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Texture is a crucial characteristic of roads, closely
related to their performance. The recognition of
pavement texture is of great significance for road
maintenance professionals to detect potential safety
hazards and carry out necessary countermeasures.
Although deep learning models have been applied
for recognition, the scarcity of data has always been a
limitation. To address this issue, this paper proposes
a few-shot learning model based on the Siamese
network for pavement texture recognition with a
limited dataset. The model achieved 89.8% accuracy
in a four-way five-shot task classifying the pavement
textures of dense asphalt concrete, micro surface,
open-graded friction course and stone matrix asphalt.
To align with engineering practice, global average
pooling (GAP) and one-dimensional convolution
are implemented, creating lightweight models
that save storage and training time. Comparative
experiments show that the lightweight model
with GAP implemented on dense layers and one-
dimensional convolution on convolutional layers
reduced storage volume by 94% and training time
by 99%, despite a 2.9% decrease in classification
accuracy. Moreover, the model with only GAP
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implemented on dense layers achieved the highest accuracy at 93.5%, while reducing storage
volume and training time by 83% and 6%, respectively.

This article is part of the theme issue ’Artificial intelligence in failure analysis of
transportation infrastructure and materials’.

1. Introduction

Pavement texture is a vital road characteristic with notable effects on skid resistance [1,2], tire-
pavement noise [3,4] and road maintenance [5,6]. Changes in pavement texture during road use
may lead to potential traffic safety risks and affect the quality of road service. Thus, accurate
recognition of pavement texture is an essential prerequisite for performing road maintenance.
However, the complexity of factors affecting the appearance of pavement texture may pose
challenges to identifying pavement texture types promptly and accurately in many situations.
As a result, large-scale pavement texture recognition tasks typically require substantial human
and financial resources.

Deep learning has gained remarkable attention due to its ability to extract target features
and learn iteratively using convolutional neural networks (CNNs) in various fields, including
autonomous driving [7], materials [8], medicine [9] and road detection [10]. Specifically, for
pavement texture recognition, deep learning has shown excellent performance. Chen et al. [11]
applied the Dense Convolutional Network to classify pavement texture by generating adversarial
networks to expand pavement texture, demonstrating the superiority of deep learning over
manual classification and traditional machine learning methods. Liu et al. [12] proposed a precise
and stable framework for pavement texture measurement and reconstruction, using a depth
CNN-based encoder to extract features from pavement images and converting them into models
using feature mapping units and decoders. Dong et al. [13] proposed an effective encoder-decoder
CNN architecture based on the residual network for the reconstruction of pavement texture,
which proved to be effective for three-dimensional feature analysis. Yoo et al. [14] introduced
a novel method of pavement classification based on deep learning by using the tire-pavement
interaction noise, which reflects the surface contour and texture properties of the road, as the data
source. Chhay et al. [15] proposed a faster region-based CNN based on deep learning to count
the exposed aggregate number representing texture wavelengths on digital images of exposed
aggregate concrete pavement.

Although deep learning methods have demonstrated impressive classification accuracy in
various tasks, the requirement for substantial amounts of training data often poses a challenge in
real-world engineering applications. Few-shot learning has emerged as a promising alternative
to overcome this obstacle, as it enables effective classification tasks with limited data availability.
Several network architectures, such as Siamese networks [16,17], matching networks [18],
prototype networks [19] and relation networks [20], have been designed and implemented
specifically for few-shot learning applications. Numerous studies have demonstrated satisfactory
results in classification tasks using few-shot learning techniques, even with fewer than 10
samples available for training each classification category. This highlights the potential of few-
shot learning as a viable solution for tackling data scarcity issues in various domains. For example,
Wang et al. [21] proposed a multi-attention mutual information distributed framework that
combines distributed learning with few-shot learning to reduce time consumption and achieve
desired results in the evaluation. Hu et al. [22] integrated unsupervised descriptor selection
into few-shot learning, which employs a descriptor selection module to select and localize
semantically meaningful regions in feature maps without supervision, thereby improving the
efficiency of task adaptation and classification performance. Singh et al. [23] introduced dual class
information, base class label and self-supervised class label for the base class training images
to help the model learn generic features and improve the novel class performance in few-shot
learning. Zeng et al. [24] developed a self-attention and mutual-attention module to learn feature
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correlations and reduce background interference in few-shot learning classification of remote-
sensing images, which led to higher accuracy. Dong et al. [25] used the back-end network to extract
multilevel feature information from the base class and improved the loss function to maximize the
distance between different categories and minimize the distance between the same categories in
few-shot learning. Guo et al. [26] introduced the pairwise similarity module into few-shot learning
and generated the calibrated class centres suitable for the query sample by extracting the semantic
correlations between the support and query sample and enhancing the discriminant regions.
It is clear that few-shot learning has great potential to address pavement texture recognition
issues.

