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A B S T R A C T

Nonlinear dynamical systems are widely implemented in many areas. The prediction and identification of these
dynamical systems purely based on observational data are of great significance for practical applications.
In the work, we develop a machine learning based approach called Runge–Kutta guided next-generation
reservoir computing (RKNG-RC). The proposed scheme can process data information generated by the most
complicated nonlinear dynamical systems such as chaotic Lorenz63 system even with noise, and experimental
systems such as chaotic Chua’s electronic circuit, showing an outstanding ability for prediction tasks. More
importantly, the RKNG-RC is found to have distinctive interpretability that from the trained weights the
ordinary differential equation governing the observable data can be deduced, which is beyond the processing
capacities of traditional approaches. The work provides an efficient platform for processing information
generated by various dynamical systems.
1. Introduction

The prediction and identification of dynamical models that underpin
systems in industry [1,2], physics [3], engineering [4], biology [5], and
social network [6,7] has been an important and challenging topic. Most
of traditional methods rely heavily on expert intuition and suffer a large
computational cost. As a result, it is seen recently a focused attention on
developing more efficient data-driven modeling methods [8–11]. Par-
ticularly, machine learning offers a shortcut for analyzing limited obser-
vational data and learning the underlying nonlinear dynamics [12–14].
Various of neural networks are proposed for discovering representa-
tions of complex systems, closure modeling and chaotic time-series
prediction [15–17]. Among these, the reservoir computing (RC) [18], as
a type of recurrent neural networks (RNN), is deemed as one of the most
attractive platforms for processing information generated by various of
dynamical systems [19–22].

The RCs have been developed from the original Echo-state network
(ESN)-based to the time-delayed based [23], and until recently the next
generation of reservoir computing (NG-RC) [24]. The core idea of RCs is
to map the limited state values (input) into a much higher dimensional
networks realized by a reservoir, where the reservoir could be time-
delayed, or constructed by randomly connected neurons, or replaced by
specially designed feature vectors, and a weight matrix that couples the
reservoir state and output layer is trained to find the desired function
between the input and output. Previous studies have shown that RC
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is competent for tasks such as prediction of chaotic systems, recon-
struction chaotic attractors, nonlinear behaviors controlling [21,25–28]
etc. However, in general, there is a lack of interpretability of using
RC in the sense that the RC behaves like a black-box having many
hyperparameters to be adjusted. The trained RC can be seen as a data-
driven model but it is failed to give explicit information about the
mathematical structure behind the observable data.

In this paper, we propose a new type of NG-RC based framework in
which the structure construction is guided by Runge–Kutta algorithm
and training procedures is optimized. The explored method is capa-
ble of predicting chaotic time series that might be noise polluted or
generated by experiment during which the data is somehow affected
by practical equipment and measurement, as well as reconstructing
chaotic attractors behaving like a data-driven model. Both numerical
simulations and real experiment have been conducted to verify the pro-
posed method. More importantly, the proposed scheme is proven to be
competent for capturing the internal relationships between input states,
and one can identify the correct form of ODE together with relevant
system parameters based on the Runge–Kutta guided interpretative
process. The data generated by Lorenz chaotic systems with/without
noise and the real Chua’s circuit are used for the numerical validations.
Comparisons in both the prediction and identification task with the
most popular Sparse Identification of Nonlinear Dynamical systems
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Fig. 1. The structure of the RKNG-RC. The relationship between 𝑺 and 𝑺𝟐 ,𝑺𝟑 ,… ,𝑺𝒑 is described by Eq. (2). The ⊕ denotes vector concatenation operation.
(SINDy) algorithm are also given. Though the proposed method in this
work is limited for studying ODE, it can shed light for developing
machine learning based data-driven methods that could be extended
into in the fields such as aerodynamics, fluid dynamics described by
partial differential equations (PDEs).

2. Theories

2.1. Problem description

We consider a general dynamical process that can be described by
the following ordinary differential equation (ODE) (Eq. (1)):

�̇�(𝒕) = 𝑓 (𝒖(𝒕)) (1)

where the 𝑓 is unknown, the state vector 𝒖(𝒕) ∈ 𝑅𝑚 and time 𝑡 ∈
[0, 𝑇 ]. Suppose that the state 𝒖(𝒕) is observable only for a limited time
range of [0, 𝑇1], and we have corresponding time series data of state
𝒖(𝒕), 𝑖.𝑒., (𝒖(𝒕𝟎), 𝒖(𝒕𝟏), 𝒖(𝒕𝟐),… , 𝒖(𝒕𝑻 𝟏)). For practical consideration, we
assume that the observable data can be noise-polluted or generated by
real experiment. Our objective is two-fold. First, it aims to construct a
distinctive NG-RC framework that can learn from the observable data,
and be further seen as a data-driven model which can predict the future
state evolution and reproduce the underlying dynamics such as chaos
attractor. Second, it is expected that the proposed method can infer the
explicit ODE structure and relevant system parameters in 𝑓 .

2.2. Structure of the proposed RKNG-RC

The traditional RC is generally composed of three parts: an input
layer, a reservoir and an output layer. The input layer feeds the
input vector via a weight matrix 𝑾 𝒊𝒏 to the reservoir composed of 𝑁
interconnected nodes. The output vector can be derived through weight
matrix 𝑾 𝒐𝒖𝒕 which couples the dynamical state of reservoir nodes and
the output layer.

