo.3865491
https://doi.org/10.5281/zenodo.3865491
https://doi.org/10.1109/32.328993
https://doi.org/10.1109/32.328993
https://doi.org/10.1109/32.328993
https://doi.org/10.1073/pnas.0706849105
https://doi.org/10.1073/pnas.0706849105
https://doi.org/10.1073/pnas.0706849105
https://doi.org/10.1073/pnas.0706849105
www.pnas.org/content/105/12/4639
www.pnas.org/content/105/12/4639
www.pnas.org/content/105/12/4639
www.pnas.org/content/105/12/4639
https://doi.org/10.1371/journal.pcbi.1004385
https://doi.org/10.1371/journal.pcbi.1004385
https://doi.org/10.1371/journal.pcbi.1004385
https://doi.org/10.1371/journal.pcbi.1004385
https://doi.org/10.1371/journal.pcbi.1004385
grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html
http://twitter.com/neil_ferguson/status/1241835456947519492
www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
www.telegraph.co.uk/technology/2020/05/16/neil-fergusons-imperial-model-could-devastating-software-mistake
https://doi.org/10.1038/s41598-019-38665-w
https://doi.org/10.1038/s41598-019-38665-w
https://doi.org/10.1038/s41598-019-38665-w
https://doi.org/10.1038/s41598-019-38665-w
https://doi.org/10.1038/s41598-019-38665-w
https://doi.org/10.1002/spe.540
https://doi.org/10.1002/spe.540
https://doi.org/10.1002/spe.540
https://doi.org/10.1002/spe.540
harold.thimbleby.net/cpp/index.html
harold.thimbleby.net/cpp/index.html
harold.thimbleby.net/cpp/index.html
harold.thimbleby.net/cpp/index.html
harold.thimbleby.net/cpp/index.html
harold.thimbleby.net/cpp/index.html
https://doi.org/10.1111/j.1524-4733.2008.00437.x
https://doi.org/10.1038/d41586-022-00217-0
https://doi.org/10.1177/1745691620970585
act-r.psy.cmu.edu/software
act-r.psy.cmu.edu/software
act-r.psy.cmu.edu/software
act-r.psy.cmu.edu/software
act-r.psy.cmu.edu/software
act-r.psy.cmu.edu/software
https://doi.org/10.14296/deeslr.v17i0.5143
https://doi.org/10.14296/deeslr.v17i0.5143
https://doi.org/10.14296/deeslr.v17i0.5143
https://doi.org/10.14296/deeslr.v17i0.5143
https://doi.org/10.14296/deeslr.v17i0.5143
https://doi.org/10.14296/deeslr.v17i0.5143
https://doi.org/10.1126/science.abb5793
https://doi.org/10.1126/science.abb5793
https://doi.org/10.1126/science.abb5793
https://doi.org/10.1126/science.abb5793
https://doi.org/10.1126/science.abb5793
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1016/S1473-3099(20)30243-7
https://doi.org/10.1145/363235.363259
https://doi.org/10.1371/journal.pbio.1002165
https://doi.org/10.1371/journal.pbio.1002165
https://doi.org/10.1371/journal.pbio.1002165
https://doi.org/10.1371/journal.pbio.1002165
https://doi.org/10.1371/journal.pbio.1002165
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1371/journal.pcbi.1010476
https://doi.org/10.1371/journal.pcbi.1010476
https://doi.org/10.1371/journal.pcbi.1010476
https://doi.org/10.1371/journal.pcbi.1010476
https://doi.org/10.1371/journal.pcbi.1010476

1404 | H. Thimbleby

107. Woodcock, J.C.P., Larsen, P.G., Bicarregui, J.C. and Fitzgerald, J.S.
(2009) Formal methods: practice and experience. ACM Comput.
Surv., 41, 1–36. https://doi.org/10.1145/1592434.1592436.

108. ACM (2020) Code of Ethics and Professional Conduct, ACM.
Accessed April 23, 2020.www.acm.org/code-of-ethics.

109. ACM (2020) Artifact Review and Badging — Current, Version 1.1,
ACM. www.acm.org/publications/policies/artifact-review-
and-badging-current.

110. Redmill, F. (2000) Understanding the use, misuse and abuse of
safety integrity levels. In Lessons in System Safety, Eighth Safety-
critical Systems Symposium. Newcastle University, Revised.
homepages.cs.ncl.ac.uk/felix.redmill/publications/1%20SILs.
pdf.

111. IEC Technical Committee TC 65 (2010) IEC 61508:2010 CMV
commented version, functional safety of electrical/electronic/pro-
grammable electronic safety-related systems. webstore.iec.ch/
publication/22273.

112. Hoare, C. A. R. (1996) How did software get so reliable without
proof? Lecture Notes in Computer Science, vol. 1051, Springer, pp.
1–17. doi:https://doi.org/10.1007/3-540-60973-3_77.

113. Fomel, S. (2015) Reproducible research as a community effort:
lessons from the Madagascar project. Comput. Sci. Eng., 17,
20–26. https://doi.org/10.1109/MCSE.2014.94.