Road maintenance professionals tend to use mobile devices in the field due to their
portability, which limits the storage capacity of embedded models. Additionally, rapid feedback
of classification results is often needed in engineering practice. Therefore, it is important to
develop lightweight few-shot learning models applicable to practical engineering scenarios.
Reducing the time and computational cost of deep learning models can bridge the gap between
theoretical models and practical applications in many fields, and a number of lightweight
methods have been proposed to this end. Sun et al. [27] proposed a lightweight network
architecture for image super-resolution, using depthwise separable convolution to enhance
the efficiency of the convolution operation and stacked weighted multi-scale residual blocks
to improve the representation capability. Jiang et al. [28] developed a method for network
compression in super-resolution, which employed weight pruning and a multi-slicing network of
information to extract and integrate multi-scale features. Grassucci et al. [29] introduced a family
of parameterized hypercomplex neural networks that directly captured convolution rules and
filter organization from data, making them flexible in any user-defined or tuned domain. Cheng
et al. [30] proposed a lightweight unified fusion network for multi-focus image fusion, which
used guided filtering to separate the source image into basic and detailed layers and applied a
gradient perception strategy to handle the fusion problem. Liu ef al. [31] developed a lightweight
generative adversarial network that used squeeze and expand, multi-scale convolution, and
depthwise separable convolution to reduce network parameters and training time. Gong et al.
[32] introduced a global contextually guided lightweight network that employed secondary
cross-modal integration to remove redundant information and added a hybrid feature-cascaded
aggregation module to emphasize the global context, along with calibration. However, despite the
potential of few-shot learning for pavement texture classification, the development of lightweight
few-shot learning models specifically for this application has not been extensively investigated,
presenting an important research gap.

This study proposes a pavement texture classification model based on few-shot learning,
aiming to improve its suitability for engineering practice by making it lightweight. The dataset
used was constructed with three-dimensional laser scanning pavement texture data. The Siamese
network is chosen as the basic framework to construct the original few-shot learning model,
considering the specific characteristics of the pavement texture data. To reduce the parameter
quantity and multiply-accumulate operations, lightweight methods such as global average
pooling (GAP) and one-dimensional convolution are employed in different parts of the few-
shot learning model. Comparative experiments were conducted to evaluate the performances
of the lightweight models and the original few-shot learning model. The applicability of the
proposed models in actual engineering tasks was then discussed based on the results. This
study contributes twofold: (i) verifying the feasibility of few-shot learning on four-way five-
shot pavement texture classification and (ii) proposing specific lightweight pavement texture
classification models, balancing accuracy with storage volume and training time. By focusing
on the practical requirements of pavement texture recognition in the field of road maintenance
and addressing the limitations of current deep learning models, this study aims to provide
valuable insights for practitioners and researchers alike. The proposed lightweight few-shot
learning models have the potential to significantly impact the efficiency and effectiveness
of pavement texture recognition, ultimately contributing to safer and more sustainable road
infrastructure.
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Figure 1. The flow chart of methodology.

2. Methodology

This section presents the methodology employed in this paper for pavement texture
recognition. First, the Siamese network is introduced, which serves as the few-shot learning
network framework, highlighting the potential targets to lightweight in the Siamese network.
Subsequently, alternative lightweight methods are discussed, including GAP, one-dimensional
convolution and the integration of both. The figure 1 presents the basic structure and the
lightweight routes of the Siamese network.

