
Graphical Abstract
Growth of shell-like soft biological tissues under mechanical loading
Farzam Dadgar-Rad,Amirhossein N. Dorostkar,Mokarram Hossain

1.0059

1.0051

1.0043

1.0035

1.0027

1.0020

1.0012

1.0004

(a) �g
1.105

1.091

1.077

1.063

1.049

1.035

1.021

1.007

(b) �g

1.227

1.203

1.172

1.141

1.109

1.078

1.047

1.016

(c) �g
1.393

1.341

1.288

1.236

1.183

1.131

1.079

1.026

(d) �g

Figure GA: Growth of a helix under self-weight, (a): deformed shape and contour plot of the growth multiplier �g atthe end of loading (t = 1 s), (b): grown stage at t = 11 s, (c): grown stage at t = 21 s, (d): grown stage at t = 31 s
In this example, the growth mechanics of a helix under its weight is investigated. The cross-section of the helix is a
circle of radius a = 5 mm and the thickness ℎ = 1 mm. The average radius of the helix is b = 25 mm. The angle
�1 ∈ [0, 2�] describes the circumference of the cross-section. Moreover, the angle �2 ∈ [0, �2max] is used to describe
the centreline of the helix. In this work, �2max = 6� is employed, which creates a helix with three complete loops. The
equation of the referential centreline is given by Xc

1 = b cos �
2, Xc

2 = b sin �
2, and Xc

3 =
p
2� �

2. Here, p is the pitch of
the helix and is considered to be 12.5 mm. The material parameters are considered to be � = 0.0385MPa, � = 0.48,
�max
g = 2.4, 
 = 2, T = 0.1 s, and �crite = 1, and �0 = 20 kg/m3. The top cross-section of the helix, at �2 = �2max,is assumed to be fixed. In the first step, the weight of the helix is applied gradually in tl = 1 s. The growth process
under the maximum weight is then simulated in tg = 30 s. The deformed shapes of the helix at four stages, namely
at t ∈ {1, 11, 21, 31} (s) are illustrated in Figure GA (a–d). The contour plots of the growth parameter �g are also
displayed on the deformed shapes. The maximum value of �g is obtained to be 1.45.
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• A shell formulation for finite growth of thin biological tissues is developed.
• The model is based upon a seven-parameter shell model and strain-driven growth mechanics.
• A nonlinear FE formulation in the material framework for the numerical solution of the problems is developed.
• Benchmark examples demonstrating the accuracy and capability of the proposed formulation are provided.



Growth of shell-like soft biological tissues under mechanical
loading
Farzam Dadgar-Rada, Amirhossein N. Dorostkara and Mokarram Hossainb,∗
aFaculty of Mechanical Engineering, University of Guilan, Rasht, 695013, Guilan, Iran
bZienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, SA1 8EN, UK

ART ICLE INFO
Keywords:
Growth mechanics
Soft tissue
Shell
Large deformation
Finite Element Method

ABSTRACT
Application of mechanical loading to soft biological tissues plays a central role in tissue
engineering. Mechanical stimuli convert into intracellular biochemical activity, referred to
as mechanotransduction, and lead to the growth of tissues. In most practical applications,
the mechanotransduction phenomenon has been examined on thin tissues in two- or three-
dimensional space. Accordingly, a phenomenological finite growth formulation for shell-like
soft tissues under mechanical loading is presented in this work. The basic kinematic and kinetic
quantities besides the constitutive response are formulated. The unconditionally stable implicit
Euler-backward scheme is employed to solve the evolution equation of the growth parameter.
Moreover, a nonlinear finite element formulation is developed, which can provide numerical
solutions under arbitrary geometry, loading, and boundary conditions. Several examples are
presented that demonstrate the applicability and performance of the formulation. The results
indicate that finite growth as well as finite deformation of thin tissues under mechanical input
can be successfully predicted by the present formulation.

1. Introduction

Traditional engineering materials undergo infinitesimal or finite deformations under mechanical loading. However,
biomaterials can exhibit some additional behaviors including growth, remodeling, morphogenesis, change of mass,
and adaptation, besides deformation, in response to mechanical stimuli [1, 2]. Moreover, applying mechanical loading,
e.g., stretching, is a technique for improving the strength, functionality, and growth of a wide variety of organs in tissue
engineering [3–6]. Accordingly, developing reliable theoretical and numerical tools play a crucial role in predicting
the morphological patterns and behavior of these materials in various applications such as tissue engineering and
reconstructive surgeries [7–9].

A wide variety of formulations for the mathematical modeling of the growth and remodeling processes have been
developed in the literature, e.g., Refs. [2, 10–16]. A modern treatment of the growth phenomenon based on the notion
of an evolving Riemannian material manifold, constructed via a time-dependent material metric, was formulated by
Yavari [17].Moreover, formulations of growth and remodeling based on the couple stress andmicromorphic continuum
theories have been also developed by Javadi et al. [18, 19].

The continuum formulations of growth mechanics often start from the multiplicative decomposition of the
deformation gradient into the growth and elastic parts, e.g., [10, 20–25]. The growth part of the deformation gradient is
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Growth of shell-like tissues

often called the growth function or growth field. The problems dealing with the growth of soft tissues may be divided
into three categories. In the first category, the growth function is specified, or its corresponding function can be easily
integrated, and the final deformed shape of the body is to be determined, e.g., Refs. [26–31]. In the second category,
which is used for shape-programming purposes, the objective is to find an unknown growth field such that a target
stress-free current configuration can be achieved, e.g., Refs. [32–37]. In the third category, which is the subject of the
present study, both the growth field and the deformed shape are unknown (e.g., Refs. [38–47]). More precisely, a soft
tissue is subjected to specified mechanical loading and boundary conditions. Both mechanical equilibrium equation
and the evolution equation of growth must be solved by analytical or numerical methods. After solving these equations,
the growth function and the final deformed shape of the growing body are obtained. Clearly, this category of problems
plays a central role in the controllable growth of organs and the improvement of their mechanical properties in tissue
engineering (e.g., [4, 6]).

On the other hand, thin growing organs such as skin, leaves, and wings of insects are widely observed in nature.
Accordingly, there have been published several research papers that model these organs as plates [33–35, 48–51], and
shells [27, 36, 52, 54, 57]. In particular, the formulation proposed by Rausch and Kuhl [52] is based on adding the
growth effects to the Kirchhoff–Love shell model in the commercial software ABAQUS. It is noted that for a standard
FE formulation of Kirchhoff–Love shell model,C1-continuous interpolation functions are needed. However, ABAQUS
employsC0 shape functions through a mixed displacement-rotation discretization [53]. Themodel developed by Zheng
et al. [54] for the growth analysis of thin soft tissues is based on solid-shell element. It is noted that in this type of shell
element, the nodal degrees of freedom are defined on the top and bottom surfaces of a hexagonal element. Accordingly,
the main strategy is similar to 3D solid elements. Only the displacement field of shell-type structures is enforced on
the geometry of the hexagonal element. Moreover, the number of unknown nodal variables is more than classical shell
elements that define the nodal unknowns on the midsurafce of the shell.