114. Stol, K.-J. and Fitzgerald, B. (2018) The ABC of software engi-
neering research. ACM Trans. Software Eng. Methodol., 27, 1–51.
https://doi.org/10.1145/3241743.

115. Lakens, D. (2023) Methods-review boards could avert wasted
research. Nature, 613.

116. Gabriela, A. and Capone, R. (2011) Executable paper grand
challenge workshop. Proc. Comput. Sci., 4, 577–578. https://doi.
org/10.1016/j.procs.2011.04.060.

117. Xie, Y., Allaire, J.J. and Grolemund, G. (2020) R Markdown: The
Definitive Guide. Chapman & Hall/CRC.

118. Li-Thiao-Té, S. (2012) Literate program execution for repro-
ducible research and executable papers. Proc. Comput. Sci., 9,
439–448 . International Conference on Computational Science,
ICCS 2012. https://doi.org/10.1016/j.procs.2012.04.047.

119. Landauer, T.K. (1995) The Trouble with Computers: Usefulness,
Usability, and Productivity. MIT Press.

120. Thimbleby, H. (1996) The trouble with computers: usefulness,
usability, and productivity (by Thomas K. Landauer). Comput.
Linguist., 22, 265–276.

121. Falessi, D., and Kruchten, P. (2015) Five reasons for includ-
ing technical debt in the software engineering curriculum,
Proceedings of the 2015 European Conference on Software Archi-
tecture Workshops, ECSAW’15, ACM, pp. 28:1–28:4. https://doi.
org/10.1145/2797433.2797462.

122. Heineman, B.W.Jr. (2013) The JP Morgan “whale” report and
the ghosts of the financial crisis. Harv. Bus. Rev., https://hbr.
org/2013/01/the-jp-morgan-whale-report-and.

123. Cavanagh, M. (ed) (2013) Report of JPMorgan Chase & Co. Manage-
ment Task Force Regarding 2012 CIO Losses. JPMorgan Chase & Co.

124. Thimbleby, H. (2020) The problem isn’t Excel, it’s unprofes-
sional software engineering. BMJ, 371. https://doi.org/10.1136/
bmj.m4181.

125. Wadman, M. (2021) Could too much time between doses
drive the coronavirus to outwit vaccines? Science. https://doi.
org/10.1126/science.abg5655.

126. Benureau, F.C.Y. and Rougier, N.P. (2018) Re-run, repeat,
reproduce, reuse, replicate: transforming code into scientific
contributions. Front. Neuroinform., 11. https://doi.org/10.3389/
fninf.2017.00069.

127. House of Commons Science and Technology Committee (2020)
The UK response to covid-19: use of scientific advice. committees.
parliament.uk/publications/4165/documents/41300/default.

128. Thimbleby, H. (2020) Written Evidence Submitted by Harold Thim-
bleby to The UK response to covid-19: Use of scientific advice,
(C190005), House of Commons Science and Technology Com-
mittee (see [127]). committees.parliament.uk/work/91/default/
publications/written-evidence/?SearchTerm=thimbleby.

129. Carver, J.C. (2009) First international workshop on software
engineering for computational science & engineering.
Comput. Sci. Eng., 11, 7–11. https://doi.org/10.1109/MCSE.
2009.30.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/67/4/1381/7235536 by Sw
ansea U