The structure of the RKNG-RC is shown in Fig. 1, which learns the
observable data over a limited time range and extract the relationship
between state at time 𝑡 and 𝑡 + 1. Specifically, it uses 𝒖(𝒕) at time 𝑡 to
create a so-called feature vector 𝑺 that is composed of some sub-vectors
of 𝑺𝟐,𝑺𝟑,… ,𝑺𝒑, where 𝑝 indicates the number of states involved in
every nonlinear terms in sub-vectors. The 𝑺 can be written by (Eq. (2)):

𝑺 = 𝑺𝟏 ⊕ 𝑺𝟐... ⊕ 𝑺𝒑 (2)
𝑺𝟏 = [𝑋, 𝑌 ,𝑍]

𝑺𝟐 = [𝑋𝑋,𝑋𝑌 ,𝑋𝑍, 𝑌 𝑌 , 𝑌 𝑍,𝑍𝑍]

where ⊕ represents vector concatenation operation. As in the original
NG-RC, the feature vector is generally composed of the linear part
and nonlinear part involving states extended into 𝑘 time delayed steps
(i.e., nonlinear vector autoregression (NVAR)), which hinders the in-
2

terpretability. We can narrow down the feature library of the original
NG-RC by referring the idea that when using Runge–Kutta formula to
solve an ODE the state variable at time step 𝑡 + 1 can be calculated
iteratively based on state variables at time step 𝑡. For example, a
second-order Runge–Kutta formulas (Eqs. (3)–(5)) is given by:

𝒚(𝒕𝒎+𝟏) = 𝒚(𝒕𝒎) + ℎ(𝒌𝟏 + 𝒌𝟐)∕2 (3)

𝒌𝟏 = 𝑓 (𝑡𝑚, 𝒚(𝒕𝒎)) (4)

𝒌𝟐 = 𝑓 (𝑡𝑚 + ℎ, 𝒚(𝒕𝒎) + 𝒌𝟏ℎ) (5)

where 𝑓 represents the function linking state variables and their deriva-
tives, 𝒚(𝒎) presents the state values at step 𝑚. 𝑡𝑚 is the time at step 𝑚,
and ℎ is the step length. From the formula, it can be concluded that the
state values at 𝑡 + 1 are actually functions of various nonlinear terms
constructed by state variables at 𝑡. Therefore, it is reasonable for using
all the possible combinations of state variables at 𝑡 to construct sub-
vectors 𝑺𝒑(𝑝 = 1, 2, ..) that are combined to create the feature vector
𝑺. Based on 𝑺, an output weight matrix 𝑊𝑟𝑘 should be existed for
satisfying the following relation (Eq. (6)):

𝒖(𝒕+ 𝟏) = 𝑾 𝒓𝒌 × 𝑺 + 𝒖(𝒕) (6)

Next, a training process is specially designed and conducted for
deriving the desired 𝑾 𝒓𝒌. The training process is conducted through
the following steps: (take a three-dimensional dynamical system for
example).

Step 1: Preliminary ridge regression. With the feature vector 𝑺, a
preliminary weight matrix 𝑾 can be calculated by the ridge regres-
sion [20], that is:

𝑾 = [𝒖(𝒕+ 𝟏) − 𝒖(𝒕)]𝑺𝑇 (𝑺𝑺𝑇 + 𝜆1𝑰)−1 (7)

In Eq. (7), 𝒖 is the desired output, 𝑰 is an identity matrix and 𝜆1 is ridge
parameter for preventing over-fitting.

Step 2: Effective weights marking. Based on the 𝑾 derived in
Step 1, weight values that play a more important role during the
ridge regression should be emphasized, and a marking procedure is
introduced here, which can be expressed as in Eq. (8):

𝑾 𝒗 = ℎ(𝑾 − 𝑐) (8)

where ℎ is the step function, 𝑾 𝒗 is 0–1 matrix (Boole) which can
indicate whether the corresponding item in the matrix participates in
the operation, 𝑐 is predefined weight threshold. It can be seen that only
if the value of terms in 𝑾 reach a certain level, the corresponding terms
in 𝑾 𝒗 will be set to 1.

Step 3: Second ridge regression with marked terms. Based on step
1 and 2, a second regression process is developed, which is given
by Eq. (9):

𝑾 𝑖
𝒓𝒌 = [𝒖(𝒕+ 𝟏) − 𝒖(𝒕)]𝑖(𝑺 ⋅𝑾 𝒗

𝑖)𝑇 [(𝑺 ⋅𝑾 𝒗
𝑖)(𝑺 ⋅𝑾 𝒗

𝑖)𝑇 + 𝜆2𝑰]−1 (9)

where 𝒖𝑖 means the 𝑖𝑡ℎ row of the matrix 𝒖, 𝑾 𝒓𝒌 is the final output
′ ′
weight matrix based on ridge regression, and ⋅ means the multiplying
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Fig. 2. Performance comparisons of using RC, NG-RC and the RKNG-RC to reconstruct
chaotic attractor and predict time series based on data generated by chaotic Lorenz
system. The RMSE calculation is given in (h). The result corresponding to each method
is plotted by a specific color. Some parameters are taken as follows: 𝑝 = 3, 𝜆1 =
4 × 10−3 , 𝑐 = 6 × 10−3 , 𝜆2 = 2 × 10−7 and 𝜆𝑁𝐺−𝑅𝐶 = 2 × 10−8 (𝜆𝑁𝐺−𝑅𝐶 in the following is
the ridge parameter of the original NG-RC.). RC parameters in this test and following
two tests: spectral radius is 0.6; connection degree is 1.5; reservoir size is 1000.

operation between all corresponding entries in the matrix. During the
second regression, only the output weights with values greater than the
predefined threshold are considered to be participated in the regression
process.

Following the above steps to train the model, a final output weight
matrix 𝑾 𝒓𝒌 can be found, based on which the trained RKNG-RC can be
further used for prediction and identification tasks, i.e.,: (1) prediction
of the evolution of state variables using limited observable data and
chaos attractor reconstruction; (2) identifying the ODE structure and
system parameter values by adopting a reverse Runge–Kutta procedure.
Note that during the prediction process, the 𝑾 𝒓𝒌 is fixed, and one can
make the output vector 𝒖′ feeding back into the input layer, the RKNG-
RC can automatically run itself for generating future states. The output
vector is calculated by Eq. (10):

𝒖𝒑(𝒕+ 𝟏) = 𝒖(𝒕) +𝑾 𝒓𝒌𝑺 (10)

where 𝒖𝒑(𝒕+ 𝟏) represents the predicted value of the studied model.