It is noted that modern geometric and numerical techniques, e.g., isogeometric analysis [55], have been used to
model the deformation of biological tissues. In particular, Dortdivanlioglu et al. [24] simulated the morphological
instabilities of a thin growing film on a compliant substrate using isogeometric analysis. In another study, Tepole
et al. [56] developed an isogeometric-based finite element formulation for the numerical simulation of biological
membranes based on the Kirchhoff–Love shell model. It is noted that the growth effect has not been included in their
formulation. From a completely different point of view, the formulation elaborated by Sadik et al. [57] is the extension
of the geometric theory of growth developed previously in [17] to thin organs. To the authors’ knowledge, numerical
computations based on the mentioned geometric formulation have not been yet presented in the literature.

From the review of the literature, it is found that a few research works have been conducted on developing general
and computationally robust formulations for the growth analysis of shell-like soft tissues. Accordingly, the purpose of
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this work is to develop a novel formulation by combining the original 7-parameter shell model proposed by Sansour
(e.g., [58, 59]) with the strain-driven growth mechanics (e.g., [39–44]). From the computational point of view, the
corresponding finite element formulation of the developed shell model is also presented. Compared with the previously
notable developed formulations (e.g., [52, 54]), the main features of the present contribution are as follows:

• Rather than using Kirchhoff–Love shell model [52], or solid-shell element with nodal variables at the corners
of a hexahedral [54], a new formulation based on Sansour’s 7-parameter shell model [58, 59] is elaborated. The
present formulation falls in the category of geometrically exact Mindlin–Reissner shell models in computational
mechanics terminology. The nodal degrees of freedom are defined on themidsurface of the shell and the resulting
formulation is C0-continuous. It is noted that in contrast to higher-order elements, C0 elements lead to smaller
bandwidth of the global stiffness matrix.

• One of the main advantages of the present shell model is that three-dimensional constitutive equations can be
directly employed in the calculation of stress and element stiffness matrix. This circumvents modifying the
constitutive equations to satisfy the plane stress assumption in traditional shell formulations. It is noted that
satisfaction of the plane stress assumption is not easy for arbitrary constitutive equations.

• The enhanced assumed strain (EAS) method [60–63] is employed to alleviate the well-known locking phe-
nomenon in numerical computations.

In the rest of this research, the kinematics of the shell model is presented in Section 2. The basics of the mechanical
growth theory, evolution equation, and its solution procedure are provided in Section 3. Section 4 deals with the
variational formulation of the problem, where an EAS formulation based on the Hu–Washizu principle and including
the growth effects is constructed. A Total Lagrangian FE formulation is developed in Section 5. Section 6 demonstrates
the effectiveness of the proposed formulation through several examples. Finally, a summary of the work is given in
Section 7.

Notation: Throughout, Greek indices (subscripts or superscripts) range over {1, 2}, Latin indices have the range
{1, 2, 3}, and the usual summation convection is applied. Upper-case indices with calligraphic font, e.g., , take the
values specified in the corresponding equations. For the two arbitrary 2nd-order tensors X and Y, three different 4th-
order tensors (X⊗Y)ijkl = XijYkl, (X⊠Y)ijkl = XilYkj , (X⊠̄Y)ijkl = XilYjk, and (X⊙Y)ijkl = XikYjl are defined
in this work.

2. Kinematics of the shell model
The geometry of a deforming shell in the reference and current configurations is illustrated in Fig. 1. The reference

and current midsurfaces are denoted by 0 and  , respectively. To quantize the kinematic tensors of the shell, a
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0



Figure 1: Geometry of a growing shell in the reference (a) and current (b) configurations (the vectors in the set
{R,A1,A2, r,a1,a2} belong the undeformed and deformed midsurfaces with Z = 0. The other quantities, namely
{X,G1,G2,G3,x,g1,g2,g3} are defined at the elevation Z ≠ 0 with respect to the midsurfaces)

reference Cartesian coordinate with the basis vectors {e1, e2, e3} at an arbitrary origin is constructed. Additionally, the
convective coordinate system {�1, �2, �3} at each material point of 0 is considered, so that �� and �3 are, respectively,
tangent and perpendicular to it. For simplicity, the notation Z is used instead of �3 in the rest of this paper.

As usual in the shell formulations, the position vector of the material points in the reference configuration is given
by

X(�1, �2, z) = R(�1, �2) +ZD(�1, �2), (1)

whereD and R are the outward unit normal and the position vector on the reference midsurface, respectively. In this
work, the 7-parameter shell model proposed by Sansour (e.g., [58, 59]) is extended to include the growth effects. The
midsurface displacement u takesR to the new position r on the deformed midsurface, namely r = R+ u. Moreover,
the director displacement w takes D to the current director v via the relation a3 = D + w. Additionally, the scalar
field  is introduced as a measure of the through the thickness stretching. Accordingly, the position of the material
particles in the current configuration obeys the following relation [58, 59]:

x = �(X, t) = r(�1, �2, t) + [Z +Z2 (�1, �2, t)]a3(�1, �2, t), (2)
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where � is the deformation mapping and t ≥ 0 is the time. From Eqs. (1) and (2), the reference covariant basis vectors
Gi =

)X
)� i , and the current ones gi = )x

)� i , are calculated to be

G� = A� +ZD,� , G3 = A3 = D

g� = a� +Za3,� +Z2( a3),� , g3 = (1 + 2Z )a3

⎫

⎪

⎬

⎪

⎭

, (3)

where {∙},� denotes )
)�� {∙}. Additionally,A� = R,� and a� = r,� = A� + u,� are the covariant basis vectors tangent

to 0 and  , respectively. Furthermore, the relation a3 = g3|Z=0 holds. The covariant components of the reference
metric tensor at Z ∈ [−ℎ∕2, ℎ∕2] are calculated via the relation Gij = Gi ⋅Gj , and the contravariant components of
the reference metric follow the property GikGkj = �ij . Additionally, the reference contravariant basis vectors are given
byGi = GijGj . At the reference midsurface, withZ = 0, the quantities in the set {Gij , Gij ,Gi,Gi} are, respectively,
replaced by {Aij , Aij ,Ai,Ai}. Furthermore, similar relations hold in the current configuration. It is noted that the
relationD,� = −KA,� holds (e.g., Ref. [64]), where K is the curvature tensor on 0. With the aid of Eqs. (2) and (3)
the deformation gradient is approximated as follows:

F = gi ⊗Gi ≈ F[0] +ZF[1] with F[0] = ai ⊗Gi, F[1] = a3,� ⊗G� + 2 a3 ⊗D. (4)

Moreover, the term involving Z2 in g� has been neglected. From Eq. (4) the compatible right Cauchy–Green
deformation tensor C may be written as

C = F⊤F ≈ C[0] +ZC[1], (5)

whereC[0] = F[0]⊤F[0] = C [0]ij G
i⊗Gj andC[1] = F[0]⊤F[1]+F[1]⊤F[0] = C [1]ij G

i⊗Gj are two symmetric second-order
tensors. Based on Eqs. (4) and (5), the components of C[] ( = 0, 1) may be written as

C [0]ij = ai ⋅ aj , C [1]�� = a� ⋅ a3,� + a� ⋅ a3,�

C [1]�3 = a3 ⋅ (a3,� + 2 a�), C [1]33 = 4 a3 ⋅ a3

⎫

⎪

⎬

⎪

⎭

. (6)

3. Mechanical growth and evolution equation
In this section, the kinematics and evolution equation of finite growth are presented. For more details, Refs. [1, 10–