(a) Siamese network architecture and lightweight objectives

In this study, the Siamese network was chosen for pavement texture classification, primarily
due to its exceptional performance across various domains and its relatively simple architecture
compared to other few-shot learning frameworks. The simplicity of the Siamese network makes
it an appealing choice for addressing complex classification tasks while maintaining efficiency
and ease of implementation. Furthermore, its demonstrated success in diverse applications
[33-35] offers a strong foundation for adapting it to the specific requirements of pavement
texture classification, ultimately contributing to the creation of more accurate and robust models.
Although the Siamese network may entail higher computational demands when dealing with a
larger number of categories, it remains applicable and well suited for the four-type pavement
texture classification task addressed in this paper.

The Siamese network consists of two sub-networks with the same structure that share the same
weights. These sub-networks generate embeddings for the input data, which are then fed to the
energy function. The similarity of the input data is calculated based on the output of the energy
function. For image classification, the Visual Geometry Group 16 (VGG16) was chosen as the sub-
networks, which has been proven effective for extracting feature vectors in many studies based
on Siamese networks [36-38].

Specifically, a pair of pavement texture images is input into the original Siamese network,
with each image being processed by a separate sub-network. The sub-networks consist of a
convolution layer, a maximum pooling layer and a dense connection layer, as shown in figure 2.
The convolutional layers have a kernel size of 3 x 3 and channels of 64, 128, 256, 512 and 512, with
the Relu activation function connecting each convolutional layer. The maximum pooling layers
have kernels with a 2 x 2 size and strides with a 2 x 2 size. The first two dense connection layers
have 4096 output nodes connected to the Relu activation function, while the last dense connection
layer has 1000 output nodes connected to the Sigmoid activation function. The feature vectors
output by the sub-networks are then used to calculate the energy function, which ultimately
produces the similarity between the input images.
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Figure 3. Lightweight for dense layers based on GAP.

Regarding the lightweighting of the original Siamese network, the main targets are reducing
storage volume and training time. The reduction of the number of parameters is the primary
consideration for reducing the storage volume occupied by the classification model, which can
also decrease the likelihood of overfitting. In terms of training time, the reduction of multiply-
accumulate operations (MACC) in the network, a significant portion of computational overhead,
is crucial. Table 1 shows the volume of parameters and MACC for the sub-networks in the
original Siamese network. It is evident that the dense layers contain the majority of the parameters
in the network, while the convolutional layers are the primary source of computational cost.
Consequently, the lightweighting of the dense layers is crucial for reducing the storage volume of
the network, and the lightweighting of the convolutional layers is essential for saving the training
time.

(b) Lightweight method based on global average pooling

GAP is a lightweight method used to reduce the number of parameters in dense layers [39]. It
involves taking the average of all the pixels in the feature map of each channel, resulting in a
single value per channel. The feature map is then transformed into a feature vector with a length
equal to the number of channels. This method is useful in avoiding the high input dimensions
that are usually required by dense layers. In this study, GAP is applied in place of dense layers, as
illustrated in figure 3. This approach helps to reduce the number of parameters, storage volume
and potential for overfitting.

(c) Lightweight method based on one-dimensional convolution

One-dimensional CNNs are commonly used for processing text data [40]. However, given
the simple characteristics of pavement texture, it is possible to perform pavement texture
classification using one-dimensional convolution. Unlike two-dimensional convolution, one-
dimensional convolution operates on feature vectors with only one dimension, and its
convolution kernels also have only one dimension, significantly reducing the computational
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Table 1. Parameters and MACC of the sub-networks of the original Siamese network.

no. layer output shape parameters (% 10°) MACC (x10°)
1 conv2D (64,181,181) 0.00064 0.019

2 conv2D (

64,181,181) 0.037 12

overhead and time cost. To accommodate one-dimensional convolution, the input of the sub-
network is a 181-length vector with 181 channels, containing the same information as the original
181 x 181 single-channel image. Consequently, all two-dimensional convolution operations are
replaced by one-dimensional convolution, and the pooling layers are updated to one-dimensional
pooling, as illustrated in figure 4.

(d) Lightweight method based on the integration of global average pooling
and one-dimensional convolution

The combination of GAP and one-dimensional convolution can yield an optimal lightweight
effect. In this approach, the feature vector output of the last one-dimensional convolution layer
is subjected to a GAP operation, where each dimension of the feature vector is averaged to
obtain a scalar value. The resulting feature vector, which has a length equal to the number of
channels of feature vectors generated in the last one-dimensional convolution layer, serves as
the embedding that is fed into the energy function by the sub-network. The lightweight Siamese
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Figure 5. Lightweight Siamese network based on GAP and one-dimensional convolution.

network structure that incorporates both GAP and one-dimensional convolution is illustrated
in figure 5.