3. Numerical and experimental validation

3.1. Numerical case: Lorenz63 system

The Lorenz63 system is firstly used for verifying the RKNG-RC. The
equation of Lorenz63 system is given by [29]:

̇ = 𝜎(𝑦 − 𝑥)

�̇� = 𝛾𝑥 − 𝑦 − 𝑥𝑧

̇ = 𝑥𝑦 − 𝛽𝑧 (11)

where 𝜎 = 10, 𝛾 = 28 and 𝛽 = 8∕3, and in such a parameter setting
the system works in chaotic regime. A training data set 𝐷 containing
20 000 time steps of states (𝑥, 𝑦, 𝑧) with discarding the transient states is
generated using Adams–Bashforth–Moulton PECE solver(ode113) [30]
based on Eq. (11). Part of 𝐷 is seen as observable data (training data),
and the rest is used as target signal for testing the prediction ability of
the RKNG-RC. During the training process, the feature vector 𝑆 in this
case is constructed with 𝑺𝟏,𝑺𝟐,𝑺𝟑, i.e., 𝑝 = 3. After training, the RKNG-
RC can predict all the state (𝑥, 𝑦, 𝑧) evolution precisely for a certain
time, as shown by the green dotted line in Fig. 2(e)–(g). Apart form
3

Fig. 3. Poincare section of the original system (a), and Poincare section based the
data generated by RKNG-RC after being trained (b).

Fig. 4. Performance comparisons of using RC, NG-RC and RKNG-RC on chaotic
attractor reconstruction and time series prediction based on data generated by chaotic
Lorenz system with adding noise. The RMSE calculation is given in (h). The result
corresponding to each method is plotted by a specific color. Some parameters are
taken as follows: 𝑝 = 3, 𝜆1 = 8 × 10−3 , 𝑐 = 2 × 10−3 , 𝜆2 = 2 × 10−5 and 𝜆𝑁𝐺−𝑅𝐶 = 2 × 10−7.

prediction, the reconstruction of chaotic attractor of Lorenz system
based on the RKNG-RC is also studied. The result is shown with green
color in Fig. 2(d), where it is seen that the RKNG-RC can reconstruct
chaotic attractor as the original one shown in black color in Fig. 2(a).
To compare, we have also calculated the prediction performance using
the original NG-RC and RC, respectively, and the results are present by
red solid and pink dotted line, respectively, in Fig. 2(e)–(g). It is shown
that our RKNG-RC is outperformed the original NG-RC and RC in terms
of prediction length. In addition, the attractors reconstructed by the
RKNG-RC and RC are also given in Fig. 2(b) and (c), respectively. The
RMSE of different methods is present in Fig. 2(h). The results in Fig. 2
proves that the RKNG-RC is competent for chaotic series prediction. To
achieve such a comparable performance, it is worth mentioning that
the calculation efficiency of the RKNG-RC is higher than the original
NG-RC and RC because of effective weights marking.

In addition, the Poincaré’s plots (𝑦 = 0) of the original Lorenz system
and that reproduced using data generated by the trained RKNG-RC
by 𝐷 are also compared. As shown in Fig. 3(b), the reproduced one
using 600 000 generated data points is overlapping with the one plotted
by the original system, which proves that the long-time evolution
behavior of the NG-RC can capture the nonlinear dynamics feature of
the Lorenz63 system.

To verify the noise robustness of the RKNG-RC, the case of data
with noise affected is used for training. Taking the Lorenz63 system
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Fig. 5. The design of chaotic Chua’s circuit and its experimental implementation.
subjected to noise as the data generator (Eq. (12)):

̇ = 𝜎(𝑦 − 𝑥) + 𝑅

�̇� = 𝛾𝑥 − 𝑦 − 𝑥𝑧 + 𝑅

̇ = 𝑥𝑦 − 𝛽𝑧 + 𝑅 (12)

where 𝑅 is randomly distributed at [−10, 10] representing the white
noise outside the system. By increasing the training error tolerance,
the RKNG-RC can also work well. The results for this case are shown
in Fig. 4. Both the prediction and reconstruction of chaotic attractor
prove the noise robustness of the RKNG-RC. In addition, we compared
performance with other methods such as the original NG-RC and RC.
The results are also given in Fig. 4. Again, it can be seen that the
RKNG-RC outperformed.

3.2. Experimental case: Chua’s chaotic circuit

The Chua’s circuit is one of the most representative electronic
system that can exhibit chaos. The dynamical equation (Eq. (13)) for
describing the Chua’s circuit is given by:

𝐿�̇�𝐿 = −𝑣1 − 𝑟𝐿𝑖𝐿
𝐶1�̇�1 = (𝑣1 − 𝑣2)∕𝑅 + 𝑖𝐿

𝐶2�̇�2 = (𝑣1 − 𝑣2)∕𝑅 − 𝑖𝑑 (𝑣2) (13)

where 𝑣𝑖 is the voltage across capacitor 𝐶𝑖, 𝑖𝐿 is the current in the
inducer, and the current flowing through Chua’s diode is given by
Eq. (14):

𝑖𝑑 =
{

𝑘1𝑣2 𝑎𝑏𝑠(𝑣2) < 𝑣
𝑘2𝑣2 + 𝑘1𝑣 − 𝑘2𝑣 𝑎𝑏𝑠(𝑣2) > 𝑣

(14)

where 𝑣 is the threshold of 𝑣2. The 𝑣 can be controlled by different
slopes 𝑘2 and 𝑘1. In this section, we verify the RKNG-RC in a more
practical environment by building a real Chua’s chaotic circuit. The
circuit diagram, design and experimental implementation are given
in Fig. 5. The circuit consists of an inducer 𝐿 with 𝑟 as its inner
resistor, two capacitors 𝐶1 and 𝐶2, a linear resistor 𝑅, and a piecewise
linear resistor 𝑅𝑛. The only nonlinear element 𝑅𝑛 is a two-terminal
piecewise linear resistor denoted by ‘Chua’s diode’. The ideal values
of all components are shown in Fig. 5(b). The hardware realization
4