12] are suggested. To describe the kinematics of growth, the deformation gradient F is decomposed multiplicatively
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as (e.g., [10, 12, 21])

F = FeFg, Je = det Fe, Jg = det Fg, J = det F = JeJg, (7)

where Fg and Fe are, respectively, the growth and elastic parts of the deformation gradient tensor. Clearly, the local
growth deformation gradient Fg maps the infinitesimal material line elements from the reference configuration 0 to
the intermediate configuration ̄. The growth and elastic form of the right Cauchy–Green deformation tensor is defined
by

Ce = F⊤eFe = F−⊤g CF−1g , Cg = F⊤gFg. (8)

Obviously, Ce is the push-forward of C to the intermediate configuration by Fg. It is easy to prove that for any general
invertible second-order tensor T the following relations hold:

)T−1
)T

= −T−1 ⊙ T−1, )T−⊤
)T

= −T−⊤⊠ T−⊤. (9)

From Eqs. (8) and (9) it follows that the partial derivatives of Ce with respect to C and Fg are given by

)Ce
)C

|

|

|

|Fg
= 1
2
(F−⊤g ⊙ F−1g + F−⊤g ⊠ F−1g )

)Ce
)Fg

|

|

|

|F
= −(F−⊤g ⊠ Ce + Ce ⊙ F−1g )

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (10)

which will be used in the next developments.
Depending on the nature of growth in a living body, it is possible to consider different forms for the growth

deformation gradient Fg. For example, for the case of isotropic growth in all directions, the relation Fg = �1∕3g I is
considered, where the parameter �g is referred to as the growth multiplier. For the present shell model, it is assumed
that growth does not occur in the thickness direction. In other words, it is assumed that the growth phenomenon takes
place isotropically in the plane perpendicular to the normal vector D, and is referred to as the transversely isotropic
growth. The basic idea is that the change in the growth of an organ remains almost constant under the action of the
growth part of the deformation gradient Fg. However, it is important to notice that the organ thickness changes under
the action of the elastic part of the deformation gradient Fe. This assumption has been frequently used in the literature
in the growth modeling of thin tissues such as skin (e.g., [39–44, 52]). Accordingly, the expression for Fg may be
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Fg
Fe

Figure 2: Deformation of an infinitesimal growing shell element under the action of the multiplicative decomposition
F = FeFg (with Fg = k(I−D⊗D) +D⊗D and k =

√

�g): reference (a), intermediate (b), and current (c) configurations.

written as (e.g., Refs. [39, 52])

Fg =
√

�g(I −D⊗D) +D⊗D. (11)

The geometry of deformation under the multiplicative decomposition F = FeFg is illustrated in Fig. 2. An infinitesimal
volume element of dimensions dL1 × dL2 × dZ at the point P and the elevation Z with respect to the referential
midsurface 0 is depicted in Fig. 2(a). In the growth stage, under the action of Fg as expressed in Eq. (11), the
dimensions of the element in the intermediate configuration will be (kdL1) × (kdL2) × dZ, with k =

√

�g. In
other words, as can be seen in Fig. 2(b), the thickness of the element remains unchanged under the action of Fg.
This indicates that the effect of Fg manifests itself as the area change from d0 = dL1dL2 to d̃ = (kdL1)(kdL2) =

k2dA0 = �gdA0. In particular, one may write Fg = g̃i ⊗Gi, where g̃i are the covariant basis vectors at intermediate
configuration. From this point and Eq. (11) it follows that

g̃� =
√

�gG� , g̃3 = G3 = D̃ = FgD = D, Jg = �g, F−⊤g D = D. (12)

The elastic deformation stage is displayed in Fig. 2(c), where thickness change, further in-plane stretch, and bending
type motion are applied to the element under the action of Fe.

Now let the pairs (d0,D), (d̃, D̃), and (d,n) be the infinitesimal area elements and the corresponding outward
unit normal vectors in the reference, intermediate, and current configurations, respectively. The well-known Nanson’s
formula between the pairs (0,D) and (,n) is given by dn = JF−⊤d0D (e.g., Ref. [65]). Similar relations hold
between the different introduced pairs. In particular, employing Nanson’s formula for the pairs (d0,D) and (d̃, D̃),
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and using Eqs. (11) and (12), it follows that

d̃
d0

= Jg|F−⊤g D| = �g, (13)

indicating that the function �g measures the area stretch of an infinitesimal area element perpendicular to the normal
vector D due to the growth of the body. Moreover, using Eq. (13) and employing Nanson’s formula, the elastic and
total area stretches, denoted respectively by � and �e, may be written as

�e =
d
d̃ = Je|F−⊤e D̃| = Je

√

C−1e : (D̃⊗ D̃)

� = d
d0

=
(d
d̃

)( d̃
d0

)

= �e�g = J |F−⊤D| = J
√

C−1 : (D⊗D)

⎫

⎪

⎬

⎪

⎭

. (14)

The relation � = �e�g indicates that the area stretch � is multiplicatively decomposed into the elastic and growth parts.
The growth multiplier �g is the internal variable of the present formulation and can be determined by solving

an evolution equation. It is noted that two types of formulations, namely strain-driven and stress-driven have been
developed in the literature. The term strain-driven indicates that the evolution equation for � depends upon the
deformation gradient tensor (e.g., Ref. [39]). In contrast, in stress-driven growth formulations, the evolution equation
depends on the stress tensor (e.g., Ref. [13]). In this work, the basic strain-driven growth formulation proposed in
Ref. [39] is reformulated for the case of shell-like soft tissues. Accordingly, the evolution equation for � is written as

�̇g = �̂(Fg,F) = �(�g, �) = Φ1(�g)Φ2(�e) = Φ1(�g)Φ2
(

�
�g

)

, (15)

where the scalar functions Φ1 and Φ2 are considered to be

Φ1 =
1
T

(�max
g − �g
�max
g − 1

)

, Φ2 = max{0, �e − �crite } = max{0, �

�g
− �crite }. (16)

Here, T is referred to as the adaptation speed, 
 is the growth exponent that affects the shape of the adaptation curve,
and �max

g is the maximum achievable value of the growth multiplier �g. Moreover, �crite is the minimum required value
of �e to activate the growth process in the tissue.

4. Variational formulation
In this section, the variational formulation of the problem by employing the enhanced assumed strain (EAS)method

is developed. Following Refs. [13, 39, 43, 44], it is assumed that the elastic strain energy density is a function of the
elastic right Cauchy–Green deformation tensor Ce. More precisely, the function Ψ = Ψ(Ce) is considered to be the
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elastic strain energy density per unit reference volume of the growing continuum body. In the next step, from Eq. (5)
and motivated by the formulation of Sansour [58], the compatible Cauchy–Green deformation tensor C is enhanced in
the following form:

C⋆ = C + C̃, (17)

where C̃ is referred to as the enhancement tensor. From Eqs. (8) and (17), the enhanced elastic Cauchy–Green
deformation tensor, denoted by C⋆e , is defined as

C⋆e = F−⊤g C⋆F−1g = Ce + C̃e with C̃e = F−⊤g C̃F−1g . (18)