3. Experiment design

This section introduces the experimental design. First, it presents the pavement texture dataset
used in this study. Subsequently, the design of the comparative experiments is discussed,
including the specific network configurations and hyperparameters in the experiments designed
to test the performance of the recognition models employing different lightweight methods.
Finally, the experimental environment is described. The flowchart of the experiment is presented
in figure 6.

(a) Dataset of pavement texture

Three-dimensional pavement texture data were acquired using a laser scanner in Beijing, China,
with a size of 90 x 90 mm and sampling intervals of 0.5 mm in two horizontal directions [41]. Each
data was recorded as a 181 x 181 two-dimensional array with the corresponding height value. The
height of the pavement texture was normalized prior to further processing, and the data were
converted into grayscale images suitable for the application of image classification methods and
visualization.

The classification task involves identifying four of the most common types of pavement
texture: dense asphalt concrete (DAC), micro surface (MS), open-graded friction course (OGFC)
and stone matrix asphalt (SMA). Typical images of each type of pavement texture refer to [11]. In
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Figure 6. The flowchart of experiment design.
Table 2. Sample composition of the dataset.
DAC MS 0GFC SMA
sample size of training set 5 5 5 5
sample size of test set 45 4 14 45

this study, the training of the pavement texture recognition model was performed with a limited
dataset of only five images per category. This constraint was motivated by the fact that collecting
diverse and extensive samples of pavement texture images is a challenging and laborious process
in road detection work. The main objective of this study was to propose a reliable model capable
of achieving high accuracy in recognizing pavement textures despite the limited availability of
training data, ultimately contributing to the overall efficiency and effectiveness of road surface
analysis and maintenance. The number of images used for model training is presented in table 2.
The proposed few-shot learning models were evaluated using a four-way five-shot classification
task, which is typical in the field of few-shot learning [42-45].

(b) Comparative experiments for evaluating the performances of the classification models

To reduce the storage volume and training time of the Siamese network and investigate how this
affects the accuracy of the network in classifying pavement texture, a comparative experiment
was designed. Various methods were applied to obtain lightweight models from the original
Siamese network, which were then trained under the same conditions. The performance of the
models with the original Siamese network and lightweight Siamese networks for pavement
texture classification was compared comprehensively, considering their storage volume, training
time and classification accuracy.

Specifically, four experiments were designed to evaluate the performance of the original
Siamese network model and three lightweight models, as shown in table 3. The original
Siamese network consisted of convolutional layers and dense layers, while the lightweight
models were obtained by applying three different lightweight methods to the original Siamese
network. Lightweight model-1 was obtained by replacing the dense layers of the original Siamese
network with GAP. Lightweight model-2 used one-dimensional convolution for the convolutional
layers in the original Siamese network. Lightweight model-3 applied GAP and one-dimensional
convolution to the dense layers and the convolutional layers, respectively.

Prior to the training, sample pairs were constructed by pairing two pavement texture images
and inputting them into the Siamese network. A sample pair consisting of two images belonging
to the same category was defined as a positive sample pair, while a sample pair consisting of two
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Table 3. Experiments using different lightweight methods of Siamese network.

lightweight method lightweight method for

Experiment model for dense layers convolutional layers

model with original Siamese network

Table 4. Sample pairs for each experiment.

sample pairs sample pairs partition
positive negative sample pairs sample pairs
experiment model sample pairs sample pairs of training (%) of validation (%)
Test-| model with original 40 150 50 50
Siamese network
TR nghtwelght R e e G R
T L|ghtwe|ght R o o G e
TR L|ghtwe|ght T o o R R

images belonging to different categories was defined as a negative sample pair. All images in the
training set were used to construct sample pairs. The number of positive and negative sample
pairs was calculated using equations (1) and (2), respectively.
K!
"2(K—2)!
N!
2(N —2)

where N is the number of categories and K is the sample size of each category. In the pavement

NUM, =N @™

NUM, =K?. (2

texture classification task of this study, the numbers of positive and negative sample pairs were
40 and 150, respectively. All the sample pairs were randomly divided into two equal parts for
training and validation of the Siamese network. The statistics of sample pairs used for each
experiment are presented in table 4.
The Siamese networks used the Euclidean distance function as the energy function, which was
defined as follows:
E=lxn — znll2, 3)

where x and z represent the feature vectors output by the sub-networks and # is the dimension
of the feature vector. The Energy function serves as a measure of the difference between samples.
In particular, for a positive sample pair, the value of E will be very small, while for a negative
sample pair, the value of E will be large.