Fig. 6. The reconstruction of chaotic attractor of Chua’s circuits and prediction of
chaotic series using RC, NG-RC and the proposed NG-RC. The training data having
8000 time steps (2 us per step) is generated by real experiment. Some parameters are
taken as follows: 𝑝 = 5, 𝜆1 = 1.6×10−2 , 𝑐 = 1.6×10−2 , 𝜆2 = 2×10−3 and 𝜆𝑁𝐺−𝑅𝐶 = 2×10−4.

of the Chua’s circuit is shown in Fig. 5(c). The Fig. 5(d) shows the
chaotic attractor of the experimental Chua’s circuit displaying on an
oscilloscope.

During the experiment, the data acquisition is accomplished by an
oscillator. The collected data, far from ideal but affected by practical
equipment, is divided as training and testing part. Subsequently, we
try to validate that the RKNG-RC can learn the practical data and
predict the state variables’ evolution. By setting 𝑝 = 5 and using 8000
time steps to train the proposed NG-RC, the prediction performance
is then studied. The result is shown in Fig. 6(e)–(g). It can be seen
that the RKNG-RC performs well to predict the real chaotic data in
all dimensions. The reconstruction of Chua’s chaotic attractor using
the RKNG-RC is validated and compared with the one plotted by
the original model, as shown in top row of Fig. 6. It is proved that
the RKNG-RC after being trained can learn the dynamics behind the
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Fig. 7. The histogram of prediction length distributions. The horizontal axis denotes
the prediction length. Data sets corresponding the above studied cases (Lorenz, Lorenz
with noise and real Chua’s circuit) are investigated. Methods between RC, NG—RC
and the proposed are compared. It is shown that the proposed method has similar
performances with the NG-RC. The actual training time with the new method is much
shorter than the other two.

Fig. 8. Process of deducing the ODE.

real data and generate the similar attractor. To compare, the perfor-
mance for predicting real data using the original NG-RC and RC are
also investigated. The results, plotted with red solid and pink dotted
line, respectively, are given in Fig. 6(e)–(g). It shows again that the
RKNG-RC outperformed over RC and demonstrated at least comparable
performance with the original NG-RC. However, the RKNG-RC has the
merit that it is more efficient for processing the data due to the feature
vector optimization.

Furthermore, To validate the proposed method, we study the pred-
ication performance by using about 200 trajectories that start from
the scattered points in chaotic attractor of Lorenz system. And the
distribution of prediction length, defined by the time step when the
prediction differs from the true value by 0.25 (normalized value), is
investigated and given in Fig. 7. To have a comprehensive comparison,
the above studied numerical and experimental cases: Lorenz, Lorenz
with noise and the real Chua’s circuit, using three different methods:
RC, the NG-RC and the proposed, are considered. In Fig. 7, it is seen that
the proposed method can achieve a robust and comparable prediction.
Here, we would like to emphasize that the advantage of employing the
proposed NG-RC for conducting prediction task is that it can provide
higher efficiency, which is characterized by reduction of multitude of
metaparameters, less training data and shorter training time required.
To achieve a predication length that is comparable with RC and the
original NG-RC, the proposed method consumes less training time
because of the effective weights marking.
5

4. ODE identification behind the data

4.1. Deducing the ODE structure

In this section, we illustrate how to infer ODE structure behind
the data using the RKNG-RC. The specific process for deducing ODE
structure using the RKNG-RC is shown in Fig. 8. The derived weight
𝑊𝑟𝑘 after being trained by observational data can reflect the relations
between input state variables. Based on the values of 𝑊𝑟𝑘, the explicit
information about how terms in sub-vectors in the RKNG-RC play their
role can be obtained. Further, by utilizing the reverse Runge–Kutta
formula, the 𝑊𝑟𝑘 corresponding to their counterparts in coefficient
matrix that is deduced from Runge–Kutta formula, indicated by green
line in Fig. 8, can be used for deducing the original ODE structure.

We now take the Lorenz chaotic system as an example. In Table 1,
the very left column lists all the selected terms in feature vector 𝑆
corresponding to dimension: 𝑥, 𝑦 and 𝑧. The columns titled with 𝑥1,
𝑦1 and 𝑧1 represent the coefficient values linking the state variables
(𝑥, 𝑦 and 𝑧) at time 𝑡 and 𝑡 + 1 in the time-stepping form of Lorenz
system (𝜎 = 10, 𝛾 = 28, 𝛽 = 8∕3) calculated by Runge–Kutta method.
The columns titled with 𝑥2, 𝑦2 and 𝑧2 represent the derived weight
values after the RKNG-RC being trained by data generated by Lorenz
system using ode113. The columns titled with 𝑥3, 𝑦3 and 𝑧3 represent
the derived weight values after the RKNG-RC being trained by data
generated by Lorenz system with noise using ode113.

Based on the weight values given in Table 1, we can deduce the
explicit ODE structure step by step according to the process given in
Fig. 8. Assume that we have the weight values listed in columns of
𝑥2, 𝑦2 and 𝑧2, the original ODE structure can be deduced through the
three steps. Step 1: Given the existence of 3-order polynomial terms
such as 𝑦𝑥𝑥 and 𝑧𝑥𝑥 in dimension 𝑦 and 𝑧, it can be inferred that
the original ODE structure should have 2-order polynomial terms 𝑥𝑧 in
dimension 𝑦 and 𝑧. Step 2: According to the 2-order polynomial term
𝑧𝑥 appeared in dimension 𝑥 and 𝑦, it can be inferred that the dimension
𝑦 of the original ODE should have 2-order polynomial term 𝑥𝑧, and the
dimension 𝑥 of the original ODE should have term 𝑦. Step 3: Based
on the step 2 and according to the weight terms in dimension 𝑧, the 𝑧
dimension of the original ODE should have 2-order polynomial terms
𝑥𝑦, and the dimension 𝑧 and 𝑥 of the original ODE should have terms
𝑥 and 𝑦.