The tensor C̃e may be regarded as the elastic enhancement tensor. The EAS method employs the three-field Hu–
Washizu principle to obtain the weak form of the problem. In this work, independent variables are chosen to be the
deformation field �, the enhancement tensor C̃, and the second Piola–Kirchhoff stress tensor S. It is noted that the
compatible right Cauchy–Green tensor C depends on � and is not an independent quantity. Accordingly, for a growing
body, the following functional is introduced:

Π(�, C̃,S) = ∫0

(

Ψ(C⋆e ) −
1
2
S : C̃

)

d0 −ext. (19)

It is worthwhile to note that the enhanced elastic Cauchy–Green tensor C⋆e is employed in the free energy density Ψ.
Moreover,ext as the work of external loads, given by

ext = ∫0
b0 ⋅ ûd0 + ∫)0

t0 ⋅ ûd()0), (20)

where b0 and t0 are the referential body force density and surface traction, respectively. Additionally, û = x −X is
the displacement field that can be calculated from Eqs. (1) and (2) in the present formulation. Furthermore, )0 is the
boundary surface of the undeformed shell. The functional Π is stationary if its first variation is zero, namely

�Π = 1
2 ∫0

[

2
()Ψ(C⋆e )

)C⋆e
: )C

⋆
e

)C⋆

)

:�(C + C̃) − C̃ :�S − S :�C̃
]

d0 − �ext = 0, (21)
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from which the following set of equations is obtained:

∫0

()Ψ(C⋆e )
)C⋆e

: )C
⋆
e

)C⋆

)

:�Cd0 − �ext = 0

1
2 ∫0

(

S − 2
)Ψ(C⋆e )
)C⋆e

: )C
⋆
e

)C⋆

)

:�C̃d0 = 0, 1
2 ∫0

C̃ :�Sd0 = 0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (22)

The strong form of Eq. (22)3 leads to the relation C̃ = 0, which yields C⋆ = C and C⋆e = Ce. From this result and the
strong form of Eq. (22)2, the constitutive equation for the second Piola–Kirchhoff stress S is obtained as follows:

S = 2
)Ψ(Ce)
)Ce

: )Ce
)C

= F−1g SeF−⊤g with Se = 2
)Ψ(Ce)
)Ce

, (23)

and use has been made of Eq. (10)1. Obviously, Se is the push-forward of the material tensor S to the intermediate
configuration.

As usual in the EAS-based finite element formulations, the stress S is assumed to be orthogonal to C̃ over an
element, giving ∫0 C̃ :Sd0 = 0. Accordingly, the first part of Eq. (22)2 vanishes and Eq. (22)3 will be identically
satisfied. Thus, the following system of equations is obtained:

� int − �W ext = 0, �H = 0, (24)

where the expressions for � int and �H are given by

�H = 1
2 ∫0

S :�C̃d0, � int = 1
2 ∫0

S :�Cd0. (25)

The volume element d0, located at the elevation Z with respect to the reference midsurface is given by d0 =
Y d0dZ, where Y = det(I − ZK) and d0 =

√

Ad�1d�2 [58]. Here, d0 is an area element on 0, and
A = A11A22 − A212 is the determinant of the covariant surface metric tensor on 0. By substituting Eq. (5) into
(25)3 one obtains the following expression for the virtual internal energy � int:

� int = 1
2 ∫0

(

N :�C[0] +M :�C[1])d0 with {N,M} = ∫

ℎ∕2

−ℎ∕2
{1, Z}Y SdZ. (26)

Similarly, from Eqs. (17)2 and (26)2, the orthogonality condition may be rewritten as

�H = 1
2 ∫0

N :�C̃d0 = 0. (27)
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By back substituting Eq. (26) into (25)1, the enhanced form of virtual work principle is obtained. The second equation
is also given in (27). These two equations will be solved by the nonlinear finite element method in the next section. For
linearisation purpose, the increment of the virtual internal energy and that of the orthogonality condition are calculated
as follows:

Δ� int = 1
2 ∫0

(

ΔN :�C[0] + N :Δ�C[0] + ΔM :�C[1] +M :Δ�C[1])d0

Δ�H = 1
2 ∫0

(ΔN :�C̃ + N :Δ�C̃)d0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (28)

where ΔN and ΔM are given by

{ΔN,ΔM} = 1
2
{

[0] : (ΔC[0] + ΔC̃) + [1] :ΔC[1], [1] : (ΔC[0] + ΔC̃) + [2] :ΔC[1]}. (29)

Here, the fourth-order tensors [] ( = 0, 1, 2) are defined as follows:

[] = ∫

ℎ∕2

−ℎ∕2
Y ZdZ, (30)

where the expression for the fourth-order tensor  is provided in the Appendix.

5. Finite element formulation
In this section, finite element formulation of the present shell model with growing mass is developed. The shell

geometry in the reference configuration is discretized intoNEL elements, namely0 = ∪NEL
=1 


0 . Let the shell element


0 be the midsurface of 

0 . The geometry and field quantities over 
0 are interpolated via

{R,u,w,  } =
NND
∑

=1
P(�1, �2){R ,u ,w ,  }, (31)

where P is th interpolation function and NND is the number of nodes in 
0 . The symbol R denotes the position

vector of the th node. Similar definitions hold for u , w , and   . Moreover, �U = {�u⊤ , �w
⊤
 , � }⊤ and

ΔU = {Δu⊤ ,Δw
⊤
 ,Δ }⊤ are, respectively, the virtual and incremental generalized displacement vectors at the

th node of the element.
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In the next step, the deformation measuresC[ ] ( = 0, 1) defined in Eqs. (5) and (6) are written in vectorial form,
namely C[ ] = {C [ ]11 , C

[ ]
22 , C

[ ]
33 , 2C

[ ]
23 , 2C

[ ]
13 , 2C

[ ]
12 }

⊤. The variation and increment of C[ ] may be written as

{�C[ ],ΔC[ ]} = 2
NND
∑

=1
B
[ ]
 {�U ,ΔU}, (32)

where the matrices B[ ] ( = 0, 1) are as follows:

B
[0]
 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P,1a⊤1 01×3 0

P,2a⊤2 01×3 0

01×3 Pa⊤3 0

P,2a⊤3 Pa⊤2 0

P,1a⊤3 Pa⊤1 0

p⊤ 01×3 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B[1] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P,1a⊤3,1 P,1a⊤1 0

P,2a⊤3,2 P,2a⊤2 0

01×3 4 Pa⊤3 2Pa⊤3a3

2 P,2a⊤3 q⊤2 2Pa⊤3a2

2 P,1a⊤3 q⊤1 2Pa⊤3a1

P,2a⊤3,1 + P,1a
⊤
3,2 p⊤ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (33)

Here, the vectors p and q� (� = 1, 2) are given by

p = P,2a1 + P,1a2, q� = 2 Pa� + (Pa3),� . (34)

Motivated by Eqs. (5) and (6), the enhancement tensor is written as C̃ = C̃ijGi ⊗ Gj . The vectorial form of C̃ is
denoted here by C̃ and its structure is similar to C[ ] ( = 0, 1) as introduced above. In the present formulation, it is
assumed that C̃, �C̃, and ΔC̃ are given by

{C̃, �C̃,ΔC̃} = 2B̃{c , �c ,Δc} with B̃ =
J̃0
J̃
B̄(�1, �2), (35)

where J̃ is the Jacobian of the mapping from the parent element in the nondimensional �1�2 space (with �1, �2 ∈
[−1, 1]) to the shell element 