The contrastive loss function was used to evaluate the match between E and the corresponding
label, which can be defined as follows:

Ns
Loss — % X:yE2 + (1 —y)max(m — E, 0)?, (4)
S i=1

where y represents the label of sample pairs, 1 for positive sample pairs and 0 for negative sample
pairs, N; is the number of samples, and m is a threshold set to 1 in this paper. If the Siamese
network is effective, the value of E for positive sample pairs tends to approach 0, while the value
of E for negative sample pairs is significantly larger, resulting in a low value of Loss. Conversely,
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Table 5. Comparison of classification accuracies.

classification accuracy on test set (%)

experiment model average

Test-| model with original Siamese network 95.6 100 80.0 83.6 89.8
s ng htwelght L s o T e R
T ng htwe|ght e G e . oy oy
TR ng htwelght e e e L s

if the value of E for positive sample pairs is large and that for negative sample pairs is close to 0,
the Loss value will be high.

The RMSprop optimizer was used with a learning rate of 107>, and the training epochs were set
to 20 with a batch size of 16. The other parameters were set to their default values; each experiment
was repeated five times under the same conditions.

(c) Experimental environment and dependent equipment

The experiments were performed on a laptop with an Intel Core i9-9880H CPU@2.30GHz, 16 cores
and 32GB RAM. All models were implemented in Python using the TensorFlow deep learning
library.

4, Result and discussion

(a) Comparison of pavement texture classification accuracy among
the lightweight models

The Siamese network can only infer similarity between two input images and cannot directly
classify them into specific categories. Therefore, the comparison verification method was used
to classify pavement texture images in the test set. Specifically, for each image in the test set,
sample pairs were constructed using five images of each category in the training set and input
into the trained Siamese networks. The energy function values of the test image and each category
of images in the training set were averaged to obtain the differences between the test image
and various pavement textures. The category with the least difference from the test image was
considered as the classification result. The classification confusion matrix of each experiment
is presented in figure 7. The high classification accuracy for each category of pavement texture
in each experiment indicates that the original Siamese network and each lightweight Siamese
network were effective.

The comparison of classification accuracies is presented in table 5, where the average accuracy
was defined as the arithmetic average of accuracy in each category. It was observed that
Lightweight model-1 achieved the highest average accuracy, which could be attributed to the
GAP method that helped alleviate the overfitting problem during the training process. On the
other hand, the average accuracies of Lightweight model-2 and Lightweight model-3 were lower
than that of the Original Siamese network, indicating that one-dimensional convolution was less
effective for classification than two-dimensional convolution. Nevertheless, all models proposed
in this study achieved an average accuracy higher than 80%, thus indicating their effectiveness
for pavement texture classification. Notably, the MS classification accuracy was 100% due to its
significant differences from other categories, while the OGFC and SMA classification accuracies
were low as they were similar to each other.
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Figure 7. Classification confusion matrix of each experiment. (a) Test-1, (b) Test-1l, (c) Test-lll and (d) Test-IV.

(b) Comparison of lightweight degree among the lightweight models

The degree of lightweight of a network is a critical factor in practical engineering. As the major
indicator of network lightness, storage volume was compressed by reducing parameters and
training time was saved by reducing MACC in this study. The degree of lightness of the proposed
models is summarized in table 6. Compared to the original Siamese network-based model, the
storage volume of Lightweight model-1 and Lightweight model-3 was substantially reduced due
to GAP, which decreased dense layer parameters. Lightweight model-2 and Lightweight model-3
were superior in terms of training time, as one-dimensional convolution actively reduced the
MACC of the convolutional layer. Overall, Lightweight model-3 achieved the most desirable
lightweight effect, with the lowest storage volume and shortest training time.