Alternatively, the selection criteria of the proposed method can be
put with a more straight and general way, which can include two steps,
i.e.,:

Step 1: In Table 1, identify the nonlinear terms with largest and second
largest weight values and all the linear terms with non-zero weight
values, the ODE structure can then be constructed based on these terms
directly;

Step 2: Using the RK2 to discretize the deduced ODE, and check if the
coefficients of the main terms are consistent with the weight values
obtained from the training by real data.

Follow the above mentioned steps, the inferred structure of ODE is
given as:

�̇� = 𝑎𝑦 − 𝑏𝑥

̇ = 𝑐𝑥 + 𝑑𝑦 − 𝑒𝑥𝑧

̇ = 𝑓𝑥𝑦 − 𝑔𝑧 (15)

Note that during the above deducing process, the 3-order polyno-
mial terms 𝑦𝑦𝑥 in dimension 𝑥, 𝑧𝑧𝑥 in dimension 𝑦 and 𝑧𝑦𝑦 in dimension
𝑧 are unused and seen as noise.

There is other method to infer the ODE structure. For example, one
can directly identify the weight values that are specially larger as the
key terms for deducing the original ODE, such as 0.4595 corresponding
to 𝑦𝑥, −0.4898 corresponding to 𝑧𝑥. These two values can actually
reflect the original structure information on the premise that one is
aware of the coefficient reduction principle during the iteration process

of Runge–Kutta formula.
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Table 1
The coefficient values (columns of 2,3,4) are derived during the time-stepping calculation of Lorenz system using by Runge–Kutta method with ℎ = 0.01; Columns of 4,5,6 (7,8, 9)
list the weight values of 𝑊𝑟𝑘 after the RKNG-RC being trained by the data generated by Lorenz system without and with noise.

Terms in 𝑆 𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2 𝑥3 𝑦3 𝑧3
xx 0 0 0.0630 0 0 0.0712 0.0049 0.0220 0.0695
yx 0 0 0.4731 0 0 0.4595 −0.0015 −0.0130 0.4770
yy 0 0 0.0248 0 0 0.0304 0 0 0.0247
zx −0.0250 −0.4665 0 −0.0242 −0.4898 0 −0.0248 −0.4988 0
zy 0 −0.0243 0 0 −0.0168 0 0 −0.0173 0
zz 0 0 0 0 0 0 0 0 0
xxx 0 0 0 0 −0.0028 0 0.0015 −0.0314 0
yxx 0 −0.1125 0 0 −0.1413 0 0 −0.1114 0.0032
yyx 0 −0.0125 0 −0.0036 0.0078 0 −0.0033 0 −0.0031
yyy 0 0 0 0 0 0 0 0 0
zxx 0 0 −0.1125 0 0 −0.1224 −0.0052 −0.0287 −0.1194
zyx 0 0 −0.0125 0 0 −0.0065 0 0.0156 −0.0151
zyy 0 0 0 0 0 −0.0110 0 0.0079 −0.0095
zzx 0 0 0 0 0.0171 0 0 0.0277 0
zzy 0 0 0 0 0 0 0 0 0
zzz 0 0 0 0 0 0 0 0 0
x −0.0810 0.2646 0 −0.0814 0.2727 0 −0.0810 0.2749 0
y 0.0945 0.0041 0 0.0947 0.0040 0 0.0945 0 0
z 0 0 −0.0263 0 0 −0.0263 0 0 −0.0263
Table 2
The calculation of coefficient values based on Runge–Kutta method.

Terms in 𝑆 𝑥 𝑦 𝑧

𝑥𝑥 0 0 𝛾ℎ2∕2 − 𝛾ℎ3𝜎∕2
𝑦𝑥 0 0 ℎ + ℎ3𝜎∕2 − ℎ2∕2 − ℎ2𝜎∕2 − 𝛽ℎ2∕2 + 𝛾ℎ3𝜎∕2
𝑦𝑦 0 0 ℎ2𝜎∕2 − ℎ3𝜎∕2
𝑧𝑥 −ℎ2𝜎∕2 +ℎ2∕2 − ℎ + 𝛽ℎ2∕2 + ℎ2𝜎∕2 − 𝛽ℎ3𝜎∕2 0
𝑧𝑦 0 −ℎ2𝜎∕2 + 𝛽ℎ3𝜎∕2 0
𝑧𝑧 0 0 0
𝑥𝑥𝑥 0 0 0
𝑦𝑥𝑥 0 ℎ3𝜎∕2 − ℎ2∕2 0
𝑦𝑦𝑥 0 −ℎ3𝜎∕2 0
𝑦𝑦𝑦 0 0 0
𝑧𝑥𝑥 0 0 ℎ3𝜎∕2 − ℎ2∕2
𝑧𝑦𝑥 0 0 −ℎ3𝜎∕2
𝑧𝑦𝑦 0 0 0
𝑧𝑧𝑥 0 0 0
𝑧𝑧𝑦 0 0 0
𝑧𝑧𝑧 0 0 0
𝑥 ℎ2𝜎2∕2 − ℎ𝜎 + 𝛾ℎ2𝜎∕2 𝛾ℎ − 𝛾ℎ2∕2 − 𝛾ℎ2𝜎∕2 0
𝑦 −ℎ2𝜎∕2 − ℎ2𝜎2∕2 + ℎ𝜎 ℎ2∕2 − ℎ + 𝛾ℎ2𝜎∕2 0
𝑧 0 0 𝛽2ℎ2∕2 − 𝛽ℎ
t

(

(

(

w
i
B

i
w
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4.2. Deriving system parameters