0 in the physical space. Additionally, J̃0 is the value of J̃ evaluated at the element center
with �1 = �2 = 0. Furthermore, B̄ is an interpolation matrix, and c is the vector of enhanced parameters. In this
work, the basic shell element employed in the simulations has four nodes. For this element, following Sansour [58], a
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14-parameter enhanced formulation is considered. Accordingly, the 6 × 14 matrix B̃ is given by

B̄ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�1 �1�2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 �2 �1�2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 �1 �2 �1�2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 �2 �1�2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 �1 �1�2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 �1 �2 �1�2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (36)

The enhanced form of virtual work principle expressed in Eq. (25)1 and the orthogonality condition (27) over the
element 

0 are now written in the following discretized forms:

�ext − � int =
NND
∑

=1
�U⊤

(f
ext
 − f int ) = 0, �H = �c⊤h = 0, (37)

where fext is the nodal generalized external force vector, which can be easily determined based upon the type of loading
applied to the shell. Moreover, the nodal internal force vector f int , and the orthogonality vector h of the element are as
follows:

f int = ∫
0

(

B
[0]⊤
 N +B[1]⊤ M

)d0, h = ∫
0

B̃⊤N d0 = 0, (38)

whereN andM are the vectorial representations of N andM, respectively. Since the virtual generalized displacement
vector �U and the vector of virtual enhanced parameters �c are arbitrary, from Eqs. (37) the system of nonlinear
algebraic equations fext − f int = 0 ( = 1, 2, ..., NND) and h = 0 over the shell element 

0 ( = 1, 2, ..., NEL)
are obtained. To solve the equations via Newton–Raphson method, from Eqs. (28), (29), (34) and (35), the following
linearized form of equations are obtained:

NND
∑

=1
�U⊤



(NND
∑

=1
Kuu

ΔUJ +Kuc
 Δc

)

=
NND
∑

=1
�U⊤

(f
ext
 − f int )

�c⊤
(NND

∑

=1
Kcu

 ΔU +KccΔc
)

= −�c⊤h

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (39)

where the matricesKuc
 ,Kcu

 andKcc are given by

Kuc
 = (Kcu

 )
⊤ = ∫

0

(

B
[0]⊤
 L[0] +B[1]⊤ L[1]

)

B̃d0, Kcc = ∫
0

B̃⊤L[0]B̃d0. (40)
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Moreover, the matrix Kuu
 can be decomposed into the material and geometric parts, namely Kuu

 = K
uu(mat)
 +

K
uu(geo)
 . The expression forKuu(mat)

 may be written as

K
uu(mat)
 = ∫

0

(

B
[0]⊤
 L[0]B[0]J +B[0]⊤ L[1]B[1]J +B[1]⊤ L[1]B[0]J +B[1]⊤ L[2]B[1]J

)d0. (41)

It is noted that in Eqs. (40) and (41), the quantities denoted by L[] ( = 0, 1, 2) are the 6 × 6 matrix forms of [].
The geometric contribution may be also decomposed asKuu(geo)

 = Kuu(gN)
 +Kuu(gM)

 , with

K
uu(gN)
 = ∫

0

⎡

⎢

⎢

⎢

⎢

⎣

b1i b2i 03×1

b3i b4i 03×1

01×3 01×3 0

⎤

⎥

⎥

⎥

⎥

⎦

d0, (42)

K
uu(gM)
 = ∫

0

⎡

⎢

⎢

⎢

⎢

⎣

03×3 (k1 + 2 k2)i 2k2a3

(k1 + 2 k3)i k4i 2PP z

2k3a⊤3 2PP z⊤ 0

⎤

⎥

⎥

⎥

⎥

⎦

d0, (43)

where i is the 3 × 3 identity matrix. Moreover, the quantities denoted by b and k ( = 1, 2, ..., 4), and the vector z
are as follows:

{b1, k1} = Q⊤
{N

[p],M[p]}Q , {b2, k2} = Q⊤
{N

[s],M[s]}P

{b3, k3} = Q⊤
 {N

[s],M[s]}P , b4 = PPDND

k4 = k2 + k3 + 4 PPDMD, z = a�(M[s])� + 2a3DMD

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (44)

Here, Q = {P,1, P,2}⊤ is a 2 × 1 vector that involves the partial derivatives of the interpolation function P .
Additionally, N[p] and M[p] are the 2 × 2 matrices that contain the planar components of N and M, respectively.
Furthermore,N[s] andM[s] are, respectively, the 2×1 vectors that contain the out-of plane shear components ofN and
M. It is also noted that (M[s])� is the �’th component ofM[s]. From Eq. (39), the following system of linear equations
is obtained:

⎡

⎢

⎢

⎣

Kuu Kuc

Kuc⊤ Kcc

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

ΔU

Δc

⎫

⎪

⎬

⎪

⎭

=

⎧

⎪

⎨

⎪

⎩

fext − f int

−h

⎫

⎪

⎬

⎪

⎭

, (45)
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whereKuu is a matrix whose  th block isKuu
 . Similarly, the th block ofKuc, f int and fext areKuc

 , f int and fext ,
respectively. Next, the incremental vector of enhanced parameters, Δc, is eliminated at the element level, from which
the linear matrix equationKΔU = −F, withK = Kuu−KucKcc−1Kuc⊤ andF = f int−fext−KucKcc−1h is obtained.
Finally, the assembled system of equations may be written asANEL

=1KΔU = −ANEL
=1 F, whereANEL

=1 is the assembly
operator.

Next, from Eq. (23), it observed that the growth part of deformation gradient Fg, and hence the growth parameter
�g is needed to calculate the stress tensor S. The stress tensor is used to calculate the force resultant N, the moment
resultant N, and even the fourth-order tensor . In particular, the internal force f int and the element stiffness matrixK
will be dependent upon the growth parameter �g. Accordingly, it is important to calculate �g at all Gauss points of all
elements by solving the evolution equation (15). A wide variety of methods including the unconditionally stable Euler
backward differentiation scheme may be employed for this purpose. Accordingly, at each Gauss point, let �n+1g and �ng
be the values of �g at the times tn+1 and tn, respectively. Presuming �e > �crite , or equivalently Φ2 > 0, the expression
for �̇g in Eq. (15) at the time tn+1 is approximated as follows:

�̇n+1g =
�n+1g − �ng

Δt
= �(�n+1g , �n+1), (46)

where Δt = tn+1 − tn is the time increment. To solve Eq. (46) for �n+1g by Newton method, it is rewritten as

Rn+1 = �n+1g − �ng − Δt�(�
n+1
g , �n+1) = 0, (47)

from which the new value of �n+1g is obtained via the following relation:

�n+1g(new) = �
n+1
g(old) −

Rn+1(old)
K

with K =
(

)R
)�g

)n+1

(old)
= 1 − Δt

(

)�
)�g

)n+1

(old)
. (48)

Here, the indices "old" and "new" refer to Newton iterations at the time tn+1. Moreover, from Eqs. (15) and (16), the
expression for )�

)�g
is given by

)�
)�g

=
)Φ1
)�g

Φ2 + Φ1
)Φ2
)�g

= −
(


Φ2
�max
g − �g

+ �
�2g

)

Φ1. (49)

The iteration procedure terminates if |�n+1g(new) − �
n+1
g(old)| < �, where � is a sufficiently small number.
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6. Numerical examples
To investigate the applicability of the proposed formulation, several numerical examples are presented in this

section. An in-house FE code based on the developed formulation has been prepared. The integrals over the element
surface are evaluated by the 2×2Gauss–Legendre integration rule. Additionally, to integrate along the shell thickness,
namely, in the Z-direction, three Gauss points are considered.