niversity user on 20 August 2024

https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/1592434.1592436
www.acm.org/code-of-ethics
www.acm.org/code-of-ethics
www.acm.org/code-of-ethics
www.acm.org/code-of-ethics
www.acm.org/code-of-ethics
www.acm.org/code-of-ethics
www.acm.org/publications/policies/artifact-review-and-badging-current
www.acm.org/publications/policies/artifact-review-and-badging-current
www.acm.org/publications/policies/artifact-review-and-badging-current
www.acm.org/publications/policies/artifact-review-and-badging-current
www.acm.org/publications/policies/artifact-review-and-badging-current
www.acm.org/publications/policies/artifact-review-and-badging-current
www.acm.org/publications/policies/artifact-review-and-badging-current
www.acm.org/publications/policies/artifact-review-and-badging-current
www.acm.org/publications/policies/artifact-review-and-badging-current
www.acm.org/publications/policies/artifact-review-and-badging-current
homepages.cs.ncl.ac.uk/felix.redmill/publications/1%20SILs.pdf
homepages.cs.ncl.ac.uk/felix.redmill/publications/1%20SILs.pdf
homepages.cs.ncl.ac.uk/felix.redmill/publications/1%20SILs.pdf
homepages.cs.ncl.ac.uk/felix.redmill/publications/1%20SILs.pdf
homepages.cs.ncl.ac.uk/felix.redmill/publications/1%20SILs.pdf
homepages.cs.ncl.ac.uk/felix.redmill/publications/1%20SILs.pdf
homepages.cs.ncl.ac.uk/felix.redmill/publications/1%20SILs.pdf
homepages.cs.ncl.ac.uk/felix.redmill/publications/1%20SILs.pdf
homepages.cs.ncl.ac.uk/felix.redmill/publications/1%20SILs.pdf
homepages.cs.ncl.ac.uk/felix.redmill/publications/1%20SILs.pdf
homepages.cs.ncl.ac.uk/felix.redmill/publications/1%20SILs.pdf
webstore.iec.ch/publication/22273
webstore.iec.ch/publication/22273
webstore.iec.ch/publication/22273
webstore.iec.ch/publication/22273
https://doi.org/10.1007/3-540-60973-3_77
https://doi.org/10.1007/3-540-60973-3_77
https://doi.org/10.1007/3-540-60973-3_77
https://doi.org/10.1109/MCSE.2014.94
https://doi.org/10.1109/MCSE.2014.94
https://doi.org/10.1109/MCSE.2014.94
https://doi.org/10.1109/MCSE.2014.94
https://doi.org/10.1145/3241743
https://doi.org/10.1145/3241743
https://doi.org/10.1145/3241743
https://doi.org/10.1016/j.procs.2011.04.060
https://doi.org/10.1016/j.procs.2011.04.060
https://doi.org/10.1016/j.procs.2011.04.060
https://doi.org/10.1016/j.procs.2011.04.060
https://doi.org/10.1016/j.procs.2011.04.060
https://doi.org/10.1016/j.procs.2012.04.047
https://doi.org/10.1016/j.procs.2012.04.047
https://doi.org/10.1016/j.procs.2012.04.047
https://doi.org/10.1016/j.procs.2012.04.047
https://doi.org/10.1016/j.procs.2012.04.047
https://doi.org/10.1145/2797433.2797462
https://doi.org/10.1145/2797433.2797462
https://doi.org/10.1145/2797433.2797462
https://hbr.org/2013/01/the-jp-morgan-whale-report-and
https://hbr.org/2013/01/the-jp-morgan-whale-report-and
https://hbr.org/2013/01/the-jp-morgan-whale-report-and
https://hbr.org/2013/01/the-jp-morgan-whale-report-and
https://hbr.org/2013/01/the-jp-morgan-whale-report-and
https://hbr.org/2013/01/the-jp-morgan-whale-report-and
https://hbr.org/2013/01/the-jp-morgan-whale-report-and
https://hbr.org/2013/01/the-jp-morgan-whale-report-and
https://hbr.org/2013/01/the-jp-morgan-whale-report-and
https://doi.org/10.1136/bmj.m4181
https://doi.org/10.1136/bmj.m4181
https://doi.org/10.1136/bmj.m4181
https://doi.org/10.1136/bmj.m4181
https://doi.org/10.1136/bmj.m4181
https://doi.org/10.1126/science.abg5655
https://doi.org/10.1126/science.abg5655
https://doi.org/10.1126/science.abg5655
https://doi.org/10.1126/science.abg5655
https://doi.org/10.1126/science.abg5655
https://doi.org/10.3389/fninf.2017.00069
https://doi.org/10.3389/fninf.2017.00069
https://doi.org/10.3389/fninf.2017.00069
https://doi.org/10.3389/fninf.2017.00069
committees.parliament.uk/publications/4165/documents/41300/default
committees.parliament.uk/publications/4165/documents/41300/default
committees.parliament.uk/publications/4165/documents/41300/default
committees.parliament.uk/publications/4165/documents/41300/default
committees.parliament.uk/publications/4165/documents/41300/default
committees.parliament.uk/publications/4165/documents/41300/default
committees.parliament.uk/work/91/default/publications/written-evidence/?SearchTerm=thimbleby
committees.parliament.uk/work/91/default/publications/written-evidence/?SearchTerm=thimbleby
committees.parliament.uk/work/91/default/publications/written-evidence/?SearchTerm=thimbleby
committees.parliament.uk/work/91/default/publications/written-evidence/?SearchTerm=thimbleby
committees.parliament.uk/work/91/default/publications/written-evidence/?SearchTerm=thimbleby
committees.parliament.uk/work/91/default/publications/written-evidence/?SearchTerm=thimbleby
committees.parliament.uk/work/91/default/publications/written-evidence/?SearchTerm=thimbleby
committees.parliament.uk/work/91/default/publications/written-evidence/?SearchTerm=thimbleby
committees.parliament.uk/work/91/default/publications/written-evidence/?SearchTerm=thimbleby
committees.parliament.uk/work/91/default/publications/written-evidence/?SearchTerm=thimbleby
https://doi.org/10.1109/MCSE.2009.30

	 Improving Science That Uses Code
	 1.INTRODUCTION
	 2.BACKGROUND
	 2.3.RAP: reproducible analytical pipelines
	 3.THE STATISTICS/CODE ANALOGY
	 4.THE CONVENTIONAL ROLE OF CODE
	 5.STATE OF THE ART
	 6.RETHINKING SCIENCE THAT USES CODE
	 7.CONCLUSIONS
	SUPPLEMENTARY MATERIAL
	DATA AND CODE ACCESS
	AUTHOR CONTRIBUTION
	FUNDING