Before proceeding further, it is important to note that the aforementioned data is reliable.
The parameters quantity and MACC are considered to be theoretical values, whereas storage
volume, training time and accuracy are experimental values that require rational analysis. Based
on the results obtained after each experiment was repeated five times, it was observed that the
storage volume remained constant, and the accuracy and training time remained mostly stable,
as depicted in figure 8. Furthermore, calculations revealed that the accuracy and training time for
each experiment fell within twice the s.d. range with no outliers detected.
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Figure 8. Accuracy and training time of each experiment repeated five times. (a) Test-l, (b) Test-Il, (c) Test-Ill and (d) Test-IV.

Table 6. Indicators of network lightness of the proposed models.

parameter quantity storage volume training
O model (x109) (MB) time (s)
Test-| model with original 88 336 9.8 1583
Siamese network
TR L|ghtwe|ghtmodel1 ................ o G o i
EITR L|ghtwe|ghtmodeI2 ............... o s T o
E TR L|ghtwe|ghtmode|3 ............... P R s pp o

(c) Comprehensive analysis of classification accuracy and lightweight degree

A comprehensive comparison of model performances is presented in table 7. The experimental
results of the Original Siamese network were used as the benchmark for comparison. Lightweight
model-1 achieved the highest classification accuracy of 93.5%, which was 3.7% higher than the
Original Siamese network. Importantly, the accuracy increase referred to the absolute increase
in this paper. In addition, Lightweight model-1 significantly compressed the storage volume by
83% and saved 6% training time. For the lightweight effect, Lightweight model-3 performed the
best, compressing 94% of the storage volume compared to the model with the original Siamese
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network and taking only 27s to complete the training. However, the classification accuracy of
pavement texture based on Lightweight model-3 was reduced by 2.9%.

In essence, GAP significantly reduced the storage volume by replacing dense layers, while
one-dimensional convolution also achieved some effect by reducing the number of input nodes
in dense layers. Moreover, one-dimensional convolution drastically cut the training time of the
Siamese network by reducing the MACC of the convolutional layers. However, GAP had little
effect since the dense layers only account for a small fraction of the MACC of the network.
It should be noted that the reduction rate of storage volume and parameter quantity was the
same since the network saved only parameters when storing. However, the reduction rate of
training time was different from the reduction rate of MACC due to reasons such as the amount of
computation of the activation function not being counted. Additionally, GAP improved accuracy
slightly, while one-dimensional convolution had a slight effect on reducing accuracy.

5. Conclusion

This study proposes a few-shot learning approach based on a Siamese network for classifying
pavement texture with a limited dataset. To enhance the practical application of the models,
lightweight methods are incorporated into the Siamese network. Comparative experiments are
conducted to evaluate the performance of the original Siamese network and the lightweighted
Siamese networks in a four-way five-shot pavement texture classification task. The findings
indicate that (i) all models achieve over 80% accuracy, confirming the feasibility and effectiveness
of few-shot learning for pavement texture classification. Moreover, implementing lightweight
methods reduces the storage volume and training time of the models without compromising
accuracy. (ii) The model that applies GAP on the dense layers of the Siamese network attains a
classification accuracy of 93.5% while reducing storage volume by 83% and saving 6% of training
time, thus serving as a suitable choice for high-accuracy classification tasks. (iii) The lightweight
model that uses one-dimensional convolution on convolutional layers and GAP on dense layers
may be more appropriate for tasks that prioritize classification speed and storage volume, with
only 19 MB of storage requirement and less training time.

As an initial exploration of pavement texture classification using few-shot learning, this study
has several limitations that warrant acknowledgement. First, the study only investigated the use
of Siamese networks for constructing few-shot learning models. Other network architectures
that implement few-shot learning may offer advantages over Siamese networks and should be
considered for further investigation. Second, the dataset used in this study is limited due to
the difficulty of obtaining pavement texture images, which constrained the types of pavement
textures considered in the recognition model. Considering the diverse range of pavement textures
and the potential variability within the same type of pavement surface, future research should
focus on expanding the applicable types of textures and improving recognition accuracy with
larger datasets. Finally, there may be additional approaches for creating lightweight pavement
texture classification models beyond the two methods employed in this study. Future research
should investigate the development of lightweight models that both improve accuracy and
significantly reduce storage volume and training time.
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