Assuming that the ODE structure deduced in Section 4.1 is the
Lorenz chaotic system, Eq. (15) can be rewritten as the commonly seen
form which has parameters 𝜎, 𝛾, and 𝛽. The system parameters can
be further derived using Runge–Kutta method. First, we can write the
following relations (Eqs. (16)–(18)):

𝑥𝑡+1 = 𝑥𝑡 + ℎ2𝜎2𝑥𝑡∕2 − ℎ2𝜎𝑦𝑡∕2 − ℎ2𝜎2𝑦𝑡∕2 − ℎ𝜎𝑥𝑡 + ℎ𝜎𝑦𝑡 + 𝛾ℎ2𝜎𝑥𝑡∕2

−ℎ2𝜎𝑥𝑡𝑧𝑡∕2 (16)
𝑦𝑡+1 = 𝑦𝑡 + ℎ2𝑦𝑡∕2 − ℎ𝑦𝑡 − 𝛾ℎ2𝑥𝑡∕2 + ℎ2𝑥𝑡𝑧𝑡∕2 − ℎ2𝑥2𝑡 𝑦𝑡∕2 + 𝛾ℎ𝑥𝑡 − ℎ𝑥𝑡𝑧𝑡
𝛾ℎ2𝜎𝑥𝑡∕2 + 𝛾ℎ2𝜎𝑦𝑡∕2 + 𝛽ℎ2𝑥𝑡𝑧𝑡∕2 + ℎ2𝜎𝑥𝑡𝑧𝑡∕2 − ℎ2𝜎𝑦𝑡𝑧𝑡∕2 − ℎ3𝜎𝑥𝑡𝑦

2
𝑡 ∕2

ℎ3𝜎𝑥2𝑡 𝑦𝑡∕2 − 𝛽ℎ3𝜎𝑥𝑡𝑧𝑡∕2 + 𝛽ℎ3𝜎𝑦𝑡𝑧𝑡∕2 (17)

𝑡+1 = 𝑧𝑡 + 𝛽2ℎ2𝑧𝑡∕2 − ℎ2𝑥𝑡𝑦𝑡∕2 + 𝛾ℎ2𝑥2𝑡 ∕2 + ℎ2𝜎𝑦2𝑡 ∕2 − ℎ3𝜎𝑦2𝑡 ∕2 − ℎ2𝑥2𝑡 𝑧𝑡∕2

𝛽ℎ𝑧𝑡 + ℎ𝑥𝑡𝑦𝑡 − 𝛽ℎ2𝑥𝑡𝑦𝑡∕2 − ℎ2𝜎𝑥𝑡𝑦𝑡∕2 + ℎ3𝜎𝑥𝑡𝑦𝑡∕2 − 𝛾ℎ3𝜎𝑥2𝑡 ∕2

ℎ3𝜎𝑥2𝑡 𝑧𝑡∕2 − ℎ3𝜎𝑥𝑡𝑦𝑡𝑧𝑡∕2 + 𝛾ℎ3𝜎𝑥𝑡𝑦𝑡∕2 (18)

ased on these equations, the coefficient of each term is listed in
able 2.

Matching the weight values listed in columns of 𝑥2, 𝑦2 and 𝑧2 in
6

able 1 with Table 2, we can easily have a set of equations to calculate t
he system parameters of the Lorenz system (Eq. (19)), i.e.,:

−ℎ2𝜎∕2 − ℎ2𝜎2∕2 + ℎ𝜎) ×𝐾 = 0.0947 ×𝐾

ℎ2∕2 − ℎ + 𝛾ℎ2𝜎∕2) ×𝐾 = 0.0040 ×𝐾

𝛽2ℎ2∕2 − 𝛽ℎ) ×𝐾 = −0.0263 ×𝐾 (19)

here 𝐾 is the zoom factor meaning the coefficient by which the orig-
nal data is multiplied during data normalization. Here, 𝐾 is set to 50.
ased on equations, we can get 𝜎 = 10.022, 𝛾 = 27.839 and 𝛽 = 2.6655.

With the identification results the prediction task results are given
n Fig. 9. The calculated parameters achieve an error rate of 1%
ithin the original ODE used for generating the data. And if ℎ is
nknown, relevant parameters can still be solved by introducing other
quations. The errors of the derived parameters are attributed to the
umerical calculation schemes employed for data generation. There are
navoidable errors existed during the calculation process, e.g., the error
rought by numerical solver leads to error in the weight values that are
ater used for inferring the system parameters.

We can also use the weight values listed in columns of 𝑥3, 𝑦3 and
3 in Tables 1 and 2 to calculate the system parameters of the Lorenz
ystem subjected to noise. Similar to the above procedures, we choose

he coefficients corresponding to the first-order items such as 𝑥, 𝑦, 𝑧 to
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𝑥

𝑧

𝑥

𝑧

Table 3
𝜆1 = 2𝑒 − 3, 𝜆2 = 2𝑒 − 5; (1)𝑐 = 2𝑒 − 3,(2)𝑐 = 8𝑒 − 3,(3)𝑐 = 24𝑒 − 3.

Terms in 𝑆 𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2 𝑥3 𝑦3 𝑧3
xx 0.0023 0.0012 0.0676 0 0 0.0726 0 0 0.0178
yx 0 0 0.4571 0 0 0.4477 0 0 0.4810
yy 0 0 0.0337 0 0 0.0373 0 0 0.0353
zx −0.0236 −0.4709 0 −0.0249 −0.4747 0 −0.0249 −0.4951 0
zy 0 −0.0198 0 0 −0.0175 0 0 −0.0056 0
zz 0 0 0.0024 0 0 0.0029 0 0 0.0151
xxx 0.0174 0.0483 0.0088 0 0.0459 0 0 −0.0559 0
yxx −0.0123 −0.0925 0 0 −0.0905 0 0 0 0
yyx −0.0089 −0.0688 −0.0038 0 −0.0670 0 0 −0.0627 0
yyy 0.0048 0.0173 0 0 0.0159 0 0 0 0
zxx −0.0033 −0.0019 −0.1075 0 0 −0.1101 0 0 0
zyx 0.0034 0 0.0036 0 0 −0.0123 0 0 −0.0629
zyy −0.0034 0 −0.0154 0 0 −0.0190 0 0 −0.0097
zzx −0.00019 0 0 0 0.0023 0 0 0.0317 0
zzy 0 −0.0055 0 0 −0.0076 0 0 −0.0233 0
zzz 0 0 −0.0033 0 0 −0.0041 0 0 −0.0186
x −0.0813 0.2670 0 −0.0808 0.2681 0 −0.0808 0.2709 0
y 0.0946 0.0026 0 0.0942 0.0020 0 0.0942 0.0005 0
z 0 0 −0.0263 0 0 −0.0268 0 0 −0.0292
infer the ODE coefficients, which is:

(−ℎ2𝜎∕2 − ℎ2𝜎2∕2 + ℎ𝜎) ×𝐾 = 0.0945 ×𝐾

(𝛾ℎ − 𝛾ℎ2∕2 − 𝛾ℎ2𝜎∕2) ×𝐾 = 0.2749 ×𝐾

(𝛽2ℎ2∕2 − 𝛽ℎ) ×𝐾 = −0.0263 ×𝐾 (20)

By calculating Eq. (20), we can get 𝜎 = 10.001, 𝛾 = 29.1, 𝛽 = 2.6655,
where only the 𝛾 has a large error (3.929%). It is confirmed that the
RKNG-RC can also derive the precise parameter values even the data
used for training is noise polluted.

4.3. To compare with SINDy

The sparse identification of nonlinear dynamical systems [31] is
deemed as one of the most popular method in statistical field. To
compare with it, the major difference is that the ‘‘library’’ in SINDy
is used for regress-fitting between the measured variables and their’s
derivatives, while in the modified (original) NG-RC the feature vector,
playing the same role as ‘‘library’’ in SINDy, is used for mapping vari-
ables at time t and t + 1. The numerical approximation to derivatives
from the data can be saved in NG-RC implementation.

Both in prediction and identification tasks, we have compared the
performance of using the proposed method and SINDy. Taking the same
example of Lorenz in [31], The prediction performance is investigated
and compared firstly, as shown in Fig. 9(a).

The ODEs identified using the proposed method (Eq. (21)) and
SINDy (Eq. (22)) are derived respectively:

̇ = 10.022 × (𝑦 − 𝑥)

�̇� = 27.839𝑥 − 𝑦 + 𝑥𝑧

̇ = 2.6655𝑧 + 𝑥𝑦 (21)

̇ = 10.002 × (𝑦 − 𝑥)

�̇� = 28.01𝑥 − 𝑦 + 𝑥𝑧

̇ = 2.669𝑧 + 𝑥𝑦 (22)

It can be concluded that our method can be used equivalently
as SINDy for ODE structure and parameters deductions. Moreover,
Based on the deduced ODE, the chaotic attractors are generated in a
short and long time scale, respectively, as shown in Fig. 9(b) and (c),
from which one can further compare the identification ability between
SINDy and the proposed method. It is worth to emphasize that the
proposed method does not need to know the time scale of the observed
data for deducing the correlations between state variables. While the
SINDy cannot identify ODE from real data without the knowledge of
7

the time step during the data generation. The original NG-RC and
RC also failed to identify the ODE structure in this real task because
of the unmanageable feature selection and poor interpretability. The
chaotic system is sensitive to the initial value. We have studied the
prediction performance by using about 200 trajectories that start from
the scattered points in the attractor (indicated by ‘+’ in Fig. 10(a)). And
the distribution of prediction length, defined by the time step when the
prediction differs from the true value by 0.25 (normalized value), is
investigated and given in Fig. 10(b), where it is seen that our method
can achieve a robust prediction.

5. Conclusion

A Runge–Kutta guided NG-RC that is able to not only predict
chaotic time series but also reveal the explicit information about the
mathematical structure behind the observable data is developed. The
method shows outstanding performance in dealing with data informa-
tion generated with noise and/or by practical experimental systems.
Both the numerical simulation and real experiment have been con-
ducted for validation. The robustness and comprehensive comparisons
are extensively studied and conducted. Overall, the work provides an
efficient platform for prediction and identification of nonlinear dy-
namical systems that are distributed widely in many applications. The
method proposed can be applied for processing dynamical information
of a single nonlinear unit or network, also sheds light for developing
data-driven methods affiliated with practical applications.
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Fig. 9. Comparison on the prediction of the dynamical evolution of three-dimensional Lorenz system in 20 MTUs (model time unit) in (a); Comparison on the chaotic attractors
generated by the ODE identified by the proposed method, SINDy and the original in short (b) and long time scale (c), respectively.
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Appendix A. The influence of threshold value on deriving the 𝑾𝒓𝒌

The threshold value during the optimization process of the feature
library can be modulated to eliminate more unused non-zero entries.
In SINDy, it also needs to set a threshold to eliminate unnecessary
entries during its iterations. The Table 3 below shows the results when
adjusting the threshold in the training process.