6.1. Growth of a pinched thin-walled cylinder

In this example, the growth of a hollow cylinder made of soft materials under mechanical loading is investigated.
The referential average radius, thickness, and length of the cylinder are {R, ℎ, L} = {9, 0.2, 30} cm, respectively.
Following Ref. [66], the strain energy density of the form Ψ(Ce) =

1
2 [�(trCe − 3 − 2 ln Je) + � ln

2 Je] is considered.
Here, � and � are Lamé constants, and the relation � = 2��∕(1 − 2�), with � as Poisson’s ratio, holds. In Ref. [66],
the values of � = 6 × 104 MPa and � = 0.4 have been employed. However, to model soft tissues, the shear modulus
has been reduced to � = 2MPa in Rausch and Kuhl [52].

Due to symmetry, the part shown by the points {A,B, C,D} in Fig. 3(a) as one-eights of the cylinder is discretized
by the shell elements. In the loading stage, the line AD is moved gradually 87 mm in −X3 direction during tl = 1 s.
The line AD is held fixed for tl = 30 s to observe the growth phenomenon in the cylinder. After that, the external load
is completely removed in tu = 1 s.

Numerical simulations show that a mesh of 12 × 12 elements leads to convergent results. However, a mesh of
16 × 16 elements is used to obtain smoother deformed shapes. The nondimensional displacement components at the
material points A andH versus the nondimensional time t∕tmax are displayed in Fig. 3(a). It is noted that the material
point H lies exactly between A and B. The vertical displacement of the point A at the end of the unloading stage is
33.1 mm. Next, the deformed shapes of the cylinder at four stages, namely at t ∈ {1, 16, 31, 32} (s) are demonstrated
in Fig. 3(b–e). The contour plots of the growth parameter �g are also displayed on the deformed shapes. Comparison of
Figs. 3(b) and 3(d) shows that the contour plot of �g at the end of the growth stage obtained by the present formulation
is in good agreement with that reported by Rausch and Kuhl [52]. The minor difference between the present work and
that of Ref. [52] comes from the fact that the assumption of F13 = F31 = F23 = F32 = 0, for the components of the
deformation gradient tensor, has been made in that reference (please see Remark 1 in [52]). However, from Eq. (4) it
is obvious that all components of the deformation gradient are nonzero in the present formulation.

6.2. Growth of a square sheet with a circular hole

In this example, uniaxial stretching and the growth of a square sheet containing a circular hole are investigated.
Following Ref. [67], the length and thickness of the square and the radius of the hole are L = 20′′, ℎ = 0.1′′, and
R = 3′′, respectively. Moreover, it is assumed that the strain energy density obeys the compressible Mooney–Rivlin
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�g

1.010 1.020 1.030 1.040 1.050

(c)

�g

1.010 1.020 1.030 1.040 1.050

(d)

�g

1.010 1.020 1.030 1.040 1.050

(e)

�g

Figure 3: Growth of the pinched cylinder: history of displacement at the points A and H (a), deformed shape and the
contour plot of �g at the end of growth stage taken from Rausch and Kuhl [52](b), end of loading stage (c), grown stage
(d), unloaded stage (e).

material model of the form

Ψ(Ce) = c1(Ie1 − 3) + c2(I
e
2 − 3) − (� + 2c2) ln Je +

1
2 (� − 4c2) ln

2 Je.

Here, Ie1 and Ie2 are the first two invariants of Ce. The material constants of the model are c1 = 25 (psi), c2 = 7 (psi),
and � = 0.48. It is noted that the shear modulus is given by the relation � = 2(c1+ c2) = 64 psi = 0.44MPa. As usual,
the relation � = 2��∕(1 − 2�) can be used to calculate the second Lamé constant. To model the growth effects in the
sheet, following Ref. [39], the growth parameters are considered to be �max

g = 2.4, 
 = 2, T = 1, and �crite = 1.01.
As shown in Fig. 4(a), the pure elastic axial stretch � = 2 is applied in the X2-direction for tl = 1 s. The top edge

is then held fixed for tg = 20 s to observe the growth in the sheet. Finally, the unloading is performed during tu = 1 s.
Accordingly, the entire time of simulation is tmax = 22 s. Due to symmetry, only one-quarter of the sheet is discretized
by the shell elements. It is noted that to achieve the initial elastic stretch � = 2, the vertical deflection Vmax = 10′′
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(f) t = 22 s, F = 0
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Figure 4: Deformed shapes of the sheet with the contour plots of the growth multiplier �g at different times.

has to be applied on the top edge of the model. Convergence analysis reveals that a mesh of 8 × 8 elements, as the
number of elements, respectively, in the radial and circumferential directions of the circular hole, is sufficient to obtain
mesh-independent results. However, a mesh of 20 × 20 elements is used to obtain smoother deformed shapes.

The deformed shapes of the sheet for t ∈ {1, 6, 11, 16, 21, 22} s are displayed in Fig. 4. The deformed shape at the
end of elastic loading is demonstrated in Fig. 4(a), where the growth multiplier is still �g = 1 on the entire geometry.
For 1 < t ≤ 21 s, the growth multiplier �g increases in the sheet. For 21 ≤ t ≤ 22 s, the load on the top edge is
gradually decreased to zero. The final grown geometry, corresponding to t = 22 s, is displayed in Fig. 4(f).

The time evolution of the growth parameter �g, for the material points {A,B, C,D,M,N}, and the area ratioA∕A0
are displayed in Fig. 5(a). Moreover, the time history of the non-dimensional von Mises stress �̄∕� , for the material
points {A,B, C,D,M,N}, and the resultant vertical forceF on the top edge of the one-quarter model are demonstrated
in Fig. 5(b). Thementionedmaterial points are shown in Fig. 4(a). It is noted that the curve corresponding to the applied
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Figure 5: (a) Time evolution of A∕A0 and �g (at some material points), (b): time history of the applied force F and the
non-dimensional von Mises stress �̄∕� (at some material points).

force F is coincident with that obtained by Ref. [67] for t ∈ [0, 1]. Additionally, the applied force F reduces during
the growth processes. The same holds about the von Mises stress �̄, which indicates the stress relaxation behavior of
the sheet in the growth stage. The point C , with the initial coordinates (0, R), does not experience any growth during
the entire process. Furthermore, the von Mises stress attains its minimum values at this point. On the other hand, the
maximum growth parameter �g and the maximum von Mises stress are both observed at the material point D with the
initial coordinates (R, 0). The maximum value of the area stretch is Amax∕A0 = 2.1809, which occurs at t = 21 s.
After the unloading process, the final value of the area stretch is obtained to be Af∕A0 = 1.9155.

6.3. Growth of a soft tissue as an annular plate

In this example, the growth of a soft tissue whose geometry is an annular plate is simulated. Following Ref. [67],
the inner and outer radii of the undeformed plate are a = 0.5′′ and b = 5′′, respectively. The initial thickness is also
considered to be ℎ = 0.0625′′. Moreover, similar to example 6.2, it is assumed that the material obeys the compressible
Mooney–Rivlin model. However, the constants of the model are � = 0.48, c1 = 18.35 (psi), and c2 = 1.468 (psi).
Accordingly, the shear modulus is calculated to be � = 0.27 MPa. Following Ref. [43], the growth parameters are
considered to be �max

g = 4, 
 = 2, T = 1
12 s, and �crite = 1.21. The radial displacement is applied from uoutr = 0 to the

maximum value (uoutr )max = 6′′ is applied gradually on the outer radius of the sheet in tl = 1 s. The maximum radial
displacement is then held constant for tg = 16 s to observe the growth in the sheet. In the last stage, the unloading
procedure is performed during tu = 1 s. It then follows that the maximum time of simulation is tmax = 18 s.
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Due to symmetry, only one-quarter of the annular plate is discretized by the shell elements. Numerical experiments
reveal that a mesh of 6 × 6 elements, in radial and circumferential directions, is sufficient to achieve converged results.
However, a mesh of 10 × 10 shell elements is used to obtain smoother deformed shapes. The deformed shapes of
the full model for t ∈ {1, 5, 9, 13, 17, 18}(s) are demonstrated in Fig. 6. The deformed shape at the end of elastic
loading, corresponding to the time t = 1 s is displayed in Fig. 6(a), where the growth multiplier is still �g = 1 on the
entire geometry. As can be observed from Figs. 6(b–e), by increasing the time in the interval 1 < t ≤ 17, the inner
radius decreases, while the growth multiplier �g follows an increasing trend. The final grown geometry is illustrated in
Fig. 6(f). After unloading, both inner and outer radii decrease.

Time evolution of the radial displacements uinr and uoutr , area stretch A∕A0, and the resultant force F are displayed
in Fig. 7(a). Moreover, the time history of the non-dimensional von Mises stress �̄∕(3�) and the growth multiplier
� at the inner and outer radii of the annular plate are illustrated in Fig. 7(b). As can be seen from From Fig. 7(a),
the maximum value of the area stretch occurs at the end of the growth stage with t = 17 s, and is calculated to be
Amax∕A0 = 4.8004. After the unloading process, the final value of the area stretch is obtained to be Af∕A0 = 3.7209.
The maximum value of the growth parameter �g is 3.80, which is observed at the internal surface of the sheet.
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Figure 6: Deformed shapes of the annular plate with the contour plots of the growth multiplier �g at different times
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annular plate

6.4. Growth of a tissue as a curved strip

In this example, the growth of soft tissue with an initial geometry as a curved strip is investigated. The strip can be a
simple prototype of an S-shaped human spine. The geometry and loading are shown in Fig. 8(a). The referential average
radius of curvature, width, and thickness of the strip areR =√

2,W = 0.04, and ℎ = 0.04 (m), respectively. Moreover,
the projected length of the strip along the x1-axis is 2L = 0.4 (m). The left end of the centreline is immovable, while
its right end can freely move in the x1 direction. It is assumed that the strain energy density is the same as that given in
the example 6.1. Following Ref. [39], the shear modulus and the growth parameters are considered to be � = 0.0385
MPa, �max

g = 2.4, 
 = 2, T = 1 s, and �crite = 1.01. Moreover, Poisson’s ratio is considered to be � = 0.48. The force
per unit length p is applied gradually from p = 0 to pmax = 30 N/m in tl = 0.5 s. The maximum load is then held
constant for tg = 22 s to observe the growth in the sheet. Finally, the unloading procedure from pmax to 0 is performed
during tu = 1 s. Accordingly, the maximum time of simulation is tmax = 23.5 s.

Numerical simulations reveal that a mesh of 6 × 48 elements leads to convergent results. The deformed shapes of
the strip for t = 0.5, 5.5, 10.5, 15.5, 22.5, and 23.5 (s) are displayed in Fig. 8(a–f). In particular, the deformed geometry
at the end of pure elastic loading, corresponding to the time t = 0.5 s, is demonstrated in Fig. 8(a), where the growth
multiplier is still �g = 1 on the entire geometry. As can be seen from Figs. 8(b–e), by increasing the time in the interval
0.5 < t ≤ 22.5, the strip curvature increases gradually in the opposite direction of its initial one. Moreover, the growth
multiplier �g follows an increasing trend. The final grown geometry is depicted in Fig. 8(f), where it is observed that
the deformed strip is almost a straight line.
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Figure 8: Deformed shapes of the curved strip with the contour plots of the growth multiplier �g at different times.

The curves corresponding to the strip centreline are illustrated in Fig. 9(a). It is noted that only the even load steps
are plotted in the figure. Next, the material points {A,B, C,D,E, F } as shown in Fig. 8(a) are considered. Due to the
skew-symmetry of the geometry, the material points {D,E, F } have the same properties of {A,B, C}, respectively.
Time history of the growth parameter � and the non-dimensional von Mises stress �̄∕(4�), for the material points
{A,B, C} are displayed in Fig. 9(b). Variation of the area stretch A∕A0 is also shown in the figure. From Fig. 9(b) it
is observed that the maximum values of the von Mises stress �̄ occur at the material point C . However, the maximum
value of the growth multiplier �g is observed at the material point A and attains its maximum value �Amax = 1.75. The
maximum value of the area stretch takes place at the end of the growth stage with t = 22.5 s and is obtained to be
Amax∕A0 = 1.16. After the unloading stage, the final value of the area stretch is calculated to be Af∕A0 = 1.15.
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6.5. Growth of a thin-walled helix under self-weight

In this example, the growth mechanics of a helix under its weight is investigated. The cross-section of the helix is
a circle of radius a = 5 mm and the thickness ℎ = 1 mm. The average radius of the helix is b = 25 mm. The angle
�1 ∈ [0, 2�] describes the circumference of the cross-section. Moreover, the angle �2 ∈ [0, �2max] is used to describe
the centreline of the helix. In this work, �2max = 6� is employed, which creates a helix with three complete loops. The
equation of the referential centreline is given by

Xc
1 = b cos �

2, Xc
2 = b sin �

2, Xc
3 =

p
2�
�2,

where p is the pitch of the helix, and is considered to be 12.5 mm. The undeformed geometry of the helix and its
cross-section are displayed in Fig. 10(a). It is assumed that the strain energy density is the same as that given in the
example 6.1. The material parameters are considered to be � = 0.0385MPa, � = 0.48, �max

g = 2.4, 
 = 2, T = 0.1 s,
and �crite = 1. Moreover, the referential density is �0 = 20 kg/m3. The top cross-section of the helix, at �2 = �2max, is
assumed to be fixed. In the first step, the weight of the helix is applied gradually in tl = 1 s. The growth process under
the maximum weight is then simulated in tg = 30 s.

Numerical experiments show that a mesh of 10 × 90 elements is required to achieve convergent results. Now,
the material points Ct and Cm, respectively, at (�1 = �, �2 = 0) and (�1 = �, �2 = 1

2�
2max) are considered. The

nondimensional displacement components ui∕b at the material points Ct and Cm against the nondimensional time
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Figure 10: Growth of a helix under self-weight, (a): history of displacement at the points Cm and Ct, (b): deformed shape
and contour plot of �g at the end of loading (t = 1 s), (c): grown stage at t = 11 s, (d): grown stage at t = 21 s, (e):
grown stage at t = 31 s.

t∕tmax are plotted in Fig. 10(a). Moreover, the deformed shapes of the helix at four stages, namely at t ∈ {1, 11, 21, 31}
(s) are illustrated in Fig. 10(b–e). The contour plots of the growth parameter �g are also displayed on the deformed
shapes. The maximum value of �g is obtained to be 1.45.