Appendix B. Identification of the real Chua’s chaotic circuit

The most complicated case would come from the real system so
that we conducted the practical experiment to verify the identification
capability of the proposed idea. For the experimental case of Chua’s
8

chaotic circuit, the following ODE can be inferred from the real ob-
serving data without any other information (time step, derivative. . . )
during the practical process (Time step in RK is set to 1). The weight
matrix 𝑊𝑟𝑘 is given in Table 4. The structure of ODE can be identified
as in Eq. (23):

̇ = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧

�̇� = 𝑑𝑥 + 𝑒𝑦 + 𝑓𝑧

̇ = 𝑔𝑥 + ℎ𝑦 + 𝑖𝑧 + 𝑗𝑦𝑧𝑧 + 𝑘𝑧5 (23)

Then use RK2 to calculate the above ODE to obtain the connection
between time t and t + 1, and make the coefficients of the above
terms equal to the coefficients of the corresponding terms of the weight
matrix. Next the ODE’s parameter can be obtained by solving the
equations and the final identified is derived as in Eq. (24):

̇𝑖𝐿 = −0.0312𝑖𝐿 + 0.0823𝑢1 + 0.0222𝑢2
̇𝑢1 = −0.3794𝑖𝐿 + 0.0890𝑢1 + 0.3901𝑢2

̇𝑢 = −0.0033𝑖 + 0.1125𝑢 + 0.2779𝑢 − 0.2630𝑦𝑧𝑧 − 0.2738𝑧5 (24)
2 𝐿 1 2
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Table 4
The 5-order reconstruction weights of real system. 𝜆1 = 1.6𝑒−2, 𝜆2 = 2𝑒−3, 𝑐 = 1.6𝑒−2

𝑥 𝑦 𝑧

𝑥2 0 0.11636 −0.057377
𝑥𝑦 0.00026428 0.081869 −0.077527
𝑦2 0 0.025564 −0.027815
𝑥𝑧 0 −0.14693 0.087053
𝑦𝑧 0 −0.041921 0.040019
𝑧2 0 0.076497 −0.035401
𝑥3 0.031111 0 −0.015895
𝑥2𝑦 0 −0.006533 0.079803
𝑥𝑦2 −0.059174 0.089888 0.13059
𝑦3 −0.022806 0.072207 0
𝑥2𝑧 0 −0.073173 0
𝑦2𝑧 0.037927 −0.13565 −0.028435
𝑥𝑧2 −0.0046239 −0.16166 −0.06322
𝑦𝑧2 0.025238 0.070074 −0.26411
𝑧3 −0.020364 −0.00063083 −0.11588
𝑥4 0 −0.10134 −0.0037079
𝑥3𝑦 0 −0.07449 0
𝑥𝑦3 0 0.049035 −0.042049
𝑦4 0.016015 −0.079301 0.023202
𝑥3𝑧 0 −0.032444 0.00065232
𝑥2𝑦𝑧 0 −0.040504 0
𝑥𝑦2𝑧 0 0.059149 −0.025187
𝑦3𝑧 0 0 −0.032519
𝑥𝑦𝑧2 0 −0.011295 0.061475
𝑦2𝑧2 −0.0062025 −0.080974 0.040945
𝑥𝑧3 0.012158 0.01851 0
𝑦𝑧3 0 −0.055883 0.078919
𝑧4 −0.0072263 −0.096409 0.025319
𝑥5 0 0.06031 0
𝑥4𝑦 0 0.062291 0.084628
𝑥3𝑦2 0 0.063087 0.055211
𝑥2𝑦3 0 −0.036913 0
𝑦5 0 0 0.062986
𝑥4𝑧 0 0.055879 0
𝑥3𝑦𝑧 0 0.058498 0.067083
𝑥2𝑦2𝑧 0 0.046138 0.063895
𝑥𝑦3𝑧 0 −0.060715 0
𝑦4𝑧 0 −0.045635 0
𝑥3𝑧2 0 0.047332 0
𝑥2𝑦𝑧2 0 0.042269 0.039381
𝑥𝑦2𝑧2 0 0 0.057045
𝑦3𝑧2 0 −0.083435 0.015554
𝑥𝑧4 0 0 −0.062458
𝑦𝑧4 0 0 −0.10933
𝑧5 0 0 −0.17447
𝑥 −0.026623 −0.23089 −0.031669
𝑦 0.050195 −0.036007 0.067522
𝑧 0.016682 0.19395 0.05287

It should be noted that Because the right-hand side of the standard
Chua’s circuit model contains nonlinear function 𝑖𝑑 rather than the
normal polynomials, it is reasonable as well as inevitable that the
proposed method deduces linear and cubic terms for representing the
original nonlinear function 𝑖𝑑 . That is why the inferred equation looks
differently from the original one. In the inferred equation, the term
of −0.2630𝑦𝑧𝑧 and −0.2738𝑧5 and some of linear related terms are
generated corresponding to the piecewise function 𝑖𝑑 . To prove this
point, the fitting of 𝑖𝑑 with third-order and fifth-order polynomials are
investigated, as shown in the following figure (Fig. 11).
9

Table 5
RC parameters and prediction length. (Lorenz without noise).

Spectral radius Connection degree Reservoir size Average prediction length

0.9 0.96 1600 336.2
0.9 0.96 1000 361.1
0.9 0.96 200 380.0
0.9 1.5 1600 345.3
0.9 1.5 1000 363.2
0.9 1.5 200 388.9
0.9 0.6 1600 332.0
0.9 0.6 1000 347.0
0.9 0.6 200 286.7
0.6 0.96 1600 371.2
0.6 0.96 1000 377.0
0.6 0.96 200 381.4
0.6 1.5 1600 377.2
0.6 1.5 1000 394.1
0.6 1.5 200 384.9
0.6 0.6 1600 322.2
0.6 0.6 1000 351.1
0.16 0.96 1600 394.0
0.16 0.96 1000 396.4
0.16 0.96 200 379.8
0.16 1.5 1600 391.8
0.16 1.5 1000 388.0
0.16 1.5 200 388.8
0.16 0.6 1600 353.4
0.16 0.6 1000 352.2
0.16 0.6 200 344.4

Fig. 10. Study of the impact on the prediction distribution by the initial values of
the chaotic systems. The RC hyperparameter are taken as follows: spectral radius (max
eigenvalue) of the adjacency matrix: 0.6, connection degree: 0.96, reservoir size: 1600,
input weight scaling: 0.5. (a) Attractors with different initial values. (b) Distribution
of prediction length.

Fig. 11. The polynomials fitting for the nonlinear function 𝑖𝑑 .
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Appendix C. RC’s parameters selection

The RC hyperparameters used in main text have been tested exten-
sively, and the detailed information about the selection are given below
in Table 5.
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