6.6. Growth of a flower-like geometry

In this example, the growth of a geometry that is similar to a flower is investigated. If the flower is composed ofN
petals, by considering theX1X3-plane as the plane of symmetry, the geometry of a single petal can be described by the
meridian angle �1 ∈ [�1min, �

1max] and the polar angle �2 ∈ [− �
N ,

�
N ]. It is noted that the meridian angle �1 is measured

with respect to the south pole. In this work, the values ofN = 8, �1min =
�
36 , and �1max =

�
3 are used in the simulations.
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Moreover, we noted that the material points of a single petal may be described via the following equations:

X1 = k1R sin �1 cos(f�2), X2 = k1R sin �1 sin(f�2), X3 = −R cos �1,

where f (�1) = �1max−k2�1
�1max−k2�1min

is a scalar function. Moreover, k1 = 25 and k2 = 0.98 are two constants. From another point
of view, the petal is part of the boundary surface of an ellipsoid whose equation is given by ( X1k1R

)2+( X3k1R
)2+(X3R )

2 = 1.
The length of the semi-axis of the ellipsoid alongX3 and the initial thickness are, respectively, considered to beR = 10
and ℎ = 2 (mm). The strain energy density is the same as that described in the example 6.1. Moreover, the material
parameters are considered to be � = 2MPa, � = 0.48, �max

g = 2.4, 
 = 2, T = 0.1 s, and �crite = 1. The petal is fixed
at �1 = �1min, and its tip curve at �1 = �1max is subjected to the force per unit length q1max = −2.5 and q3max = 5 (N/m)
in the X1 and X3 directions, respectively. In the first step, the loads q1 and q3 are applied gradually to the petal from
zero to their maximum values in tl = 1 s. In the growth stage, the petal is subjected to the maximum values of q1 and
q3 for tg = 30 s. Finally, the loads are gradually deceased from their maximum values to zero in tu = 1 s. Accordingly,
the maximum time of simulation is tmax = 32 s.

Due to symmetry, only one-half of a petal is discretized by the shell elements. A mesh of 4 × 24 elements leads
to convergent results. Next, the material points A and B along the centreline of the petal are considered. The point
A is located at the tip of the centreline, but the meridian angle of the point B is given by �1B = 1

2 (�
1
min + �

1max). The
nondimensional displacement components u1∕R and u3∕R at the material points A and B versus the nondimensional
time t∕tmax are depicted in Fig. 11(a). It is noted that the maximum values of lateral deflection at the point A at the end
of the growth stage and after unloading are 149.46 and 84.06 (mm), respectively. Finally, the deformed shapes of the
helix at four stages, namely at t ∈ {1, 16, 31, 32} (s) are demonstrated in Fig. 11(b–e). The contour plots of the growth
parameter �g are also displayed on the deformed shapes. Moreover, the maximum calculated value of �g is 1.16.

7. Summary

The finite growth of shell-like soft tissues subject to mechanical loading was investigated in this work. The essential
kinematic quantities and the constitutive equations describing the combined deformation and growth of thin living
bodies were presented. In particular, the expression for the tangent modulus contains additional terms, besides the
traditional one, due to the growth effects. Moreover, a finite element formulation, in material framework, for the
numerical solution of the nonlinear governing equations was developed. Several benchmark examples were provided
that reveal the applicability of the proposed formulation. It was shown that the present formulation is successful
in predicting the simultaneous deformation and growth of thin shell-like tissues subject to mechanical loads under
a wide variety of boundary conditions. Therefore, it can be used for design and analysis purposes in bionic and
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Figure 11: Growth of a flower-type geometry, (a): displacement components vs time at the points A and B, (c): deformed
shape and contour plot of �g at the end of loading stage (t = 1 s), (d): growth stage at t = 16 s, (d): end of growth stage
(t = 31 s), (e): end of unloading stage (t = 32 s).

tissue engineering. An extension of the present work to account for temperature effects will be provided in the next
contributions.

Appendix

The fourth-order tensor  is given by (see also, Refs. [39, 43, 44])

 = 2 dSdC = 2
[

)S
)C

|

|

|

|Fg
+
(

)S
)Fg

: )Fg

)C

)

|

|

|

|F

]

= 2
[

)S
)C

|

|

|

|Fg
+
(

)S
)Fg

: )Fg

)�g
⊗
)�g
)C

)

|

|

|

|F

]

. (A-1)
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In the sequel, the derivative terms that appeared in Eq. (A-1) are calculated. To do so, from Eqs. (10)1 and (23)1, the
first term in the brackets may be written as

)S
)C

|

|

|

|Fg
= )
)C
(F−1g SeF−⊤g )

|

|

|Fg
= F−1g

(

)Se
)Ce

: )Ce
)C

)

F−⊤g = 1
2
 1 :e : 2. (A-2)

where the fourth-order tensors e and   ( = 1, 2) are defined as follows:

e = 2
)Se
)Ce

,  1 = F−1g ⊠ F−⊤g ,  2 = F−⊤g ⊙ F−1g . (A-3)

Similarly, Eqs. (10)2 and (23)1 leads to the following expression for the term )S
)Fg

|

|

|F
:

)S
)Fg

|

|

|

|F
= )
)Fg

(F−1g SeF−⊤g )
|

|

|

|F

=
[)F−1g
)Fg

SeF−⊤g + F−1g Se
)F−⊤g
)Fg

+ F−1g

(

)Se
)Ce

: )Ce
)Fg

)

F−⊤g

]

F

= −1
2
(

2 3 +  1 :e : 4
)

,

(A-4)

where the fourth-order tensors  3 and  4 are given by

 3 = F−1g ⊙ S + S⊠ F−⊤g ,  4 = F−⊤g ⊠ Ce + Ce⊠̄F−1g . (A-5)

To calculate )�g
)C , in the first step, straightforward calculations lead to the following expression for )�

)C :

)�
)C

= 1
2�

[

�2I − J 2C−1(D⊗D)
]

C−1, (A-6)

where use has been made of )C−1
)C = − 12 (C

−1 ⊠ C−1 + C−1 ⊙ C−1) and )J 2

)C = J 2C−1 (e.g., Ref. [65]). Next,
differentiating the scalar function �, defined in Eqs. (15) and (16), with respect to � and C furnishes

)�
)�

=
Φ1
�g
,

)�
)C

=
)�
)�g

)�g
)C

+
)�
)�

)�
)C

. (A-7)

By discarding the superscript "n + 1" in Eq. (47), differentiating with respect to C, using Eqs. (48)2 and (A-7), and
solving for )�g)C one obtains

)�g
)C

=
Φ1Δt
K�g

)�
)C

=
Φ1Δt
2K��g

[

�2I − J 2C−1(D⊗D)
]

C−1, (A-8)
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where use has been made of Eq. (A-6) in the last expression. Now, by back substituting Eqs. (12)4, (A-2), (A-4), and
(A-8) into (A-1), the fourth-order elasticity tensor  is obtained.
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